Evaluation of potential PET imaging probes for the orexin 2 receptors

Changning Wanga, Colin M. Wilsona, Christian K. Moseleya, Stephen M. Carlin a, Shirley Hsua, Grae Arabasza, Frederick A. Schroeder a,b, Christin Y. Sandera,c, Jacob M. Hookera

A wide range of central nervous system (CNS) disorders, particularly those related to sleep, are associated with the abnormal function of orexin (OX) receptors. Several orexin receptor antagonists have been reported in recent years, but currently there are no imaging tools to probe the density and function of orexin receptors in vivo. To date there are no published data on the pharmacokinetics (PK) and accumulation of some lead orexin receptor antagonists. Evaluation of CNS pharmacokinetics in the pursuit of positron emission tomography (PET) radiotracer development could be used to elucidate the association of orexin receptors with diseases and to facilitate the drug discovery and development. To this end, we designed and evaluated carbon-11 labeled compounds based on diazepane orexin receptor antagonists previously described. One of the synthesized compounds, [11C]CW4, showed high brain uptake in rats and further evaluated in non-human primate (NHP) using PET-MR imaging. PET scans performed in a baboon showed appropriate early brain uptake for consideration as a radiotracer. However, [11C]CW4 exhibited fast kinetics and high nonspecific binding, as determined after co-administration of [11C]CW4 and unlabeled CW4. These properties indicate that [11C]CW4 has excellent brain penetrance and could be used as a lead compound for developing new CNS-penetrant PET imaging probes of orexin receptors.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Orexin A and orexin B (hypocretins), first discovered in 1998 [1], are neuropeptides essential for a number of hypothalamic functions. Two receptor subtypes, termed orexin-1 (OX1) and orexin-2 (OX2), have since been identified [2]. The orexins play an important role in regulation of the sleep-wake cycle, modulating feeding behavior, and energy homeostasis [3]. Distribution studies in rat brain using in situ hybridization and immunohistochemistry (IHC) have shown that OX1 receptors are most abundantly expressed in the locus coeruleus while OX2 receptors are expressed in regions controlling arousal, such as tuberomammillary nucleus, which is an important site for the regulation of sleep and wakefulness [4].

Both selective and non-selective orexin receptor antagonists have been reported. SB-334867-A (1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea) was the first non-peptide orexin receptor antagonist reported and was used for in vivo studies of orexin-A physiological effects [5]. Cp-5 ((S)-1-(6,7-Dimethoxy-3,4-dihydro-1H-isooquinolin-2-yl)-3,3-dimethyl-2-[(pyridin-4-ylmethyl)-amino]-butan-1-one) was the first non-peptide selective OX2 receptor antagonist [6]. Almorexant is a dual(OX1R/OX2R) orexin receptor antagonist, which was shown to significantly decrease wakefulness in rats, dogs and humans [7]. There are two antagonists current in clinical trials for the treatment of insomnia. The first one is Suvorexant (MK-4305), a dual orexin receptor antagonist in development by Merck & Co, and it has completed three Phase III trials [8,9]. SB-649868, the other one in a Phase II clinical trial, is a dual orexin receptor antagonist in development by GlaxoSmithKline [10–12].

A selective OX2R antagonist N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulphonyl)-amino]-N-pyridin-3-ylmethyl-acetamide (EMPA) was labeled with tritium (3H), which measured ex vivo and in vitro binding with rat brain sections [13]. However to date, the in vivo selectivity, distribution and involvement of individual receptors in the pathophysiology of orexin-mediated disorders are not available. The regional abundance of [3H]EMPA (94.3 Ci/mmol) specific binding was measured by quantitative autoradiography in the range of 40–140 fmol · mg−1 protein. A high density of OX2R was observed in the CA3 region of the hippocampus (140 fmol · mg−1 protein), cortical layer 6, tuberomammillary nucleus, induseumgriseum and nucleus accumbens. Development of an imaging tool that permits detection and quantification of orexin receptors in vivo will accelerate research in this domain to deepen our understanding of the function of orexins in the regulation of sleeping, food uptake and drug addiction. PET imaging would be an excellent tool for this purpose because radiotracers developed and tested in animals can be translated...
rapidly for human imaging. The autoradiography results with [\textsuperscript{\textit{\textit{H}}}^3]EMPA further encouraged us to label orexin antagonists with radioisotopes (e.g., carbon-11 and fluorine-18). Currently, there are no PET tracers available for imaging orexin receptors. Radiosynthesis of [\textsuperscript{\textit{\textit{C}}}^\textit{11}]BBAC and [\textsuperscript{\textit{\textit{C}}}^\textit{11}]BBPC have been reported recently [14], but PET scans performed in a rhesus monkey did not show tracer retention or appropriate brain uptake (less than 0.0001%ID/cc in the brain).

Herein, our goals were to develop CNS-penetrant PET imaging probes of orexin 2 receptors and evaluate the uptake and distribution of these probes in the rodent and the non-human primate brain; additionally, these information can help us to understand if these radiolabeled compounds can be used as CNS drugs or only for the peripheral organs. To accomplish this, we incorporated the positron emitting isotope carbon-11 ($t_{1/2} = 20.4$ min) into labeling precursors using [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CH$_3$I. Herein we describe the design and synthesis of [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW3, [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW4 and [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW6, which are N-N-disubstituted-1,4-diazepanes for OX$_2$R PET imaging. Results from our imaging studies indicate that [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW4 has good BBB penetration in rats and non-human primates and it would be a lead compound for further radiotracer development.

2. Results and discussions

A new class of dual orexin receptor antagonists based on a 1,4-diazepane central scaffold were identified and some of them are reported as potent, brain penetrating dual orexin receptor antagonists able to block orexin signaling both in vitro and in vivo [15]. However, there is no evidence to show which the regions has maximal biological effects with these compounds. Hence, three N-N-disubstituted-1,4-diazepanes were chosen for our study to investigate the potentials to be used as a PET tracer and to investigate the PK and distributions in the brain. According to the literature [15], CNS penetration could be predicted based on their physical chemical properties. All three compounds showed preferred physicochemical properties for CNS penetration (molecular weight, calculated or measured log P and topological polar surface area (\textit{tPSA})) as well as favorable K_i values for OX$_2$R (see Table 1). Preliminary analysis of physicochemical properties indicates that CW3, CW4 and CW6 could be used as imaging agents for OX$_2$R [16]; albeit the affinities may be slight too low given the B_{max} of OX$_2$ (measured in rats) up to 140 fmol/mg [10]. To be a PET imaging probe for OX$_2$ receptor, the binding potential (BP, which equals the product of receptor density (B_{max}) and affinity ($1/K_i$ or $1/K_{d}$)) is usually at least 10 in the regions with high receptor density to obtain images for quantification [17]. The three compounds we chose to pursue have BP values (we assumed that fmol/mg equals nM) in the range of 3–30, allowing us to test the potential of these compounds use as quantitative PET imaging agents for the OX$_2$ receptor.

Synthesis of nonradioactive standards CW3, CW4, CW6 and their 0-desmethyl precursors were achieved in good yield as shown in Scheme 1 [16]. Briefly, 1,4-diazepane was coupled with 2-chloroquinuclidine or 2, 6-dichlorobenzothiazole to form the monosubstituted-1,4-diazepane intermediates. The intermediates were then reacted with 2, 6-dimethoxybenzoic acid or 2-methoxybenzoic acid to yield CW3, CW4 and CW6 as reference standards for labeling. Radiolabeling precursors 4, 8 and 10 were synthesized through similar coupling reactions with 2-hydroxy-6-methoxybenzoic acid or 2-hydroxybenzoinic acid.

The synthesis of the target carbon-11 labeled compounds were accomplished using 0-desmethyl precursors in DMSO with [\textsuperscript{\textit{\textit{C}}}^\textit{11}]methyl iodine ([\textsuperscript{\textit{\textit{C}}}^\textit{11}]CH$_3$I) as outlined in Scheme 2. [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CH$_3$I was trapped in a TRACERlab FX-M synthesizer reactor (General Electric) preloaded with a solution of precursor (4, 8 or 10) (1.0 mg) and Cs$_2$CO$_3$ (6.0 mg) in dry DMSO (300 μL). The solution was stirred at 50 °C for 3 min and water (1.2 mL) was added. The reaction mixture was purified by reverse phase semi-preparative HPLC and the desired fraction was collected. The final product was reformulated by loading onto a solid-phase exchange (SPE) C-18 cartridge rinsing with H$_2$O (5 mL), eluting with EtOH (1 mL), and diluting with saline (0.9%, 5 mL), or water (1 mL) to formulate the product as isotonic solution. The chemical and radiochemical purity of the final product was tested by analytical HPLC. The identity of the product was confirmed by analytical HPLC with additional co-injection of reference standard. The average time required for the synthesis from end of cyclotron bombardment to end of synthesis was 40 min (CW3), 35 min (CW4) and 35 min (CW6). The radiochemical yield was 7.5% ([\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW3), 16–21% ([\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW4) and 15.9% ([\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW6) (decay-uncorrected to trapped [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CH$_3$I). The specific activity was 0.6 Ci/μmol ([\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW3), 1.5 Ci/μmol ([\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW4) and 1.8 Ci/μmol ([\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW6) (end of synthesis, EOS). Chemical and radiochemical purities were ≥95% for all radiotracers.

Using PET-CT in rodents, we determined that [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW3 and [\textsuperscript{\textit{\textit{C}}}^\textit{11}]CW6 exhibited very poor BBB penetration and low brain uptake over the scanning time (60 min) when the radiotracers (0.9–1.1 mCi, i.v.) were administered, Fig. 1. A concentration of less than 0.2% and 0.1% of

Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Molecular weight (\textit{g/mol})</th>
<th>Log P (\textit{Log D})</th>
<th>\textit{tPSA} (\textit{cm}2/\textit{mg})</th>
<th>K_i [nM]</th>
<th>K_{so} [nM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW3</td>
<td>391.46</td>
<td>3.33</td>
<td>54.37</td>
<td>165</td>
<td>243</td>
</tr>
<tr>
<td>CW4</td>
<td>401.91</td>
<td>4.11 (2.16)</td>
<td>45.14</td>
<td>767</td>
<td>1600</td>
</tr>
<tr>
<td>CW6</td>
<td>431.94</td>
<td>4.14</td>
<td>54.37</td>
<td>150</td>
<td>630</td>
</tr>
</tbody>
</table>

*Carbon-11 labeling position.

*Calculated Log P.

*Measured Log D.

*See Ref [13].
the injected dose per cubic centimeter (%ID/cc) was distributed in the brain tissue for \([11C]\)CW3 and \([11C]\)CW6, respectively. The other carbon-11 labeled compound, \([11C]\)CW4, showed higher brain uptake, up to 0.4% ID/cc (%ID/cc, is a measure of the concentration of a radiotracer in a defined region divided by the injected dose) distributed throughout brain tissue, and the injected dose per cubic centimeter was above 0.1% during the imaging session.

To further investigate the pharmacokinetics and brain distribution of \([11C]\)CW4, we used PET-MRI imaging in a Papioanubis baboon. \([11C]\)CW4 brain-to-plasma ratios were found to increase after tracer administration; 1.4 after 10 min, 1.8 after 20 min, and 2.0, the maximum, after 30 min indicating binding and accumulation in brain tissue. Excellent brain penetrance of \([11C]\)CW4 was further demonstrated by robust accumulation of radioactivity in PET images summed 30–80 min post injection (Fig. 2), although little difference was observed in regional brain uptake of \([11C]\)CW4. According to the literature, the hippocampus, thalamus and cortex are brain regions with high OX2R expression [13]. Consistent with these reported

\[
\text{Scheme 1. Synthesis of orexin antagonists and their labeling precursors. Reagents and conditions: (a) Na}_2\text{CO}_3, \text{DMSO, 120 °C, 10 h; (b) 2-hydroxy-6-methoxybenzoic acid or 2,6-dimethoxybenzoic acid, EDC - HCl, DCM, rt, 1 h; two steps yields: 24% for 4, 30% for CW3, 27% for 8, 33% for CW6; (c) 2-hydroxybenzoic acid or 2-methoxybenzoic acid, EDC - HCl, DCM, rt, 1 h; two steps yield: 54% for 10, 40% for CW4.}
\]

The in vitro and ex vivo data, our PET imaging results showed subtle increases in radioactivity in regions including hippocampus, thalamus, frontal cortex and parietal cortex. However overall, radioactivity levels were nearly as high throughout the brain, including other regions such as pons, cerebellum, putamen and occipital cortex.

Radiolabeled compounds show different types of binding, specific binding (bind to the target receptor, saturable, reversible and can be inhibited by their unlabeled form); nonspecific binding (adsorption to tissue, non-saturable). They are different from selective binding (radiolabeled compounds only bind to very limited types of receptors) and non-selective binding (radiolabeled compounds bind to several types of receptors). To test for specific binding with \([11C]\)CW4, a second imaging study was conducted with the co-administration of \([11C]\)CW4 and unlabeled CW4 (1 mg/kg, i.v.). We expected that the unlabeled CW4 would saturate the OX2R in the baboon brain to decrease the binding of \([11C]\)CW4 to its target. However, no changes in the radioligand distribution or pharmacokinetics were observed in any brain region (Fig. 3), suggesting that CW4 exhibits high non-specific binding.

\[
\]

<table>
<thead>
<tr>
<th>Precursor</th>
<th>Ar</th>
<th>R</th>
<th>Product</th>
<th>Radiochemical yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>MeO-</td>
<td>([11C]CW3)</td>
<td>7.5%</td>
</tr>
<tr>
<td>8</td>
<td>H-</td>
<td></td>
<td>([11C]CW4)</td>
<td>16-21%</td>
</tr>
<tr>
<td>10</td>
<td>MeO-</td>
<td></td>
<td>([11C]CW6)</td>
<td>16%</td>
</tr>
</tbody>
</table>
These studies demonstrate that $[^{11}\text{C}]$CW4, a carbon-11 radioabeled OX$_2$R antagonist, has high brain permeability dominated by non-specific binding in rodents and non-human primates (NHPs) whereas the other carbon-11 labeled $[^{11}\text{C}]$CW3 and $[^{11}\text{C}]$CW6 showed limited brain penetration in rats. Non-specific uptake is common in radiotracer development even with molecules predicted to have proper physio-chemical properties. While the density of OX$_2$ receptors in rat brain in quite reasonable for PET ($B_{\text{max}} = 40-140$ pmol · mg$^{-1}$ protein) [13], and OX$_2$-binding compound with greater binding affinity than CW4 is needed for further imaging. The development of higher affinity derivatives of CW4 may be a means to test whether specific binding is indeed limited by B_{max} in the NHP brain. We hope this can be accomplished without compromising the excellent BBB penetration of CW4. Following imaging studies, all of the animals survived and showed no change in home cage behavior, which suggest the radiotracers and the ‘blocking doses’ have no apparent toxicity or any pharmacological effects. These results indicate that there is a potential to develop either selective (OX$_1$R or OX$_2$R) or non-selective (dual OX$_1$R and OX$_2$R) brain-penetrant orexin receptor imaging agents based on N,N-disubstituted-1,4-diazepanes, which may facilitate the development of new orexin antagonists for treatment of neurological disorders. To this end, ongoing work is aimed at optimizing lead compound CW4 to improve the binding affinity and specificity. The results also indicate that CW3 and CW6 may not be useful as imaging probes in the brain due to low brain uptake in our study, however, they may still can used as CNS drugs. In this paper, PET imaging results with $[^{11}\text{C}]$CW4 showed the PK in baboon brain and would a valuable guide for the diazepane-based orexin receptor antagonists development when the brain as the target.

3. General methods and materials

All reagents and solvents were of ACS-grade purity or higher and used without further purification. NMR data were recorded on a Varian 500 MHz magnet and were reported in ppm units downfield from trimethylsilane. Analytical separation was conducted on an Agilent 1100 series HPLC fitted with a diode-array detector, quaternary pump, vacuum degasser, and autosampler. Mass spectrometry data were recorded on an Agilent 6310 ion trap mass spectrometer (ESI source) connected to an Agilent 1200 series HPLC with quaternary pump, vacuum degasser, diode-array detector, and autosampler. $^{13}\text{CO}_2$ (1.2 Ci) was obtained via the $^{14}\text{N}(p, \alpha)^{13}\text{C}$ reaction on nitrogen with 2.5% oxygen, with 11 MeV protons (Siemens Eclipse cyclotron), and trapped on molecular sieves in a TRACERlab FX-MeI synthesizer (General Electric). $^{11}\text{CH}_4$ was obtained by the reduction of $^{13}\text{CO}_2$ in the presence of Ni/hydrogen at 350 °C and recirculated through an oven containing I$_2$ to produce $^{11}\text{CH}_3$I via a radical reaction.

All animal studies were carried out at Massachusetts General Hospital (PHS Assurance of Compliance No. A3596-01). The Subcommittee on Research Animal Care (SRAC) serves as the Institutional Animal Care and Use Committee (IACUC) for the Massachusetts General Hospital (MGH). SRAC reviewed and approved all procedures detailed in this paper.

MR-PET imaging was performed in anesthetized (ketamine, isoflurane) baboon (papioanubis) to minimize discomfort. Highly-trained animal technicians monitored animal safety throughout all procedures and veterinary staff were responsible for daily care. All animals were socially housed in cages appropriate for the physical and behavioral health of the individual animal. Animals were fed thrice per diem, with additional nutritional supplements provided as prescribed by the attending veterinarian. Audio, video and tactile enrichment was provided on a daily basis to promote psychological well-being. No non-human primates were euthanized to accomplish the research presented.

PET/CT imaging was performed in anesthetized (isoflurane) rats (Sprague Dawley) to minimize discomfort. Highly-trained animal technicians monitored animal safety throughout all procedures and veterinary staff were responsible for daily care. All animals were socially housed in cages appropriate for the physical and behavioral health of the individual animal. Animals were given unlimited access to food and water, with additional nutritional supplements provided as prescribed by the attending veterinary staff. Animals were euthanized at the end of the study using sodium pentobarbital (200 mg/kg, IP).

4. LogD determination

An aliquot (~50 μL) of the formulated radiotracer was added to a test tube containing 2.5 mL of octanol and 2.5 mL of phosphate buffer
solution (pH 7.4). The test tube was mixed by vortex for 2 min and then centrifuged for 2 min to fully separate the aqueous and organic phase. A sample taken from the octanol layer (0.1 mL) and the aqueous layer (1.0 mL) was saved for radioactivity measurement. An additional aliquot of the octanol layer (2.0 mL) was carefully transferred to a new test tube containing 0.5 mL of octanol and 2.5 mL of phosphate buffer solution (pH 7.4). The previous procedure (vortex mixing, centrifugation, sampling, and transfer to the next test tube) was repeated until six sets of aliquot samples had been prepared. The radioactivity of each sample was measured in a well counter (Perkin-Elmer, Waltham, MA). The log D of each set of samples was derived by the following equation: log $D = \log \frac{\text{decay-corrected radioactivity in octanol sample \times 10}}{\text{decay-corrected radioactivity in phosphate buffer sample}}$.

5. Radiosynthesis of 11C CW3, 11C CW4 and 11C CW6

11CH$_3$I (300–400 mCi) was trapped in a TRACERlab FX-M synthesizer reactor (General Electric) preloaded with a solution of precursors (4, 8 or 10) (1.0 mg) and Cs$_2$CO$_3$ (6.0 mg) in dry DMSO (300 μL). The solution was stirred at 50°C for 3 min and water (1.2 mL) was added. The reaction mixture was purified by reverse phase semi-preparative HPLC and the desired fraction was collected. The final product was reformulated by loading onto a solid-phase exchange (SPE) C-18 cartridge, rinsing with H$_2$O (5 mL), eluting with EtOH (1 mL), and diluting with saline (0.9%, 9 mL). The chemical and radiochemical purity of the final product was tested by analytical HPLC. The identity of the product was confirmed by analytical HPLC with additional co-injection of reference standards.

For 11C CW3:
Reverse phase semi-preparative HPLC condition: Phenomenex Gemini NX-C18, 250 mm × 10 mm, 5 μm, 4.0 mL/min, 65% 0.1 M AMF/35% CH$_3$CN. Analytical HPLC condition: Agilent Eclipse XDB-C18, 150 mm × 4.6 mm, 1.5 mL/min, 40% 0.1 M AMF/60% CH$_3$CN. The average time required for the synthesis from end of cyclotron bombardment to end of synthesis was 40 min. The radiochemical yield was 7.5% (non-decay corrected relative to trapped 11C CH$_3$I). Chemical and radiochemical purities were ≥95% with a specific activity 0.6 Ci/μmol (EOS).

For 11C CW4:
Reverse phase semi-preparative HPLC condition: Phenomenex Luna 5u C8(2), 250 mm × 10 mm, 5 μm, 4.0 mL/min, 45% H$_2$O + TFA (0.1% v/v)/55% CH$_3$CN + TFA (0.1% v/v). Analytical HPLC condition: Agilent Eclipse XDB-C18, 150 mm × 4.6 mm, 2.0 mL/min, 30% H$_2$O + TFA (0.1% v/v)/70% CH$_3$CN + TFA (0.1% v/v). The average time required for the synthesis from end of cyclotron bombardment to end of synthesis was 35 min. The average radiochemical yield was 16–21% (non-decay corrected relative to trapped 11C CH$_3$I; n = 4). Chemical and radiochemical purities were ≥95% with a specific activity 1.5 ± 0.2 Ci/μmol (EOS).
anatomic coregistration. To characterize the specific homogenous solution of 10% ethanol and 90% isotonic saline. A bolus was initiated followed by administration of the radiotracer in a bolus (transaxial and axial, respectively). Dynamic PET image acquisition was followed by computed tomography (CT) for anatomic coregistration. PET data were reconstructed using a 3D-MLEM method resulting in a PET resolution of 5 mm and 4% iso.

Male Sprague–Dawley rats were utilized in pairs, anesthetized with inhalational isoflurane (Forane) at 3% in a carrier of 2 L/min medical oxygen and maintained at 2% isoflurane for the duration of the scan. The rats were arranged head-to-head in a Triumph Modality PET/CT/SPECT scanner (Gamma Medica, Northridge, CA). Rats were injected standard references or vehicle via a lateral tail vein catheterization at the start of PET acquisition. Dynamic PET acquisition lasted for 60 min and was followed by computed tomography (CT) for anatomic coregistration. PET data were reconstructed using a 3D-MLEM method resulting in a full width at half-maximum resolution of 1 mm. Reconstructed images were exported from the scanner in DICOM format along with an anatomic CT for rodent studies. These files were imported to PMOD (PMOD Technologies, Ltd.) and manually coregistered using six degrees of freedom.

Volumes of interest (VOIs) were drawn manually as spheres in brain regions guided by high resolution CT structural images and summed PET data, with a radius no less than 1 mm to minimize partial volume effects. Time-activity curves (TACs) were exported in terms of decay corrected activity per unit volume at specified time points with gradually increasing intervals. The TACs were expressed as percent injected dose per unit volume for analysis.

A female Papio Anubis baboon, deprived of food for 12 h prior to the study, was administered intramuscular ketamine (10 mg/kg) and intubated. For maintenance of anesthesia throughout the study, the baboon was administered anesthetized with isoflurane for the duration of the scan. The rats were arranged head-to-head in a Triumph Modality PET/CT/SPECT scanner (Gamma Medica, Northridge, CA). Rats were injected standard references or vehicle via a lateral tail vein catheterization at the start of PET acquisition. Dynamic PET acquisition lasted for 60 min and was followed by computed tomography (CT) for anatomic coregistration. PET data were reconstructed using a 3D-MLEM method resulting in a full width at half-maximum resolution of 1 mm. Reconstructed images were exported from the scanner in DICOM format along with an anatomic CT for rodent studies. These files were imported to PMOD (PMOD Technologies, Ltd.) and manually coregistered using six degrees of freedom.

For [11C]CW6:
Reverse phase semi-preparative HPLC condition: Phenomenex Luna 5u C8 (2), 250 mm × 10 mm, 5 μm, 4.0 mL/min, 45% H2O + TFA (0.1% v/v)/55% CH3CN + TFA (0.1% v/v). Analytical HPLC condition: Agilent Eclipse XDB-C18, 150 mm × 4.6 mm, 2.0 mL/min, 30% H2O + TFA (0.1% v/v)/70% CH3CN + TFA (0.1% v/v). The time required for the synthesis from end of cyclotron bombardment to end of synthesis was 35 min. The radiochemical yield was 15.9% (non-decay corrected relative to trapped [11C]CH3J). Chemical and radiochemical purities were ≥95% with a specific activity 1.8 Ci/μmol (EOS).

For [11C]CW8:
Reverse phase semi-preparative HPLC condition: Phenomenex Luna 5u C8 (2), 250 mm × 10 mm, 5 μm, 4.0 mL/min, 45% H2O + TFA (0.1% v/v)/55% CH3CN + TFA (0.1% v/v). Analytical HPLC condition: Agilent Eclipse XDB-C18, 150 mm × 4.6 mm, 2.0 mL/min, 30% H2O + TFA (0.1% v/v)/70% CH3CN + TFA (0.1% v/v). The time required for the synthesis from end of cyclotron bombardment to end of synthesis was 35 min. The radiochemical yield was 15.9% (non-decay corrected relative to trapped [11C]CH3J). Chemical and radiochemical purities were ≥95% with a specific activity 1.8 Ci/μmol (EOS).

9. Baboon PET/MR image analysis
Volumes of interest (VOIs) were drawn manually as spheres in brain regions guided by high resolution MR structural images and summed PET data, with a radius no less than 4 mm. A common VOI mask was applied to both baboon scans. Time-activity curves (TACs) were exported in terms of decay corrected activity per unit volume at specified time points with gradually increasing intervals. The TACs were expressed as percent injected dose per unit volume for analysis.

Acknowledgments
This research was carried out at the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging Technologies, P41EB015896, a P41 Regional Resource supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health. This work also involved the use of instrumentation supported by the NIH Shared Instrumentation Grant Program and/or High-End Instrumentation Grant Program; specifically, grant numbers: S10RR017208, S10RR026666, S10RR022976, S10RR019933, S10RR029495. We would like to thank members of the Hooker laboratory for helpful discussions and thanks to Dr. Ramesh Neelamegam for revising the paper. The authors are grateful to Joseph Mandeville and Helen Deng for assistance during NHP imaging.

Appendix A. Supplementary data
Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.nucmedbio.2013.07.001.

References