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ABSTRACT
We present the 3D real-space clustering power spectrum of a sample of ∼600 000 luminous red
galaxies measured by the Sloan Digital Sky Survey, using photometric redshifts. These galaxies
are old, elliptical systems with strong 4000-Å breaks, and have accurate photometric redshifts
with an average error of �z = 0.03. This sample of galaxies ranges from redshift z = 0.2 to 0.6
over 3528 deg2 of the sky, probing a volume of 1.5 h−3 Gpc3, making it the largest volume ever
used for galaxy clustering measurements. We measure the angular clustering power spectrum
in eight redshift slices and use well-calibrated redshift distributions to combine these into a
high-precision 3D real-space power spectrum from k = 0.005 to k = 1 h Mpc−1. We detect
power on gigaparsec scales, beyond the turnover in the matter power spectrum, at a ∼2σ

significance for k < 0.01 h Mpc−1, increasing to 5.5σ for k < 0.02 h Mpc−1. This detection of
power is on scales significantly larger than those accessible to current spectroscopic redshift
surveys. We also find evidence for baryonic oscillations, both in the power spectrum, as well
as in fits to the baryon density, at a 2.5 σ confidence level. The large volume and resulting
small statistical errors on the power spectrum allow us to constrain both the amplitude and the
scale dependence of the galaxy bias in cosmological fits. The statistical power of these data to
constrain cosmology is ∼1.7 times better than previous clustering analyses. Varying the matter
density and baryon fraction, we find �M = 0.30 ± 0.03, and �b/�M = 0.18 ± 0.04, for a fixed
Hubble constant of 70 km s−1 Mpc−1 and a scale-invariant spectrum of initial perturbations.
The detection of baryonic oscillations also allows us to measure the comoving distance to

�E-mail: NPadmanabhan@lbl.gov
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z = 0.5; we find a best-fitting distance of 1.73 ± 0.12 Gpc, corresponding to a 6.5 per cent error
on the distance. These results demonstrate the ability to make precise clustering measurements
with photometric surveys.

Key words: cosmological parameters – cosmology: observations – distance scale – large-scale
structure of Universe.

1 I N T RO D U C T I O N

The 3D distribution of galaxies has long been recognized as a pow-
erful cosmological probe (Hauser & Peebles 1973; Peebles 1973;
Groth & Peebles 1977; Tegmark 1997b; Goldberg & Strauss 1998;
Hu, Eisenstein & Tegmark 1998; Tegmark et al. 1998; Eisenstein,
Hu & Tegmark 1999; Hu et al. 1999; Wang, Spergel & Strauss 1999).
On large scales, we expect the galaxy density to have a simple rela-
tionship to the underlying matter density; therefore, the clustering
of galaxies is related to the clustering of the underlying matter. The
two-point correlation function of matter (or its Fourier transform,
the power spectrum) is a sensitive probe of both the initial conditions
of the Universe and its subsequent evolution. Indeed, if the matter
density is well described by a Gaussian random field, then the power
spectrum encodes all the information present in the field. It is there-
fore not surprising that a large fraction of the effort in observational
cosmology has been devoted to measuring the spatial distribution of
galaxies, culminating in recent results from the Two-Degree Field
Galaxy Redshift Survey (2dFGRS, Cole et al. 2005) and the Sloan
Digital Sky Survey (SDSS, Tegmark et al. 2004).

The spatial distribution of galaxies is also a standard ruler for
cosmography. The expansion rate of the Universe as a function of
redshift is a sensitive probe of its energy content, and in particular,
can be used to constrain the properties of the ‘dark energy’ respon-
sible for the recent acceleration in the expansion (see e.g. Eisenstein
2005; Hu 2005). One approach to measure the expansion rate is to
observe the apparent size of a standard ruler (and therefore, the an-
gular diameter distance) at different redshifts to constrain the scale
factor a(t). The power spectrum of the galaxy distribution has two
features useful as standard rulers. At k ∼ 0.01 h Mpc−1, the power
spectrum turns over from a k1 slope (for a scale-invariant spectrum
of initial fluctuations), to a k−3 spectrum, caused by modes that en-
tered the horizon during radiation domination and were therefore
suppressed. The precise position of this turnover is determined by
the size of the horizon at matter–radiation equality, and corresponds
to a physical scale determined by the matter (�M h2) and radiation
densities (�R h2). The other distinguishing feature is oscillations in
the power spectrum caused by acoustic waves in the baryon-photon
plasma before hydrogen recombination at z ∼ 1000 (Peebles & Yu
1970; Sunyaev & Zeldovich 1980; Bond & Efstathiou 1984; Holtz-
man 1989; Eisenstein & Hu 1998; Meiksin, White & Peacock 1999).
The physics of these oscillations are analogous to those of the cos-
mic microwave background, although their amplitude is suppressed
because only approximately one-sixth of the matter in the Universe
is composed of baryons. The scale of this feature, again determined
by the matter and radiation densities, is set by the sound horizon
at hydrogen recombination. This feature was first observed in early
2005 both in the SDSS luminous red galaxy (LRG) sample (Eisen-
stein et al. 2005b; Hütsi 2006a) and the 2dFGRS data (Cole et al.
2005). Measuring the apparent size of both of these features at dif-
ferent redshifts opens up the possibility of directly measuring the
angular diameter distance as a function of redshift (Eisenstein, Hu
& Tegmark 1998; Blake & Glazebrook 2003; Hu & Haiman 2003;

Linder 2003; Matsubara & Szalay 2003; Seo & Eisenstein 2003;
Matsubara 2004; Blake & Bridle 2005; Seo & Eisenstein 2005;
White 2005; Blake et al. 2006; Dolney, Jain & Takada 2006).

Traditionally, measurements of galaxy clustering rely on spectro-
scopic redshifts to estimate distances to galaxies. Even with mod-
ern CCDs and high-throughput multifibre spectrographs, acquiring
them is an expensive, time-consuming process compared with just
imaging the sky. For instance, the SDSS spends about one-fifth of the
time imaging the sky, and the rest on spectroscopy. Furthermore, the
ultimate accuracy of distance estimates from spectroscopy is limited
by peculiar velocities of ∼1000 km s −1, a significant mismatch with
the intrinsic spectroscopic accuracy of ∼10 km s −1. While there is
valuable information in these peculiar velocities, it is more sensi-
tive to the physics of galaxy formation as opposed to the large-scale
structure. Given our incomplete understanding of galaxy forma-
tion, these scales are usually discarded for cosmological parameter
estimation.

Large multiband imaging surveys allow for the possibility of re-
placing spectroscopic with photometric redshifts. The advantage is
relative efficiency of imaging over spectroscopy. Given a constant
amount of telescope time, one can image both wider areas and deeper
volumes than would be possible with spectroscopy, allowing one to
probe both larger scales and larger volumes. Furthermore, the accu-
racy of photometric distance estimates (Padmanabhan et al. 2005a),
c�z ∼10 000 km s −1 is more closely matched (although still not
optimal) to the intrinisic uncertainties in the distance–redshift rela-
tions.

One aim of this paper is to demonstrate the practicality of such
an approach by applying it to real data. We start with the five band
imaging of the SDSS, and photometrically select a sample of LRGs;
these galaxies have a strong 4000-Å break in their spectral energy
distributions (SEDs), making uniform selection and accurate pho-
tometric redshifts possible. We then measure the angular clustering
power spectrum as a function of redshift, and ‘stack’ these individual
2D power spectra to obtain an estimate of the 3D clustering power
spectrum. Using the photometric survey allows us to probe both
larger scales and higher redshifts than is possible with the SDSS
spectroscopic samples.

We pay special attention to the systematics unique to photometric
surveys, and develop techniques to test for these. Stellar contamina-
tion, variations in star–galaxy separation with seeing, uncertainties
in Galactic extinction, and variations in the photometric calibration
all can masquerade as large-scale structure, making it essential to
understand the extent of their contamination. Furthermore, stacking
the angular power spectra to measure the 3D clustering of galaxies
requires testing our understanding of the photometric redshifts and
their errors.

This paper is organized as follows. Section 2 describes the con-
struction of the sample; Section 3 then discusses the measurement
of the angular power spectrum and the associated checks for sys-
tematics. These angular power spectra are then stacked to estimate
the 3D power spectrum (Section 4), and preliminary cosmological
parameters are estimated in Section 5. We conclude in Section 6.
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Wherever not explicitly mentioned, we assume a flat � cold dark
matter (�CDM) cosmology with �M = 0.3, �b = 0.05, h = 0.7, a
scale-invariant primordial power spectrum, and σ 8 = 0.9.

We note that a parallel investigation on a similar data set was car-
ried out by Blake et al. (2007). Where our results can be compared,
the agreement is good.

2 T H E S A M P L E

2.1 The data

The SDSS (York et al. 2000) is an ongoing effort to image ap-
proximately π sr of the sky, and obtain spectra of approximately
one million of the detected objects (Eisenstein et al. 2001; Strauss
et al. 2002). The imaging is carried out by drift-scanning the sky in
photometric conditions (Hogg et al. 2001), using a 2.5-m telescope
(Gunn et al. 2006) in five bands (ugriz) (Fukugita et al. 1996; Smith
et al. 2002) using a specially designed wide-field camera (Gunn
et al. 1998). Using these data, objects are targeted for spectroscopy
(Richards et al. 2002; Blanton et al. 2003) and are observed with a
640-fibre spectrograph on the same telescope. All of these data are
processed by completely automated pipelines that detect and mea-
sure photometric properties of objects, and astrometrically calibrate
the data (Lupton et al. 2001; Pier et al. 2003; Ivezić et al. 2004). The
first phase of the SDSS is complete and has produced five major
data releases (Stoughton et al. 2002; Abazajian et al. 2003, 2004,
2005; Adelman-McCarthy et al. 2006).1 This paper uses all data
observed through Fall 2003 (corresponding approximately to SDSS
Data Release 3), reduced as described by Finkbeiner et al. (2004).

2.2 Photometric calibration

Measurements of large-scale structure with a photometric survey re-
quire uniform photometric calibrations over the entire survey region.
Traditional methods of calibrating imaging data involve compar-
isons with secondary ‘standard’ stars. The precision of such meth-
ods is limited by transformations between different photometric sys-
tems, and there is no control over the relative photometry over the
entire survey region. The approach we adopt with these data is to use
repeat observations of stars to constrain the photometric calibration
of SDSS ‘runs’, analogous to CMB map-making techniques (see
e.g. Tegmark 1997a). Since all observations are made with the same
telescope, there are none of the uncertainties associated with using
auxiliary data. Also, using overlaps allows one to control the relative
calibration over connected regions of survey. The only uncertainty
is the overall zero-point of the survey, which we match to published
SDSS calibrations. The above method has been briefly described
by Finkbeiner et al. (2004) and Blanton et al. (2005), and will be
explained in detail in a future publication.

2.3 Defining luminous red galaxies

Tracers of the large-scale structure of the Universe must satisfy a
number of criteria. They must probe a large cosmological volume to
overcome sample variance, and have a high number density so shot
noise is subdominant on the scales of interest. Furthermore, it must
be possible to uniformly select these galaxies over the entire volume
of interest. Finally, if spectroscopic redshifts are unavailable, they

1 URL: www.sdss.org/dr4

should have well-characterized photometric redshifts (and errors),
and redshift distributions.

The usefulness of LRGs as a cosmological probe has long
been appreciated (Gladders & Yee 2000; Eisenstein et al. 2001).
These are typically the most-luminous galaxies in the Universe,
and therefore probe cosmologically interesting volumes. In addi-
tion, these galaxies are generically old stellar systems with uniform
SEDs characterized principally by a strong discontinuity at 4000 Å
(Fig. 1). This combination of a uniform SED and a strong 4000-
Å break make LRGs an ideal candidate for photometric redshift
algorithms, with redshift accuracies of σ z ∼ 0.03 (Padmanabhan
et al. 2005a). LRGs have been used for a number of studies (Hi-
rata et al. 2004; Eisenstein et al. 2005a; Padmanabhan et al. 2005b;
Zehavi et al. 2005), most notably for the detection of the bary-
onic acoustic peak in the galaxy autocorrelation function (Eisenstein
et al. 2005b).

The photometric selection criteria we adopt were discussed in
detail by Padmanabhan et al. (2005a) and are summarized below.
We start with a model spectrum of an early-type galaxy from the
stellar population synthesis models of Bruzual & Charlot (2003)
(Fig. 1). This particular spectrum is derived from a single burst of
star formation 11 Gyr ago (implying a redshift of formation, zform ∼
2.6), evolved to the present, and is typical of LRG spectra. In partic-
ular, the 4000-Å break is very prominent. To motivate our selection
criteria, we passively evolve this spectrum in redshift (taking the
evolution of the strength of the 4000-Å break into account), and
project it through the SDSS filters; the resulting colour track in g −
r − i space as a function of redshift is shown in Fig. 2. The bend in
the track around z ∼ 0.4, as the 4000-Å break redshifts from the g
to r band, naturally suggests two selection criteria – a low-redshift
sample (Cut I), nominally from z ∼ 0.2 to 0.4, and a high-redshift
sample (Cut II), from z ∼ 0.4 to 0.6. We define the two colours
(Eisenstein et al. 2001, and private communication)

Figure 1. A model spectrum of an elliptical galaxy, taken from Bruzual &
Charlot (2003), shown at three redshifts. The model assumes a single burst of
star formation 11 Gyr ago and solar metallicity; the effect of evolution is not
shown for simplicity. Also overplotted are the response functions (including
atmospheric absorption) for the five SDSS filters. The break in the spectrum
at 4000 Å, and its migration through the SDSS filters is clearly seen.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 378, 852–872
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Figure 2. The top panel shows simulated g − r and r − i colours of an
early-type galaxy as a function of redshift. The spectrum used to generate
the track is the same as in Fig. 1, but evolved in redshift. Also shown are the
colour cuts for Cut I (dashed line, black online) and Cut II galaxies (solid
line, blue online). The lower panel shows the colours c|| (diamonds, black
online) and d⊥ (triangles, red online), as a function of redshift. Also shown
are fiducial redshift boundaries for Cut I (0.2–0.4) and Cut II (0.4–0.6). Note
that the range in g − r is identical to the range in 1 + z.

c⊥ ≡ (r − i) − (g − r )/4 − 0.18, (1)

d⊥ ≡ (r − i) − (g − r )/8 ≈ r − i . (2)

We now make the following colour selections:

Cut I : |c⊥ | < 0.2; (3)

Cut II :d⊥ > 0.55, (4)

g − r > 1.4, (5)

as shown in Fig. 2. The final cut, g− r>1.4, isolates our sample from
the stellar locus. In addition to these selection criteria, we eliminate
all galaxies with g − r > 3 and r − i > 1.5; these constraints
eliminate no real galaxies, but are effective at removing stars with
unusual colours.

Unfortunately, as emphasized in Eisenstein et al. (2001), these
simple colour cuts are not sufficient to select LRGs due to an ac-
cidental degeneracy in the SDSS filters that causes all galaxies,
irrespective of type, to lie very close to the low-redshift early-type
locus. We therefore follow the discussion there and impose a cut in
absolute magnitude. We implement this by defining a colour as a
proxy for redshift and then translating the absolute magnitude cut
into a colour–apparent magnitude cut. We see from Fig. 2 that d⊥
correlates strongly with redshift and is appropriate to use for Cut II.
For Cut I, we define,

c|| = 0.7(g − r ) + 1.2(r − i − 0.18), (6)

which is approximately parallel to the low-redshift locus. Given
these, we further impose

Cut I : rPetro < 13.6 + c||/0.3,

rPetro < 19.7;
(7)

Cut II : i < 18.3 + 2d⊥,

i < 20. (8)

Note we use the r-band Petrosian magnitude (rPetro) for consistency
with the SDSS LRG target selection. We note that Cut I is identical
(except for the magnitude cuts in equations 7) to the SDSS LRG
Cut I, while Cut II was chosen to yield a population consistent
with Cut I (see below). This was intentionally done to maximize
the overlap between any sample selected using these cuts, and the
SDSS LRG spectroscopic sample. The switch to the i band for Cut II
also requires explanation. As is clear from Fig. 1, the 4000-Å break
is redshifting through the r band throughout the fiducial redshift
range of Cut II. This implies that the K-corrections to the r band
are very sensitive to redshift; the i-band K-corrections are much
less sensitive to redshift allowing for a more robust selection. These
colour selections are extremely efficient, as has been demonstrated
by the SDSS LRG survey (including numerous ‘special’ plates taken
during the course of the survey that have targeted data based on this
selection criterion), as well as the 2SLAQ LRG redshift survey.

Finally, we augment the star–galaxy separation from SDSS with
the following cuts designed to minimize stellar contamination:

Cut I : rPSF − r > 0.3,

Cut II : iPSF − i > 0.2(21 − i),

RdeV > 0.2, (9)

where (r, i)PSF are the SDSS PSF magnitudes, while RdeV is the
deVaucouleurs radius of the galaxy in arcseconds.

2.4 Angular and redshift distributions

Applying the above selection criteria to the ∼5500 deg of photo-
metric SDSS imaging considered in this paper yields a catalogue
of approximately 900 000 galaxies. We pixelize these galaxies as
a number overdensity, δg = δn/n̄, on to a HEALPIX pixelization
(Górski, Hivon & Wandelt 1999) of the sphere, with 3145 728 pixels
(HEALPIX resolution 9). We exclude regions where the extinction in
the r band (Schlegel, Finkbeiner & Davis 1998) exceeds 0.2 mag.
In addition, we mask regions around stars in the Tycho astrometric
catalogue (Høg et al. 2000) brighter than 13th magnitude (in the
B band), to avoid incompleteness. We use a magnitude-dependent
radius of

r = 0.0802B2 − 1.860B + 11.625, (10)

where r is in arcminutes, and B is the B-band magnitude, capped at 6
and 11.5 at the faint and bright ends, respectively. We also exclude
data from the three southern SDSS stripes due to difficulties in
photometrically calibrating them relative to the rest of the data, due
to the lack of any overlap. The resulting angular selection function
is shown in Fig. 3. The angular coverage naturally divides into two
regions, which we refer to as the ‘Northern Celestial Cap’ (NCC) and
the ‘Equatorial Cap’ (EC), based on their positions on the celestial
sphere. As discussed below, we additionally excise regions in the
EC with b < 45◦ due to possible stellar contamination. The final
angular selection function covers a solid angle of 2384 deg2 (181 766
resolution nine HEALPIX pixels) in the NCC, and 1144 deg2 (87 263
resolution 9 HEALPIX pixels) in the EC.

The calibration and accuracy of photometric redshift algorithms
for this sample have been discussed in detail by Padmanabhan et al.
(2005a). We compute photometric redshifts for all the galaxies in the
sample using the simple template fitting algorithm described there;
these redshifts have calibrated errors of σ z ∼ 0.025 at z ∼ 0.2 that
increase to σ z ∼ 0.05 at z ∼ 0.6. The resulting photometric redshift
distribution is in Fig. 4. The sample is divided into eight photometric
redshift slices of thickness �z = 0.05 (z00 through z07), and the
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Figure 3. The angular selection function of the LRGs with the ‘NCC’ (black
lines) and the ‘EC’ (blue lines) shown. The lightly shaded (green online)
region of the Equatorial cap (b < 45◦ shown as a dashed line) is excluded
because of possible stellar contamination. The gaps in the selection function
are due to missing data and exclusion around bright stars. Also shown is the
Galactic equator (solid line).
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Figure 4. Top panel: the photometric redshift distribution of the LRG sam-
ple. Bottom panel: the deconvolved selection functions for photometric red-
shift slices with �z = 0.05 from z = 0.2 to 0.6. The dotted lines are the mean
redshifts of each of the slices.

underlying redshift distributions for each slice are estimated using
the deconvolution algorithm presented in the above reference. These
redshift distributions are plotted in Fig. 4, while properties of the
different slices are summarized in Table 1.

2.5 Sample systematics

There are a number of systematic effects in photometric samples that
contaminate clustering – stellar contamination, angular and radial
modulation of the selection due to seeing variations, extinction,
and errors in our modelling of the galaxy population. Fig. 5 plots
the areal LRG density as a function of Galactic latitude; one would
expect any leakage in the star–galaxy separation to increase at lower
latitudes where the stellar density is higher. We see no increase for
the NCC, but observe an increase for b < 45◦ for the EC. This is

Table 1. Descriptions of the eight �z = 0.05 redshift slices; zmid is the mid-
point of the redshift interval, while zmean is the mean redshift of the slice
(from integrating the true redshift distribution). Also listed are the number
of galaxies (Ngal) for the ‘NCC’, and the ‘EC’, and the linear bias of each
redshift slice, bg.

Label zmid zmean Ngal Ngal bg

(NCC) (EC)

z00 0.225 0.233 16 983 7942 1.74 ± 0.05
z01 0.275 0.276 20 377 9283 1.52 ± 0.06
z02 0.325 0.326 21 759 10768 1.67 ± 0.07
z03 0.375 0.376 28 345 12706 1.94 ± 0.06
z04 0.425 0.445 41 527 18767 1.75 ± 0.06
z05 0.475 0.506 71 131 33000 1.73 ± 0.04
z06 0.525 0.552 65 324 30281 1.80 ± 0.04
z07 0.575 0.602 46 185 20504 1.85 ± 0.05

Table 2. The 3D real-space power spectrum (for bins B1). The bands are
step functions defined by kmin < k < kmax, the fiducial power spectrum by
�2

0, and the estimated power spectrum and errors by δ and σ δ . Note that
the full covariance matrix must be used for any detailed fitting to these data,
since different data points are anticorrelated.

kmin kmax �2
0 δ σ δ

0.005 0.010 2.8639E−04 2.2986E+00 8.7243E−01
0.010 0.025 4.4282E−03 1.0989E+00 1.1675E−01
0.025 0.040 2.1702E−02 8.9660E−01 8.2658E−02
0.040 0.060 5.3956E−02 9.1448E−01 5.8324E−02
0.060 0.075 1.0630E−01 1.0612E+00 6.0193E−02
0.075 0.090 1.5237E−01 9.3736E−01 6.0019E−02
0.090 0.130 2.3303E−01 1.0118E+00 3.2957E−02
0.130 0.200 4.4947E−01 1.0281E+00 5.4245E−02
0.200 0.300 8.5115E−01 1.2406E+00 5.0454E−02

Table 3. The same as Table 2 except for bins B2.

kmin kmax �2
0 δ σ δ

0.007 0.013 7.6073E−04 2.0776E+00 7.1312E−01
0.013 0.020 3.6199E−03 9.4449E−01 2.8597E−01
0.020 0.035 1.4566E−02 9.7928E−01 8.9388E−02
0.035 0.050 3.7910E−02 7.7955E−01 7.3753E−02
0.050 0.065 7.4435E−02 9.9163E−01 6.6288E−02
0.065 0.080 1.2342E−01 9.4425E−01 5.6484E−02
0.080 0.095 1.6452E−01 9.7427E−01 6.3003E−02
0.095 0.150 2.7896E−01 9.6809E−01 2.5155E−02
0.150 0.250 5.9607E−01 1.0969E+00 4.4514E−02
0.250 0.350 1.1610E+00 1.1772E+00 5.1480E−02

further borne out by Fig. 6, where we plot the LRG density versus
the density of stars with SDSS PSF magnitudes 18.0 < rPSF <

19.5, where the magnitude limits were chosen so that the SDSS
star–galaxy separation is essentially perfect. Although the effect of
removing this region is small, we choose to be conservative and
exclude regions below b = 45◦ (Figs 5 and 6); this reduces the
area of the EC by 25 per cent. Note that this is a purely empirical
correction, as we do not have a complete understanding of this effect
currently.

To understand the nature of this contamination, we consider the
subset of galaxies for which SDSS has measured spectra. We find
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Figure 5. The average number of LRGs per resolution 6 HEALPIX pixel (ap-
proximately 1 deg2 in area) as a function of Galactic latitude, for the two
disjoint caps. The contours are 16, 50 and 84 per cent. There is some evi-
dence for stellar contamination (see the text for more details) at low Galactic
latitudes in the EC; excising the region b < 45◦ removes the problematic
regions.
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Figure 6. The same as Fig. 5 except now as a function of stellar density.
The stellar density is estimated analogous to the galaxy density, selecting
stars with PSF fluxes rPSF between 18.0 and 19.5. The vertical line shows
the position of the b < 45◦ cut in the EC.

that 118 053 (13.1 per cent) galaxies in the photometric sample have
measured spectra. Of these, 662 (0.56 per cent) are unambiguously
classified as stars (475 objects) or quasars (187 objects). The quasars
are at low (0.1 < z < 0.25) redshifts, while the stars are almost
entirely K and M stars, and are preferentially at lower Galactic lati-
tudes, consistent with the above. Inspecting the imaging data shows
that these are either late-type stars blended with other stars (approx-
imately 2/3) or late-type stars blended with background galaxies
(approximately 1/3), and a smattering of star–artefact blends. Note
that this explains the dependence with Galactic latitude and stellar
density; one would naively expect the number of star-star blends
to scale as the square of the stellar density, while the star–galaxy
and star–artefact blends should roughly scale as the stellar den-
sity. While the levels of contamination obtained are approximate

(since the spectroscopic survey has a brighter apparent luminosity
limit than our photometric catalogue), we have confirmed these with
deeper spectroscopic data matched to this sample. Note that, as the
stars are physically uncorrelated with the galaxies, the effect on the
power spectrum scales as the contamination fraction squared, and
is therefore negligible.

We emphasize that the levels of contamination obtained this way
are approximate, since the spectroscopic survey has a brighter ap-
parent luminosity limit than our photometric catalogue, and the con-
tamination could increase with decreasing luminosity.

To test for the possible modulation of the LRG selection due to
angular variations in seeing and extinction, we consider the areal
density of LRGs observed as a function of seeing (as measured by
the full width at half-maximum (FWHM) of the r-band PSF) and
extinction (Schlegel et al. 1998). These distributions are plotted in
Figs 7 and 8. We find that the density is constant to ∼2 per cent
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Figure 7. Top panel: the histogram is the (normalized) distribution of galax-
ies as a function of the PSF FWHM (measured in arcseconds) in the r band.
The (red online) curve is the fraction of the total survey area with the same
PSF FWHM. The agreement between them suggests that the galaxy selection
algorithm is unaffected by seeing. Bottom panel: the galaxy surface density
as a function of seeing. The two distributions are identical at the 2 per cent
level except at the edges where the relevant survey area is negligible.
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Figure 8. Analogous to Fig. 7 except with extinction in the r band from
Schlegel et al. (1998). We truncate at Ar = 0.2 corresponding to the cut in
the angular selection function.
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Figure 9. The conditional i-band magnitude distribution as a function of
redshift. The absolute magnitude is computed assuming the photometric
redshift. The contours show the 16, 50 and 84 per cent levels, while the
horizontal (red online) line is the median magnitude for the entire sample.
The glitch at z ∼ 0.4 corresponds to the transition between Cut I and Cut
II LRGs, while the increase at z ∼ 0.55 is due to the magnitude limit in
Cut II.

over most of the range of seeing and extinction in the survey. We
do observe deviations at the very edges of the distributions, but the
total area with these extremes in seeing and extinction is negligible
(as seen in the top panels of the figures), and therefore, do not
affect clustering measurements. A 2 per cent modulation of the field
would result in a 2 per cent error in the overall amplitude of the
power spectrum if the modulation was perfectly correlated with the
power spectrum, and a ∼ (2 per cent)2 effect if it were perfectly
uncorrelated (as is more likely). Both of these cases are much less
than the measurement errors for these data.

Finally, to test sample uniformity as a function of redshift, we
consider the luminosity distribution as a function of redshift. A
constant luminosity distribution over the redshift range would sug-
gest that we were selecting comparable populations of galaxies. A
complication is that we must use photometric redshifts to compute
absolute magnitudes; biases in the photometric redshifts could alter
the inferred luminosity distributions. We estimate the magnitude of
such biases from Table 1. At low redshifts, the photometric redshifts
are essentially unbiased, whereas at high redshifts, the photomet-
ric redshifts underestimate the true redshift by about �z = 0.025,
which translates into an overestimation of the magnitude by about
�M = 0.1–0.15 mag.

The observed conditional luminosity distribution as a function of
redshift is in Fig. 9. The median luminosity is constant to approx-
imately �M = 0.1 over the redshift range of interest, with a width
of ∼0.7 mag (compared with a potential bias of 0.15 mag above).
The distribution has two distinguishing features, a glitch at z ∼ 0.4
and increasing luminosities at higher redshifts. The glitch at z ∼ 0.4
corresponds to the transition between Cut I and Cut II at the point
where colour tracks bend sharply in Fig. 2, and highlights a diffi-
culty in uniformly selecting galaxies in that region. The increase in
luminosities at ∼z = 0.55 is due to the magnitude limits imposed in
Cut II. Except for these two features, we conclude that our selection
criteria yield an approximately uniform galaxy population from z =
0.2 to 0.55.

3 T H E A N G U L A R P OW E R S P E C T RU M

3.1 Projections on the sky

We relate the projected angular power spectrum to the underlying 3D
power spectrum; our derivation follows the discussion in Huterer,
Knox & Nichol (2001) (see also Tegmark et al. 2002, and references
therein). We describe the galaxy distribution by an isotropic 3D
density field, δg,3D, and its power spectrum P(k) defined by

〈δg,3D(k)δ∗
g,3D(k′)〉 = (2π)3δ3(k − k′)Pg(k). (11)

Projecting this density field on the sky along n̂, we obtain,

δg(n̂) = 1∫
dy φ(y)

∫
dy φ(y)δg,3D(y, yn̂), (12)

where y is the comoving distance, and φ(y) is the radial selection
function. For now, we ignore the effect of peculiar velocities, and
therefore do not distinguish between real- and redshift-space quan-
tities. Fourier transforming the 3D density field and making use of
the identity,

e−ik·n̂y =
∞∑

l=0

(2l + 1)i l jl (ky)Pl (k̂ · n̂), (13)

we obtain,

δg(n̂) =
∫

dy f (y)

∫
d3k

(2π)3
δg,3D(y, k)

×
∞∑

l=0

i l (2l + 1) jl (ky)Pl (n̂ · k̂), (14)

where jl (x) and Pl (x) are the l th-order spherical Bessel functions
and Legendre polynomials, respectively. We define the weighting
function, f(y) by

f (y) ≡ φ(y)∫
dy φ(y)

. (15)

Since the density field is isotropic, we expand it in Legendre poly-
nomials to obtain

δg,l = i l

∫
dy f (y)

∫
d3k

(2π)3
δg,3D(y, k) jl (ky). (16)

In order to proceed, we assume that the selection function is
narrow in redshift, allowing us to ignore the evolution of the density
field. The above equation can then be written as

δg,l = i l

∫
d3k

(2π)3
δg,3D(k)Wl (k), (17)

where we implicitly assume that the density field is at the median
redshift of the selection function. The window function, Wl (k), de-
scribes the mapping of k to l and is given by

Wl (k) =
∫

dy f (y) jl (ky). (18)

It is now straightforward to compute the angular power spectrum,

Cl ≡ 〈δg,lδ
∗
g,l〉 = 4π

∫
dk

k
�2(k)W 2

l (k), (19)

where �2(k) is the variance per logarithmic wavenumber,

�2(k) ≡ 1

(2π)3
4πk3 P(k). (20)
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Similarly, the cross-correlation between two selection functions, φ1

and φ2, is given by

C12
l = 4π

∫
dk

k
�2(k)Wl,1(k)Wl,2(k). (21)

We have not distinguished between the galaxy and matter power
spectrum above. On large scales, we simply assume

Pg(k) = b2
g P(k), (22)

where Pg(k) and P(k) are the galaxy and matter power spectra, re-
spectively, and bg is the linear galaxy bias. This is a good approxima-
tion on large scales (Scherrer & Weinberg 1998), but breaks down
on smaller scales; we defer a discussion of its regime of validity,
as well as the non-linear evolution of the power spectrum to a later
section.

Fig. 10 shows the predicted angular power spectra for the eight
redshift distributions in Fig. 4 assuming our fiducial cosmology; also
shown are the cross-correlation power spectra for adjacent slices. We
assume bg = 1, and use the HALOFIT prescription (Smith et al. 2003)
to evolve the matter power spectrum into the non-linear regime. The
increase in the amplitude of the power spectrum on large scales (low
L) with decreasing redshift (moving from z07 to z00) is due to the
linear growth of structure. On the other hand, the increase in power
on small scales (large L), again moving from z07 to z00, is due to the
non-linear collapse of structures. The ‘knee’ in the power spectrum
between L ∼ 10 and 30 corresponds to the turnover in the 3D power
spectrum P(k), where the shape changes from P(k) ∼ k to P(k) ∼
k−3 (in the linear regime). This scale corresponds to the horizon at
matter–radiation equality and is constant in comoving coordinates.
However, with increasing radial distances to the redshift slices, the
apparent angular size decreases with redshift, and we see the ‘knee’
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Figure 10. The theoretical angular power spectra for each of the redshift
slices in Fig. 4. The heavy and light solid lines show non-linear and linear
auto power spectra, while the dashed lines show the cross-power spectra
with the adjacent slice at higher redshift. The dotted lines show the effect of
redshift-space distortions on both the auto and cross-power spectra, assuming
β = 0.3. The panel z04 also shows the cross-correlation power with z06 and
z07. Note that we use uppercase L in the plots to avoid confusion with the
numeral 1.

shift from low L (large angular scales) at low redshifts to high L
(small angular scales) at high redshifts. This illustrates the potential
use of the power spectrum as a standard ruler for cosmography; given
the size of the horizon at matter–radiation equality (independent of
dark energy), one can probe the evolution of the Universe during
the dark energy dominated phase. A second such standard ruler is
the baryonic oscillations in the matter power spectrum visible at
L ∼ 100. However, its amplitude is suppressed in the individual
angular power spectra by the smoothing due to the thickness of the
redshift slices.

Finally, we note that the cross-correlation between adjacent slices
is non-negligible. This is easily understood by considering Fig. 4,
where we note that there is considerable overlap between adjacent
slices. Furthermore, this overlap increases with increasing redshift
due to larger photometric redshift errors; this too is reflected in the
cross-correlations. Going to more widely separated slices reduces
the cross-correlation due to smaller overlaps. Note that the level of
correlation seen in Fig. 10 is only true on large scales; on smaller
scales, uncorrelated Poisson noise (since the galaxy samples are
disjoint) erases these correlations.

3.1.1 Redshift-space distortions

The above discussion ignored the effect of peculiar velocities on the
observed clustering power spectrum. For broad redshift selection
functions, the projection on to the sphere erases redshift-space dis-
tortions; however, as the selection function becomes narrow, they
become more important. We calculate their effect below, following
the formalism of Fisher, Scharf & Lahav (1994).

We start with equation (12),

1 + δg(n̂) =
∫

dy f (s)[1 + δg,3D(y, yn̂)], (23)

where we have now written the weighting function as a function
of redshift distance, s = y + v · n̂, and we have left the monopole
contribution to the projected galaxy density explicit. Assuming that
the peculiar velocities are small compared with the thickness of the
redshift slice, we Taylor expand the weight function to linear order,

f (s) ≈ f (y) + d f

dy
(v(yn̂) · n̂). (24)

Substituting this expression into equation (23), we note that at lin-
ear order, redshift-space distortions only imprint fluctuations on the
monopole component of the galaxy density. This allows us to sepa-
rate the 2D galaxy density into two terms, δg = δ0

g + δr
g , where δ0

g is
the term discussed above, while δr

g are the redshift-space distortions.
Fourier transforming the velocity field, we find that

δr
g(n̂) =

∫
dy

d f

dy

∫
d3k

(2π)3
v(k) · n̂e−ik·n̂y . (25)

The linearized continuity equation allows us to relate the velocity
and density perturbations,

v(k) = −iβδg(k)
k
k2

, (26)

where β is the redshift distortion parameter given approximately
by β ≈ �0.6

m /bg. Substituting equations (26) into (25) and taking
the Legendre transform, we can rewrite this equation in the form
of equation (17) where the window function now has an additional
component given by,

W r
l (k) = 1

k

∫
dy

d f

dy
j ′
l (ky), (27)
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where jl ′ is the derivative of the spherical Bessel function with re-
spect to its argument. By a repeated application of the recurrence
relation l jl−1 − (l + 1) jl+1 = (2l + 1) j′l, and integrating by parts,

W r
l (k) =

∫
dy f (y)

[
(2l2 + 2l − 1)

(2l + 3)(2l − 1)
jl (ky)

− l(l − 1)

(2l − 1)(2l + 1)
jl−2(ky) − (l + 1)(l + 2)

(2l + 1)(2l + 3)
jl+2(ky)

]
. (28)

The angular power spectrum can now be written as

Cl = Cl,gg + 2βCl,gv + β2Cl,vv, (29)

where

Cl,gg = 4π

∫
dk

k
�2(k)W 2

l (k)

Cl,gv = 4π

∫
dk

k
�2(k)Wl (k)W r

l (k)

Cl,vv = 4π

∫
dk

k
�2(k)(W r

l (k))2. (30)

It is interesting to note that this result could have been equiva-
lently derived by starting from the Kaiser (1987) enhancement of
the 3D power spectrum due to redshift-space distortions, Pg(k) →
Pg(k)[1 + β(k · n̂)], and integrating along the line of sight as in
Section 3.1; the l ± 2 spherical Bessel functions result from the
coupling of the k · n̂ angular dependence to the Legendre polyno-
mials. Also interesting is the l � 0 limit of the above equation; for
l sufficiently large,

∫
dy f (y) jl (y) ≈ ∫

dy f (y) jl±2(y), and Wr(k)
vanishes. Physically, this is because we cannot resolve radial per-
turbations on scales smaller than the thickness of the slice; they are
simply erased by the projection on to the sky.

Fig. 10 shows the effects of redshift-space distortions on the an-
gular power spectra for the eight redshift slices we are considering.
Note that they contribute significantly only on the largest scales
(l < ∼30), justifying our use of linear theory.

3.2 Power spectrum estimation

The theory behind optimal power spectrum estimation is now well
established, and so we limit ourselves to details specific to this
discussion, and refer the reader to the numerous references on the
subject (Seljak 1998; Tegmark et al. 1998; Padmanabhan, Tegmark
& Hamilton 2001, and references therein).

We start by parametrizing the power spectrum with 20 step func-
tions in l, C̃ i

l ,

Cl =
∑

i

pi C̃
i
l , (31)

where the pi are the parameters that determine the power spectrum.
We form quadratic combinations of the data,

qi = 1

2
xTCiC

−1Ci x, (32)

where x is a vector of pixelized galaxy overdensities, C is the covari-
ance matrix of the data, and Ci is the derivative of the covariance
matrix with respect to pi . The covariance matrix requires a prior
power spectrum to account for cosmic variance; we estimate the
prior by computing an estimate of the power spectrum with a flat
prior and then iterating once. We also construct the Fisher matrix,

Fi j = 1

2
tr

[
CiC

−1C jC
−1

]
. (33)

The power spectrum can then be estimated, p̂ = F−1q, with covari-
ance matrix F−1.

A final note on implementation – the dimension of the data covari-
ance matrix is given by the number of pixels in the data. This quickly
makes any direct implementation of this algorithm impractical. We
therefore use the algorithm outlined by Padmanabhan, Seljak & Pen
(2003), modified for a spherical geometry as in Hirata et al. (2004).

3.3 Simulations

Before applying the above algorithm to the LRG catalogue, we apply
it to simulated data. In addition to testing the accuracy of our power
spectrum code, we would also like to understand the correlations
between the NCC and the EC, allowing us to combine separate
power spectrum measurements.

In order to do so, we use the prior power spectra for each redshift
slice to simulate a Gaussian random field over the entire sphere.
We then Poisson distribute galaxies with probability (1 + δ)/2 over
the survey region, trimmed with the angular selection function. One
technical complication (Padmanabhan et al. 2001) is that the mea-
sured amplitude of the power spectrum results in a number of points
with |δ| > 1 (which would yield probabilities greater than 1 or less
than 0), making simple Poisson sampling impossible. To avoid this,
we suppress the power spectrum by a constant factor, and boost the
number density of galaxies by the same factor to ensure that the shot
noise is similarly suppressed. We generate 100 such simulations for
the eight redshift slices and both angular caps separately, matching
the observed numbers of galaxies in each case; although the dif-
ferent redshift bins are uncorrelated, the angular caps are based on
correlated density fields. This allows us to estimate the covariance
between power spectrum measurements made for the different caps–
note that the largest scales are highly correlated, while on scales �
the angular size of the caps, the measurements are effectively inde-
pendent. Our goal here is not to realistically simulate galaxy forma-
tion, but to test our pipelines, and the resulting measurements and
errors; Gaussian simulations are sufficient for this purpose.

The results from one set of 100 simulations are shown in the top
panel of Fig. 11; the recovered power spectrum agrees well with the
input power spectrum. The bottom panel of the same plot compares
the errors as measured by the inverse of the Fisher matrix with those
obtained from the run-to-run variance of the simulations. Assuming
Gaussianity, these errors should themselves have a relative error
given by �σ/σ = 1/

√
2N where N = 100 is the number of the

simulations. As evident from the figure, the run-to-run variance
agrees (within the expected errors) with the errors from the Fisher
matrix.

3.4 The angular power spectrum

Fig. 12 shows the measured angular power spectrum for the eight
redshift slices, with the two angular caps being measured separately.
The difficulty with processing the two angular caps simultaneously
is that errors in photometric calibration masquerade as large-scale
power. While it is possible to control these systematics in regions
with overlaps in the data, the two angular caps are disconnected;
therefore, any relative calibration between the two caps must be in-
direct (e.g. considering data taken on the same night, and assuming
that the calibration is constant through the night). Unfortunately, the
expected power on these scales is also small (�2 ∼ 10−3), and so we
choose to be conservative and measure the angular power spectrum
for the caps separately. We combine these using the simulations of
the previous section to correctly take the covariances between the
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Figure 11. Top panel: the average recovered power spectrum from 100 sim-
ulated realizations. The dashed (red online) line is the input power spectrum.
The error bars are the errors per realization, and are not the error on the mean.
Note that we have suppressed the input power spectrum by a constant factor
relative to the expected power to avoid getting |δ| > 1; the galaxy number
density was boosted by the same factor to reduce the shot noise. Bottom
panel: χ = (xR − xF)/σ comparing the errors on the power spectrum de-
rived from the Fisher matrix (xF) versus those obtained from the run-to-run
variance of the simulations (xR) for each of the eight redshift slices and the
two angular caps. Note that we measure the power spectrum in 20 bins for
two angular caps; this yields a total of 320 bins over the eight redshift slices.
Assuming the density field is Gaussian, the error on the power spectrum
errors (σ ) is σ/

√
2N , where N is the number of the simulations. Also shown

are the 1 and 3σ lines.

two caps into account. In order to avoid mixing power between dif-
ferent angular scales, we simply use constant weights proportional
to the area (0.67 and 0.33 for the NCC and EC, respectively); these
are approximately the same weights that one would have obtained
by inverse variance weighting. The final results are in Fig. 12.

3.5 Bias and β

An immediate question is whether the power spectra in Fig. 12 are
consistent with being derived from a single 3D power spectrum,
appropriately normalized to account for bias and the evolution of
structure. We start with the linear 3D power spectrum for our fiducial
cosmology, and project it to a 2D power spectrum Cl,gg, using the
formalism of Section 3.1. We also compute the effect of redshift-
space distortions, whose normalization we parametrize by β, along
the lines of Section 3.1.1, giving us two more power spectra, Cl,gv

and Cl,vv. The total power spectrum is

Cl = b2
g

(
Cl,gg + 2βCl,gv + β2Cl,vv

)
, (34)

where bg is the linear bias of the LRGs. The three power spectra
represent correlations of the galaxy density with itself (gg), the ve-
locity perturbations (the source of linear redshift distortions) with
itself (vv), and their cross-correlation (gv). We also note (as empha-
sized in Section 3.1.1) that the redshift distortions only affect the
largest scales; therefore, the linear assumption is justified. We can
now explore the χ 2 likelihood surface as a function of b and β for
each of the redshift slices. In practice, β is not strongly constrained
by these data, and so we marginalize over it when estimating the
bias.

The best-fitting models are compared with the data in Fig. 12,
while the bias for the eight redshift slices is in Fig. 13. We do not fit
to the entire power spectrum, but limit ourselves to scales larger than

the nominal non-linear cut-off at k = 0.1 h Mpc−1; the angular scales
corresponding to this restriction are marked in Fig. 12. Our starting
hypothesis – that the angular power spectra are derived from a single
3D power spectrum – appears to be well motivated. Interestingly, the
HALOFIT non-linear prescription for the matter power spectrum fits
the galaxy power spectrum data down to small scales as well. The
minimum χ 2 value is 81.6 for 62 degrees of freedom, corresponding
to a probability of 4.8 per cent.

Fig. 13 shows that the bias increases with increasing redshift,
as one would expect for an old population of galaxies that formed
early in the first (and therefore most biased) overdensities. A no-
table exception to this trend appears to be redshift slice z03; how-
ever, this redshift slice corresponds to the region of the glitch in
the luminosity-redshift distribution plotted in Fig. 9. If the median
luminosity in this redshift slice is higher than the other slices, one
would expect a higher linear bias, consistent with what is observed.

In order to constrain β, we start from the definition that β ≡
f(�M, ��)/b, where f ∼ �m(z)0.6 is the dimensionless growth factor
at redshift z. Assuming that the error on f is larger than the varia-
tion of �m with redshift, we approximate f as a constant over the
depth of the survey. We can then attempt to constrain f by combin-
ing all eight redshift slices; note that for simplicity, we ignore the
correlations between the slices and treat them as independent. The
results are shown in Fig. 14. We start by noting that the width of
the χ2 distribution is significantly larger than the variation in f with
redshift, justifying our starting assumption. This is a direct, albeit
crude, measure of �m(z ∼ 0.5) ≈ 0.97 ± 0.53, consistent with our
fiducial model of �m(z = 0.5) = 0.59. Note that this constraint on
�m comes from the relative amplitude of the redshift distortions,
but not from the shape of the power spectrum, which is held fixed
to the fiducial value.

3.6 Redshift correlations

An important test of systematics is the cross-correlation between
different redshift slices. For well separated slices, the cosmological
correlation goes to zero on all but the largest scales; the detection of
a correlation would imply the presence of systematic spatial fluctu-
ations caused by e.g. stellar contamination, photometric calibration
errors, incorrect extinction corrections etc. On the other hand, the
cosmological cross-correlation is non-zero for adjacent slices due
to overlaps in the redshift distribution, but is completely determined
theoretically by the observed auto-correlation power spectra and the
input redshift distributions. These cross-correlations therefore test
the accuracy of the estimated redshift distributions, and in particular,
the wings of these distributions where they overlap.

For computational convenience, we estimate the cross-
correlations with a simple pseudo-Cl estimator,

Ĉ12
l = 1

2l + 1

l∑
m=−l

a1,lma∗
2,lm, (35)

where a1,2,lm are the spherical tranforms of the galaxy density. The
pseudo-Cl power spectrum is the true power spectrum convolved
with the angular mask of the survey; it is therefore convenient to
work with the cross-correlation coefficient,

r 12
l ≡ Ĉ12

l√
Ĉ11

l Ĉ22
l

= M�C12
l√(

M�C11
l

)(
M � C22

l

) , (36)

where M� represents convolutions by the angular mask. The advan-
tage of the cross-correlation is that on scales smaller than the angular
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Figure 12. The measured angular power spectrum for the eight redshift bins. The crosses show the power spectrum (and measured errors) of Cap I and
Cap II combined, while the diamonds and stars are the measured power spectra of Cap 1 and Cap II separately. The solid lines are the predicted non-linear power
spectra for our fiducial cosmological model, while the dotted line shows the linear prediction. The vertical line marks the nominal non-linear scale given by k =
0.1 h Mpc−1. Note that we truncate the plot at l = 400 for clarity, even though we measure the power spectrum out to l = 600.

mask, the effect of the angular mask approximately cancels, allow-
ing for easy comparison with theory. It is useful to apply Fisher’s
z-transform (Kendall & Stuart 1977; Press et al. 1992):

z = 1

2
log

(
1 + r

1 − r

)
, (37)

which is well described (for l � 50) by a Gaussian with mean,

〈z〉 = 1

2
log

(
1 + rtrue

1 − rtrue

)
+ rtrue

2(N − 1)
, (38)

and standard deviation,

σ (z) ≈ 1√
N − 3

, (39)

where N ≈ (2l + 1)fsky is the number of independent modes, and
rtrue is the predicted cross-correlation coefficient.

Figs 15, 16 and 17 show the measured cross-correlations be-
tween adjacent and more widely separated slices, respectively. The
absence of correlations between widely separated slices indicates
a lack of small-scale systematics common to the different redshift

slices. The cross-correlations between adjacent slices broadly agree
with the predictions from the auto-correlations, although there are
differences at the ∼10 per cent level as seen in the plot in the lower
right-hand panel. There are two possibilities for this disagreement.
The first is that variations in the galaxy population over a redshift
slice could cause the bias in the overlap region to differ from the
value averaged over the entire slice. Comparing with Fig. 13, we
note that slice-to-slice bias variations of ∼10 per cent are consistent
with the data.

A second possibility is errors in the redshift distributions. To
quantify this, we model possible redshift errors by a shift in the
median redshift. An example of this is shown in Fig. 18 for the z02
and z03 slices. The figure demonstrates that shifting the median by
10 per cent of the slice width can account for the discrepancies in
the cross-correlation power spectrum. Alternatively, one could inter-
pret Fig. 18 as a change in the tails of the redshift distribution; small
errors in the tails could significantly affect the cross-correlation sig-
nal. However, note that the corrections to the auto-power spectra are
∼5 per cent, and are principally multiplicative factors that is degen-
erate with the bias. Finally, the above discussion also demonstrates
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Figure 13. Bias as a function of redshift, as estimated for the eight redshift
slices, marginalizing over redshift-space distortions. Note that the fourth
slice, with its anomalous bias, corresponds in redshift to the glitch seen in
Fig. 9. The dashed line shows the best linear fit to the all eight bias values,
while the dotted line excludes the fourth data point. We have ignored the
correlations between the different redshift slices for the fit. Note that these
lines are merely meant to illustrate the trend, and are not a detailed fit. The
scatter in the bias values is due to variations in the exact selection details of
the galaxy populations at the different redshifts.
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Figure 14. χ2 as a function of the dimensionless growth factor, f =
βb ∼ �0.6

m , marginalizing over bias, for all eight redshift slices combined.
The dashed lines mark the 1 and 2σ intervals, while the shaded region cor-
responds to the value of �0.6

m between z = 0.2 and z = 0.6, assuming a
present-day value of 0.3. The χ2 value of 81.6, for 62 degrees of freedom
has a probability of 4.8 per cent. Note that we have ignored the correlations
between the different redshift slices.

that the cross-correlation spectra are able to constrain errors in the
median redshift, and the tails of the redshift distribution at the per-
cent level.

3.7 Calibration errors

The final systematic effect we consider is photometric calibration er-
rors. Fluctuations in the photometric calibration will select slightly
different populations of galaxies over the entire survey region, im-
printing the pattern of photometric zero-point errors on the derived

density fluctuations. One expects calibration errors to result in strip-
ing perpendicular to the drift scan direction (approximately RA).
These would have a characteristic scale of ∼0.◦22 (the width of a
camera column), corresponding to a multipole l ∼800, correspond-
ing to smaller scales than those considered in this paper. The situa-
tion is further improved by the fact that the SDSS drift-scan ‘strips’
are often broken up into several pieces with different photometric
zero-points, further reducing the coherence length. Thus, on the an-
gular scales used in this paper, one expects calibration errors to have
an approximately white noise power spectrum.

A useful diagnostic of photometric calibration errors is the cross-
correlation between redshift slices with negligible physical overlap;
calibration errors will be common between both slices. Estimat-
ing the induced cross-correlation requires simulations to propagate
the calibration errors through the selection criteria and photometric
redshift estimation. We simulate this by perturbing the magnitude
zero-point of each camera column and filter separately; the resulting
catalogues are then input into the LRG selection and photometric
redshift pipelines.

Fig. 19 shows example cross-correlations for one of these simula-
tions. The lack of an observed cross-correlation argues for photomet-
ric calibration errors <2 per cent, consistent with other astrophysical
tests of the calibration (D. P. Finkbeiner, private communication).
The effect of such errors on the autocorrelation measurements is
subdominant to the statistical errors. Note that the survey scanning
strategy makes the large-scale power spectrum relatively insensitive
to ∼1 per cent calibration errors, the expected calibration accuracy
of the SDSS.

4 T H E 3 D P OW E R S P E C T RU M

Although the above power spectra are a perfectly good representa-
tion of the cosmological information contained in these data, there
are advantages to compressing these eight 2D power spectra into
a single 3D power spectrum. The first is aesthetic; given a cosmo-
logical model, the 3D power spectrum can be directly compared
to theory, in contrast to the 2D power spectra which involve con-
volutions by kernels determined by the redshift distributions of the
galaxies (that contain no cosmological information by themselves).
Furthermore, the 3D power spectrum directly shows the scales
probed, and allows one to test (in a model-independent manner) for
features like baryonic oscillations. Finally, the 2D power spectrum
requires computing the convolution kernels, making it expensive to
use in cosmological parameter estimations. We, however, empha-
size that this is (as shown below) simply a linear repackaging of the
data.

We note that one must assume a cosmology to map angular scales
on to physical scales. We adopt our fiducial cosmology, but also
demonstrate the insensitivity of the results to that choice.

4.1 Theory

Inverting a 2D power spectrum to recover the 3D power spectrum
has been discussed by Seljak (1998) and Eisenstein & Zaldarriaga
(2001). An important detail where the two methods differ is in how
they regularize the inversion. Since the 2D spectrum is the result of a
convolution of the 3D power spectrum, it is generally not possible to
reconstruct the 3D power spectrum exactly, given the 2D spectrum,
and one must regularize the inversion. In practice, this limitation is
not severe, since one would normally estimate the power spectrum in
a finite number of bands; these regularize the inversion if the band-
width approximately corresponds to the width of the convolution
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Figure 15. The Fisher z-transform of the correlation coefficient between adjacent redshift slices. The diamonds and stars are the results for the NCC and EC,
respectively; the errors are 2σ errors (for clarity). Note that the window function is only approximately corrected; nearby bins are therefore correlated. The solid
curve is the prediction for the cross-correlation with the bias of both the slices fixed to the autocorrelation value, while the dotted lines show the fits allowing a
variable bias. The plot in the lower right-hand corner shows the best-fitting bias compared to the prediction from the autocorrelation.

kernel. This is the solution that Seljak (1998) presents. Eisenstein &
Zaldarriaga (2001) consider bands that have subkernel width, and
regularize the inversion by conditioning singular modes in a singu-
lar value decomposition. These modes are, however, given a large
error, and so contain no information. We adopt the regularization
scheme of Seljak (1998).

We start by writing the 3D power spectrum, �2(k) as,

�2(k) = δ(k)�2
0(k), (40)

where δ(k) is the sum of step functions whose amplitudes are to be
determined, while �2

0 (k) is a fiducial power spectrum that describes
the shape of the power spectrum within a bin. If we now describe
both the 2D power spectrum, Cl , and the 3D power spectrum δ(k),
as vectors of bandpowers, equation (19) can be rewritten as a matrix
equation,

Cl = Wδ, (41)

where W is the discretized convolution kernel. The solution, by
singular value decomposition or normal equations (see Press et al.

1992, 15.4), is

C−1
δ = WtC−1

Cl W

δ = CδW
tC−1

Cl Cl , (42)

where CCl and Cδ are the covariance matrices of Cl and δ(k),
respectively.

The above discussion glossed over a number of subtleties. The
first is extending this formalism for N 2D power spectra. If we
assume that these 2D power spectra are derived from the same 3D
power spectrum, one just expands Cl and CCl to contain all the power
spectra. However, in general, the 3D power spectra that correspond
to each of the 2D power spectra could differ both in their bias and
non-linear evolution. For the latter, we divide δ(k) into two sets of
bands, linear bands with k < knl , and non-linear bands with k � knl .
We then assume that the linear bands are common to all N 2D
power spectra, but that there are N copies of the non-linear bands
that correspond to each of the N power spectra. In what follows, we
assume that knl = 0.1 h Mpc−1.
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Figure 16. The same as Fig. 15 but for redshift slices separated by one redshift bin. The overlaps at low redshifts are negligible, but increase at higher redshift.

Accounting for differences in bias over the different redshift slices
(as seen in Fig. 13) is more involved. Naively adding N bias parame-
ters to equation (41) destroys the linearity of the system. One might
simply use the best-fitting values in Fig. 13, but the fiducial model
used might not correspond to the best-fitting model. We therefore
use an iterative scheme and minimize the L2 norm of

Cl

b
− Wδ, (43)

where b is a vector of the biases (squared); these biases are then
held constant and the inversion is performed as above.

The next subtlety involves the choice of β in order to compute
the redshift-space distortions. As Fig. 14 shows, these data only
weakly constrain β, and therefore we choose to use the linear theory
prediction for β (more precisely for f = bβ), since the redshift-space
distortions only affect the largest (and therefore most linear) scales.

Finally, correctly combining the different redshift slices requires
knowing the covariance between the slices. However, the power
spectrum estimation in Section 3.4 treats each slice independently
and does not return the covariance between the different slices. In
order to estimate the magnitude of this effect, we start by observing
that the covariance between redshift slices 1 and 2 for multipole l

C(l1, l2), is, assuming Gaussianity,

C(l1, l2) ∼ 2
[
C12

l

]2
(44)

where C12
l is the angular cross-power spectrum. Using the fact that

the above relation is exact for full sky surveys, we substitute this into
equation (42), and use the results with and without these redshift
correlations to scale the errors we obtain from the inversion. We
discuss the validity of these approximations below.

4.2 Results

The result of stacking the eight 2D power spectra to obtain a single
3D power spectrum is shown in Fig. 20 (and Tables 2 and 3). Note
that the inversion process yields eight 3D power spectra that differ
on scales k >knl = 0.1 h Mpc−1; Fig. 20 shows the power spectrum
for z = 0.2–0.25 slice which covers the largest dynamical range in
wavenumber. Fig. 20 shows two different binnings (hereafter B1 and
B2) of the power spectrum interleaved with one another; the consis-
tency of the estimated power spectra demonstrates an insensitivity
to the choice of binning.

A second assumption necessary for the inversion is the choice
of a cosmology to convert redshifts to distances. In principle, the
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Figure 17. The Fisher z-transform of the correlation coefficient between
redshift slices separated by at least two redshift slices (stars represent sepa-
rations by two, the symbols ‘×’ by three, diamonds by four, triangles by five,
and squares by six). The curves show the 3σ contours, given the null hypoth-
esis of no correlations. Note that the window function is only approximately
corrected; nearby multipoles are therefore correlated.
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Figure 18. The change in the angular power spectrum when the z02 redshift
distribution is shifted by �z = 0.01 (dashed line), the z03 redshift distribution
is shifted by �z = −0.01 (dot–dashed line), and z02 and z03 are shifted by
0.005 and −0.005, respectively (solid line). The ratios of the angular auto
power spectra are approximately 1 (± 0.05), while the ratios of the cross-
correlations are approximately 1.2.

consistency between the different slices is a sensitive test of the
cosmological model; however, the errors in these data are much
larger than this effect. Furthermore, we would like to demonstrate
that our results are insensitive to the prior power spectrum shape we
assume. In order to test these assumptions, we redo the inversion
with three different cosmological models (�M = 0.25; �b = 0.005,
�M = 0.25; h = 0.6, �M = 0.25), and compare the results in Fig. 21
after marginalizing over the bias. Note that the changes in the power
spectrum are significantly smaller than the associated errors, while
the errors in the power spectrum remain virtually unchanged.

Three important features of this power spectrum are as follows.

(i) Real-space power spectrum. Since the individual angular
power spectra make no use of radial information, the 3D power
spectrum we obtain is a real-space power spectrum on small scales,
avoiding the complications of non-linear redshift-space distortions.
Note that on length-scales much larger than the redshift slice thick-
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Figure 19. The effect of calibration errors on the cross-correlation power
spectrum of non-adjacent redshift slices for a single simulation. The solid
line shows the observed cross-correlation (as the Fisher z-transform), while
the dotted, dashed and dot–dashed lines show the effects of 5, 2 and 1 per
cent calibration errors.
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Figure 20. The 3D power spectrum obtained by inverting the 8 2D power
spectra, normalized to the z = 0.2 power spectrum on linear scales (k < knl ),
and uses the z = 0.2 bands for the non-linear bands. The solid and dashed
lines represent binnings B1 and B2, respectively, and the two power spectra
are consistent. Note that these binnings are not independent, and must not be
combined for fitting. Also shown are the non-linear power spectrum using the
HALOFIT non-linear prescription (solid line, black online), the linear power
spectrum (dotted line, blue online), and our suggested non-linear prescription
(see below) assuming Q = 10.5 (dashed line, green online) for our fiducial
cosmology.

ness, redshift-space distortions cannot be neglected; however, the
linear approximation discussed in Section 3.1.1 will be valid on
these scales.

(ii) Large-scale power. Fig. 20 shows evidence for power on
very large (k < 0.02 h Mpc−1) scales. Marginalizing over bands
on smaller scales, the significance of the detection on scales k <

0.01 h Mpc−1 is ∼2 σ , increasing to 5.5 σ for k < 0.02 h Mpc−1.
Note that these scales start to probe the power spectrum at the
turnover scale set by matter–radiation equality. We also note that the
lowest k measurements are discrepant with the model. However,
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Figure 21. Top panel: the change in the the recovered power spectrum
relative to the error, after marginalizing over a constant multiplicative bias,
for different cosmologies/prior power spectrum shapes. Bottom panel: the
ratio of the errors relative to the fiducial case for the same set of cosmologies/
prior power spectra.

the significance of this is ∼1 σ , making it impossible to distinguish
between a statistical fluctuation or systematic effects (or even more
speculatively, new physics); we therefore defer this discussion to a
future analysis with the entire survey region.

(iii) Baryonic oscillations. Fig. 22 shows the 3D power spectrum
divided by a fiducial linear CDM power spectrum with zero baryonic
content. The baryonic suppression of power on large scales, and
the rise of power due to non-linear evolution is clearly seen. We
also see evidence for baryonic oscillations on small scales for both
binnings, although we note that the power spectrum estimates are
anticorrelated, making a visual goodness-of-fit difficult to estimate.
To estimate the significance of these oscillations, we compare the
best-fitting model obtained in the next section, with a version of the
same power spectrum that has the baryonic oscillations edited out
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Figure 22. The ratio of the measured power spectrum to the linear CDM
power spectrum for our fiducial cosmology (without baryons). As above,
the solid and dashed lines represent binnings B1 and B2, respectively. Also
shown is the same ratio for the non-linear prescription, and the ‘no-wiggle’
fit to the power spectrum. The difference in χ2 between these two models
is shown for the two binnings. Also note the baryonic suppression of power
on large scales, and the rise in power due to non-linear evolution on small
scales.

(Eisenstein & Hu 1998). The difference in χ2 for these two models
suggests a detection confidence of ∼2.5σ or ∼95 per cent, assuming
approximately Gaussian errors. A similar result is obtained in the
next section from cosmological parameter fits to the baryon density.

5 C O S M O L O G I C A L PA R A M E T E R S

We defer a complete multiparameter estimation of cosmological
parameters to a later paper, but discuss basic constraints below. We
consider a �CDM cosmological model, varying the matter density
�M and the baryonic fraction �b/�M and fixing all other parameters
to our fiducial choices.

The principal complication to using the galaxy power spectrum
for cosmological parameter estimation is understanding the map-
ping from the linear matter power spectrum to the non-linear galaxy
power spectrum, both due to the non-linear evolution of structure
and scale-dependent bias. We use the fitting formula proposed by
Cole et al. (2005),

�2(k)

�2
lin(k)

= b2 1 + Qk2

1 + Ak
, (45)

where A = 1.4 is appropriate for a real-space power spectrum, and
b and Q are two ‘bias’ parameters that we add to the cosmolog-
ical parameters we estimate. Comparing this parametrization to a
red galaxy sample from the Millenium simulations (Springel et al.
2005), shows that this parametrization correctly describes the effects
of scale-dependent bias and non-linear evolution up to wavenum-
bers k ∼0.5 h Mpc−1 (Volker Springel, private communication). We
fit the data to k = 0.3 h Mpc−1.

A second complication is that the inversion procedure of the pre-
vious section only combines wavenumbers < 0.1 h Mpc−1; fitting
the data beyond this requires choosing one of the eight redshift
slices. In order to decide which slice to use, we estimate χ 2 on grids
varying �M, Q, and b for each of the eight 3D power spectra. We
fix the baryonic density to �b = 0.05, although allowing it to vary
does not change the results.

The best-fitting values for �M and Q (marginalizing over the other
parameters), for each of the eight redshift slices are shown in Fig. 23.
We note that �M and its error is insensitive to the choice of redshift
slice, although Q depends on the particular redshift slice used. This is
due to the fact that �M is constrained by the location of the turnover
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Figure 23. Measurements of �M (upper) and Q (lower) for each of the eight
3D power spectra. The solid lines use binning B1, while the displaced dashed
lines use binning B2. Note that �M is insensitive to the redshift slice used,
while Q depends sensitively on the particular choice of slice.
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Figure 24. Joint 2D likelihood distributions for �M, Q and �b/�m, fixing h = 0.7 and n = 1, and marginalizing over the galaxy bias. The contours show
�χ2 = 2.3, 6.17 and 9.21. The left column panels use binning B1, while the right column panels use B2. We truncate fitting at k = 0.3 h Mpc−1 (using the
mid-point of the bins). Note that the two binnings are consistent with each other, with the B2 binning providing slightly tighter constraints.

in the power spectrum, and the shape of the power spectrum in
the linear regime, while Q depends on the power spectrum beyond
0.1 h Mpc−1. In what follows, we use the redshift slice corresponding
to photometric redshifts between 0.45 and 0.50, as it corresponds
to the median redshift of the full sample. However, we emphasize
that all results below, except for the ‘nuisance’ bias parameters, are
insensitive to this particular choice.

Fig. 24 shows 2D projections of the (�M, �b/�M, Q) parameter
likelihood space; the multiplicative bias b is marginalized over. The
minimumχ2 values are 5.99 and 6.94 (bins B1 and B2, respectively),
for 5 and 6 degrees of freedom, consistent with a reduced χ2 of 1 per
degree of freedom. Bins B1 and B2 give consistent values for the
cosmological parameters; B2 constrains all parameters (especially
Q) better than B1 because of the extra binning and the larger k range
probed. We note that Q is correlated with �M, since both �M h and
Q determine the broad shape of the power spectrum. An important
consequence of this degeneracy is that an accurate estimation of �M

and its error requires varying Q; fixing or restricting Q will result in
a biased �M and an underestimation of its errors.

Fig. 25 shows the 1D likelihoods for (�M, �b/�M, Q), marginal-
izing over all other parameters; the binnings are again seen to
be consistent. The likelihood for �b/�M also allows to estimate

the significance of the detection of baryonic features in the power
spectrum. The difference in χ2 between the best-fitting model and
the zero-baryon case is 5.75 and 6.4 for bins B1 and B2, respectively,
suggesting a 2.5σ detection consistent with the model-independent
estimates made in the previous section. The significance of this re-
sult is similar to the results from the 2dFGRS (Cole et al. 2005),
but is weaker than the detection in the spectroscopic LRG sample
(Eisenstein et al. 2005b).

Summarizing these results, we have

(i) for bins B1:

�M = 0.27 ± 0.03

�b

�M
= 0.18 ± 0.03

Q = 20.3 ± 3.6, (46)

(ii) for bins B2:

�M = 0.30 ± 0.03

�b

�M
= 0.18 ± 0.04

Q = 15.6 ± 2.6. (47)
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Figure 25. The likelihood distributions for �M, Q and �b/�M. The solid
line uses binning B1, while the dashed line uses B2. As in Fig. 24, we truncate
at k = 0.3 h Mpc−1. Also shown are the best-fitting values and 1σ errors for
bins B1 (top panel) and B2 (bottom panel).

In light of the recent WMAP results (Spergel et al. 2006), it is
interesting to understand how the above results change if we deviate
from a scale-invariant primordial spectrum. Minimizing χ2 over
�M, �b/�M, and Q assuming n = 0.95, we find that (for bins B2):

�M = 0.31 ± 0.03

�b/�M = 0.16 ± 0.04

Q = 16.3 ± 2.8. (48)

Reducing n (while keeping σ 8 fixed) boosts the power on large
scales, but suppresses it on small scales. This results in a better
fit on large scales, and a worse fit on small scales. To compensate
for this, the best-fitting value of �b/�M decreases (reducing Silk
damping) while Q increases, boosting the power back-up on small
scales, while leaving the large-scale power spectrum unchanged.
The minimum χ 2 is marginally worse (7.24) than the scale-invariant
case. Note, however, that all the parameters are within the 1σ errors
of those obtained assuming scale invariance.

5.1 Distance to z = 0.5

A potential application of the galaxy power spectrum is as a standard
ruler. The two features of interest, the turnover and the baryon oscil-
lations are determined by the physical baryon and matter densities
– �b h2 and �M h2. Both of these are precisely determined by the
peak structure of the CMB power spectrum. Therefore, in order to
understand the sensitivity of the current measurements as standard
rulers, we fix �b h2 = 0.0223 and �M h2 = 0.127, and vary Q and
the comoving distance. In general, one would need to vary the co-
moving distance to each of the eight redshift slices and recompute
the power spectrum. However, given the signal-to-noise ratio (S/N)
of the baryonic oscillations and turnover in these data, we simply
translate the 3D power spectrum in k with reference to our fiducial
cosmology at the median redshift of the slice k0. The likelihood
is in Fig. 26; these data can constrain the distance to z = 0.5 to
6 per cent. The best-fitting value is offset from the fiducial value at
∼1.5 σ . This drops to < 1σ if we consider the difference between

0.8 0.9 1.0 1.1 1.2 1.3
k/k0
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10

∆ 
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Figure 26. The solid line shows the likelihood of the ratio of the fiducial
distance to z = 0.5 to the observed distance k/k0, marginalizing over Q and
the galaxy bias, but fixing �b h2 = 0.0223, �M h2 = 0.127 and Q = 15.6.
The dotted lines show slices through the 2D likelihood distribution of Q
and k/k0 at Q = 16.5, 19.5 and 22.5 (from left-hand to right-hand panel).
Note that the Q and k/k0 are approximately orthogonal directions; varying
the non-linear correction doesn’t change the distance scale. The best-fitting
value of 0.92 ± 0.06 is shown by the dashed lines. The thin solid line shows
the k/k0 likelihood for a negligible baryonic fraction; the distance constraint
degrades to a 10 per cent measurement.

fiducial model and the best-fitting cosmology obtained above, sug-
gesting consistency between the two estimates. Note that this is for
a fixed value of �M h2. Assuming a 10 per cent uncertainty in �M h2

from current CMB measurements results in a ∼2.5 per cent uncer-
tainty in the sound horizon, increasing the distance error to 6.5 per
cent. This must be compared to the 5 per cent measurement of the
distance to z ∼ 0.35 measured by the spectroscopic LRG sample.

Equally interesting is that Q and k/k0 are orthogonal; the dis-
tance measurement does not change for different values of the non-
linear correction. This highlights an important property of baryon
oscillations as a distance measurement – it is relatively insensi-
tive to the non-linearity corrections that affect the galaxy power
spectrum.

We would also like to understand the fraction of the distance con-
straint from baryonic oscillations as opposed to the power spectrum
shape. Fig. 26 also shows the likelihood for a model with a negligi-
ble baryonic fraction; the distance accuracy degrades to 10 per cent,
suggesting that most of the constraint comes from the oscillations.

6 D I S C U S S I O N

6.1 Principal results

We have measured the 3D clustering power spectrum of LRGs using
the SDSS photometric survey. The principal results of this analysis
are summarized below.

(i) Photometric redshifts. This analysis demonstrates the fea-
sibility of using multiband imaging surveys with well calibrated
photometric redshifts as a probe of the large-scale structure of the
Universe. Accurate photometric redshifts are critical to being able
to narrow the range of physical scales that correspond to the cluster-
ing on a particular angular scale, and thereby estimate the 3D power
spectrum.
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(ii) Largest cosmological volume. Using photometric redshifts
allowed us to construct a uniform sample of galaxies between
redshifts z = 0.2 to 0.6. This probes a cosmological volume of
∼1.5 h−3 Gpc3, making this the largest cosmological volume ever
used for a galaxy clustering measurement. The large volume allows
us to measure power on very large scales, yielding a ∼2σ detection
of power for k < 0.01 h Mpc, increasing in significance to ∼5.5σ

for k < 0.02 h Mpc.
(iii) Real-space power spectrum. This power spectrum is intrin-

sically a real-space power spectrum, and is unaffected by redshift-
space distortions on scales k > 0.01 h Mpc−1. This obviates any
need to model redshift-space distortions in the quasi-linear regime,
allowing for a more direct comparison to theoretical predictions.

(iv) Baryonic oscillations. The 3D power spectrum shows evi-
dence for baryonic oscillations at the ∼2.5σ confidence level, both
in the shape of the 3D power spectrum, as well as fits of the bary-
onic density. We emphasize that this is only possible in the stacked
3D power spectrum, and therefore relies on accurate photometric
redshift distributions.

(v) Cosmological parameters. The large volume and small sta-
tistical errors of these data constrain both the normalization and the
scale dependence of the galaxy bias. Using a functional form for the
scale dependence of the bias motivated by N-body simulations, we
fit for the matter density and baryonic fraction jointly, and obtain
�M = 0.30 ± 0.03 and �b/�M = 0.18 ± 0.03.

6.2 Using these results

For cosmological parameter analyses, we recommend directly using
the 3D power spectra (binning B2), fitting both the galaxy bias
(b) and its scale dependence (Q) to k = 0.3 h Mpc−1. Electronic
versions of all the power spectra, and covariance matrices used in
this paper will be made publicly available. In addition, a simple
FORTRAN subroutine that returns χ2 given an input power spectrum
will also be made public.

6.3 Comparison with other results

Fig. 27 compares the LRG power spectrum (B2 binning), with the
power spectrum obtained from the SDSS MAIN spectroscopic sur-
vey (Tegmark et al. 2004) and the 2dFGRS (Cole et al. 2005); these
three samples will be referred to as LRG, MAIN, and 2dF through-
out this section. The solid and dotted lines show our non-linear and
linear fiducial power spectrum. Note that the normalization is arbi-
trary, and that we have not attempted to deconvolve the 2dF window
function.

The two principal differences between these surveys and the data
presented here is the volume probed, and the density of objects.
As both the MAIN and 2dF are at low redshifts (median z ∼ 0.1),
the volume probed is <0.05 h−3 Gpc3, whereas our sample probes
1.5 h−3 Gpc3 (at a median redshift of z ∼ 0.5) allowing us to measure
the largest scales with smaller statistical errors, even with crude
redshift estimates. This is clearly evident from Fig. 27, where the
LRG power spectrum extends to smaller k than either of the other
two power spectra.

On small scales, we again emphasize that the LRG power spec-
trum is naturally a real-space power spectrum, and is unaffected by
redshift-space distortions. By contrast, the 2dF P(k) is in redshift
space, and the MAIN P(k) which involves attempting to correct for
linear redshift-space distortions. Note that the SDSS P(k) falls be-
low the non-linear power spectrum at k ∼ 0.3 h Mpc−1, in line with
the simulation results of Tegmark et al. (2004) that motivated the
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Figure 27. Comparison between power spectra from the SDSS MAIN spec-
troscopic survey (bottom panel), 2dFGRS P(k) (top panel), and the photo-
metric SDSS LRGs (binning B2) from this work (middle panel). The nor-
malizations are arbitrary, and have been simply chosen to separate the three
power spectra. Adjacent LRG P(k) errors are anticorrelated, while the 2dF-
GRS errors are strongly correlated. The dotted line shows the linear power
spectrum for our fiducial cosmology, whereas the solid line is the HALOFIT

presciption for the non-linear power spectrum; the normalizations are ad-
justed to match the data. Note that the LRG power spectrum fits the non-linear
power spectrum to k ∼ 1 h Mpc−1.

Table 4. The best-fitting values for �M assuming �b h2 =
0.024, h = 0.72 and a scale-invariant initial perturbation
spectrum. We use the best-fitting non-linear prescription sug-
gested by the respective authors to fit the power spectrum to
k = 0.2 h Mpc−1. The numbers in parentheses are the upper
and lower 1σ errors.

Survey �M

SDSS MAIN 0.297(+0.0219, −0.0196)
2dFGRS 0.271 (+0.021, −0.0187)
SDSS LRG (B1) 0.260(+0.0111, −0.0102)
SDSS LRG (B2) 0.286(+0.0119, −0.0111)

discarding of k > 0.2 h Mpc−1 data from the cosmological parameter
analysis. This is a manifestation of non-linear redshift distortions,
which are particularly important, given recent results that suggest
that redshift distortions go non-linear on larger scales than previ-
ously anticipated (Slosar, Seljak & Tasitsiomi 2006).

Each of the three power spectra is consistent with the overall
shape of the fiducial power spectrum, suggesting that they are con-
sistent with each other. In order to make this precise and to com-
pare statistical power, we fit for �M and the galaxy bias assuming
�b h2 = 0.024, h = 0.72 and a scale-invariant initial perturbation
spectrum. To ensure a fair comparison, we fit all power spectra to
k = 0.2 h Mpc−1 using the best-fitting prescription for non-linearity
suggested by the authors. The results are summarized in Table 4;
we find that all three power spectra yield consistent values for �M.
The LRG power spectrum, however, reduces the error by a factor of
∼1.75 compared with previous results.

On the other hand, the SDSS LRG spectroscopic sample
(Eisenstein et al. 2005b; Hütsi 2006b; Tegmark et al. 2006) is
similar to this sample. The effective spectroscopic LRG volume
is 0.75 h−3 Gpc3 at a median redshift of z ∼ 0.35. However, the
spectroscopic LRGs are sparser, with shot noise responsible for
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approximately half the statistical error on all scales. One can com-
pare the S/N of the two samples as follows – since we are only
using auto-correlations of the redshift slices and are ignoring cor-
relations between different redshift slices, we are losing a factor of
∼7 in the number of modes (most of the remaining cosmological
information is contained in adjacent redshift slices). We, however,
gain a factor of ∼2 from the increased volume, and another factor
∼2 from the higher spatial density of objects, suggesting that the
SDSS spectroscopic LRG sample would be a factor of ∼2 greater in
S/N than the photometric sample. This is borne out by the fact that
the spectroscopic sample detects baryonic oscillations with �χ2 =
11.7, while the photometric sample has � χ 2 = 6.04, about a factor
of 2 smaller. Note that this analysis breaks down both on the largest
scales (where the photometric survey has more leverage because of
the greater volume), and on scales smaller than the redshift errors
(where the spectroscopic sample resolves more modes). In princi-
ple, one could gain further by using the cross-correlations between
different redshift slices. However, as seen in Fig. 18, this is very
sensitive to errors in the tails of the redshift distribution.

We can also compare our cosmological results with those obtained
from the third year CMB temperature and polarization measure-
ments from the WMAP satellite (Spergel et al. 2006). The WMAP
error on �M is dominated by the error on the Hubble constant; they
obtain �M = 0.26+0.01

−0.03 , compared with our estimate of �M = 0.30 ±
0.03. They also obtain �b/�M = 0.17, compared with �b/�M =
0.18 ± 0.04. Note that WMAP favours a primordial scalar spectral in-
dex of n ∼ 0.94; using this instead of scale invariance reduces our es-
timate of �b/�M to 0.16 ± 0.04, while increasing �M = 0.31 ± 0.03.
We also emphasize that the errors are not directly comparable, since
our analysis uses stricter priors. It is, however, important and en-
couraging to note that we obtain consistent results with a completely
independent data set.

6.4 Future directions

We conclude with a discussion of the future prospects for photo-
metric surveys. As of this writing, the SDSS has imaged twice the
area used in this paper, potentially reducing the errors by a factor
of

√
2. In addition, there are a number of imaging surveys planned

for the near and distant future, DES,2 Pan-STARRS3 and LSST4

being two notable examples. The latter two surveys will ultimately
cover about three times the final SDSS area to a much greater depth,
further increasing the volume probed.

Baryonic oscillations are also now emerging as an important tool
to constrain the properties of dark energy. The trade-off between
photometric and spectroscopic approaches to their measurement is
simple – photometric surveys require wide field (>10 000 deg2)
multiband imaging surveys, whereas spectroscopic surveys require
large multiobject spectrographs. Both of these approaches are being
actively developed, and the prudent approach would be to pursue
both, using the results from one to inform the other. It is worth
emphasizing that wide-field imaging surveys are an essential pre-
requisite for the other approaches (with very different systematic
errors) to understanding dark energy, namely supernovae and weak
lensing, suggesting a synergy between these techniques.

Given the efforts underway to plan the next generation of surveys,
it is timely to compare the precision of the distance measurement

2 http://decam.fnal.gov
3 http://pan-starrs.ifa.hawaii.edu
4 www.lsst.org

we obtain with the fitting formulae of Blake et al. (2006). Substi-
tuting our survey parameters into their photometric fitting formula,
assuming a median redshift of z ∼ 0.5 and a photometric redshift
error σ z ∼ 100 h−1 Mpc (corresponding to the redshift error at z ∼
0.5), we estimate a distance error of 7 per cent as compared with
the actual 6 per cent error obtained. Note that Blake et al. (2006)
only use the oscillation to determine the distance, whereas we use
the entire power spectrum.

We can now estimate the potential sensitivity of the next gen-
eration of surveys. Assuming a straw-man survey of 20 000 deg2

with a median redshift of z ∼ 0.8, and photometric redshift er-
rors of ∼50 h−1 Mpc, we find a factor of ∼5 improvement in the
distance measurement, yielding a ∼1 per cent measurement, the
current benchmark for dark energy surveys. Note that the SDSS al-
ready achieves ∼70 h−1 Mpc photometric redshifts for LRGs at low
redshift, although this degrades to ∼100 h−1 Mpc at higher redshifts.

In order to do so, there are a number of challenges that must
be overcome, in addition to the brute force observational effort re-
quired. The first is technical – this work relied heavily on having
accurate, well calibrated photometric redshifts. Demonstrating that
this is possible at higher redshifts, and calibrating the redshift er-
rors is essential. The second challenge is theoretical – in order to
optimally use galaxy clustering for cosmology, we will now need to
understand the connections between the physics of galaxy formation
and the observed clustering of galaxies. The hope is that the inter-
play between the two would result in a more complete cosmological
model.
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