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Abstract

Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both
help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from
specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data
routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to
capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown
exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic
regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing
volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large
genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression
analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed
us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill
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sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified
that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code
with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed
through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by
645 863 variants, compared to PLINK 1.07’s logistic regression. This represents a reduction in run time from 4.8 hours to
29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project.
Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression
for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful
OI process for bioinformatics.

Keywords: Open innovation; Crowdsourcing; Genome-wide association study; PLINK; Logistic regression

Background

Genome-wide association studies (GWAS) relate genetic vari-
ants in individuals with specific phenotypes such as disease
status [1, 2]. GWAS have identified single nucleotide polymor-
phisms (SNPs), genes, biological pathways, and networks un-
derlying complex diseases, and have been applied to classify
patients, predict drug response, and define novel therapeutic
potential [3, 4]. To have adequate statistical power, GWAS can
require large numbers of individuals and polymorphic alleles,
particularly for common, complex diseases in which multiple
alleles contribute to disease risk and specific SNPs have small
individual effects. Improved technology and decreasing costs
have allowed routine collection of GWAS data from deeply phe-
notyped patient cohorts where many clinical traits beyond dis-
ease status are assessed. Correspondingly, the challenge has
now shifted to the analysis of these large data sets, essentially
shifting the bottleneck from data collection to data analysis, and
motivating the development of new data analysis methods.

A number of software tools exist for analyzing genotype-
phenotype associations. One of the most popular tools for ana-
lyzing GWAS results is the open source software PLINK [5], which
provides a number of analysis functions, including logistic re-
gression to associate genetic variants with binary phenotypes.
However, for today’s large genotype-phenotype datasets, asso-
ciation analyses can take many hours for a single phenotype.
A number of groups have described alternative algorithms and
software for more rapid computation of associations between
genetic variants and phenotypes, often motivated by detecting
epistasis [6–10]. Our approach to this analytic challenge was to
accelerate PLINK’s logistic regression function through OI and
crowdsourcing competitions.

Crowdsourcing utilizes a diverse, external group of problem
solverswith potentially varied knowledge bases and background
to assist in addressing awell-defined question or problem. Open,
prize-based contests allow motivated individuals to compete
for cash prize(s) to solve the proposed problem, creating in-
creased potential for new, innovative ideas and solutions, and
extreme value outcomes. While contestants generally compete
for monetary prizes, there are other motivating factors includ-
ing peer recognition, skill building, self-affirmation, and per-
ceived enjoyment that attract competitors. Over the last decade,
OI approaches have been shown to regularly engage hundreds
and sometimes thousands of problem-solvers to solve difficult
and important science and technology problems. Utilization of
crowdsourcing in life sciences [11–16] is now emerging as an
important way to complement internal R&D efforts, as well as
augment an organization’s capacity for technical work. Here we
describe the process and iterative strategy bywhichwehave har-
nessed the power of crowdsourcing as applied to a complex an-
alytic problem.

Methods

Fig. 1 outlines our iterative approach using prize-based crowd-
sourcing to speed up GWAS analysis. Our workflow started with
profiling of the PLINK 1.07 application, and then proceeded
via contest-based crowdsourcing to accelerate logistic regres-
sion. Faster logistic regression codewas re-integrated into PLINK
1.07, and then donated back to the PLINK2 open-source project.
In addition, we crowdsourced data input/output changes and
multithreading work and used coarse-grained parallelization to
achieve further accelerations.

Datasets and nomenclature

In this paper we use the following symbols to summarize the
dimensions of genotype datasets:

� N, the number of subjects
� M, the number of genetic markers (variants)
� P, the number of phenotypes
� C, the number of covariates

Our motivating use case was a GWAS dataset from the
COPDGene consortium [17] with N = 6678, M = 645 863, P = 164,
and C = 7. The seven covariates were five principal components
computed from the genotype matrix, age at study enrollment,
and smoking status (in pack-years).

Test data sets for the contest were derived by sampling geno-
types from a 1000 Genomes Project [18, 19] that included 1624
individuals from 8 populations with 100000 markers per sub-
ject, then generating simulated phenotypes and covariates cor-
responding to the genotypes. For each test dataset, the 4 prob-
lem dimensions were uniformly sampled from these ranges: N
500–1500; P 3 and 50; M 1000–5000; and C 5 and 10. A genotype
matrix (NxM) was then sampled from the 1624 × 10 000 geno-
type matrix. For each phenotype, a liability value for each indi-
vidual was computed assuming 0–5 % of markers had nonzero
phenotypic effects on a background of population effects, and
the binary phenotype was set to 1 when the liability value was
greater than zero, and zero otherwise. Finally, the covariate
vectors were set to be the first C principal components of the
normalized genotype matrix. Details of the genotype and phe-
notype simulation frameworkwere included in the contest prob-
lem statement [20].

Compute environments

Our routine compute environment consisted of a high-
performance compute (HPC) cluster of about 2300 processors
running the LSF job scheduler. Typical processors were In-
tel Xeon E7-8891 V2 (64 bit, 3.2 GHz), and nodes had 529GB
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Figure 1: Iterative open source contests to accelerate logistic regression for GWAS analysis. Workflow and code outputs of our project. First, a 10-day marathon crowd
sourcing competition was hosted to accelerate the logistic regression code from PLINK 1.07, yielding code C1. Accelerated logistic regression code was integrated back
into PLINK 1.07, yielding code PLINK-FLR. The logistic regression elements were donated and integrated into the PLINK2 project. A first-to-finish contest was run to

speed up data initialization in the C1 code, yielding code C2. Another first-to-finish contest was run tomultithread the C2 code, yielding code C3. C3was then combined
with coarse-grained HPC parallelization and PLINK-FLR, yielding mPLINK.

RAM. The operating system was Red Hat Enterprise Linux
6.5.

The HPC environment was shared withmultiple users across
our organization, making it more difficult to capture consistent
benchmark times. So additional testing, as noted in the Results
section,was done on anAmazonWeb Services (AWS)m4.4xlarge
instance running the same operating system as HPC (Amazon
machine instance ID = ami-6869aa05).

PLINK code profiling

PLINK 1.07 was profiled in the HPC environment to break down
the computational costs of individual components of the logis-
tic regression calculation. For this profiling, PLINK was compiled
under gcc 4.1.2 with –O2 and –pg options. Profiling was done us-
ing gprof 2.17.50.0.6, which reported the code call graph and frac-
tions of time spent in specific code segments.

Logistic regression contest

To initialize our contest, a reference implementation of the
PLINK 1.07 logistic regression code was created in a test harness
suitable for contestantswith no prior knowledge of genetics. The
core regression code from PLINK was extracted and repackaged
into a C++ class with a single public method called computeAs-
sociations(). To eliminate the need for contestants to work with
PLINK-specific file formats and data structures, the classwas de-
signed to read SNP data fromahuman-readable text file contain-
ing allele dosages, instead of PLINK’s more compact but opaque
.bed files.

A scoring metric that supported our goal of achieving both
improved accuracy and speed was created and used as the sole
metric to award prizes. The accuracy score component was cal-
culated using the following procedure:

Contestants computed the M x P matrix of chi-square (Z)
statistics, ordered in decreasing order of significance (i.e., de-
creasing order of Z2).

The ranked list was compared to the reference (correct) re-
sult, computed using computeAssociations().

The accuracy score was computed as the number of cor-
rect Z values computed (within 0.1 % tolerance) before the first
mistake.

A raw score for each test case was calculated as the accuracy
score divided by a time penalty between 1.0 and 2.0:

RAW SCORE = ACCURACY SCORE/(1 + max (TIME SPENT,
100 ms)/TIME LIMIT)

where TIME LIMIT is set to 100 ms.
Finally, a scaled score for each test case was defined relative

to the scores of other competitors:
SCALED SCORE = RAW SCORE/max (P, BEST),

where BEST is the best raw score achieved for that test case by
any competitor and P is the number of phenotypes. The max (P,
BEST) is intended to reduce score variance in the event of very
difficult cases. The total score for a submission was the sum of
the scaled scores over all test cases.

The contestwas hosted as a 10-daymarathon contest onTop-
Coder.com, an online programming competition web site [20].
Contestants were competing for a total of USD $10000 in prize
moneywhere the first-place contestant won $5000, second place
won $2000, third place $1500, and fourth and fifth place received
$1000 and $500, respectively.

Contract development with logistic regression
contest winner

To enable PLINK users to take advantage of enhancements gen-
erated by crowdsourcing, we contracted for $2500 with the win-
ner of the logistic regression contest to integrate his code with
PLINK 1.07. Given the contestants’ deep familiarity with his own
code, this was an efficient way to integrate contest code into
PLINK 1.07 with significantly less effort than would have been
required by a third party. The integrated code module was then
donated to the PLINK2 project.

Data input/initialization contest

Contestants were provided with the complete source code of
PLINK 1.07 and a winning program from the logistic regression
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marathon contest. The focus of the contest was to revise the
code to make the whole execution process faster by any means
possible, but the contestants were directed to look specifically at
the code that handled reading input data and initializing data
structures (i.e., the steps from reading input genotypes from
disk, to the point where the in-memory data structures required
for the contest algorithm to execute were created and loaded).
Four test cases covering a range of problem sizes (N = 100
individuals with M = 5000, 50 000, and 700000 markers; and N
= 6000 individuals with M = 7000 markers) were provided to
contestants. The largest test case was use to rank performance.
We required the solution to maintain correctness and provide
at least a 2x speedup in processing times. The contest [21] was
hosted on Topcoder.com as a first-to-finish race, meaning that
the first solution satisfying all the requirements would be con-
sidered the winning solution and win the $300 prize.

Multithreading contest

In addition to novel approaches to logistic regression, which we
sought in the logistic regression contest, we also used crowd-
sourcing to acquire resources to do more “conventional” cod-
ing work, such as multithreading. Contestants were provided
with source code created by winning contestants in the data
input/initialization contest and asked to multithread this code.
The contest [22] was hosted on Topcoder.com. For testing, the
number of threads was set to 4 and a successful solution re-
quired at least a 2-fold decrease in processing time. The prize
consisted of two parts. The first contestant to achieve a 2x
speedup with multithreading won $600. The winning code was
then made available to all other contestants. At the end of
2 weeks, the contestant with the submission with the fastest
speed qualified for a prize of min ($100k , $1000), where k is
the additional fold-increase by which the code was accelerated,
relative to the first winner’s code. For example, if the first win-
ner achieved a 2x speedup, and a following contestant increased
that to 3x, then k = 1 (3x − 2x = 1x).

Coarse-grained parallelization

As a final step, we implemented coarse-grained (scatter-gather)
parallelization using codes generated from the project. Multiple
parallel processes running fast logistic regression code were ex-
ecuted using the Platform LSF load scheduling software on aHPC
cluster. The approach for coarse-grained parallelization was to
run fast logistic regression on all input markers, identify those
with significant association statistics, and then run an acceler-
ated PLINK on the subset of markers with logistic association P
values less than a user-selected threshold to generate the final
regression summary statistics.

Results
Summary of challenge/problem formulation

Our goal was to dramatically accelerate association analysis for
GWAS. We first collected use cases from genetic analysts to bet-
ter understand the use of GWAS in our organization. The leading
use casewas the association of binary phenotypeswith variants,
using the logistic regression option in PLINK.

Code profiling in representative test datasets with covariates
showed that PLINK 1.07’s core logistic regression code (the fitLM()
function) accounted for about 80 % of run time, and data ini-
tialization and related overhead accounted for most of the re-

maining 20 %. Thus, we decided to focus first on acceleration
of the regression calculation. Given this breakdown of comput-
ing time, we anticipated that an infinitely fast logistic regression
routine within the context of PLINK 1.07 would achieve an upper
bound of 5-fold speedup for the overall end-to-end association
calculation.

Logistic regression contest design and results

An OI and contest-based crowdsourcing approach was used to
develop innovative solutions. A number of steps were taken
to make this contest more attractive to nondomain experts.
First, our problem statement highlighted the genetics appli-
cation of logistic regression, but stated the core challenge in
generic mathematical terms. Example input data that were pro-
vided to the contestantswere reduced to a numeric allele dosage
format, eliminating any genetics-specific references to alleles or
nucleotides, making it easier for solvers to apply their own di-
verse perspectives to create their own solutions [23] and to re-
duce barriers to entry for potential contestants with no domain
knowledge of genetics. Second, as a baseline reference solution,
contestants were presented with an isolated and simplified ver-
sion of PLINK’s fitLM() method, which contained PLINK’s core lo-
gistic regression code. Extracting this function out of the ∼98 000
lines of PLINK source code enabled contestants to rapidly under-
stand and run the reference solution. Third, test data sets of the
appropriate sizewere provided, as described in theMethods sec-
tion above.

A scoring mechanism was devised to reward computational
efficiency and accuracy. Contestants were asked to increase per-
formance while generating association test statistics that were
identical (within 0.1 %) to PLINK. The contestants were notified
that it was acceptable to precisely compute association statis-
tics for only themost significantly associated variant-phenotype
pairs, if runtime was limiting, but did not provide any additional
direction. All scores were displayed on a public real-time leader-
board. To prevent over-fitting, final scoringwas calculated on 100
submission data sets that were not available to the contestants.

A 10-day contest was hosted on TopCoder.com, an online
programming competition website with an existing community
of over 600 000 software developers that routinely compete to
solve programming challenges [24]. The challenge attracted 320
participants, of whom 56 different contestants submitted 292
different versions of code. A prize pool of $10 000 was awarded
to the top 5 contestants. It is estimated that 1120 person-hours
were dedicated to this contest, making this a very cost-effective
method.

The five highest-scoring contest solutions were compiled on
our HPC environment and benchmarked against PLINK’s core
logistic regression code (i.e., the computeAssociations() refer-
ence solution), based on the average of five program runs. Strik-
ingly, the five contest winners successfully accelerated logis-
tic regression by 18- to 45-fold over the core logistic regression
method from PLINK 1.07. Table 1 shows run times for reference
and contest codes. Given this impressive, order-of-magnitude
speedup, we further explored the winning codes and the con-
test discussion-board narratives of the winning contestants to
identify common themes and approaches used by the winning
solutions.

We found the winning solutions incorporated new ap-
proaches that broadly fell into two families: numerical and
computational changes, and new algorithmic ideas. In the fol-
lowing sections we summarize some of the approaches we
observed.
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Table 1: Acceleration of logistic regression

Code
n (# replicated

runs) Avg time (sec) SD time (sec)
Fold-speedup vs

PLINK 1.07

PLINK 1.07 (–assoc) 1 88 NA NA
PLINK 1.07 (logistic regression only) 5 68.8 14.58 1
LRC4 5 1.5 0.03 45
LRC5 5 1.9 0.05 36
LRC1 5 2.3 0.48 30
LRC3 5 3.8 1.17 18
LRC2 5 3.9 0.06 18

All results are on a test set with N = 6000, M = 7000, P = 1, and C = 5 in the HPC environment, where N is the number of subjects and M is the number of genetic
markers (variants), P is the number of phenotypes, and C is the number of covariates. First row of table indicates the end-to-end run time of PLINK 1.07, for context.

Subsequent lines indicate run times of isolated logistic regression routines.

Numerical and computational

In this category, contestants modified elements of the logis-
tic regression calculation to increase speed. One change was
to replace the standard C exp() function with a faster variant
that took advantage of single-instruction multiple data (SIMD)
parallelism (see below). Another was to change the numerical
method used to computematrix decompositions in the Newton-
Raphson iterations. Contestants replaced the singular-value de-
composition method used in the PLINK reference solution with
Cholesky or QR methods [25]. In addition, opportunistic spot
modifications were made to the code in at least one case. For
example, in one matrix multiplication, a contestant reordered
operations to change a [matrix]∗[matrix]∗[vector] operation into
a [matrix]∗[vector]∗[matrix] operation, thus saving operations.

A key computational change that wasmade bymultiple win-
ners was to adapt calculations to use SIMD parallelism through
streaming SIMD compiler extensions. Thismethod takes advan-
tage ofmodern CPU designs that can operate onmultiple packed
data elements in parallel. SIMDwas adopted at various places in
the logistic regression code, for example, in the matrix decom-
position steps. Adoption of SIMD appeared to be a major con-
tributor to the observed speedups.

Algorithmic

An interesting algorithmic modification used by more than one
winning contestant related to the initialization and execution of
the Newton-Raphson iterations used to solve for the logistic co-
efficients. At the initialization of their solutions for each pheno-
type, contestants replaced PLINK’s default initial values for the
logistic coefficients with initial values determined by solving a
covariate-only regressionmodel for each phenotype. In practice,
this often provided starting coefficient values that were closer
to the final solution, especially when covariates accounted for
much of the variance in phenotype. Contestants also observed
that the first Newton iteration is computationally cheaper and
can often produce a solution that is close to the correct re-
sult, and so they incorporated approaches that could use the
result of that first Newton iteration to filter genotypes before ex-
ecuting more iterations on the subset of genotypes with strong
associations.

Reintegration into PLINK

To create a code product that would be as portable as PLINK
and could be directly donated back to the PLINK community,
we contracted with the top-scoring contestant from the logis-
tic regression contest to have him incorporate his accelerated

Figure 2: Run time of codes in AWS environment.. Run times of a test case with
dimensions N = 6678, M = 645863, C = 7, P = 1 were determined. Shown are
run times for PLINK 1.07 (P1.07), PLINK-FLR(P-FLR), C1, C2, and C3. Values above
the column represent run times in seconds. See text for detailed description of

codes.

logistic regression method tightly into PLINK 1.07, by replacing
PLINK’s fitLM() method with a drop-in replacement method that
incorporated the faster code. Onemajor advantage of our crowd-
sourcing efforts was to identify an expert with the skill set and
the ability to solve our difficult problem. Given the winning con-
testants’ established ability and familiarity with the code, the
effort required to integrate the code was significantly less than
the effort that would have been required by a third party. This
modified PLINK ran logistic association analyses 3.8-fold faster
than PLINK 1.07 in the HPC environment, approaching our ini-
tial estimate of an upper bound of a 5-fold speedup that could
be achieved by accelerating the logistic regression component
of the overall computational work. In the AWS environment,
speedup was 7-fold (Fig. 2), which we attributed to a different
profile of data I/O versus computation cost in that environment,
compared to HPC.

Thismodified PLINK, whichwe termed PLINK-FLR (fast logis-
tic regression) was just as portable as PLINK 1.07 and thus well
suited to donation back to the PLINK community. We provided
PLINK-FLR to the PLINK2 project [26], and the logistic regression
code was adopted in PLINK 1.9.

Additional code acceleration

In addition to donating this portable code back to the PLINK
community, we anticipated that we could achieve substantial
additional speedups, albeit possibly less portable, by further
contest-based crowdsourcing. To explore this, we further devel-
oped the code generated by the logistic regression contest.
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As mentioned above, for simplicity the code in the logistic
regression contest took as input integer allele dosages in a text
format. For real-world applications amore compact format such
as the PLINK .bed/.bim/.fam fileset is required. Therefore, we
extracted from PLINK the code required to read .bed/.bim/.fam
filesets, added methods to make the PLINK input compatible
and integrated it with contestant codes, so the contestant codes
could take as input native PLINK binary filesets.We also adjusted
the output of the contestant code so that P values were gener-
ated (instead of the chi-squared statistics generated in the logis-
tic regression contest). The end-to-end run time of the resulting
program, calledC1, on a test casewith dimensionsN= 6678,M=
645 863, P = 1, and C = 7was 9 times faster than the PLINK 1.07 in
the AWS environment (Fig. 2). This speedup was accounted for
by a combination of a logistic regression algorithm thatwas∼35-
fold faster than PLINK1.07, plus a relative reduction in data pre-
and postprocessing time, compared to PLINK 1.07. Importantly,
part of the preprocessing time reduction was due to a change
in the handling of missing genotypes. The code effectively pre-
sumes all genotypes are observed, and subjects with missing
genotypes are not flagged and selectively excluded from regres-
sions, as they are in PLINK1.07. Thus, the code is appropriate
for application to datasets without missing genotypes. Datasets
with missing genotypes could be analyzed after preprocessing
the data to remove cases with missing genotypes, or imputing
the missing genotypes.

Speedup of data initialization

Code C1 still included a costly preprocessing step to transform
the genotype matrix from the structures used within PLINK I/O
code to the structures compatible with contestant code, so un-
surprisingly, data reading and initialization from PLINK .bed files
emerged as a new rate-limiting step in the overall computation.
We turned again to the open community to identify solutions to
decrease the time required for this data initialization. The con-
testantswere providedwith codeC1 and asked to revise the code
however they saw fit, but were directed to the rate-limiting steps
that included reading PLINK binary filesets and setup of initial
genotype data structures prior to logistic regression.

A winner-take-all strategy was employed for this contest.
This contest awarded the first contestant to produce a solution
that reduced the run-time by at least 2-fold. This type of compe-
tition attracts fewer, but possibly more highly qualified, partici-
pants since the question is specific and the prize pool is reduced
in this scenario.

The winning solution accelerated the data initialization by
modifying ‘for’ loop structures and vector initializations, remov-
ing some C++ vector operations, and eliminating an expensive
transpose of the genotype matrix read from the .bed file. The
end-to-end run time of the winning code (denoted C2) on a test
dataset with N = 6678, M = 645 863, P = 1, and C = 7 was de-
creased 13-fold compared to code C1 (95 seconds vs. 1255 sec-
onds) (Fig. 2).

Multithreading

By design, GWAS analysis repeats the same type of calcula-
tion many times. Since modern operating systems and proces-
sors support multiple concurrent threads, GWAS analysis can
take advantage of shared-memory parallel processing. We ran
a contest on the TopCoder.com community to implement mul-
tithreading of our algorithm, awarding a prize to the first con-
testant who could achieve a 2-fold speedup of the baseline code

from the second contest above. Code C2 was provided to con-
testants along with three sample inputs and outputs to allow
contestants to test locally if their modifications functioned and
gave the correct result. A 16-day contest was run to identify a
solution.

The winning code entry used OpenMP [27] to parallelize two
components of the code. First, in the initialization of the geno-
type marker data matrix, prior to the logistic regression, a ‘par-
allel for’ construct was added to split work among threads.
Second, the core logistic regression calculation for all markers
was multi-threaded, to split the outer loop over the M markers
among threads. The end-to-end run time of the winning code
(denoted C3) running 4 threads on a test dataset with N = 6678,
M = 645 863, P = 1, and C = 7 was decreased 3.4-fold compared to
code C2 (28 seconds vs. 95 seconds) (Fig. 2). This was consistent
with our expectation of a relative speedup that approached the
number of parallel threads.

Coarse-grained parallelization and PLINK-compatible
output using HPC

Many investigators that runGWAS analysis, including our group,
have access to high performance compute environments that
use job management tools like IBM Platform LSF [28] or TORQUE
[29] to do coarse-grained parallelization of calculations across
many compute nodes. To help us process ever-larger genotype
datasets, we wished to enable this type of scatter-gather par-
allelism. In addition, given that PLINK is a widely used com-
munity standard for GWAS analysis, we saw a substantial us-
ability benefit in generating summary statistics in a format
identical to PLINK 1.07. Our crowdsourced code did not pro-
vide that format as is. Instead, it returned logistic regression
P values, without the additional summary statistics such as
regression coefficients and confidence intervals that are pro-
vided by PLINK. We wished to generate PLINK-identical out-
put reports, while avoiding the complexity of interfacing and
co-compiling the contest-generated code into the PLINK 1.07
codebase.

To these ends, we established a “two-pass” analysis applica-
tion. The crowd-sourced code from the multithreading contest
described above (C3) was harnessed inside a script wrapper to
submit parallel logistic regression jobs to the LSF scheduler. In
the first analysis pass, C3 was run in parallel and using the out-
put P values, markers were filtered according to a user-defined
cutoff to exclude markers that had no significant association
with the target phenotype (typically, this represents the vastma-
jority of markers). In the second pass, the first round passing
markers were submitted to PLINK-FLR, yielding standard PLINK
logistic regression output files for that subset of markers that
met the user’s selected P value cutoff value. Hence, the final sta-
tistical analysis output for the passingmarkers is in the standard
PLINK 1.07 format. Since only a very small fraction of markers
have significant associations in most GWAS, this ‘two pass’ ap-
proach did not impose a notable performance penalty. This hy-
brid pipeline combining the crowd sourced code with PLINKwas
termed ‘mPLINK.’

By distributing work across our HPC cluster, we expected to
be able to rapidly process much larger datasets than possible in
the single-server AWS test environment. Hence, we tested the
run time of mPLINK on three datasets with sizes ranging from
4 billion to 49 billion regressions using increasing numbers of
processes ranging from 1 to 50. These jobs were executed on a
shared cluster that contributed some variation to run times, but
themain trends were clear (Table 2). Compared to PLINK1.07, we
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Table 2: mPLINK wall-clock runtimes (seconds) in HPC environment

Test case
N6678 × M645863 N6678 × M3200000 N7000 × M7000000

M∗N 4313073 114 21 369 600 000 49000 000 000
Software run
PLINK-1.07 17 146 70617 172 602
mPLINK (1 process) 94 NA (RAM)∗ NA (RAM)∗

mPLINK (5 process) 34 109 281
mPLINK (10 process) 29 111 199
mPLINK (50 process) 39 60 119

Max speedup (fold) 591× 1177× 1450×

∗NA(RAM) signifies that the dataset was too large to load into memory and therefore was not calculated
N refers to the number of subjects; M is the number of genetic markers (variants).

Figure 3: GWAS analysis results. (A) Scatter plot comparison of –log10 P values for a synthetic test case with dimensions N = 6678, M = 645863, C = 7, P = 1, and no
missing values. PLINK 1.07 output was compared to the output of C3. 97 % of P values computed by C3 are within a 0.1 % relative tolerance of reference P values from

PLINK 1.07. (B) Manhattan plots for real-world test case from COPDGene study with same dimensions as (A). Top panel: all P values as computed by PLINK. P values
above user-set threshold of P = 0.001 are colored red. Bottom panel: Second-pass (final)mPLINK P values for markers meeting the P = 0.001 threshold in the first round.
A small number of markers fall below the P = 0.001 cutoff due to differences in missing value handling and convergence criteria in C3, versus PLINK-FLR. Compute
time was approximately 29 seconds for mPLINK compared to 4.7 hours for PLINK 1.07. (C) Two-way clustering of SNPs and phenotypes according to SNP-phenotype

association P values. 164 binary phenotypes from the COPDGene study were associated against each of the M = 645863 SNPs in the study. Results were filtered to
variants that had any logistic association P value <4.81e-9 (i.e., a Bonferroni adjusted P value of 0.05, for N = 645683 SNPS and P = 164 traits).

observed a dataset-size dependent speed increase ranging from
591- to 1450-fold in the HPC environment. At the smallest prob-
lemsize (N= 6678,M= 645 863), we observed sublinear speedups
as we went from 1 to 10 processes. At this problem size, with
>10 processes, the overhead of scattering and gathering coarse-
grained jobs dominated, limiting speedup to nomore than 591×.
For the two larger datasets, where a greater fraction of the time
was spent in logistic regression routines, the relative speedup
was larger (up to 1450×), although still sublinear as the num-
ber of parallel processes was increased from 1 to 50, consistent
with the presence of scatter-gather overheads.We attributed the
observed overall speedup to the combination of the core logis-
tic regression speedup (developed in C1), the data initialization
changes (in C2), multithreading (in C3), and the application of
coarse grained parallelization. In addition to the speedupwe ob-
served, by breaking up datasets across multiple large-memory
compute nodes, HPC enabled us to run datasets including a size
(N = 7000, M = 7000 000) that would have exceeded the mem-

ory capacity of any widely available single-server environment.
Note that we could have employed preprocessing methods like
chromosome splitting to divide large datasets into smaller sizes
that would not require access to large-memory environments.
In our approach we used random-access into PLINK binary files
to divide input datasets into flexibly-sized chunks for HPC pro-
cessing, which was more convenient for us.

To verify the accuracy of our calculations, we compared P val-
ues generated by the C3 code to those generated by PLINK 1.07
(Fig. 3A).

Real-world application

We applied mPLINK to one phenotype from the COPDGene con-
sortium dataset [17] (N = 6678, M = 645 863). Fig. 3B shows
Manhattan plots from this dataset generated by PLINK 1.07 and
mPLINK with a user-defined P value reporting cutoff of P ≤
10−3. All of the significant markers identified by PLINK 1.07 on
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this dataset were also identified by mPLINK. A small number
of markers that were close to the user-defined cutoff were not
returned by mPLINK, attributable primarily to the presence of
missing values in this real-world dataset and differences in con-
vergence criteria between calculations.

The accelerated calculations in mPLINK provided us the
ability to analyze and gain insight into more phenotypes in
the COPDGene dataset. mPLINK was applied in the COPDGene
study to analyze P = 164 binary phenotypes at a rate of <1
min/genotype, reducing analysis time from>20 days (estimated)
to several hours and allowing an exhaustive survey of all bi-
nary phenotypes in the dataset. The results were then clustered
by phenotype and genotype to gain additional insights into the
data (Fig. 3C).

Discussion

The use of OI and crowdsourcing is becoming an important
tool to address important and complex problems in biomedi-
cal research. Online platforms are now available that supply a
community of solvers. The crowd provided by these platforms
includes domain experts in a wide range of problem spaces. Re-
viewing the stepswe took both before and after running contests
allowed us to define some approaches and methods that we
believe contributed to success for our project, and make some
comparisons to more “traditional” approaches to the problem
we tackled here.

Before the contest

Before beginning the contests, the key steps we took were re-
quirements gathering, profiling of our “current state” solution,
decomposition of the problem, creation of test sets, defini-
tion of our contest scoring method, and decision on contest
type.

During requirements gathering we interviewed GWAS prac-
titioners in our institution to identify a relevant problem to solve
and confirm that the solution would be useful. This was fol-
lowed by profiling our current approach (PLINK 1.07) to under-
standwhat elements of the existingGWASanalysis processwere
rate limiting. Once the logistic regression was identified as the
first element to tackle, we decomposed the problem by extract-
ing the logistic regression code from PLINK to create a minimal
code that served as the contest baseline.

A critical step at this pointwas definition of the test data to be
used to score the contest. It is essential that test data accurately
reflect the real-world data that the code will see in all relevant
respects. This is important particularly because contestants will
naturally optimize their submission using the specific test data
that they are provided. This can often lead to lack of generaliz-
ability if test data sets do not capture the diversity of real-world
datasets. Finally, we devised a scoring system that rewarded our
most desired outcomes of speed and accuracy.

The online platform we used offered different contest types.
For the initial logistic regression contest we utilized a “Marathon
Match.” Marathon matches with significant prizes can attract
skilled participants, and the competitive orientation of these
contests can deliver innovative and extreme value outcome so-
lutions. In contrast, for follow-on contests, we used “first-to-
finish contests.” These contests offered lower prizes and tended
to attract fewer contestants but were effective at identifying
crowdmembers who could execute specific coding tasks. Hence
these contests were useful to provide capacity enhancement to
our project team.

After the contest

After the contest, the key steps we took included evaluation of
the solutions in our HPC compute environment, review of the
code, and merging, tracking, and supplementation of solutions
over the course of multiple iterative contests. In general, these
were standard scientific programming or software engineering
activities that would occur in any software development project,
but some elements were particularly salient in the crowdsourc-
ing context.

Within a single marathonmatch, contest codes were written
and sometimes optimized for the contest hardware/OS/compiler
environment. An ideal setupwould have ensured the contest en-
vironment was identical to the intended platform for final use
of the code, but in practice that was not always possible. For ex-
ample, our HPC environment could not be provided to the con-
testants directly. Hence, we found that the final speed and per-
formance characteristics of codes in our environment were not
always identical to the contest ranking. For example, some fast
logistic regression codes used specific tricks or data structures
that were either limiting or not performance enhancing in our
environment. Hence, reviewing and benchmarking codes in our
compute environment was essential.

Across multiple, serial competitions, it was necessary to se-
lect best codes from an initial contest, possibly supplement
them (e.g., interfacing to PLINK format input data), and then
supply the modified codes as input to a subsequent contest. In
at least one case, we found a participant in one contestmight re-
verse or remove code elements that were desirable for the over-
all project in order to maximize performance on their particu-
lar subproblem. This behavior was not always easy to control
through contest parameters. Given the possibility of multiple,
potentially inconsistent code changes made at different stages
by different authors, a source control system was invaluable for
tracking codes over time. We used Apache Subversion [30] for
this purpose.

Comparison to status-quo approach

In the absence of crowdsourcing, we would have executed this
work as a software development project using either developers
internal to our organization or external contract workers. In our
experience, themajor benefit of the crowdsourcing approach for
this project was the ability to rapidly recruit highly skilled coders
who could provide either innovative algorithmic enhancements
or specific coding skillsets at lower cost than our traditional ap-
proaches.

Conclusion

Using iterative, competition-based OI, we have substantially ac-
celerated logistic regression for GWAS analysis. The accelerated
logistic regression code was donated and incorporated and is
currently available in the PLINK2 open-source project [26, 31] to
make it broadly available to the computational biology commu-
nity, where it can enable the analysis of increasingly complex
phenotype-genotype datasets.

Availability and requirements
� Project Name: GWAS logistic regression project
� Project Page: https://github.com/hillan141/gwas-speedup
� Operating System: Linux
� Programming Language: C, C++

https://github.com/hillan141/gwas-speedup
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� Other Requirements: Codes have been tested on Red Hat En-
terprise Linux 6 with gcc 4.4.7, 32 GB RAM.

� License: GPLv2

Availability of supporting data

Snapshots of the source code of the software are available in the
GigaScience GigaDB repository [32].
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