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METHODOLOGY ARTICLE Open Access

Fast and robust adjustment of cell mixtures
in epigenome-wide association studies with
SmartSVA
Jun Chen1*, Ehsan Behnam1, Jinyan Huang2, Miriam F. Moffatt3, Daniel J. Schaid1, Liming Liang4,5* and Xihong Lin5*

Abstract

Background: One problem that plagues epigenome-wide association studies is the potential confounding
due to cell mixtures when purified target cells are not available. Reference-free adjustment of cell mixtures
has become increasingly popular due to its flexibility and simplicity. However, existing methods are still not
optimal: increased false positive rates and reduced statistical power have been observed in many scenarios.

Methods: We develop SmartSVA, an optimized surrogate variable analysis (SVA) method, for fast and robust reference-
free adjustment of cell mixtures. SmartSVA corrects the limitation of traditional SVA under highly confounded scenarios
by imposing an explicit convergence criterion and improves the computational efficiency for large datasets.

Results: Compared to traditional SVA, SmartSVA achieves an order-of-magnitude speedup and better false positive
control. It protects the signals when capturing the cell mixtures, resulting in significant power increase while
controlling for false positives. Through extensive simulations and real data applications, we demonstrate a better
performance of SmartSVA than the existing methods.

Conclusions: SmartSVA is a fast and robust method for reference-free adjustment of cell mixtures for epigenome-wide
association studies. As a general method, SmartSVA can be applied to other genomic studies to capture unknown
sources of variability.

Keywords: Epigenome-wide association, cell mixture, surrogate variable analysis, DNA methylation

Background
The development of array-based DNA methylation profiling
technologies, such as Illumina Infinium HumanMethyla-
tion450 BeadChip, has enabled large-scale epigenome-wide
association studies (EWAS). Such studies seek to identify
CpG methylation variants that are associated with diseases
or exposures [1, 2]. Unlike DNA sequences, DNA methyla-
tion is cell type-specific. Consequently, cell type heterogen-
eity plays a confounding role in identifying differentially
methylated CpG positions (DMPs). Results might be driven

by differential cell mixtures rather than cell type-specific
relationships with disease or exposure [3–6]. Therefore,
proper adjustment of differential cell populations in EWAS
is critical in reducing false associations. Several statistical
methods have been proposed to adjust for cell mixtures.
They can be classified into reference-based and reference-
free methods [7]. Reference-based methods require a
reference panel of purified cell types to identify cell-type-
specific DMPs, which are then used to infer cell proportions
[8]. However, if the reference panel consists of cell types
different from the study samples, or the methylation data
are subject to large measurement errors, the accuracy of the
inferred cell proportions will be affected accordingly. More-
over, a reference panel may not be available for some tissue
types such as cancer tissues, which limits the use of this
approach. To address the above limitations, reference-free
methods have been proposed, including RefFreeEWAS [9],
FaST-LMM-EWASher [10], ReFACTor [11] and others
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[12–15]. A recent evaluation study found that RefFreeE-
WAS and FaST-LMM-EWASher are subject to high false
positive rates or poor statistical power [7]. ReFACTor, a re-
cent method that relies on principal component analysis
(PCA) of a subset of informative CpG sites, has been shown
to be significantly more powerful than previous reference-
free methods especially when the signal is sparse. However,
as common to PCA-type methods, it has the potential prob-
lem of overcorrection, and hence loss of power, when there
are many phenotype-associated DMPs [11]. A large number
of DMPs have been observed in many studies such as
EWAS on age and cancer [16–18]. Thus protecting the stat-
istical power in such dense-signal scenarios should be an es-
sential part of cell mixture adjustment for EWAS.
We show that none of the current popular reference-

free methods is robust across biologically relevant sce-
narios. To address the limitation of current methods, we
present SmartSVA, an optimized version of surrogate
variable analysis (SVA) method [19, 20], for reference-
free adjustment of cell mixtures. Though the traditional
SVA has been shown to be relatively robust by a recent
evaluation study [7], we show that it fails to control for
false positives when there is strong confounding due to
cell mixtures. The drawback of SVA is due to its failure
to reach convergence using a fixed number of iterations.
SmartSVA improves its ability to control for false posi-
tives by explicitly imposing a convergence criterion. Fur-
thermore, SmartSVA is an order-of-magnitude faster
than traditional SVA due to algorithmic improvements.

Results
Simulation strategy and performance evaluation
We evaluated the performance of SmartSVA by comparing
to other reference-free methods using realistic simulations
(Fig. 1). Figure 1a gives an overview of the simulation
process, where we added various sources of variability (see
“Methods” for more details). To reflect the full complexity
observed in real tissue samples, we simulated eight cell
types from two lineages mimicking the blood leukocyte
mixtures (Fig. 1b). A bimodal distribution of methylation
data was realized by using a three-component mixture
model (Fig. 1c). Batch effects were added to the samples
from the same batch (e.g. bisulfite conversion plate) to cre-
ate the clustering pattern of the samples usually observed
in real data (Fig. 1d). We also added individual-specific
methylation variation and measurement errors to recapitu-
late the methylation profiles observed in real data (Fig. 1e).
The key parameter values were based on the estimates
from real methylation data of purified leukocytes
(Additional file 1: Note 1 and Table S1). To conduct a com-
prehensive evaluation, we simulated scenarios with different
levels of confounding due to cell mixtures and different
numbers of DMPs. The ability to control for false positives
(type I error) was assessed using the genomic inflation

factor (λ) on the non-DMPs as well as the observed false
discovery rate (FDR) and family-wise error rate (FWER)
when FDR control (Benjamini-Hochberg procedure) and
Bonferroni correction were applied at 5% level. Power was
assessed by the true positive rate after multiple testing cor-
rection. The assessment reflects statistical procedures usu-
ally employed in EWAS.

Simulation results
We first conducted case–control based simulations, where
we varied the cell compositions and the number of DMPs
between cases and controls to create different levels of
confounding effects and signal densities. We averaged the
results over 100 simulation runs and assessed the perform-
ance of eight competing methods based on (1) genomic in-
flation factor λ (Fig.2a), (2) the observed FDR and true
positive rate after FDR control (Fig. 2b,c), (3) the observed
FWER and true positive rate after Bonferroni correction
(Fig. 2d,e), and (4) the percentage of cell composition vari-
ance explained (R2, Fig. 2f). Clearly, as the cell mixture con-
founding became stronger, the statistical power was
reduced for all the methods and type I error inflation be-
came more prominent for some methods. As expected, the
unadjusted method (green color), which did not correct for
cell mixtures, had the worst type I error control in the pres-
ence of cell mixture confounding. Consistent with a previ-
ous report [7], RefFreeEWAS tends to have the highest
power, but it did not control for false positives very well for
confounded scenarios as indicated by an inflated λ, observed
FDR and FWER. On the contrary, FaST-LMM-EWASher,
which aims to control theλover all CpGs, was very conserva-
tive and had the lowest power especially when the signal was
dense. As the number of DMPs increases, an inflated λover
all CpGs is expected [21] (Additional file 1: Figure S1 and
Table S2) and forcing the overallλto 1 could potentially lead
to loss of power and deflation of λover non-DMPs (Fig. 2a).
Interestingly, the classic PCA method performed quite well
when the DMP signal was not very dense. As the signal
became denser, PCA became unstable and powerless.
Overall, the recently proposed ReFACTor had better

performance than previous reference-free methods.
However, the performance of ReFACTor was sensitive
to the number of principal components used. The de-
fault setting for ReFACTor (k = 5) was not sufficient
to control for false positives in confounded scenarios
(Additional file 1: Figure S2). We thus increased the
number of components to that based on random
matrix theory [13], which generally controlled for
false positives except for some scenarios (Fig. 2b,d).
ReFACTor worked well when the signal was not very
dense, but it suffered substantial power loss in the
presence of many DMPs since the top components
could capture these DMPs (Fig. 2c,e). The power loss
was also coupled with slightly increased type I error
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rate. Thus, in such scenarios, ReFACTor recovered few
DMPs with less accuracy. The decrease of power for
ReFACTor became apparent when there were more than
1% DMPs (Fig. 3). To mitigate the problem in case–control
studies, we next performed the site selection on the control
samples. With this strategy, the power was improved
significantly but was still lower than SmartSVA, probably
due to a less efficient capture of cell mixtures using only
half of the samples for site selection (Fig. 4). It is also less
clear how to extend the strategy to continuous phenotypes
such as age. Taking residuals by regressing out the
phenotype effect or removing components mostly
associated with the phenotype will not solve the problem
for PCA-based methods including ReFACTor (Additional
file 1: Note2).
In contrast, SmartSVA was robust across scenarios: it

controlled for the type I error rates, and its power was
comparable to the “Perfect” method, where the real cell
proportions were adjusted (Fig. 2). Since the “Perfect”
method represents the optimal adjustment procedure, the
performance of SmartSVA was nearly optimal in these
simulated scenarios. Besides the 5% level usually used for

FDR control, we further evaluated the type I error control
of SmartSVA at various FDR levels (1%–20%). We observed
that SmartSVA could control the FDR under the nominal
level for all scenarios (Additional file 1: Figure S3). As a
comparison, the type I error control of the traditional
SVA was poor in highly confounded scenarios (Fig. 2,
Additional file 1: Figure S3). The bad performance was
due to the failure to reach convergence using a fixed
number of iterations. Through an explicit convergence
criterion, the surrogate variables constructed by SmartSVA
could better capture the cell composition than traditional
SVA as demonstrated by a higher percentage of cell
composition variation explained (Fig. 2f). Application to a
real data set with known blood cell counts showed a
comparable performance of SmartSVA and ReFACTor
in explaining the cell proportion variability (n = 357,
Additional file 1: Figure S4) [22]. SmartSVA also
retained statistical power when the signal was dense,
a property not enjoyed by ReFACTor and PCA.
We also compared to RefFreeCellMix [15], which was

the most recent reference-free method based on non-
negative matrix factorization. Though RefFreeCellMix

a

e

b

d

c

Fig. 1 An overview of the simulation strategy. The distributions of cell proportions and methylation values are simulated to reflect the real data
with various sources of variability. a The flow chart of the simulation process. b The distribution of the leukocyte subtype proportions generated
using a Dirichlet distribution. c The bimodal distribution of methylation beta-values generated using a three-component mixture model. d Simulated batch
effects cluster the samples into distinct groups. Principal component analysis (PCA) on the methylation beta-values was used to project the samples onto
the first two principal components (PCs). e Correlation between two biological replicates reflecting the variability due to various sources
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had a higher power than PCA and ReFACTor using the
same number of components, significant type I error
inflation was observed in confounded scenarios (Additional
file 1: Figure S2). To bring down the type I error rate
close to the nominal level, more components were
required. However, increasing the number of compo-
nents was concomitant with the decrease in power.
As a PCA-type method, RefFreeCellMix has the same
problem of over-correction as PCA and ReFACTor in
dense signal scenarios due to the capture of the signal
by some top components.
To rule out the possibility that the superior performance

of SmartSVA was due to capturing the simulated batch ef-
fects in addition to the cell mixtures, we next performed
additional experiments without simulating batch effects. The
results remained very similar (Additional file 1: Figure S5).
We finally simulated continuous phenotypes. SmartSVA
was still very robust and performed better than the
competing methods (Fig. 5).

Runtime comparison
SmartSVA is also computationally more efficient than
the traditional SVA due to algorithmic improvement.
We compared the runtime of SmartSVA to traditional
SVA across different numbers of CpGs and sample sizes
by subsampling a real data set [1]. SmartSVA improved
the computation speed by almost a factor of 10 and the
computational advantage was more pronounced with
increasing sample sizes (Fig. 6), making SmartSVA suit-
able for large-scale EWAS.

Real data applications
Finally, we evaluated the performance of SmartSVA on
two real data sets from association studies of gastric can-
cer and human aging [23, 24]. These two data sets hypo-
thetically represent the most complicated scenario of
dense signal and strong confounding. Since currently
there are no real gold standard datasets with all the
DMPs known, we focused on studying (1) whether the

a b c

d e f

Fig. 2 Performance comparison of reference-free cell mixture adjustment methods based on simulated data and binary phenotypes. The samples
were randomized into five batches, where random methylation differences were added to each batch. Nine scenarios were investigated with different
levels of signal density (0.1%, 1% and 10%) and cell mixture confounding (no, moderate and strong). The “Perfect” method, which adjusts for real cell
proportions and batch effects, is included for benchmarking purposes. a-f Performance was evaluated by (a) Genomic inflation factor λ on non-DMPs,
(b-c) the observed false discovery rate (FDR) and true positive rate after FDR control (5% level, dashed line), (d-e) the observed family-wise error rate
(FWER) and true positive rate after Bonferroni correction (5% level, solid line; 95% CI, dashed lines) and (f) the fraction of cell compositional variability (8
cell types jointly) explained by the components (PC/SV) as quantified by adjusted R2. Error bars represent the standard errors. The SmartSVA is the only
method that controls the type I error under the nominal level across scenarios and retains power in dense signal scenarios
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results were consistent with those from the simulation
studies, and (2) whether the identified DMPs were bio-
logically interpretable.
We compared SmartSVA to various reference-free

methods and the results were shown in Table 1. Un-
adjusted analyses had serious genomic inflation (λ = 25.8
and 7.73), and the estimated proportions of non-DMP
were very small (π0 =0.18 and 0.35), indicating potential
strong confounding in these data sets. Random matrix
theory estimated 20 and 68 components for these two
data sets (see “Methods”), suggesting that there might be
many unknown sources of variation besides the cell mix-
tures affect the methylation. We thus used these num-
bers of components in the regression model to adjust for
cell mixtures and other batch effects for both traditional
SVA and SmartSVA. Surprisingly, application of trad-
itional SVA to the gastric cancer data set resulted in an
even larger genomic inflation factor than the unadjusted
procedure. Such a high inflation factor is probably due
to the capture of sources of variability other than cell
mixtures, which increases the statistical power to detect
cell mixture-related confounding signals. Application to

the age data set reduced the genomic inflation but the
inflation factor was still very large, compared to that
from SmartSVA (λ = 2.98 vs 1.33). The behaviors of the
traditional SVA on these two data sets were consistent
with the observations from the simulation studies, and
thus its use in highly confounded scenarios was not
recommended. The results of RefFreeEWAS and FaST-
LMM-EWASher were also consistent with the simula-
tions: RefFreeEWAS recovered far more DMPs than
SmartSVA while FaST-LMM-EWASher was the least
powerful and recovered the fewest DMPs. The increased
power of RefFreeEWAS should be interpreted cautiously
since the type I error was substantially elevated. For
ReFACTor, we again found that the results were sensi-
tive to the number of components (Additional file 1:
Figure S6). We thus used the number of components
estimated from RMT for a fair comparison. ReFACTor
was very conservative: it recovered only 1 and 177
Bonferroni-significant DMPs for the two data sets respect-
ively, compared to 30 and 679 DMPs for SmartSVA. The
reduced power of ReFACTor was consistent with its
performance in dense signal scenarios.

a b

c d

Fig. 3 The power of ReFACTor decreases with increasing signal densities. Moderate cell mixture confounding was simulated in this example.
Performance was evaluated by (a-b) the observed false discovery rate (FDR) and true positive rate after FDR control (5% level, dashed line) and (c-d)
the observed family-wise error rate (FWER) and true positive rate after Bonferroni correction (5% level, solid line; 95% CI, dashed lines). The number of
components for ReFACTor was estimated based on RMT. As we increase the signal proportion, the power of ReFACTor decreases significantly, together
with reduced ability to control for false positives. In contrast, SmartSVA is very robust and retains the power irrespective of the signal proportions
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We next look more closely at the recovered DMPs.
To evaluate the age-associated DMPs recovered by
SmartSVA, we curated a list of highly confident age-
associated DMPs with support from two independent
age association studies using purified CD4+ T-cells
[16, 17]. We included CpG probes that passed
Bonferroni correction in both studies, resulting in a

total of 583 age-associated DMPs (CD4+ aDMPs).
Among the 679 Bonferroni-significant DMPs recov-
ered by SmartSVA, 130 probes were on the list.
Clearly, these DMPs were enriched in CD4+ aDMPs
(136-fold enrichment, p < 2.2e-16). Interestingly, the
57 out of the177 DMPs recovered by ReFACTor were
also in the list (248-fold enrichment, p < 2.2e-16). We

a b

c d

e

Fig. 4 The performance of ReFACTor with site selection on the control samples. Nine scenarios were investigated with different levels of signal
density (0.1%, 1% and 10%) and cell mixture confounding (no, moderate and strong). The “Perfect”method, which adjusts for real cell proportions and
batch effects, is included to benchmark other methods. Performance was evaluated by (a-b) the observed false discovery rate (FDR) and true positive rate
after FDR control (5% level, dashed line), (c-d) the observed family-wise error rate (FWER) and true positive rate after Bonferroni correction (5% level, solid
line; 95% CI, dashed lines) and (e) the fraction of cell compositional variability (8 cell types jointly) explained by the components as quantified by adjusted
R2. Error bars represent the standard errors. The SmartSVA is still more powerful than ReFACTor in dense signal scenarios and captures the cell composition
better than ReFACTor. The type I error for ReFACTor is inflated in highly confounded scenarios, indicating less efficient site selection using half of the samples
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then compared the ranks of the P values of these
CD4+ aDMPs for the two methods (Fig. 7). SmartSVA
achieved a much lower median rank of 8,028 (top
1.8%), compared to 18,834 for ReFACTor (top 4.1%).
Taken together, both SmartSVA and ReFACTor
seemed to recover real signals, but SmatSVA was
more powerful than ReFACTor to identify CD4+
aDMPs. For the gastric cancer-associated DMPs re-
covered by SmartSVA (q < 0.05), gene set enrichment
analysis did reveal an enrichment of cancer-related
pathways (Table 2). Therefore, the DMPs recovered
by SmartSVA were biologically interpretable and the
increased statistical power was probably not a result
of false positives.

Discussion
Addressing confounding due to cell mixtures in
EWAS is critical for moving the field forward [4–6].
There are a plethora of methods for cell mixture

adjustment for EWAS, and new methods continue to
be published [7]. An ideal method should be robust
in the sense that it should control type I errors under
the nominal level across various scenarios. Otherwise,
the statistical significance of the recovered associa-
tions would be difficult to assess and the reported P
values would not reflect the true significance. It
should also be statistically powerful so that its power
is not severely compromised by controlling the type I
error. The consequences of the application of a non-
robust algorithm are either increased type I error rate
or reduced statistical power, casting doubt on the
identified associations. To evaluate the robustness of
a proposed method, comprehensively simulation stud-
ies covering as many scenarios as possible are needed
before applying it to real data sets.
We demonstrated that SmartSVA was more robust

than the competing methods across a wide range of
biologically relevant scenarios. Among the methods

a b c

d e f

Fig. 5 Performance comparison of reference-free cell mixture adjustment methods based on simulated data and continuous phenotypes. The samples
were randomized into five batches, where random methylation differences were added to each batch. Nine scenarios were investigated with different
levels of signal density (0.1%, 1% and 10%) and cell mixture confounding (no, moderate and strong). The “Perfect” method, which adjusts for real cell
proportions and batch effects, is included for benchmarking purposes. a-f Performance was evaluated by (a) Genomic inflation factor λ on non-DMPs,
(b-c) the observed false discovery rate (FDR) and true positive rate after FDR control (5% level, dashed line), (d-e) the observed family-wise error rate
(FWER) and true positive rate after Bonferroni correction (5% level, solid line; 95% CI, dashed lines) and (f) the fraction of cell compositional variability (8
cell types jointly) explained by the components (PC/SV) as quantified by adjusted R2. Error bars represent the standard errors. The SmartSVA is the only
method that controls the type I error under the nominal level across scenarios and retains power in dense signal scenarios
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evaluated, SmartSVA is the only method that could
control the type I error under the nominal level and
retain the power close to the “Perfect” procedure. Most
remarkably, when there is a dense signal, SmartSVA
could still have power while ReFACTor and classic PCA
become powerless due to overcorrection. Since widespread
DNA methylation change is not a rare phenomenon for
EWAS [16–18], it is safer to use methods that do not rely
on sparse signal assumption. As a reference-free method,
SmartSVA can be applied to any tissue types such as cancer
tissues without the need for a reference panel. It is also very
flexible and allows for any downstream statistical analysis
by including the derived SVs as covariates. It has been
successfully applied to recover DMPs associated with
puberty [25]. SmartSVA can also capture other un-
measured batch effects and possibly population

stratification [19, 20]. Though we demonstrated the
superior performance of SmartSVA in the context of
EWAS, its application can be extended to any other
array- or sequencing- based omics data sets. We note
that, even if the cell mixture/batch effects is a not a
confounding factor, we still recommend running
SmartSVA and adjusting for cell mixture/batch effects
using the SVs. This practice will improve statistical
power by reducing the unexplained methylation vari-
ability (error term in the regression model) [26].
SmartSVA, which is built upon classic SVA, assigns

weights to the CpG probes when constructing the SVs.
These non-informative CpG probes, which are not af-
fected by batch effects, usually receive lower weights.
Thus by using the differential weighting scheme, it
achieves a similar effect as ReFACTor, which performs

Table 1 EWAS summary statistics for two real data sets. FDR control and Bonferroni correction were used for selecting DMPs

Data set Method π0a λb #(q < 0.05)c #(pb < 0.05)d

GSE30601
(Gastric cancer, 27 K)

Unadjusted 0.18 25.8 21,487 8,323

SVAe 0.13 59.3 23,404 13,846

SmartSVA 0.75 1.72 888 30

RefFreeEWAS 0.70 2.03 1,266 68

EWASherf 1.00 0.87 3 1

ReFACTor 0.95 1.07 23 1

GSE40279
(Human aging, 450 K)

Unadjusted 0.35 7.73 245,279 41,357

SVA 0.60 2.98 102,509 20,644

SmartSVA 0.87 1.33 5,620 679

RefFreeEWAS 0.68 2.20 43,791 5,192

ReFACTor 0.91 1.23 1,577 177
aπ0 is the percentage of non-DMP estimated based on “qvalue” method
bλ is the genomic inflation factor calculated on all CpGs
c FDR control is based on “qvalue” method and 5% level
dBonferroni correction was used at 5% level
eThe classic SVA with default implementation was used (B = 5)
fFaST-LMM-EWASher was performed without filtering out consistently methylated or unmethylated CpGs. For the age data set, we were unable to obtain the
results within one week

a b

Fig. 6 Runtime comparison of SmartSVA and traditional SVA based on a real data set. We subsampled the data set to study the scalability of SmartSVA
with CpG number (a) and the sample size (b)
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PCA on a subset of informative CpG probes. However,
compared to ReFACTor, SmartSVA does not require the
specification of the number of informative probes used.
As we demonstrated in the real data, the number of in-
formative probes does affect the performance of ReFAC-
Tor and user diagnostics is thus required to achieve
optimal performance for ReFACTor.
Due to the moderate effect size of environmental or

biological factors on DNA methylation [4], large-scale
EWAS with thousands of or more samples, such as
Normative Aging Study [27], have become increas-
ingly popular. A computationally efficient method for
cell mixture adjustment is thus needed for large-scale
studies. SmartSVA is an order-of-magnitude faster
than the classic SVA due to algorithmic improvement
and cell mixture adjustment for a large-scale EWAS
can be completed within hours.

Conclusions
With the robustness and power, computational efficiency
and minimal required user diagnostics, we believe that
SmartSVA will contribute to revealing more reprodu-
cible signals from epigenome-wide association studies.

Methods
Motivation
Let Ap × q = (a1, a2,⋯, aq) be the matrix of mean
methylation values of p CpGs for q purified cell types
and let Bn × q = (b1, b2,⋯, bq) be the matrix of unob-
served cell compositions of the q cell types for n
samples, where aj = 1,⋯,q is a column vector of the mean
methylation values of cell type j for the p CpGs and bj =
1,⋯,q is a column vector of the proportions of cell type j
for the n samples. The observed methylation matrix Yp ×

n can be expressed as

Yp�n ¼ Ap�qB
T
n�q þ Ep�n;

where Ep × n is the error matrix. This motivates us to
capture the cell composition through B using matrix de-
composition methods. When the cell composition varies
considerably from individual to individual as observed in
real leukocyte counts, the composition variability is ex-
pected to account for most of the methylation variability

Fig. 7 Comparison of the distribution of the ranks of the 583 age-
associated CpGs for ReFACTor and SmartSVA. These age-associated
DMPs were selected with support from two independent age-
association studies based on purified CD4+ T-cells. SmartSVA
achieves a lower rank than ReFACTor

Table 2 Top 10 enriched KEGG pathways and GO biological
processesa

Count % P-Valueb

KEGG Pathway

Chemokine signaling pathway 13 2.5 0.021

Endometrial cancer 6 1.2 0.028

Melanoma 7 1.4 0.03

Bladder cancer 5 1 0.049

Cytokine-cytokine receptor interaction 15 2.9 0.052

Thyroid cancer 4 0.8 0.07

Jak-STAT signaling pathway 10 1.9 0.072

Prostate cancer 7 1.4 0.075

Pancreatic cancer 6 1.2 0.09

Chronic myeloid leukemia 6 1.2 0.1

GO Biological Process (level 5)

regulation of apoptosis 39 7.6 0.003

regulation of programmed cell death 39 7.6 0.0036

catechol catabolic process 3 0.6 0.0083

telomere maintenance 5 1 0.0089

positive regulation of T cell mediated cytotoxicity 3 0.6 0.017

positive regulation of apoptosis 22 4.3 0.018

positive regulation of programmed cell death 22 4.3 0.019

positive regulation of cell death 22 4.3 0.02

positive regulation of hormone secretion 5 1 0.021

nucleic acid transport 8 1.6 0.025
aThe 29 Bonferroni-significant, gastric cancer-associated DMPs recovered by
SmartSVA were used as an input to DAVID Functional Annotation Bioinformat-
ics Microarray Analysis (https://david.ncifcrf.gov/)
bA modified Fisher Exact P-Value based on EASE Score for gene-enrichment
analysis (https://david.ncifcrf.gov/). Usually P-Value equal or smaller than 0.05
is to be considered strongly enriched in the annotation categories
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and therefore can be explained by top principal compo-
nents of the methylation data.

The SmartSVA algorithm
Surrogate variable analysis (SVA) is an extension of princi-
pal component analysis (PCA). PCA seeks to project the
data onto a few orthogonal directions so that the variance
of the projected data is maximized. The solution of PCA
on a data matrix can be obtain using singular value de-
composition (SVD)

Yp�n ¼ Up�nDn�nV
T
n�n;

where U,V are orthonormal matrices and D is a diagonal
matrix. For methylation data, each column of U could
be considered as a methylation ‘eigenarray’, that is, some
basic methylation profile shared across arrays. The col-
umns of V, called principal components (PCs), contain
the loadings for the respective eigenarrays, and may cap-
ture the corresponding cell proportions if the eigenarray
represents a certain cell type-specific methylation profile.
In the presence of other systematic effects on the methy-
lation data, e.g. batch effects and population stratifica-
tion, PCs may also capture these effects. PC can be
written as a linear combination of the methylation vec-
tors for the p CpGs

vk ¼
Xp

j¼1

ujk

dk
yj;

where vk is kth column of V, ujk is the (j, k)th element of
U, yj is a vector of methylation values for CpG j and dk
is the kth diagonal element of D. However, it may be of
an advantage to select or weight CpGs to construct the
PCs since multiple sources of variation such as cell mix-
tures may only affect distinct, possibly overlapping, sub-
sets of CpGs. This motivates the development of SVA,
which was originally proposed to correct batch effects of
unknown sources for gene expression data [19, 20]. The
resulted components are called surrogate variables (SVs)
in their method, emphasizing the notion that these SVs
are surrogates for unmodeled factors. The latest version
of SVA requires an iterative algorithm that assigns each
probe a weight, which is determined by the probability
of the corresponding probe being affected by the unmo-
deled factors, but not the primary variable of interest.
This strategy ensures that the constructed SVs will cap-
ture mainly the variation of the unmodeled factors but
not the primary variable and is key to retaining power in
presence of many signals. Specifically, in each iteration,
SVA estimates pγ,j (the probability that the jth probe is
affected by unmodeled factors) and pb,j (the probability
that the jth probe is affected by the primary variable con-
ditioned on the unmodeled factors) using an empirical

Bayes method based on the current estimate of SVs. The
weights are calculated as

wj ¼ pγ;j 1−pb;j
� �

; j ¼ 1;…; p:

Denote W = diag(w1,…, wp), SVA then performs a singu-
lar value decomposition on the weighted data matrix:
WY =UDVT. The algorithm iterates between the two
steps to refine the SV estimate for a specified number of
iterations. Though the original SVA as implemented in
the R Bioconductor package “sva” performs well for
most applications, it fails to correct for cell mixtures effi-
ciently under serious cell mixture confounding as dem-
onstrated by simulation. We found that this undesired
property was mainly due to a lack of convergence of the
solution. We thus propose SmartSVA, an optimized and
fast version of SVA, to improve the performance of trad-
itional SVA. SmartSVA has the same input and output
as the classic SVA, which takes the methylation data, the
number of components and primary variables (in the
form of a model matrix) as inputs and outputs the SVs
for downstream analysis. SmartSVA involves the follow-
ing additional steps:

(1)Impose an explicit convergence criterion to ensure
the convergence of the algorithm instead of using a
user-specified number of iterations as in the
traditional SVA;

(2)Soften the initial estimate of pb,j, the probability of
being affected by the primary variable conditional on
the current SVs, by using a power transform pb,j

α ;
(3)Perform QR decomposition of the model matrix to

reduce the computational cost of the most
computationally intensive step (calculating F-stat)
from O(n2p) to O(np), assuming the number of
surrogate variables is fixed.

The rationale for step (2) is that SVA starts with per-
forming SVD on the residual methylation matrix, where
the effects due to the primary variable are removed. In
presence of cell mixture confounding, the initial estimate
of pb,j captures the effects of both the primary variable
and cell mixtures. Thus the initial pb,j estimate is very in-
accurate in highly confounded scenarios and evening out
pb,j using a power transform could reach convergence
more quickly and significantly speed up the computa-
tion. Additional file 1: Figure S7a shows that the number
of iteration to reach convergence decreases significantly
with smaller α values based on a real data set. However,
if α is very small, it could cause potential local max-
imums. In such case, the solution is very similar to PCA
and there is huge power loss when the signal is dense
(Additional file 1: Figure S7b). We thus choose α = 0.25
to have a good balance between speed improvement and
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optimality of the solution. With step (2) and (3), we
could speed up the algorithm by an order-of-magnitude.
To determine the number of significant SVs, we

propose to use random matrix theory (RMT) [13] since
this strategy is adequate for most applications. RMT es-
timates the number of components by comparing the
observed eigenvalues to those of a random matrix coun-
terpart. The number of observed eigenvalues larger than
the analytic maximum of the random matrix gives an
approximate estimate of the number. Given the increas-
ing sample size of EWAS, the RMT-based method is
more appealing due to its computational efficiency than
the permutation-based methods.

Data simulation
Suppose we have n samples with a mixture of q leukocyte
subtypes. We first generate a reference methylation profile
by drawing methylation M-values of p CpGs from a mix-
ture of three normal distributions with mean μj

R, standard
deviation σj

R and mixing probabilities πj
R(j = 1, 2, 3),

representing hypo-methylated, hemi-methylated and
hyper-methylated CpGs. The reference methylation profile
represents the methylation of the hematopoietic stem cell.
We then generate the methylation profile of two progeni-
tor cells (myeloid and lymphoid progenitor, Fig. 1b) by
allowing each progenitor cell to differ in πC of the p CpGs
from the reference with the methylation differences drawn
from N(0, σC

2 ). Next, for each progenitor cells, we generate
four leukocyte subtypes using the same way. For each
subtype in each sample, we add various sources of methy-
lation variation to the randomly selected subsets of CpGs.
We first add individual-specific methylation differences to
πI of the CpG sites by drawing the differences from
N(0, σI

2), reflecting the fact that each individual harbors
unique methylation signatures due to genetic, environ-
mental and demographic factors. Thus, for any two indi-
viduals, they can differ up to 2πI of the CpGs for a
subtype. To simulate group-specific DMPs between two
sample groups (e.g. exposed and unexposed group) for the
power study, we add group differences to πG of the CpG
sites with the differences drawn from N(0, σG

2 ). Each
leukocyte could have different sets of DMPs with different
effect sizes. The observed overall effect size is the
weighted average of the effect sizes of individual subtypes
with weights being their relative abundances. Without loss
of generality, in the simulation, we let the subtypes share
DMPs. The cell proportions are simulated from a Dirich-
let distribution with mean proportions πP and overdisper-
sion parameter φ. To make the cell composition a
confounding factor, we vary the mean cell proportions of
one group with a log2 fold change f drawn from N(0, σF

2)
for each subtype. The cell proportions are renormalized to
unity sum. The parameter σF

2 controls the level of
confounding. We then generate the mixed methylation

(beta-value) based on the cell proportions. Finally, we add
batch effects and measurement errors. Measurement (and
other unmodeled) errors are drawn from N(0, σE

2) for each
CpG. For batch effects, we simulate nB batches while the
batch differences are drawn from N(0, σB

2). All the methy-
lation variability is added to the methylation M-values.
The M-values can be converted into beta-values using
inverse-logit transformation. Figure 1a gives an overview
of the simulation pipeline. For continuous phenotypes, the
phenotypes are generated using a standard normal distri-
bution and the log2 fold changes of cell proportion as well
as the signals (on M-value) are generated as a linear
function of the phenotype. The parameters values used
were estimated from a data set of purified cell types
(GSE35069) or matched to resemble real methylation data
with moderate noise level (Additional file 1: Note1, Fig. 1).
In the simulation, we included 10,000 CpG sites to reduce
runtime for some computationally intensive methods. The
default parameter values are given in Additional file 1:
Table S1. All the simulation results were averaged over
100 simulation runs.

Performance evaluation
We compared the performance of SmartSVA with other
reference-free methods in recovering DMPs. Linear re-
gression was used to test for DMPs with the methylation
value as the outcome and the group indicator as the co-
variate, adjusting for PCs/SVs (PCA, SVA, SmartSVA,
RefFreeCellMix and ReFACTor) or simulated cell propor-
tions and batch effects (the “Perfect” method). The
“Perfect” method offers a hypothetical upper bound in
performance and could be used to benchmark other
methods. Linear regression was performed on methylation
M-values based on the recommendation by Du et al. [28].
Traditional SVA was performed with the default imple-
mentation (“sva” R Bioconductor package). For PCA, SVA
and SmartSVA, we estimated the number of components
using RMT. For ReFACTor, the default parameter setting
for ReFACTor (500 informative sites and 5 components)
did not control for false positives well in both simulations
and real data. To improve its performance, we used 1,000
informative sites and increased the number of compo-
nents to that determined by RMT for simulations. Using
this strategy, the test statistic inflation was generally con-
trolled. FaST-LMM-EWASher [10] was performed using
the default parameters without filtering out consistently
methylated or unmethylated CpGs since the filtering step
could lead to reduced power [7]. RefFreeEWAS and
RefFreeCellMix were performed using the default
parameters (“RefFreeEWAS” R package) and RMT was
used to estimate the number of components. The associ-
ation P values for RefFreeEWAS were calculated based on
100 bootstrap runs.
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The false positive (type I error) control was assessed
using genomic inflation factor λ, observed false discovery
rate (FDR) and family-wise error rate (FWER). Genomic
inflation factor was defined as the ratio of the median of
the empirical distribution of the test statistic to the ex-
pected median, thus quantifying the excess false positive
rate. Specifically, we first converted the association P
values into Chi-square statistic (χ2) of 1 degree of free-
dom and then calculated the genomic inflation factor as

λ ¼ median χ2ð Þ
0:456

The observed FDR and FWER were calculated after
FDR control (Benjamini-Hochberg procedure) and Bon-
ferroni correction respectively at the nominal level of
5%. Failure to control the FDR and FWER at the nom-
inal level indicates a poor false positive control. Statis-
tical power was assessed using the true positive rate
after FDR control and Bonferroni correction. To assess
the ability of PCs/SVs in explaining the variability of cell
composition, we calculated the multivariate-version of
adjusted R2 based on a joint analysis of all cell types
using canonical correlation analysis (“CCorA” in “vegan”
R package). Adjusted R2 was used to avoid over-fitting
due to potentially a large number of PCs/SVs. All the
analyses were performed in R-3.2.0.

Runtime comparison
We compared the run time of SmartSVA to traditional
SVA by conducting a series of simulation experiments
on a real data set [1] (GSE42861, n = 689, p = 485,577).
We computed the wall time for each experiment by run-
ning the program on an AMD Opteron CPU with
256GB RAM and 16 MB available cache. To have a
more meaningful comparison, the wall time included the
time used for estimating the number of components by
RMT, calculating the SVs and performing association
tests using linear regression. Both methods used the
same convergence criterion (Spearman’s correlation
coefficient > 0.999 between the weights from two con-
secutive iterations; the stringent criterion is to ensure
convergence) instead of using a fixed number of itera-
tions. Two scenarios were independently studied. In the
first scenario, the relation between the number of CpG
sites in each sample and the runtime of the algorithm
was examined. We randomly selected 100 cases and 100
control individuals. The number of CpG sites for each
individual was initially set to 4,000 and doubled for each
instance of the experiment until reached to 128,000. The
second scenario was devoted to studying the runtime
variation with respect to the sample size. We sampled n
= {25, 50, 100, 200, 400 and 600} individuals, and ran-
domly selected 20,000 sites from each individual to

create the measurement matrix. We repeated each ex-
periment 20 times.

Data sets and quality control
To evaluate the performance of the proposed method,
we used three real data sets from the study of the
methylation change associated with gastric cancer [24]
(GSE30601, n = 297), serum IgE concentration [22] (n =
357) and human aging [23] (GSE40279, n = 656). The
first two data sets were generated using Illumina
HumanMethylation27 BeadChip and the third data set
was generated using Illumina HumanMethylation450
BeadChip. Gastric tissue was used to profile methylation
for the first study, and peripheral whole blood was used
for the last two studies. Probes with detection P values
>0.01 in more than 5% of the samples, probes with
single-nucleotide polymorphisms (MAF > 0.05, European
population, 1000 Genomes Project), and probes on the
sex chromosomes were excluded from analysis. We per-
formed the methylation association tests on the raw data
since a previous study found that the raw data were
already highly reproducible and some normalization ap-
proaches might introduce more variability into the data
[29]. We did not remove consistently methylated and
unmethylated probes since there was no substantial evi-
dence to justify that. For the IgE data set, whole blood
cell counts were available for neutrophils, lymphocytes,
monocytes, eosinophils and basophils.

Gene set enrichment
Gene set enrichment for the gastric cancer data set was
carried out using DAVID (https://david.ncifcrf.gov/).
KEGG pathways and GO biological process (Level 5)
were used for enrichment analysis.

Code availability
R package “SmartSVA” associated with our method is avail-
able via CRAN (https://cran.r-project.org/) with documen-
tation and instructions.

Additional file

Additional file 1: Further methodological details, notes, and additional
results. (PDF 3644 kb)

Abbreviations
DMP: Differentially methylated position; DNA: Deoxyribonucleic acid;
EWAS: Epigenome-wide association study; FDR: False discovery rate;
FWER: Family-wise error rate; GO: Gene ontology; KEGG: Kyoto encyclopedia
of genes and genomes; MAF: Minor allele frequency; PCA: Principal
component analysis; RMT: Random matrix theory; SVA: Surrogate variable
analysis; SVD: Singular value decomposition

Acknowledgements
We thank Pärt Peterson and Raivo Kolde for providing the age-associated CpG list.

Chen et al. BMC Genomics  (2017) 18:413 Page 12 of 13

https://david.ncifcrf.gov/
https://cran.r-project.org/
dx.doi.org/10.1186/s12864-017-3808-1


Funding
This work was supported by Center for Individualized Medicine at Mayo
Clinic (Chen), P01 CA134294 (Lin) and R37 CA076404, NIH R01ES020268 and
NIH R01ES015172 (Chen and Lin).

Availability of data and materials
The datasets during and/or analyzed during the current study available from
the corresponding author on request.

Authors' contributions
JC designed and implemented the method and drafted the manuscript
under the supervision of XL and LL. JC, EB, JH and JX performed the
simulation studies and real data analysis. MM contributed the real data set
and aided in interpretation of the results. DS offered expertise to improve
the manuscript and helped revise the draft. All authors read and approved
the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
This study involved no human subjects.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Division of Biomedical Statistics and Informatics, Department of Health
Sciences Research and Center for Individualized Medicine, Mayo Clinic, 200
1st St SW, Rochester, MN 55905, USA. 2State Key Laboratory of Medical
Genomics, Rui-jin Hospital & Shanghai Jiao Tong University School of
Medicine, 197 Rui Jin Er Road, Shanghai 200025, China. 3Faculty of Medicine,
National Heart & Lung Institute, Imperial College London, Dovehouse St,
London SW3 6LY, UK. 4Department of Epidemiology, Harvard T.H. School of
Public Health, Boston, 677 Huntington Ave, Boston, MA 02115, USA.
5Department of Biostatistics, Harvard T.H. School of Public Health, 677
Huntington Ave, Boston, MA 02115, USA.

Received: 23 March 2017 Accepted: 18 May 2017

References
1. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al.

Epigenome-wide association data implicate DNA methylation as an intermediary
of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013;31:142–7.

2. Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, et al. Identification
of DNA methylation changes in newborns related to maternal smoking
during pregnancy. Environ Health Perspect. 2014;122:1147–53.

3. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlén S-E, Greco D, et al.
Differential DNA Methylation in Purified Human Blood Cells: Implications for
Cell Lineage and Studies on Disease Susceptibility. PLoS One. 2012;7, e41361.

4. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al.
Recommendations for the design and analysis of epigenome-wide
association studies. Nat Methods. 2013;10:949–55.

5. Liang L, Cookson WOC. Grasping nettles: cellular heterogeneity and other
confounders in epigenome-wide association studies. Hum Mol Genet.
2014;23:R83–8.

6. Mazor T, Pankov A, Song JS, Costello JF. Intratumoral Heterogeneity of the
Epigenome. Cancer Cell. 2016;29:440–51.

7. McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A, et al.
An evaluation of methods correcting for cell-type heterogeneity in DNA
methylation studies. Genome Biol. 2016;17:84.

8. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ,
Nelson HH, et al. DNA methylation arrays as surrogate measures of cell
mixture distribution. BMC Bioinformatics. 2012;13:86.

9. Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of
DNA methylation data. Bioinformatics. 2014;30:1431–9.

10. Zou J, Lippert C, Heckerman D, Aryee M, Listgarten J. Epigenome-wide
association studies without the need for cell-type composition. Nat Methods.
2014;11:309–11.

11. Rahmani E, Zaitlen N, Baran Y, Eng C, Hu D, Galanter J, et al. Sparse PCA
corrects for cell type heterogeneity in epigenome-wide association studies.
Nat Methods. 2016;13:443–5.

12. Repsilber D, Kern S, Telaar A, Walzl G, Black GF, Selbig J, et al. Biomarker
discovery in heterogeneous tissue samples -taking the in-silico
deconfounding approach. BMC Bioinformatics. 2010;11:1.

13. Teschendorff AE, Zhuang J, Widschwendter M. Independent surrogate
variable analysis to deconvolve confounding factors in large-scale
microarray profiling studies. Bioinformatics. 2011;27:1496–505.

14. Gagnon-Bartsch JA, Speed TP. Using control genes to correct for unwanted
variation in microarray data. Biostatistics. 2012;13:539–52.

15. Houseman EA, Kile ML, Christiani DC, Ince TA, Kelsey KT, Marsit CJ.
Reference-free deconvolution of DNA methylation data and mediation by
cell composition effects. BMC Bioinformatics. 2016;17:1.

16. Reynolds LM, Taylor JR, Ding J, Lohman K, Johnson C, Siscovick D, et al.
Age-related variations in the methylome associated with gene expression in
human monocytes and T cells. Nat Commun. 2014;5:5366.

17. Tserel L, Kolde R, Limbach M, Tretyakov K, Kasela S, Kisand K, et al. Age-related
profiling of DNA methylation in CD8+ T cells reveals changes in immune
response and transcriptional regulator genes. Sci Rep. 2015;5:13107.

18. Naumov VA, Generozov EV, Zaharjevskaya NB, Matushkina DS, Larin AK,
Chernyshov SV, et al. Genome-scale analysis of DNA methylation in colorectal
cancer using Infinium HumanMethylation450 BeadChips. Epigenetics.
2013;8:921–34.

19. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet. 2007;3:1724–35.

20. Leek JT, Storey JD. A general framework for multiple testing dependence.
Proc Natl Acad Sci U S A. 2008;105:18718–23.

21. Yang J, Weedon MN, Purcell S, Lettre G, Estrada K, Willer CJ, et al. Genomic
inflation factors under polygenic inheritance. Eur J Hum Genet.
2011;19:807–12.

22. Liang L, Willis-Owen SAG, Laprise C, Wong KCC, Davies GA, Hudson TJ, et al.
An epigenome-wide association study of total serum immunoglobulin E
concentration. Nature. 2015;520:670–4.

23. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al.
Genome-wide methylation profiles reveal quantitative views of human
aging rates. Mol Cell. 2013;49:359–67.

24. Zouridis H, Deng N, Ivanova T, Zhu Y, Wong B, Huang D, et al. Methylation
Subtypes and Large-Scale Epigenetic Alterations in Gastric Cancer. Sci Transl Med.
2012;4:156ra140.

25. Almstrup K, Johansen ML, Busch AS. Pubertal development in healthy
children is mirrored by DNA methylation patterns in peripheral blood.
Sci Rep. 2016;6:28657.

26. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al.
Tackling the widespread and critical impact of batch effects in high-throughput
data. Nat Rev Genet. 2010;11:733–9.

27. Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al.
DNA methylation age of blood predicts all-cause mortality in later life.
Genome Biol. 2015;16:25.

28. Du P, Zhang X, Huang C-C, Jafari N, Kibbe WA, Hou L, et al. Comparison of
Beta-value and M-value methods for quantifying methylation levels by
microarray analysis. BMC Bioinformatics. 2010;11:587.

29. Wu MC, Joubert BR, Kuan PF, Håberg SE, Nystad W, Peddada SD, et al.
A systematic assessment of normalization approaches for the Infinium 450K
methylation platform. Epigenetics. 2014;9:318–29.

Chen et al. BMC Genomics  (2017) 18:413 Page 13 of 13


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Results
	Simulation strategy and performance evaluation
	Simulation results
	Runtime comparison
	Real data applications

	Discussion
	Conclusions
	Methods
	Motivation
	The SmartSVA algorithm
	Data simulation
	Performance evaluation
	Runtime comparison
	Data sets and quality control
	Gene set enrichment
	Code availability

	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

