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Abstract

Graphene provides a rich platform for the study of interaction-induced broken

symmetry states due to the presence of spin and sublattice symmetries that can be con-

trollably broken with external electric and magnetic fields. At high magnetic fields and low

temperatures, where quantum effects dominate, we map out the phase diagram of broken

symmetry quantum Hall states in suspended bilayer graphene. Application of a perpendicu-

lar electric field breaks the sublattice (or layer) symmetry, allowing identification of distinct

layer-polarized and canted antiferromagnetic ν = 0 states. At low fields, a new spontaneous

broken-symmetry state emerges, which we explore using transport measurements.

The large energy gaps associated with the ν = 0 state and electric field induced

insulating states in bilayer graphene offer an opportunity for tunable bandgap engineering.

We use local electrostatic gating to create quantum confined devices in graphene, including

quantum point contacts and gate-defined quantum dots.

The final part of this thesis focuses on proximity induced superconductivity in

graphene Josephson junctions. We directly visualize current flow in a graphene Josephson

junction using superconducting interferometry. The key to our approach involves recon-

struction of the real-space current density from magnetic interference using Fourier meth-

ods. We observe that current is confined to the crystal boundaries near the Dirac point and

that edge and bulk currents coexist at higher Fermi energies. These results are consistent

with the existence of “fiber-optic” edge modes at the Dirac point, which we model theoret-
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ically. Our techniques also open the door to fast spatial imaging of current distributions

along more complicated networks of domains in larger crystals.
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Chapter 1

Introduction

1.1 Monolayer and bilayer graphene

Monolayer graphene is a two dimensional sheet of carbon atoms arranged in a hon-

eycomb lattice [1,2]. These atoms are connected by hybridized sp2 orbitals within the plane,

while mobile electrons in the out-of-plane pz orbitals are responsible for the high conduc-

tivity of graphene. There are two relevant symmetries for graphene: the conventional spin

of electrons and a pseudospin associated with relative weight of the electronic wavefunction

on the two sublattices, A and B (see Fig. 1.1). The lattice unit vectors are a1 = a
2 (3,
√

3)

and a2 = a
2 (3,−

√
3), where a = 1.42Å is the distance between nearest-neighbor carbon

atoms, and the reciprocal vectors are b1 = 2π
3a (1,

√
3) and b2 = 2π

3a (1,−
√

3). There are two

inequivalent Dirac points at the corners of the Brillouin zone in momentum space:

K =

(
2π

3a
,

2π

3
√

3a

)
and K′ =

(
2π

3a
,
−2π

3
√

3a

)
(1.1)

The band structure of monolayer graphene can be derived from a tight-binding calculation

that accounts for hopping between both nearest neighbor and next nearest neighbor atoms,

1



Chapter 1: Introduction

Figure 1.1: The two sublattices of graphene, A and B, and lattice unit vectors a1 and a2

are labeled in the schematic. The upper right panel shows the Brillouin zone in momentum
space, along with the reciprocal vectors and the K and K′ points. The bottom panel
illustrates the band structure of graphene E±(k) obtained from tight binding calculations.
At low energies, the linear dispersion relation between energy and momentum gives rise to
massless Dirac fermions (inset). Images from A.H. Castro Neto, et al., Rev. Mod. Phys.
81, 109 - 162 (2009).

which yields the dispersion relation [2]:

E±(k) = ±t

√√√√3 + 2 cos(
√

3kya) + 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)

- t′
(

2 cos(
√

3kya) + 4 cos
(√

3
2 kya

)
cos
(

3
2kxa

))
(1.2)

where t ∼ 2.8 eV is the nearest neighbor hopping energy and t′ ∼ 0.1 eV is the next nearest

neighbor hopping energy. While the band structure is symmetric about zero energy when

t′ = 0, an electron-hole asymmetry can arise in the presence of finite next nearest neighbor

hopping. To determine the dispersion at low energies near the Dirac point K, one may

2
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expand the full expression E±(k) using k = K + q for |q| � |K|, where q the momemtum

relative to the Dirac point. Upon expanding to first order in |q|/|K| and neglecting next

nearest neighbor hopping, E±(q) = ±vF |q|, where vF = 3ta/2 ∼ 106 m/s is the Fermi

velocity in graphene.

In momentum space, the electronic wavefunction ψ±,K(k) around K consists of

a two component spinor that describes the relative weight of the wavefunction on the two

sublattices:

ψ±,K(k) =
1√
2

 e−iθk/2

±eiθk/2

 for ĤK = ~vF

 0 kx − iky

kx + iky 0

 = ~vFσ · k (1.3)

where θk = arctan(kx/ky), ĤK is the low-energy Hamiltonian near the point K, and

σ = (σx, σy), for σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 (1.4)

Note that states near each Dirac point have a well-defined chirality associated with the

locking between pseudospin and momentum, giving rise to a Berry phase of π (illustrated

in Fig. 1.2). The eigenenergies of Ĥ are E = ±vFk: this dispersion relation describes

electronic charge carriers that behave as massless Dirac fermions. At the other valley K′,

ψ±,K’(k) =
1√
2

 eiθk/2

±e−iθk/2

 for ĤK′ = ~vFσ∗ · k (1.5)

Bernal-stacked bilayer graphene has a parabolic dispersion E = ±v2
Fk

2/t⊥ (where

t⊥ ∼ 0.4 eV is an interlayer hopping parameter), giving rise to massive charge carriers with

effective mass m∗ ∼ 0.05me, where me is the mass of the electron [2] (Fig. 1.3). Due

3



Chapter 1: Introduction

Figure 1.2: The left panel illustrates locking between pseudospin and momentum in opposite
valleys K and K′ in monolayer graphene, associated with a Berry’s phase of π. The right
panel illustrates the winding of pseudospin with momentum near the Dirac point in bilayer
graphene, associated with a Berry’s phase of 2π. The left image is from A.H. Castro Neto,
et al., Rev. Mod. Phys. 81, 109 - 162 (2009), and the right image is from Park and Mazari,
PRB (2011).

to the direct correspondence between layer and sublattice index, application of an electric

field perpendicular to the bilayer graphene flake breaks sublattice symmetry and opens an

electrostatically tunable bandgap [3–7]. In the presence of an interlayer bias V , the energy

of the conduction band becomes: E = V −2V v2
Fk

2/t⊥+v4
Fk

4/2t2⊥V . Chapter 2 will discuss

the experimental observation of an electric field induced bandgap in bilayer graphene in

greater detail.

1.2 The quantum Hall effect in graphene and interaction-

driven broken symmetry states

When a magnetic field B is applied perpendicular to a two-dimensional electron gas

(2DEG), the electronic wavefunctions are solutions to the Hamiltonian Ĥ = (p− eA)2/2m

with Landau gauge A = −Byx̂. The applied B field leads to the formation of a discrete

ladder of Landau levels, each carrying a degeneracy N = eB/h, with energy spacing En =

4
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Figure 1.3: Bernal-stacked bilayer graphene has a gapless parabolic dispersion at zero inter-
layer bias, and charge carriers are massive chiral fermions with effective mass m∗ ∼ 0.05me.
Application of an electric field perpendicular to the flake breaks layer (or sublattice) sym-
metry, inducing a gate-tunable bandgap in the density of states. Image: E. V. Castro et
al., (2008)

~ωc(n+ 1/2) for ωc = eB/m and integer n.

An unconventional quantum Hall effect arises and in monolayer and bilayer graphene,

influenced by both the chirality of charge carriers and the band structure [1,2,8–11]. Because

monolayer graphene has a linear dispersion, its Landau level energies are different from those

in a convention 2DEG. Similar to the above case, one modifies the Hamiltonian Ĥ with by re-

placing p→ p+eA. The electronic wavefunction thus satisfies: vF (p+eA)·σψ(r) = Eψ(r)

with A = −Byx̂. The resulting Landau level energies are: En =
√

2e~v2
F |n|B (Fig. 1.4).

The electronic transport signature of the quantum Hall effect in graphene is a series of

quantized conductance plateaus at σxy = 4(n + 1/2)e2/h = 2, 6, 10 . . . e2/h. The 4e2/h

spacing of the plateaus directly reflects the four-fold spin and valley symmetry of graphene.

Because bilayer graphene has massive charge carriers and a parabolic dispersion, the Lan-

dau levels are equally spaced in energy, similar to the case of the conventional 2DEG:

En = ~ωc
√
n(n− 1).

Because Landau levels are highly degenerate flat energy bands with low kinetic

energy, the quantum Hall regime provides a natural setting for exploring correlated states

that arise from strong interactions between electrons [12–14]. Coulomb repulsions between

5
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Figure 1.4: The linear and parabolic band structures of monolayer and bilayer graphene
give rise to quadratic and linear Landau level energy spacings, respectively. In monolayer
graphene, the quantum Hall effect is manifested as a sequence of plateaus in transverse
conductivity, σxy = ±4(n+ 1/2)e2/h = ±2, 6, 10 . . . e2/h. In bilayer graphene, the sequence
is σxy = ±4(n+1)e2/h = ±4, 8, 12 . . . e2/h. In both cases, the 4e2/h spacing of the plateaus
is a result of the four-fold spin and valley symmetry; however, there is an eightfold degener-
acy in the lowest Landau level in bilayer graphene due to an additional orbital degeneracy.
Image adapted from McCann and Falko (2006).

carriers are particularly relevant when the kinetic energy EKE of electrons is substantially

weaker than their interaction energy Ee−e = e2

εr for dielectric constant ε. For example, at

zero magnetic field Ee−e = e2

ε

√
n, with carrier density n ∝ gkdF , dimensionality d, and de-

generacy g. When considering free electrons, Ee−e/EKE ∝ gm/ε
√
n, indicating that large

electron-electron interaction strength is favored by massive carriers, large degeneracy, low

carrier density, and a weak dielectric environment. In the quantum Hall regime, the mag-

netic length lB =
√
~/eB defines the relevant inter-particle spacing and so the interaction

energy Ee−e ∝ 1/lB ∼
√
B becomes important at high magnetic fields.

Quantum Hall ferromagnetism is one example of a many-body phenomenon that

emerges in graphene devices at high magnetic fields. Due to the Pauli exclusion principle,
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repulsions between electrons favor spontaneous spin and/or valley polarization (or combina-

tions of those), resulting in Landau level energy gaps that far exceed the Zeeman energy. For

example, in the spin-polarized quantum Hall ferromagnetic state |ψ〉 = ϕ(r1, r2, . . . , rn)| ↑↑

. . . ↑〉, the orbital part ϕ(r1, r2, . . . , rn) must be exchange antisymmetric and vanishes as

particles approach each other, thus lowering the Coulomb interaction energy. The exper-

imental manifestation of quantum Hall ferromagnetism in graphene is the emergence of

broken-symmetry conductance plateaus at all integer multiples of e2/h in electronic trans-

port measurements [15–19]. Chapter 2 provides a detailed discussion of experiments that

control spin- and layer-polarized quantum Hall ferromagnetic states in bilayer graphene.

Use of a dual-gated approach enables independent control over the layer pseudospin and

the carrier density, which allows one to map out a phase diagram of competing spin and

valley ordered states in bilayer graphene as a function of electric and magnetic fields.

1.3 Proximity induced superconductivity in a graphene Joseph-

son junction

The Josephson effect

When two superconducting electrodes are coupled to a graphene sheet to form a

Josephson junction, a dissipationless supercurrent can flow through the device mediated by

Andreev reflection at the superconductor-graphene interfaces [20–22]. When an electron in

the graphene is incident on this interface, it can be Andreev reflected as a hole with opposite

spin and valley (necessary to preserve the singlet pairing and zero total momentum of the

Cooper pair), as illustrated in Fig. 1.5. The Josephson effect can be summarized by the

two Josephson relations: I = Ic sin γ (DC Josephson effect) and dγ
dt = 2eV

~ (AC Josephson

effect), where γ is the phase difference across the junction, Ic is the critical current, and V

7
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Figure 1.5: Andreev reflection switches both spin and valley to preserve singlet pairing and
zero total momentum of the Cooper pair. The the diagram, 0 is the incoming electron, A
is the Andreev retroreflected hole with opposite spin and valley, B is an ordinary reflected
electron, and C and D indicate transmission through the interface on different sides of the
Fermi surface.

Figure 1.6: (a) Atomic force micrograph of a graphene Josephson junction (from Heersche
et al. Nature (2007)). (b) I-V curve of a Josephson junction, where critical current Ic marks
the transition between normal and superconducting regimes. (c) Circuit for modeling the
electrodynamics of a Josephson junction, consisting of a junction in parallel with a resistor
and capacitor. (d) Tilted washboard model: superconducting state corresponds to a particle
with mass (~/2e)2C trapped in a well in an effective potential U(γ) = −EJ cos γ − ~I

2eγ.
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is the voltage drop [23]. To understand the electrodynamics of a Josephson junction, we

consider a circuit consisting of a junction in parallel with both a shunting resistor R and

capacitor C (Fig. 1.6). Express the DC current bias as: I = Ic sin γ + V/R + C · dV/dt.

Defining the Josephson energy as EJ = ~Ic/2e and an “effective mass” m = (~/2e)2C:

m
d2γ

dt2
= EJ sin γ +

~I
2e

+
−1

R

(
~
2e

)2 dγ

dt
(1.6)

This is the equation of motion of a particle with mass (~/2e)2C moving in an effective

potential U(γ) and subject to a drag force F with a damping coefficient proportional to

1/R (tilted washboard picture):

m
d2γ

dt2
=
−dU
dγ

+ F where U(γ) = −EJ cos γ − ~I
2e
γ and F = −cdγ

dt
∝ 1

R

dγ

dt
(1.7)

The superconducting state of the junction corresponds to one in which the “massive particle”

is trapped in an energy minimum of the periodic potential, in which the energy barrier

heights are proportional to the critical current Ic. The average slope of the potential is

defined by the applied DC current bias I. When I > Ic, the particle will begin moving

down the hill because the slope at every point is negative, eventually reaching an average

velocity that is analogous to the DC voltage V ∝ dγ/dt. In a scenario with small damping,

hysteresis is expected upon changing the value of applied current bias.

Spatial visualization of current flow using superconducting interferometry

One can obtain information on the spatial distribution of current within a Joseph-

son junction by applying a magnetic flux Φ through the junction area, which induces a

position-dependent superconducting phase difference parallel to the graphene/contact in-

terface [23]. As a result, the critical current Ic exhibits interference fringes in B field, given
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by:

Ic(B) = |Ic(B)| =
∣∣∣∣∫ ∞
−∞

J(x) exp(2πi(L+ lAl)Bx/Φ0)dx

∣∣∣∣ (1.8)

where x is the dimension along the graphene/superconductor interface, L is the distance

between contacts, lAl is the magnetic penetration length scale (determined by the London

penetration depth of the superconductor and flux focusing), and Φ0 = h/2e is the flux

quantum. This integral expression applies in the narrow junction limit where L � W ,

relevant for our system.

Observing that Ic(B) represents the complex Fourier transform of the current

density distribution J(x), one can apply Fourier methods to extract the spatial structure

of current-carrying electronic states [24]. Because the antisymmetric component of J(x)

vanishes in the middle of the junction, the relevant quantity for analyzing edge versus bulk

behavior is the symmetric component of distribution. By reversing the sign of Ic(B) for

alternating lobes of the superconducting interference patterns, we reconstruct Ic(B) from

the recorded critical current. One can determine the real-space current density distribution

across the sample by computing the inverse Fourier transform:

Js(x) ≈
∫ ∞
−∞
Ic(B) exp(2πi(L+ lAl)Bx/Φ0)dB (1.9)

We employ a raised cosine filter to taper the window at the endpoints of the scan

in order to reduce convolution artifacts due to the finite scan range Bmin < B < Bmax.

This the explicit expression used is:

Js(x) ≈
∫ Bmax

Bmin

Ic(B) cosn(πB/2LB) exp(2πi(L+ lAl)Bx/Φ0)dB (1.10)

where n = 0.5−1 and LB = (Bmax−Bmin)/2 is the magnetic field range of the scan. Chap-
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ters 4 and 5 employ Fraunhofer interferometry to provide spatial visualization of current

flow in graphene Josephson junctions.

1.4 Outline of this thesis

This work explores low-dimensional physics in graphene, especially in regimes

where electron interactions or the wavelike nature of particles plays a dominant role, includ-

ing (1) correlated states that arise from interacting electrons in two dimensions, (2) single

electron tunneling in quantum dots, and (3) electronic waveguiding via one-dimensional

potentials along the edges of a crystal. The organization of the rest of this thesis is as

follows:

• Chapter 2: Broken-symmetry states in suspended bilayer graphene. When

a large magnetic field is applied in a direction perpendicular to a two-dimensional elec-

tron system, Coulomb forces between electrons exceed their kinetic energy, leading to

the emergence of collective states that cannot be described by a single-particle picture.

Bilayer graphene provides a rich platform for investigation of broken-symmetry states

due to the presence of both spin and valley symmetries, which can be controllably

broken with external magnetic and electric fields, respectively. We map out the phase

diagram of competing ordered states for the ν = 0 quantum Hall ferromagnet and

observe a phase transition between high field (valley-polarized) and low field (later re-

vealed to be canted antiferromagnetic) states. This chapter also describes observation

of a spontaneous gapped state at low fields near the charge neutrality point.

• Chapter 3: Gate-defined quantum confinement in suspended bilayer graphene.

Quantum-confined devices that manipulate single electrons in graphene provide an

appealing platform for spin-based quantum computing, but the gapless dispersion
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of graphene poses a obstacle for confinement of electrons. Here we report quantum

confinement in bilayer graphene via local band structure control and observe single

electron tunneling in two regimes: at zero magnetic field using the electric field in-

duced gap and at finite magnetic fields using Landau level confinement. The observed

Coulomb blockade periodicity agrees with electrostatic simulations based on local

top-gate geometry.

• Chapter 4: Spatially resolved edge currents in graphene. Graphene pro-

vides a platform to explore electronic analogs of optical effects due to the nonclassical

nature of ballistic charge transport. Inspired by guiding of light in fiber optics, we

demonstrate a means to guide the flow of electrons at the edges of a graphene crystal

near charge neutrality. To visualize these states, we employ superconducting interfer-

ometry in a graphene Josephson junction and reconstruct the real-space supercurrent

density using Fourier methods. We present a model that interprets the observed edge

currents as guided-wave states, confined to the edge by natural band bending and

transmitted as plane waves.

• Chapter 5: Visualization of electron interference in a ballistic graphene

Josephson junction. The final part of this thesis focuses on exploring new regimes

of superconducting transport in graphene Josephson junctions, in which the wavelike

nature of electrons is a dominant feature. The microscopic role of boundaries on wave

interference in graphene is an unresolved question due to the challenge of detecting

charge flow with submicron resolution. We apply Fraunhofer interferometry to achieve

real-space imaging of cavity modes in a graphene Fabry-Pérot resonator, providing

evidence of separate interference conditions for edge and bulk currents. We also

observe modulation of the multiple Andreev reflection amplitude on and off resonance,
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a direct measure of cavity transparency.
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Chapter 2

Broken symmetry states in

dual-gated suspended bilayer

graphene

2.1 Overview

The single-particle energy spectra of graphene and its bilayer counterpart exhibit

multiple degeneracies that arise through inherent symmetries. Interactions among charge

carriers should spontaneously break these symmetries and lead to ordered states that exhibit

energy gaps. In the quantum Hall regime, these states are predicted to be ferromagnetic in

nature, whereby the system becomes spin polarized, layer polarized, or both. The parabolic

dispersion of bilayer graphene makes it susceptible to interaction-induced symmetry break-

ing even at zero magnetic field. We investigated the underlying order of the various broken-

symmetry states in bilayer graphene suspended between top and bottom gate electrodes.

We deduced the order parameter of the various quantum Hall ferromagnetic states by con-
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trollably breaking the spin and sublattice symmetries. At small carrier density, we identified

three distinct broken-symmetry states, one of which is consistent with either spontaneously

broken time-reversal symmetry or spontaneously broken rotational symmetry

2.2 Degeneracies in monolayer and bilayer graphene

In mono- and bilayer graphene, an unconventional quantum Hall effect arises from

the chiral nature of the charge carriers in these materials [1, 2, 8–11]. In monolayers, the

sequence of Hall plateaus is shifted by a half integer, and each Landau level (LL) is fourfold

degenerate due to spin and valley degrees of freedom. The latter valley degree of freedom

refers to the conduction and valence bands in single-layer graphene forming conically shaped

valleys that touch at two inequivalent Dirac points. In bilayer graphene, an even richer

picture emerges in the lowest LL caused by an additional degeneracy between the zeroth and

first orbital LLs, giving rise to an eightfold degeneracy. Systems in which multiple LLs are

degenerate give rise to broken-symmetry states caused by electron-electron interactions [12].

Such interaction-induced broken-symmetry states in the lowest LL of bilayer graphene have

been theoretically predicted [13,14] and experimentally observed [15–19], but the nature of

their order parameters is still debated. For example, two possible order parameters that

have been suggested for the gapped phase at filling factor ν = 0 at large magnetic fields are

either layer or spin polarization [14]. Moreover, recent theoretical studies predict that even

in the absence of external magnetic and electric fields, the parabolic dispersion of bilayer

graphene can lead to broken-symmetry states that are induced by interactions among the

charge carriers [25–32]. In this work, we map out the various broken-symmetry states as a

function of external magnetic and electric field. The nature of these phases can be deduced

by investigating their stability under the variation of these symmetry-breaking fields.
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2.3 Electric field tunable gap in suspended bilayers

The observation of broken-symmetry states driven by effects of interaction is ham-

pered by the presence of disorder and requires high sample quality. We have developed

a method in which bilayer graphene is suspended between a top gate electrode and the

substrate. This approach allows us to combine the high quality of suspended devices with

the ability to independently control electron density and perpendicular electric field Eperp.

A false-color scanning electron micrograph of a typical device is shown in Fig.

2.1a. The suspended graphene (red) is supported by gold contacts (yellow). Suspended

top gates (blue) can be designed to cover only part of the graphene (left device) or to fully

overlap the entire flake (right device), including part of the contacts. We have investigated

both types of devices, which show similar characteristics. The fabrication of such two-

terminal devices is detailed in the final section of the chapter (Device Fabrication) and is

schematically illustrated in Fig. 2.1a. To improve sample quality, we current anneal [33,34]

our devices in vacuum at 4 K before measurement.

The high quality of our suspended flakes is evident from the dependence of resis-

tance versus applied electric field at zero magnetic field. As theoretically predicted [3–5]

and experimentally verified in transport [6,7] and optical [6,35,36] experiments, an applied

perpendicular electric field Eperp opens a gap ∆ ∼ dEperp/k in the otherwise gapless dis-

persion of bilayer graphene, as schematically shown in the lower left inset to Fig. 2.1b.

Here, d is the distance between the graphene sheets and k is a constant that accounts for

imperfect screening of the external electric field by the bilayer [3,5,29]. The conductance of

our suspended bilayer graphene sheet at 100 mK as a function of back (Vb) and top gate (Vt)

voltage is shown in Fig. 2.1b. The opening of a field-induced band gap is apparent from

the decreased conductance at the charge neutrality point with increasing applied electric
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Figure 2.1: (a) False-color scanning electron micrograph of a bilayer graphene flake sus-
pended between Cr/Au electrodes with suspended Cr/Au top gates. A schematic of a cross
section along a line marked by the two arrows is shown on the right, including a brief depic-
tion of the sample fabrication. We used a threestep electron-beam lithography process in
which Cr/Au contacts are first fabricated on the bilayer graphene, followed by deposition
of a SiO2 spacer layer on top of the flake and finally the structure of a Cr/Au topgate
above the SiO2 layer. Subsequent etching of part of the SiO2 leaves the graphene bilayer
suspended between the top and bottom gate electrodes. (b) Conductance map as function
of top and bottom gate voltage at T = 100 mK of a suspended bilayer graphene flake. (c)
Line trace along the dashed lines in (b) showing the sheet resistance as a function of charge
carrier density at constant electric field. (d) Traces of the maximal sheet resistance at the
charge neutrality point as a function of applied electric field at different temperatures.

field Eperp = (αVt − βVb)/2eε0. Here, α and β are the gate coupling factors for Vt and Vb,

respectively, which we determine from the Landau fan in the quantum Hall regime, e is the

electron charge, and ε0 is the vacuum permittivity.

The presence of an energy gap is also illustrated by the line cut in Fig. 2.1c,

which shows the resistance at constant Eperp as a function of total density n = (αVt +βVb).
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By varying the density, the resistance can be changed by a factor 103. Line traces of

the maximum sheet resistance as a function of Eperp at various temperatures (Fig. 2.1d)

illustrate the exponential dependence of the resistance on electric field, as well as a decrease

in resistance with temperature. The sheet resistance at 100 mK increases by more than a

factor of 2× 103 (from 8 kΩ per square to 20 MΩ per square) for Eperp between 20 and 90

mV/nm. Compared to previous measurements of dually gated graphene bilayers embedded

in a dielectric [6], our measurements show an increase by a factor of 103 in resistivity at

the same electric field, which is the result of the high quality of our flakes. The unexpected

finding of a nonmonotonous dependence of the resistance at small applied electric field will

be discussed below. The oscillations in the conductance traces shown in Fig. 2.1c are

repeatable and result from mesoscopic conductance fluctuations.

2.4 Evolution of Landau levels in electric field

The evolution of different LLs in our samples at nonzero magnetic field was revealed

by measuring conductance as a function of Eperp. The two-terminal conductance as a

function of density and electric field at various different magnetic fields (Fig. 2.2a-d) shows

the previously reported eightfold degeneracy of the lowest LL, which is fully lifted because

of electron-electron interactions [15,16,19]. Plateaus at ν = 0,±1,±2,±3 can be identified

by their slope in a fan diagram. Vertical line cuts that correspond to a constant filling

factor show that the conductance is quantized except at particular values of electric field,

denoted by stars or dots in Fig. 2.2a-d. The ν = 0 state is quantized except near two values

of the applied electric field (marked with dots). This value of electric field increases as the

magnetic field B increases. The ν = ±2 state is quantized for all electric fields except near

Eperp = 0; finally, the ν = ±4 state is quantized for all electric fields.
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Figure 2.2: (a) to (d) Maps of the conductance in units of e2/h as a function of applied
electric field Eperp and density n at various constant magnetic fields at T = 60 mK. Line
traces are taken from the data along the dashed lines. Horizontal line traces correspond
to cuts at constant electric field; vertical line cuts correspond to cuts along constant filling
factor. In (b), the orange line cut corresponds to the electric field dependence of ν = 0 and
the vertical line cuts to the density dependence of the conductance at two constant electric
fields showing the emergence of ν = 2 at large electric fields. In (c), the red vertical line cut
corresponds to the electric field dependence of ν = 0. The horizontal line cuts in green and
blue show the density dependence of the conductance at two different electric fields showing
the suppression of the ν = 0 state at a finite electric field. In (d), the brown (violet) line cut
shows the conductance as function of electric field at ν = 1 (ν = 3). (e) Schematic diagram
of the energetic position of the lowest LL octet (gray lines) as a function of Eperp. The
quantum numbers U, L, ↑, and ↓ of the LLs are indicated in the squares. The respective
filling factors ν are indicted in black numbers. The LLs in the main scheme are all doubly
degenerate in orbital quantum numbers. The effect of the electric field on the orbital LLs is
shown in the two insets. The two different ν = 0 states are marked with Roman numerals.
In all images, the crossing of LLs at zero electric field is marked with a star and the crossing
at zero energy is marked with a dot.
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A qualitative understanding of this phenomenology can be gained from a simplified

scheme of the LL energies as a function of electric field (Fig. 2.2e, gray lines) for nonzero

magnetic field. We start by neglecting the breaking of the orbital degree of freedom so

that the LLs are each doubly degenerate [11]. We assume, in accordance with theoretical

predictions, that at Eperp = 0 only the spin degeneracy is lifted, giving rise to a spin-

polarized ν = 0 quantum Hall ferromagnetic state [14, 29]. In the lowest LL, the layer and

valley index are equivalent [11] so that an electric field that favors one of the layers directly

controls the valley-pseudospin. As a result, LLs of quantum number U (upper layer) or L

(lower layer) are expected to have different slopes in electric field. At several points, marked

by dots or stars in the schematic of Fig. 2.2e, LL crossings occur. A LL crossing is seen at

Eperp = 0 for both ν = 2 and ν = −2, and two LL crossings are seen for ν = 0 at nonzero

Eperp. We hypothesize that these crossings are responsible for the increased conductance in

our transport experiments [37]. Figure 2.2e shows the LL energy, whereas we have direct

control over the density of the bilayer rather than its chemical potential. However, on a

quantum Hall plateau, the chemical potential lies between two LL energies, which enables

us to relate our scheme in Fig. 2.2e to our transport data as detailed below.

The LL crossings at zero average carrier density are marked by dots in Fig. 2.2. In

our proposed scheme, these transitions separate a spin-polarized ν = 0 state at low electric

fields (I) from two layer-polarized ν = 0 states at large electric fields (II) of opposite layer

polarization. The line cut in Fig. 2.2c at constant filling factor shows that insulating ν = 0

states are well developed at zero electric field and at large electric fields, but the crossover

between these states is marked by a region of increased conductance. The experimentally

observed large resistance of the phase at Eperp = 0 [15,16] is at variance with the theoretical

prediction of percolating edge modes [38] in the case of a spin-polarized ν = 0 state. A

possible reason for this discrepancy is the mixing of counterpropagating edge modes and
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subsequent opening of a gap [39].

The LL crossings at ν = ±2 near zero electric field are marked by stars in Fig.

2.2. An example of such a crossing is apparent in the vertical line cut shown in Fig. 2.2b.

There, the conductance at ν = ±2 increases near zero electric field, which is explained in

our scheme by a crossing between two LLs of identical spin polarization but opposite layer

polarization. The consequence of these crossings is that only ν = 0 and n = ±4 states occur

at zero electric field, whereas layer-polarized n = ±2 states emerge only at finite electric

field, as is apparent in the horizontal line cuts of Fig. 2.2b.

Assuming that the ν = ±1 and ±3 states are partially layer polarized [14], the

electric field should also induce a splitting at these filling factors (inset to Fig. 2.2e) that is,

however, more fragile and only seen at higher magnetic fields. Our simple model predicts

that the n = ±3 state will have a crossing at zero electric field, and we attribute the increase

in conductance at Eperp = 0 in the left line cut in Fig. 2.2d to be a signature of this crossing.

The n = ±1 state is expected to have three crossings: one at zero electric field and two near

the same nonzero electric field at which the transition between the ν = 0 states is observed.

All three of these crossings are apparent from the regions of increased conductance in the

right line cut in Fig. 2.2d. The observation that n = ±1 and ±3 states are enhanced with

electric field is an indication of their partial layer polarization. Theory nonetheless predicts

that n = ±1,±2,±3 should also be seen at Eperp = 0 [14]. However, the predicted energy

gaps of these states are expected to be considerably smaller than that of ν = 0 and hence

visible only at large magnetic field. Indeed, for B > 4 T, these broken symmetry states at

Eperp = 0 can also be observed in our data.
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2.5 Phase diagram of the ν = 0 state

When we examine the conductance at the charge neutrality point as a function

of electric and magnetic field (Fig. 2.3a) in more detail, we observe that regions of high

conductance mark the transition between the low- and high-field ν = 0 states (highlighted

with dots in Fig. 2.2). The transition moves out to larger electric fields as the magnetic field

is increased, which implies that phase I is stable at large magnetic fields and is destabilized

by an electric field. This observation is also consistent with our energy diagram (Fig. 2.2e),

which predicts that the ν = 0 LL crossing will move out to higher electric fields when the

magnetic field increases. The increased stability of this phase at higher magnetic fields

reconfirms our initial assumption that phase I is spin polarized. In contrast, the phase at

large electric fields (phase II) is stabilized by an electric field, consistent with it being layer

polarized.

The dependence of the transition region between the two phases on electric and

magnetic field is shown more clearly in Fig. 2.3b, where we have extracted the maximum

conductance in Fig. 2.3a for all positive values of electric field. At large magnetic field,

the transition line is linear and is independent of sample quality and temperature (we have

investigated a total of five samples at temperatures between 100 mK and 5 K). At magnetic

fields below about 2 T, however, the transition line is linear only in the highest quality

sample and at low temperatures (inset to Fig. 2.3a and dashed line in Fig. 2.3b). A

surprising observation is that the extrapolation of the linear dependence from high B down

to B = 0 results in a crossing at a nonzero electric field, Eoff . Moreover, the slope and Eoff

that characterize the large B behavior seem to have no systematic dependence on sample

quality or temperature T (Fig. 2.3c-d). The conductance at the transition between the

ν = 0 phases decreases both with increasing B as well as with decreasing T [see Fig. S5
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(23)]. Such behavior is qualitatively expected given that LL mixing at these crossing points

can lead to the opening of gaps in the spectrum.

Figure 2.3: (a) Conductance in units of e2/h as a function of applied electric and magnetic
fields at zero average carrier density at 1.4 K. The transition between different ν = 0 states
is characterized by a region of increased conductance. (Inset) Measurement taken at 100
mK when the sample has been tilted with respect to the magnetic field, plotted against
the perpendicular component of the magnetic field after thermal cycling. The color scale
of the inset ranges from 0 (blue) to 4.5 (red) e2/h. The y axis of the inset ranges from 0 to
1.3 T. (b) Comparison of the slope of the transition line when the sample is perpendicular
to the magnetic field and at a 45 degree angle. (c) and (d) Comparison of the Eoff and
high magnetic field slope of the transition line for different temperatures. Different colors
correspond to different samples.

To further elucidate the nature of the transition, we investigated the role of the

Zeeman energy Ez across the ν = 0 transition in detail. We tilted the sample with respect

to the magnetic field, which altered Ez but left all interaction-dependent energy scales the
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same. Figure 2.3b shows both measurements under titled magnetic field (green line) and

data taken in purely perpendicular field (blue line). The two transition lines have similar

slopes, which indicates that Ez is negligible and the transition predominantly depends on

the perpendicular component of the magnetic field, underscoring that exchange effects and

the LL degeneracies play an important role. However, this explanation does not account

for the B = 0 offset.

The crossover between two phases with the application of an electric field has also

been predicted theoretically by Gorbar et al. [40] and Nandkishore and Levitov [29]. Gorbar

et al. [40] predict a transition from a quantum Hall ferromagnetic state at low electric fields

to an insulating state dominated by magnetic catalysis with a slope of about 2 mV nm−1

T−1. Nandkishore and Levitov [29] predict a transition from a quantum Hall ferromagnetic

state to a layer insulating state at large electric fields, with a slope of 34 mV nm−1 T−1.

Our measured slope is about 11 mV nm−1 T−1. A qualitative comparison between the

experimentally obtained values and the theory is difficult because of the lack of knowledge

of the screening that the bilayer provides to the applied electric field once LLs are formed.

2.6 Spontaneous gapped phase in bilayer graphene at zero

field

A notable feature seen in the inset to Fig. 2.3a and in Fig. 2.3b is that the

transition line appears to have a nonzero offset in electric field, Eoff ∼ 20 mV/nm. The B

= 0 offset coincides with the extrapolated one from high fields when the sample quality is

high and the temperature is low. This result suggests that the transition from a spin- to a

layer-polarized phase persists all the way down to B = 0, but careful measurements near

B = 0 and Eperp = 0 (Fig. 2.4a) show that this conclusion is incorrect. We will discuss
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possible origins for Eoff in the remainder of this manuscript.

The conductance close to the charge neutrality point at small electric and magnetic

fields is shown in Fig. 2.4a. The conductance at B = 0 and Eperp = 0 exhibits a local

minimum and increases upon increase of Eperp and B. The electric field value at which

the conductance reaches a maximum coincides with Eoff . Together with observation of a

maximum of the conductance at a finite value Boff = ±50 mT, our observations suggest

that neither the spin-polarized phase I nor the layer-polarized phase II extend down to B

= 0 and Eperp = 0. Instead, our measurements are consistent with the presence of a third

phase at small electric and magnetic fields. The electric field dependence of the resistance

is at variance with simple calculations of the band structure of bilayer graphene. In a

tight binding model, bilayer graphene is expected to evolve from a gapless semimetal to

a gapped semiconductor whose gap magnitude depends monotonically on electric field [3].

However, our measurements show that the conductance does not decrease monotonically

with electric field, instead exhibiting a local maximum at about ±20 mV/nm (Fig. 2.4b).

The maximum resistance at B = 0 and close to zero carrier density as a function of Eperp for

different temperatures increases as T decreases [see Fig. 2.1d], reaching 20 kΩ at the lowest

temperature of 100 mK. It therefore strongly suggests that the neutral bilayer graphene

system is already gapped at Eperp = 0 and B = 0 and that fields larger than Eoff or Boff

transfer the system into the layer- or spin-polarized phases (Fig. 2.4a). In Fig. 2.4b, the

dependence of the conductance as a function of density and electric field at B = 0 is shown.

Also in this case, a minimum of the conductance at small electric field and density can be

discerned, indicating that the spontaneous phase is unstable away from the charge neutrality

point. The temperature dependence at the crossover field of Eperp = ±20 mV/nm is weak

(Fig. 2.1d), consistent with the closure of a gap. Our observations cannot be explained

with known single-particle effects.
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Figure 2.4: (a) Detailed view of the conductivity at small electric and magnetic fields and
zero average carrier density. The color scale has been restricted to between 5 and 6 e2/h
to highlight the observed effect. (b) Conductivity as a function of electric field and density
at zero magnetic field. (c) Two linecuts showing the resistivity at E = 0 and Eoff are also
shown. The scans in (b) and (c) were taken after thermal cycling of the sample, hence the
difference in the minimal conductance at zero magnetic and electric field with respect to
(a).

It has been pointed out theoretically [25–32] that electron-electron interactions can

open a spontaneous gap in bilayer graphene near the charge neutrality point at zero electric

and magnetic fields. Several different phases have been proposed, and our experimental

observations considerably restrict the various possible theoretical explanations to two pre-

vailing theories. The first theory [29] predicts a phase diagram very similar to what we

measure. Within this theory, phase III is associated with an anomalous quantum Hall insu-

lating state that spontaneously breaks time-reversal symmetry. This state is characterized

by an antiferromagnetic ordering in the pseudospin (layer). In this phase, electrons from

one valley occupy one of the layers, whereas electrons from the other valley occupy the other

layer. An important feature of this state is that it supports topologically protected current-

carrying edge modes and is therefore predicted to have a finite conductance. This prediction

is consistent with our observations of a nondiverging resistance at B = 0 and Eperp = 0 as T

is lowered. Although our observed phase diagram agrees qualitatively with that predicted

in [29], we find a quantitative disagreement between the measured and predicted E and B
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transition values. We find that the magnetic field at which the spontaneous phase breaks

down is about 50 mT, an order of magnitude smaller than the theoretically predicted value

of 500 mT [29]. An applied electric field of about Eoff = 20 mV/nm quenches the spon-

taneous gap, compared to the predicted value of 26 mV/nm for the screened electric field.

Notably, we need to scale our measured Eoff by the screening constant k, which means that

our values differ by roughly a factor k = 3 from the theory [29]. A second prevailing theory

for the observed behavior stems from symmetry breaking, which results in the lowering of

the density of states at the charge neutrality point. One such example is the nematic state

that stems from the breaking of rotational symmetry due to electron-electron interactions.

This phase has been predicted to lead to a decreased density of states at the charge neu-

trality point due to the breaking of the system into two Dirac cones [31,32], consistent with

our measured decrease in conductance at small densities. Further experimental support for

the above two scenarios is given in [18], where it is shown that known single-particle effects

cannot explain the observed behavior.

2.7 Device fabrication

Substrate cleaning and graphene deposition are performed similar procedure to

that described by Feldman et al. [15]. Graphene bilayers are identified by their contrast

in an optical microscope and their characteristic quantum Hall effect. Suitable flakes are

contacted with Cr/Au contacts (3 nm/100 nm) by standard electron beam lithography,

thermal metal evaporation and lift-off in acetone. Silicon dioxide is structured on top of

graphene bilayers in a second electron beam lithography step, followed by electron beam

evaporation of silicon dioxide and lift off. The silicon dioxide is used as a spacer layer to

separate the top gate from the flake. A final electron beam lithography step is used to
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pattern top gates that are suspended above the substrate in the areas that the silicon oxide

had been evaporated. Finally, the device is immersed into 5:1 buffered oxide etch for 90s

and dried in methanol in a critical point dryer.
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Gate defined quantum confinement

in suspended bilayer graphene

3.1 Overview

Quantum confined devices that manipulate single electrons in graphene are emerg-

ing as attractive candidates for nanoelectronics applications. Previous experiments have

employed etched graphene nanostructures, but edge and substrate disorder severely limit

device functionality. Here we present a technique that builds quantum confined structures

in suspended bilayer graphene with tunnel barriers defined by external electric fields that

open a bandgap, thereby eliminating both edge and substrate disorder. We report clean

quantum dot formation in two regimes: at zero magnetic field B using the energy gap in-

duced by a perpendicular electric field and at B > 0 using the quantum Hall ν = 0 gap

for confinement. Coulomb blockade oscillations exhibit periodicity consistent with electro-

static simulations based on local top gate geometry, a direct demonstration of local control

over the band structure of graphene. This technology integrates single electron transport
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with high device quality and access to vibrational modes, enabling broad applications from

electromechanical sensors to quantum bits.

3.2 Quantum confinement in graphene

Nanopatterned graphene devices, from field-effect transistors to quantum dots [9,

41, 42], have been the subject of intensive research due to their novel electronic properties

and two-dimensional structure [1, 2]. For example, nanostructured carbon is a promising

candidate for spin-based quantum computation [43] due to the ability to suppress hyper-

fine coupling to nuclear spins, a dominant source of spin decoherence [44–46], by using

isotopically pure 12C. Graphene is a particularly attractive host for lateral quantum dots

since both valley and spin indices are available to encode information, a feature absent in

GaAs [47–49]. Yet graphene lacks an intrinsic bandgap [2], which poses a serious challenge

for the creation of such devices. Transport properties of on-substrate graphene nanos-

tructures defined by etching [9, 42] are severely limited by both edge disorder and charge

inhomogeneities arising from ionized impurities in gate dielectrics [50, 51]. The absence of

spin blockade in etched double dots is perhaps symptomatic of these obstacles [52,53]. Un-

zipping carbon nanotubes yields clean nanoribbon dots, but this approach cannot produce

arbitrarily shaped nanostructures with tunable constrictions [54]. However, local bandgap

engineering in bilayer graphene enables production of tunable tunnel barriers defined by

local electrostatic gates [55], thus providing clean electron confinement isolated from edge

disorder.

Bernal stacked bilayer graphene is naturally suited for bandgap control because of

its rich system of degeneracies that couple to externally applied fields. At B = 0, breaking

layer inversion symmetry opens an energy gap tunable up to 250 meV with an external
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perpendicular electric field E [4,6,7,11,56–58] that can be used for confinement. In devices

with low disorder and at high magnetic fields, gapped states emerge from Coulomb-driven

effects that break its eightfold degeneracy (spin, valley, and orbital), resulting in quantum

Hall plateaus at all integer multiples of e2/h for electron charge e and Planck’s constant

h [59]. Due to the Pauli exclusion principle, Coulomb repulsions between electrons favor

spontaneous spin and/or valley polarization (or combinations of those), known as quantum

Hall ferromagnetism, resulting in a gap at zero carrier density that far exceeds the Zeeman

splitting energy gµBB [15,16]. The large exchange-enhanced energy gap of ∆ = 1.7 meV/T

measured for the ν = 0 state is ideally suited for quantum confinement [18]. Because valley

and layer indices are identical in the lowest Landau level, one may additionally induce a

tunable valley gap in the density of states by applying a perpendicular E field that breaks

layer inversion symmetry [60]. This coupling of valley index to E field is the key property

that enables direct experimental control of the relative spin and valley gap sizes in magnetic

field.

Here we demonstrate a technology that enables microscopic bandgap control in

graphene for the first time. We report fully suspended quantum dots in bilayer graphene

with smooth, tunable tunnel barriers defined by local electrostatic gating. Local gap control

in graphene opens an avenue to explore a variety of intriguing systems, including spin

qubits [43], topological confinement and valleytronics [61], quantum Hall edge modes in an

environment well-isolated from edge disorder, gate-controlled superconductivity, and many

more. While not the sole use for this technology, quantum dots provide a good experimental

platform to rigorously demonstrate local bandgap engineering due to the precise quantitative

relationship between dot area and quantized charge tunneling periodicity. Our technique,

which artificially modifies the bandgap of bilayer graphene over nanometer scales, achieves

clean electron confinement isolated from both edge and substrate disorder.
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3.3 Device overview

We fabricate fully suspended quantum dots with 150 to 450 nm lithographic di-

ameters as illustrated schematically in Fig. 3.1a following the procedure described in the

Methods. Graphene is suspended between two Cr/Au electrodes and sits below suspended

local top gates (Fig. 3.1b and Supplementary Fig. A.1). Before measurement, the devices

are current annealed in vacuum to enhance quality. The high quality of our suspended

flakes is evident from the full lifting of the eightfold degeneracy in the quantum Hall regime

(Supplementary Fig. A.2) [60] and large resistances attained by opening the E field induced

gap at B = 0 and E = 90V/nm, a hundred times greater than reported for on-substrate

bilayers at similar electric fields [6, 60]. Measurements are conducted in a dilution refriger-

ator at an electron temperature of 110 mK, as determined from fits to Coulomb blockade

oscillations.

3.4 Quantum confinement at zero magnetic field

At B = 0, the electric field effect in bilayer graphene enables the production of

quantum confined structures with smooth, tunable tunnel barriers defined by local gat-

ing [47], thus avoiding disorder arising from the physical edge of the flake. Broken layer

inversion symmetry opens a bandgap ∆ ∝ E = (αVt − βVb)/2eε0, where Vt and Vb are top

and back gate voltages with coupling factors α and β, respectively, and ε0 is vacuum per-

mittivity. Coupling to the back gate β is extracted from Landau fans in the quantum Hall

regime and the relative gate coupling α/β can be determined from the Dirac peak slope in

a Vt vs. Vb plot of conductance at B = 0. Properties of individual quantum point contacts

are described in greater detail in Supplementary Figs. A.3 and A.4, where pinch-off and

behavior consistent with conductance quantization are observed. Quantum dot formation
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Figure 3.1: (a) Schematic cross-section of a suspended gate-defined bilayer graphene quan-
tum dot. The electric field and carrier density profiles are controlled with back and top gate
voltages Vb and Vt, while application of a bias Vsd across the electrodes enables transport
measurements. (b) Scanning electron micrograph of quantum dot device similar to D4 (see
Methods for sample labeling key). Bilayer graphene (not visible) is suspended between two
electrodes below local top gates. Green and blue lines indicate cross-sectional cuts in (a)
and (c), respectively. Red lines mark the estimated graphene boundaries. The scale bar
represents 1µm. (c) Quantum dot formation at B = 0, illustrated in a cross-sectional cut
of energy vs. position. EC and EV mark the edges of the conductance and valence bands.
Tunnel barriers are formed by inducing a bandgap with an external E field while fixing Vt

and Vb at a ratio that places the Fermi energy EF within the gap. Uncompensated back
gate voltage in the non top-gated regions enables charge accumulation in the dot and leads.

at B = 0 is illustrated schematically in Fig. 3.1c. To create tunnel barriers beneath the

top gates, we induce a bandgap by applying a field E while fixing Vt and Vb at a ratio

that maintains zero carrier density n, where n = αVt + βVb. In the non top-gated regions,

there is a finite charge accumulation due to an uncompensated back gate voltage. For gates
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in a quantum dot geometry, this restricts electron transport to resonant tunneling events

through the constrictions.

Periodic Coulomb blockade oscillations are observed at B = 0 which couple to

both top and back gates (Fig. 3.2a). A peak in the 2D Fourier transform corresponding to

an oscillation spacing of ∼ 11mV in Vb reflects this strong periodicity (Fig. 3.2b), and the

appearance of higher harmonics reveals the non-sinusoidal nature of the Coulomb blockade

peaks when kBT � EC, where kB is Boltzmann’s constant, T is temperature, and EC is the

dot charging energy. Coulomb diamonds shown in Fig. 3.2c have symmetric structure that

suggests equal tunnel coupling to both the source and drain leads. The dot charging energy

extracted from the DC bias data is EC ≈ 0.4 meV. Fig. 3.2d indicates that the periodic

Coulomb blockade oscillations have comparable capacitive coupling to each pair of top gates.

Furthermore, an even-odd effect is visible in a Coulomb blockade plot as a function of Vt12

at fixed Vt34 = 9.27 V and Vb = −10.7 V (Supplementary Fig. A.5), consistent with the

presence of a two-fold degeneracy. The conductance modulations that couple exclusively to

the back gate in Fig. 3.2a likely result from weak parallel conductance channels under gates

3 and 4 (as labeled in Fig. 3.1b) and are unrelated to the central gate-defined quantum dot

formation because capacitive coupling to Vt12 is absent. The horizontal modulations in Fig.

3.2d couple only to Vt34 but not Vt12 and are thus expected to have similar origins. Because

these features are sparse and aperiodic in nature, we expect that they are not generated

by random dot formation in the constrictions or under the local gates. We note that the

highly resistive ν = 0 gap in the quantum Hall regime enables more robust confinement

than the electric field induced gap, and we demonstrate that all background conductance

fluctuations are completely eliminated in Fig. 3.3.
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Figure 3.2: (a) Conductance map (units of e2/h) of Coulomb blockade oscillations as a
function of back gate voltage (Vb) and the voltage on top gates 1 and 2 (Vt12) at T = 110
mK in a four gate dot (device D4). The voltage on top gates 3 and 4 is fixed at Vt34 = 9.27
V. (b) 2D fast Fourier transform (units of e2/h · V ) of (a) reveals the periodic structure.
A peak corresponding to an oscillation spacing of ∼ 11mV in Vb reflects strong periodicity,
while the appearance of higher harmonics reveals the non-sinusoidal nature of the Coulomb
blockade peaks when kBT � EC. (c) Coulomb diamonds are shown in a plot of ∆G/∆Vt12as
a function of Vt12 and VDC, where G is conductance in units of e2/h and VDC is the DC
bias across the electrodes. The voltages Vb = −10.7V and Vt34 = 9.27 V are held constant.
Symmetric Coulomb diamonds suggests equal tunnel coupling to source and drain leads.
The dot charging energy is EC ≈ 0.4 meV. (d) Conductance map (units of e2/h) of Coulomb
blockade oscillations as a function of Vt12 and Vt34 at fixed back gate voltage Vb = −10.7V.

3.5 Coulomb blockade in the quantum Hall regime

Coulomb blockade oscillations can also be generated at finite B field using the

exchange-enhanced ν = 0 gap. Here the bilayer is naturally in a gapped quantum Hall

state at zero density, where high resistances due to quantum Hall ferromagnetism make this

system ideal for confinement. An isolated puddle of charge is created by fixing the Fermi

energy in the top-gated regions at the middle of the ν = 0 gap while allowing occupation

of higher Landau levels elsewhere, shown schematically in Fig. 3.3a. It should be noted

that measurements in the quantum Hall regime are conducted in the valley-polarized ν = 0

state, far from the transition to the spin-polarized phase [60]. Fig. 3.3b shows over forty

consecutive Coulomb blockade oscillations generated at 5.2 T in a 2-gate dot with a 400
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nm lithographic diameter. The slopes of the resonances indicate symmetric coupling to

the two top gates, as expected for a centrally located dot. As top gate voltages are swept

to more positive values, peak amplitude is suppressed, revealing moderate tunnel barrier

tunability. Also seen in Fig. 3.3b are interruptions in the conductance resonances (vertical

and horizontal features) that couple exclusively to a single top gate; due to their sparse and

aperiodic nature, we believe that they represent charging events below the gates. Coulomb

blockade oscillations are robust over a wide voltage range: Fig. 3.3c shows an additional

forty peaks generated under new gate conditions. The Coulomb diamonds exhibit symmetric

tunnel coupling to source and drain leads and a dot charging energy of EC ≈ 0.4 meV. The

strongly periodic nature of the oscillations is evident in the Fourier transform of the data

(Fig. 3.3d). See Supplementary Fig. A.6 for additional Coulomb blockade data.

3.6 Geometric control over Coulomb blockade period

To demonstrate geometric control over dot size, we examine the correspondence

between top gate dimensions and Coulomb blockade peak spacing. Measurements were

performed on five dots with lithographic diameters ranging from 150-450 nm at magnetic

fields of 0 to 7 T. The ability to decrease peak spacing by increasing lithographic dot size is

illustrated in Fig. 3.4a-c. Fig. 3.4a and 3.4b show Coulomb blockade peak conductance as

a function of back gate voltage Vb observed in device D1 at B = 5.2 T, and D2 at B = 7 T,

respectively (see Methods for sample labeling key). Black points represent data and the red

lines are fits used to extract peak positions. Fig. 3.4c shows relative peak position, V (p)−V0,

plotted as a function of peak number p for the first 10 peaks of Fig. 3.4a and 3.4b, where V (p)

is the position of peak p in back gate voltage, and V0 is the position of the first peak. Each

data set is accompanied by a corresponding plot of y(p) = [1
9

∑8
q=0 V (q+1)−V (q)]p, where
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Figure 3.3: (a) Quantum dot formation at B > 0, illustrated in a cross-sectional cut of
energy vs. position. Tunnel barriers are formed using the exchange-enhanced ν = 0 gap,
where high resistances due to quantum Hall ferromagnetism are ideal for confinement. An
isolated puddle of charge is created by fixing the Fermi energy in the top-gated regions at
the middle of the ν = 0 gap while allowing occupation of higher Landau levels elsewhere.
Inset : Schematic illustration of the top gate geometry for device D1. (b) Conductance
map (units of e2/h) of Coulomb blockade oscillations as a function of Vt1 and Vt2 in a
two top-gate dot (device D1), at fixed back gate voltage Vb = −15.4V and T = 110 mK.
The slopes of the resonances indicate symmetric coupling to the two top gates, as expected
for a centrally located dot. As top gate voltages are swept to more positive values, peak
amplitude is suppressed, revealing moderate tunnel barrier tunability. Inset : Scanning
electron micrograph of a device similar to D1. (c) Coulomb diamonds are shown in a plot
of conductance (units of e2/h) as a function of Vt1 and DC bias VDC, where Vt2 = 11 V
and Vb = −14.4 V are fixed. Symmetric Coulomb diamonds suggests equal tunnel coupling
to source and drain leads. The dot charging energy is EC ≈ 0.4 meV. (d) 2D fast Fourier
transform (units of e2/h · V ) of the boxed region in (b), revealing the strongly periodic
nature of the oscillations and higher harmonics.

p and q are peak index numbers, representing the average peak spacing (black lines in Fig.

3.4c). The dot area extracted from quantized charge tunneling is given by A = 1/(β ·∆Vb),

where ∆Vb is the back gate voltage needed to increase dot occupation by one electron (Table

3.1). A comparison of measured dot diameter, d = 2
√
A/π, with effective lithographic
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diameter, dlith = 2
√
Alith/π, indicates that d generally exceeds dlith. This is contrary to the

reduced dimensions observed in GaAs dots, where smaller dimensions are observed due to

depletion [62].

Figure 3.4: (a) Coulomb blockade peak conductance as a function of back gate voltage
Vb observed in device D1 at B = 5.2 T. Black points represent data and the red line
indicates a functional fit used to extract peak positions. The top gate voltages are fixed
at Vt1 = 11.402 V and Vt2 = 12 V.(b) Coulomb blockade in device D2 at B = 7 T. The
top gate voltages are fixed at Vt1 = Vt3 = 13 V and Vt2 = Vt4 = 12 V. (c) Relative peak
position, V (p)−V0, plotted as a function of peak number p for the first 10 peaks of (a) and
(b). V (p) is the position of peak p in back gate voltage Vb, and V0 is the position of the first
peak (V0 = −15.4907 V and −17.9875 V for plots (a) and (b), respectively). Each black
line is a plot of y(p) = [1

9

∑8
q=0 V (q + 1)− V (q)]p, where p and q are peak index numbers,

representing the average peak spacing for the particular data set. Inset : Simulated dot size
versus measured size. Error bars represent the range of diameters expected for measured
Coulomb blockade peak spacings within one standard deviation of the mean. (d) COMSOL
simulation of density profile (in arbitrary units) for the lithographic gate pattern of device
D4 for top gate voltage Vt1 = Vt2 = 12 V. Electron transport is restricted to resonant
tunneling events through the constrictions, indicated by the arrows.

To obtain a better quantitative understanding of the discrepancy between litho-

graphic and measured dot sizes, we use a commercial finite element analysis simulation tool

(COMSOL) to calculate the expected dot area for each top gate geometry. The spatial
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Table 3.1: Measured quantum dot sizes from Coulomb blockade fits

Device β, m−2V −1 〈∆Vb〉, mV St. deviation of ∆Vb Diameter, d = 2
√
A/π

D1 2.85× 1014 14.0 1.8 565(+40/− 34) nm
D2 3.19× 1014 34.1 5.3 342(+30/− 24) nm
D3 3.05× 1014 68.8 4.2 260(±8) nm
D4 2.71× 1014 10.7 1.7 663(+60/− 47) nm
D5 2.85× 1014 13.7 1.3 571(+29/− 26) nm

β: density at 1 V on the back gate. 〈∆Vb〉: average peak spacing. Dot diameter: d = 2
√
A/π

for area A = 1/(β ·∆Vb). Error bars in the last column: range of diameters for CB peak
spacings within one standard deviation of the mean. See Fig. 3.4a.

carrier density profile is modeled for a fixed top gate potential by solving the Poisson equa-

tion assuming a metallic flake in free space (Fig. 3.4d and Supplementary Fig. A.7). This

assumption is justified by local compressibility measurements of the ν = 0 state yielding

dµ/dn = 2 × 10−17eV m2 at 2 T, which translates to a screening of 99% of the applied Vb

voltage by the bilayer [18]. Remarkably, one may calculate dot size purely from gate geom-

etry without relying on measured gap parameters. Assuming that charge accumulation in

the quantum dot occurs when the carrier density exceeds a fixed cutoff d0, the dot size is

defined as the area bounded by the intersection with the density distribution f(x, y) with

the cutoff. Here the cutoff d0 is placed at the saddle points of the simulated density profile

within the constrictions. This condition enables maximal tunneling without loss of con-

finement, assuming that the tunneling probability into the dot decays exponentially with

barrier width. Moving the cutoff to densities far greater than d0 would pinch off the con-

strictions and suppress tunneling, while placement far below d0 would lead to high barrier

transparency and eventual loss of confinement. The simulated dot area from this method,

plotted in Fig. 3.4c (inset), is simply the area bounded by the closed contour of f(x, y) at

fixed density d0 (Supplementary Fig. A.7). Alternatively, one may calculate dot size by

imposing a cutoff equaling the measured gap width (Table 3.2) and accounting for density
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offsets due to a displacement of the measurement voltage from the charge neutrality point

(see Extended Discussion). The cutoffs extracted by these two models are equivalent to

within δn ∼ 1010cm−2, the carrier density fluctuations due to disorder in our suspended

bilayers (Supplementary Fig. A.7) [15].

Table 3.2: Simulated dot sizes obtained from Models 1 and 2

Device d0, m−2 d1, m−2 Diameter (Model 1) Diameter (Model 2)

D1 7.87× 1014 6.81× 1014 489 nm 564 nm
D2 1.85× 1014 1.45× 1014 170 nm 204 nm
D3 7.59× 1014 8.34× 1014 340 nm 300 nm
D4 4.29× 1014 3.90× 1014 504 nm 537 nm
D5 6.96× 1014 6.59× 1014 533 nm 562 nm

Densities d0 and d1: cutoff values above which charge accumulation begins in Models 1
and 2. Dot diameter: d = 2

√
A/π for area A. Diameters from Model 2 were computed at

maximum offset doffset = (Vmeas − VCNP )β. See Fig. A.7.

Our model establishes a quantitative link between measured dot size and litho-

graphic geometry and therefore may serve as a design tool for future bilayer nanodevices

requiring submicron spatial control. These include double dot systems which form the basis

of a spin-based quantum computer [43]. The production of suspended graphene quantum

dots also enables study of coupling between quantized electronic and vibrational degrees

of freedom [63, 64], with potential applications to nanoelectromechanical devices and the

detection of quantized mechanical motion in a membrane [65–68]. Furthermore, the com-

bination of high sample quality with local gating enables study of edge modes that emerge

at the interface of broken symmetry quantum Hall states in an environment well-isolated

from edge disorder (Supplementary Fig. A.2).
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3.7 Methods

Device fabrication

Following mechanical exfoliation of highly oriented pyrolytic graphite crystals,

graphene is deposited on a 300 nm thermally grown SiO2 layer, which covers a doped silicon

substrate functioning as a global back gate. Bilayer flakes are identified based on contrast

to the substrate with an optical microscope and later verified through quantum Hall data.

Cr/Au (3/100 nm) electrodes are defined on selected bilayers using electron beam (ebeam)

lithography, thermal evaporation, and liftoff in acetone. A SiO2 spacer layer approximately

150 nm thick is deposited with ebeam evaporation after a second lithography step. Local

top gates are placed over the SiO2 spacers in a two step ebeam lithography process. First

small features that define the tunnel barriers and constrictions are patterned using Cr/Au

of thickness 3/75 nm, and thicker support structures constructed of 3/300 nm of Cr/Au

that traverse the evaporated SiO2 step are deposited immediately afterwards. The devices

are immersed in 5:1 buffered oxide etch for 90 s and dried in a critical point dryer, which

leaves both the graphene and the top gates suspended.

Dot geometries and measurement conditions

We analyze five fully suspended quantum dots with lithographic diameters, dlith =

2
√
Alith/π, of 150 to 450 nm. Listed here are details on individual sample geometries

and measurement conditions. Device D1 is a circular two gate dot with dlith = 400 nm

measured at B = 5.2 T with the valley polarized ν = 0 gap used for confinement. Device

D2 is a circular dot with dlith =150 nm consisting of three main gates with a plunger gate

suspended above (see Supplementary Figure A.1). Measurements were conducted at B = 0

and 7 T with the E field induced and ν = 0 gaps used for confinement, respectively. Device
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D3 is a circular four gate dot with dlith = 300 nm measured at B = 7 T. Device D4 is a

circular four gate dot with dlith = 400 nm measured at B = 0 and 3 T. Device D5 is a

two gate elliptical dot with cross sectional lengths of 200 and 250 nm measured at B = 5

T. Additional scanning electron microscope (SEM) images of locally gated quantum dot

devices are provided in Supplementary Fig. A.1. Top gate labeling for devices D2 and D4

is provided in Supplementary Fig. A.1 and Fig. 3.1, respectively. All measurements are

conducted using standard Lockin techniques in a Leiden Cryogenics Model Minikelvin 126-

TOF dilution refrigerator. A voltage bias setup is used, where AC excitations ranging from

4− 80µV are applied at a frequency of 35.35 Hz with a 100 ms time constant. An electron

temperature of T = 110 mK is extracted from Coulomb blockade fits.

Despite the complex fabrication process required to make local gated devices, the

graphene exhibits high quality as evidenced by symmetry breaking in the quantum Hall

regime. Supplementary Fig. A.2 contains Landau fans (measured in device D4 and in

a two gate split-gate device) plotted as conductance as a function of back gate voltage

Vb and magnetic field B, with zero voltage on the top gates. In the split gate device,

a map of quantized conductance as a function of the voltages on each split top gate is

provided in Supplementary Fig. A.2, where the voltage Vb = −3V and field B = 4T are

held constant. This provides evidence of local control over broken symmetry quantum Hall

states in suspended bilayer graphene.

Measured dot size extracted from Coulomb blockade fits

The dot area extracted from quantized charge tunneling is given by A = 1/(β ·

∆Vb), where ∆Vb is the back gate voltage needed to increase dot occupation by one electron

and β is the carrier density induced by 1 V on the back gate. The global density to voltage

conversion is obtained by fitting Landau level filling factors ν = nh/eB from bulk quantum
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Hall data. The peak spacing ∆Vb ≡ V i+1
b,res− V

i
b,res of a given data set is extracted by fitting

each Coulomb blockade oscillation to the conductance expression:

G(Vb) = A · cosh

(
ea|Vb − Vb,res|

2.5kBT

)−2

(3.1)

where e is the electron charge, kB is Boltzmann’s constant, T is temperature, A is peak

amplitude, Vb,res, is the back gate voltage at resonance, and a = Cg/(Cl + Cr + Cg) is

determined from the slopes of the Coulomb diamonds (Cg is capacitance to the back gate

and Cl and Cr are capacitances across the left and right tunnel barriers, respectively). This

expression is valid in the regime ∆E � kBT � e2/C, where ∆E is the single particle level

spacing. This functional fit to the data is shown explicitly in Fig. 3.4a,b. Coulomb blockade

data from an additional device is provided in Supplementary Figure A.4.

3.8 Extended Discussion

Even-odd effects

At zero magnetic field, the presence of a four-fold degeneracy due to spin and

valley symmetries may affect the Coulomb blockade periodicity (at high electric fields in

the quantum Hall regime, both spin and valley degeneracies should be broken). In device

D4, an even-odd effect is visible in a Coulomb blockade plot as a function of Vt12 at fixed

Vt34 = 9.27V and Vb = −10.7V (Supplementary Fig. A.5). This is consistent with the

presence of a two-fold degeneracy, where the constant interaction model yields electron

addition energy Eadd = EC for N odd and Eadd = EC+∆E for N even (for charging energy

EC and orbital energy spacing ∆E) because electrons of opposite index can occupy a single

orbital state [40, 41]. Although the application of a large electric field breaks sublattice

symmetry, spin and valley degeneracies remain intact, so an explanation of our observation
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of a two-fold rather than four-fold effect remains an open question. Also, the theoretical

estimate of ∆E based on device geometry is larger than the measured value; this discrepancy

cannot be explained by a single particle picture and requires further investigation.

Model 1: Cutoff defined by constriction saddle points

We first discuss simulation of the spatial density profile for each quantum dot, as

shown in Fig. 3.4d, which is relevant to the final two sections of the Extended Discussion.

COMSOL Multiphysics, a commercial finite element analysis simulation tool, is used to

model the spatial carrier density profile for a fixed top gate potential by solving the Poisson

equation, ∇2V = −ρ/ε0. First the lithographic top gate pattern, designed using TurboCAD,

is imported into COMSOL and placed in a parallel plane defined 150 nm above the graphene

flake. The flake is assumed to be a two dimensional metallic plate, which is justified by

local compressibility measurements of the ν = 0 state yielding dµ/dn = 2 × 10−17eV m2

at 2 T, which translates to a screening of 99% of the applied Vb voltage by the bilayer

(for dn = 1.5 × 109 cm−2) [42]. A fixed potential matching the experimental value at

which Coulomb blockade oscillations appear is assigned to the top gates, while the flake

is grounded. The perpendicular electric field component, Ez(x, y), is solved in a plane

5 nm above the flake. The approximate carrier density profile is given by the function

f(x, y) = e · Ez(x, y)/ε0 up to a constant offset. This is because the graphene screens all

in-plane electric fields. A contour plot representing the simulated spatial density profile in

device D4 at a top gate voltage of 12 V is presented in Supplementary Figure A.7.

In the first modeling approach, whose results are presented in Fig. 3.4c, one may

calculate dot size purely from gate geometry without relying on measured gap parameters.

Assuming that charge accumulation in the quantum dot occurs when the carrier density

exceeds a fixed cutoff d0, the dot size is defined as the area bounded by the intersection with
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the density distribution f(x, y) with the cutoff. Here the cutoff d0 is placed at the saddle

points of the simulated density profile within the constrictions. This condition enables

maximal tunneling without loss of confinement, assuming that the tunneling probability into

the dot decays exponentially with barrier width. Thus, the simulated dot area computed

by this method is simply the area bounded by the closed contour of f(x, y) at fixed density

d0 (Supplementary Fig. A.7a).

The model is used to estimate the extent to which dot size should change in

response to a changing top gate voltage. The dot diameter, d = 2
√
A/π, for sample D2 is

computed to be 170 nm at top gate voltage Vt = 9 V and 173.5 nm at Vt = 13V. This 3.5

nm increase in diameter, a 2 percent change, over a 4 V range is substantially smaller than

the experimental error bars due to fluctuations in peak spacing (Fig. 3.4). This prediction

is consistent with the overall experimental observation of an approximately constant dot

size over the measurement ranges presented in this paper.

Model 2: Cutoff determined from measured ν = 0 gap and offset from charge

neutrality point

In the second modeling approach, we determine quantum dot dimensions using

both the simulated density distribution and experimental gap measurements. First the

spatial density profile induced by the top gates, f(x, y), is modeled using COMSOL following

the procedure described in the preceding section of the Extended Discussion. To determine

the quantum dot size from the density profile, we impose a cutoff d1 determined by the

width of the gap (ν = 0 or E field induced) above which charge accumulation begins.

Explicitly, d1 = (V+ − V−)β, where V+ and V− are the positive and negative back gate

voltages at which a plot of conductance versus Vb intersects 1e2/h. Additionally we account

for overall offsets in density due to a displacement of the measurement voltage from the
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charge neutrality point. This offset is given by doffset = (Vmeas − VCNP )β, where Vmeas is

the measured back gate voltage at which Coulomb blockade oscillations appear, and VCNP

is the measured back gate voltage at which the charge neutrality point appears at B = 0

when the top gates are fixed at the potential defined in the density profile simulation. Thus,

the spatial density profile with proper offsets included is g(x, y) = f(x, y) − dsat + doffset,

where dsat is the saturating value of f(x, y) deep within the tunnel barriers defined by the

top gates. Physically dsat is the offset in carrier density induced by the back gate that

places the Fermi energy at the center of the bandgap. Similar to Model 1, the simulated

dot area computed by this method is the area bounded by the contour lines of g(x, y) at

fixed density d1. Results of Models 1 and 2 are presented in Table 3.2 and Supplementary

Figure A.7.
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Spatially resolved edge currents in

monolayer and bilayer graphene

4.1 Overview

Extreme nonclassical forms of electronic transport realized in graphene by exploit-

ing the light-like properties of carriers in this material are of keen interest for nanoscience

research [69–76]. In this vein, finding ways to confine and direct electronic waves through

nanoscale streams and streamlets, unimpeded by the presence of other carriers, has remained

a grand challenge [77–80]. Inspired by guiding of light in fiber optics, here we demonstrate

a route to engineer such a flow of electrons using a new technique for mapping currents

at submicron scales. We employ real-space imaging of current flow in graphene to provide

direct evidence of confinement of electron waves at the edges of a graphene crystal near

charge neutrality. This is achieved by using superconducting interferometry in a graphene

Josephson junction and reconstructing the spatial structure of conducting pathways using

Fourier methods [24]. The observed edge currents arise from coherent guided wave states,
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confined to the edge by band bending and transmitted as plane waves. As an electronic

analog of photon guiding in optical fibers, the observed states afford new nonclassical means

for information transduction and processing at the nanoscale.

4.2 Guided-wave electronic states in graphene

Electrons in Dirac materials such as graphene can be manipulated using external

fields that control electron refraction and transmission in the same way that lenses and

optical elements manipulate light [69, 70, 74, 75]. Several of the key ingredients, including

phase-coherent Klein transmission and reflection [71–73], ballistic transport [76] and trans-

verse focusing on micrometer scales [81], have already been established. One promising yet

unexplored direction, which we investigate here, is the quasi-1D confinement of electrons

in direct analogy to refraction-based confinement of photons in optical fibers. Electronic

guided modes formed by a line gate potential, while discussed in the literature [77–80], have

so far evaded direct experimental realization. Extending the fiber optics techniques to the

electronic domain is key for achieving control of electron waves at a level comparable to

that for light in optical communication systems.

Rather than pursuing the schemes discussed in Refs. [77–80], here we explore

modes at the graphene edges. The atomically sharp graphene edges provide a natural

vehicle for band bending near the boundary which then confines the electronic waves in

the direction transverse to the edge. The resulting guided “fiber-optic” modes are situated

outside the Dirac continuum (see Fig. 4.1a,b), propagating along crystal edge as plane

waves and decaying into the bulk as evanescent waves. This approach to carrier guiding is

particularly appealing because of the ease with which band bending at the graphene edge

can be realized, as well as because there is no threshold for fiber-optic states to occur:
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they are induced by an edge potential of either sign, positive or negative, no matter how

weak (see discussion below and in the Extended Discussion). The presence of such guided

modes enhances the density of current-carrying states at the edge. The effects of electron

confinement and guiding are strongest near charge neutrality where the edge potential is

unscreened, while uniform behavior is recovered away from neutrality (see Fig. 4.1c and

Fig. 4.5).

The edge currents associated with guided states, anticipated at zero magnetic field,

have so far eluded experimental detection due to the challenge of imaging current with sub-

micron spatial resolution. In particular, scanning tunneling spectroscopy (STS) images den-

sity of states but not current flow [82,83], while macroscopic conductivity cannot distinguish

the edge and bulk contributions [84, 85]. With this motivation, we developed a technique

to spatially image electric current pathways and applied it to high-mobility graphene. We

employ superconducting quantum interferometry in a graphene Josephson junction to re-

construct the spatial structure of the electronic states which transmit supercurrent, which

allows edge and bulk contributions to be disentangled [24,86].

4.3 Experiment: spatial imaging of current flow using Joseph-

son interferometry

Our approach employs gated Josephson junctions consisting of graphene coupled

to superconducting titanium/aluminum electrodes (Fig. 4.1d). A gate electrode is used

to tune the carrier density, n, in the graphene. In order to access the intrinsic properties

of graphene at densities near charge neutrality, flakes are isolated from substrate-induced

disorder through placement on thin hexagonal boron nitride (hBN) substrates [87]. A total

of four bilayer and one monolayer devices are investigated, all of which exhibit similar
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behavior (Table 4.1). Measurements of the AC voltage drop dV across the junction in

response to an AC current modulation dI were conducted using lockin techniques in a

dilution refrigerator at 10 mK, well below the critical temperature of Al. Figures 4.1e-h

exemplify transport data from one of the bilayer devices. Upon sweeping DC current bias

IDC , a sharp transition in resistance between dissipationless and normal metal behavior

appears at a critical current Ic, a transport signature of the Josephson effect (Fig. 4.1e,f).

Table 4.1: List of device dimensions for graphene Josephson junctions

Device L (nm) W (nm) Aspect ratio, L/W Contact width (nm)

BL1 250 1200 0.208 400
ML1 300 1200 0.25 300
BL2 300 800 0.375 400
BL3 350 1200 0.292 600
BL4 250 900 0.278 400

L and W refer to junction length and width, respectively, as labeled in Fig. 4.1d of the
main text. Contact width refers to the size of the superconducting Ti/Al electrodes in
the direction perpendicular to W. BLx and MLx refer to bilayer and monolayer graphene
devices, respectively.

We obtain real-space information by applying a magnetic flux Φ through the junc-

tion area, which induces a position-dependent superconducting phase difference parallel to

the graphene/contact interface [23]. As a result, the critical current Ic exhibits interference

fringes in B field (Figure 4.1e). The measured interference patterns feature well defined

nodes, which indicates the absence of field inhomogeneity such as that due to vortices [88].

The critical current Ic can be expressed as the magnitude of the complex Fourier transform

of the current density distribution J(x), providing a simple and concise description of our

system. That is, Ic = |Ic(B)|, where

Ic(B) =

∫ W/2

−W/2
J(x) · e2πiLBx/Φ0dx (4.1)
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where Φ0 = h/2e is the flux quantum, h is Planck’s constant, e is the elementary charge, W

is the width of the flake, and L is the distance between contacts (Fig. 4.1d). Here, following

the conventional treatment for wide junctions (L�W ), we ignore the y dependence. The

spatial distribution of supercurrent thus dictates the shape of the interference pattern [23,

24,49].

The results obtained with this technique show strikingly different behavior at

high and low carrier densities. We observe the conventional uniform-current behavior at

high density, Ic(B)/Ic(0) ∼ | sin(πΦ/Φ0)/(πΦ/Φ0)|, which mimics single-slit Fraunhofer

diffraction (Fig. 4.1e). Defining features of such interference include a central lobe of

width 2Φ0 and side lobes with period Φ0 and decaying 1/B amplitude. However, near the

Dirac point, our results exhibit a striking departure from this picture and show a two-slit

“SQUID-like” interference (Fig. 4.1f) [89]. Such behavior arises when supercurrent is

confined to edge channels and is characterized by slowly decaying sinusoidal oscillations of

period Φ0. Importantly, these two regimes are easily distinguishable without much analysis

by the width of the central lobe, which is twice as wide for the uniform case as compared

to the case of edge flow.

The real-space current distribution can be obtained by inverting the relation in

Eq.(1) with the help of the Fourier techniques of Dynes and Fulton [24] (see Extended Dis-

cussion). The resulting current density map reveals strong confinement of supercurrent to

the edges of the crystal near the Dirac point (Fig. 4.1h), a robust experimental feature seen

in all five devices. The width of the edge channel, extracted quantitatively from Gaussian

fits, is on the order of the electron wavelength (∼ 200 nm) and consistent across multiple

samples. This value is likely an upper bound because the peak width is manifested in the

decay envelope of the interference pattern, external factors that suppress the critical current

amplitude at high B, such as activation and decay of the Al superconducting gap, may also
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contribute to peak broadening. At high electron density, a conventional Fraunhofer-like

behavior is recovered (Fig. 4.1e), suggesting a uniform distribution of supercurrent (Fig.

4.1g). A more numerically expensive Bayesian estimation of the current distribution pro-

duces current maps and standard error estimates that agree with the Fourier techniques

(see Extended Discussion and Fig.4.6 within).

By tuning carrier concentration with a gate electrode, our measurements reveal

coexistance of edge and bulk modes at intermediate densities. As illustrated in Fig.4.2,

our monolayer graphene device exhibits SQUID-like quantum interference through charge

neutrality, giving the spatial image of supercurrent that confirms edge-dominated transport

(Fig. 4.2a-c,f). As density is increased, bulk current flow increases monotonically and

crosses over to mostly uniform flow across the sample (Fig. 4.2d), signified by conventional

Fraunhofer-like interference at high electron density (Fig. 4.2e). To track the evolution of

edge and bulk currents with density, line cuts of the individual contributions are provided in

Figure 4.2e, where the gate voltage corresponding to the charge neutrality point is identified

as a dip in the current amplitude. Notably, raw interference near the Dirac point (Fig. 4.2e)

and at high electron concentration (Fig. 4.2f) exhibit the salient features that distinguish

edge-dominated from bulk-dominated transport, including a width of ϕ0 versus 2ϕ0 of the

central lobe, as well as Gaussian versus 1/B decay of the lobe amplitudes for low and high

densities, respectively.

Similarly, we systematically explore the correspondence between edge and bulk

flow in bilayer graphene and detect boundary currents in the presence of broken crystal

inversion symmetry (Fig. 4.3). As the Fermi energy approaches the Dirac point from

the hole side, the bulk is suppressed faster than the edge, leading to emergence of robust
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Figure 4.1: (a, b) Guided edge modes induced by an intrinsic band bending near crystal
boundary, for single-layer and bilayer graphene (schematic). Mode frequencies positioned
outside the Dirac continuum ensure mode decoupling from the bulk states. In a bilayer,
the modes occur in pairs [green and red curves : dispersion for positive and negative po-
tential strength, respectively]. (c) The guided modes are manifested through peaks in the
density of current-carrying states at the boundaries, prominent near charge neutrality (red :
n = 0.05 × 1011cm−2; blue: n = 2.5 × 1011cm−2). (d) Schematics of superconducting
interferometry in a graphene Josephson junction. A flux is threaded through the junction
area to produce interference patterns, as current bias Vsd is applied between the contacts
and the voltage across the device is recorded. Carrier density n is tuned by a gate voltage
Vb. (e, f) The interference pattern is of a single-slit type at high density, turning into
a two-slit interference near neutrality (device BL1). (g, h) Current flow, extracted from
the interference data using Fourier techniques, is uniform at high density and peaks at the
edges close to neutrality.

edge currents near zero carrier density (Fig. 4.3a,b). In this device, current distributions

are not plotted at the immediate Dirac point due to suppression of proximity-induced

superconductivity at high normal state resistances. We note that the range in hole density
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over which the bulk contribution is recovered varies in different devices. Further, application

of an interlayer electric field E breaks crystal inversion symmetry and induces a bandgap [3,

90], manifested as a gate-tunable insulating state at the Dirac point (Fig. 4.3c,d). In this

regime, conductance is mediated by edge currents that enclose the bulk, even in the presence

of a gap (Fig. 4.3e,f).

Figure 4.2: (a) Edge-dominated SQUID-like interference pattern at neutrality in device
ML1 (n = 2.38 × 109 cm−2). (b, c) Real-space image of current flow confined to the
boundaries over a range of densities near neutrality, shown alongside with the raw interfer-
ence data (corresponding to the white box in (d)). (d) A real-space map of current flow
as a function of electron concentration reveals coexistence of edge and bulk modes at inter-
mediate densities. Over the entire scan, the full range of carrier modulation extends into
the high 1011 range cm−2. (e) Conventional Fraunhofer pattern for uniform current flow at
high electron density (n = 7× 1011 cm−2). (f) Comparison of current amplitudes along the
edge (red) and bulk (blue) from panel (c). Current flow is edge-dominated near neutrality.
Minima for both contributions coincide in n, indicating that a positional edge/bulk density
offset is not present.
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Figure 4.3: (a) Spatially resolved supercurrent map in device BL2, in a normalized plot of
J(x)/Jmax(x). Edge-dominated transport occurs near charge neutrality, while an increasing
bulk contribution is tuned with carrier concentration. (b) Comparison of current amplitudes
along the edge (red) and through the bulk (blue) from panel (a). Enhanced edge currents are
prominent at neutrality, whereas a uniformly distributed flow is recovered at high densities.
The normal state conductance G(e2/h) vs. carrier density is also shown (black). (c)
Measurement schematic for superconducting interferometry in a dual-gated bilayer graphene
Josephson junction. A dual-gated device consists of bilayer graphene flake on hBN with
a suspended top gate, where application of voltages Vt and Vb on the top and back gates
enables independent control of the transverse electric field E and carrier density n. (d)
Resistance map as a function of Vb and Vt for bilayer BL4. Enhanced resistance at high
E fields indicates the emergence of a gate-tunable insulating state due to broken crystal
inversion symmetry. (e) Spatially-resolved boundary currents as a function of E field.
The vertical axis is a trace along the red path labeled in (b). (f) Sequence of Fraunhofer
measurements at various locations on the current map in panel (e).
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As a simple model of electronic fiber-optic states we consider massless Dirac par-

ticles in graphene monolayer in the presence of a line potential:

H = vσ · p+ V (x), (4.2)

where σi are pseudospin Pauli matrices and v ≈ 106 m/s. We seek plane-wave solutions of

the Schrödinger equation, ψ(x, y) = eikyϕ(x), where k is the wavevector component along

the line and ϕ(x) is a two-component spinor wavefunction depending on the transverse co-

ordinate. This problem can be tackled by a matrix gauge transformation ψ(x) = U(x)ψ̃(x),

which eliminates the potential V (x) and generates a mass term in the Dirac equation.

Namely, U(x) = e−iθ(x)σx with θ(x) = 1
~v
∫ x

0 V (x′)dx′ yields

H̃ = U(x)HU−1(x) = ~v[−iσx∂x + kσy cos 2θ(x)− kσz sin 2θ(x)]. (4.3)

As a simple example, we consider the case of an armchair edge, for which the problem

on a half plane for carriers in valleys K and K ′ is equivalent to the problem on a full

plane for a single valley. Applying the above method to a potential localized in an interval

−d < x < d and focusing on the long-wavelength modes such that kd � 1, we can use

a step approximation θ(x) ≈ (u/2v) sgn (x) with the parameter u = 1
~
∫ d
−d V (x′)dx′. We

arrive at the seminal Jackiw-Rebbi problem for a Dirac equation with a mass kink

H̃ = ~v(−iσx∂x + σyk̃ + σzm(x)), (4.4)

where k̃ = k cos(u/v), m(x) = −k sin(u/v) sgn (x). The Jackiw-Rebbi problem can be

solved directly and explicitly [91], yielding guided-wave states as products of the zero-mode

state found from H̃ for k̃ = 0 and the plane wave factors eiky. The energies of these states
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are simply ε = η~vk̃ with the sign η = sgn (m(0+)−m(0−)). This gives a linear dispersion

ε = ~ṽ|k| with ṽ = v cos(u/v)sgn (sin(u/v)). Since |ṽ| < v, for each k the energies of

these states lie outside the bulk continuum |ε| ≥ ~v|k| (see Fig. 4.1a). Decoupling from

the bulk states ensures confinement to the region near the x = 0 line. The connection

with the theory of zero modes renders robustness to our confinement mechanism. Similar

guided-wave states are obtained for an edge potential in graphene bilayer (see Fig. 4.1b).

In Figure 4.4, we compare supercurrent density measurements with a theoretical

prediction for density of states. Current density traces J(x) measured in bilayer device

BL3 at different densities have a strong edge component near neutrality, gradually evolving

to the bulk flow away from neutrality. Traces of the density of states, obtained from the

above model, exhibit qualitatively similar behavior (Fig. 4.4b). For the simulation, a delta

function potential approximation was used with the best-fit value ~u = 0.7 eV·nm (see

Extended Discussion).

Another key feature borne out by the above model is the robustness of the guided

states in the presence of edge disorder. Indeed, since the lengthscales defined by the evanes-

cent waves are on the order of electron wavelength λ, the resulting modes are weakly

confined to the edge at low carrier density. Such modes can naturally decouple from the

short-range edge disorder by diffracting around it. In particular, our analysis of monolayer

graphene yields the mode damping that quickly vanishes at long electron wavelengths near

charge neutrality, scaling as γ(k) ∼ k2 (see Extended Discussion section). This resembles

the behavior of optical guided states in so-called “weakly-guiding” optical fibers, where a

similar suppression of disorder scattering occurs due to evanescent waves diffracting around

edge disorder.

One appealing aspect of the fiber-optic model is that it can naturally accommodate

a wide range of different microscopic physical mechanisms discussed theoretically in the
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literature [91–95] that may produce an edge potential. Examples include pinning of the

Fermi energy to the low-energy states due to broken A/B sublattice symmetry [93–95],

density accumulation caused by dangling bonds or trapped charges at the boundaries, or

electrostatics [91, 92]. The competition of these effects can produce a complex dependence

of the edge potential V (x) on carrier density. Pinpointing the precise microscopic origins

of the edge potential requires further study.

To the best of our knowledge, the fiber-optic modes is among the simplest models

fully consistent with the observations. While edge density accumulation can influence the

edge potential and in principle also support guided edge currents, the fact that the charge

neutrality points for both edge and bulk roughly coincide in density n suggests an absence

of a positional charge imbalance on a large scale (Fig. 4.2f). In addition, edge-dominated

current flow is observed near the Dirac point but not at higher densities, behavior not

expected for strong edge doping. Explanations involving electron-hole puddles are excluded

by the reproducibility of edge currents with width on the order of electron wavelength

across many samples, as well as the observation that edge currents tend to be stronger

in clean samples with ballistic Fabry-Pérot interference [96] (see Fig.4.9 for normal state

characterization of the graphene). Large charge inhomogeneities across the sample would

suppress Fabry-Pérot interference and are thus unlikely.

Lastly, it is widely known that the A/B sublattice imbalance for broken bonds

at the edge can lead to edge modes in pristine graphene at neutrality. Such dispersing

zero-mode states can exist even in the absence of a line potential, forming edge modes

for an atomically perfect zigzag edge [93–95]. However, our simulations for disordered

edge show that these states are highly localized on the disorder length scale, and also that

edge roughness induces strong scattering between the states at the boundary and in the

bulk, which hinderds ballistic propagation. Similarly, valley Hall currents predicted at the
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boundaries of a gapped bilayer due to momentum-space Berry curvature of the bands [97,98]

are susceptible to disorder scattering at the boundaries. We therefore conclude that such

states are unlikely to contribute to the observed boundary currents.

Our measurements establish that edge currents are present in graphene even at

zero magnetic field, near the Dirac point. The observed edge currents are linked to electronic

guided-wave states formed due to band bending at the edge, demonstrating confinement of

electron waves at a level comparable to that for light in photonic systems. This defines a

new mode for transmission of electronic signals at the nanoscale. We also anticipate this

work will inspire more detailed investigations of boundary states in graphene and other

materials. Such capabilities are also of keen interest due to the predicted topological nature

of edge states along stacking domain boundaries in bilayer graphene [99,100].

4.4 Extended Discussion

4.4.1 Modeling electronic guided modes

Main results

A realistic model of supercurrent-carrying states in graphene SNS junctions should

account for several microscopic effects. This includes, in particular, the details of transport

through the NS interfaces, the realistic edge potential profile due to band bending near

graphene edge, and the effects of disorder. Since treating all these issues simultaneously

and on equal footing may be challenging, we use a simplified model. First, we completely

ignore the effects of induced superconductivity, focusing on the normal metallic state of

pristine graphene. Second, we consider a clean system and account for disorder scattering

perturbatively at the end. Third, since all the states in a clean system, being delocalized, are

capable of carrying supercurrent, we resort to evaluating the density of states (DOS) taking
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Figure 4.4: (a) Real-space maps of measured current flow J(x) in bilayer device BL3 at
fixed carrier densities on the hole side, showing edge currents near the Dirac point and a
continuous evolution towards bulk flow. (b) Theoretical plot of spatially resolved density
of states in bilayer graphene at fixed carrier densities for edge waveguide model. For the
simulation, an effective delta function potential approximation is used with the best-fit value
~u = 0.7 eV·nm (see Extended Discussion). In each density of states simulation, the value
of lambda is always consistent with the carrier density specified for that line cut. Band
mass of bilayer graphene is taken 0.028me where me is electron mass.

it to reflect on the current-carrying capacity of the system. Naturally, such an approach

should be used with caution for disordered systems in which some states are localized, and

therefore can contribute to DOS but not to supercurrent. However, since the states in a

clean system are of a plane wave character, contributing to current with the weights given by

their occupancies and all possessing a roughly similar current-carrying capacity, we adopt

the DOS-based approximation on the merit of its simplicity.

Below we focus on the two cases of interest: the monolayer graphene (MLG) and
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bilayer graphene (BLG). States in MLG are described by the massless Dirac Hamiltonian

H0 = v

 0 px − ipy

px + ipy 0

 = vσ1px + vσ2py (4.5)

with v ≈ 106m/s the carrier velocity and σ1, σ2 the pseudospin Pauli matrices. States in

BLG are described by the Hamiltonian

H0 =
1

2m∗

 0 (px − ipy)2

(px + ipy)
2 0

 =
1

2m∗

{
σ1(p2

x − p2
y) + 2σ2pxpy

}
(4.6)

with the band mass value m∗ = 0.028me.

As stated above, we use spatially resolved DOS as a measure of current-carrying

capacity of the system. We analyze the quantity

N(µ, r) =
dn(r)

dµ
, n(r) = 〈ψ†(r)ψ(r)〉, (4.7)

where n is the total carrier density and µ is the chemical potential. Below we evaluate

DOS as a function of position and energy, focusing on the characteristic features due to the

guided modes.

Our analysis of the spatial dependence of DOS and other related quantities is

facilitated by the following observations. First, as discussed in the main text, the problem

of guided states on a halfplane x > x0 near the edge x = x0 in MLG can be mapped onto a

similar problem on a full plane by accounting for the states in valleys K and K ′ mixing at the

edge. This mapping is particularly transparent for the armchair edge, where the boundary

condition for the spinor wavefunctions in the two valleys is simply ψK + ψK′ = 0. In this

case, one can see that the two-valley half-plane problem is mathematically equivalent to the
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problem posed on a full plane for particles in just one valley, provided the line potential for

the latter problem is taken to be a sum of the original edge potential and its mirror-reflected

double, V (x > x0) → V (|x− x0|).

Second, the states with the wavelengths larger than the edge potential width can

be described by treating the potential in a delta function approximation. In that, a realistic

microscopic potential V (x) is replaced by a delta-function pseudopotential

Ṽ (x) = ~uδ(x− x0), u =
1

~

∫
V (x′)dx′ (4.8)

where x0 is the edge position. Here we parameterized the effective potential strength by

the quantity u which has the dimension of velocity. A system of width w with two parallel

edges positioned at x0 = ±w/2 can therefore be described by a Hamiltonian in the full

plane −∞ < x <∞, −∞ < y <∞:

H = H0 + ~uδ(x+ w/2) + ~uδ(x− w/2), (4.9)

where H0 is the 2×2 Dirac Hamiltonian for carriers with one spin/valley projection in MLG

or BLG, see Eqs.(4.5),(4.6).

Lastly, taking into account that for for relevant densities n ∼ 1011 cm−2 typical

electronic wavelength values λ ∼ n−1/2 ≈ 50 nm are much smaller than the distance between

edges w = 800− 1200 nm, we can represent DOS as a sum of partial contributions

N(µ, x) = N0(µ) +N1(µ, x− w/2) +N1(µ, x+ w/2). (4.10)
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Here N0(µ) is the DOS of a uniform infinite system with fixed spin/valley projection,

N0(µ) =
|µ|

2π~2v2
(MLG), N0(µ) =

m∗

2π~2
(BLG) (4.11)

and N1(µ, x±w/2) are the contributions to DOS from a pair of delta-function line potentials

placed at x = ±w/2.

Below we derive an exact expression for DOS perturbed by a delta function. For

MLG we find

N1(ε, x) =
4u

π~2
Im

∫
dp

2π

p2e−2κε,p|x|/~

κε,p
[
4εu+ (4v2 − u2)κε,p

] (MLG) (4.12)

where κε,p =
√
p2 − (ε/v)2. For BLG we find

N1(ε, x) = − 2

π~2u
Im

∫
dp

2π

[1 + F0(0)][F 2
0 (x) + F 2

1 (x) + F 2
2 (x)]− 2F1(0)F0(x)F1(x)

[1 + F0(0)]2 − F 2
1 (0)

(BLG)

(4.13)

where we introduced the notation

F0(x) =
m∗u

2

[
1

κ−ε,p
e−κ

−
ε,p|x| − 1

κ+
ε,p
e−κ

+
ε,p|x|

]
(4.14)

F1(x) =
m∗u

2

[
1

κ−ε,p

(
1− p2

m∗ε

)
e−κ

−
ε,p|x| +

1

κ+
ε,p

(
1 +

p2

m∗ε

)
e−κ

+
ε,p|x|

]
(4.15)

F2(x) = −pu
2ε

(
e−κ

−
ε,p|x| − e−κ

+
ε,p|x|

)
(4.16)

where κ±ε,p =
√
p2 ± 2m∗ε.

In the expressions given in Eq.(4.12) and Eq.(4.13) the energy ε is taken to have an infinites-

imal positive imaginary part, which is essential for handling the poles in the denominators

due to the guided modes. After evaluating the integral, ε must be replaced by the chemical
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potential, ε = µ. The spatial dependence of DOS in MLG described by Eq.(4.12) is shown

in Fig. 4.5.

In our model, which is essentially non-interacting, the effects of screening can be

included in a heuristic way by treating the potential strength in Eq.(4.9) as a function of

carrier density parameterized by the chemical potential µ. We use a simple model which

captures the overall behavior seen in the data

u→ u′(µ) =
u

1 + (|µ|/µ0)α
(4.17)

where the parameter µ0 depends on microscopic details. Comparing to the data indicates

that a reasonably good fit can be achieved for α ≈ 2.

The results for MLG, of the form given in Eq. (4.10), are presented in Fig. 1c of

the main text. The spatially resolved density of states is obtained for carrier densities n =

0.05 ·1011
cm
−2 (red curve) and n = 2.5 ·1011

cm
−2 (blue curve), where n accounts for the spin

and valley degeneracy. Potential strength used is ~u = −1.5 ~v ≈ 1 eV·nm, the screening

parameter value is µ0 = 0.2
√
π~2v2n0 ≈ 7 meV, with n0 = 1011

cm
−2 the corresponding carrier

density.

A similar approach was used to model the density profile in BLG, with a pair of

line delta functions mimicking the graphene edge potential. The resulting spatially resolved

DOS in BLG, of the form given in Eq.(4.10) with N1(ε, x) defined in Eq.(4.13), is shown

in Fig. 4b of the main text. The delta-function potential strength was parameterized in

the same way as for MLG. The curves in Fig. 4b were obtained using the best-fit value

~u = 0.7 eV·nm and assuming no screening.
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Microscopic derivation

To obtain Eq. (4.12) and Eq. (4.13) we consider long-wavelength modes for a line

potential positioned at x = 0. This problem is described by the Hamiltonian H = H0+V (x)

with V (x) = ~uδ(x). Here we construct the Greens function which takes the full account

of scattering by the potential V (x). The discrete spectrum of the system, arising due

to guided modes, can be conveniently expressed through the poles of the electron Greens

function. The Greens function, in this case, can be evaluated using Dysons’s equation and

the T-matrix representation:

G = G0 +G0V G0 +G0V G0V G0 + · · · = G0 +G0TG0 (4.18)

where G0 = (iε−H0)−1.

Naively, Dyson’s equation for the T-matrix can be solved in an explicit way as

T (ε, py) = ~u
(

1− ~u
∫

dpx
2π~

G0(ε,p)
)−1

(4.19)

In our problem, however, such a solution potentially misses the effects of the electron wave-

function phase variation in space near the delta-function potential. Indeed, the result in

Eq.(4.19) can be seen to rely on the assumption of the wavefunction continuity in the vicin-

ity of the delta-function. However, the property of wavefunction continuity holds for BLG

but does not hold for MLG where the wavefunction phase experiences a jump across the

delta-function (see discussion in the main text). The correct expression for the T-matrix

for the MLG case, which is more complicated than that in Eq.(4.19), can be constructed

by performing a suitable gauge transformation (to be discussed elsewhere). This analysis

also indicates that despite the discontinuity pitfalls Eq.(4.19) provides a reasonable approx-
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imation at not too large coupling strength values u. We will therefore use Eq.(4.19) on the

merit of its simplicity to evaluate DOS at the weak-to-moderate coupling strengths. For

that Eq.(4.19) has to be combined with the general expression for spatially resolved DOS

N(ε, r) = − 1

π
Im TrG(ε, r, r′)r=r′ , (4.20)

where the energy variable is analytically continued from positive imaginary values to real

values via iε → ε + i0 with the trace taken over pseudospin variables. The results of this

calculation for the MLG and BLG systems are presented below.

Microscopic derivation: MLG case

Evaluating the integral in Eq.(4.19) gives

T (ε, py) = ~u
(

1 +
u

2v
(iε̃+ σ1p̃)

)−1
(4.21)

where we defined

ε̃ =
ε√

ε2 + v2p2
y

p̃ =
vpy√

ε2 + v2p2
y

(4.22)

Here ε is the Euclidean (Matsubara) frequency. Performing the analytic continuation iε→

ε+ i0 we find the T-matrix poles

ε = ±ṽ|py|, ṽ = v
4v2 − u2

4v2 + u2
(4.23)

where the sign is given by ± = signu. Eq.(4.23) describes the guided mode dispersion.

Since |ṽ| < v, the energies ε = ±ṽ|py| are positioned, for each py value, outside the Dirac

continuum of the bulk states. This expression behaves in a qualitatively similar way to the
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exact dispersion derived in the main text, Eq. (1) (see Fig.4.1a of the main text). The

guided modes described by Eq.(4.23) are quasi-1D states that propagate as plane waves in

the y direction along the x = 0 line and decay exponentially as evanescent waves in the

transverse direction.

To proceed with our calculation of spatially resolved DOS, we need Greens function

evaluated in a mixed position-momentum representation

G0(ε, py, x) =

∫
dpx
2π~

eipxxG0(ε,p) =
−iε̃− σ2p̃− iσ1sign(x)

2~v
exp
(
−κ(iε)|x|/~

)
(4.24)

where κ(iε) =
√

(ε/v)2 + p2
y.

The trace of an equal-point Greens function in Eq.(4.20) then could be evaluated

from Eq.(4.18) with the help of Eq.(4.21):

TrG(ε, x′ = x) =
∑
py

(
ε̃

i~v
+

4up̃2e−2κ|x|/~

~
[
(2v + iuε̃)2 − u2p̃2

]) (4.25)

where the two terms represent contributions of G0 and G0TG0, respectively.

We start with considering the first term of (4.25). Introducing a UV cutoff p0 =

ε0/v we evaluate the sum over py as

∫ p0

−p0

dpy
2π~

ε√
ε2 + v2p2

y

=
ε

π~v
ln
ε0

ε
. (4.26)

Performing analytic continuation iε→ δ − iε, we arrive at

N0(ε) = − ε

π2~2v2
Im ln

ε0

δ − iε
(4.27)

where δ = +0. Taking the imaginary part, we obtain the expression in Eq.(4.11).
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Next, we evaluate the second term in Eq.(4.25). Performing the same analytic

continuation, we arrive at the result in Eq.(4.12). The expression in Eq.(4.12) can be

conveniently analyzed by dividing the integral into two parts, taken over the domains |py| >

|ε|/~v and |py| < |ε|/~v, respectively. The latter contribution is particularly simple because

it is governed by the pole (4.23) and can be easily evaluated as an integral of a delta function,

giving

Ng.w.(ε, x) =
2u|ε|

~2ṽ(4v2 − u2)
e−2
√

(v/ṽ)2−1|x||ε|/~v (4.28)

This contribution is solely due to the guided mode. As illustrated in the Fig 4.5, this term

dominates the peak structure in DOS for guided waves. The contribution of the region

|py| > |ε|/~v describes the enhancement of DOS dues to the states in the continuum being

pulled on the delta-function potential. This contribution is evaluated numerically.

Figure 4.5: Plotted is the excess contribution to the spatially-resolved DOS, ∆N(ε, x) =
N(ε, x)−N0(ε) vs. distance from the delta function, where we subtracted the bulk contri-
bution N0(ε) given in Eq. (4.11). The left panel shows the full excess contribution obtained
from Eq. (4.12), the right panel shows the contribution solely due to the guided modes, Eq.
(4.28). The two contributions are nearly identical, confirming that the peak in DOS can
serve as a signature of the guided modes. Parameter values used: ~u = −1.5~v, energies
ε = ε0, 0.5ε0, 0.1ε0, where ε0 = π~√πn0, n0 = 1011

cm
−2 (higher peaks correspond to higher

energy values ε).

We used the full expression in Eq.(4.12) to produce the spatially resolved DOS

curves shown in Fig.4.1c of the main text. In that, we accounted for screening, as described
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in Eq.(4.17). Because of screening, the peak structure is more prominent at low chemical

potential, and is suppressed relatively to the bulk DOS at high chemical potential values.

Microscopic derivation: BLG case

Following the same procedure as above, we derive the free electron Greens function

for BLG in a mixed position-momentum representation:

G0(ε, py, x) =

∫
dpx
2π~

eipxxG0(ε,p) = − 1

~u

(
F0(x) + σ1F1(x) + iσ2F2(x)sign(x)

)
(4.29)

where we used the quantities defined in Eqs. (4.14)-(4.16). The dispersion relation can then

be obtained from the T-matrix:

T (ε, py) = ~u
(

1− ~uG0(ε, py, x)
∣∣
x=0

)−1
(4.30)

Solving for the poles of this 2×2 T-matrix, we obtain two independent equations describing

mode dispersion

ε(p) =
u

2

(
κ+
ε,p −

p2

κ−ε,p

)
, ε(p) =

u

2

(
κ−ε,p −

p2

κ+
ε,p

)
(4.31)

where κ±ε,p =
√
p2 ± 2m∗ε(p). These equations have be easily solved numerically, giving

two independent guided modes.

The resulting mode spectrum is more complicated than in the MLG case, Eq.(4.23).

For energies ε ≤ ε′ = m∗u2/4 two modes exist, whereas for higher energies only one mode

exists. The latter features dispersion with the large-py asymptotic of the form

ε(py) ≈ −signu

(
p2
y

2m∗
− m∗u2

4

)
|py| � m∗|u| (4.32)
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For both modes the dispersion relation is such that the mode frequencies lie outside the

continuum spectrum of BLG bulk (see Fig.4.1b of the main text). This property ensures

1D confinement.

The effect of disorder

In the presence of disorder scattering, guided modes acquire a finite lifetime. This

is described by a complex dispersion frequency

ε = ṽ|py| − iγ/2 (4.33)

where the imaginary part can be expressed through the inverse lifetime, γ = 1/τ .

Here we estimate the effect of disorder scattering assuming that it occurs pre-

dominantly at the graphene edge. We model the effect of edge roughness by a fluctuating

confining potential strength, for simplicity treating the fluctuations as a gaussian white

noise:

V (x, y) = ~
(
u+ δu(y)

)
δ(x),

〈
δu(y)δu(y′)

〉
=

α

~2
δ(y − y′). (4.34)

Writing the Greens function as a series expansion in the potential V + δV , Eq.(4.34), we

have

G = G0 +G0(V + δV )G0 +G0(V + δV )G0(V + δV )G0 + ... (4.35)

In averaging the Greens function over disorder, we employ the gaussian noise model in

which we only need to account for the pair correlators 〈δu(y)δu(y′)〉. In a non-crossing

approximation, we express the disorder-averaged Greens function through a suitable self-

energy

〈G〉 = G0 +G0(V + Σ)G0 +G0(V + Σ)G0(V + Σ)G0 + ... (4.36)
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where

Σ(ε) = α

∫
dpx
2π~

G(ε, py, x, x
′)x=x′=0 (4.37)

The quantity (4.37) is complex-valued, with the imaginary part expressed through the

density of states N(ε) at x = 0 as

ImTr Σ(ε) = −παN(ε)x=0. (4.38)

The disorder scattering rate for the guided waves in MLG can now be found from the

dispersion relation obtained from the T-matrix pole, Eg(4.19), which is corrected by the

presence of Σ as follows

1 + (~u+ Σ(iε))
iε̃+ σ1p̃

2~v
= 0. (4.39)

Here we continue to use the Euclidean (Matsubara) frequency notation, as in Eqs.(4.19),

(4.21).

Since the density of states scales linearly with energy, N(ε) ∼ |ε| (see Eqs.(4.28),(4.11)),

we can solve Eq.(4.39) in the long-wavelength limit treating Σ(iε) as a perturbation. Writing

ε = ε0(py) + δε, where ε0 = ṽ|py| is a solution for Σ = 0, we linearize in δε to obtain

δε = − 1

~u

(
1− ṽ2

v2

)
Σ(iε0)|py|v (4.40)

where ṽ is given by Eq.(4.23). After analytic continuation, we obtain dispersion relation in

the form (4.33) with

γ(py) =
πα

~|u|

(
1− ṽ2

v2

)
|py|vN

(
ṽ|py|

)
x=0

(4.41)
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Accounting for the linear scaling N(ε) ∼ |ε|, we find that the damping rate scales as p2
y,

γ(py) =
2παp2

y

~3(4v2 − u2)

(
1− ṽ2

v2

)
(4.42)

(we approximated the density of states by the expression in Eq.(4.28) which dominates near

the line potential). The mean free path, defined by l = ṽτ with τ = ~/γ, can now be related

to the guided mode wavelength λ as

l =
λ2

ξ
, ξ =

8π3α

~2v2

1− ṽ2/v2

4− u2/v2
. (4.43)

For an edge which is rough on the atomic scale we expect the values ξ on the order of lattice

constant. The mean free path given by Eq.(4.43) grows rapidly with wavelength. Physically,

the quadratic scaling l ∼ λ2 in Eq.(4.43) originates from the confinement becoming weaker

at small ε, which allows the mode to diffract around disorder. This is in a direct analogy

with the weakly guiding fiber designs for optical waves, where weak confinement is employed

to achieve exceptionally long mean free paths.

Similar estimates hold for the BLG case. Indeed, the property of waves to diffract

around disorder of the characteristic scale smaller than the wavelength is completely general,

being valid for waves of any nature, electronic or else. Since the relation between carrier

density and wavelength is the same for MLG and BLG, experimental densities translate

to the wavelength values similar to those used above, λ ∼ 50 nm. As in the MLG case,

scattering by a short-range scatterers localized at the edge becomes inefficient at small ε,

leading to large mean free path values.
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4.4.2 Josephson junctions: Device overview

We analyze five graphene Josephson junctions on hBN with widths ranging from

W = 800− 1200 nm and lengths ranging from L = 250− 350 nm (see Fig. 4.1d of the main

text for a labeled device schematic). Listed in Table 4.1 are details on individual sample

geometries. The small L/W aspect ratios place these devices are in the narrow junction

limit, where the the critical current Ic can be approximated as a phase dependent summation

over many parallel 1D current channels. Electrical measurements are conducted using

standard Lockin techniques in a Leiden Cryogenics Model Minikelvin 126-TOF dilution

refrigerator with a base temperature of 10 mK, well below the critical temperature of Al.

Using a dry transfer method, graphene/hBN stacks are sequentially deposited on

a 300 nm thermally grown SiO2 layer, which covers a doped silicon substrate functioning

as a global back gate. Graphene flakes are etched to the desired geometry using a 950

PMMA A4 polymer mask (∼ 200 nm thick; spun at 4000 rpm) followed by an RIE O2

plasma etch. Titanium/aluminum (Ti/Al) superconducting electrodes are defined on se-

lected flakes using electron beam (ebeam) lithography on a 950 PMMA A4 resist mask,

followed by thermal evaporation and liftoff in acetone. For the titanium adhesion layer,

we evaporate 10 nm at a rate of 0.3 Angstrom/s. This is followed by an evaporation of

a 70 nm aluminum layer at a rate of 0.5 Angstrom/s at pressures in the low to mid 10−7

Torr range. For dual-gated bilayers, suspended top gates are fabricated using a standard

PMMA/MMA/PMMA trilayer resist method which leaves a 200 nm air gap between the

top gate and graphene. After using ebeam lithography to define the gates, which employs

position-dependent dosage, Cr/Au (3/425 nm) gates are deposited using thermal evapo-

ration and liftoff in acetone. To remove processing residues and enhance quality, devices

were current annealed in vacuum at dilution refrigerator temperatures. We note that edge

currents were detected both in current-annealed and intrinsically high quality non-annealed
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devices; typically the appearance of edge currents coincided with the occurrence of Fabry-

Perot interference in the ballistic transport regime. All five graphene Josephson junctions

exhibit similar transport behavior. Additional data sets are provided in the Supplementary

Figures.

4.4.3 Fourier method for extraction of supercurrent density distribution

In a magnetic field B, the critical current Ic(B) through a Josephson junction

equals the magnitude of the complex Fourier transform of the current density distribution

J(x):

Ic(B) = |Ic(B)| =
∣∣∣∣∫ ∞
−∞

J(x) exp(2πi(L+ lAl)Bx/Φ0)dx

∣∣∣∣ (4.44)

where x is the dimension along the width of the superconducting contacts (labeled in Fig.

4.1d), L is the distance between contacts, lAl is the magnetic penetration length (due to a

finite London penetration depth in the superconductor and flux focusing), and Φ0 = h/2e

is the flux quantum. Relevant in the narrow junction limit where current is only a function

of one coordinate, Eq. (4.44) provides a simple and concise description of our system.

We employ Fourier techniques introduced by Dynes and Fulton to extract the real space

current density distribution from the magnetic interference pattern Ic(B). By expressing

the current density as J(x) = Js(x) + Ja(x), where Js(x) and Ja(x) are the symmetric and

antisymmetric components, the complex critical current can be rewritten as:

Ic(B) =

∫ ∞
−∞

Js(x) cos(2π(L+lAl)Bx/Φ0)dx+i

∫ ∞
−∞

Ja(x) sin(2π(L+lAl)Bx/Φ0)dx (4.45)

We calculate symmetric component of distribution, the relevant quantity for analyzing

edge versus bulk behavior, as the antisymmetric component goes to zero in the middle of

the sample. For symmetric solutions, Ic(B) is purely real. To reconstruct Ic(B) from the
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measured critical current, the sign of Ic(B) is reversed for alternating lobes of the Fraunhofer

interference patterns. The extracted supercurrent distribution is expressed as an inverse

Fourier transform:

Js(x) ≈
∫ ∞
−∞
Ic(B) exp(2πi(L+ lAl)Bx/Φ0)dB (4.46)

Because Ic(B) is only nonzero over a rectangular window dictated by the finite scan range

Bmin < B < Bmax, distribution extracted numerically is given by the convolution of J(x)

with the sinc function. To reduce artifacts due the convolution, we employ a raised cosine

filter to taper the window at the endpoints of the scan. Explicitly,

Js(x) ≈
∫ Bmax

Bmin

Ic(B) cosn(πB/2LB) exp(2πi(L+ lAl)Bx/Φ0)dB (4.47)

where n = 0.5− 1 and LB = (Bmax −Bmin)/2 is the magnetic field range of the scan.

While the presence of magnetic vortices can provide a different origin for anomalous

Fraunhofer patterns, this physics does not apply to our experiment because the width of our

devices is small compared to length scales relevant for that phenomenon. Furthermore, if

magnetic vortices were the origin of the anomalous Fraunhofer patterns, they should equally

affect response at all carrier densities for the same range of flux. The fact that anomalous

patterns only arise at densities near charge neutrality further rules out magnetic vortices

as a possible origin.
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4.4.4 Gaussian fits to extract edge state widths

To extract a length scale for the width of the edge currents near the Dirac point,

we fit the experimental supercurrent density distribution Jc(x) to the Gaussian function

JGc (x) = b

(
exp

(
−(x− a)2

c

)
+ exp

(
−(x+ a)2

c

))
(4.48)

where a determines the spatial peak offset, b determines peak height, and c determines

peak width. For the data in Fig. 4.1h, the fit parameters are a = 0.515, b = 8.8, and

c = 0.017. The effective edge current width, given by the Gaussian full width at half

maximum xFWHM = 2
√
c · ln 2, is 220 nm.

4.4.5 Edge versus bulk amplitudes

To more quantitatively assess the evolution of edge and bulk currents with elec-

tronic carrier density n, we plot line cuts of the individual contributions (see Fig. 4.2f and

4.3b). These are given by:

Jedgec (n) =

−xW +ε1∑
xi=−xW

Jc(xi, n)

N1
and Jbulkc (n) =

ε2∑
xi=−ε2

Jc(xi, n)

N2
(4.49)

for a graphene flake whose full width spans from −xW to xW . Jedgec (n) is the spatially

averaged current amplitude over a small window of width ε1 from the edge of the flake.

Similarly, Jbulkc (n) is the spatially averaged current amplitude over a strip of width 2ε2

around the center of the flake. N1 = ε1/xstep and N2 = ε2/xstep, where xstep is the distance

between data points (determined by the magnetic field range of the scan). For example, for

the plots in Fig. 4.2f, xW = 405 nm, ε1 = 29 nm, and ε2 = 87 nm.

Based on the edge versus bulk current profiles, one may infer whether edge doping
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is the dominant cause of edge currents in our devices. In the presence of edge doping, the

edge versus bulk contributions should be reversed for opposite polarities of bulk carriers

(for example, edge dominated behavior at high densities on the electron side and bulk

dominated behavior at high densities on the hole side), which is not consistent with the

data. Bulk-dominated or flat distributions appear at both high electron and hole doping

fairly consistently. As a second test, one can track the edge versus bulk contributions

through the Dirac point to detect an offset in gate voltage between the charge neutrality

point at the edge versus in the bulk. We did not detect positional density offset substantial

enough to account for the large edge currents in these devices (Fig. 4.2f).

4.4.6 Bayesian method for extraction of supercurrent density distribution

The critical current as a function of the magnetic field, Ic(B), is related to the

current density through the junction, Jc(x), as

Ic(B) =

∫ W
2

−W
2

dx Jc(x) exp (2πixLB/Φ0) , (4.50)

with L and W the length and width of the junction, and Φ0 = h/2e the superconducting

flux quantum.

In the measured |Ic(B)| all information about its complex phase is lost, making

the problem of determining the current density not have a unique solution. Using the

method of Dynes and Fulton (DF), a unique solution can be found under the assumption

of a symmetric current distribution, Jc(x) = Jc(−x). In practice however, disorder and

inhomogeneities in the junction will lead to asymmetric current densities. Additionally,

since experiments are performed over a finite range of magnetic fields, there is a cutoff in

the current density resolution. Neither this finite resolution, nor experimental uncertainties
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are taken into account in the DF method, meaning it can only provide a qualitative estimate

of Jc(x).

To gain a more quantitative understanding, we instead ask what is the distribu-

tion of Jc(x) which produces the same critical current Ic(B). We answer this question by

performing Bayesian inference to obtain the posterior distribution of the current density,

given the measured critical current. In our case, Bayes’ rule reads:

P
(
Jc; |Ic|

)
=
P
(
|Ic|; Jc

)
P
(
Jc
)

P
(
|Ic|
) . (4.51)

Here, P
(
Jc; |Ic|

)
is the posterior distribution of the current density, the quantity we

want to calculate, while P
(
Jc
)

is its prior distribution. The likelihood function P
(
|Ic|; Jc

)
indicates the compatibility of the measured critical current with a given current density:

P
(
|Ic|; Jc

)
= exp

[
−(|Ic| − |Ifc |)2

2ε2

]
, (4.52)

where Ifc is the current obtained from Jc by using Eq. (4.50), Ic is the measured current,

and ε is the measurement error. The factor P
(
|Ic|
)

is the same for all current densities,

meaning it does not enter into determining their relative probabilities.

The experimental current profiles are extracted from scans of the differential resis-

tance as a function of DC current bias and magnetic field, dV/dI(IDC, B). Within the same

scan, for some field values dV/dI has a clear maximum, while for others it monotonically

increases towards its normal state value. We extract the critical current as the value IDC at

which the differential resistance is x ×max dV/dI, choosing a value of x . 1. This selects

points close to the maxima at field values where they are well defined, and points close to

where the differential resistance reaches its normal state value otherwise. The uncertainty

is obtained in the same fashion, by choosing a slightly smaller cutoff.
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We maximize the likelihood function using a Monte Carlo sampling algorithm.

[101] To get a large resolution of the current density without a significant increase in the

dimensionality of the sampling space, we expand Jc(x) as

Jc(x) =

N∑
n=0

An cos(2πnx/L) (4.53)

and enforce Jc(x) > 0 for all x. The An coefficients determine the shape of the distribution,

which in Eq. (4.53) is assumed to be symmetric, Jc(x) = Jc(−x). Using an asymmetric

form would typically lead to a critical current which shows node lifting – the minima of

Ic(B) have nonzero values. While this feature is present in the measured critical current,

it can be accounted for by factors other than an asymmetric current distribution, such as

relatively small aspect ratios (∼5), and a non-sinusoidal current-phase relationship arising

from a large junction transparency. Using a symmetric Jc avoids this ambiguity, and has

the additional advantage of providing a more direct comparison between our method and

that of Dynes and Fulton.

The likelihood function is maximized by allowing the An coefficients to vary at

each Monte Carlo step. As N is increased the posterior distribution of the current density

widens, an indication of over-fitting. This increase in uncertainty serves as a criterion for

choosing N , which for the typical dataset is between 4 and 8. The priors of An are set to

the uniform distribution [−max(Ic),max(Ic)].

An example of our method is shown in Fig. 4.6, using N = 5. The current

density is peaked at the edges of the sample, a feature also recovered in the DF approach.

The corresponding critical current is in good agreement with the measured one, with the

exception of the regions close to the nodes. Fig. 4.6 indicates that the supercurrent through

the junction flows mainly along its edges. As a further test of the edge state contribution,
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we modify the functional form of the current density in Eq. (4.53), to explicitly allow for

edge states. We add delta functions to the current density at the edges of the sample,

Jc(x) → Jc(x) + dLδ(x + W/2) + dRδ(x − W/2), and estimate the contribution of edge

states as the ratio of dL + dR to the total current density J tot
c . As the carrier density

approaches zero a significant fraction of the supercurrent is carried by the edge states, with

(dL + dR)/J tot
c ' 0.45 (see Fig. 4.7).

Figure 4.6: Posterior distribution of the current density (left panel), and corresponding
critical current (right panel). The values of Ic obtained from the posterior distribution
(orange) are in good agreement with the measured critical current (blue).

Figure 4.7: Each scan corresponds to a Fraunhofer pattern, with Fig. 4.6 showing the 8th

scan. (Increasing scan number corresponds to decreasing carrier density.)

The amount of disorder leading to the appearance of guided edge modes in our
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samples can indeed be expected to be different at the two edges. However, as shown earlier

in the Extended Discussion, the mean free path of the guided edge modes is estimated to

be significantly larger than the junction length. This is a consequence of weak confinement

at the edge, making the edge mode wavefunctions extend far from the edge and lie mostly

outside of the confining potential. Such states can diffract around disorder at the edge

gaining large mean free path. As a result, impurity scattering is ineffective, so we expect

a similar amount of current flowing at the two edges, and use a theoretical model where

symmetry is explicitly built in.

Current asymmetry generically leads to interference patterns which show node

lifting, a phenomenon where the minima of the critical current Ic(B) acquire non-zero values.

Because minimal node lifting is observed experimentally, the distributions are qualitatively

expected to be almost symmetric. This behavior provides indirect confirmation of the

guided edge mode model, which allows for a large degree of symmetry even in the presence

of disordered edges. While minor node lifting is present in the measured data, it can be

ascribed to other factors than an asymmetric current distribution, such as a large aspect

ratio, and non-sinusoidal current phase relations. The use of a symmetric current model

avoids the ambiguity of which combinations of factors lead to node lifting.

To give bounds on asymmetry of edge currents, we include results on Bayesian

analysis for non-symmetric distributions. The effect of an asymmetric current distribution

can be quantified by adding
∑N

i=1Bn sin(2πnx/L) to the current distribution Jc(x), with

N=5 as for the symmetric part. We have included a new figure (Fig. 4.8) showing the

spatial distribution of current through the junction, which remains peaked at the edges but

becomes slightly asymmetric as a consequence of node-lifting.
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Figure 4.8: Same as Fig. 4.6, but including the effect of an asymmetric current distribution
by adding

∑N
i=1Bn sin(2πnx/L) to the current distribution Jc(x), with N = 5 as for the

symmetric part. The posterior current density distribution (left) remains peaked at the
edges, but becomes asymmetric, as a consequence of node-lifting. The corresponding critical
current is now in good agreement with the measured one also in the node regions (right).

4.4.7 Normal state device characterization

We have provided normal state characteristics of the graphene layer in Fig. 4.9

and used conventional wisdom to determine whether devices are clean, including Dirac

point width and Fabry-Perot oscillations, both of which indicate high quality flakes. To

assess the intrinsic graphene quality, we estimate the charge inhomogeneity to be in the

low 1010 cm−2 range based on Dirac point width on the normal resistance curves. Note

that this is a conservative upper bound that likely overestimates the amount of disorder

because the presence of Fabry-Perot resonances on the hole side broadens the curve (Fig.

4.9). By comparison, the edge-dominated transport regime exists over a widow extending

to densities ∼ 2− 3× 1011 cm−2 (see Fig. 4.2d; also Figs. 4.3a, 4.4a of the main text) away

from the charge neutrality point, exceeding the intrinsic charge inhomogeneity by roughly

an order of magnitude. Furthermore, the window (in density) of edge-dominated transport

consistently exceeds the charge inhomogeneity in multiple devices that exhibit edge currents

(see caption of Fig. 4.9 for detailed parameters).
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Figure 4.9: (a) Normal resistance of device ML1. At hole dopings, Fabry-Perot oscillations
appear, a signature of ballistic transport. The Dirac point’s full width at half maximum
is about 3.4 × 1010

cm
−2. The edge-to-bulk crossover density is roughly 3 × 1011

cm
−2. (b)

Normal resistance of device BL4. Ballistic Fabry-Perot oscillations also appear on the hole
side. (c) Normal resistance of device BL2. Signatures of Fabry-Perot interference appear
upon zooming into the hole side of the neutrality point (see inset). The Dirac point’s full
width at half maximum is about 6.9 × 1010

cm
−2. The edge-to-bulk crossover density is

roughly −3× 1011
cm
−2. (d) Normal resistance of device BL3. The Dirac point’s full width

at half maximum is about 8 × 1010
cm
−2. The edge-to-bulk crossover density is roughly

−2.5 × 1011
cm
−2. (e) Ballistic supercurrent oscillations in the Fabry-Perot regime, shown

in a plot of applied DC current bias vs density at zero magnetic field. The critical current
Ic marks the transition between dissipationless and resistive states. Data taken from device
ML1. (f) Plot of critical current Ic oscillations from the data in panel (e). (g) Plot of
the IcRn product from the data in panel (e). (h) Oscillations in panel (a) plotted versus
2d/λF , where λF is the Fermi wavelength and d = 225 nm is the effective cavity length.
Resonances appear when the constructive interference conditions are satisfied for electron
waves in a resonator, 2d = NλF for integer N , verifying that the oscillations are indeed
associated with Fabry-Perot interference.

As a second indicator of quality, the existence of Fabry-Perot interferences on the

hole side of normal state resistance curves show that the samples are in the ballistic limit

(see Fig. 4.9). Large spatial density fluctuations would prevent such resonances from being

resolved in transport. Edge currents only appear in the cleanest devices and tend to emerge
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in ballistic samples that exhibit Fabry-Perot interference, which suggests that the observed

edge states are indeed correlated with higher sample quality. The reproducibility of the

width of the edge currents over many independent samples also rules out random disorder

effects, which would yield a wide range of edge peak shapes and widths. While current

annealing has been noted to enhance quality, it is not strictly necessary for observation of

edge modes, which have been observed in both annealed and non-annealed devices.

We estimate the contact quality as follows: at carrier density n = 1011 cm−2, the

normal state resistance of device ML1 is 350 Ohms (Fig. 4.9a). At this density, the Fermi

wavelength is λ = 112 nm. Given that the width of the device is W=1200 nm, the number

of conducting channels (N) can be estimated from the sample geometry using the relation

N = aW/(λ/2) = 84 modes, where a = 4 accounts for the spin and sublattice degeneracies

in graphene. The ideal conductance is therefore 84e2/h = 307 Ohms. By comparing this

value to the measured resistance, this yields a total estimated contact resistance of 43 Ohms,

or transmission coefficient of ∼ 90%.
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Visualization of phase-coherent

electron interference in a ballistic

graphene Josephson junction

5.1 Overview

Interference of standing waves in electromagnetic resonators forms the basis of

many technologies, from telecommunications [102] and spectroscopy [103] to detection of

gravitational waves [104]. However, unlike the confinement of light waves in vacuum, the

interference of electronic waves in solids is complicated by boundary properties of the crystal,

notably leading to electron guiding by atomic-scale potentials at the edges [77–80]. The

microscopic role of boundaries on wave interference is an unresolved question due to the

challenge of detecting charge flow with submicron resolution. Here we employ Fraunhofer

interferometry to achieve spatial imaging of cavity modes in a graphene Fabry-Pérot (FP)

resonator, embedded between two superconductors to form a Josephson junction [21, 22].
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By directly visualizing current flow using Fourier methods [24], our measurements reveal

surprising spatial redistribution of current on and off resonance. These findings provide

evidence of separate interference conditions for edge and bulk states and elucidate the

microscopic nature of interference at the crystal boundaries. We also observe modulation

of the multiple Andreev reflection amplitude on and off resonance, a direct measure of

cavity transparency. These results represent a new regime of Josephson behavior at the

intersection of superconductivity and electron-optics.

5.2 Electron optics in ballistic graphene

Graphene provides an appealing platform to explore “electron-optics” due to the

ballistic nature of wavelike carriers and ability to engineer transmission of electronic waves

in real space using electrostatic potentials [69–76]. In particular, the electronic analog

to refractive index is the Fermi energy, which is tunable via electrostatic gating [70, 105].

Because the gapless spectrum of Dirac materials enables continuous tunability of carrier

polarity, positive and negative index of refraction regions can be combined in bipolar struc-

tures that form the building blocks of Veselago “electronic lenses” [74], Fabry-Pérot (FP)

interferometers [70–74, 76], and whispering gallery mode cavities [106]. Electronic analogs

to optical interferometers attract attention because relativistic effects such as hyperlens-

ing and phase-coherent Klein transmission provide capabilities beyond conventional op-

tics [69–76, 107]. Here we investigate the simplest analog to an optical interferometer, the

electron FP resonator, which consists of standing electron waves confined between two re-

flective interfaces [48, 108]. Despite extensive exploration in the momentum domain, in

which Fermi momentum is simply tuned with a gate, little information is available about

the real-space distribution of current flow due to the challenge of imaging current paths

86



Chapter 5: Visualization of phase-coherent electron interference in a ballistic graphene
Josephson junction

with submicron resolution. Furthermore, in real devices, atomically sharp potentials at

the edges of graphene can confine electron waves into guided edge modes, in analogy to

the guiding of light in optical fibers [77–80], as we have demonstrated experimentally in

prior work [109]. To investigate the nature of these boundary currents, we measure the

interference of standing waves in a graphene Josephson junction and image the real space

distribution of supercurrent flow using Fraunhofer interferometry [24]. By visualizing the

spatial structure of current-carrying states in the cavity using Fourier methods, our mea-

surements disentangle edge from bulk current flow and highlight the surprising role of the

crystal boundaries.

In a coherent electron cavity, quantum interference of electron waves replaces clas-

sical diffusion as a key feature of electronic transport [48, 108]. In our system, a pair of

superconducting electrodes is coupled to a graphene membrane, defining a ballistic cavity

between the two graphene-electrode interfaces. As the Fermi wavelength in the cavity is

tuned with a gate, the quantized energy levels of the cavity are moved on and off resonance

with the Fermi energy of the superconducting leads, thus inducing an oscillatory critical

current whose period satisfies the FP interference conditions. Due to the chiral nature of

fermions in monolayer and bilayer graphene, at zero magnetic field carrier trajectories with

an incidence angle θ and refraction angle angle θ′ produce a contribution to FP fringes in

the single-particle transmission probability of the form

T (θ) ∼ |t1(θ)|2|t2(θ)|2

|1− r1(θ)r2(θ)e2ik‖L|2
, k‖ = k cos θ′ (5.1)

where t1,2 and r1,2 are the angle-dependent transmission and reflection amplitudes for the

two p-n junctions. The resulting fringes are dominated by the angles for which both the

transmission and reflection are reasonably high (the first harmonic of FP fringes is at its
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brightest when the product of transmission and reflection coefficients |t(θ)|2|r(θ)|2 takes a

maximum value). In general, a spread of angles for different trajectories in the bulk gives

rise to a spread of the FP oscillation periods, somewhat reducing the fringe visibility in

the net current. In contrast, no suppression is expected for interference fringes due to edge

modes, as discussed in detail later.

5.3 Superconducting transport in a ballistic graphene Joseph-

son junction

We employ proximity induced superconductivity to shed light on the microscopic

nature of electron interference in a graphene Josephson resonator [110–113]. On a prac-

tical level, graphene provides an accessible interface for superconducting electrodes be-

cause it is purely a surface material, unlike 2D electron gases embedded in semiconduc-

tor heterostructures. Although graphene is not intrinsically superconducting, proximity-

induced superconductivity can be mediated by phase coherent Andreev reflection at the

graphene/superconductor interface [21, 22]. This process features an electron-hole conver-

sion by the superconducting pair potential that switches both spin and valley to preserve

singlet pairing and zero total momentum of the Cooper pair [20]. In this study, we employ

gated mesoscopic Josephson junctions consisting of bilayer graphene suspended between two

superconducting Ti/Al electrodes, as well as a graphene device on hBN. The superconduc-

tors serve three roles: (1) they create electrostatic potentials that confine electron waves,

serving as electronic analogs to mirrors (2) superconducting interferometry can extract spa-

tial information on how current flows through the system, and (3) beyond equilibrium,

scattering events between the superconductors and graphene (multiple Andreev reflections)

depend critically on resonance conditions and reveal how the resonator couples to the out-
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side world.

Figure 5.1: (a) Gated mesoscopic Josephson junction consisting of bilayer graphene sus-
pended between two superconducting Ti/Al electrodes. L is the lithographic distance be-
tween contacts and W is the junction width. In the presence of magnetic field, a flux
threads the junction area. A current bias is applied between the electrodes and the voltage
drop across the device is recorded. A voltage applied to the back gate electrode Vb tunes
the Fermi wavelength λF in the cavity. (b) Plot of the normal resistance Rn, obtained by
sweeping the gate voltage Vb at a fixed bias exceeding Ic. Data sets in panels (b-d) are from
device B1. Left inset: Charge transfer at the boundaries of the superconducting electrodes
leads to intrinsic n-doped regions near the contacts, forming an electronic resonator when
the bulk is tuned to hole doping. Dips in resistance appear when constructive interferences
conditions in the cavity are satisfied, 2L = mλF . Right inset: When the bulk is tuned
to electron doping, standing waves are not formed, leading to monotonic resistance. (c)
Fabry-Pérot diamonds obtained using voltage bias spectroscopy, as shown in color maps of
R(Ω) and its derivative dRn/dVb, as function of back gate voltage Vb and voltage bias VDC .
Data from sample B1. (d) Rn plotted versus 2d/λF , where d is the effective junction length
and λF is the Fermi wavelength. By comparing the junction length L to the effective size
d extracted from fits, we determined that the contact-doped regions extend at most 100
nm into the channel, consistent with the results of scanning photocurrent studies. Repro-
ducibility of the oscillation period is demonstrated in three devices of length L = 500 nm.
The blue resistance curve is from sample B1, the green curve is from sample B4, and the
red curve is from sample B5 and offset by -250 Ω. Resonances marked by dips in resistance
appear when constructive interferences conditions are satisfied.
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A schematic of a suspended graphene Josephson junction is provided in Figure

5.1a. To access the ballistic regime, we developed a new method to isolate the flake from

charge disorder in the underlying dielectric by suspending it over the back gate electrode,

described in detail in the Extended Discussion. This approach combines the high purity

of suspended devices with superconductivity enables creation of ballistic waveguides where

the mean free path le of electrons exceeds channel length L. We note that similar results

are also obtained on a gate-defined resonator in monolayer graphene encapsulated in hBN,

discussed later, which enables a higher degree of electronic control over the cavity while

preserving sample quality.

The superconducting leads serve not only as electronic probes but also induce a

resonant electron cavity in the scaling limit le > L (Fig. 5.1b) [48, 108]. The graphene in

the immediate vicinity of the Ti/Al contact is n-doped by charge transfer [114], forming

an intrinsic n-n or n-p junction near the interface when the graphene has electron or hole

carriers, respectively. We exploit contact induced doping to define the resonator because

it is scalable to ultrashort channel lengths, provides electrostatic barriers that are sharp

compared to the electron wavelength, and is less complex than gate-defined methods [115–

118]. Analogous to an optical Fabry-Pérot cavity, the n-p junctions serve as the electronic

counterparts to mirrors while the ballistic graphene channel serves as an electron waveguide.

The Fermi wavelength λF of electrons in the cavity is directly tunable with a gate electrode

which controls the carrier density n.

Fabry-Pérot (FP) resonances in ballistic junctions arise due to reflection from p-n

junctions formed near superconducting leads when carrier polarity in the graphene region

is opposite to the polarity of contact doping. Figure 5.1b shows a plot of the normal

resistance Rn, obtained by sweeping the gate voltage Vb at a fixed bias exceeding Ic. We

observe well-resolved resistance oscillations at small positive carrier densities (Vb < 0) when
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n-p-n junction formation is favored and monotonic behavior when doping is unipolar. The

dips in Rn coincide with carrier densities satisfying the constructive interference condition

2d = mλF for electron waves in a resonator, where d is the effective cavity length and m is

an integer. Sweeping the gate voltage changes the Fermi energy in the graphene and hence

the Fermi wavenumber, given by kF = 2π/λF =
√
πn for a 2D Fermi disk with fourfold

degeneracy. The correspondence to FP interference conditions can be seen more clearly in

Fig. 5.1c, which shows that Rn is periodic as a function of 2d/λF . Reproducibility of the

oscillation period is demonstrated in three devices of 500 nm length (Fig. 5.1c), while shorter

junctions exhibit larger periods as expected. Quantum confinement between the cavity

“mirrors” gives rise to discrete energy levels with spacing hvF /2d, where vF = ~kF /m∗

is the Fermi velocity and and m∗ is the effective electron mass in bilayer graphene. We

evaluate this energy scale to be of the order 1 meV using the height of FP diamonds, as

measured using voltage bias spectroscopy (Fig. 5.1d).

The interplay between cavity resonances and supercurrent is evident from a resis-

tance colormap as a function of IDC and Vb (Fig. 5.2a-b) showing critical current oscillations

whose period satisfies FP interference conditions, consistent with supercurrent propagation

via ballistic charge carriers [119]. As λF in the cavity is tuned with the gate, the quantum

levels of the cavity are moved on or off resonance with the Fermi energy of the supercon-

ducting leads, thus inducing a oscillating critical current periodic in
√
n for bilayer graphene.

This phenomena is observed in two independent systems: (1) suspended bilayer graphene

resonators defined by contact-induced doping (Fig. 5.2b) and (2) a gate-defined resonator

in monolayer graphene on hBN (Fig. 5.2c and Supplementary Fig. A.11), both of which

exhibit similar behavior. In total, five suspended bilayer devices are studied with a litho-

graphic distance L between superconducting contacts of 350 to 500 nm and contact width

W of 1.5 to 3.2 µm, in addition to one gate-defined monolayer device with cavity dimensions
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of L = 100 nm and W = 2.7 µm (see Extended Discussion). Figure 5.2c displays critical

current modulations in a gate-defined monolayer resonator whose oscillations are periodic

in n, in agreement with a monolayer FP model for cavity length ∼ 100 nm.

Figure 5.2: (a, b) Plots of resistance as a function of DC current bias and back gate volt-
age. The critical current Ic oscillates with a period that satisfies the Fabry-Pérot (FP)
interference conditions, consistent with supercurrent propagation via ballistic charge car-
riers. (c)Differential resistance of a gate-defined FP resonator in monolayer graphene on
hBN (device M1 ), as a function of top gate voltage and DC bias current when the back gate
voltage is held fixed at -1.75 V. The critical current, defined by the width of zero resistance
region along the current axis, oscillates with the same periodicity as normal state resistance,
in agreement with a FP model for cavity length ∼ 100 nm. (d) Schematic illustration of the
mechanism of multiple Andreev reflection in a graphene Josephson junction for voltage bias
eV = 2∆/3. (e) Line cuts of resistance versus DC voltage bias on (Vb=0.3 V, red curve)
and off (Vb=0.14 V, blue curve) resonance. Well defined MAR peaks appear at 2∆,∆,
and 2∆/3 when the density is tuned off resonance, while MAR is completely suppressed
on resonance. Data is from device B3. (f)Theoretically obtained conductance profiles in
the short junction limit, as a function of applied bias voltage. The curve corresponding to
high transmission, Ghigh (red) is computed for a single mode with transmission 0.9. The
low transmission curve (blue) is obtained for 4 modes with transmission 0.6. Lower trans-
parencies lead to the formation of conductance resonances at bias voltages corresponding
to 2∆/3, ∆, and 2∆.
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5.4 Modulation of multiple Andreev reflection intensity us-

ing cavity resonances

We employ yet another property of superconductor-normal-superconductor (SNS)

systems to gain insight into the coupling between the cavity modes with the superconduct-

ing reservoirs. Because the phenomenon of multiple Andreev reflection (MAR) is known

to be extremely sensitive to the coupling between electrons in the normal metal and the

superconductor, we use voltage bias spectroscopy to map out the interplay between MAR

oscillation amplitude and cavity transmission (Fig. 5.2d-e). The millielectronvolt energy

scale associated with FP interference substantially exceeds the Al superconducting gap ∆,

allowing one to study the system close to equilibrium conditions for the resonator. A col-

ormap of resistance Rn as a function of applied voltage bias VDC and gate voltage Vb shows

modulations due to FP interference (Supplementary Figure A.16). Well defined MAR peaks

appear at 2∆,∆, and 2∆/3 when the density is tuned off resonance, while MAR is com-

pletely suppressed on resonance, as visible in line cuts of resistance on and off resonance

in Fig. 5.2e (additional data sets are provided in Supplementary Figs. A.14-A.15). It is

notable that the amplitude of the multiple Andreev reflections depends strongly on cavity

resonance conditions, thereby providing a direct measure of the tunable coupling between

the resonator and the outside world.

The change in visibility of MAR on and off FP resonances is most naturally ex-

plained by changes in the distribution of transmission eigenvalues, which can be understood

using the following model. Because supercurrent is predominately transmitted by bulk

modes, as indicated by the Fraunhofer interferometry data (Supplementary Fig. A.12), we

simplify our analysis by focusing on resonances of bulk states. The magnitude of multi-

ple Andreev reflection peaks is small for modes with high transmission probability due to

93



Chapter 5: Visualization of phase-coherent electron interference in a ballistic graphene
Josephson junction

the absent suppression of higher order scattering processes [120]. In a FP cavity a larger

fraction of the current is carried by highly transmitting modes when the cavity is tuned to

the resonant wave length. In a short junction different modes contribute independently to

the current, producing the observed multiple Andreev reflection pattern. In our junction,

ξ = ~vF /∆ ≈ 450 − 700 nm, while the junction size is ≈ 350 nm, so we expect the short

junction limit to qualitatively hold.

In order to compare this model to the observed experimental data, we have mod-

eled the current through the junction as a sum of contributions of the modes with high

(∼ 0.9), medium (∼ 0.6), and low transmission (∼ 0.3) coefficient (Fig. A.17). This

separation was chosen to avoid overfitting, while keeping the qualitative features of I-V

relationships with different transparencies. We then approximate

I(V ) =
∑
n

ρ(Tn) · I(V, Tn), (5.2)

with Tn the transmission probability in various channels, ρ the density of transmission eigen-

values, and I(V, T ) the contribution of a single mode with transmission probability T to the

total current, calculated in the short junction limit following Ref. [120]. Fitting the model

to the measured conductance curves on and off resonance (Fig. 5.2e and Supplementary

Fig. A.17) shows that the junction transparency is increased on resonance and suggests

good qualitative agreement between this theoretical interpretation and the experiment.

We obtain the estimated contributions of each Tn by fitting the measured I-V traces

using the Eq. (5.2) constrained by the condition ρ(Tn) > 0. The fits show no systematic

error, and increasing the number of Tn leads to noisier fits, indicating overfitting. The

coefficient ρ corresponding to large transmissions increase, while the ones corresponding to

low transmissions decrease whenever the system is on resonance, at values of the back gate
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voltage where the normal state conductance is also peaked (see Supplementary Fig. A.17).

The normal state conductance estimated using our model GN = g0
∑

n Tnρ(Tn) is smaller

than the measured one for all back gate voltages, which may be due to deviations from the

short junction theory, or the nonlinear behavior of the p-n junctions.

5.5 Visualization of edge and bulk current flow using Joseph-

son interferometry

Next we employ superconducting interferometry as a tool to spatially resolve

optics-like phenomena associated with electron waves confined within a ballistic graphene

Josephson junction. Unlike experiments in 1D systems [110, 111, 121], one can thread flux

through the junction and explore the rich interplay between magnetic interference effects

and cavity transmission. Upon application of a magnetic field B, a flux Φ penetrates the

junction area and induces a superconducting phase difference ∆ϕ(x) = 2πΦx/Φ0W parallel

to the graphene/contact interface, where Φ0 = h/2e is the flux quantum, h is Planck’s

constant, and e is the elementary charge. When a flux penetrates the junction area, the

critical current Ic(B) exhibits oscillations in magnetic field given by:

Ic(B) =

∣∣∣∣∣
∫ W/2

−W/2
J(x) · e2πiLBx/Φ0dx

∣∣∣∣∣ (5.3)

where L is the distance between superconducting electrodes (Fig. 5.1) [23,24]. This integral

expression applies in the wide junction limit, relevant for our system, where L�W and the

current density is only a function of one coordinate. Because the critical current Ic(B) equals

magnitude of the complex Fourier transform of the real-space supercurrent distribution

J(x), the shape of the interference pattern is determined directly by the spatial distribution

of supercurrent across the sample [24,49].
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Figure 5.3: (a) Theoretical calculation of the superconducting interference pattern for the
case of uniform current flow, plotted as the normalize critical current Ic(B)/Ic(B = 0).
(b) Plot of normalized critical current Ic(B)/Ic(B = 0), indicating a nontrivial dependence
of superconducting interference on cavity resonances. The value of Ic at each pixel was
obtained by measuring the DC voltage Vsd across the junction as a function as a function
of DC current bias IDC and extracting the maximum derivative dVsd/dIDC . Red and green
dotted lines indicate on and off resonance conditions for the cavity, respectively. Data
was collected from device B2. (c) Real-space normalized supercurrent density distribution
J(x)/Jmax(x) extracted from the Ic(B) data in (b) using Fourier techniques (see Extended
Discussion for details).

To visualize current flow associated with interfering electron waves in graphene,

we measure supercurrent modulations in B field that arise from a Fraunhofer diffraction. In

a conventional graphene Josephson junction with uniform current density, the normalized

critical current Ic(B)/Ic(0) = | sin(πΦ/Φ0)/(πΦ/Φ0)| is described by Fraunhofer diffraction

and should be independent of gate voltage, as depicted in the theoretical plot in Fig. 5.3a.

Our results exhibit a striking departure from this picture and feature nodes in Ic(B)/Ic(0)

as a function of both Vb and B: Figure 5.3b and Supplementary Fig. A.12 display the

different behavior of the normalized interference pattern Ic/Ic(B = 0) at gate voltages

corresponding to on and off resonance conditions (labeled by the red and green dotted

lines, respectively). Reproducibility of this phenomenon in additional samples is shown in

Supplementary Fig. A.13. Using Eq.(5.3), one can extract an effective spatial distribution
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of the supercurrent J(x) by taking the inverse Fourier transform of the above Ic(B) line

plots with the technique of Dynes and Fulton [24] (see Extended Discussion). As revealed

in Fig. 5.3c, the normalized spatial distribution features bulk-dominated current flow on

resonance and an enhanced edge current contribution off resonance.

5.6 Model of superconducting interference in the presence

of guided edge states

Inspired by the relation between the spatial current distribution J(x) and critical

current Ic(B) in Eq. (5.3), we directly model the spatial distribution of current paths for bi-

layer graphene in the FP regime (Fig. 5.4a-b). These calculations take into account guided

edge modes due to band-bending at the crystal boundaries, which have been experimentally

observed in Ref. [109]. This electron guiding effect can be quantified by an edge potential,

which is capable of confining carriers to edge-defined ‘waveguides’ in analogy to the con-

finement of photons in fiber optic cables. Energies of these edge states lie outside the bulk

continuum (Fig. 5.4a), which ensures an evanescent-wave decay of carrier states into the

bulk. The resulting states are effectively one-dimensional, propagating as plane waves along

the graphene edges. Applying the FP quantization condition in the p-n-p region leads to a

sequence of FP maxima positioned at kn = πn/L, where n is an integer and L represents

distance between superconducting contacts. These quasi-1D states guided along the edge

feature head-on transmission and reflection and hence should produce much stronger FP

fringes than the bulk states.

As shown in the theoretical dispersion in Fig. 5.4a, the interference conditions in

the bulk and at the edge should not coincide due to the difference in the carrier dispersion at

the edge and in the bulk as well as due to the angle-dependence of the FP period for the latter
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carriers. Hence a gradual increase of doping will trigger repeated switching between the

bulk-dominated and edge-dominated regimes, with the current distribution switching from

an approximately uniform to edge like, accordingly. Qualitatively, this would be manifested

in the dependence of measured critical current on applied magnetic field, switching between

Fraunhofer and more SQUID-like behavior (Fig. 5.4b-c).

Figure 5.4: (a) Spectrum of bilayer graphene with small edge potential, for which one
edge mode dominates. In panels (a,b) p0 = λm∗/2~, E0 = p2

0/2m
∗ and x0 = ~/p0 with

m∗=0.04 me (BLG band mass) and delta function potential strength λ = 0.5 eV·nm.
Energies corresponding to quantized momenta are represented by horizontal red lines. (b)
Theoretical plot of critical current Ic as a function of barrier energy and applied magnetic
field in presence of edge modes. Bulk and edge currents produce distinct FP patterns due
to different dispersion laws and angle dependent transmission of bulk modes. (c) Plot of
critical current Ic as a function of back gate voltage Vb and applied magnetic field B. Red
and green dotted lines indicate on and off resonance conditions, respectively. Data was
collected from device B2.

To quantify these phenomena, we model FP resonances using the approach de-

scribed in Ref. [109]. Assuming that the edge potential is sufficiently short-ranged, we

approximate it with a delta function. We obtain the density of persistent current along the

edge (chosen to be along y axis) from the exact Green’s function G in a mixed coordinate-
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momentum representation:

j(ε, x) = − π

Im

∑
ky ,x′=x

[
G(ε, x, x′, ky)Jy

]
(5.4)

where Jy is the operator for current along the edge (see Eq. (8-9) in supplement of Ref.

[109]). The sum in Eq.(5.4) runs over the values kn = πn/L for one sign of n. Each

term in Eq.(5.4) has poles corresponding to bounded states for the momentum value kn,

each of which corresponds a to current maximum at the edge. To translate this into an

experimentally observable quantity, we model Fraunhofer interference pattern Ic(B) using

the theoretical amplitude and spatial distribution of edge modes (see Extended Discussion).

This result, plotted in Fig. 5.4b, captures the key features of the raw data in Fig. 5.4c,

namely the redistribution of current on and off resonance as well as the suppression of side

lobes’ intensity on resonance. Thus, the measurements are consistent with a model that

features separate FP interference of guided-wave edge currents, in parallel to interference

of bulk modes. This further suggests that the quasi-1D edge currents previously observed

[109] have ballistic character. Despite its simplified nature, which neglects disorder and

finite temperature effects, our model captures the essential features of the measurements.

While the edge potential featured in this simulation accommodates a single edge channel,

we note that the number of guided modes may exceed one for stronger potentials. In this

case, each mode would contribute independently to the interference pattern, giving rise to

fringes with complicated multi-period structure at the edge.

In summary, we utilize different aspects of proximity-induced superconductivity,

particularly Fraunhofer interferometry and Andreev scattering, as new tools to resolve

optics-like phenomena associated with electron waves confined within a ballistic graphene

Josephson junction. This enables real-space visualization of cavity modes in a graphene
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FP resonator, which reveals surprising redistribution of current on and off resonance and

provides direct evidence of the ballistic nature of guided edge currents. These results con-

stitute a strong departure from conventional Josephson behavior in graphene and motivate

further exploration of new effects at the intersection of superconductivity and optics-like

phenomena.

5.7 Extended Discussion

Theoretical model of ballistic supercurrent in a graphene Fabry-Pérot resonator

Here we consider a graphene SNS junction in which Fabry-Pérot (FP) interference

and oscillations arise due to a pair of p-n junctions which act as mirrors of an electron

FP resonator. There are two kinds of propagating electronic states in this system: one-

dimensional edge modes and two-dimensional bulk modes. We first analyze the contribution

to supercurrent due to the edge modes and subsequently consider the bulk modes.

In our analysis we assume electron wavelength values much smaller than the junc-

tion length, λ� L, which allows us to use the semiclassical approximation. In the experi-

mental regime of interest the carrier density in graphene varies in the range (2.5−6.0)×1010

cm−2 corresponding to wavelength values 0.14− 0.22 micron, which is a few times smaller

than the junction length L = 0.35 µm. We therefore expect the semiclassical approach to

provide a reasonably good starting point.

The contribution of ballistic modes to supercurrent is described by theory origi-

nally derived by Kulik and subsequently explored by other researchers [122–125]. In the

semiclassical regime the supercurrent is given by [124]

j(ϕ) =
e∆

~

∞∑
k=1

(−1)k+1L

ξ

sin kϕ

sinh kL
ξ

(5.5)
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where ∆ is the order parameter in the leads and, for the sake of clarity, we suppress an

order-one prefactor. Here the phase ϕ accounts for both the phase difference ∆ϕ between

superconducting leads and the Aharonov-Bohm phase gained by a pair of Andreev quasi-

particles in the presence of a magnetic vector potential A:

ϕ = ∆ϕ+
2e

~c

∫ 2

1
A(r)dr, A(r) = (−By, 0, 0) (5.6)

where the integral is taken along the pair trajectory. Here we analyze a rectangular system

0 < x < L, 0 < y < W , focusing on the modes propagating along system edges y = 0 and

y = W . Evaluating the integral
∫ 2

1 A(r)dr we find the phase value −2πΦ/Φ0 for the y = W

edge and zero for the y = 0 edge (here Φ = BLW is the magnetic flux through the system

and Φ0 = hc/2e is the magnetic flux quantum).

The result in Eq.(5.5), which is valid in the absence of backscattering, can be

generalized to the FP resonator case by introducing scattering matrices Se and Sh for

the electrons and the corresponding Andreev-reflected holes. Scattering of the electrons

originating in contact 1 and moving to contact 2 and of the back-reflected holes moving

from 2 to 1 can be described by the matrices

Se =

 R T ′e−iδ

T eiδ R′

 , Sh =

 R̄ T̄ eiδ

T̄ ′e−iδ R̄′

 (5.7)

where δ = ϕ/2. The form of Se and Sh guarantees that ShSe = 1 for δ = 0, which

corresponds to fully coherent Cooper pair transmission through the N region. Here R and

T are the FP scattering amplitudes

T =
t1t2e

iD

1− r1r2e2iD
, R = r′1 +

t1t
′
1r2e

2iD

1− r1r2e2iD
, (5.8)
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and R′ = −R̄, T ′ = T̄ denote scattering amplitudes for propagation in the reverse direction

(the quantity D = pFL denotes the one-way optical path in the FP resonator, with pF the

Fermi momentum inside the pnp region). Here the transmission and reflection amplitudes

for individual pn junctions satisfy the unitarity conditions:

t′i = t̄i r′i = −r̄i |ri|2 + |ti|2 = 1 (5.9)

from which it follows that the scattering matrices Se and Sh comprised of the compound

FP amplitudes (5.8) are unitary.

To combine the S-matrices (5.7) with Eq.(5.5) we note that different terms in

this equation describe processes involving repeated transmission of several Cooper pairs.

The total scattering matrix for a Cooper pair passing through the junction is She = ShSe.

Accordingly, the contribution to current corresponding to the k = 1 term in Eq.(1)(5.5) is

given by a single pair transmission:

j1 ∼
1

2i
((She)11 − (She)22) =

1

2i
Tr (σzShe) = |T |2 sinϕ. (5.10)

By analogy, the contribution of a repeated transmission of two pairs corresponding to k = 2

in Eq.(5.5) can be written as

j2 ∼
1

2i
Tr
(
σzS

2
he

)
= |T |4 sin 2ϕ+ 2|T |2|R|2 sinϕ. (5.11)

Here the first term describes the contribution of two sequentially transmitted pairs, whereas

the second term describes the contribution of two pairs only one of which made it though

the resonator. Generalizing these observations to processes of higher order, we can write
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the contribution of k pairs as

jk ∼
1

2i
Tr
(
σzS

k
he

)
=

k∑
m=0

am sinmϕ (5.12)

where ak = |T |2k, ak−1 = k|T |2(k−1)|R|2, ... The net current is then given by a sum of all

partial contributions with different k values as follows

j =
e∆

~
Im

∞∑
k=1

(−1)k+1L

ξ

Tr [σz(ShSe)
k]

sinh kL
ξ

(5.13)

which for unit transmission T = T ′ = 1, R = −R′ = 0 matches Eq.(5.5) (here again we

suppress an order-one prefactor).

Proceeding with the analysis of Eq.(5.13) we note that for ballistic dynamics the

correlation length is defined as ξ = ~vF /2πkT . For experimental temperature T ≈ 10 mK

and densities (2.5−6.0)×1010 cm−2 this yields values ξ ∼ 10−20µm which are substantially

larger than system dimension L = 0.35 µm. For ξ � L we can approximate

L

ξ sinh kL
ξ

≈ 1

k

and perform summation over k in Eq.(5.13) to obtain

j =
evF
λF

ImTr
[
σz ln(1 + ShSe)

]
(5.14)

Combining the contributions of the y = 0 and y = W edges in a single expression, we have

Ie = η(EF )
{
j(∆ϕ) + j(∆ϕ− 2πΦ/Φ0)

}
(5.15)

where η is a dimensionless parameter depending on the edge potential strength.
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To describe the contribution of the bulk modes we need to account for the contribu-

tions of various oblique trajectories. Since the junction length L = 0.35 µm is considerably

smaller than its width W = 1.7 µm, we focus on the wide junction limit W � L and neglect

the boundary effects. In this case the only relevant characteristic of a trajectory is its angle

relative to the pn interfaces and contacts. Denoting by θ the angle relative to x axis we

write the net contribution of the bulk modes to supercurrent as

Ib = pF

∫ W

0
dy

∫ π/2

−π/2
dθ cos θj(ϕ(y), θ), (5.16)

ϕ(y) = ∆ϕ− 2π
Φ(y)

Φ0
, Φ(y) = BWy, (5.17)

where y parameterizes the trajectory transverse displacement (along the y axis) and j(ϕ(y), θ)

is the current along the trajectory given by a suitable generalization of Eq.(5.14) (here again

we suppress an order-one prefactor in the expression for Ib).

The increased length of oblique trajectories can be accounted for via L → L̃ =

L/ cos θ, whereas the optical path that controls the FP interference is obtained as

D → D̃ = pFL cos θ ∓ πBL2

2Φ0
tan θ. (5.18)

Here we accounted for the opposite Aharonov-Bohm phases gained by an electron and a

hole in the presence of a magnetic field (for L � W this is a small effect compared to the

y-dependent phase in Eq.(5.17)).

The transmission and reflection of the individual pn interfaces are given by the

functions of the incidence angle θ accounting for Klein scattering, as appropriate for the

monolayer and bilayer graphene.
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The net critical current used to obtain Fig. 5.4b of the main text is given by

Ic = max
∆ϕ

(Ie(∆ϕ) + Ib(∆ϕ)) (5.19)

We note parenthetically that in general the Fermi momentum takes different values

inside and outside the FP resonator. The same is true for the inner and outer incidence

angles, which satisfy pF sin θ = p′F sin θ′ (here the primed variables correspond to the region

outside the resonator). For the inner incidence angle varying in the range −π/2 < θ < π/2

the outer incidence angle varies in the range −θ′max < θ′ < θ′max, where

θ′max =


arcsin(pF /p

′
F ) pF < p′F

π/2 pF ≥ p′F

(5.20)

These relations guarantee that the mode counting performed using pF and θ in a

crosssection inside the pnp region yields the results identical to those found from the mode

counting performed outside the pnp region (with p′F and θ′ used in place of pF and θ).

Fabrication and design of ballistic graphene Josephson junctions

• Suspended Josephson junctions :

We investigate suspended Josephson junctions of two types. The first type, which corre-

sponds to data shown in Fig. 5.1 and 5.2a-b, features superconducting electrodes in the

interior of the flake. Graphene is mechanically exfoliated directly onto on a 300 nm SiO2

dielectric layer that coats a doped silicon wafer serving as a global back gate. Next, thin

Cr/Au leads are defined using e-beam lithography in a pseudo-four probe geometry in or-

der to make electrical contact to the bilayer graphene device. These contacts are spaced
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roughly 1-1.5 µm apart in order to leave room for the superconducting contacts that will

eventually define the Josephson junction itself. These Cr/Au (3/30 nm) contacts are de-

posited using thermal evaporation, followed by immersion in acetone for metal liftoff. Next,

thick gold electrodes are defined in a way that overlaps the outer edges of the thin contacts,

thus maintaining electrical contact to the flake. The thick electrodes serve a dual purpose:

(1) to provide structural support and mechanically hold up the entire suspended graphene

Josephson junction and (2) provide an electrical connection between the Josephson junction

and the bondpads. After an evaporation mask is defined using e-beam lithography, Cr/Au

(3/200 nm) is deposited. To define the Josephson junction, a pair of rectangular Ti/Al

superconducting contacts are patterned in the interior of the flake and extending over the

thin Cr/Au leads to maintain electrical contact to the bondpads. The superconducting

electrodes are patterned using e-beam lithography, followed by thermal evaporation of a 10

nm Ti adhesion layer and a 70 nm superconducting Al layer. Finally, in order to protect the

superconductor from degradation in acid during the suspension process, a PMMA polymer

etch mask is defined over the superconducting contacts using e-beam lithography. After

development, the entire chip is immersed in a buffered oxide wet etchant to remove 150 nm

of the underlying SiO2 dielectric layer, leaving the Josephson junction fully suspended. Im-

mediately following the etch, the substrate is immersed in methanol, followed by an acetone

soak to dissolve the PMMA mask, after which the chip is again immersed in methanol and

dried in a critical point dryer.

The second type of suspended Josephson junction, which corresponds to the data

in Fig. 5.2e-f and Fig. 5.3, features superconducting electrodes that extend over the full

width of the flake. This Josephson geometry is preferable for imaging current flow due to

the uniform distance between contacts and rectangular junction dimensions. Devices are

fabricated on a 300 nm SiO2 dielectric layer that coats a doped silicon wafer that serves as
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a global back gate. Bilayer graphene flakes are deposited over predefined narrow trenches

that are etched into the SiO2 with a depth of 150 nm. Next, thin Cr/Au contacts and

bondpads are defined using e-beam lithography in a pseudo-four probe geometry in order

to make electrical contact to the bilayer graphene device. These contacts are spaced far

apart on either side of the etched trench in order to leave room for the superconducting

contacts that will eventually define the Josephson junction itself. These Cr/Au (3/30 nm)

contacts are deposited using thermal evaporation. The devices are then immersed in acetone

for metal liftoff, transferred immediately into methanol, and carefully dried using a critical

point dryer due the delicate nature of suspended graphene membranes. To construct the

Josephson junction, superconducting Ti/Al contacts are patterned along the trench edges

using e-beam lithography and with width large enough to achieve electrical contact with the

Cr/Au leads. The superconducting contacts are deposited using thermal evaporation with

the following procedure: a 10 nm Ti adhesion layer is deposited, followed by a 50 nm layer

of Al superconductor. As with the previous step, metal liftoff is conducted by immersion

in acetone and methanol, followed by drying in a critical point dryer. The motivation

for using Cr/Au bondpads is to achieve the best possible electrical connection to the gold

bonding wires and sample holder pins. Aluminum, by contrast, oxidizes upon exposure

to air and forms intermetallic compounds at the interface with gold bonding wire, which

would be expected to degrade electrical contact. Devices are current annealed in vacuum

at dilution refrigerator temperatures in order to remove organic processing residues and

enhance quality. All low temperature data is collected using standard lockin measurement

techniques in a Leiden Cryogenics Model Minikelvin 126-TOF dilution refrigerator with a

base temperature of ∼ 10 mK.

• Suspended Josephson junction device dimensions :
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Sample B1 : Fig. 5.1b, 5.1d, the blue curve in Fig. 5.1c, and Fig. 5.2a-b. Type 1 geometry.

Distance between superconducting electrodes: 500 nm. Width of superconducting contacts

(defines transverse dimension of junction): 1.7 µm.

Sample B2 : Fig. 5.3b-c, Fig. 5.4c, and Supplementary Fig. A.12: Type 2 geome-

try. Distance between superconducting electrodes: 350 nm. Junction width: 1.7 µm.

Sample B3 : Fig. 5.2e-f, Supplementary Fig. A.15: Type 2 geometry. Distance

between superconducting electrodes: 350 nm. Junction width: 1.7 µm. Note: Data sets B2

and B3 are from the same physical device but are collected after different current annealing

iterations and thus have different disorder configurations.

Sample B4 : Fig. 5.1c: green curve. Type 1 geometry. Distance between su-

perconducting electrodes: 500 nm. Width of superconducting contacts (defines transverse

dimension of junction): 3.2 µm.

Sample B5 : Fig. 5.1c: red curve. Type 1 geometry. Distance between supercon-

ducting electrodes: 500 nm. Width of superconducting contacts: 1.65 µm.

Sample B6 : Supplementary Fig. A.13-A.14: Type 2 geometry. Distance between

superconducting electrodes: 350 nm. Junction width: 1.5 µm.

Sample B7 : Supplementary Fig. A.13: Type 2 geometry. Distance between super-

conducting electrodes: 350 nm. Junction width: 1.5 µm. Note: Data sets B6 and B7 are

from the same physical device but are collected after different current annealing iterations

and thus have different disorder configurations.

• Josephson junctions on hBN :

To investigate a separate device design, the gate-defined FP cavity, we also consider one

dual-gated monolayer graphene Josephson junction encapsulated in hexangonal boron ni-

tride (hBN). By isolating the graphene from the surface roughness and charge disorder

108



Chapter 5: Visualization of phase-coherent electron interference in a ballistic graphene
Josephson junction

associated with the underlying silicon dioxide gate dielectric, hBN substrates enable high

device quality to be achieved, which is a crucial ingredient for observing ballistic charge

transport. This Josephson junction has a distance of 750 nm between the superconducting

contacts and a flake width of 2.7 µm. The top gate length, which defines the size of the FP

resonator, is ∼100 nm. The superconducting electrodes consist of an adhesion layer of Ti

(10 nm) and a superconducting layer of Al (60 nm). The top gate consists of Ti/Au (5/50

nm). The thicknesses of the top and bottom hBN flakes that encapsulate the graphene are

∼19 nm and ∼30 nm, respectively, as measured by atomic force microscopy (AFM).

• Encapsulated Josephson junction device dimensions :

Sample M1 : Fig. 5.2c, Supplementary Fig. A.11: Distance between superconducting

electrodes: 750 nm. Junction width: 2.7 µm. The top gate length: ∼100 nm.

Fourier method for extraction of supercurrent density distribution

In order to disentangle edge from bulk current flow through the resonator, we em-

ploy the Fourier techniques of Dynes and Fulton to reconstruct the real-space supercurrent

distribution from the magnetic interference pattern Ic(B). This procedure, described in

detail in Ref. (10) of the main text, is briefly summarized here. When a magnetic field B is

applied perpendicular to the junction area, the critical current Ic(B) through a Josephson

junction is:

Ic(B) = |Ic(B)| =
∣∣∣∣∫ ∞
−∞

J(x) exp(2πi(L+ lAl)Bx/Φ0)dx

∣∣∣∣ (5.21)

where x is the dimension along the width of the superconducting contacts (labeled in Fig.

5.1), L is the distance between contacts, lAl is the magnetic penetration length scale (de-

termined by the London penetration depth of the superconductor and flux focusing), and

Φ0 = h/2e is the flux quantum. This integral expression applies in the narrow junction
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limit where L�W , relevant for our system.

Observing that Ic(B) represents the complex Fourier transform of the current

density distribution J(x), one can apply Fourier methods to extract the spatial structure of

current-carrying electronic states. Because the antisymmetric component of J(x) vanishes

in the middle of the junction, the relevant quantity for analyzing edge versus bulk behavior

is the symmetric component of distribution. By reversing the sign of Ic(B) for alternating

lobes of the superconducting interference patterns, we reconstruct Ic(B) from the recorded

critical current. One can determine the real-space current density distribution across the

sample by computing the inverse Fourier transform:

Js(x) ≈
∫ ∞
−∞
Ic(B) exp(2πi(L+ lAl)Bx/Φ0)dB (5.22)

We employ a raised cosine filter to taper the window at the endpoints of the scan

in order to reduce convolution artifacts due to the finite scan range Bmin < B < Bmax.

This the explicit expression used is:

Js(x) ≈
∫ Bmax

Bmin

Ic(B) cosn(πB/2LB) exp(2πi(L+ lAl)Bx/Φ0)dB (5.23)

where n = 0.5− 1 and LB = (Bmax −Bmin)/2 is the magnetic field range of the scan.
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Supplementary Figures

A.1 Supplementary Figures for Chapter 3

Figure A.1: (a) Tilted SEM image of a four gate quantum dot device. (b) SEM image of a
three gate quantum dot taken with the Inlens detector. An additional plunger gate used to
control the density in the dot is suspended above the lower gates. The suspended graphene
bilayer is faintly visible below the gates. (c) Colored SEM image of a device similar to
that pictured in (b) taken with the SE2 detector. Red lines mark the estimated graphene
boundaries. The gate geometry is nearly identical to that of device D2, and the top gate
labeling that accompanies the data in Fig. 3.4b is provided here.
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Figure A.2: (a) Landau fan in device D4 plotted as conductance (in units of e2/h) as
a function of back gate voltage Vb and magnetic field B. All top gates are fixed at zero
volts. (b) Landau fan in a two gate split-gate device with zero voltage on the top gates.
(c) Conductance map (in units of e2/h) of the device in part (b) as a function of the
voltages on each split top gate. The voltage Vb = −3V and field B = 4T are held constant.
This provides direct evidence of local control over broken symmetry quantum Hall states in
suspended bilayer graphene. Inset : Scanning electron micrograph of the split gate device
featured in parts (b) and (c). The scale bar represents 1 µm.
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Figure A.3: By opening a bandgap beneath local top gates in a quantum point contact
(QPC) geometry, electron transport is restricted to conductance through the constriction.
(a) Tilted false-color SEM image of three suspended QPC devices in series. (b) SEM image
of fully suspended QPC with 200 nm between split gates (labeled with blue arrows). The
central gate (labeled with a pink arrow) tunes the carrier density in the channel. Beneath the
split side gates, one may induce a bandgap by applying a perpendicular E field, meanwhile
fixing the top and back gate voltages, Vt1 and Vb, at a ratio that places the Fermi energy near
the center of the gap. Application of voltage Vt2 to the central gate independently tunes
the carrier density within the channel, enabling one to sweep the Fermi wavelength for a
fixed constriction width. (c) Pinching off of the constriction at B = 0 is illustrated. This
is a plot of conductance (in units of e2/h) versus central gate voltage, Vt2. The split gates
are fixed at Vt1 = −9.75 V and the back gate is at Vb = 11.4 V. (d) Plot of conductance
in units of e2/h versus central gate voltage, Vt2, in a device similar to that pictured in part
b. The split gates are fixed at Vt1 = −10 V and the back gate is at Vb = 11.9 V. At B = 0
conductance steps are visible at values of 4, 6, and 8 e2/h (bottom panel), while steps
energe at integer multiples of e2/h in the presence of an in-plane magnetic field of B = 5
T (top panel). This behavior is suggestive of a broken valley degeneracy at B = 0 and the
gradual breaking spin degeneracy with increasing magnetic field. The central panel, a plot
of ∆G/∆Vt2, shows the gradual emergence of the integer steps over a 5 T field range.

113



Appendix A: Supplementary Figures

Figure A.4: (a) Schematic of DC bias behavior for a QPC. The black lines in the bottom
panel represent transitions between conductance plateaus as a function of Vgate and VDC .
The energy diagrams in the upper panels show placement of the source and drain chemical
potentials (µs, µd) relative to the one-dimensional subbands at the locations marked with
blue circles. (b) Plot of conductance in units of e2/h versus central gate voltage (labeled
Vt2) in a device similar to that pictured in Fig. A.2b. Steps emerge at integer multiples
of e2/h in the presence of an in-plane magnetic field of B = 5 T (top panel). A map of
∆G/∆Vt2 as a function of DC bias and central gate voltage exhibits behavior consistant with
conductance quantization, though the features are obscured by Fabry-Perot like interference
patterns

114



Appendix A: Supplementary Figures

Figure A.5: (a) Coulomb diamonds in device D4 are shown in a plot of G as a function
of Vt12 and VDC , where G is conductance in units of e2/h and VDC is the DC bias across
the electrodes. The voltages Vb = −10.7V and Vt34 = 9.27 V are held constant. (b) Plot of
∆G/∆Vt12 for the data in part (a). (c) Even-odd effect visible in a conductance plot (units
of e2/h) of Coulomb blockade oscillations as a function of Vt12 at fixed Vb = −10.7V and
Vt34 = 9.27V. Black points represent data and the red line indicates a functional fit used to
extract peak positions. In the presence of a two-fold degeneracy, the constant interaction
model yields electron addition energy Eadd = EC for N odd and Eadd = EC + ∆E for N
even (for charging energy EC and orbital energy spacing ∆E) because electrons of opposite
index can occupy a single orbital state. (d) Peak spacing (in volts) as a function of peak
number for the fitted data in part (c).
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Figure A.6: (a) Coulomb blockade peak conductance vs. back gate voltage Vb at B = 7 T.
Top gate voltages are Vt1 = Vt3 = 11 V and Vt2 = 10.5 V. (b) Peak spacings for the data
in part a. (c) Coulomb diamonds in a plot of ∆G/∆Vb, where G is conductance in units
of e2/h and VDC is the DC bias across the contacts. (d-f) Conductance(e2/h) of Coulomb
blockade peaks vs. Vt1, Vt2, and Vt3, respectively. Similar coupling to each top gate suggests
a centrally located dot. (g) False-color scanning electron micrograph of a dot similar to
D3. Voltages Vt1, Vt2, and Vt3 are applied to pins 3, 15, and 9&10, respectively. The gates
connected to pins 9 and 10 are shorted together.
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Figure A.7: (a) Contour plot representing COMSOL simulation of spatial density profile
in device D4 at a top gate voltage of 12 V. The red line (indicated by the black arrow)
is the contour line at the saddle points of the density profile, and the area bounded by
the closed portion of this curve represents the quantum dot size calculated by Model 1.
Inset : Cross sectional cut of density profle along y = 0. The points of intersection with
the cutoff (red circles) coincide with the red contour line that determines the dot area. (b)
Simulated dot size versus measured size. Circles and squares represent areas calculated
using Models 1 and 2, respectively. Error bars represent the range of diameters expected
for measured Coulomb blockade peak spacings within one standard deviation of the mean.
(c) Comparison between cutoffs in the two modeling approaches. Carrier densities d0 and
d1 represent the cutoff values above which charge accumulation begins in Models 1 and 2,
respectively. The black dashed lines are plots of y = x ± δn, where δn ∼ 1014 m−2 is the
density variation due to disorder in our suspended flakes [39].
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A.2 Supplementary Figures for Chapter 4

Figure A.8: (a) Bipolar supercurrent in graphene, observed in a color map of resistance as
a function of DC current bias and back gate voltage. The zero resistance superconducting
state is indicated in dark blue, while the normal state resistance is indicated by the colored
regions at high bias. (b) I-V curves from the data in part (a), plotted for various fixed
densities. A DC current bias is applied between the electrodes, and the resulting voltage
drop across the junction is recorded. The critical current Ic marks the transition between
dissipationless and resistive states. The inset shows typical hysteresis curves based on scan
direction of the applied current bias. (c) Plot of the IcRn product for the data in part
(a), where Ic is the critical current and Rn is the normal state resistance. Suppression is
observed near the Dirac point, consistent with previous observations in graphene Josephson
junctions.
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Figure A.9: Supercurrent density distribution as a function of position, for the carrier
density range ∼ 0− 7× 1011

cm
−2, corresponding to the data in Fig. 4.2d of the main text.

Figure A.10: (A) Sequence of Fraunhofer measurements in bilayer device BL3 for the
current maps in panels (B) and (C), shown in plots of dV/dI(Ω) as a function of magnetic
field B (mT) and current bias IDC (nA). (B) Real space image of current flow J(x) as a
function of carrier density on the hole side, showing edge currents near the Dirac point and
a continuous evolution of bulk flow. (C) Individual line cuts of J(x) plotted from (B). This
is the data set in Fig. 4.4a of the main text, plotted with a properly scaled vertical axis
(supercurrent density, nA/µm).
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A.3 Supplementary Figures for Chapter 5

Figure A.11: Normal state resistance of a monolayer graphene device on hBN as a function
of top gate when the back gate is held fixed at -1.75 V (resistance line cut corresponds to
the white dotted line in the inset). Data was collected from sample M1. The oscillation
period agrees with a Fabry-Pérot model with a cavity length ∼ 100 nm. Inset shows that
oscillation occurs in p-n-p and n-p-n regions, which is characteristic of Klein tunneling in
monolayer graphene. The oscillations also suggest the ballistic nature of electronic transport
in the locally gated region.
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Figure A.12: (a) Unsaturated map of the critical current Ic(B) data from Fig. 5.3b, plotted
over a full color scale range. (b) Plot of normalized critical current Ic(B)/Ic(B = 0) from
the data in Fig. 5.3b, indicating a nontrivial dependence of Fraunhofer interference on
cavity resonances. Red and green dotted lines indicate on and off resonance conditions
for the cavity, respectively. (c) Real-space supercurrent density distribution J(x) extracted
from the Fraunhofer interference Ic(B) data in Fig. 5.3b using Fourier techniques. (Fig.
5.3c in the main text is a plot of the real-space normalized supercurrent density distribution
for this data set.) Data was collected from sample B2.

Figure A.13: Plot of normalized critical current Ic(B)/Ic(B = 0), indicating nontrivial
dependence of Fraunhofer interference on cavity resonances. Red dotted lines indicate on
resonance conditions for the cavity. Data was collected from samples B6 (panel (a)) and B7
(panel (b)), which exhibit qualitatively similar behavior to sample B2 in Supplementary
Fig. A.12.
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Figure A.14: Experimental resistance profiles obtained using voltage bias spectroscopy,
measured at fixed back gate voltages Vb tuned to on or off resonance conditions for the
cavity (red or blue curves, respectively). The amplitude of the multiple Andreev reflections,
manifested in resistance dips at 2∆/n for integer n, is strongly modulated by cavity trans-
mission and thus exhibits suppression when carrier density is tuned on-resonance. (a) Red
curve: Vb = −0.7 V, (on-resonance, corresponding to a dip in normal state resistance). Blue
curve: Vb = −0.85 V, (off-resonance, corresponding to a peak in normal state resistance).
(b) Red curve: Vb = −0.95 V (on-resonance); Blue curve: Vb = −1.025 V (off-resonance).
In panels (a) and (b), the red curves are offset by −500Ω for clarity. (c) All curves from
panels (a) and (b), plotted on the same resistance scale. Red curve: Vb = −0.7 V (on-
resonance); dark blue curve: Vb = −0.85 V (off-resonance); magenta curve: Vb = −0.95 V
(on-resonance).; light blue curve: Vb = −1.025 V (off-resonance). Data was collected from
sample B6, which shows qualitatively equivalent behavior to sample B3 in Fig. 5.2e of the
main text.

122



Appendix A: Supplementary Figures

Figure A.15: More voltage bias spectroscopy data from sample in Fig. 5.2e, taken at
additional back gate voltages. Red curve: Vb = −0.1 V (on-resonance); Blue curve: Vb =
−0.3 V (off-resonance).

Figure A.16: Right panel : A colormap of resistance Rn as a function of applied voltage bias
VDC and gate voltage Vb shows modulations due to Fabry-Pérot interference. Left panel :
Derivative plot dRn/dVDC for the data on the right. Data sets are from device B3.
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Figure A.17: (a) Theoretical resistance profiles as a function of applied bias voltage, corre-
sponding to the experimental data in Fig. 5.2e. The red curve (on resonance, Vb = 0.3V )
shows suppressed MAR features, while in the blue curve (off resonance, Vb = 0.5V ) MAR
peaks appear at bias voltages 2∆, ∆, and 2∆/3. The red curve has been shifted upwards
by 0.015R0 for clarity. (b) Simulated resistance map obtained by fitting the measured data
to the short junction model, plotted continuously as a function of applied DC bias voltage
V and back gate voltage. The theoretical resistance profile is in good agreement with the
experimental one (Fig. A.16), showing well defined MAR peaks when the system is off
resonance, and suppressed MAR features on resonance. (c) Mode contributions ρ (thick
solid lines) corresponding to large (red), medium (green), and small (blue) transmissions,
as a function of back gate voltage. The black and blue dashed lines show the normal state
conductance values from measurement and theory, respectively.
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Fabrication of Suspended

Graphene Devices

B.1 Fabrication of dual-gated suspended bilayer graphene

Wafer preparation: First sonicate the Si/SiO2 wafer in acetone for 5 minutes

and isopropanol for 5 minutes. Acid clean the wafer in H2SO4 (96%):H2O2(30%):H2O

4:1:10 at 65 C for 5 minutes, followed by a rinse in water. Do a second acid clean in

NH4OH(29%):H2O2(30%):H2O 3:1:10 at 65 C for 5 minutes, followed by a rinse in water.

Then ozone clean the substrate at 60C for 30 minutes, bake it at 250 C for 30 minutes, bake

it at 160 C for 10 minutes, and then deposit graphene (we use standard green-label Scotch

tape for exfoliation). I used highly ordered pyrolytic graphite (HOPG) ordered from SPI

supplies, product number 430HP-AB (HOPG GD ZYA, 12x12x2 mm).

Lithography for electrical contacts, gate dielectric, and top gates: To

prepare the e-beam resist, spin on 495 PMMA C6 (from Microchem) at 4000 rpm, 40

seconds. Bake at 180 C for 6 minutes. Then spin on 950 PMMA A4 at 4000 rpm, 40
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seconds. Bake at 180 C for 5 minutes. After the lithography, develop in MIBK/IPA 1:3

developer for 4 minutes, 30 seconds, followed by a rinse in isopropanol. Scratch the corner

of the chip to make electrical contact to the back gate. Ozonate the chip at 60 C for 1

minute. Evaporate the metal for the contacts in the cleanroom thermal evaporator. First

pump down the chamber to pressures in the low to mid 10−7 Torr range. Evaporate 3 nm

of chromium at a rate of 0.1 A/s, followed by 100 nm of gold at a rate of 1.5 A/s. Do

liftoff in acetone at 80 C. For the top gate dielectric, use the same lithography procedure as

for the contacts. Deposit about 280 nm of SiO2 using e-beam evaporation in the Edwards

EE-2 evaporator at a rate of 1.5 A/s. To define the top gates, use the same lithography

procedure as for the contacts. Thermally evaporate 3 nm of chromium at a rate of 0.1 A/s,

followed by 300 nm of gold at a rate of 1.5 A/s. [Note: for local suspended top gates, define

the smallest features as follows. Spin on 950 PMMA A4 at 4000 rpm, 40 seconds and bake

at 180 C for 10 minutes. Evaporate 3 nm of chromium at a rate of 0.1 A/s, followed by 75

nm of gold at a rate of 1 A/s. The rest of the process is identical to that for globally gated

devices.] Finally, etch in 5:1 buffered oxide etch (BOE) for 1 minute, 30 seconds, followed

by a rinse in two beakers of methanol. Dry in the critical point dryer CD-1.

B.2 Current annealing procedure for graphene

Connect device contacts to the parameter analyzer using BNC cables, connecting

the source and drain contacts to terminals 2 and 3 on the parameter analyzer, respectively.

When current annealing, use the following settings on the parameter analyzer: SMU1 - V

- CONST; SMU2 - V - VAR1; SMU3 - Common - CONST. Set the compliance of VAR1

(SMU2) to 10 mA (sets an upper bound on current through the sample; we stay well below

this during current annealing). Make sure the “double” setting is selected to ensure the
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bias automatically ramps to zero volts after the scan. To current anneal, sweep the DC

voltage bias from zero to two volts at the “medium” rate setting (and allow the voltage to

automatically ramp to zero). To assess samples changes due to annealing, measure flake

resistance as a function of back gate voltage at zero DC bias. To do this, use the following

settings on the parameter analyzer: SMU1 - V - VAR1; SMU2 - V - VAR2; SMU3 - Common

- CONST. Ramp the back gate (SMU1) from 0 to 15 V with a step size of 20 mV and a

compliance of 10 nA. Set the source-drain bias (SMU2) to 200 uV. Define R2=V2/I2 and

display V1, R2, and I1. I use the same procedure for both two terminal and multi-terminal

graphene devices.
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Preparation of graphene - boron

nitride layered heterostructures

C.1 Piranha cleaning recipe for wafers

For graphene-boron nitride heterostructures, I used Nova Si/SiO2 wafers (Descrip-

tion: 6” P/Bo < 100 > 0.001-0.004 ohm-cm; 500±18 µm Thick SSP Prime Grade Si wafers

w/ Primary Flat only, 2850 A Dry Chlorinated), which are stored in the wafer cabinet on

the 6th floor. To clean the wafers, prepare an acid mixture of H2SO4:H2O2 at a ratio of

3:1 in a glass beaker. Place the wafers in the piranha solution and soak for 30 minutes at

80 C on the hot plate. Immediately remove the wafers from the solution and place them

in a beaker of water to rinse. Then soak them in a second beaker of clean water for a few

minutes (about 5 minutes). Blow dry with the nitrogen gas gun. Exfoliate all graphene and

hBN flakes directly onto the piranha-cleaned Si/SiO2 wafers using room-temperature exfo-

liation with the blue tape (gently rub plastic tweezers over the tape for about 2-3 minutes

to deposit flakes).
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C.2 Flake pick-up procedure for assembly of van der Waals

heterostructures

PPC preparation: To pick up flakes, we used a polymer consisting of 15 wt%

Alfa Aesar polypropelyne carbonate (PPC) in anisole. Specifically, use 3 grams of PPC in

20 mL anisole. Place this in a brown glass bottle with a small magnetic stir rod and leave

it on the hot plate at 90 C overnight with the stirrer on to allow the polymer to dissolve.

Preparation of glass slide/polymer stack: Prepare roughly a 1 mm thick

PDMS layer in a plastic petri dish (or buy it commercially). The full stack consists of a

glass microscope slide/ PDMS square/transparent tape/PPC. First place a square of PDMS

(about 2 mm in size) onto a glass microscope slide and cover with transparent Scotch tape.

For the top layer, spin PPC at 3000 rpm for 1 minute onto a Si wafer and bake at 90 C for

5 minutes. Cut a window larger than the size of the PDMS square into a piece of Scotch

tape (green label) and secure the tape on the PPC. Peel the PPC off the Si wafer with the

tape (scratching corner with tweezers to get it started, if necessary), align the window over

the PDMS, and tape it in place over the PDMS.

Flake pick-up and transfer: Align the square polymer stack over the desired

pickup flake on the Si/SiO2 wafer. Lower the stack with the z-micrometer to bring the PPC

into contact with the flake at room temperature. Heat to 45 C. Good contact should be

achieved, as indicated by a large green region extending around the target flake. Cool to

30 C, then disengage stack. Pickup is successful if flake appears transparent on the PPC

stack. To transfer the pick-up flake onto a target flake, align the stack over the target flake

on the Si/SiO2 wafer and bring into contact at room temperature. Heat to 80 C. Disengage

using the z-micromanipulator. Green regions indicate where the polymer has adhered to

the chip and purple regions indicate where the polymer remains on the PDMS stack. To
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remove the PPC deposited on the wafer, immerse chip in chloroform for 15 minutes. Rinse

in IPA and blow dry with nitrogen gas.

C.3 Exfoliation of MoS2

Sonicate Si/SiO2 wafers in acteone for 5 minutes and isopropanol for 5 min-

utes. Then clean the wafers using an oxygen reactive ion etch: use the recipe “Joel-

WangO2cleaning of substrate” on the RIE-8 tool in the cleanroom. Exfoliate the MoS2

using Scotch tape, heat the chip on a hot plate at 160 C, and press the tape onto the chip

for roughly 1 minute, 30s to deposit MoS2.
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