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Mobile money systems, platforms built and managed by mobile network operators to allow money to be stored

as digital currency, have burgeoned in the developing world as a mechanism to transfer money electronically.

Mobile money agents exchange cash for electronic value and vice versa, forming the backbone of an emerging

electronic currency ecosystem that has potential to connect millions of poor and “unbanked” people to the

formal financial system. Unfortunately, low service levels due to agent inventory management are a major

impediment to the further development of these ecosystems. This paper describes models for the agent’s

inventory problem, unique in that sales of electronic value (cash) correspond to an equivalent increase in

inventory of cash (electronic value). This paper presents a base inventory model and an analytical heuristic

that are used to determine optimal stocking levels for cash and electronic value given an agent’s historical

demand. When tested with a large sample of transaction-level data provided by an East African mobile

operator, both the base model and the heuristic improved agent profitability by reducing inventory costs

(defined here as the sum of stockout losses and cost of capital associated with holding inventory). The

heuristic increased estimated agent profits by 15% relative to profits realized through agents actual decisions,

while also offering substantial computational advantages relative to the base model.

1. Introduction

The rapid growth of cellular networks in the developing world in the past decade has laid the

groundwork for a potential paradigm shift in financial services for the poor. Traditionally, the poor

and unbanked—the roughly one-third of the world’s population who do not have an account at a

formal financial institution and live on less than $2 a day—have relied primarily on physical cash

when transferring money (Mas 2010). Thus, the velocity of money has been limited by how fast

cash can be physically transported, by foot or by bus in most circumstances (Batista and Vicente

2013). This limitation is a critical disadvantage to the poor when money is needed most, such as

in the aftermath of a negative economic shock (e.g., sickness or job loss) or a rare opportunity to

climb out of poverty through investment (e.g., fertilizer or improved seed purchases) (Helms 2006).

At these decisive moments, friends and family willing and able to transfer money have traditionally
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relied on expensive and/or unreliable cash transfer methods (Morawczynski 2009).

According to the Boston Consulting Group (BCG), the number of unbanked in the developing

world with access to mobile phones was estimated to be 2 billion in 2011, and that number is

likely to continue to grow (BCG 2011). Recognizing an opportunity, mobile network operators in

the developing world began launching money transfer platforms—known colloquially as “mobile

money”—with each platform allowing money to be stored and transferred in the form of digital cur-

rency (hereafter referred to as e-float). In much the same way that text messages can be sent quickly

and cheaply, e-float can be instantly transferred across long distances at a near-zero marginal cost.

By the end of 2015, mobile money systems hosted roughly 410 million mobile money accounts in

the developing world, a 31% year-over-year increase (Groupe Speciale Mobile Association 2015).

By connecting the poor and unbanked in the developing world to the formal financial system,

mobile money has provided several benefits. For example, mobile money has been shown to: enable

quicker recovery from economic shocks such as job loss or illness to the primary wage-earner

(Jack and Suri 2014); enable more efficient receipt of monetary transfers from non-governmental

organizations (NGOs) after disasters (Aker et al. 2011); and lay the foundation for access to formal

savings, credit, and insurance opportunities for those who currently lack such access (Mas 2010).

1.1. Transaction mechanics and inventory challenges

Cash-in/cash-out (CICO) agents serve as the backbone of mobile money networks, providing a

bridge between physical cash and e-float. These agents, often small shop-owners, invest in invento-

ries of cash and e-float, and then convert cash to e-float (“cash-in” transactions) and e-float back

to cash (“cash-out” transactions) for a commission. The following is a typical use case: An urban

laborer in Nairobi, Kenya gets paid in cash. He conducts a cash-in transaction with an urban agent

in which he gives the agent cash and the agent credits the laborer’s mobile money account with

e-float (Stage 1 in Figure 1). For her role in executing the transaction, the agent receives a cash-in

commission from the mobile money operator (notably, customers generally do not pay for cash-in

transactions). The laborer, now with a balance of mobile money, uses his phone to send this e-float

to his family outside of Kisumu, Kenya in much the same way he might send an SMS message

(Stage 2 in Figure 1). The operator collects a fee from the laborer for executing this person-to-

person (P2P) transfer. Having instantaneously received the e-float onto her phone, the laborer’s

wife goes to the local agent outside of Kisumu to conduct a cash-out transaction. She gives the

agent e-float in exchange for cash (Stage 3 in Figure 1). Like the cash-in agent, the cash-out agent

is also compensated with a commission from the operator for her role in executing the transaction.

Cash-out commissions are generally larger than cash-in commissions, typically by 50% or more.

These commissions are generally determined as an increasing step function of transaction value.
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Commissions for both cash-in and cash-out transactions are generally paid out from the opera-

tor to the agent in e-float monthly (rather than immediately after each transaction). In order to

Figure 1 Schematic of a typical urban-to-rural person-to-person transfer, adapted from Agrawal (2009)

conduct a cash-in or cash-out transaction, the agent must have inventory of e-float or cash, respec-

tively. However, stockouts are an acute problem in mobile money networks; agents often run out of

cash and e-float. Service levels can fall well below 80% for CICO transactions (Intermedia 2013).

Because stockouts of cash and e-float make it harder for customers to easily convert between the

two forms of money, they degrade consumer confidence in the convenient convertibility of e-float.

Note that because e-float is actual currency, it cannot be “created” on the spot by either the agent

or the operator. Each unit of e-float an operator issues must be backed by traditional deposits

at a prudentially regulated financial institution. Though moving e-float once it has been issued is

clearly easier than moving cash, agents can, and do, nonetheless stock out of e-float.

In managing CICO transactions, the agent’s fundamental challenge is an inventory problem:

determining how much cash and e-float to carry in order to most-profitably support their mobile

money business. This is a non-trivial challenge. In this setting, the agent not only serves uncertain

demand for cash and e-float, but each sale of cash (e-float) also generates equivalent inventory of

e-float (cash)—i.e., agents not only face stochastic demand, as is typical in many inventory settings,

they also face stochastic replenishment for each good through sales of the other good.
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1.2. Preview of results

This paper first develops a base model describing the agent’s inventory evolution and related costs

to determine optimal values of cash and e-float inventory given the agent’s stochastic demand. This

base approach proves to be too computationally intensive to deploy at scale in the developing world,

so a heuristic policy is developed. This heuristic solution bears resemblance to the Newsvendor

solution. Employing a large dataset of mobile money agent transactions provided by an East African

mobile network operator, §4.2 presents a comparison of the models’ performance, showing that both

the base model and the heuristic significantly increase agent profitability by reducing inventory

costs, defined here as the sum of estimated stockout losses and the cost of capital associated with

holding inventory. The heuristic improves estimated aggregate agent profits by 15% relative to

actual performance, while also offering a substantial computational advantage relative to the base

model. §4.4.2 shows that the heuristic recommendation improvements are robust to changes in the

cost of capital parameter. Finally, §4.4.3 shows that agents in the sample who are least “balanced”

(that is, their sales are skewed towards either cash-in or cash-out), gain the most from following

newsvendor heuristic recommendations.

2. Relation to the Literature

This work relates theoretically to inventory management literature as well as contextually to mobile

money literature.

2.1. Inventory Management

The mobile money agent’s fundamental inventory challenge is informed by decades of work focused

on inventory management under demand uncertainty. While, to the best of our knowledge, there

has not been analysis on scenarios where satisfaction of demand for one good generates inventory

of another, the setting does relate to the “stochastic cash balance problem,” which has been the

subject of significant research by the operations management community beginning in the 1960s

(for example Girgis (1968), Neave et al. (1970), Chen and Simchi-Levi (2009)). The problem is

so-named because a bank (or any general firm) has a challenge in managing its inventory of cash:

too much cash results in excessive cost of capital, while too little cash incurs some penalty cost, for

example the cost of not meeting a banking reserve ratio requirement. The stochastic cash balance

problem is different from the standard stochastic inventory problem because demand can be both

positive (withdrawals decrease inventory) or negative (deposits increase inventory). Given this fact,

the stochastic cash balance problem has been used to study any product that can be returned,

contributing to the development of research on reverse logistics (e.g., Fleischmann et al. 1997). As

will be shown, the mobile money agent’s problem shares this feature of demand spanning both
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negative and positive values. However, while stochastic cash balance problems focus on the single

trade-off between holding too much and too little cash, the mobile money problem deals with two

separate but linked sets of trade-offs: both too much versus too little cash as well as too much

versus too little e-float. Furthermore, while the stochastic cash balance literature largely focuses

on developing continuous review policies, such as a two sided (s,S) policy (e.g., Porteus and Neave

1972, Hausman and Sanchez-bell 1975) that allow for mid-period inventory adjustments, most

mobile money agents do not typically have the opportunity to “re-balance” their inventories mid-

day. This allows us to focus on two key values for each agent: the optimal amount of cash and the

optimal amount of e-float with which the agent should begin each day.

Because the base developed here requires a level of computation that makes it impractical to

deploy broadly, an analytical heuristic is developed. The heuristic bears a strong resemblance

to the newsvendor solution, a well-studied framework for the inventory management of short-life

cycle goods with stochastic demand (Khouja (1999) and Silver et al. (1998) provide comprehen-

sive reviews). The newsvendor model traces its roots from a 150-year old cash logistics problem:

Edgeworth (1888) used newsvendor logic to study the daily cash needs of a bank branch. Since

then, the newsvendor model has been adapted to study a wide variety of contexts and extensions

– ranging from inventory management in the presence of externalities (Netessine and Zhang 2005)

to risk mitigation in networks (Van Mieghem 2007), to the relationship of resource flexibility to a

firm’s optimal capital structure (Chod and Zhou 2013). However, to the best of our knowledge, the

newsvendor model has not been applied in a setting in which sales of one good generate inventory

of another as is the case with mobile money. This paper also presents results of newsvendor heuris-

tic evaluations that are consistent with theory on the “pull-to-center” effect (e.g., Schweitzer and

Cachon (2000), Bolton and Katok (2008), and Bolton et al. (2012)) in the behavioral operations

literature.

2.2. Mobile money

The rapid emergence of mobile money has attracted the interest of fields ranging from economics

to sociology to public policy. Jack and Suri (2014) study mobile money’s social welfare impacts,

finding that households using mobile money were significantly more able to smooth consumption

after a negative economic shock (e.g., sickness or job loss) than comparable households not using

mobile money. Jack and Suri explain this disparity by demonstrating that mobile money users who

experienced shocks received more numerous and larger remittances from farther away than their

non-user counterparts. Mobile money had the effect of significantly widening and enhancing infor-

mal insurance networks; family and friends were able to send users more money more efficiently

in times of crisis. Suri and Jack (2016) also find evidence that access to M-Pesa, the dominant
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mobile money system in Kenya, has lifted 194,000 households (2% of all Kenyan households) out of

poverty since its inception in 2007. Mbiti (2011) demonstrates that mobile money’s introduction as

a tool for sending money was so disruptive to the markets for remitting money that, in many cases,

remittance prices fell by over 50% over a six-year period. Mbiti (2011) also shows that, like the

adoption of mobile telephony, early adopters tended to be wealthy, urban, and educated. However,

as with mobile telephony, mobile money has progressed down-market and geographically widened

its reach very quickly. This is particularly relevant in the developing world where over 80% of

adults do not have a bank account (Kendall 2011). Indeed, Mbiti and Weil (2013) notes that the

number of mobile money agents in Kenya exceeded 25 times the combined total of bank branches

and ATMs in the country. Morawczynski (2009) pursued an ethnographic approach to study mobile

money’s role in empowering women, finding many of the women interviewed reported that using

mobile money to store savings significantly reduced the risk of their husbands appropriating their

money, thus increasing their financial autonomy. Balasubramanian and Drake (2015) study how

service quality and competition are related to demand – finding that average demand increases with

both pricing transparency and agent expertise. That study also finds that agent expertise interacts

positively with competitive intensity, suggesting that expertise is a significant dimension of compe-

tition between agents. Finally, Aker et al. (2011) study Concern Worldwide’s (CW) response to the

2010 drought crisis in Niger. Instead of distributing physical relief items, CW distributed money.

Each month for 5 months, some beneficiaries received physical cash transfers, and others received

money transfers via mobile money. Aker et al. (2011) show that the cost of distributing monetary

assistance via mobile money, as well as the cost to the beneficiaries of receiving mobile money was

significantly lower than costs associated with physical cash distribution. As more governments and

NGOs shift emergency relief from the distribution of goods to the distribution of money, mobile

money’s importance post-disaster is expected to increase (BTCA 2014). Accordingly, improving

mobile money agents’ service reliability will also become increasingly important. To the best of

our knowledge, this paper is the first to address this challenge. We do so by applying an opera-

tions research lens to this context, with an eye toward improving mobile money agents’ inventory

management.

3. Inventory Models

Mobile money agents face stochastic demand and interrelated stochastic replenishment for two

goods—i.e., sales of cash (cash-out transactions) generate inventory of e-float, and sales of e-float

(cash-in transactions) generate inventory of cash. As a consequence, traditional inventory models

cannot be applied to this context in a straightforward manner. Accordingly, we model the mobile

money agent’s problem, beginning by developing a base model to derive agents’ optimal starting
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cash and e-float quantities. However, generating daily recommendations for thousands of agents still

requires an impractical level of computation. To address this limitation, we develop an analytical

heuristic. This section will begin with a description of the parameters common to both models,

and then address each model in turn.

3.1. Description of parameters

At the start of each day, an agent facing daily per-unit cost of capital γ chooses a budget b, and

then splits this budget between her daily starting cash quantity q1 and her starting e-float quantity

f1 = b− q1. The agent then experiences a series of N demand arrivals (where “N” is not known

ex-ante), represented as a sequence of cash and e-float demand arrivals, Dc
t and De

t respectively,

where t ∈ {1,2, ...,N}. For all t, Dc
t and De

t are non-negative, and cannot both be positive (i.e.

each arrival is characterized by either cash or e-float demand). Define p as the probability that any

given arrival will be cash demand, and 1−p as the probability that any given arrival will be e-float

demand. The inventories of cash and e-float (represented as qt and ft respectively) thus change

throughout the day as demand arrives. When the agent is presented with cash demand in a given

arrival t, the agent earns a per-unit commission mc for all cash sales and receives e-float equivalent

in value to those sales. The amount of e-float available in the following period is increased (i.e.

ft+1 = ft+min(qt,D
c
t ). Similarly, when the agent is presented with e-float demand in a given arrival

t, she receives per-unit commission me for all e-float sales and receives cash equivalent in value to

those e-float sales. Thus, the amount of cash inventory in the next period is increased (i.e. qt+1 =

qt + min(ft,D
e
t ). Table 2 lists these parameters and summarizes their respective descriptions. In

both of the modeling approaches described in the section, it is assumed (i) that demand realizations

are i.i.d., (ii) that the agent does not re-balance during the day, and (iii) that any demand not

satisfied is lost to the agent.

3.2. The role of arrival sequencing

Uncertain sequencing of cash and e-float arrivals complicates decision-making in this setting. To

illustrate this challenge, take the following example where initial inventories of cash and e-float

are q1 = 100 and f1 = 100. If the agent experiences a demand sequence {Dc
1 = 100, De

2 = 200}, all

of this demand is satisfied. This is because the e-float quantity increases after satisfying demand

for units of cash, resulting in sufficient additional units of e-float available for the next arrival

(f2 = f1 + min(q1,D
c
1) = 100 + 100). Now consider the same arrivals, but in the reverse sequence

{De
1 = 200, Dc

2 = 100}: only 200 of the 300 units of total demand are satisfied. This is because the

agent is only able to satisfy 100 of the initial 200 units of e-float demand. It is possible that the

agent can satisfy all demand for cash and e-float with relatively little inventory (potentially far
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less than the sum of all demand) if the sequencing of that demand is favorable. Figure 2 presents a

simplified depiction of inventory positions of cash and e-float over the course of a day for an agent

who begins with 100 units of both cash and e-float. In this case, the agent stocks out of both cash

and e-float over the course of the same day as a result of unfortunate demand sequencing.
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Figure 2 An illustrative example of agent inventory balances of cash and e-float

3.3. Combining cash and e-float demand distributions

The agent’s problem can be simplified significantly by combining cash and e-float demand into a

single demand variable.

Lemma 1 Without loss of generality, a single random variable can represent both cash demand

and e-float demand. Specifically: Dt =Dc
t −De

t .

All proofs, including that for Lemma 1, are provided in Appendix B. The steps that follow

summarize the construction of the probability mass function (pmf) of the combined demand dis-

tribution from the pmf of cash demand magnitude fDc
t
(x), the pmf of e-float demand magnitude

fDe
t
(x), as well as the probability that any given arrival is a cash arrival, p. First, reflect fDe

t (x)

about the y-axis, scale this new pmf by 1− p, then finally combine with the scaled (by p) pmf of

cash demand magnitude. In mathematical form:

fDt(x) = (1− p) · fDe
t
(−x) + p · fDc

t
(x)

Through this transformation, e-float demand is represented by negative values of Dt and cash

demand is represented by positive values of Dt. Now, the evolution of both cash and e-float inven-

tories, as well as cash and e-float underages, can be characterized with Dt.
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3.4. Base model

To formalize and provide the underlying structure of each mobile money agent’s inventory problem,

a base model which casts the agent’s inventory process as a Markov chain is presented here.

Through recursion, this base model can be used to solve for the profit-maximizing daily starting

values of cash and e-float. While the base model is useful as a functional benchmark, as well as an

illumination of the agent’s inventory problem, this base approach is not well-suited as a solution

for this setting because it is computationally infeasible at scale. With this caveat, we now present

the formulation and solution approach of the base model.

The agent’s objective is to maximize profits by choosing her optimal budget b∗ and the optimal

starting cash quantity q∗1 . The optimal starting e-float quantity again follows directly as b∗ − q∗1 .

To identify the optimal beginning budget and inventory positions, the optimal cash quantity for

a single budget is found, and then this process is iterated over the range of possible budgets.

Given that the number of demand arrivals is uncertain, the state variables need to not only track

the current cash position (and thus, implicitly, e-float position) but also an indicator to capture

whether the final demand had arrived. This indicator variable is denoted as st, taking the value of

1 if the final arrival had not occurred prior to t and 0 otherwise (i.e. if st = 0, there would be no

more arrivals for the day).

3.4.1. Stochastics As described by Lemma 1, let Dt be a random variable characterized by

the distribution of the magnitude of demand arrivals (positive for cash demand and negative for

e-float demand) for a given agent-day. Assume also that the number of arrivals is a geometric

random variable—allowing θt to be a binary random variable that takes a value of 1 if the final

arrival occurs at t and 0 otherwise. Using these definitions, the state transitions according to the

following transition function:

f (qt, st, b) = 〈qt+1, st+1〉= 〈(1− st) · qt + st ·min(b,max(qt−Dt,0)) , st · (1− θt)〉

We also define the geometric success parameter λ, such that P (θt = 1) = λ. In other words, λ

represents the probability that any given arrival is the final arrival. Thus, transition probabilities

can be written below:

P
(
〈qt+1, st+1〉 | 〈qt,1〉

)
=



(1−λ) ·P (Dt = qt− qt+1) if st+1 = 1,0< qt+1 < b

(1−λ) ·P (Dt ≥ qt) if st+1 = 1, qt+1 = 0

(1−λ) ·P (Dt ≤ qt− b) if st+1 = 1, qt+1 = b

λ ·P (Dt = qt− qt+1) if st+1 = 0,0< qt+1 < b

λ ·P (Dt ≥ qt) if st+1 = 0, qt+1 = 0

λ ·P (Dt ≤ qt− b) if st+1 = 0, qt+1 = b

(1)

P
(
〈qt+1, st+1〉 | 〈qt,0〉

)
=

{
1 if st+1 = 0, qt+1 = qt
0 otherwise
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3.4.2. Costs and optimization Letting the maximum number of arrivals be some arbitrarily

large integer N , set the terminal reward to RN(qN , sN , b) = 0 and define the stage reward function

to be:

Rt (qt, st, b) = st ·
(
EDt

[(
mc · (Dt− qt)+

+me · (qt− b−Dt)
+
)])

.

A recursion can be used to determine the optimal starting quantities of cash and e-float (no

decisions are made after the initial quantity selections). The cost-to-go function follows:

Jt(qt, st, b) =Rt(qt, st, b) +E [Jt+1 (f (qt, st, b))]

E[Jt+1(f(qt,0, b))] = Jt+1(qt,0, b) = 0

E[Jt+1(f(qt,1, b))] =
b∑

qt+1=0

(
P (〈qt+1,1〉 | 〈qt,1〉) ·Jt+1(qt+1,1, b)

)
Thus, given the daily cost of capital parameter, γ, the optimal cost for a each given budget,

optimal budget and optimal cash share of the optimal budget, respectively, are:

J∗1 (b) = min
q1
J1(q1,1, b)

b∗ = argmin
b

(J∗1 (b) + γ · b)

q∗1 = argmin
q1

J1 (q1,1, b
∗)

3.4.3. Limitations There are significant practical limitations to this base model. Due to an

extremely large solution space per agent-day, the computation time required for each agent-day

is prohibitively long. Even while using highly-parallelized computing resources, the computation

of the optimal starting quantities of cash and e-float for each agent day takes approximately 164

seconds on average. Given the fact that operators have thousands of agents in their networks, it is

unlikely that mobile money platform operators would be able to utilize this base model daily (and

agents in this context typically do not have computational resources of their own). Second, the

base model requires inputs of both per-agent per-day estimates of discrete demand distributions

(the magnitude of each demand arrival) and per-agent per-day estimates of the number of demand

arrivals. These estimations may compound, causing a degradation of model performance. Finally,

the fact that the base model is a “black box” may limit adoption and usage by mobile money agents

because there is no simple, intuitive explanation for how the recommendations were developed.

3.5. Newsvendor heuristic

Due to the base model’s practical limitations, we develop a heuristic based on a lower bound on

the base model’s underage that yields useful results without significant computation. The objective

remains to find the agent’s optimal daily starting inventory of cash and e-float, (q∗1 and b∗ − q∗1 ,
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respectively) as a function of demand, the daily cost of capital (γ), and cash-out and cash-in

commissions (mc and me).

Given that the full satisfaction of a cash arrival would yield a corresponding increase in e-

float inventory, intuition suggests that cumulative demand (or equivalently, net demand) after

t arrivals would be an important quantity in this setting. Define ∆t =
t∑
i=1

Di. Now define two

additional quantities based on cumulative demand: maximum cumulative demand (∆̂t = max
1≤j≤t

∆j)

and minimum cumulative demand (∆̌t = min
1≤j≤t

∆j). As in the base model, let q1, represent the

starting cash quantity, and thus let b− q1 represent starting e-float quantity.

Proposition 1.A If the initial cash quantity is greater than the maximum cumulative demand

(q1 ≥ ∆̂t) and the initial e-float quantity is greater than the negative of the minimum cumulative

demand (b− q1 ≥−∆̌t) then all demand up to and including arrival t will be satisfied.

Proposition 1.B Given that there are both cash and e-float arrivals (i.e. ∃ x and y such that

Dx > 0 and Dy < 0), all demand can be satisfied with strictly less cash and e-float inventory than

the sum of all cash and e-float demand.

As will be demonstrated in this section, Propositions 1.A and 1.B are foundational to the develop-

ment of the newsvendor heuristic described here. The implication of Proposition 1.B is significant:

agents can satisfy all demand while stocking less inventory (sometimes substantially less) than

the sum of all demand. The intuition for this result is as follows: the arrival of cash demand

(and satisfaction of that demand) generates e-float inventory which can be used to satisfy future

e-float demand and vice versa. As a consequence, satisfying e-float (cash) demand in one period

contributes to satisfying cash (e-float) demand in a future period.

An illustrative example is presented in Table 1, which shows a sequence of cash-in and cash-

out arrivals, inventory positions (with initial inventories q1 = f1 = 100), lost sales, and cumulative

demand. In this case, if an agent begins the day with at least the maximum cumulative demand in

cash (i.e. starts with at least 120 units of cash) and at least the negative of the minimum cumulative

demand (i.e. 140 units or more of e-float), then the agent would be able to satisfy all cash and

e-float demand. Thus the agent in this case could have satisfied all 460 units of demand by holding

only 260 units of inventory.

While the maximum and minimum cumulative demands are clearly not known ex-ante, they can be

represented as random variables. These maximum and minimum cumulative demand distributions

are used as the basis for a heuristic inventory policy. Though the number of arrivals an agent will

experience in any given day is uncertain, the maximum and minimum of cumulative demand can

still be represented for an arbitrary N as ∆̂ and ∆̌, respectively (allowing us to drop the “N”

subscript).
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Arrival, t 1 2 3 4 5 6 7 8 9 10
Demand, Dt 80 30 10 -40 -80 -60 20 -60 -40 40
Cash inventory, qt 100 20 0 0 40 120 180 160 200 200
E-float inventory, f t 100 180 200 200 160 80 20 40 0 0
Cash underage, (Dt− qt)+ 0 10 10 0 0 0 0 0 0 0
E-float underage, (−Dt− ft)+ 0 0 0 0 0 0 0 20 40 0
Cumulative demand ∆t 80 110 120 80 0 -60 -40 -100 -140 -100

Table 1 Illustrative example of agent demand process and inventory evolution

Proposition 2.A The positive part of the difference between maximum cumulative demand and

the initial cash quantity (∆̂t− q1)+ is a lower bound on the cash underage of the base model. The

positive part of the difference between the negative of the minimum cumulative demand and initial

e-float quantity (−∆̌t− b+ q1)+ is a lower bound on e-float underage in the base model.

Proposition 2.B This lower bound is sharp in all cases except those where the agent experiences

both e-float and cash stockouts (when ∃ both x and y such that Dx > qx and −Dy > b− qy).

Thus, for the purposes of developing the heuristic, this lower bound on underage is treated as

the underage itself. The overage will be captured by incorporating a daily capital cost, γ, which

penalizes inventory holding. The cost of capital in this setting is analogous to the cost to acquire

(build or purchase) inventory in most other newsvendor settings. A unit of cash or e-float costs the

agent γ in capital cost (interest or the lost opportunity to deploy capital toward other ends). This

capital cost is not salvageable. The cost function, then, can be written as:

G(q1, b) =E
[
mc ·

(
∆̂− q1

)+
]

+E
[
me ·

(
− ∆̌− (b− q1)

)+
]

+ γ · b (2)

This cost function is convex in b and q1 (the proof is provided in Appendix B). Therefore, first order

conditions can be generated to determine the cost-minimizing q1 and b as a function of the cost

of capital γ, cash commission mc, e-float commission me, the distribution of maximum cumulative

demand, F∆̂(·), and the distribution of minimum cumulative demand, F∆̌(·).

Proposition 3 An agent’s optimal starting values of cash and e-float for the newsvendor heuristic

are: q∗1 =
(
F−1

∆̂

(
1− γ

mc

))+

and b∗− q∗1 = f∗1 =
(
−F−1

∆̌

(
γ
me

))+

respectively.

As intuition would suggest, the heuristic recommends holding less cash and e-float as the cost

of capital increases, and more cash and e-float when the commission for cash and e-float sales,

respectively, are greater.

While the newsvendor heuristic is developed from a lower bound on underage cost, another

heuristic can be developed from an upper bound on underage cost. Appendix A.1 details how
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framing the agent’s problem as a stochastic flow problem approximates the agent’s inventory evo-

lution as a reflected Brownian motion (RBM). This allows for the development of another heuristic

that provides an upper bound on the base model’s underage cost (see Proposition 4 in Appendix

A). This RBM heuristic also performs well relative to actual agent’s decisions but, as shown in

Figure A.1, it under-performs relative to the base model and the newsvendor heuristic.

Parameter Model Description
γ Both daily unit cost of capital
mc Both per-unit commission on cash sales
me Both per-unit commission on e-float sales
t Both arrival number
qt Both cash inventory at arrival t
ft Both e-float inventory at arrival t
q1 Both beginning of day cash inventory
f1 Both beginning of day e-float inventory
Dt Both value of demand at arrival number t
st Base 1 if final arrival has not yet occurred by arrival t
θt Base 1 if arrival t is final arrival
λ Base probability of any given arrival being the final arrival

∆t Heuristic cumulative demand after t arrivals
∆̌t Heuristic minimum cumulative demand after t arrivals

∆̂t Heuristic maximum cumulative demand after t arrivals
Table 2 Table of model parameters

4. Performance Evaluation with Historical Data

Using historical data as input to each of the models, recommendations of starting values of cash

and e-float inventories per agent per day can be generated, and the models’ performance can be

compared to agents’ actual performance. This section conducts such an analysis, beginning with

a description of historical data, followed by a description of the results from the evaluation of

the base model and newsvendor heuristic against actual decisions for all agents over the final 6

months of the sample period. Additional findings of interest related to the newsvendor heuristic

are presented: a comparison of the models at an agent-level, a sensitivity analysis with respect to

the cost of capital parameter, and an analysis of how “balance” (share of cash-in versus cash-out

sales) of an agent affects the performance differential between models.

4.1. Historical data

To evaluate agents’ actual decisions against recommendations, a large sample of transaction-level

cash-in and cash-out historical data from a scaled mobile money operation in East Africa was

utilized. Real Impact Analytics, a company specializing in business analytics for mobile networks in

the developing world, provided anonymized transaction logs, each of which features a time-stamp,
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transaction type, transaction value, anonymized IDs of the sender and receiver, as well as the pre

and post e-float balances of both the sender and receiver. These transaction logs contained all

35,882,460 transactions from 6,725 agents who conducted at least one cash-in and one cash-out

transaction on at least 336 of the 471 days (roughly a 5 day work-week over the period) between

June 1, 2014 and September 14, 2015. The total number of agent-days in the sample was 2,708,385.

With this data, each agent’s actual daily e-float decision as well as all e-float (cash-in) and cash

(cash-out) sales can be directly identified. Because neither cash inventory nor stockouts are directly

observable in the data, these quantities were estimated as described below.

4.1.1. Estimating cash inventory While historical e-float balances (and thus, agent e-float

stocking decisions) are directly observable over time in the transaction data, cash inventory is

not directly observable in the data. In order to estimate historical cash decisions made by agents,

agent-level e-float balances over time are utilized in two-week blocks. Two assumptions are made.

First, that each agent’s budget does not fluctuate over a two-week block; and two, each agent has

stocked out of cash (and thus has allocated all of her budget towards e-float) at some point over

the two weeks. Under these two assumptions, the maximum value of e-float balance represents the

agent’s inventory budget. From the budget estimate, the agent’s cash balance at any given time

can be estimated by subtracting the current e-float balance from the maximum balance over the

two week period prior to any given day. Because the assumption that an agent’s budget does not

fluctuate over time is not likely to hold, it is helpful to observe that, if that assumption is violated,

our budget estimates are over-estimates. Because this process likely over-estimates the agent’s cash

inventory at any given time, only cash-in revenue and cost of capital attributable to e-float holding

are compared across the models; this is discussed further in the discussion section. Our results

showing that the newsvendor heuristic performs significantly better than actual agent decisions are

robust to the choice of the duration used to calculate and agents budget; using a week, a month,

and the entire sample period as this duration (rather than two weeks) all yield similar results.

4.1.2. Reconstructing censored demand Due to demand censoring, historical sales data

are not equivalent to historical demand. There are various methodologies proposed in the literature

to derive demand from sales (van Ryzin and Talluri (2005) provides an description of many common

methodologies). However, these methods, in general, focus on scenarios where firms are unable

to satisfy demand until the next period once a stockout has occurred. These approaches are not

applicable in the mobile money setting. In the mobile money setting, inventory of e-float (cash)

can be generated mid-period from sales of cash (e-float) — making it possible for stockouts to

occur and be resolved within a given day. For this reason, we opt to employ a simple three-step

imputation process to estimate demand. To recreate total historical demand for each agent-day,
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we 1) estimate the timing and duration of stockouts of e-float (cash), 2) estimate e-float (cash)

demand arrival rates, and 3) estimate the magnitude of e-float (cash) lost sales to insert in each

e-float (cash) stockout interval.

In the first step, we estimate the timing and duration of stockouts. We define the e-float (cash)

stocked out state as any interval within which an agent is holding less than a threshold amount of

e-float (cash) inventory. This threshold is agent-specific and was chosen as half of each agent’s mean

e-float (cash) transaction size over the sample period.1 Because transactions are time-stamped

with pre and post balances, the time and duration of each estimated e-float stockout interval can

be exactly determined. Similarly, with the assumption of fixed budget allowing us to infer cash

balances at all points in time, the time and duration of each estimated cash stockout interval can

also be determined. In the second step, we estimate an arrival rate for each agent-day. To generate

these arrival rates, we calculate the average arrival rate (of units of cash and e-float demand,

respectively) for each agent for each day of the week, using only days that the agent had inventory

levels of cash and e-float above the stockout thresholds for the entire day. This is done because the

day of the week is a significant factor in demand arrival rate. In the third step, we estimate the

magnitude of demand arrivals to insert into each stockout interval. For each duration of stockout,

we estimated this quantity by taking the product of the duration of the stockout and the arrival

rate of e-float (cash) demand.

4.2. Model-specific inputs and parameter estimation

In this subsection, the estimation of parameters specific to each model is described. The cost of

capital parameter is common to both models; the value of this parameter and a sensitivity analysis

is presented in §4.4.2.

4.2.1. Base model The base model requires estimates of both the geometric success param-

eter λ (to account for uncertainty in the number of arrivals) as well as a transition matrix to

describe the probabilities of transitioning between states. First, λ is calculated from an estimate of

the number of arrivals for each agent-day. This estimate of the number of arrivals is generated with

a one-step seasonal point forecast using the number of arrivals seen by that agent on all previous

days. The seasonal forecasting method accounts for day-of-week effects on arrivals. Second, the

transition matrix (as specified in equation 1) is generated from an empirical demand distribution

of the magnitudes of each agent’s historical sales.

1 The results presented in this paper are robust to changes in threshold; using the mean, a fourth of the mean, and
median do not produce meaningfully different results.
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4.2.2. Newsvendor heuristic The newsvendor heuristic requires only estimates of the dis-

tributions of maximum and minimum cumulative demand. One-step seasonal forecasts of minimum

and maximum cumulative demand to generate means and standard deviations of normal distribu-

tions, which are used as the forecasted maximum and minimum cumulative demand distributions,

respectively. The newsvendor heuristic fractiles are applied to these respective distributions to

generate each agent’s optimal budget and their starting cash and e-float inventory.

4.3. Comparison of model results

To evaluate the performance of each of the models, the transaction logs for each agent each day

are used, augmented with re-created demand arrivals generated using the process described above.

We evaluate model and actual performance over the final 180 days of transaction data, generating

recommendations from the base model and newsvendor heuristic for each agent-day within this

horizon. Each model generates recommended starting cash and e-float inventory for each agent-day.

For each set of values (base model and newsvendor recommendations, as well as the actual e-float

decision and estimated actual cash decision) we simulate the day using sequenced demand from

the augmented transaction log. The commission lost from unmet demand is summed to generate

a stockout loss estimate for each model for each agent-day. The cost of capital associated with e-

float inventory holding each agent-day is also calculated. As stated earlier, only the stockout losses

from cash-in (e-float demand) transactions and cost of capital associated with e-float are presented

here, as the agent’s actual cash decisions are not precisely calculable. These results are aggregated

across all agents over the 180-day period. A performance comparison of agents’ estimated actual

decisions, newsvendor heuristic, base model, and hindsight decisions are presented in Figure 3. The

hindsight results are calculated by determining the cost of capital associated with stocking the

minimum inventory required to satisfy all sequenced demand. Thus the hindsight decisions result

in no stockout losses, but some cost of capital.

Each bar in Figure 3 represents the total amount of commission that could have been earned had

all agents satisfied all e-float demand. The red portion represents e-float commission lost due to

e-float stockouts, the orange represents the cost of capital allocated to e-float, and green represents

the net revenue realized by all agents in each model. As can be seen, there are striking differences

in performance across the actual, heuristic, base model, and hindsight decisions. Paired t-tests

reveal statistically significant differences in total e-float inventory costs (stockout + cost of capital)

between the NV heuristic and actual decisions, as well as between the base model and actual

decisions. Both of these tests result in values of p < .001. The newsvendor heuristic results in e-

float stockout losses as a percent of total possible e-float commission that are nearly 15 percentage

points (20.8% to 5.9%) less than those that correspond with the actual decisions made by agents,
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Figure 3 Performance evaluation: aggregate net e-float revenue for actual agent decisions, base model, newsvendor

heuristic, and hindsight recommendations over 180 days

while only requiring 4.1 percentage points of extra capital cost (8.2% to 12.3%). The resulting 10.9

percentage point increase of the newsvendor heuristic net revenue over actual net revenue is a key

result of this paper. While the net revenue in the hindsight optimal scenario is 13.2 percentage

points, greater than the newsvendor heuristic, the exact sequencing and magnitudes of demand

arrivals must be known ex-ante to achieve this level of improvement. Some of this performance

gap between the newsvendor heuristic and hindsight optimal decisions can likely be closed through

more accurate forecasts for the minimum and maximum cumulative demand distributions (upon

which the newsvendor fractiles are applied), which is left for future work. Results presented in

Figure 3 assume an annualized cost of capital (γ) of 20%; an analysis of how the heuristic performs

relative to actual decisions as a function of cost of capital is presented in §4.4.2.

Note that the newsvendor heuristic slightly out-performs the base model. This is possibly due

to the base model’s requirement of two sets of separate inputs (estimates for both the number of

arrivals and the distributions of demand magnitude per arrival); the compounding of estimation

errors may be hampering performance. The newsvendor heuristic, on the other hand, requires only
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a single set of inputs (the distributions of the maximum and minimum cumulative demand). It

is also noteworthy that the heuristic’s stockout losses are higher than the base model (5.9% to

4.2%), while the capital costs are lower (12.3% to 14.8%). This observation is a direct result of the

fact that the newsvendor heuristic is built upon the lower bound on underage cost – which leads

to lower inventory recommendations than the base model. This lower inventory recommendation

results in both higher stockout losses and lower capital costs. Another heuristic using reflected

Brownian moution (RBM) is described in §A.1. Because this RBM heuristic is developed from an

upper bound on underage cost, the RBM model yields, as expected, lower stockout losses but higher

working capital costs than the newsvendor heuristic and base model, as presented in Figure A.1.

However, the RBM heuristic under-performs both the base model and the newsvendor heuristic.

The results presented are robust to changes in the 180-day evaluation horizon: comparisons using

an evaluation horizon of the final day, week, month, and three months of transaction data do not

yield materially different results.

4.4. Additional NV heuristic analyses

Further analysis is focused on the newsvendor heuristic. Here we show explore performance at an

agent-level, as well the heuristic’s performance as the cost of capital parameter γ is varied.

4.4.1. Agent level performance At an agent level (as opposed to aggregate savings pre-

sented in Figure 3), most agents see significant benefit from the newsvendor heuristic. As seen in

Figure 4, while a small subset (roughly 10%) would be worse off (none by more than 20 percentage

points), the vast majority of agents could increase net revenue by using the heuristic’s recommen-

dations. The mean agent increase is 9.9 percentage points, and the median agent increase is 8.2

percentage points. This discrepancy arises because some agents would benefit substantially more,

with the largest increase in net revenue for an individual agent at more than 50 percentage points.

4.4.2. NV heuristic sensitivity to cost of capital Based on informal interviews with

mobile money agents, the daily cost of capital parameter γ was estimated and assigned a value of

0.05% (20% annualized). Agents were asked about the terms of the credit they had received (if they

borrowed money to finance their inventory) or the terms of credit they would be willing to extend

(if they had financed inventory without borrowing). While there was a range of responses between

5% and 80% annualized, 20% seemed to be the most representative single number. However, given

that the cost of capital parameter has a significant effect on the newsvendor fractiles, and thus

inventory recommendations, it is important to calculate the newsvendor heuristic’s performance

over a range of plausible cost of capital values. Figure 5 illustrates the number of percentage points

by which the actual inventory cost (lost sales and cost of capital) exceeds the inventory cost under
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Agent−level heuristic cost savings
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Figure 4 Agent-level e-float cost savings as a percent of total possible commission (heuristic vs. actual)

the newsvendor heuristic recommendation for various levels of cost of capital. For the range of

annualized cost of capital that is likely to be applicable to the vast majority of agents (from 2%

to 100%), observe that the newsvendor heuristic can increase aggregate profitability significantly,

ranging from 8 to 18 percentage points of total possible revenue. Note that while the stockout loss

reduction decreases as the cost of capital increases, above an annualized cost of capital of 68%, the

newsvendor heuristic recommends holding less inventory than actual agent decisions in aggregate.

4.4.3. Effect of CICO balance on performance improvement From a theoretical stand-

point, working capital efficiency generally is highest when agents are most balanced (the value of

cash-in transactions are roughly equal to the value of cash-out transactions). In this sense, agents

who are most balanced have the most to gain from recognizing the fact that sales of cash generate

inventory of e-float and vice versa.

However, it seems that in general, balanced agents already take advantage of these facts. In order

to illustrate this, define R as a measure of balance – the ratio of cash-in sales to total sales:

R=
N∑
i=1

min(−Di, b− qi)+/(
N∑
i=1

min(−Di, b− qi)+ +
N∑
i=1

min(Di, qi)
+).
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Figure 5 Cost savings sensitivity as a function of cost of capital: performance differential between actual agent

decisions and newsvendor heuristic recommendations

Figure 6 illustrates agents’ average cost reduction achieved through the newsvendor heuristic (as

a percent of total possible e-float revenue) with respect to the ratio of e-float sales to total sales. On

average, agents who are most balanced (that is, have an R value closest to 0.5) would realize the

least benefit from the heuristic in terms of reduced stockout and working capital cost. On average,

agents who are most imbalanced (R values close to either 0 or 1) would see the most significant

gains in cost reduction. As seen in Figure 6, agents who are cash-in heavy (R close to 1) benefit

the most from stockout loss reduction resulting from increased e-float inventory holding. On the

other side of the spectrum, agents who are cash-out heavy (equivalently, cash-in light – R close

to 0) gain the most by reducing e-float inventory (though this is coupled with a slight increase in

stockout losses).

These observations are analogous to the pull-to-center effect ubiquitous in the behavioral inven-

tory literature (e.g., Schweitzer and Cachon (2000), Bolton and Katok (2008), and Bolton et al.

(2012)). In that literature, newsvendor decision-makers are shown to position quantities closer to

expected demand than the optimal quantity recommends—i.e., they under-order if the optimal

quantity is greater than expected demand, and over-order if the optimal quantity is less than

expected demand. Similarly, results here are consistent with agents positioning their cash and e-

float inventory as though they expect cash-in and cash-out demand to be more balanced (an R
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closer to 0.5) than their historical demand would suggest.
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Figure 6 Performance differential between actual agent decisions and newsvendor heuristic recommendations by

level of agent CICO balance

5. Discussion and Conclusion

In this section, the implications of these findings, limitations of this work, and promising areas for

future mobile money research with an operations management lens are discussed.

Both the base model and the newsvendor heuristic model can produce per-agent per-day recom-

mendations for cash and e-float stocking decisions that can increase agent profitability. While it

is likely that more sophisticated estimation processes could enhance the performance of the base

model, the newsvendor heuristic performs the best “out-of-the-box” and is thus well-positioned

operationalized in the field given that it requires limited computational resources and compara-

tively minimal estimation. The newsvendor heuristic also has the added benefit of being intuitive:

the concepts of minimum and maximum cumulative demand, in addition to balancing overage and

underage costs, can be taught to agents. This has the potential to contribute to a virtuous cycle:

less stockouts (without excess capital) lead to more profitable agents as well as happier customers.

However, there are limitations to this work. First, the estimated benefits presented here assume

that agents follow the heuristic’s budget and inventory recommendations. Behavioral biases that
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might influence how an agent interprets and acts on these recommendations are not addressed.

Implementing the newsvendor heuristic in the field to determine how well agents adhere to the

recommendation, as well as determining how much agents benefit in practice is thus an important

area for future work.

Second, the lack of data related to cash inventory balance hampers our ability to precisely

determine agent cash stocking decisions and cash stockouts. While the method employed here to

calculate cash balances (and cash stockouts) is likely too conservative (likely overestimating agent

cash balances and underestimating agent cash stockouts), it is likely that agents would benefit

from following newsvendor heuristic cash holding recommendations in addition to e-float holding

recommendations. Given that e-float stockout losses are significant, it is likely that cash stockout

losses are also significant. In fact, cash stockout losses are likely to be more severe than e-float

stockout losses because cash commissions are larger than e-float commissions, by approximately

50% for the average agent.

Third, it is assumed that agents are not able to rebalance during working hours. This assumption

is supported by a large survey of mobile money agents in Uganda, Tanzania, and Kenya. The

survey, conducted by the Helix Institute of Digital Finance, finds that the median number of

rebalances (proactively converting e-float to cash or vice versa) per month in East Africa is less

than 8 (McCaffrey et al. 2014, Githachuri et al. 2014). This finding, combined with the fact that

in order to rebalance during working hours, agents must either close their shop or be short-staffed

(to send themselves or an employee away from the shop), suggests that most agents, in general, do

not rebalance during working hours. The other rebalancing assumption is that agents are able to

costlessly rebalance each day (either before the first transaction and/or after the last transaction

of each day). This assumption is also supported by the agent survey; the survey finds that most

agents can rebalance easily and inexpensively (excluding working hour rebalances which would

incur potential lost sales): 72% of agents in Uganda were within 15 minutes of a rebalancing point,

and the transit cost to a rebalancing point was nominal for most agents. Conditions for rebalancing

in Kenya and Tanzania were found to be similar or even more favorable (McCaffrey et al. 2014,

Githachuri et al. 2014).

Last, some mobile money markets are competitive in that there are multiple, competing mobile

money platforms. In some of these markets, the operators do not have the market power required

to demand agent exclusivity: in these markets, most agents provide CICO services for multiple

platforms. In this case, agents must make stocking decisions for each operator’s platform (no scaled

mobile money market has developed systems that allow simple and free exchange across platforms).

However, this scenario is more complicated because, while electronic currency is not interchangeable

between platforms (i.e. e-float of platform A cannot satisfy a cash-in arrival for platform B e-float),
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cash is fungible (i.e. the same pool of cash can be used to satisfy cash-out transactions on both

platform A and B). Thus, the multi-platform agent’s problem is another potential area for future

research.

5.1. Conclusion

This paper introduces the context of mobile money and the mobile money agent’s challenge of

balancing inventory costs (expected stockout losses with cost of capital) for both cash and e-float.

This setting presents a unique inventory challenge: how should a firm stock when the sales of one

good generates inventory of another? A base model and an analytical heuristic that bears strong

resemblance to the newsvendor model are used to generate recommendations for starting inventories

of cash and e-float. These recommendations are tested against the actual decisions made by mobile

money agents in an East African country. While recommendations from both models can increase

agent profitability—increasing revenue net of cost of capital by 15%—the newsvendor heuristic

does so while also offering substantial computational advantages relative to the base model.
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Appendix

A. Reflected Brownian motion heuristic

A.1. Description

An agent’s inventory problem can also be approached as a stochastic flow problem with a fixed

buffer size. As in most stochastic flow settings, flow (in this case, CICO demand) can be positive

or negative. Furthermore, an agent loses cash sales when the buffer is empty (i.e. cash quantity

is equal to zero) and e-float sales when the buffer is full (i.e. when cash quantity is equal to the

budget, and thus e-float quantity is zero). Given characteristics of an agent’s demand, as well as

parameters mc, me, and γ, the goal is to again determine both the optimal budget (buffer size) b∗

and the optimal starting cash inventory q∗1 . The optimal e-float quantity again follows directly as
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b∗−q∗1 . By assuming demand can be approximated as a series of i.i.d. normally-distributed random

variables (within an agent-day), each with mean µD and standard deviation σD, the inventory

process can be approximated as a RBM. Let net demand ∆t be a (µ,σ) Brownian motion with

parameters µD and σD respectively. Next, define qt as the RBM representing the agent’s cash

inventory position, with initial cash inventory represented as q1. Further, define upper and lower

control processes Ut and Lt invoked when qt = b and qt = 0, respectively. These upper and lower

control processes force the quantity of cash qt to stay within the bounds of 0 and b, respectively.

Thus, the cash quantity at arrival t can be expressed as

qt = q1−∆t +Lt−Ut.

Written in this way, it is clear that the value of Ut represents the cumulative magnitude of lost

e-float sales up to arrival t and the value of Lt represents the cumulative magnitude of lost cash

sales up to arrival t. Both Lt and Ut are continuous and increasing processes with L0 = U0 = 0.

Thus, the underage cost after t arrivals is mc ·Lt +me ·Ut.

Note that the actual agent’s problem features a discrete number of arrivals – and can be seen as

an RBM sampled at integer time-points. It follows that the underage cost captured by the upper

and lower control processes (mc ·Lt+me ·Ut) represents an upper bound on the underage cost of the

base model; the intuition here is that the RBM can accumulate costs between these integer time-

points (discrete demand arrivals) while the actual agent problem only realizes underage costs at

these discrete demand arrival time-points. Accordingly, the RBM heuristic provides a conservative

approximation of underage cost.

Proposition 4 The underage of the reflected Brownian motion model is an upper bound on the

underage of the base model with normally distributed demand increments

To build out the heuristic, we again assume that the number of arrivals is a geometric random

variable with success parameter λ, where λ is the probability that any given arrival will be the

final arrival. The expected discounted cost function (of underage, in this case) of an RBM with

two control barriers (at 0 and b, respectively) can be written as follows:

k(q1) =E

 ∞∫
0

e−λt [mcdL+medU ]


Harrison and Taylor (1978) show that by applying Ito’s lemma, finding k(q1) requires solving

only the ordinary differential equation:

1

2
σ2k′′(q1) +µk′(q1)−λk(q1) = 0,
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where 0≤ q1 ≤ b and the boundary conditions are:

k′(0) =−mc and k′(b) =me.

Solving this ordinary differential equation results in the underage cost function k(q1). This cost

function (too unwieldy to present here) is convex in q1, allowing for closed form characterizations

of q∗1 and k(q∗1) which are both also too unwieldy to present here. With q∗1 and k(q∗1), the optimal

budget b can be found by minimizing the total cost function G(·), which is the sum of the underage

cost and the cost of capital.

min
b
G (q1, b) = k (q∗1 , b) + γb

While the complexity of this function precludes a closed-form analytical solution, numerical

optimization can generate b∗ given parameters µD, σD, λ, me, mc, and γ. Recommendations can

now be generated: the optimal amount of cash to stock daily is q∗1 and the optimal amount of

e-float stock daily is b∗− q∗1 . However, note that the RBM heuristic’s results are only valid to the

extent that the assumption of normal demand holds.

A.2. Performance and limitations

While the RBM heuristic does significantly outperform actual agent decisions, it under-performs

both the base model and the newsvendor heuristic. While the RBM heuristic does feature lower

stockout losses than the newsvendor heuristic (3.3% to 5.9%), it requires significantly more working

capital (16.4% to 12.3%). The same is true when comparing the RBM heuristic with the base

model, but to a slightly lesser degree: the RBM heuristic results in lower stockout losses (3.3% to

4.2%) and higher working capital requirements (16.4% to 14.%). This observation is a direct result

of the fact that the RBM heuristic is built upon an upper bound on underage cost – which leads

to higher inventory recommendation. This higher inventory recommendation results in both lower

stockout losses and greater capital costs as illustrated in Figure A.1 below.

There are two reasons that the RBM heuristic underperformcs the NV heuristic. First, the

normal approximation of the empirical demand distribution for each agent each day does not fit the

actual distribution of demand in this context. Specifically, it is the case that the empirical demand

distribution can be characterized by higher kurtosis (fatter tails) than the normal distribution’s

kurtosis of 3. The mean kurtosis of empirical demand distributions for agents in the sample was

42. The minimum kurtosis of the empirical demand distributions is 3.2, implying every agent’s

distribution has fatter tails than the normal distribution. The normal distribution approximation

may be underestimating the probability of more extreme events. Thus, If the empirical demand
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70.9 8.2 20.8

81.0 14.8 4.2

80.4 16.4 3.3

81.8 12.3 5.9

95.0 5.0Hindsight

NV heuristic

Base

RBM heuristic

Actual

0 25 50 75 100
Percent of total possible e−float commission

Net Revenue Cost of Capital Stockout Loss

Figure A.1 Performance evaluation: aggregate net e-float revenue for actual agent decisions, RBM heuristic, base

model, newsvendor heuristic, and hindsight recommendations over 180 days

distributions were more normal, the stockout losses associated with the RBM heuristic might

be even lower. Second, the RBM heuristic, like the base model, requires two sets of separate

inputs (estimates for both number of arrivals and also distribution of magnitudes of demand); the

compounding of estimation errors may be hampering performance. The newsvendor heuristic, on

the other hand, requires only a single set of inputs (the distributions of the maximum or minimum

cumulative demand).

B. Proofs

Proof of Lemma 1: It is sufficient to show that the cash and e-float underage, as well as the

inventory evolution can be written in terms of Dt. Let Dt =Dc
t −De

t = 1Dc
t>0 ·Dc

t −1De
t>0 ·De

t .

Underage= (Dc
t − qt)+ + (De

t − ft)+

= 1Dc
t>0(Dc

t − qt)+ +1De
t>0(De

t − ft)+

= (1Dc
t>0 ·Dc

t −1Dc
t>0 · qt)+ + (1De

t>0 ·De
t −1De

t>0 · ft)+

= (1Dc
t>0 ·Dc

t −1De
t>0 ·De

t −1Dc
t>0 · qt)+ + (−1Dc

t>0 ·Dc
t +1De

t>0 ·De
t −1De

t>0 · ft)+
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= (Dt−1Dc
t>0 · qt)+ + (−Dt−1De

t>0 · ft)+

= (Dt− qt)+ + (−Dt− b+ qt)
+

For inventory evolution:

qt+1 = 1De
t>0 ·min(b, qt +De

t ) +1Dc
t>0 ·max(qt−Dc

t ,0)

= min(b,max((qt−1Dc
t>0 ·Dc

t +1De
t>0 ·De

t ),0)

= min(b,max(qt−Dt,0)) �

Proof of Proposition 1.A: The inventory evolution equation is:

qi+1 = qi−1Di>0 ·min(qi,Di) +1Di<0 ·min(b− qi,−Di)

By the definition of ∆̂ and ∆̌, as well as q1 ≥ ∆̂ and (b− q1)≥−∆̌

q1 ≥ max
1≤t≤N

(
t∑
i=1

Di)⇒ q1 ≥D1

b− q1 ≥− min
1≤t≤N

(
i∑
i=1

Di)⇒ b− q1 ≥−D1

Substituting into the inventory evolution equation:

q2 = q1−D1

q3 = q2−1D2>0 ·min(q2,D2) +1D2<0 ·min(b− q2,−D2)

= q1−D1−1D2>0 ·min(q1−D1,D2) +1D2<0 ·min(b− q1 +D1,−D2)

Using the fact that q1 ≥D1 +D2 and b− q1 ≥−(D1 +D2):

q3 = q1−D1−D2

...

qN = q1−
N−1∑
i=1

Di

Then:

qi−Di ≥ 0 ∀ i≤N

b− qi +Di ≥ 0 ∀ i≤N

It follows immediately that:

mc

N∑
i=1

(Di− qi)+ +me

N∑
i=1

(−Di− (b− qi))+ = 0 �
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Proof of Proposition 1.B: Starting from proposition 1.A:

(∆̂t)
+(−∆̌t)

+ = (max
1≤j≤t

j∑
i=1

Di)
+ + (−min

1≤j≤t

j∑
i=1

Di)
+

<
t∑
i=1

(Di)
+ +

t∑
i=1

(−Di)
+ �

Proof of Proposition 2.A: Let lt and ut represent the cumulative underage cost of cash and

e-float respectively of the base model after t arrivals. These values can then be compared to the

newsvenduer heuristic underage to directly prove the result. For cash underage:

lt = max
1≤j≤t

(q1−∆j −uj)−

= max
1≤j≤t

(∆j − q1 +uj)
+

≥ max
1≤j≤t

(∆j − q1)+

= (∆̂− q1)+

Analogously, for e-float underage, the result follows from:

ut = max
1≤j≤t

(b− q1 + ∆j − lj)−

= max
1≤j≤t

(−∆j + lj − b+ q1)+

≥ max
1≤j≤t

(−∆j − b+ q1)+

= (−∆̌t− b+ q1)+

Proof of Proposition 2.B: There are four cases: Case A: lt > 0 and ut = 0, Case B: lt = 0 and

ut > 0, Case C: lt > 0 and ut > 0, and Case D: lt = 0 and ut = 0. Note that when there is no base

model cash and/or e-float underage (i.e. lt = 0 and/or ut = 0), sharpness follows from Proposition

2.A and the fact that heuristic underage is non-negative. This demonstrates sharpness in Case D.

Sharpness is further demonstrated for positive underage in Cases A and B, while non-sharpness is

demonstrated in Case C.

Case A: lt = max
1≤j≤t

(q1−∆j −uj)−

= max
1≤j≤t

(q1−∆j − 0)−

= max
1≤j≤t

(q1−∆j)
−

Case B: ut = max
1≤j≤t

(b− q1 + ∆j − lj)−

= max
1≤j≤t

(−∆j + 0− b+ q1)+

= (−∆̌t− b+ q1)+
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Case C: lt = max
1≤j≤t

(q1−∆j −uj)−

> max
1≤j≤t

(q1−∆j)
−

ut = max
1≤j≤t

(b− q1 + ∆j − lj)−

> (−∆̌t− b+ q1)+ �

Proof of convexity of equation 2 The cost function used to derive the newsvendor heuristic:

G(q1, b) =E[(mc · (∆̂− q1)+] +E[me · (−∆̌− (b− q1))+] + γ · b)

The function’s hessian matrix is positive-semidefinite:

HG(q1, b) =

[
∂2G(q1,b)

∂q21

∂2G(q1,b)

∂q1∂b

∂2G(q1,b)

∂b∂q1

∂2G(q1,b)

∂b2

]
To show that this matrix is positive semi-definite, it is sufficient to show that the Hessian’s

principal minors are non-negative: ∂2G(q1,b)

∂b2
≥ 0, ∂2G(q1,b)

∂q21
≥ 0, and ∂2G(q1,b)

∂b2
∂2G(q1,b)

∂q21
− (∂

2G(q1,b)

∂b∂q1
)2 ≥ 0.

mc, me and probabilities are non-negative, so

∂2G(q1, b)

∂q2
1

=mc · f∆̂(q1) +me · f∆̌(q1− b)≥ 0,

∂2G(q1, b)

∂b2
=me · f∆̌(q1− b)≥ 0,

∂2G(q1, b)

∂b2

∂2G(q1, b)

∂q2
1

− (
∂2G(q1, b)

∂b∂q1

)2 =mc · f∆̂(q1) ·me · f∆̌(q1− b)≥ 0. �

Proof of Proposition 3: The first order condition of equation 2 with respect to q1 yields the

optimality condition:

mc · (1−F∆̂ (q1)) =me · (F∆̌ (q1− b)) (3)

The first order condition with respect to b results in:

F∆̌(q1− b) =
γ

me

(4)

Substituting 4 into 3 yields:

F∆̂(q1) = 1− γ

mc

Thus, the optimal q1 and f1 are:

q∗1 =

(
F−1

∆̂

(
1− γ

mc

))+

f∗1 =

(
−F−1

∆̌

(
γ

me

))+

�
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Proof of Proposition 4: Let the cumulative underage cost of cash and the underage cost of

e-float in the base model be represented as lt and ut respectively after t arrivals. Therefore, it is

sufficient to show that Ut ≥ ut and Lt ≥ lt ∀t ∈ (0,1,2, ...). Proceeding with a proof by induction,

the base case holds:

L0 = l0 = 0

U0 = u0 = 0

Let the inductive hypothesis be:

Lj ≥ lj and Uj ≥ uj ∀ j ∈ (0,1, ..., t− 1)

Each arrival (and thus underage) is either e-float or cash, thus ∆ut ·∆lt = 0. There are thus three

cases: Case A: ∆ut = 0 and ∆lt > 0, Case B: ∆lt = 0 and ∆ut > 0and Case C: ∆ut = ∆lt = 0. Let

Xt = q1−∆t and xt be a sample of Xt at integer time-points.

Case A: Ut = sup
0≤s≤t

(b−Xs−Ls)−

≥ sup
s∈(0,...,t)

(b−Xs−Ls)−

≥ sup
s∈(0,...,t−1)

(b−Xs−Ls)−

≥ sup
s∈(0,...,t−1)

(b−xs− ls)− by inductive hypothesis

= ut−1

= ut (1)

Lt = sup
0≤s≤t

(Xs−Us)−

≥ sup
s∈(0,...,t)

(Xs−Us)−

≥ sup
s∈(0,...,t−1)

(xs−us)− by (1)

= lt

Case B: Lt = sup
0≤s≤t

(Xs−Us)−

= sup
0≤s≤t−1

(Xs−Us)−

≥ sup
s∈(0,...,t−1)

(Xs−Us)− by inductive hypothesis

≥ sup
s∈(0,...,t−1)

(xs−us)−

= lt−1

= lt (2)
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Ut = sup
0≤s≤t

(b−Xs−Ls)−

≥ sup
s∈(0,...,t)

(b−Xs−Ls)−

≥ sup
s∈(0,...,t−1)

(b−xs− ls)− by (2)

= ut

Case C follows directly from Case A and Case B. �


