Genome-wide association study identifies multiple risk loci for renal cell carcinoma

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1038/ncomms15724

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33490955

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Genome-wide association study identifies multiple risk loci for renal cell carcinoma

Ghislaine Scelo et al.

Previous genome-wide association studies (GWAS) have identified six risk loci for renal cell carcinoma (RCC). We conducted a meta-analysis of two new scans of 5,198 cases and 7,331 controls together with four existing scans, totalling 10,784 cases and 20,406 controls of European ancestry. Twenty-four loci were tested in an additional 3,182 cases and 6,301 controls. We confirm the six known RCC risk loci and identify seven new loci at 1p32.3 (rs4381241, \(P = 3.1 \times 10^{-10} \)), 3p22.1 (rs67311347, \(P = 2.5 \times 10^{-8} \)), 3q26.2 (rs10936602, \(P = 8.8 \times 10^{-9} \)), 8p21.3 (rs2241261, \(P = 5.8 \times 10^{-9} \)), 10q24.33-q25.1 (rs11813268, \(P = 3.9 \times 10^{-8} \)), 11q22.3 (rs74911261, \(P = 2.1 \times 10^{-10} \)) and 14q24.2 (rs4903064, \(P = 2.2 \times 10^{-24} \)). Expression quantitative trait analyses suggest plausible candidate genes at these regions that may contribute to RCC susceptibility.
Kidney cancer is the seventh most commonly diagnosed cancer in more developed regions of the world and incidence rates have been rising. Renal cell carcinoma (RCC) comprises over 90% of kidney cancers and clear cell renal cell carcinoma (ccRCC) is the major histological subtype (~80% of RCC cases). Direct evidence for inherited predisposition to RCC is provided by a number of rare cancer syndromes with defined germline mutations in 11 genes (BAP1, FLCN, FH, MET, PTEN, SDHB, SDHC, SDHD, TSC1, TSC2 and VHL), that are associated with the development of different RCC subtypes. While identification of these genes has led to important insights into the pathogenesis of RCC, even collectively these diseases account for only a very small portion of the twofold increased risk of RCC seen in first-degree relatives of RCC patients. Support for polygenic susceptibility to RCC has come from genome-wide association studies (GWAS) that have identified single-nucleotide polymorphisms (SNPs) at six loci influencing RCC risk in populations of European ancestry at chromosome bands 2p21, 2q22.3, 8q24.21, 11q13.3, 12p11.23 and 12q24.31 (refs 9–14). Here, we present findings from a meta-analysis of six GWAS scans of RCC; two new scans of 5,198 cases and 7,331 controls were combined with four previously published scans of 5,586 cases and 13,075 controls, reaching a total of 10,784 cases and 20,406 controls, all of European ancestry. Twenty-four promising loci were further tested in an independent replication set of 3,182 cases and 6,301 controls drawn from three independent series (Fig. 1).

Results

Discovery-phase findings. For both the GWAS and replication sets, cases were restricted to invasive RCC (International Classification of Disease for Oncology second and third Edition topography code C64), including all histological subtypes, diagnosed in adults (that is, ≥aged 18 years) (Supplementary Table 1). Comparable sample and SNP quality control exclusions were applied to the two new genotyped scans (Supplementary Online methods), which used the OmniExpress and Omni5M arrays, respectively. The discovery phase was conducted as a fixed-effect meta-analysis that included these two new scans together with four previously published scans (IARC-1, NCI-1, MDA and UK). The four previously reported scans were conducted using HumanHap 300 and 610 for IARC-1; 500 and 660 for NCI-1; 660w for MDA; and OmniExpress and HumanHap 1.2M for UK. Imputations were performed on all scans using 1,094 subjects from the 1000 Genomes Project (phase 1 release 3) as the reference panel (Supplementary Online methods). Each discovery-stage data set was analysed individually assuming log-additive (trend) SNP effects, with the exception of the two IARC scans which were pooled and analysed together (Supplementary Online methods). We then performed a fixed-effects meta-analysis of 7,437,091 SNPs that were polymorphic in at least two data sets. Quantile–quantile plots of the combined results showed little evidence for inflation of the test statistics compared to the expected distribution (λ = 1.034; Supplementary Fig. 1). For visual representation, we provide a Manhattan plot summarizing the genome-wide SNP results in Supplementary Fig. 2.

In the meta-analysis, we observed associations that surpassed the level of genome-wide significance for all six of the previously reported GWAS loci at 2p21, 2q22.3, 8q24.21, 11q13.3, 12p11.23 and 12q24.31 (Supplementary Table 2). We did not find evidence to support a previously suggested locus marked by rs3845536 at 1q24.1 (ref. 15) (meta-analysis P = 0.0062).

For replication, we selected 24 SNPs marking 20 possible new-risk regions, based on a P value <5.0 × 10⁻⁷. We also included two SNPs at the known 2p21 RCC risk locus that were potentially independent from the previously reported genome-wide significant SNPs in that region. Four additional SNPs representing four promising loci (one of which was among the 20 previously mentioned regions) were also advanced from an analysis restricted to ccRCC (5,649 cases, 15,011 controls) based on the aforementioned P value criterion (Supplementary Data 1). For genotyping these markers using Taqman assays, highly correlated proxy variants were substituted for 14 SNPs for which a Taqman assay could not be optimized; two proxies per variant were selected for two SNPs in the region where the smallest P values were found. Thus, a total of 32 SNPs from 24 regions were genotyped and passed quality control metrics in three independent series totalling 3,182 cases and 6,301 controls (Fig. 1, Supplementary Table 3, Supplementary Data 1, Supplementary Online methods).

Seven new loci associated with RCC risk. In the combined analysis, SNPs at seven loci showed evidence for an association with RCC which was genome-wide significant: 1p32.3 (rs4381241, \(P = 3.1 \times 10^{-10} \)), 2p22.1 (rs67311347, \(P = 2.5 \times 10^{-9} \)), 3q26.2 (rs10936602, \(P = 8.8 \times 10^{-9} \)), 8p21.3 (rs2241261, \(P = 5.8 \times 10^{-9} \)), 10q24.33-q25.1 (rs11813268, \(P = 3.9 \times 10^{-9} \)), 11q22.3 (rs74911261, \(P = 2.1 \times 10^{-10} \)) and 14q24.2 (rs4903064, \(P = 2.2 \times 10^{-24} \)) (Table 1, Supplementary Data 1). None of SNP associations showed evidence for heterogeneity. Regional LD plots for each locus are detailed in Supplementary Fig. 3. Restricting the analyses to ccRCC, no additional SNPs with genome-wide significant associations were identified (Supplementary Data 1).

We conducted further analyses of the genome-wide significant SNPs stratifying by sex and three established RCC risk factors: body mass index, smoking and hypertension (Supplementary
The most notable difference in risk was observed for the 14q24 variants that had a stronger effect in women than in men for rs4903064, odds ratios: ORs (95% confidence interval: CI) of 1.36 (1.28–1.45) and 1.13 (1.08–1.19), respectively; heterogeneity $P = 7.4 \times 10^{-5}$. Other observed differences across strata were of smaller magnitude (Supplementary Fig. 4). No notable findings were observed in additional SNP analyses of non-clear cell histologic subtypes (papillary, chromophobe; Supplementary Data 1) and case age at onset (< 60 versus 60+) (Supplementary Data 2). For SNP rs76912165, which was not genome-wide significant overall, a trend for higher risk associated with stage 1 cases was observed (Supplementary Data 2).

We investigated whether rs6706003 and rs6755594 defined independent signals at the previously reported 2p21 locus. rs6706003 is minimally correlated with rs7579899 ($r^2 = 0.11$ in CEU) which was identified in the initial GWAS, and moderately correlated with rs12617313 ($r^2 = 0.61$), which was identified in a previous fine-mapping analysis. By comparison, the correlation of rs6755594 with both of these sites is notably weaker ($r^2 = 0.04$ and 0.08, respectively). In conditional analyses of the GWAS data adjusting for rs7579899 and rs12617313, the rs6706003 signal was substantially reduced (OR 1.07, $P = 0.05$), while the rs6755594 signal was partially attenuated (OR 1.07, $P = 4.0 \times 10^{-5}$). On the basis of these findings, there is insufficient evidence to conclude that rs6755594 marks an independent locus in this region.

Newly identified loci and biological inferences. To investigate plausible candidate variants and genes among the newly discovered loci for further study, we: (1) fine-mapped each locus, using 1000 Genome Phase 1, version 3 data (Supplementary Data 3); (2) screened non-coding annotation from ENCODE data using HaploReg v4.1 (ref. 18) and RegulomDB v1.2 (ref. 19) to identify possible functional variants, primarily in cells of non-kidney origin but also in BC_kidney_H12817N cell lines (Supplementary Data 3); and (3) performed expression quantitative trait locus (eQTL) analyses with genes located up to 3 Mb around the newly identified risk markers (or highly correlated proxies) using ccRCC and normal kidney tissue data from the Cancer Genome Atlas [Kidney Renal Clear Cell Carcinoma (KIRC) collection; 481 tumour and 71 normal tissue samples] and IARC (555 tumour and 234 normal tissue samples) (Supplementary Data 4).

The newly significant locus marked by rs4903064 at 14q24 maps to the double PHD fingers 3 gene (DPF3), which encodes a histone acetylation and methylation reader of the BAF and PBAF chromatin remodelling complexes. This locus contains a set of correlated SNPs ($r^2 > 0.8$ in 1000G EUR) that reside within the introns of DPF3 (Supplementary Data 3), of which only rs4903064 itself is annotated as likely to disrupt transcription factor binding (RegulomDB score < 4). This variant is located within a region annotated as an enhancer in multiple tissues by the Roadmap project and is predicted to alter IRX2/IRX5 binding motifs. In an eQTL analysis, we observed a consistent pattern of increased DPF3 expression associated with the rs49030604 risk allele in both the KIRC and IARC data sets ($P = 5.5 \times 10^{-8}$ and 3.8×10^{-9}, respectively, Fig. 2, Supplementary Data 4). A consistent, but statistically weaker, expression pattern in the normal kidney tissue data sets of more limited sample size was also observed ($P = 0.15$ and 0.42, respectively). It is noteworthy that 14q24 is deleted in 22–45% of ccRCC. While DPF3 mutation is rare in RCC, somatic alterations of BAP1 and PBRM1, components of the BAF and PBAF complexes, respectively, are commonly seen in ccRCC. In this regard, deregulation of this pathway is a common feature of RCC, and these data suggest that rs4903064 may play a role in RCC development through dysregulation of the DPF3 expression.

For the 1p32.3 locus marked by rs4381241, an intronic SNP within FAS-associated factor 1 (FAF1) that encodes a protein that can initiate or enhance FAS-mediated apoptosis, we identified several promising correlated variants with RegulomDB scores, suggesting alteration of transcription factor binding (Supplementary Data 3) but did not observe a strong effect on expression (Supplementary Data 4). FAS-associated factor 1 facilitates the degradation of β-catenin, a transcriptional co-activator that stimulates expression of genes driving cell proliferation. Constitutively activated β-catenin, induced by VHL inactivation, is an important pathway in ccRCC oncogenesis. The rs4381241 risk allele is weakly correlated ($r^2 = 0.12$ in CEU) with the allele of another FAF1 variant (rs17106184) associated with reduced risk of type-2 diabetes and lower serum insulin post oral glucose challenge.

The risk variant rs67311347 maps to a region of 3p22.1 that harbours several genes. Within the KIRC tumour tissue data, the risk-associated allele of the surrogate SNP rs9821249 ($r^2 = 0.97$ with rs67311347 in CEU) was weakly associated with higher expression of CTNN2B ($P = 0.03$). This gene, located 706 kb away centromeric, is a strong candidate as it encodes the RCC proto-oncogene β-catenin, although this association was not seen within the IARC data set. In both normal tissue data sets, the risk-associated allele of rs67311347 was associated with a higher expression of ZNF620 ($P = 0.03$ and 0.02). This gene encodes the Zinc finger protein 620, but the function of this protein has not been well described.

The 8p21.3 risk variants rs2241261 and rs2889 (used as proxy for rs2241260, $P = 1.6 \times 10^{-9}$, $r^2 = 0.61$ with rs2241261 in CEU; Supplementary Data 1) are located 0.9 and 1.7 kb respectively from TNNRSF10B, a tumour suppressor gene encoding a mediator of apoptosis signalling. In both the KIRC and IARC tumour tissue data ($P = 0.002$ and 0.03, respectively), the rs2241261 risk allele was associated with a decreased expression of GFRA2, which encodes for cell-surface receptor for glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN), and mediates activation of the RET tyrosine kinase receptor (Gliial cell line-derived neurotrophic factor (Supplementary Data 4). A potential link with renal tissue function has not been described. Of the variants in strong LD with either rs2241261 or rs2889 ($r^2 > 0.8$ in 1000G EUR), only rs2889 is annotated as a strong regulatory candidate by RegulomDB, predicted to be in a strong enhancer region and altering motifs for FOX family members of transcription factors (Supplementary Data 3).

SNPs rs74911261 and rs1800057 are located 214 kb apart on 11q22.3 and are highly correlated ($r^2 = 0.83$ in CEU) non-synonymous variants, but for separate genes; rs74911261 (P144L) maps to KDEL2, which encodes a protein localizing to the endoplasmic reticulum, while rs1800057 (P1054R) maps to the DNA repair gene ATM. The functional prediction tools SIFT and PolyPhen-2 (ref. 31) suggest that both amino acid substitutions are damaging. It is also plausible that they are correlated with regulatory variants that influence expression of nearby genes. In eQTL analyses, no consistent associations were detected. Only one of the five variants with strong LD to rs74911261 ($r^2 > 0.8$ in 1000G EUR) has a RegulomDB score suggesting likely disruption of transcription factor binding (score < 4), rs141379009, and is located within a region annotated as an enhancer by the Roadmap project and predicted to alter a consensus Zfp105/ZNF35 binding motif (Supplementary Data 3). ATM mutations in RCC are uncommon, and ataxia telangiectasia patients, though at markedly elevated cancer risk, have not been reported to frequently develop RCC, questioning a direct role of ATM in RCC susceptibility.
For the remaining two new RCC risk loci, in silico analyses and eQTL did not indicate altered regulation of a plausible candidate gene. For each of these loci, we identified SNPs that correlate with low RegulomeDB scores for intriguing nearby candidate genes. In grouping with MECOM, a transcriptional regulator frequently amplified in RCC, and TERC, encoding a component of telomerase, in which mutations cause autosomal dominant dyskeratosis congenita and aplastic anaemia. This risk variant is moderately correlated with variants previously associated with telomere length and risk of several malignancies, including multiple myeloma, chronic lymphocytic leukaemia, bladder cancer, glioma and colorectal cancer. For each of these loci, we identified SNPs that correlate with low RegulomeDB scores for intriguing nearby candidate genes. For the remaining two new RCC risk loci, in silico analyses and eQTL did not indicate altered regulation of a plausible candidate gene. For each of these loci, we identified SNPs that correlate with low RegulomeDB scores for intriguing nearby candidate genes. In grouping with MECOM, a transcriptional regulator frequently amplified in RCC, and TERC, encoding a component of telomerase, in which mutations cause autosomal dominant dyskeratosis congenita and aplastic anaemia. This risk variant is moderately correlated with variants previously associated with telomere length and risk of several malignancies, including multiple myeloma, chronic lymphocytic leukaemia, bladder cancer, glioma and colorectal cancer. For each of these loci, we identified SNPs that correlate with low RegulomeDB scores for intriguing nearby candidate genes. For the remaining two new RCC risk loci, in silico analyses and eQTL did not indicate altered regulation of a plausible candidate gene. For each of these loci, we identified SNPs that correlate with low RegulomeDB scores for intriguing nearby candidate genes. In grouping with MECOM, a transcriptional regulator frequently amplified in RCC, and TERC, encoding a component of telomerase, in which mutations cause autosomal dominant dyskeratosis congenita and aplastic anaemia. This risk variant is moderately correlated with variants previously associated with telomere length and risk of several malignancies, including multiple myeloma, chronic lymphocytic leukaemia, bladder cancer, glioma and colorectal cancer. For each of these loci, we identified SNPs that correlate with low RegulomeDB scores for intriguing nearby candidate genes. In grouping with MECOM, a transcriptional regulator frequently amplified in RCC, and TERC, encoding a component of telomerase, in which mutations cause autosomal dominant dyskeratosis congenita and aplastic anaemia. This risk variant is moderately correlated with variants previously associated with telomere length and risk of several malignancies, including multiple myeloma, chronic lymphocytic leukaemia, bladder cancer, glioma and colorectal cancer. For each of these loci, we identified SNPs that correlate with low RegulomeDB scores for intriguing nearby candidate genes. In grouping with MECOM, a transcriptional regulator frequently amplified in RCC, and TERC, encoding a component of telomerase, in which mutations cause autosomal dominant dyskeratosis congenita and aplastic anaemia. This risk variant is moderately correlated with variants previously associated with telomere length and risk of several malignancies, including multiple myeloma, chronic lymphocytic leukaemia, bladder cancer, glioma and colorectal cancer.

Table 1 | Summary results for newly discovered loci associated with renal cell carcinoma.

<table>
<thead>
<tr>
<th>Locus</th>
<th>SNP</th>
<th>Closest gene</th>
<th>Position (base pairs)</th>
<th>A/a</th>
<th>MAF‡</th>
<th>Statistics</th>
<th>Discovery (10,784 cases; 20,406 controls)</th>
<th>Replication (3,182 cases; 6,301 controls)</th>
<th>Combined (13,966 cases; 26,707 controls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1p32.3</td>
<td>rs4381241</td>
<td>FAF1</td>
<td>50907438</td>
<td>T/C</td>
<td>0.44</td>
<td>OR (95% CI)</td>
<td>1.11 (1.07–1.15)</td>
<td>1.11 (1.03–1.20)</td>
<td>1.11 (1.07–1.15)</td>
</tr>
<tr>
<td>3p21.1</td>
<td>rs80936602</td>
<td>LRRIQ4</td>
<td>169536637</td>
<td>T/C</td>
<td>0.27</td>
<td>OR (95% CI)</td>
<td>0.90 (0.86–0.94)</td>
<td>0.91 (0.85–0.98)</td>
<td>0.90 (0.87–0.93)</td>
</tr>
<tr>
<td>8p21.2</td>
<td>rs32241261</td>
<td>RHOB1T/2/TNFRSF10B</td>
<td>108287639</td>
<td>C/T</td>
<td>0.51</td>
<td>OR (95% CI)</td>
<td>1.10 (1.06–1.14)</td>
<td>1.10 (1.03–1.17)</td>
<td>1.10 (1.06–1.13)</td>
</tr>
<tr>
<td>10q24.33-q25.1</td>
<td>rs11813268</td>
<td>OBF1</td>
<td>105682296</td>
<td>C/T</td>
<td>0.16</td>
<td>OR (95% CI)</td>
<td>1.13 (1.08–1.19)</td>
<td>1.10 (1.01–1.19)</td>
<td>1.12 (1.07–1.17)</td>
</tr>
<tr>
<td>11q22.3</td>
<td>rs74911261</td>
<td>KDELRC</td>
<td>108357137</td>
<td>G/A</td>
<td>0.02</td>
<td>OR (95% CI)</td>
<td>0.90 (0.86–0.94)</td>
<td>0.91 (0.85–0.98)</td>
<td>0.90 (0.87–0.93)</td>
</tr>
<tr>
<td>14q24.2</td>
<td>rs4903064</td>
<td>DPF3</td>
<td>73279420</td>
<td>T/C</td>
<td>0.23</td>
<td>OR (95% CI)</td>
<td>1.18 (1.13–1.23)</td>
<td>1.10 (1.02–1.19)</td>
<td>1.12 (1.08–1.17)</td>
</tr>
</tbody>
</table>

*SNP with lowest P value within locus. For 1q22.3, results shown for two non-synonymous SNPs in KDELRC (rs74911261, Pro144Leu) and ATM (rs1800057, Pro1054Arg; r² = 0.83 in CEU).

1A, common allele; a, minor allele.

†Minor allele frequency among all controls (n = 26,707). Odds ratios (OR) are shown for the minor allele, assuming a log-additive (trend) SNP effect.

Discussion

Our meta-analysis of six GWAS scans identified seven new RCC susceptibility loci. Our findings provide further evidence for polygenic susceptibility to RCC. Future investigation of the genes targeted by the risk SNPs is likely to yield increased insight into the development of RCC. We estimate that the risk loci so far identified for RCC account for only about 10% of the familial risk of RCC. Although the power of our study to detect the major common loci (MAF > 0.2) conferring risk ≥ 1.2 was high (~80%), we had low power to detect alleles with smaller effects and/or MAF < 0.1. By implication, variants with such profiles probably represent a much larger class of susceptibility loci for RCC and hence a large number of variants remain to be discovered. In parallel, whole-exome and whole-genome sequencing of genetically enriched cases selected according to early age of onset or family history would provide new insights.
opportunities to discover rare variants associated with RCC. As more RCC susceptibility alleles are discovered, deciphering the biological basis of risk variants should provide new insights into the biology of RCC that may lead to new approaches to prevention, early detection and therapeutic intervention.

Methods

Informed consent and study approval. Each participating study obtained informed consent from the study participants and approval from its Institutional Review Board (for the IARC scans and replication: IARC Ethics Committee; for the MDA scans and replication: Institutional Review Board of The University of Texas MD Anderson Cancer Center; for the UK scan: Royal Marsden NHS Trust ethics committee; for the NCI scans: NCI Special Studies Institutional Review Board, The Vanderbilt Institutional Review Board, the Emory University Institutional Review Board, Dana-Farber/Harvard Cancer Center institutional review board, Institutional Review Board of the Harvard T.H. Chan School of Public Health, Institutional Review Board of Brigham and Women’s Hospital, Van Andel Research Institute Institutional Review Board, Spectrum Health Institutional Review Board and Fred Hutchinson Cancer Research Center Institutional Review Board; for the Mayo replication: Mayo Clinic institutional review board).

Genome-wide SNP genotyping. Genome-wide SNP genotyping for two new scans was coordinated by the National Cancer Institute (NCI-2; NCI, Bethesda, Maryland, USA) and the International Agency for Research on Cancer (IARC-2; IARC, Lyon, France). The NCI-2 scan included controls previously genotyped by Illumina OmniExpress, or Omni 2.5Marray from some of the participating studies (ATBC, CPSII, HPFS, NHS, PLCO and WHI; Supplementary Table 1). IARC-2 samples, obtained from six studies conducted in Europe and Australia (Supplementary Table 1), were genotyped at the Centre National de Genotypage, Commissariat à l’énergie atomique et aux énergies alternatives (CNG, CEA, Evry and Paris) using the Illumina Omni 5 M arrays. Additional controls (N = 447) from one study (IARC K2) were also included, which had been genotyped on the OmniExpress array at Johns Hopkins Center for Inherited Disease Research.

Quality control assessment. The quality control exclusions for the four previously published scans have been reported9–11. For the two new scans, quality control was conducted separately at each institution using comparable exclusions. For the new IARC-2 scan, a total of 5,424 samples were genotyped on the Illumina Omni5 chip. Samples were excluded sequentially based on the following criteria: heterozygosity rate (n = 14, 0.3%), relatedness (n = 7, 0.1%), non-CEU ancestry (n = 37, 0.7%), sex discrepancy (n = 20, 0.4%), genotyping success rate < 95% (n = 14, 0.3%) and unexpected duplicates (n = 22, 0.4%). After adding the 447 previously scanned controls (OmniExpress array) from the IARC K2 study, using the above-listed criteria we excluded 22 samples (4.9%) and, due to unexpected duplicates or first-degree relatedness between the two scans, an additional 11 (2.5%) samples from this scan and three samples from the Omni5 scan. From the Omni5 scan, genotypes for 4,276,196 SNPs were obtained, of which we excluded 127,523 SNPs because of low (< 95%) success rate, 14,513 SNPs for departure from Hardy–Weinberg disequilibrium (HWE) (P < 10⁻⁷) in controls, 65,300 with ambiguous strand issues, and 37,319 non-autosomal SNPs. The final Omni5 analytical data set included 4,031,541 SNPs on 2,781 cases and 2,526 controls. For the same criteria, the 951,117 SNPs obtained from the OmniExpress scans, when minor allele frequency (MAF) was < 0.05.

For the new NCI-2 scan, a total of 3,168 samples were initially genotyped by the OmniExpress array. A total of 22,775 (3%) SNPs with call rate < 90% were excluded, as were 282 samples (9%) with completion rate < 94%. After this

Figure 2 | Plots of eQTL association between rs4903064 and DPF3 expression. (a) TCGA-KIRC normal. (b) TCGA-KIRC tumour. (c) IARC normal, and (d) IARC tumour sample data sets. Box boundaries designate the twenty-fifth and seventy-fifth percentiles, black line in the centre of boxes represent the median, whiskers extend to the minimum of either the data range or 1.5 times the interquartile range and statistical outliers are plotted as points.
exclusion, the concordance rate was >99.9% for 66 pairs of blind duplicate samples. After removing duplicates, a data set including 2,820 unique samples was advanced to further assess quality control at the subject level. In addition, we excluded 10 sex-discordant individuals and two individuals with excessively low mean heterozygosity for ChrX SNPs. For the cleaned data including genotypes for 2,808 individuals, we next pooled one from each of eight within-study duplicate samples, one from each of eight unexpected cross-study duplicates, and one from each of eight related pairs (two parent–child pairs and six sibling pairs). The final analytic data comprised 6,808 individuals (2,417 cases, 4,391 controls) for 70,029 individuals. Subsequently, we excluded data for 204 non-CEU individuals (admixtute proportion for CEU <80%), both members of a pair of unexpected within-study duplicate samples, one from each of eight unexpected cross-study duplicate pairs, and one from each of eight related pairs (two parent–child pairs and six sibling pairs). The final analytic data comprised 6,808 individuals (2,417 cases, 4,391 controls) for 678,580 loci.

Statistical analysis. The statistical analysis included summary data from four previously published scans conducted at the NCI (NCI-1)9, IARC (IARC-1)9, the University of Texas MD Anderson Cancer Center (MDA)30, and the Institute of Cancer Research, UK (UK)31, as well as the two new scans from NCI (NCI-2) and IARC (IARC-2). The IARC-1 and IARC-2 data were pooled, resulting in five separate discovery-stage data sets. Imputation was performed separately for each scan data set using SNPs of minor allele frequency ≥0.01 (≥0.05 for the IARC data set), with 1000 Genomes Project data (phase 1 release 3) used as a reference set. IMPUTE2 version 2.2.2 was used for imputation of the NCI-1, NCI-2, MDA and UK data sets, while Minimac version 3 was used for the IARC data set42,43. Imputed SNPs with sufficient accuracy as assessed by r² ≥0.3 for both IMPUTE2 and Minimac were retained for the analysis. We further assessed the quality of imputation by randomly selecting 10% of genotyped SNPs on chromosome 1 within the IARC-1 series (which used the last-dense chip across the different scans) and removing them before running the imputation algorithm. MAFs calculated from the genotyping data correlated with r² >0.99 with MAFs calculated from the imputed dosage data. Finally, ppSNPs were technically validated through Taqman genotyping in the IARC and NCI-2 scan (Supplementary Table 4). After imputation, genotypes for 7,437,091 SNPs were available for analysis.

Association testing with RCC was conducted separately for each data set assuming log-additive (trend) SNP effects using SNPlDTST version 2.2 at NCI and R version 3.2.3 at IARC. The model covariates varied by data set; for the previous scans, we used the same covariates as in the initially published analyses. The covariates were as follows: sex and study for NCI-1 (no statistically significant eigenvectors present in null model); sex and four significant eigenvectors for NCI-2; age, sex and two significant eigenvectors for MDA; no covariates for the UK; and sex, and study, and 19 significant eigenvectors for IARC-1 and IARC-2. Eigenvectors were considered significant if P <0.05 from the Tracy–Widom statistics. In the IARC series, all 19 eigenvectors were significantly associated with the country of recruitment. We additionally conducted analyses restricted to ccRCC. The SNP association results from each data set were combined by meta-analysis using a fixed-effects model. Heterogeneity in genetic effects across studies was assessed using the I² and Cochran’s Q statistics.

Analysis of heritability. We estimated GWAS heritability, h², using the GCTA software44,45 and data from the NCI-1 and NCI-2 scans. Analyses assumed a disease prevalence of 1.66%, included only SNPs with MAF >0.05, removed subjects missing more than 5% of genotypes and adjusted for sex, study and the top 20 eigenvectors. In addition to quality control steps taken for the original GWAS, we removed SNPs with a missing rate >10% or a HWE P value <10⁻⁵ in the control group in any study. To estimate heritability attributable to undiscovered loci, we identified 21 SNPs that were associated with renal cancer (P<5.0 × 10⁻⁸) and removed all SNPs within 250 kb of those loci before calculation of the genetic relation matrix. After subject exclusions, data from 3,609 cases and 7,524 controls were included in the heritability analysis. Familial risk was estimated by established methods46.

Replication genotyping and analysis. After filtering out previous GWAS-identified SNPs, we selected for replication 32 SNPs with an association P value <5.0 × 10⁻⁷. A separate set of 3,182 cases and 6,301 controls of European ancestry were genotyped at three institutions (IARC: 1,674 cases and 4,222 controls; Mayo Clinic: 909 cases and 1,479 controls; MDA: 599 cases and 600 controls) for replication. Genotyping at IARC and MDA was conducted by Taqman assay (Applied Biosystems, CA, USA), while the Mayo Clinic samples were genotyped using a combination of MassARRAY (Agena Bioscience, Inc, CA, USA) and Taqman assays. The associations with each SNP (per minor allele/trend) were processed with variance-stabilizing transformation and quantile normalization with lumi package47 as reported by Wozniak et al.21. The 50 mer sequences of probes were mapped to human reference genome hg19 downloaded from UCSC Genome Browser database (http://genome.ucsc.edu/, accessed on 15 November 2014) using BWA8 to demarcate positional relationships between corresponding probes/gene SNPs. In total, 234 normal and 555 tumour tissue samples from confirmed clear cell RCC cases were used to test for allele-specific increases in gene expression for genes within a 6 Mb window. Analyses were performed using R v3.1.3.

IARC: For a subset of cases from the IARC K2 and the CE studies (Supplementary Table 1) we conducted with expression analysis of renal normal and tumour tissue samples were conducted using Illumina HumanHT-12 v4 expression BeadChips (Illumina, Inc, San Diego) for samples with RNA integrity (RIN) >5.0. Raw expression intensities of samples with signal-to-noise ratio >9.5 were processed with variance-stabilizing transformation and quantile normalization with lumi package47 as reported by Wozniak et al.21. The 50 mer sequences of probes were mapped to human reference genome hg19 downloaded from UCSC Genome Browser database (http://genome.ucsc.edu/, accessed on 15 November 2014) using BWA8 to demarcate positional relationships between corresponding probes/gene SNPs. In total, 234 normal and 555 tumour tissue samples from confirmed clear cell RCC cases were used to test for allele-specific increases in gene expression for genes within a 6 Mb window under linear trend assumption. Analyses were performed using R v3.1.3.

Data availability. The scan IARC-2 obtained Institutional Review Board certification permitting data sharing in accordance with the US NIH Policy for Sharing of Data Obtained in NIH Supported or Conducted GWAS. Data are accessible on dbGaP (study name: ‘Pooled Genome-Wide Analysis of Kidney Cancer Risk (KDRISK);’ http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001271.v1.p1). Similarly, the NCI-1 scan is accessible on dbGaP (phs000351.v1.p1). Data from IARC-1 and MDA scans are available from Paul Brennan and Xifeng Wu, respectively, upon reasonable request. The UK scan data will be made available on the European Genome-phenome Archive database (accession number: EGASA0001002336). The NCI-2 scan will be posted on dbGaP. TCGA data were accessed at the following url: https://gdc-portal.nci.nih.gov/projects/TCGA-KIRC.

References

1International Agency for Research on Cancer (IARC), 69008 Lyon, France. 2Division of Cancer Epidemiology and Genetics, National Institutes of Health, National Cancer Institute, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA. 3Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA. 4Division of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA. 5Department of Epidemiology, Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77230, USA. 6Centre National de Genotypage, Institut de Genomique, Commissariat à l’Energie Atomique et aux Énergies Alternatives, 91057 Evry, France. 7Fondation Jean Dausset-Centre d’Etude du Polymorphisme Humain, 75010 Paris, France. 8Center ‘Biogenetics’ of the Russian Academy of Sciences, Moscow 117312, Russia. 9Kurchatov Scientific Center, Moscow 123182, Russia. 10Institute of Pathology, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia. 11Clinical Center of Serbia (KCS), Clinic of Urology, University of Belgrade-Faculty of Medicine, 11000 Belgrade, Serbia. 12Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic. 132nd Faculty of Medicine, Institute of Public Health and Preventive Medicine, Charles University, 775 15 Olomouc, Czech Republic. 14Department of Preventive Medicine, Faculty of Medicine, Palacky University, 775 15 Olomouc, Czech Republic. 15National Institute of Public Health, 050463 Bucharest, Romania. 16Russian N.N. Blokhin Cancer Research Centre, Moscow 115478, Russia. 17Carol Davila University of Medicine and Pharmacy, Th. Burtanee Hospital, 050659 Bucharest, Romania. 18First Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University, 120 08 Prague 2, Czech Republic. 19International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland. 20Regional Authority of Public Health in Banská Bystrica, 975 56 Banská Bystrica, Slovakia. 21The M Sklodowska-Curie Cancer Center and Institute of Oncology, 02-034 Warsaw, Poland. 22National Public Health Center, National Directorate of Environmental Health, 1097 Budapest, Hungary. 23Department of Epidemiology, Institute of Occupational Medicine, 91-348 Lodz, Poland. 24University Priest Diderot, INSERM, Unité Variabilité Génétique et Maladies Humaines, 75010 Paris, France. 25Centre de Recherche en Épidémiologie et Santé des Populations (CERS, Inserm U1018), Université Paris-Saclay, UPS, I2S, 75013 Paris, France. 26Centre de Recherche en Épidémiologie et Santé des Populations (CERS, Inserm U1018), Université Paris-Saclay, UPS, I2S, 75013 Paris, France. 27Centre de Recherche en Épidémiologie et Santé des Populations (CERS, Inserm U1018), Université Paris-Saclay, UPS, I2S, 75013 Paris, France. 28Department of Epidemiology, German Institute of Human Nutrition (DIFE) Potsdam-Rehbrücke, 14558 Nuthebelt, Germany. 29Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0QQ, UK. 30Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway. 31Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, 0304 Oslo, Norway. 32Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden. 33Genetic Epidemiology Group, Folkhälsan Research Center, 02250 Helsinki, Finland. 34Department of Research and Perioperative Sciences, Urology and Andrology, Umeå University, 901 85 Umeå, Sweden. 35Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia. 36QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. 37School of Public Health, The University of Queensland, Brisbane, Queensland 4072, Australia. 38Department of Epidemiology and Biostatistics, Melbourne, Victoria 3000, Australia.
School of Population and Global Health, The University of Melbourne, Carlton, Victoria 3053, Australia. Human Genetics Foundation (HuGeF), 10126 Torino, Italy. Department of Medicine, The University of Melbourne, Melbourne, Victoria 3010, Australia. Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria 3050, Australia. HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger 7600, Norway. Department of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway. London School of Hygiene and Tropical Medicine, University of London, London WC1H 9SH, UK. Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden. Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James’s University Hospital, Leeds LS9 7TF, UK. Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK. Department of Health, National Institute for Health and Welfare, 00271 Helsinki, Finland. Vanderbilt-Ingram Cancer Center, Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. Vanderbilt-Ingram Cancer Center, Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37209, USA. Vanderbilt-Ingram Cancer Center, Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA. American Cancer Society, Atlanta, Georgia 30303, USA. Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA. Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA. Brigham and Women’s Hospital and VA Boston, Boston, Massachusetts 02115, USA. Division of Urology, Spectrum Health, Grand Rapids, Michigan 49503, USA. College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, USA. Van Andel Research Institute, Center for Cancer Genomics and Quantitative Biology, Grand Rapids, Michigan 49503, USA. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. Department of Epidemiology and Biostatistics, School of Public Health Indiana University Bloomington, Bloomington, Indiana 47405, USA. Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA. Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK. Department of Genetics and Genomics Science, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. Medical Oncology, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK. Department of Urology, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55902, USA. McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada H3A 0G1. Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida 32224, USA. Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK. These authors contributed equally to this work. ** These authors jointly supervised this work.