Rules to fly by: pigeons navigating horizontal obstacles limit steering by selecting gaps most aligned to their flight direction
Rules to fly by: pigeons navigating horizontal obstacles limit steering by selecting gaps most aligned to their flight direction.

Ivo G. Ros1,2, Partha S. Bhagavatula1,*, Huai-Ti Lin3,* and Andrew A. Biewener1

1Department of Organismic & Evolutionary Biology, Concord Field Station, Harvard University;
2Division of Biology and Bioengineering, California Institute of Technology;
3HHMI Janelia Research Campus, Ashburn, VA.

Authors contributed equally

Running head: Flight past horizontal obstacles

Author contributions

IGR, HTL, and AAB conceived the study. IGR and AAB designed the study. IGR and PSB performed the experiments and processed the data. IGR performed the statistics and analyses for the behavioral modification. HTL performed the analyses comparing VO and HO flights, and implemented the flight guidance models. IGR, HTL, and AAB wrote the manuscript with critical input from PSB.

Acknowledgements

We thank S. Gagliardi, G. T. Clifton and C. D. Williams for help with data collection. We further thank two anonymous reviewers for their suggestions.
Abstract

Flying animals must successfully contend with obstacles in their natural environments. Inspired by the robust maneuvering abilities of flying animals, unmanned aerial systems are being developed and tested to improve flight control through cluttered environments. We previously examined steering strategies that pigeons adopt to fly through an array of vertical obstacles. Modeling vertical obstacle flight guidance revealed that pigeons steer toward larger visual gaps when making fast steering decisions. In the present experiments, we recorded 3D flight kinematics of pigeons as they flew through randomized arrays of horizontal obstacles. We found that pigeons still decelerated upon approach but flew faster through a denser array of horizontal obstacles compared with the vertical obstacle array previously tested. Pigeons exhibited limited steering and chose gaps between obstacles most aligned to their immediate flight direction, in contrast to vertical obstacle navigation that favored widest gap steering. In addition, pigeons navigated past the horizontal obstacles with more variable and decreased wing stroke span and adjusted their wing stroke plane to reduce contact with the obstacles. Variability in wing extension, stroke plane and wing stroke path was greater during horizontal obstacle flight. Pigeons also exhibited pronounced head movements when negotiating horizontal obstacles, which potentially serve a visual function. These head-bobbing-like movements were most pronounced in the horizontal (flight direction) and vertical directions, consistent with engaging motion vision mechanisms for obstacle detection. These results show that pigeons exhibit a keen kinesthetic sense of their body and wings in relation to obstacles. Together with aerodynamic flapping flight mechanics that favors vertical maneuvering, pigeons are able to navigate horizontal obstacles using simple rules with remarkable success.

1. Introduction

Moment to moment navigation through a complex obstacle laden ecosystem is necessary for the evolutionary success and survival of flying animals. Flight navigation through cluttered environments requires exceptional aerodynamic maneuvering performance coordinated by rapid processing of sensory cues. The manner in which flying animals maneuver to avoid obstacles and select flight paths has become a growing focus of investigation. Studies of animal flight navigation also hold promise for inspiring more robust algorithms for short-range navigation of unmanned aerial systems (UAS, e.g.) [1,2].

Birds and insects rely heavily on visual cues for short-range navigation to avoid obstacles, pursue prey [3-5], and select flight paths [6-13], whereas many bats and some specialized species of birds [14,15] rely on echolocation when foraging and during transit flights [16-19]. When flying through narrow openings,
birds demonstrate a strong kinesthetic sense of body position and movement with respect to nearby obstacles, reducing their risk of wing and/or body damage associated with obstacle contacts [20-22].

Obstacle negotiation is also arguably a central component of successfully deploying autonomous mobile robots in unstructured real-world environments. The main challenges in obstacle negotiation are to identify relevant obstacles, determine the maneuvers needed to avoid them and to execute the maneuvers with appropriate dynamics. Obstacle avoidance can be achieved via path planning and/or reactive control [23]. Path planning requires some level of spatial map information [24]. However, for many robotic applications an accurate map of the environment is not available and can be computationally expensive to obtain. Instead, the use of relatively simple sensory heuristics for guidance provides an alternative approach and has been explored to model visual guidance by animals, ranging from insects to humans [25-29]. Such a heuristics approach has been successfully used to guide autonomous robots. Good examples are UAS obstacle avoidance and autonomous landing using optic flow [30-32]. Understanding the behavioral strategies used by animals for guiding movement in cluttered environments has key relevance to robotic applications.

Behavioral strategies, however, are difficult to extract because an animal typically integrates multiple sensory cues and chooses from a multitude of possible actions. Visually guided behaviors constrain the role of sensory modalities, which can be further simplified using an artificial visual environment [11,33,13]. In past work [34], we developed a simple obstacle negotiation behavioral paradigm and modeling procedure to evaluate possible behavioral strategies used by pigeons (Columba livia) to navigate through an artificial forest. By recording the flight trajectories of the pigeons in the horizontal (XY) plane and combining their trajectories with obstacle positions, we were able to reconstruct the visual cues that pigeons might use to navigate past obstacles. Rather than using obstacle avoidance strategies [35, 36] or time-to-collision (tau) [37-38] as steering cues, we developed a gap-aiming guidance model based on proportional-derivative (PD) control with a fixed delay. We extensively searched for the gains and visuomotor delays that best described the observed maneuvering flight trajectories. We used our model to test whether pigeons selected the widest gap or the gap most in line with their flight direction to navigate past vertical obstacles. We found vertical obstacle negotiation was best described by proportional steering control driven by the error between their flight direction and the desired opening, with pigeons biasing their steering toward larger gaps, rather than those most in line with their flight bearing, or their destination direction. A widest-gap aiming model was able to predict up to 80% of the observed flight paths, given only the initial conditions.

Flying animals must navigate past horizontal as well as vertical obstacles when flying through natural...
environments. An obstacle’s orientation relative to the wing stroke plane imposes fundamental constraints on obstacle avoidance biomechanics and aerodynamics. While vertical obstacles require pigeons and other flying animals [39, 22] to pause at the end of a stroke reversal or narrow their wingspan at mid-stroke, horizontal obstacles likely allow birds to keep their wings extended for brief glides to maneuver past obstacles. Whereas vertical obstacles challenge a bird to generate lateral forces, horizontal obstacles require changes in vertical acceleration, which therefore require different aerodynamic mechanisms. Here, we examine the flight trajectories and strategies that pigeons adopt to negotiate horizontal obstacles and propose three hypotheses according to biomechanical and aerodynamic constraints. First, the control authority of birds is likely greatest in the vertical plane, as the majority of aerodynamic lift production is to support the animal’s weight against gravity. We therefore expect pigeons to navigate horizontal obstacles at higher average speeds, but assist braking and conserve energy by converting kinetic energy (KE) into potential energy (PE), resulting in an upward bias of their flight trajectories. Second, because the bird’s body-wing profile is oriented more parallel to the horizontal obstacles, the acceptable gap size for navigation between obstacles may be much smaller. We therefore expect that the widest gap-aiming model may not best describe horizontal obstacle navigation in the vertical plane, as it did for vertical obstacle navigation in the horizontal plane [34]. Finally, pigeons must make adjustments in wing stroke amplitude and stroke plane angle to avoid contact with the obstacles, while also controlling body pitch to adjust flight trajectories through horizontal obstacles. We test these hypotheses by analyzing pigeon kinematics during horizontal obstacle flight.

2. Materials and Methods

Four wild-caught adult rock doves, *Columba livia*, (pigeons; 353 ± 37 g body mass) used in the experiments were housed, trained and studied at the Concord Field Station (Bedford, MA, USA) in accordance with protocols approved by Harvard University’s Institutional Animal Care and Use Committee (Animal Experimentation Protocol Number: 98-04). Over the course of two weeks, seven pigeons were trained to fly between two 1 m high perches and vocally discouraged from landing on the floor. The inter-perch distance was gradually increased until the perches were positioned permanently on either end of a 3 m wide by 3 m high 20 m long corridor. The four pigeons that flew most consistently (as subjectively assessed by the trainer) were selected as study subjects for flight navigation. Following training, 20 horizontal obstacles (HO, 1.25 cm x 3 m, Fig. 1a) were semi-randomly positioned across a hexagonal lattice with edges of 0.2 m. For each trial an obstacle was semi-randomly allocated to 1 of 6 locations for each of 20 grid locations on a 2 m x 2 m area (Fig. 1d). The horizontal obstacle forest started 10 m from the obstacle flight take-off perch and ended 8 m before the landing perch (similar corridor location as for our prior study of vertical obstacle flight [34]). The resulting horizontal obstacle
distributions averaged 4.8 obstacles / m², significantly denser than the vertical obstacle forest in our previous study, which averaged 1.7 obstacles / m². However, the vertical obstacles had a diameter of 3.8 cm, substantially exceeding the 1.25 cm diameter of the horizontal obstacles used here. We used Bungee™ cords drawn tight between eye-bolt anchors installed in the lateral walls of the obstacle field as horizontal obstacles (rather than the plastic poles used for the vertical obstacle navigation study), to ensure that the pigeons would not land on an obstacle but would fly through the obstacle field to land on the far perch. Four permanent horizontal obstacles were set above and two permanent obstacles were set near the ground (black dots, Fig. 1A) to ensure that the pigeons navigated through the horizontal obstacle forest. For simplicity, we refer to flights without the 20 semi-randomly distributed obstacles as non-obstacle flights (NO flights), even though the 6 permanent obstacles were present for all flights. The walls of the corridor were uniformly covered with white polyethylene sheets.

Four synchronized high-speed video cameras (2 Integrated Design Tools, Inc. model N5S1 recording 2336 x 1728 pixel images and 2 Photron model PCI recording 1000 x 1000 pixel images) recorded the pigeons’ flight trajectories at 250 Hz. The calibrated volume of the four cameras included the horizontal obstacle field, as well as ~2 m approach to the obstacles (Fig. 1A). Infrared LEDs were used as active markers to facilitate tracking of key landmarks on the birds (Fig. 1B; Vishay Intertechnology, Inc., Malvern, PA, USA). The LEDs were powered by a battery pack secured to the dorsal side of the torso, near the center of mass of the bird. 2 LEDs attached to either end of a 5.5 cm piece of balsawood were secured to the bird’s head with thermoplastic adhesive and elastic tape. A weighted average of these 2 LEDs approximated the center of the head. 3 LEDs mounted via elastic tape to the bird’s torso provided 3D measurements of body position and orientation. The feathers on the dorsal side of the head and the torso were carefully trimmed to reduce relative motion of the LEDs. LEDs mounted halfway along the shaft of the 9th primary of the left and right wings were used to calculate kinematic variables relevant to flight maneuvers (Table 1; Fig 5c, d). To prevent the wires from interfering with wing motion, we secured the wires with small amounts of thermoplastic adhesive to the ventral side of the elbow and wrist joints, while guiding the wires along the ventral side of brachium and antebrachium of each wing. The weight of all components added to each bird totaled 9.7 ± 0.8 % of their body mass.

Using the four calibrated high-speed camera views, 3D positions of the LEDs were reconstructed in MATLAB within the 9 m³ volume covering the approach and obstacle forest (MathWorks, Natick, MA, USA); [40]. Only flights in which the birds did not contact the obstacles were accepted for analysis. For every marker, the positional data were filtered using a cubic spline filter with tolerances that resulted in marker speeds that most closely matched those obtained with a fourth-order, zero time lag Butterworth
filter using a low-pass cutoff frequency equal to the average wingbeat frequency. Raw positional data were smoothed with a cubic spline to avoid poor performance near the tails of the time-varying positional traces [41].

The three non-collinear body LEDs were used to define a body frame with orthogonal axes along the anatomical anteroposterior, AP, mediolateral, ML, and dorsoventral, DV, axes. After expressing the wing markers in the body frame for each individual, a least-squares linear regression of all wing positions projected on the mid-sagittal plane was used to separate downstrokes from upstrokes: wings were defined to be in downstroke when wing marker velocities were directed antero-ventrally in the direction of the regression trend line. If not, wings were defined to be in upstroke. Instead of defining wing amplitude as the 1D angle between two extreme wing orientations, we used the integral distance traveled by a wing marker during each half stroke to define wing stroke amplitude. Similarly, the down-/upstroke duration was the time a wing marker spent in down-/upstroke, and wing speed was the average speed over the duration of down-/upstroke. The stroke plane angle was defined as the angle between the AP axis and linear regressions of wing positions during down-/upstroke projected on the mid-sagittal plane (Fig 5b).

We did not separate left from right wing to quantify these metrics for downstroke versus upstroke, as navigation past horizontal obstacles is likely to be independent of contralateral asymmetries in wing kinematics. Wing extension was defined as the average Euclidian distance between the two wing markers at 50% duration of each half stroke.

To identify likely candidates for maneuvering mechanisms used in negotiating horizontal obstacles, we additionally determined stroke-to-stroke variability in amplitude, duration and speed as the standard deviation across all strokes, for each individual. Variability in wing extension was quantified as the average deviation in the mediolateral direction of the wing markers from the mean stroke trajectories (dark and grey lines in the frontal views in Fig. 5b, c). Similarly, variability in stroke path was quantified as the average deviation in the wing markers’ sagittal plane motion relative to regression lines through all down-/upstroke marker positions of each individual.

We applied a false discovery rate (FDR) controlling procedure [42] in multiple significance testing between NO and HO flights. Correlations between changes in potential and kinetic energy over the forest flight sections were tested with multiple least-squares linear regression models (JMP, SAS Institute, Cary, NC, USA). These mixed-effect statistical models included a random effect of bird identity to correct for individual effects. We compared FDR adjusted p-values, p*, with a significance level of \(\alpha = 0.05 \).
3. Experimental results

Characteristic features of horizontal obstacle flight.

Despite the denser array of horizontal obstacles, horizontal obstacle (HO) flights (blue, Fig. 2a) involved less steering by the pigeons in the XZ plane (87% of trials < 30°) compared with vertical obstacle (VO) flights (red) in the XY plane (87% of trials < 60°). Overall, the mean trajectory for each set of obstacle flights matched the destination direction of the landing perch. As for VO flights, HO flights showed little evidence of path planning during the approach, with little or no evidence of steering until within 0.5 to 1.5 m of the obstacle field. Pigeons decelerated when approaching the obstacles (6.2 ± 1.1 m/s > 1 m before versus 5.6 ± 1.0 m/s within 1 m), but still flew past the horizontal obstacles at higher speeds (5.0 ± 1.0 m/s) compared with VO flight speeds (3.9 ± 0.5 m/s; Fig. 2b). Steering was also more variable, as well as being substantially less strong, during HO flights compared with VO flights (Fig. 2c). For example, 42.8% of HO flights involved <10° of total steering whereas only 17.5% of VH flights had such low steering. Pigeons consistently traded off kinetic energy (KE) for potential energy (PE) and vice versa within the horizontal obstacle forest (multiple LS-regressions model: p<.0001; Fig. 2d). No such correlation was present for NO flights (p = 0.06). However, counter to our expectation, we did not observe a bias of converting KE to PE within the obstacle forest. PE changes were small compared to KE changes, and pigeons also converted PE to KE when flying through the horizontal obstacle field.

Consistent with the reduced steering observed for horizontal navigation and the possibility that maneuvering to navigate past horizontal obstacles is less demanding, the frequency of obstacle contacts (determined across individual trials) with horizontal obstacles (19.8 ± 3.5%, N=4) was much less than the frequency of contacts with vertical obstacles (37.7 ± 13.6%, N=3). Whereas 100% of vertical obstacle contacts were made with one or both wings, only 8.7% of horizontal obstacle contacts were by the wings. The remainder resulted from contacts with the head, body, feet, or tail of the bird. Obstacle contacts did not temporally cluster in earlier flights, and occurred with a variable distribution over HO flight trials.

The pigeon’s bearing angular velocity (ω) in the XZ plane fluctuated in a stereotypic sinusoidal pattern when flying without obstacles (Fig. 3a). When phase-corrected, all pigeons showed similar time-varying patterns of ω, with each pigeon having a unique frequency and magnitude. In these NO flights the periodicity in head direction changes are possibly caused by oscillating pitch torques occurring at the wingbeat frequency [43]. A smoothing cubic spline filter was used to approximate the pigeon’s steering signal (ωₜ), which showed virtually no steering for non-obstacle flights (Fig. 3a). When negotiating horizontal obstacles, ω fluctuated much more erratically (Fig. 3b). An overlay of all trials from the four pigeons for HO flights shows that some trials reached >3x the amplitude of bearing ω compared to

http://mc.manuscriptcentral.com/rsfs
normal flights (Fig. 3b). One example HO trace (Fig. 3c) illustrates the substantial amplitude modulation as well as some frequency modulation of ω. Again, we can use the same cubic spline filter to extract the steering signal (ω_i). An overlay of all the approximated steering signals for HO flights (Fig. 3d) shows qualitative differences relative to the steering signals for VO flights (Fig. 3e). Whereas the steering for VO flights is smooth and persistent, the steering for HO contains transient large amplitude features.

Although we observed little evidence of flight trajectory deviations prior to entering the obstacle field, the bearing angular velocity during the pigeon’s approach for horizontal obstacle flights fluctuates more compared to no-obstacle flights shown in Figure 3a. Distributions of steering signal prior to (grey) and during (black, shaded red) vertical obstacle flight navigation show that steering dramatically increased when the pigeons entered the vertical obstacle field (Fig. 3f, right). In contrast, the distributions of steering signal prior to (grey) and during (black, shaded blue) horizontal obstacle field navigation (right) differ much less (Fig. 3f, left).

Head and wing motions during horizontal obstacle flight.

A striking behavioral difference compared with non-obstacle flights was the presence of larger head speed fluctuations during obstacle flights (Fig. 4a-c). Head speed oscillated periodically, following a lower frequency trend determined by the flight speed. Therefore, spline-filtered head speed containing only frequencies < 50% wingbeat frequency were considered to represent flight speed. Relative head speed was determined by subtracting flight speed from global head speed. Relative body speed was similarly determined by subtracting the low frequency trend of body speed, obtained by spline-filtering the body speed with the same filter settings used to obtain flight speed, from global body speed. The mean ± SD (shaded areas) of individual mean cross-correlations of relative body speed with relative head speed for NO flights peaked at a time lag near 0 s (Fig. 4d, left panel), indicating synchronous relative head and body speed fluctuations when no obstacles are present. In contrast, during HO flights, fluctuations in relative body speed and relative head speed are nearly counter-phase to each other (Fig 4e, right panel).

The auto-correlations of relative body and head speed contain periodic local maxima and minima near the wingbeat frequency, indicative of periodicity in both relative body speed and relative head speed (Fig. 4d). To quantify the relative head speed fluctuations, we computed the variability in global head speed as the mean rectified relative head speed. Head speed variability was consistently higher during HO flights than during NO flights for 3D speed, as well as for each of the velocity components along the three corridor axes (Fig 4f; all $p<0.006$). Variability in head speed was particularly pronounced in the X (corridor fore-aft) and Z (vertical) directions.

Together with increased variability of global head speed during HO flights, we also observed a significant
increase in translational head movements relative to the body during horizontal obstacle flights compared with non-obstacle flights, with the envelope of head positions and its variability increasing more than two-fold in the anatomical dorsoventral direction across individuals (P* = 0.015; Table 3, Fig 5b, c). Both increased global head speed variability and relative head translational movements indicate the same increase in head-bobbing-like movements during HO flights as compared to NO flights.

In addition to increasing head movements, the pigeons also altered particular wing kinematics parameters while negotiating the horizontal obstacle forest. To account for variation in marker placement among individuals, local wing kinematics were normalized to the individual downstroke means during NO flights (Table 1; for non-normalized values, see table S1). To navigate past the horizontal obstacles, the pigeons tilted their wing stroke plane backward by increasing the anterior sweep of the wings, compared with the stereotypic pattern of wing movements during non-obstacle flight and while approaching the obstacles (Table 1; P* = 0.005 for upstroke and downstroke). They also reduced downstroke and upstroke wing extension (Table 1; P* = 0.013 and 0.016, respectively), compared with NO flight. Lastly, horizontal obstacle maneuvers were associated with more variable wing extension (P* = 0.045 and 0.002 for downstroke and upstroke, respectively) and wing path (P* = 0.001 for downstroke and upstroke; Table 2, Fig. 5b, c) movements. Overall averages of wing stroke amplitude, duration, and thus, wing speed however did not differ between NO versus HO flights (Table 1); nor were these metrics more variable in the horizontal obstacle forest (Table 2).

Guidance modeling results.

We have shown previously that pigeons navigating through vertical obstacles can be modeled as a proportional controller with a fixed delay [34]. For the purpose of comparing VO and HO flights, we used the same proportional controller (gain = 4.7 s^{-1}, delay = 134 ms) to compute the predictive power of each guidance rule as a function of sensory uncertainty. The pigeon’s bearing angular velocity $\dot{\theta}_\text{pigeon}$ served as the control variable, which evolved the flight trajectory over time. The model applied a corrective term to $\dot{\theta}_\text{pigeon}$ as a function of the deviation from the ideal steering aim. The ideal steering aim was determined by a choice of gap given 134 ms prior to the moment of steering correction. Three gap aiming rules were evaluated: largest gap, flight direction gap and destination gap (Fig. 6a). These gaps were evaluated within a $\pm 30^\circ$ ‘attention zone’ (yellow shaded cone, Fig. 6a&b), which matched the prior maximal steering range that was observed for pigeons during vertical obstacle navigation. As a reference, we also implemented an obstacle avoidance model that drove the pigeon’s steering aim away from obstacles within a given range (Fig. 6b). Specifically, each ‘in-range’ obstacle contributed an aim bias, and the sum
of all these biases determined the ideal aim for the pigeon for this steering strategy.

In reality, any visual system has sensory noise, which degrades the exact knowledge of the obstacle angular position. We simulated this sensory uncertainty by replacing the angular positions of the obstacles by a random sample from a Gaussian distribution centered at the actual obstacle position (Fig. 6c). Two example sets of simulated flights (grey traces) relative to the observed flight trajectory (red trace) are shown based on the flight direction rule and the largest gap rule (Fig. 6d) given a sensory uncertainty of ±5°. Due to the random uncertainty of the obstacle location, the simulated pigeon trajectories may bifurcate from the same initial condition. Thus, some simulated trials will match the observed trajectory while some will not (solid versus dashed grey lines, Fig. 6d). By running the simulation 50 times per trial across many trials, we quantified the percentage of successful trajectory reconstruction (predictive power) for each steering rule, both on average and at a maximum level.

By changing the level of sensory uncertainty (Fig. 6c), we evaluated how the predictive power changes for each steering rule as a function of increasing sensory uncertainty. When the sensory uncertainty is zero, the flight trajectory is deterministic and the predictive power is fixed. As a result, the modeled simulations cannot accommodate any subtle degeneracy of the flight trajectory (e.g. if two gaps have practically the same quality, the model and the real pigeon could pick different gaps despite having the same guidance strategy). At the other extreme, when the sensory uncertainty approaches 30°, the simulated pigeon essentially cannot determine the location of any particular obstacle within its ±30° ‘attention zone’.

In carrying out these simulations, we first found that randomly steering to gaps of a given angular threshold within the ±30° attention zone results in predictive powers <50%, all of which converge to 50% when sensory uncertainty reaches 30° (Fig. 6e). This established a baseline from which we can evaluate the predictive performance of other steering rules. The fact that randomized ‘blind’ steering still accounts for half of the flight trajectories indicates that the pigeons did not exhibit much steering. On the other hand, if the simulated pigeon were to steer away from all obstacles within a certain range from its current position, the predictive power of obstacle avoidance is generally only as good as randomly aiming to a gap with zero sensory noise; as sensory uncertainty increases, the predictive power of obstacle avoidance decreases further (Fig. 6f).

In contrast, if the simulated pigeon steers toward the largest visual gap within its attention zone (blue trace, Fig. 6g), 70% of observed flights are accurately recapitulated with zero sensory uncertainty. However, as sensory uncertainty increases, predictive power quickly drops below 50% and does not
substantially improve with a further increase in sensory uncertainty. If the simulated pigeon steers toward the gap most aligned with its flight direction (or bearing), predictive power increases from 54% (zero sensory uncertainty) to nearly 70% as sensory uncertainty reaches 5° (magenta trace, Fig. 6g). Notably, predictive power plateaus and remains stable for this gap aiming rule as sensory uncertainty increase up to 30°. This suggests that pigeons may have a strong steering bias toward maintaining their flight direction regardless of other visual cues. Finally, steering toward gaps most aligned to the pigeon’s destination direction results in uniformly low (~43%) predictive power (orange trace, Fig. 6g).

Overall, these results suggest that a gap aiming behavior better describes pigeon steering to navigate horizontal obstacles than does an obstacle repellence model, and that steering to gaps most closely aligned with the bird’s current flight direction best predicts observed flight trajectories.

4. Discussion

Speeding through a cluttered environment is an extreme sensorimotor challenge, which reduces sensory accuracy and limits computational resources by imposing a time pressure, while simultaneously increasing the cost of failure through the potential of high-speed collisions. We have shown that pigeons can fly through obstacle arrays in both vertical and horizontal orientations while maintaining relatively high speed. They achieve this by employing simple visual heuristics and by tolerating minor contacts with the obstacles. Specifically, while pigeons slowed down and steered toward the largest visual gap between vertical obstacles, when flying past horizontal obstacles they maintained higher speed and preferred gaps that were more aligned to their flight direction, despite a denser obstacle arrangement. Both of these gap-aiming strategies are supported by flight guidance work showing that bees [44] and budgerigars [11] adjust their flight path and speed to balance left versus right optic flow, as steering to a gap essentially balances the angular motion of obstacles to either side of the gap.

To navigate horizontal obstacles, pigeons adopted several behavioral modifications, which may have important sensory and motor implications. Tilting the wing upstroke plane backward is a signature of a tip-reversal upstroke that enhances the ability to generate extra lift [45] at slower flight speeds. The pigeons also actively increased horizontal fore-aft and vertical translational movements of their head when flying through horizontal obstacles, which could engage motion vision mechanisms (e.g. motion parallax, hyper-acuity) or visually stabilize some obstacles (e.g. bar fixation). Whether such head motion truly serves a visual function and what function remain unclear and will require future investigation.

Flight differences for navigating horizontal versus vertical obstacles.
To negotiate close-range obstacles of either vertical or horizontal orientation, the pigeons exhibited a reactive approach to navigation, with little evidence of prior path planning following perch takeoff. Little, if any, steering was observed until the pigeons were within 0.5 to 1.5 m of the obstacle field (Fig. 3a).

Although the pigeons consistently slowed down during their approach to the obstacle fields, they flew significantly faster past the horizontal obstacles than they did past vertical obstacles (Fig. 3b). Even though the vertical pole obstacles were thicker, the horizontal obstacles were more densely distributed with a larger number of obstacles. Overall, obstacle density likely has a stronger effect on maneuvering requirements than obstacle dimensions, as most of the required steering to avoid obstacles is determined by the dimensions of the body part that needs to avoid the obstacle, rather than the small (extra) width of (vertical) obstacles.

We hypothesized that pigeons would tradeoff reduced KE with increased PE, biasing their flight paths upward (+Z) to facilitate horizontal obstacle navigation; however, we found no evidence of this. Although overall changes in PE were small, when PE decreased a significant increase in KE was observed and vice versa (Fig. 2d). Flying through horizontal obstacles seems less challenging than flying through vertical obstacles. Consistent with this, there was a substantially greater incidence of vertical (38% of flights) than horizontal (20%) obstacle contacts, in which 100% of vertical obstacle contacts were with the wings, versus only 9% for horizontal obstacles. The high incidence of wing (and body) contacts that we observed indicates the challenging nature of the experimental designs. In fact, we initially challenged pigeons to fly through even denser distributions of horizontal obstacles (7.5 obstacles/m²), but none of the birds managed to fly through. Nevertheless, pigeons were highly successful in executing both sets of obstacle navigation flight trials, consistent with their ability to fly through extremely narrow spaces [39]. Clearly, a limitation of our experimental design is that the horizontal obstacles were of a different size and spacing density compared with the vertical obstacles, limiting direct comparisons between the two sets of experiments.

The observed higher flight speeds, fewer obstacle contacts, and more limited steering suggest higher agility in vertical maneuvering past horizontal obstacles. This higher agility is likely based on the greater control authority that birds and other flapping animals have for producing aerodynamic force in the vertical direction to support their weight. Further, whereas vertical obstacles often require birds to pause their wings at stroke reversal [39, 22], limiting the aerodynamic force that the wings can generate while in this position, pauses in the wingbeat cycle can occur at mid-downstroke, with the wings held in a gliding posture that allows effective aerodynamic force generation, to facilitate horizontal obstacle maneuvering.
Although horizontal obstacle maneuvering may be less challenging than vertical obstacle navigation with respect to flight aerodynamics, the pigeons still needed to steer clear of obstacles and/or reduce the vertically projected area swept by the wings, to reduce wing contacts with the obstacles (Fig. 5a). As a result, pigeons exhibit more variable wingbeat patterns when negotiating horizontal obstacles as compared with the highly stereotypic patterns observed for non-obstacle flight (Fig. 5b versus 5c).

Behavioral adjustments associated with horizontal obstacle flight.

As expected, we observed significant adjustments in wing stroke kinematics as pigeons navigated through the horizontal obstacle field. The pigeons tilted their wing stroke plane backward by increasing the anterior sweep of the wings and reduced their mid-stroke wing extension in comparison with the stereotypic patterns of wing movements observed during non-obstacle flights (Table 1). Increased variability in wing extension and stroke paths were also observed in both downstroke and upstroke during horizontal obstacle maneuvering (Table 2, Fig. 5b, c), despite the fact that overall averages of wing stroke amplitude, duration and wing speed did not differ between NO versus HO flights. Maneuvering through a horizontal obstacle forest involves mostly vertical flight path changes. Steering up or down likely involves modulation of body pitch, and thus the generation of pitch torques [46]. It is difficult to infer torque-generating mechanisms from changes in mean wing kinematics and their variability, between level flight and vertical maneuvering flight past horizontal obstacles. However, the observed changes in stroke plane angle, particularly more anteriorly swept wings, likely relate to shifting the center of aerodynamic pressure anteriorly and dorsally, later in downstroke and early in upstroke, to produce a pitch-up torque. Similarly, changes in wing stroke trajectories produce roll torque in pigeons during turning flight [43].

A surprising behavioral modification during obstacle flight was the increase in head speed fluctuations (Fig. 4a, b, e). Cross-correlations between relative head speeds and relative body speeds suggest independent modulation of the head, and not a simple mechanical coupling between the head and the body. In the global frame of reference, we observed significantly greater vertical head-bobbing-like movements relative to the pigeon’s body during horizontal obstacle flights compared with non-obstacle flights (Fig. 5b vs 5c). The greater than two-fold increase in dorsoventral head motion has the potential to enhance motion parallax, which can be used in depth perception of the horizontal obstacles. Alternatively, the increased head movements could serve to stabilize the obstacle image on the retina, which may aid depth perception through improved measurement of relative velocity [47] The observed obstacle-dependent head movements are similar to the head-bobbing observed in pigeons prior to landing and reminiscent of the head-bobbing observed during walking in many bird species, both of which are thought to serve a primarily visual function [48–51.] The absence of clear head-bobbing in non-obstacle flights is
consistent with a lack of head-bobbing during take-off flight [48].

Strategic differences in horizontal versus vertical obstacle flight navigation.

Clear strategic differences were observed for pigeon flight navigation through horizontal versus vertical obstacles. Notably, while the vertical obstacle flights can be well described by steering to the largest visual gap [34], horizontal obstacle flights are best modeled as steering to the gap most aligned to the current flight direction. This shift of steering preference is likely due to biomechanical constraints and aerodynamic differences associated with flying past horizontal versus vertical obstacles. In order to steer past vertical obstacles, pigeons must find an opening which allows them to clear both wings sufficiently. Thus large gap sizes seemed to be preferred. In contrast, pigeons can fit through much narrower horizontal openings given that they can coordinate the wing posture properly. As a consequence, they appear to simply aim for the gap closest to their current flight direction. It is interesting, however, that the largest gap rule outperforms the flight direction gap rule given low sensory uncertainty. In fact, the 70% predictive power of steering to the largest visual gap between horizontal obstacles at zero uncertainty is comparable to the predictive power for the same gap selection rule for vertical obstacle flights [34]. It, therefore, seems likely that a bird may simultaneously assess available gap sizes for clearance consideration and their alignment to the bird’s current bearing for biomechanical convenience. In our modeling approach, we tested each steering strategy independently, but there is no reason why a bird should not and could not apply both strategies at the same time. Although it is unclear if and how these two strategies are integrated during other flight maneuvering behaviors, our modeling results for both vertical and horizontal obstacle flight navigation suggest that the relative importance of gap size for steering control is a function of obstacle orientation and perhaps flight speed.

Reactive navigation through both horizontal and vertical obstacles is also better described by gap aiming rather than obstacle repellence. Obstacle repellence has been a useful way to model route selection to negotiate a small number of obstacles [35, 36]. However, summing up the repellent contributions from all obstacles could lead to conflicting steering signals. For faster movement through a large number of obstacles, a gap-aiming strategy performs much better. Fundamentally, by steering away from obstacles rather than toward an available gap, there is no knowledge of what regions of the cluttered environment are obstacle-free. For this reason, gap-aiming is a more comprehensive and likely successful approach for attempting to create obstacle negotiation heuristics, especially for large numbers of obstacles.

Relevance to guidance of bio-inspired autonomous aerial systems.
Our previous [34, 39] and current studies of pigeon obstacle flight suggest that flying animals employ two general strategies to negotiate obstacles at high speed: visual heuristics and collision tolerance. How can these inspire new control schemes for Unmanned Aerial Systems? “Reactive Autonomy” incorporates obstacle avoidance, and is the most active area of guidance control research in aerial robotics [2]. Visual heuristics provide fast alternatives to conventional map-based approaches and are commonly found in animal navigation. To date, the most reliable flights through cluttered environments are only observed in flying animals or drones piloted remotely by a human via non-stereo visual feedback (exemplified by the increasingly popular sport of drone racing). While extracting visual heuristics from flying animals enables discovery of efficient control schemes for obstacle negotiation, it might similarly be fruitful to extract visual heuristics of human steering strategies for UASs, as has been recently attempted [52]. Finally, collision tolerance, which birds and other flying animals achieve well, is also being explored in the aerial robotics community [53,54]. Consequently, we expect that parallel investigation of obstacle flight guidance from both experimental biology and control engineering will continue to contribute key insights for successfully realizing autonomous robots that move among and around us.

Funding statement

This research was funded by a grant from the Office of Naval Research (ONR, N0014-10-1-0951) to A.A.B.

Data availability

Data are available at: https://figshare.com/s/667dbcb6a65adf7b249e
References

http://mc.manuscriptcentral.com/rsfs

219.

[54] Mueller MW, D'Andrea R. 2014 Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers. *2014 IEEE International Conference on Robotics and Automation (ICRA), IEEE.*
Figure 1. Flight corridor with horizontal obstacles. (a) Pigeons were trained to fly down a 3 m wide x 3 m high x 20 m long corridor between two 1 m high perches (dashed blue line; takeoff – left; landing – right). The corridor ceiling was covered by plastic mesh netting to enable four high-speed video cameras to capture the pigeon’s flight paths from above. Flights were recorded (solid blue trace) from 2 m prior to, until passage through, a forest of horizontal obstacles (black and grey dots). (b) Infrared, 2.4 mm LEDs mounted on the bird’s head, body and wings (colored circles on black silhouette) were tracked in the camera views and used to reconstruct 3D flight positions. The head center (blue dot) was approximated by a weighted average of two head LEDs (not shown) (c) Marker positions for an example flight through the horizontal obstacles (thick black and grey lines). Upstroke phases are depicted in small, grey symbols, whereas downstroke phases are in bold for the left (green) and right (purple) wings, along with the body (grey) and head (blue). (d) Four fixed horizontal obstacles (black) define the upper height of the field, and two fixed obstacles (black) were placed near the ground. Within an evenly distributed grid (grey dashes), 20 horizontal obstacles (grey dots and lines in (a) and (c), respectively) were semi-randomly allocated to 1 of 6 locations (i–vi) for every trial. The resulting obstacle distributions across a hexagonal lattice with edges of 0.2 m (red dashes) yielded an average obstacle density of 4.8 obstacles / m².

Figure 2. Pigeons trade off potential and kinetic energy, but fly faster and steer less past horizontal obstacles compared to vertical obstacle flights. (a) Horizontal obstacle (HO) flights (blue) involved less steering in the XZ plane compared with vertical obstacle (VO) flight navigation (red) in the XY plane (VO data originally reported in [34]). Overall, the mean trajectory for each set of obstacle flights matched the destination direction of the landing perch. As for VO flights, HO flights showed little evidence of path planning during the approach, with little or no evidence of steering until within 0.5 to 1.5 m of the obstacle field (dashed lines are sd of pooled traces). (b) Pigeons slowed down but flew past the horizontal obstacles at a more variable and higher speed (5.0 ± 1.0 m/s) compared with VO flight speeds (3.9 ± 0.5 m/s). (c) Overall steering was also more variable as well as being lower in magnitude during HO flights compared with VO flights. For example, more than 40% of HO flights involved less than 10° of total steering. (d) Changes in potential energy (PE) relative to kinetic energy (KE) over flight sections within the horizontal obstacle forest were generally exchanged to conserve the pigeon’s mechanical energy state (each shade of blue and symbol represents an individual; multiple LS-regressions model: p<0.0001). No such trend was present for NO flights (grey symbols; p = 0.06). In the HO forest, however, PE changes were generally small and failed to show a bias for increased PE with decreased KE, indicating that in some trials the pigeons also steered down and increased flight speed in the forest.
Figure 3. Determination of the pigeon’s steering signal for horizontal versus vertical obstacle flights. The pigeon’s steering signal (ω) was deduced from the head velocity direction (bearing) in the vertical, XZ plane. (a) The pigeon’s head bearing angular velocity, ω, fluctuated in regular sinusoidal pattern during flights without obstacles, matching phase-corrected flight-averages of ω for each individual. A cubic spline-smoothing fit approximated changes in flight bearing with near zero steering for NO flights. (b) During HO flights, ω fluctuated more strongly and erratically (overlay of all trials; n=74). During HO flights ω occasionally reaches $3x$ the amplitude of peak ω during NO flights. (c) One example HO trace demonstrates the high amplitude and frequency components of ω. We used a smoothing spline fit to approximate the steering signal (ω_s). (d, e) Whereas steering for vertical obstacle flights is qualitatively smooth and persistent, the steering for horizontal obstacles contains transient, large amplitude features (overlays of ω_s for HO and VO flights in blue and red, respectively). Although we did not observe flight trajectory deviations prior to entering the obstacle field, the bearing angular velocity during the pigeon’s approach for horizontal obstacle flights fluctuates more compared with NO flights shown in (a). (f) Distributions of steering signal prior to (grey) and during (black, shaded red) horizontal obstacle field navigation (left). Steering differed little when the pigeons entered the vertical obstacle field. In contrast, the distributions of steering strength prior to (grey) and during (black, shaded blue) vertical obstacle field navigation (right) dramatically increased.

Figure 4. Pigeons bob their heads during obstacle flights, exhibiting larger head speed fluctuations in the presence of obstacles. (a & b) As illustrated by representative trials, head speed fluctuates more during HO flight compared with a NO flight (solid blue lines; light, NO; dark, HO flight). Head speed oscillates periodically, following a lower frequency trend determined by the pigeon’s flight speed (dashed blue lines). Body speed fluctuates at lower amplitudes and with no clear phase relation to head speed. (c) Relative head speed, determined by subtracting flight speed from global head speed, oscillates more strongly during HO flight compared with NO flight, particularly near and within the horizontal obstacle forest (X>0 m). (d) The mean ± SD (shaded areas) of individual mean cross-correlations of relative body speed with relative head speed for NO flights peaks at a time lag near 0 s (grey line, left panel), indicating synchronous relative head and body speed fluctuations when no obstacles are present. In contrast, during HO flights (right panel), fluctuations in relative body and head speeds are nearly counter-phase. The auto-correlations of the body and head (orange for body, blue for head) contain periodic local maxima and minima, indicating periodicity near the wingbeat frequency. (e) Head speed variability, based on the mean rectified relative head speed, is higher during HO flights than during NO flights for 3D speed, as well as for individual velocity components along the three corridor axes (all $p^*<0.006$). Head speed fluctuations are particularly pronounced in the fore-aft and vertical directions.
Figure 5. Horizontal obstacle maneuvering is associated with changes in wing stroke trajectories and wing extension, as well as increased head movements. (a) Lateral view of a representative HO flight (same trial as Fig. 1d) as the pigeon approaches and then flies through the horizontal obstacle forest (20 gray circles semi-randomly distributed at right). Wing stroke patterns (left, green; right, red) are stereotypic during downstroke (larger, colored symbols) and upstroke (smaller, grey symbols) as the pigeon approaches, but exhibit variable paths to navigate between obstacles and to avoid obstacle contacts. Positions of the head during downstroke (large blue symbols) and upstroke (small grey symbols) are shown relative to the three body markers (grey points) and are, not surprisingly, less variable in their trajectory than the motions of the bird’s wings. Wing and body motions during NO flight (lower left inset) are highly regular in pattern, similar to those observed during the approach section to the obstacle field in the HO flight. (b, c) Lateral and frontal views of the left (green) and right (red) wing trajectories relative to the body, together with head positions (blue), follow more regular movement patterns during NO flight (b) compared with flight in the horizontal obstacle forest (c). Regressions of wing paths during downstroke (orange) and upstroke (grey) document wing stroke plane angles relative to the antero-posterior body axis (orange arc, left panel for the downstroke plane angle). The stroke plane angles for both the downstroke and upstroke are lower in the forest, compared to NO flights, for the represented individual and across individuals (Table 1). The reduced stroke plane angles are caused by more anteriorly swept wings during downstroke. The pigeons also reduce their wingspan in the obstacle forest, both during downstroke and upstroke (shown for downstroke in frontal view). Furthermore, horizontal obstacle maneuvers are associated with more variable wing extension ((b), right panel) and stroke paths ((c), left panel), as well as a more variable head positioning along the dorso-ventral body axis ((c), right panel). (a-c) Pigeon silhouettes are approximately to scale.

Figure 6. Aiming for gaps most aligned with the flight direction best predicts the observed limited steering past horizontal obstacles in the pigeon. The pigeon’s guidance strategy was evaluated by simulating four simple steering rules given observed initial conditions. (a) Following the gap-aiming paradigm that we introduced in previous work [34], we categorize gaps between obstacles based on their angular size and position: largest visual gap, flight direction gap, and destination gap. Gaps are considered within a ±30° attention cone (yellow shading) over a range of 1.5 m (the maximum steering and reaction distance we observed for vertical obstacle navigation). Our model assumes that the pigeon steers toward one type of gap throughout its obstacle flight. (b) As a reference, we implemented an obstacle repellence model [35] in which each obstacle within a certain range contributes to the steering aim of the pigeon. The pigeon’s steering aim results from the weighted contribution of all obstacles within this range. (c) In reality, animals can never perfectly measure obstacle positions. We simulate this sensory uncertainty by
introducing Gaussian noise, with a tunable standard deviation. (d) Given a sensory uncertainty of 5°, the
model pigeon generates different trajectories from the same initial conditions. Some trajectories match the
observed trajectory (solid grey lines) and some do not (dashed grey lines). Here we show one particular
trial simulated by two different gap aiming rules. By repeating the simulation 50 times, we quantify the
predictive power of a specific guidance rule. (e) To establish a baseline for the predictive power of
different steering rules, we first simulate randomly chosen gaps given a minimum gap size threshold. The
average predictive powers (solid lines) for all three conditions are below 50% given zero sensory
uncertainty. As sensory uncertainty increases, the random gap selection simulations converge to 50%,
with the maximum predictive powers (dashed lines) approaching 60%. (f) The obstacle repellence model
has average predictive powers (solid lines) close to 50% at zero sensory uncertainty but degrades quickly
as sensory uncertainty increases, particularly when guided by more distant obstacles. A similar trend is
observed in maximum predictive powers (dashed lines). (g) The largest visual gap rule (blue) exhibits the
highest predictive power at zero sensory uncertainty, but drops quickly with as little as 5° sensory
uncertainty. The flight direction gap rule (magenta) is most robust and maintains predictive power close
to 70% from 5° to 30° sensory uncertainty. The destination gap rule (orange lines) never predicts more
than 50% of the flights. The flight direction gap rule maximally predicts the actual flight trajectories by
just over 70% (pink dashed line).
图(a)显示了NO飞行中一个鸽子（鸽子1，n = 6）的平均偏航角ω与时间的关系。

图(b)展示了HO飞行中偏航角ω随时间变化的情况。

图(c)比较了原始偏航角ω和编码后偏航角ωs随时间的变化。

图(d)展示了HO飞行中编码后偏航角ωs随时间的变化。

图(e)展示了VO飞行中XY坐标系中偏航角ωs = ω随时间的变化。

图(f)展示了HO和VO飞行中障碍前和障碍中偏航信号ωs随时间的变化。
For Review Only

Time lag (s)
Correlation coefficient

(a) Time lag (s)
(b) Head speed variability (m/s)
(c) Relative head speed (m/s)
(d) Correlation coefficient
(e) Head speed variability (m/s)

http://mc.manuscriptcentral.com/rsfs
variability in DV head positioning

(a) HO flight

(b) NO flight

downstroke plane angle

downstroke wing extension

(c) HO flight

variability in upstroke wing extension

varied in DV head positioning

downstroke in DV head positioning

AP distance (m) ML distance (m) DV distance (m)
Key figures:

- **(a)** Gap aiming
- **(b)** Obstacle repellence
- **(c)** Sensory uncertainty
- **(d)** Sensory uncertainty: largest visual gap
- **(e)** Sensory uncertainty: predictive power
- **(f)** Sensory uncertainty: predictive power
- **(g)** Sensory uncertainty: predictive power

Note: Some figures are not fully visible or legible due to cropping.

Legend:
- **red** observed
- **black** match
- **blue** mismatch
- **green** observed
- **orange** mismatch

Key Points:
- React to obstacles < 1.5 m
- React to obstacles < 1 m
- React to obstacles < 0.5 m
- Randomly aim at gaps > 5°
- Randomly aim at gaps > 2.5°
- Randomly aim at gaps > 0°

Additional Information:
- Flight direction gap rule
- Destination gap rule
- Observed vs. mismatched cases

Links:
- mc.manuscriptcentral.com/rsfs
Table 1. Local wing kinematics, normalized to NO flight downstroke values.

<table>
<thead>
<tr>
<th></th>
<th>Stroke amplitude (%)</th>
<th>Stroke duration (%)</th>
<th>Wing speed (%)</th>
<th>Wing extension (%)</th>
<th>Stroke plane angle (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO flights</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>HO flights</td>
<td>103.3 ± 13.0</td>
<td>92.4 ± 10.3</td>
<td>113.5 ± 24.5</td>
<td>93.3 ± 3.2</td>
<td>77.9 ± 6.6</td>
</tr>
<tr>
<td>Upstroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO flights</td>
<td>98.7 ± 4.1</td>
<td>98.8 ± 6.0</td>
<td>110.1 ± 3.8</td>
<td>78.7 ± 6.7</td>
<td>91.3 ± 2.4</td>
</tr>
<tr>
<td>HO flights</td>
<td>100.4 ± 14.7</td>
<td>82.7 ± 10.5</td>
<td>123.2 ± 28.0</td>
<td>60.0 ± 5.3</td>
<td>73.9 ± 6.9</td>
</tr>
</tbody>
</table>

Mean ± SD of individual wing kinematics. Significant differences between NO and HO flights are in bold.
Table 2. Stroke-to-stroke variability of local wing kinematics.

<table>
<thead>
<tr>
<th></th>
<th>Variability in stroke amplitude (cm)</th>
<th>Variability in stroke duration (ms)</th>
<th>Variability in wing speed (m/s)</th>
<th>Variability in wing extension (cm)</th>
<th>Variability in stroke path (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO flights</td>
<td>8.4 ± 1.1</td>
<td>17 ± 4</td>
<td>0.3 ± 0.0</td>
<td>2.1 ± 1.5</td>
<td>3.4 ± 0.5</td>
</tr>
<tr>
<td>HO flights</td>
<td>9.6 ± 0.9</td>
<td>13 ± 2</td>
<td>0.6 ± 0.2</td>
<td>4.9 ± 0.7</td>
<td>6.0 ± 0.3</td>
</tr>
<tr>
<td>Upstroke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO flights</td>
<td>8.3 ± 0.7</td>
<td>15 ± 5</td>
<td>0.3 ± 0.1</td>
<td>2.2 ± 0.5</td>
<td>3.1 ± 0.2</td>
</tr>
<tr>
<td>HO flights</td>
<td>9.3 ± 0.8</td>
<td>14 ± 1</td>
<td>0.4 ± 0.2</td>
<td>4.2 ± 0.3</td>
<td>4.6 ± 0.3</td>
</tr>
</tbody>
</table>

Mean ± SD of individual variability of wing kinematics. Significant differences between NO and HO flights are in bold.
Table 3. Variability of local head positioning.

<table>
<thead>
<tr>
<th></th>
<th>Variability along AP (cm)</th>
<th>Variability along ML (cm)</th>
<th>Variability along DV (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO flights</td>
<td>0.64 ± 0.59</td>
<td>0.88 ± 0.24</td>
<td>0.77 ± 0.15</td>
</tr>
<tr>
<td>HO flights</td>
<td>1.15 ± 0.61</td>
<td>0.75 ± 0.12</td>
<td>1.56 ± 0.44</td>
</tr>
</tbody>
</table>

Mean ± SD of individual variability of head position. Significant differences between NO and HO flights are in bold.