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Abstract. Collaboration among human agents with different expertise
and capabilities is becoming increasingly pervasive and important for de-
veloping new products, providing patient-centered health care, propelling
scientific advance, and solving social issues. When the roles of the agents
in such collaborative teamwork are highly interdependent, the perfor-
mance of the team will rely not only on each team member’s individual
capabilities but also on their shared understanding and mutual support.
Without any understanding in other team members’ area of expertise,
the team members may not be able to work together efficiently due to the
high cost of communication and the individual decisions made by differ-
ent team members may even lead to undesirable results for the team. To
improve collaboration and the overall performance of the team, the team
members can teach each other and learn from each other, and such peer-
teaching practice has shown to have great benefit in various domains such
as interdisciplinary research collaboration and collaborative health care.
However, the amount of time and effort the team members can spend on
peer-teaching is often limited. In this paper, we focus on finding the best
peer teaching plan to optimize the performance of the team, given the
limited teaching and learning capacity. We (i) provide a formal model
of the Peer Teaching problem; (ii) present hardness results for the prob-
lem in the general setting, and the subclasses of problems with additive
utility functions and submodular utility functions; (iii) propose a poly-
nomial time exact algorithm for problems with additive utility function,
as well as a polynomial time approximation algorithm for problems with
submodular utility functions.
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1 Introduction

As we welcome a new age of knowledge segmentation, teamwork is not only es-
calating in its importance but also shifting in its nature. Its traditional focus on
distributing and sharing workload is quickly replaced by the focus on sharing
the knowledge and expertise needed for the relevant goal. Such transition is ev-
idenced by, for example, researchers from different domains collaborating on an



interdisciplinary research project, or nurse-physician interprofessional collabora-
tion in health care. However, forming a team with diverse skill sets is far from
the end of the story. Richter, Paretti, and McNair show that putting students
into interdisciplinary teams and even teaching teamwork skills are not sufficient
for effective interdisciplinary collaboration [16]. It is often more desirable for
agents to learn some of their teammates’ knowledge, than having each agent
solely responsible for her own expertise. Bridges et al. find that understanding
others’ professions in the healthcare team is important in interprofessional col-
laboration and helps team member better understand her own duties [4]. To
have shared knowledge and further enhance the team performance, an efficient
and effective way is to have the team members learn from each other. In health
and social care, such peer-teaching is viewed as part of the interprofessional ed-
ucation [6, 21], which enables effective collaborative practice [2]. However, the
amount of time and effort the team members can spend on peer-teaching is of-
ten limited, and it is impossible to ask the team members to gain all of their
teammates’ knowledge. As such, determining an optimal peer teaching plan is
crucial in boosting team performance.

The growing attention to teamwork in the society gives rise to the rapid
development of research on team collaboration. Team formation, for instance,
addresses the problem of selecting the best team member under limited re-
sources [9, 10, 18]. Various models for team coordination have been proposed,
especially when team members can hardly communicate with each other [1,19].
Works have also been done in the performance measures for teams [13], human-
agent teams [22], and communication models [5]. However, few works explicitly
consider leveraging the team’s diversity and enhancing team performance by
having team members teach each other.

Although existing literature on team collaboration does not emphasize peer
teaching, the process of, possibly informal, learning from teammates does happen
in many teamwork scenarios. Team members often help each other to enhance
knowledge in certain topics, to build certain skills, to improve certain ability, or
to develop certain capabilities 3. However, there lacks a formal model to study
and optimize this process. Our first contribution is the formalization of the peer
teaching problem. We characterize a group based on its members and relevant
expertise. By quantifying the choices and limits of teaching and learning inside
the group, we model the peer teaching problem as a constrained optimization
problem.

After formalizing the model, it is natural and important to find the best
plan for peer teaching, and we focus on this problem in the rest of the paper. We
show that the peer teaching problem in its most general form is hard. However,
we analyze two key settings with additive and submodular utility functions and
propose two algorithms to find the optimal peer teaching plan. In the first case,
we present an exact polynomial time algorithm, and in the second case, we
present a polynomial time approximation algorithm.

3 In the rest of the paper, we collectively refer to these abstract concepts as skills
which can be taught and learned



2 Related Work

Peer teaching relates to yet differentiates itself from several topics in teamwork
which have been studied. Liemhetcharat and Veloso [11] introduce teams with
learning agents, where agents have access to external training resources rather
than learning from their teammates. Jumadinova, Dasgupta, and Soh treat the
peer teaching process as part of a decision problem [7]. However, their work does
not explicitly consider the teaching and learning constraints, which are essential
to the structure of the peer teaching problem. Compared to the study of cross-
training, which refers to agents being trained the expertise of their teammates
and is shown to improve the team’s performance [14], peer teaching emphasizes
the notion of agents autonomously learning from teammates and is thus bounded
by various capacity constraints. Several pieces of work on team formation con-
sider the diversity of skills and the synergy among team members [10,12,18]. Peer
teaching problem differs from these works in treating a team as given and stud-
ies the teaching plan to optimize team performance. Other works focus on the
scenario where team members from diverse communities can hardly coordinate
prior to collaboration and only loosely coordinate during the collaboration [1,19].
The peer teaching problem applies to this setting and provides the learning and
teaching dynamics which the above-mentioned works do not consider.

Much work has been done on multiagent MDP to study the coordination
among individual agents on a team [3]. One specific line of research is informa-
tion sharing, which studies how agents decide when and what observations to
share in a partially observable multiagent MDP framework [17, 23]. Peer teach-
ing differs from this area of research in the special nature of knowledge and puts
less emphasis on the duration of the process.

We also observe the recent attention on cross-domain collaboration. While
this is a place where the process of peer teaching arises frequently, works in
this area [20, 24] usually focus on partner recommendation, which is in nature
different from our problem.

3 Peer Teaching Problem

In a peer teaching problem, we have a set of agents with the same goal but with
different areas of expertise. Before they start working as a team, they can help
other team members gain expertise through teaching, and such peer teaching
can lead to an improvement in the team performance. However, often there is a
limit on how much time and effort an agent can spend on teaching and learning.
Therefore, we need to find the best feasible peer teaching plan which can lead
to the highest improvement in team performance.

We model the peer teaching problem as a constrained optimization problem
defined over a group profile.

Definition 1. The group profile G = (A,S,M, f) contains the following

– A = {a1, . . . , an} denotes the set of agents.



– S = {s1, . . . , sm} denotes the set of areas of expertise, where the area of
expertise can be a skill or a type of knowledge.

– M ⊆ A×S denotes the initial agent-expertise mapping of the group. (a, s) ∈
M means agent a has expertise in s before any peer teaching takes place. We
denote by Ma(ai) = {sj |(ai, sj) ∈M} the set of areas of expertise that agent
i has and Ms(sj) = {ai|(ai, sj) ∈M} the set of agents that has expertise in
sj. We denote by M̄ = A× S \M the complement of M .

– f : 2M̄ → R is the utility function. A learning profile M ′ ⊆ M̄ is a set
of learning events, and a learning event (a, s) ∈ M ′ means agent a gains
some expertise in s from some other agent during peer teaching. The utility
function indicates how much improvement a learning profile can bring to the
team performance.

Next, we introduce several definitions towards the definition of the collection
of all feasible learning profiles. T = {T1, . . . , Tn} denotes the teaching capabilities
of the agents. Ti ⊆Ma(ai) and sj ∈ Ti means agent ai is capable of helping other
agents to gain expertise in sj through teaching. Differentiating Ti from Ma(ai)
provides a way to quantify the level of expertise of each agent, as one might
expect that the ability to teach others implies a high level of proficiency. A peer
teaching plan is defined as a set of triplets of (teacher, expertise, learner), i.e.,
Θ = {(ai1 , sj , ai2)|(ai1 , sj) ∈ Ti1 , (ai2 , sj) ∈ M̄}. A peer teaching plan is feasible
if it satiesfies teaching and learning capacity constriants defined by cti, c

t, and cli.
cti represents the maximum number of expertise agent i can teach, ct represents
the maximum number of agents that any agent can teach simultaneously for
one expertise and cli represents the maximum number of expertise one can gain
through peer teaching. A learning profile M ′ is feasible if there exists a feasible
peer teaching plan ΘM ′ which realizes all learning events in M ′. Given a group
profile G and the collection of all feasible learning profiles L, the peer teaching
problem is to find a learning profile M∗ ∈ L to optimize the utility function.

Figure 1 provides an example of the peer teaching problem. For illustration
purpose, it has three agents and three areas of expertise. The right side of the
graph is a bipartite graph which represents each agent’s teaching capability.
In this example, we assume Ti = Ma(ai), i.e., an agent is capable of teaching
anything that he currently has expertise in. The bipartite graph on the left shows
all possible learning events.

4 Optimizing Peer Teaching

The definition of the peer teaching problem leaves much freedom for deciding
the dynamics of the peer teaching process. As we show below, without further
structures in the problem, the peer teaching problem is hard.

Theorem 1. The peer teaching problem in its general form is NP-hard.

Proof. We prove the hardness of the peer teaching problem by reducing from
the maximum cut problem. For an arbitrary weighted undirected graph G =
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Fig. 1. The knowledge graph and the graph of all possible learning events

(V,E,W ) with |V | = n nodes, we consider a corresponding peer teaching prob-
lem G = (A,S,M, f), where |A| = |S| = n, Ti = Ma(ai) = {sj |j 6= i}, and
Ms(sj) = {ai|i 6= j}. Thus, we have M̄ = {(ai, si)|i = 1, . . . , n}. For any subset
MI = {(ai, si)|i ∈ I} of M̄ , we assign the weight of the cut VI = {vi|i ∈ I}
in graph G to be the utility value f(MI). The value f(MI) can be computed
in polynomial time. In addition, we ignore teaching and learning capacity con-
straints by setting cti, c

t, cli > 1. Therefore, a subset of nodes VI in G yields the
maximum cut if and only if the corresponding learning profile MI maximizes the
utility function f in the peer teaching problem G. �

4.1 Additive Utility Function

The hardness result for the general peer teaching problem calls for more structure
in the problem setup. In this subsection, we study a particular type of peer
teaching problem characterized by additive utility functions, and present an
exact polynomial time algorithm for finding the optimal peer teaching plan.

Consider a group profile G = (A,S,M, f), where f is such that for all P,Q ⊆
M̄ , f(P ∪Q) + f(P ∩Q) = f(P ) + f(Q). Equivalently, we assign a utility vij to
each learning event (ai, sj) ∈ M̄ , and define f(P ) =

∑
(ai,sj)∈P vij for a learning

profile P ⊆ M̄ . This model is natural, for example, when a team is assessed
based on the ability of its members individually. As defined in Section 3, each
agent ai has teaching capacity cti and learning capacity cli. For this subsection,
we assume all teaching happens in a one-on-one fashion, i.e., ct = 1. We define
lij = 1 if agent ai learns skill sj , and tij = 1 if agent ai teaches skill sj , and zero
otherwise. The problem can then be formulated as the following integer linear



program (ILP).

minimize −
∑
i

∑
j

vij lij

subject to
∑
j

lij ≤ cli, ∀i = 1, . . . , n (X)

∑
j

tij ≤ cti, ∀i = 1, . . . , n (Y )

∑
i

lij =
∑
i

tij , ∀j = 1, . . . ,m (Z)

lij , tij ∈ {0, 1}, ∀i = 1, . . . , n, ∀j = 1, . . . ,m

While solving ILP is hard in general, this problem has the structure of network
flow and thus solving the linear program relaxation of the ILP can directly lead
to an optimal integer solution [15].

Theorem 2. The peer teaching problem with additive utility function and ct = 1
can be solved in polynomial time.

Proof. Recall that a square, integer matrix B is unimodular if det(B) = ±1. An
integer matrix A is totally unimodular if every square, nonsingular submatrix
of A is unimodular. As a sufficient condition, an integer matrix A whose only
nonzero entries are ±1 is totally unimodular if no column of A contains more
than two nonzero elements and we may partition the rows of A into I1 and I2
such that

– if a column has two entries of the same sign, their rows are in different sets;
– if a column has two entries of different signs, their rows are in the same set.

If A is totally unimodular, and b, u, l are integer vectors, then all the vertices of
the polyhedron P = {x |Ax = b, u ≤ x ≤ l} are integer points.

Consider the linear program (LP) relaxation of the ILP above. The feasible
polyhedron of the relaxed LP can be written as P = {x |Ax = b, 0 ≤ x ≤ 1},
where we collect all the constraints in X,Y, Z into the equation Ax = b by
adding the necessary slack variables. Observe that each column of A has at most
two nonzero entries, which are 1 or −1. Furthermore, we may partition the rows
of A into two sets, one containing all constraints in X, the other containing all
constraints in Y and Z. Such a partition satisfies the conditions for a totally
unimodular matrix as mentioned above. Therefore, it follows that solving the
relaxed LP will guarantee us an integer optimal solution. Applying ellipsoid
method for the relaxed LP leads to an algorithm that finds the optimal solution
in polynomial time. ut

Below we show the running time of the LP compared to two baseline al-
gorithms: the brute force algorithm and the greedy algorithm. The brute force
algorithm examines the utility value of all possible learning profiles. The greedy
algorithm starts with the learning event with highest utility, and adds the most



beneficial learning event as long as the learning profile remains feasible. The
utility values vij are generated independently from a uniform distribution on
integers between 0 and 1000. The teaching and learning capacities cli, c

t
i are gen-

erated independently uniformly on integers between 1 and m = |S|. We use
the linprog function in MATLAB R2016a and run on a PC with Intel Core
i7-4700MQ processor and 4GB RAM.

(a) (b) (c)

Fig. 2. The running time of the three algorithms. For (a), |A| = n is fixed at 3; for
(b), n is fixed at 20; for (c), n is fixed at 200. The standard deviation across five runs
is also shown. For (a) and (b), the data are averages over 1000 runs; for (c), the data
are averages over 30 runs.

In the experiments we fix the number of agents |A| = n and vary the number
of skills |S| = m. As shown in Figure 2a, the brute force algorithm quickly blows
up, making it infeasible to test its running time beyond n = 3, while the running
time of the greedy algorithm is negligible compared to others. In Figure 2b,
where the problem size is relatively small, the greedy algorithm outperforms the
LP in running time. However, as shown in Figure 2c, the LP becomes the better
one as the problem grows larger.

We also measure the accuracy of the greedy algorithm by the ratio between
its output and the LP optimal utility, as shown in Figure 3. In general, it gives
a relatively good approximation, and its accuracy improves as the problem size
grows.

4.2 Submodular Utility Function

Under many circumstances, more teaching may not benefit the team as much if
the agents are already learning a lot from each other. For instance, given the lim-
ited time in a hackathon, students should not bother learning their teammates’
programming languages if for each potentially useful language there are already



(a) (b) (c)

Fig. 3. The accuracy of the greedy algorithm. For (a), |A| = n is fixed at 3; for (b),
n is fixed at 20; for (c), n is fixed at 200. For (a) and (b), the data are averages over
1000 runs; for (c), the data are averages over 30 runs.

two or three members who can use it. We may use submodular utility functions
to model this diminishing return. To proceed, recall the following definitions.

Definition 2. A function f : 2X → R is submodular if for any A,B ⊆ X,
f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). X is referred to as the ground set of f .

Definition 3. Let I ⊆ 2X . If a pair N = (X, I) satisfies

– Downwards closure: If P ∈ I,Q ⊆ P , then Q ∈ I.
– Exchange property: If P,Q ∈ I, |P | > |Q|, then there exists p ∈ P\Q such

that Q ∪ {p} ∈ I.

then N is a matroid. I is called the collection of independent sets.

In this subsection, we assume that each learning profile P ⊆ M̄ , feasible or
not, is assigned a utility f(P ), where f is a submodular function. The solution to
the peer teaching problem is a feasible learning profile P ∗ ∈ L which maximizes
the utility among all feasible learning profiles. To add more structures to the
problem, we make the following rules (R1, R2) and assumptions (A1, A2).

– (R1) An agent can teach at most one expertise, but to multiple agents pos-
sibly. Equivalently, we set cti = 1 for all ai ∈ A, and set ct = n.

– (R2) An agent can learn at most one expertise. Equivalently, we set cli = 1
for all ai ∈ A.

– (A1) An agent may have multiple expertise but is only able to teach one or
two. Equivalently, we assume |Ti| = 1 or 2 for all ai ∈ A.

– (A2) For each expertise, at least two agents can teach it. Equivalently, we
assume for all sk ∈ S, there exist i 6= j such that sk ∈ Ti ∩ Tj .

The two assumptions might not seem very realistic, but we will relax them later.
Recall that we refer to n = |A| as the number of agents, and m = |S| as the



number of skills. Consider the knowledge graph in Figure 1. By A1, the number
of outgoing edges from agent nodes is less than or equal to 2n. By A2, the
number of incoming edges to skill nodes is greater than or equal to 2m. Thus,
we have |A| ≥ |S|. These two assumptions allow us to exploit the structure in
the feasible learning profiles. More specifically, assuming all the given conditions
in this subsection, we have the following theorem.

Theorem 3. For a given group profile G = (A,S,M, f), N = (M̄, L) is a ma-
troid.

Proof. Downwards closure is obvious, we prove the exchange property. Let P,Q ∈
L be two feasible learning profiles, and |P | > |Q|. By R2 and |P | > |Q|, there
exists an agent ai who is taught in P but not in Q. Suppose in a peer teaching
plan ΘP corresponding to P , agent aj teaches ai the expertise sk. Let ΘQ be a
peer teaching plan corresponding to Q. We discuss the following possible cases:

Case 1: In ΘQ, someone is teaching the expertise sk. According to R1, we
can add the learning event (ai, sk) to Q, and will maintain feasibility.

Case 2: In ΘQ, no one is teaching the expertise sk, but aj is not teaching
anything. We can let aj teach this expertise sk to ai, and add the learning event
(ai, sk) to Q, and will maintain feasibility.

Case 3: In ΘQ, no one is teaching the expertise sk, and aj is teaching some-
thing else. By A2, suppose aj and al know expertise sk and are both teaching
something else, say sj and sl. Let aj′ be another person who knows sj , and al′ be
another person who knows sl. Note that aj′ and al′ can be the same agent, but
they must be different from aj and al by A1. If aj′ (or al′) is teaching something
else, we repeat the same argument. As this argument propagates, we must be
able to find an agent a∗ who is not teaching anything, because n ≥ m and sk
is not being taught, there must be an agent who is not teaching. Furthermore,
by A1, this agent a∗ knows some expertise. Then, we can propagate back, and
eventually find one of aj and al to teach sk, without impacting the group’s other
teaching ability. Once an agent is teaching sk, we can add the learning event
(ai, sk) to Q, and will maintain feasibility. �

With this theorem, the peer teaching problem reduces to maximizing a sub-
modular function subject to a matroid constraint. Unlike minimization, maxi-
mizing a submodular function is NP-hard, however. To find the best peer teach-
ing strategy, we may use the algorithm, which we refer to as MAX, proposed
by Lee et al. in [8]. This is a polynomial time algorithm which achieves a
1/(4 + ε)-approximation, assuming a value oracle model, i.e. given a learning
profile P ⊆ M̄ , the algorithm can access the utility value f(P ).

The main routine is MAX. LOCAL-SEARCH is a greedy algorithm which
improves the current learning profile by adding, deleting, or substituting one
learning event at a time. At each step, it checks whether the proposed better
learning profile is feasible. Lee et al. [8] do not explicitly provide an algorithm for
checking whether a set is independent. However, in our setting the feasibility of
a learning profile is not trivial to verify. In FEASIBLE, we consider the bipartite
graph representing the current knowledge of the agents (Figure 1). If all learned



Algorithm 1 FEASIBLE

Input: Learning profile P ⊆ M̄
if any agent learns more than 1 expertise then

Output: false
end if
Get the set of expertise S′ that are being learned. Find a maximum matching R on
the knowledge graph (Figure 1) restricted to A and S′.
if |R| = |S′| then

Output: true
else

Output: false
end if

Algorithm 2 LOCAL-SEARCH

Input: Ground set V , value oracle access to submodular utility f
Set P = {e0}, where e0 is the single learning event with highest utility
while we can do one of the following operations do

Delete: If ∃e ∈ P such that f(P\{e}) ≥ (1 + ε/|V |4)f(P ), then set P = P\{e}.
Exchange: If ∃e /∈ P, e′ ∈ P ∪ {φ} such that f(P\{e′} ∪ {e}) ≥ (1 + ε/|V |4)f(P )
and P\{e′} ∪ {e} is feasible, then set P = P\{e′} ∪ {e}.

end while
Output: learning profile P

Algorithm 3 MAX

Set V1 = M̄ .
Do LOCAL-SEARCH with ground set V1, get solution P1.
Set V2 = M̄\P1.
Do LOCAL-SEARCH with ground set V2, get solution P2.
Output: RETURN the learning profile Pi whose f(Pi) is greater



expertise are being matched in a maximum matching between agents and the
expertise being learned in the learning profile, the learning profile is feasible
because by R1 each agent can teach at most one expertise. Finally, by doing
LOCAL-SEARCH twice, the algorithm MAX achieves the approximation bound
of 1

4+ε .
While MAX is guaranteed to run in polynomial time and achieves a good

approximation bound, we wish to relax the Assumptions A1 and A2. First, we
consider A2, that for each expertise, there are at least two agents who can teach
it.

Theorem 4. Given A1, we may replace A2 with the assumption that |A| =
n ≥ m = |S|. If we treat n as fixed, we may remove A2, while still having a
polynomial time algorithm with the same approximation bound.

Proof. It is an uninteresting case where no agent knows some skill si. Suppose
only one agent aj can teach some expertise si, i.e., si /∈ Tk if k 6= j. If aj can
only teach this expertise si, then this particular violation of A2 does not fail
N = (M̄, L) from being a matroid. Consider the proof of Theorem 3: if aj is
the teaching agent aj that we picked in P , then we would not even get to Case
3. Otherwise, the pair (aj , si) can be viewed as isolated, and the argument for
Case 3 still holds.

If in addition to expertise si, agent aj can also teach expertise sk, i.e. Tj =
{si, sk}. If sk also violates A2 such that nobody besides aj can teach sk, we may
run the algorithm MAX twice and take the better output, where in each run aj
can only teach one of si and sk. If at least one other agent al can teach sk, then
we can consider the expertise al has, and trim and rearrange their expertise in
a way where the only violations of A2 are isolated agent-expertise pairs and the
collection of feasible learning profiles L remain unchanged. This is achievable
because we instead assume n ≥ m.

In fact, once we replace A2 with the assumption that n ≥ m, we may also
relax this condition. Suppose we have more expertise than agents, i.e. m > n.
Let {Sni } be the collection of all subsets of S where |Sni | = n. We apply the
algorithm MAX to the each of the induced group profiles Gi = (A,Sni ,Mi, fi).
Since we assume each agent teaches at most one expertise, this modified algo-
rithm achieves the same approximation bound as if we had only one problem
to solve. It is worth noting, however, that naively restricting the problem may
violate A1 by having some agents not able to teach any expertise in the subprob-
lem. This can be fixed by assigning all agents who cannot teach any expertise
in the subproblem to an imaginary expertise. Meanwhile, we add an imaginary
agent who can also teach this imaginary expertise to maintain m = n. Then, we
extend fi by assigning the same utility to learning profiles which contain events
involving imaginary knowledge or agent as without those events. This preserves
the submodularity, and we can continue with the above-proposed procedure. �

We may also consider relaxing assumption A1. Assuming A2 holds, if agent
ap can teach p expertise where p ≥ 3, we can initially split the problem into p
subproblems, and in each subproblem ap can only teach one expertise. We may
trim and rearrange the knowledge graph so that in each subproblem the matroid



is maintained, and collectively all feasible learning profiles can be reached. How-
ever, we may have a combinatorial number of subproblems because to preserve
the matroid other agents might require us to divide their outgoing edges in the
knowledge graph as well.

5 Conclusion and Future Work

Team collaboration is gaining more attention in the society, and the research
community as the segmentation of knowledge continues to grow. It is likely that
a team’s performance might improve if members are learning from each other
and hence have a better sense of the work. In this paper, we focused on the
problem of how teammates should teach and learn from their peers with limited
resources to boost group performance. We formalized this process as the peer
teaching problem. This problem in its most general case is hard, yet we provided
good algorithmic solutions for some two specific setups of the problem, which are
still general enough to model many real-world scenarios. We showed that with
additive utility functions, we could solve the peer teaching problem with a linear
program. In the case of submodular utility, a polynomial time approximation
algorithm for maximizing submodular functions can be leveraged to find the
optimal peer teaching plan.

There are many future directions to consider. One possible extension of the
current peer teaching model is to explicitly quantify to what extent an agent has
learned a skill instead of only considering whether or not she has learned the skill.
One piece of knowledge often builds on another. Thus, studying planning with
precedence graph could better characterize the peer teaching dynamics. Another
direction is to consider multi-round collaboration, where at each round agents
have different teaching and learning capacity and utility function. Some learning
profiles might not be optimal considering the extended duration of collabora-
tion, even if it achieves the best utility at a certain round. The learning aspect
of the peer-teaching problem also needs further investigation. In this paper, we
assumed agents could access the utility value through a value oracle. It is inter-
esting to study the problem where such access comes with noise, and agents can
learn the utility function across time or through available data. Such scenarios
appear when, for example, researchers collaborate on interdisciplinary projects.
Furthermore, in this paper we only model the member-skill relationship, while
one may also consider the familiarity between team members, for example, if the
members (or some of the members) have previously worked together on similar
projects. In addition, knowing the optimal peer teaching strategy could offer
insights into the team formation problem. When selecting group members, can-
didates’ current expertise matter as well as the potential learning outcome they
as a group could achieve. Last but not least, in real world problems, it is also
useful to study how peer teaching interacts with learning from other resources.
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