Search for $W^{\pm} \to tb \to qqbb$ decays in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1140/epjc/s10052-015-3372-2

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33470142

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Search for $W' \to tb \to q\bar{q}bb$ decays in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

ATLAS Collaboration
CERN, 1211 Geneva 23, Switzerland

Received: 6 August 2014 / Accepted: 26 March 2015
© CERN for the benefit of the ATLAS collaboration 2015. This article is published with open access at Springerlink.com

Abstract A search for a massive W' gauge boson decaying to a top quark and a bottom quark is performed with the ATLAS detector in pp collisions at the LHC. The dataset was taken at a centre-of-mass energy of $\sqrt{s} = 8$ TeV and corresponds to 20.3 fb$^{-1}$ of integrated luminosity. This analysis is done in the hadronic decay mode of the top quark, where novel jet substructure techniques are used to identify jets from high-momentum top quarks. This allows for a search for high-mass W' bosons in the range 1.5–3.0 TeV. b-tagging is used to identify jets originating from b-quarks. The data are consistent with Standard Model background-only expectations, and upper limits at 95 % confidence level are set on the $W' \to tb$ cross section times branching ratio ranging from 0.16 pb to 0.33 pb for left-handed W' bosons, and ranging from 0.10 pb to 0.21 pb for W' bosons with purely right-handed couplings. Upper limits at 95 % confidence level are set on the W'-boson coupling to tb as a function of the W' mass using an effective field theory approach, which is independent of details of particular models predicting a W' boson.

1 Introduction

Several theories beyond the Standard Model (SM) [1–3] involve enhanced symmetries that introduce new charged vector currents carried by new heavy gauge bosons, usually called W' bosons. For instance, Grand Unified Theories [4–7] extend fundamental symmetries of the SM, in which a massive right-handed counterpart to the SM W boson may occur. W' bosons can appear in phenomenological models involving extra space-time dimensions such as Kaluza-Klein excitations of the SM W boson [8] or in technicolor models [9]. Also Little Higgs theories [10] predict several new particles, including a W' boson. In order to interpret a direct experimental search independently of the details of particular models predicting a W' boson, it is advantageous to rely on an effective model describing the couplings of the W' boson to fermions [11].

The search for a W' boson decaying to a top quark and an anti-b-quark ($W' \to t\bar{b}$)1 explores models potentially inaccessible to $W' \to \ell\nu$ searches. Also, in the right-handed sector, it is assumed that there is no light right-handed neutrino to which a W' boson could decay, and, hence, only hadronic decays are allowed [11,12]. In some theories beyond the SM, new physics couples more strongly to the third generation than to the first and second [9]. Searches for W' bosons decaying to tb have been performed at the Tevatron [13–15] and at the LHC [16,17], in leptonic top-quark decay channels excluding a W' boson with purely right-handed couplings (referred to as W'_R) with mass less than 2.13 TeV at 95 % Confidence Level (CL).

This document describes the first search for the $W' \to tb$ process in the fully hadronic final state of the top-quark decay. For high W' masses, the final state signature consists of one high-momentum b-quark and another b-quark close to the two light-quarks from the W-boson decay. The distinct signature of high-momentum top quarks is exploited to isolate the signal from the copious hadronic multijet background making use of novel jet substructure techniques to identify boosted hadronically decaying top quarks. This allows for particularly good sensitivity at high W' masses. 95 % CL exclusion limits are presented on the W'-boson coupling as a function of the W' mass in an effective model.

2 The ATLAS detector

Charged particles in the pseudorapidity2 range $|\eta| < 2.5$ are reconstructed with the inner detector (ID), which consists of several layers of semiconductor detectors (pixel and

1 Decays of W'^+ to a top quark and an anti-b quark and of W'^- to an anti-top quark and a b-quark are equally taken into account. For simplicity, both decays are referred to as $W' \to tb$ in this document.

2 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
strip) and a straw-tube transition-radiation tracker, the latter extending to \(|\eta| < 2.0\). The inner tracking system is immersed in a 2 T magnetic field provided by a superconducting solenoid. The solenoid is surrounded by sampling calorimeters, which span the pseudorapidity range up to \(|\eta| = 4.9\). High-granularity liquid-argon (LAr) electromagnetic calorimeters are present up to \(|\eta| = 3.2\). Hadronic calorimeters with scintillating tiles as active material cover \(|\eta| < 1.74\) while LAr technology is used for hadronic calorimetry from \(|\eta| = 1.5\) to \(|\eta| = 4.9\). Outside the calorimeter system, air-core toroids provide a magnetic field for the muon spectrometer (MS). Three stations of precision drift tubes and cathode strip chambers provide a measurement of the muon track in the region of \(|\eta| < 2.7\). Resistive-plate and thin-gap chambers provide muon triggering capability up to \(|\eta| < 2.4\).

3 Data and Monte-Carlo simulation samples

3.1 Data samples

The data used for this analysis was collected in \(pp\) collisions in 2012 at a centre-of-mass energy of \(\sqrt{s} = 8\) TeV. All candidate events must satisfy data-quality requirements that include being recorded during the LHC stable-beam periods and proper functioning of the detector and trigger subsystems. After the trigger and data-quality requirements, the amount of data used by this analysis corresponds to an integrated luminosity of 20.3 fb\(^{-1}\) with an average number of interactions per bunch-crossing of 20.7.

3.2 Signal modelling

The right- and left-handed \(W'\) boson (denoted as \(W'_R\) and \(W'_L\), respectively) models are implemented in MADGRAPH \(5\) [18] using FeynRules [19,20], which is used to generate events at leading-order (LO) in \(\alpha_s\) through Drell-Yan like production. MADGRAPH also simulates the decay of the top quark taking spin correlations into account. PYTHIA 8.165 [21] is used for parton showering and hadronisation. CTEQ6L1 [22] parton distribution functions (PDFs) are used for the event generation.

The \(W'_R\) and \(W'_L\) cross sections times branching ratios to \(tb\) final state are obtained from next-to-leading order (NLO) QCD calculations [11,23] and are shown for different \(W'\) masses in Table 1. The mass of a possible right-handed neutrino is assumed to be larger than the mass of the \(W'_R\) boson, allowing only hadronic decays of the \(W'_R\). In the case of a \(W'_L\) boson, leptonically decays are allowed. Dedicated Monte-Carlo (MC) simulation samples with interference effects between \(W'_L\) and SM \(W\) included have been used to estimate the change in the number of expected signal events. In the high mass signal region the change in event yield is less than 1 % after kinematic requirements. Interference effects with the SM \(s\)-channel single-top quark process are ignored. All simulated samples are normalised to these NLO calculations using NLO/LO \(k\)-factors ranging from 1.15 to 1.35 depending on the mass and the chirality of the \(W'\) boson. The models assume that the \(W'\)-boson coupling strength to quarks is the same as for the SM \(W\) boson: \(g'_R = g_{SM}\) and \(g'_L = 0 (g'_R = 0 \text{ and } g'_L = g_{SM})\) for \(W'_R (W'_L)\) bosons, where \(g_{SM}\) is the SM \(SU(2)\) coupling.

3.3 Background samples

The background estimate in this analysis is derived from a fit to data. However, an initial background estimate is introduced in Sect. 5.2, which uses a data-driven technique based on sideband regions for the multijet process and MC simulation samples for top-quark pair production (\(t\bar{t}\)). For this purpose, \(t\bar{t}\) production is simulated using the POWHEG-Box generator [24,25] coupled to PYTHIA 6.426 [26,27] for parton showering and hadronisation. This sample uses the CTEQ6L1 PDF set. The \(t\bar{t}\) samples are normalised to the next-to-next-to-leading order (NNLO) calculations in \(\alpha_s\) including resummation of next-to-next-to-leading logarithmic soft gluon terms with \(\top++2.0\) [28–33]: \(\sigma_{tt} = 253^{+14}_{-16}\) pb. PDF and \(\alpha_s\) uncertainties are calculated using the PDF4LHC prescription [34] with the MSTW2008 68 % CL NNLO [35,36], CT10 NNLO [37,38] and NNPDF2.3 [39] PDF sets, added in quadrature to the scale uncertainty. An uncertainty on the top-quark mass of 1 GeV is also considered.

For the optimisation of the \(W'\) top-tagger (Sect. 4.1), MC samples are generated with PYTHIA 8.160 using the AU2 tune [40] and the CT10 [37] PDF set.

Table 1 NLO cross sections times branching ratio to \(tb\) for different \(W'\) masses for the left-handed and for the right-handed model [11,23]

<table>
<thead>
<tr>
<th>Mass (TeV)</th>
<th>(\sigma \times BR(W'_L \rightarrow tb))</th>
<th>(\sigma \times BR(W'_R \rightarrow tb))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>0.40 pb</td>
<td>0.52 pb</td>
</tr>
<tr>
<td>2.0</td>
<td>0.067 pb</td>
<td>0.086 pb</td>
</tr>
<tr>
<td>2.5</td>
<td>0.014 pb</td>
<td>0.017 pb</td>
</tr>
<tr>
<td>3.0</td>
<td>0.0035 pb</td>
<td>0.0039 pb</td>
</tr>
</tbody>
</table>

Footnote 2 continued

detector, and the \(z\)-axis along the beam line. The \(x\)-axis points from the IP to the centre of the LHC ring, and the \(y\)-axis points upwards. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi\) being the azimuthal angle around the beam line. Observables labelled “transverse” are projected into the \(x-y\) plane. The pseudorapidity is defined in terms of the polar angle \(\theta\) as \(\eta = -\ln \tan \theta/2\). The transverse momentum is defined as \(p_T = p \sin \theta = p/\cosh \eta\), and the transverse energy \(E_T\) has an analogous definition.
After event generation, all signal and background MC samples are passed through a full simulation of the ATLAS detector [41] based on GEANT4 [42] and then reconstructed using the same algorithms as for collision data. All MC processes are simulated with pile-up interactions included and re-weighted to match the conditions of the data sample.

4 Physics objects and boosted top identification

This analysis relies on the reconstruction and identification of jets. Jets are built from energy depositions in the calorimeters with the anti-\(k_T\) algorithm [43] using locally-calibrated topological clusters as inputs. Jets are further calibrated using energy and \(\eta\)-dependent correction factors derived from simulation and with residual corrections from in-situ measurements [44]. Events with jets built from noisy calorimeter cells or non-collision backgrounds are removed [45]. In this analysis two radius parameters are used for jet reconstruction: a small-\(R\) radius of 0.4 and a large-\(R\) radius of 1.0. Small-\(R\) jets are required to have \(p_T > 25\) GeV and \(|\eta| < 2.5\). To minimise the impact of energy depositions from pile-up interactions the large-\(R\) jets are trimmed [46]. The trimming algorithm reconstructs jets using the \(k_T\) jet algorithm with \(R = 0.3\) built out of the constituents of the original large-\(R\) jet. Constituent jets contributing less than 5% of the large-\(R\) jet \(p_T\) are removed. The remaining energy depositions are used to calculate the jet kinematics and substructure properties. Large-\(R\) jets are required to have \(p_T > 350\) GeV and \(|\eta| < 2.0\).

In order to identify small-\(R\) jets which originate from \(b\)-quarks, this analysis uses a neural-network based \(b\)-tagging algorithm [47]. Different observables based on the long lifetime of \(B\) hadrons are used as inputs and are able to discriminate between \(b\)-jets, \(c\)-jets and light-quark jets.

Events with reconstructed high-quality electrons [48] or muons [49] are vetoed in order to ensure orthogonality to analyses using the leptonic decay of the top quark [17]. Electrons and muons with transverse momenta above 30 GeV are considered for this veto.

4.1 The \(W'\) top-tagger

This analysis searches for \(W'\) bosons in the high mass \((m_{W'} > 1.5\) TeV\) region, where the top quark and bottom quark have high transverse momentum. The average distance between the decay products of the top quark falls with increasing top-quark \(p_T\), and their hadronic showers begin to overlap. This high-\(p_T\) topology, where the decay products of a massive particle can be captured in one single large-\(R\) jet, is referred to as “boosted” [50–53].

The discrimination of large-\(R\) jets originating from hadronic top-quark decays from large-\(R\) jets originating from other sources using calorimeter information is termed top-tagging. The \(W'\) top-tagging algorithm is a cut-based algorithm using different large-\(R\) jet substructure properties developed to efficiently select large-\(R\) jets from \(W'\) signal events over the dominant background from multijet production featuring light-quark, \(b\)-quark and gluon-initiated jets. The procedure uses three substructure variables: the one-to-two \(k_T\)-splitting scale \(\sqrt{d_{12}}\) [54] and two ratios of \(N\)-subjettiness (\(\tau_N\)) variables [55,56] \(\tau_{12} = \tau_3/\tau_2\) and \(\tau_{21} = \tau_2/\tau_1\).

The splitting scale \(\sqrt{d_{12}}\) distinguishes jets containing top-quark decays, which are relatively \(p_T\)-symmetric in the top-quark rest frame, from \(p_T\)-asymmetric light jets. It is calculated by reclustering the constituents of the large-\(R\) jet using the \(k_T\) algorithm, where the reclustering procedure is stopped at the last merging step. Since the \(k_T\) algorithm clusters the hardest objects last, the last clustering step corresponds to the merging of the two hardest subjets, and \(\sqrt{d_{12}}\) is defined as the corresponding scale:

\[
\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \sqrt{(\Delta\eta_{12})^2 + (\Delta\phi_{12})^2},
\]

where \(p_{T1}\) and \(p_{T2}\) are the transverse momenta of the two remaining subjets, and \(\Delta\eta_{12}\) and \(\Delta\phi_{12}\) are the distances in \(\eta\) and \(\phi\) between these two subjets. For jets from hadronic top-quark decays the \(\sqrt{d_{12}}\) distribution is expected to peak at approximately half the top-quark mass. For jets initiated by light quarks, \(b\)-quarks and gluons, the \(\sqrt{d_{12}}\) distribution is expected to peak near zero.

\(N\)-subjettiness is a measure of the compatibility of a large-\(R\) jet with a given number of subjets. The \(\tau_N\) are calculated by reclustering the large-\(R\) jet constituents with the \(k_T\) algorithm requiring exactly \(N\) subjets to be found. The \(\tau_N\) are then defined by:

\[
\tau_N = \frac{1}{d_0} \sum_k p_{Tk} \times \min(\delta R_{1k}, \ldots, \delta R_{Nk}),
\]

with \(d_0 = \sum_k p_{Tk} \times R\), where the sum runs over all constituents of the jet, \(p_{Tk}\) is the \(p_T\) of the \(k\)th constituent, \(R\) is the radius parameter of the original jet, and the variable \(\delta R_{ik}\) is the distance in \(\eta\)-\(\phi\) space from the \(i\)th subject to the \(k\)th constituent. Ratios of the \(\tau_N\) (\(\tau_{ij} = \tau_i/\tau_j\)) are then defined to discriminate if a jet is more \(i\)- or \(j\)-subjett-like. The \(\tau_{ij}\) distributions peak closer to 0 for \(i\)-subjett-like jets and closer to 1 for \(j\)-subjett-like jets.

The optimisation procedure for the \(W'\) top-tagger aims for an optimal compromise between the efficiency for jets originating from hadronically decaying top quarks and the rejection of jets originating from QCD-multijet production. First, an optimal requirement on \(\sqrt{d_{12}}\) is applied and then, selection criteria on the \(N\)-subjettiness variables are determined. The MC samples used are the 2 TeV \(W'\) \(\rightarrow tb\) signal sample and a high-\(p_T\) QCD-multijet sample with a similar range in
transverse momentum. It has been checked that changing the order in which $\sqrt{d_{12}}$, τ_{32} and τ_{21} are optimised yields very similar results.

Figure 1 shows distributions of $\sqrt{d_{12}}$ (top), τ_{32} with the $\sqrt{d_{12}}$ requirement applied (centre), and τ_{21} with both $\sqrt{d_{12}}$ and τ_{32} requirements applied (bottom) for jets originating from hadronically decaying top quarks in 2 TeV W'_L and W'_R MC simulations. These are compared to the distributions for jets originating from light-quark, b-quark and gluon jets from QCD-multijet MC simulations. The optimised top-tagging requirements are $\sqrt{d_{12}} > 40$ GeV, $\tau_{32} < 0.65$ and $0.4 < \tau_{21} < 0.9$. While τ_N is an infrared- and collinear-safe observable [55], infrared-safety of τ_{32} is ensured by the requirements on τ_{21}. The selection efficiency for jets originating from hadronic top-quark decays is estimated in MC simulations to be larger than 50% for jet p_T above 500 GeV, while the probability to falsely tag a light-quark, b-quark or gluon jet is below 10% [51]. For jet p_T below 800 GeV, where the sample size is sufficient, the top-tagging efficiency is cross-checked in data using single lepton $t\bar{t}$ events, and the top-tagging efficiency is found to be consistent between data and MC.

5 Analysis

5.1 Event selection

Candidate events are triggered by requiring the scalar sum of the E_T of the energy deposits in the calorimeters at trigger level to be at least 700 GeV. In order to perform the offline analysis in the fully efficient regime of this trigger, the scalar sum of the transverse momenta of reconstructed small-R jets with $p_T > 25$ GeV and $|\eta| < 2.5$ is required to be at least 850 GeV. Candidate events must have at least one primary vertex with at least five tracks associated to it and have exactly one large-R W' top-tagged jet (top candidate) and one small-R b-tagged jet (b-candidate) each with $p_T > 350$ GeV and an angular separation $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ larger than 2.0 between the flight direction of the top candidate and the b-candidate. The invariant mass of the dijet system must be at least 1.1 TeV in order to avoid turn-on effects from the kinematic selection. The events are divided into two categories: the one b-tag category and the two b-tag category. For the two b-tag category, an additional b-tagged small-R jet with $p_T > 25$ GeV has to be present close to the top candidate by requiring ΔR between the small-R b-jet and the top candidate to be less than the large-R jet radius parameter 1.0. Figure 2 shows the acceptance times selection efficiency as a function of $t\bar{t}b$ invariant mass at truth level in the one and two b-tag categories and the total signal efficiency corresponding to their sum. The difference in the efficiencies observed in the W'_L and W'_R models originates from the different top-tagging efficiencies, which is due to the preferred flight directions of the top-quark decay products in the top-quark rest frame for the two chiralities.
5.2 Initial background estimate

An initial background estimate is performed to choose the fit function which is used to estimate the background from data. It is also used to derive the associated systematic uncertainties on the background modelling.

Multijet events are the dominant background comprising 99% (88%) of the events in the one (two) b-tag category. The estimate of the contribution of multijet events is based on a data-driven method which categorises events based on top- and b-tagging. Requiring the high-\(p_T\) small-\(R\) jet to fail the b-tagging requirement or the large-\(R\) jet to fail the top-tagging requirement provides three orthogonal control regions in each b-tag category that are dominated by multijet events. These control regions are then used to make an estimate of the multijet contribution in the signal region, as defined by the event selection.

The other significant background is top-quark pairs, contributing 11% in the two b-tag category as estimated using MC simulations. Other backgrounds, such as single-top, W-boson+jets, and Z-boson+jets production are found to have a very small contribution.

Table 2 reports the number of data and expected background events in the signal region for SM processes using the initial background estimate compared to the yield observed in data. The uncertainties quoted for multijet and for \(t\bar{t}\) production contain statistical as well as systematic uncertainties (Sect. 6). The contributions from other background sources (single-top, W-boson+jets and Z-boson+jets production) have only been estimated approximately, but were found to be smaller than 0.4% of the expectation for multijet production. An uncertainty of 100% is quoted here in order to reflect the approximations made.

![Fig. 2 Selection acceptance times efficiency as a function of \(tb\) invariant mass at truth level for left- and right-handed \(W'\) MC. The total efficiency curves correspond to the sum of the efficiencies of the one \(b\)-tag and two \(b\)-tag categories](image)

<table>
<thead>
<tr>
<th>Process</th>
<th>One (b)-tag</th>
<th>Two (b)-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multijet</td>
<td>16100 ± 800</td>
<td>2600 ± 300</td>
</tr>
<tr>
<td>Hadronic (t\bar{t})</td>
<td>130 ± 30</td>
<td>210 ± 60</td>
</tr>
<tr>
<td>Leptonic (t\bar{t})</td>
<td>60 ± 20</td>
<td>90 ± 30</td>
</tr>
<tr>
<td>Other</td>
<td>60 ± 60</td>
<td>8 ± 8</td>
</tr>
<tr>
<td>Total SM prediction</td>
<td>16400 ± 800</td>
<td>2900 ± 300</td>
</tr>
<tr>
<td>Data</td>
<td>16601</td>
<td>2925</td>
</tr>
</tbody>
</table>

5.3 Statistical analysis

An unbinned likelihood fit to the \(m_{tb}\) distributions combining the one \(b\)-tag category and the two \(b\)-category is performed, where the range considered is 1.1–4 TeV. The lower bound of \(m_{tb}\) is due to turn-on effects of the \(m_{tb}\) distribution originating in the kinematic selection. This allows \(W'\) signals of \(m_{W'} \geq 1.5\) TeV to be tested, because for lower values of \(m_{W'}\), the peak of the signal shape is only partially contained in the \(m_{tb}\) range considered. The upper bound of \(m_{tb}\) is motivated by the low expected number of events in the two \(b\)-tag category at such high values. Hence, \(W'\) signals of \(m_{W'} \leq 3.0\) TeV can be tested, in order to constrain the background function parameters also for high \(m_{tb}\) values. A profile likelihood-based test statistic is used for the evaluation of \(p\)-values for observations as well as a CLs test statistic for setting 95% CL exclusion limits, where asymptotic formulas [57] are used. The expected and observed limits are corrected for small differences observed using toy experiments.

The reconstructed \(m_{tb}\) spectrum for the \(W'\) signal is parametrised using the sum of a skew-normal [58] and a Gaussian function. The skew-normal accounts for the asymmetric shape of the resonant \(W'\) signal and is the product of a Gaussian and a Gaussian error function. Non-resonant off-shell \(W'\) production is accounted for with the additional Gaussian distribution. This allows the signal shape to be fully parametrised. In order to search for a \(W'\) signal over the full mass range, the signal shape parameters, as well as the signal acceptance and the expected cross sections are interpolated between the generated mass points. Figure 3 shows the parametric fits to the \(W'\) signal distributions in the two \(b\)-tag category for \(W'_L\) masses between 1.5 and 3 TeV overlaid to the corresponding MC distributions.

Additional contributions from \(W' \rightarrow tb \rightarrow \ell\nu bb\) are between 3.5 and 10%. The leptonic contribution is taken into account by fitting the reconstructed \(m_{tb}\) distribution with a double-Gaussian function and interpolating between generated masses analogously to the treatment of the \(W' \rightarrow tb \rightarrow q\bar{q}bb\) signal. Large-\(R\) jets can falsely be top-tagged in events with leptonic top-quark decays due to several effects including hard gluon radiation, calorimeter activity from
non-identified electrons and hadronically decaying tau leptons.

The sum of all backgrounds is fitted with an analytic function. For each of the two categories, a function is chosen among several tested functions following a procedure based on the \(m_{tb} \) distribution obtained from the initial background estimate (Sect. 5.2). For each function under study the corresponding fake signal bias is quantified by fitting the \(m_{tb} \) distribution from the initial background estimate with a background-plus-signal model. The maximal extracted fake signal observed over the full range of \(W' \) masses is chosen as systematic uncertainty on the background modelling (Sect. 6). The function with the least number of free parameters is chosen out of all tested functions giving similarly small bias. This procedure yields an exponential function with a polynomial of order \(n \) as its argument: \(\text{exp} \left(\sum_{k=1}^{n} c_k m_{tb}^k \right) \), with \(n = 4 \) (\(n = 2 \)) in the one (two) \(b \)-tag category. Figure 4 shows background-only fits to the initial background estimate in the one and two \(b \)-tag categories using the chosen functions. The ratio of the distribution and the fit is also shown, where the uncertainties are the control-region and MC statistical uncertainties and the grey shaded band shows the statistical uncertainty in each bin as expected for 20.3 fb\(^{-1}\). Deviations from 1 in the ratio plot are much smaller than the expected statistical uncertainty and the chosen background functions are hence shown to be flexible enough to describe the background distribution in the signal region.

6 Systematic uncertainties

Systematic uncertainties may change the acceptance and shape of the potential \(W' \) signal, and are included as nuisance parameters in the likelihood function. Table 3 shows the impact of the systematic uncertainties on the event yield of a 2 TeV \(W' \) boson in the one and two \(b \)-tag categories. The largest sources of uncertainty come from the uncertainties associated with \(b \)-tagging, top-tagging and background modelling.

Uncertainties on the \(b \)-tagging efficiency and mistag rates are estimated from data using \(t\bar{t} \) di-lepton decays \([47,59]\).

The \(b \)-tagging (mistagging) uncertainties are increased for high \(p_T \) and reach up to 34\% (60\%) per jet. Uncertainties on the \(W' \) top-tagger performance are evaluated based on the data-MC agreement as shown in Refs. \([52,53]\). They are derived comparing the ratio of each variable from jets built from calorimeter clusters and the corresponding jet built from tracks in the ID. The observed differences between data and MC are taken as variations on the substructure variables and are translated into an uncertainty on the efficiency of the \(W' \) top-tagger. Within the kinematic reach, it has been shown with \(t\bar{t} \) events in the single-lepton channel that these uncertainties cover any possible disagreement between the efficiency observed in data and MC simulations. The jet energy scale (JES) uncertainty \([44]\) depends on the \(p_T \) and \(\eta \) of the reconstructed jet and includes the uncertainty on the \(b \)-jet energy scale. The JES of the two jet types are assumed to be correlated. The impact of the jet energy resolution uncertainty is evaluated by smearing the jet energy in the simulation to increase the nominal resolution. The uncertainty on the integrated luminosity is 2.8\% as derived from beam-separated scans \([60]\). Theoretical uncertainties are included by evaluating the change in the expected number of signal events. The deviations from varying the CTEQ6L1 PDF eigenvectors are summed in quadrature with the uncertainty from \(\alpha_s \), the renormalisation scale, and the change in acceptance at LO and NLO. In addition, the uncertainty on the beam energy \([61]\) is included.

Uncertainties due to background mismodelling are quantified as discussed in Sect. 5.3. This uncertainty amounts to 28 (24) events in the two \(b \)-tag category and 44 (45) events in the one \(b \)-tag category for the \(W'_L \) (\(W'_R \)) model.

7 Results

Figure 5 shows the observed \(m_{tb} \) spectra in the two categories. The highest mass event in the two (one) \(b \)-tag category is at 3.25 TeV (4.68 TeV). A background-only fit to the spectra is also shown and good agreement is observed between the fit and the data.

Figure 6 shows the observed \(p \)-values for background plus left-handed or right-handed \(W' \) model as a function of the \(W' \) mass allowing the background parameters to float. The \(p \)-value from both categories combined is shown taking into account all systematic uncertainties. The maximum

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Parametric fits to the \(W' \to tb \to qbbb \) signal distributions in the two \(b \)-tag category for \(W'_L \) masses between 1.5 and 3 TeV overlaid to the corresponding MC distributions. While unbinned fits are performed, the events from MC simulation are shown as a histogram for presentational purposes.}
\end{figure}
Table 3 Systematic uncertainties on the event yields of a 2 TeV W' boson in both categories in percent and on the background modelling in numbers of expected W' boson events.

<table>
<thead>
<tr>
<th>Systematic uncertainties (%)</th>
<th>W_L'</th>
<th>W_R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>One b-tag</td>
<td>Two b-tag</td>
<td>One b-tag</td>
</tr>
<tr>
<td>b-Tagging</td>
<td>$+13, -20$</td>
<td>$+45, -37$</td>
</tr>
<tr>
<td>W' Top-tagging</td>
<td>± 13</td>
<td>± 10</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>± 1.3</td>
<td>± 1.9</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td><0.1</td>
<td>± 0.2</td>
</tr>
<tr>
<td>Theoretical</td>
<td>± 10</td>
<td>± 10</td>
</tr>
<tr>
<td>Luminosity</td>
<td>± 2.8</td>
<td>± 2.8</td>
</tr>
<tr>
<td>Background modelling</td>
<td>± 44 events</td>
<td>± 28 events</td>
</tr>
</tbody>
</table>

For $g' = g_{SM}$, the limits on the cross section times branching ratio translate to observed (expected) limits on the mass to be above 1.68 TeV (1.63 TeV) and 1.76 TeV (1.85 TeV) in the left- and right-handed models, respectively. The observed cross-section limits are also interpreted as limits on other values of the couplings g'_L/g_{SM} and g'_R/g_{SM}. For $g'_L/g_{SM} < 2$, the reconstructed m_{tb} distributions are dominated by the experimental width. The results obtained for $g'_L/g_{SM} = g_{SM}$ can hence be interpreted as limits in the $g'_L-W'_L$ mass ($g'_R-W'_R$ mass) plane, making use of the approximately quadratic dependence of the W' production cross section on g'. The observed and expected limits on the ratio of couplings g'_L/g_{SM} (g'_R/g_{SM})
Fig. 5 m_{tb} distributions in data in the one b-tag (left) and the two b-tag category (right). Background-only fits are shown, and the bottom plots show the ratio of the data and the fit. The left plot shows an extrapolation of the background fit into the region 4–5 TeV. The ratio plot, however does not show the three data points in this range, because they are beyond the range considered for this analysis. Potential W' signal shapes in the hadronic top-quark decay channel with $g' = g_{SM}$ are also overlaid for resonance masses of 1.5, 2.0, 2.5 and 3.0 TeV.

Fig. 6 Observed p-values for a left-handed (left) and right-handed (right) W' model as a function of the W' mass of the W'_L (W'_R) model as a function of W' mass are shown in Fig. 8 and amount to $g' < 0.70$ ($g' < 0.55$) for a 1.5 TeV W'_L (W'_R) and to $g' < 2$ for a 2.18 (2.29) TeV W'_L (W'_R) boson.

8 Summary and conclusion

A search for $W' \rightarrow tb \rightarrow qqbb$ was presented using 20.3 fb$^{-1}$ of 8 TeV proton-proton collisions data taken with the ATLAS detector. The analysis makes use of jet substructure tagging optimised to select large- R jets coming from hadronically decaying top quarks and b-tagging of small- R jets. The observed m_{tb} spectrum from data is consistent with the background-only prediction and exclusion limits at 95% CL are set on the W' boson production cross section times branching ratio to tb. The use of novel jet substructure techniques allows cross-section limits to be set at high W' masses, which are similar to the limits at lower masses and...
range from 0.16 pb to 0.33 pb for left-handed W' bosons, and from 0.10 pb to 0.21 pb for W' bosons with purely right-handed couplings. In addition, limits are set at 95% CL on the W'-boson effective couplings as a function of the W' mass.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP³.

References
20 (a) INFN Sezione di Bologna, Bologna, Italy; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, USA
23 Department of Physics, Brandeis University, Waltham, MA, USA
24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b) Federal University of Juiz de Fora (UFFJ), Juiz de Fora, Brazil; (c) Federal University of Sao Joao del Rei (UFES), Sao Joao del Rei, Brazil; (d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, USA
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c) University Politehnica Bucharest, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidade de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, UK
29 Department of Physics, Carleton University, Ottawa, ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Anhui, China; (c) Department of Physics, Nanjing University, Jiangsu, China; (d) School of Physics, Shandong University, Shandong, China; (e) Physics Department, Shanghai Jiao Tong University, Shanghai, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington, NY, USA
36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
40 Physics Department, Southern Methodist University, Dallas, TX, USA
41 Physics Department, University of Texas at Dallas, Richardson, TX, USA
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham, NC, USA
46 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
47 INFN Laboratori Nazionali di Frascati, Frascati, Italy
48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
49 Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton, VA, USA
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA
107 Department of Physics, Northern Illinois University, DeKalb, IL, USA
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, USA
110 Ohio State University, Columbus, OH, USA
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
113 Department of Physics, Oklahoma State University, Stillwater, OK, USA
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, USA
116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, UK
120 (a) INFN Sezione di Pavia, Pavia, Italy; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA
122 Petersburg Nuclear Physics Institute, Gatchina, Russia
123 (a) INFN Sezione di Pisa, Pisa, Italy; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
125 (a) Laboratorio de Instrumentaciones e Física Experimental de Partículas-LIP, Lisbon, Portugal; (b) Facultade de Ciências, Universidade de Lisboa, Lisbon, Portugal; (c) Department of Physics, University of Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e) Departamento de Física, Universidade do Minho, Braga, Portugal; (f) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
127 Czech Technical University in Prague, Prague, Czech Republic
128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
129 State Research Center Institute for High Energy Physics, Protvino, Russia
130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
131 Physics Department, University of Regina, Regina, SK, Canada
132 Ritsumeikan University, Kusatsu, Shiga, Japan
133 (a) INFN Sezione di Roma, Rome, Italy; (b) Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy
135 (a) INFN Sezione di Roma Tre, Rome, Italy; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy
136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b) CENTRE NATIONAL DE L’ÉNERGIE DES SCIENCES TECHNIQUES NUCLEAIRES, Rabat, Morocco; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d) Faculté des Sciences, Université Mohammed Premier and LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Énergie Atomique et aux Énergies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA
139 Department of Physics, University of Washington, Seattle, WA, USA
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
144 SLAC National Accelerator Laboratory, Stanford, CA, USA
145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic