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Abstract

Data from the NASA Kepler spacecraft indicate that small planets are common around

the smallest main sequence stars (M dwarfs). Rocky planets transiting M dwarfs will be

the best targets for atmospheric characterization with the next generation of scientific

instruments. Ground based transit and radial velocity surveys, and the upcoming NASA

TESS mission are expected to reveal the transiting terrestrial exoplanets that are

nearest to the Sun. Understanding these worlds requires that we first understand their

host stars. In this thesis, I present better estimates of the distances, masses, radii, and

metallicities of these target stars.

I used data from the MEarth-North transit survey to obtain trigonometric distances

to 1507 mid-to-late M dwarfs with a precision of 5 milliarcseconds. I use these distance

measurements to obtain better estimates of the masses and radii of these stars than

available from photometry alone, and prioritize targets to monitor at high cadence for

transiting planets. I find that the M dwarf census in the northern hemisphere is mostly

complete to a distance of 25 parsecs for stars of spectral type M5.5V and earlier, and

mostly complete for stars earlier than M7.0V out to 20 parsecs.

I present calibrated MEarth optical photometry of 1844 MEarth-North targets

with a typical precision of 1.5%. By combining these measurements with trigonometric

distances, spectroscopic metallicities, and extant near infrared (NIR) magnitudes, I
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derive a color-magnitude-metallicity relation with a precision of 0.1 dex. I find that

the median metallicity for Solar Neighborhood M dwarfs is [Fe/H] = −0.030 ± 0.008,

indistinguishable from the solar neighborhood G dwarfs.

I present the MEarth-South discovery of LP 661-13, a low-mass double lined

eclipsing binary system with an orbital period of 4.7 days. I determine the component

masses to be 0.3050± 0.0056 and 0.1937± 0.0027 M� and the radii to be 0.3192± 0.0037

and 0.2159 ± 0.0061 R�. While each component is marginally consistent with stellar

models, the sum of the radii is well constrained and is inflated 5% compared to stellar

models, which cannot be ascribed to metallicity or age effects. LP 661-13 joins the small

sample of low-mass stars with precisely measured masses and radii that serves as a

robust test of models of fully convective dwarf stars.

I present calibrated griz photometry of 150 of the MEarth-North target stars with

a typical precision of 1%. I find that no combination of griz filters alone can reliably

determine the metallicity of an M dwarf. However, interpolation in the (g − i, i −K)

color plane can estimate the metallicity with a typical standard deviation of 0.1 dex.

This precision is comparable to that from NIR spectroscopic methods that have been

recently developed. Overlap between the upcoming Large Synoptic Survey Telescope

(LSST) sources and the VISTA Hemisphere Survey sources will provide a sample of M

dwarfs with estimated metallicities that can in turn be used as a chemical probe of the

Milky Way Galaxy.
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Chapter 1

Introduction

In 2010, I came to Harvard University from the University of Arizona to begin my

dissertation research in the field of exoplanets. At Arizona, I had conducted several

studies of hot Jupiters, searching for transit timing variations (Dittmann et al. 2009b,a,

2010, 2012). At that time, NASA’s Kepler spacecraft had only just begun collecting

data and discovering the underlying statistical population of planets from large gas

giants to small rocky bodies. During my six years at Harvard University, I have worked

primarily with the MEarth Project (Nutzman & Charbonneau 2008). MEarth aims to

uncover the nearby, rocky planets around the closest, smallest stars to the Sun. It is

these planets that will be most amenable to future characterization. However, I realized

that one major bottleneck in the search for these planets is our understanding of their

host stars and that for the foreseeable future our understanding of the host star and our

understanding of exoplanets will be intertwined. With this problem in mind, I set out to

characterize the nearby, low-mass stars, as these stars are the optimal planet hosts and

the planets they harbor will be intensely studied over the coming decades.
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CHAPTER 1. INTRODUCTION

Our understanding and method of studying exoplanets is fundamentally different

than how we study the planets in our Solar System. No spacecraft has ever flown past

an exoplanet and no probe has ever been dropped into an exoplanet’s atmosphere. Only

a handful of the thousands of exoplanets discovered to date have ever been directly

observed. The detection and study of exoplanets has largely been carried out through

indirect means, particularly through the radial velocity and the transit techniques. Both

methods require extracting information about the planetary system through photons that

originated in the star. Therefore, it is important to keep in mind that our understanding

of exoplanets is facilitated by and limited by our understanding of their host stars.

1.1 The Role of Stars in Shaping Our Understanding

of Planets

The presence of multiple bodies in a stellar system cause all the objects in the system to

orbit around their common center of mass. If the orbit is not perpendicular to the sky,

for portions of the orbit the star is moving radially towards and away from the Earth,

producing a periodic Doppler shift in its spectrum. For binary star systems, this effect

can be quite dramatic, with each stellar component’s spectrum shifting several km s−1.

However, for less massive bodies like planets, this effect can still be reliably observed.

The amplitude of the radial velocity signal from a star’s doppler wobble is sensitive to

the masses of the planet (Mp), star (M∗), and the inclination of the orbit (i) in the plane

of the sky. With only a radial velocity curve, it is possible to measure only the quantity

Mp sin i/(Mp + M?)
2/3. Improvements in the RV precision in instrumentation can allow

2



CHAPTER 1. INTRODUCTION

us to detect smaller mass planets but also higher mass planets with smaller orbital

inclinations. For 51 Peg b, a Jupiter mass object with an orbital period of 4.2 days, the

radial velocity of the star has an amplitude of 56 m s−1 (Mayor & Queloz 1995). Recent

advances in RV spectroscopy (Iodine cells, instrument stabilization, for example) have

demonstrated m s−1 precision, and work is currently ongoing to refine these techniques

and others further. Each improvement in RV precision allows us to measure masses more

precisely and to start measuring lower mass companions.

Discovering lower mass planets requires more precise measurements, and in pursuit

of these objects new instruments, like the HARPS spectrograph (Rupprecht et al. 2004),

Automated Planet Finder (Radovan et al. 2014), and the Planet Finder Spectrograph

(Crane et al. 2010), among others, have been developed. Since its inception in 2003,

HARPS has searched for extrasolar planets in the Southern hemisphere (Faria et al.

2016), probed the atmosphere of giant plant HD 189733b (Wyttenbach et al. 2015),

and provided follow up observations to small transiting planets (Berta-Thompson et al.

2015). A copy of HARPS in the northern hemisphere, HARPS-N (Cosentino et al. 2012),

began operations in 2012. In addition to discovering planets around northern hemisphere

stars, HARPS-N has been hunting for long period planets in systems already known to

harbor planets through the GAPS program (Biazzo et al. 2015), hunted for rocky planets

around nearby stars (Motalebi et al. 2015), observed the Sun as a star in order to better

understand the astrophysical noise inherent in RV observations (Dumusque et al. 2015),

and provided important follow-up observations for planets discovered via the transit

method by NASA’s Kepler mission (Hébrard et al. 2013; Dumusque et al. 2014; Gettel

et al. 2016).

These systems that show a transiting geometry are very valuable as we are given
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CHAPTER 1. INTRODUCTION

additional observables: the depth of the transit, the duration of the ingress and egress,

and the total duration of the transit. The depth of the transit light curves tells us the

radius of the planet, but only relative to the radius of the star. The transit duration

and the duration of the ingress and egress of the transit can tell us the inclination

of the planet’s orbit and the mean density of the star. The transiting geometry also

enables transmission spectroscopy studies while the planet is transiting the star (Seager

& Sasselov 2000; Charbonneau et al. 2002; Moutou et al. 2001; Snellen 2004)

The first exoplanet system discovered to exhibit transiting geometry was HD

209458b (Charbonneau et al. 2000). Following this discovery, ground-based wide-field

surveys such as HAT (Bakos et al. 2002), WASP (Pollacco et al. 2006), XO (McCullough

et al. 2005), TrES (Dunham et al. 2004), and KELT (Pepper et al. 2007), among others,

began operating to attempt to discover more of these systems. Together the WASP

survey (Pollacco et al. 2006) and HAT survey (Bakos et al. 2002), as well as their more

recent southern hemisphere counterparts (Hellier et al. 2011; Penev et al. 2013) have

discovered hundreds of transiting planets, nearly all hot Jupiters. These systems were

the tip of the exoplanet iceberg and after the launch of NASA’s Kepler mission we

know of thousands of planetary systems (Coughlin et al. 2015). Kepler’s unprecedented

precision and 4-year baseline has allowed us to investigate the occurrence rates of rocky

and gas giant planets in close-in orbits around main sequence stars. Howard et al. (2012)

found that 13% of FGK stars have a 2 − 4 R⊕ planet with a period less than 85 days

and that this fraction increases for cooler stars. Fressin et al. (2013) found that 16.5%

of FGK stars have a planet between 0.8 and 1.25 R⊕ with an orbital period less than

85 days. A further study out to longer periods found that there are approximately 0.77

planets per star between 0.75 R⊕ and 2.5 R⊕ with orbital periods between 50 and 300
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CHAPTER 1. INTRODUCTION

days (Burke et al. 2015). In the M dwarf regime, Petigura et al. (2013) found that

there are approximately 0.48 planets per M dwarf with a period less than 50 days. This

rate was revised slightly upwards by Dressing & Charbonneau (2015) who found that

there are approximately 0.56 planets with radii between 1 and 1.5 R⊕ per M dwarf that

have an orbital period less than 50 days. While the projected value for the number of

habitable Earth-sized planets per star varies slightly, it is clear that small, rocky planets

are common in the Galaxy, and that this occurrence rate persists towards lower mass

stars and may even be larger than for solar type stars. It is towards this lower mass end

that the field has now turned, in the hopes of discovering a habitable planet suited for

subsequent observations to determine whether or not it is also inhabited. Moving away

from Sun-like stars poses its own set of challenges, which must be overcome.

1.1.1 The Push Towards M Dwarfs and the Challenges they

Pose

For exoplanetary systems, the fundamental properties of the planet can be inferred only

relative to the properties of its host star, and therefore our understanding of planetary

astrophysics hinges on our understanding of stellar astrophysics. More crucially, from a

feasibility standpoint, if we want to characterize smaller and less massive planets, both

the observed radial velocity amplitude and transit depth become larger for smaller host

stars. The radial velocity amplitude of the Sun due to the Earth is 9 cm s−1, and its

transit depth is only 84 parts per million. A planet the size of the Earth receiving the

same total amount of energy that the Earth receives from the Sun orbiting a star with

0.2 M� would exert a radial velocity amplitude of 65 cm s−1 and have a transit depth of
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CHAPTER 1. INTRODUCTION

2100 parts per million.

Searching for planets around stars smaller than the Sun has an additional striking

advantage - the period of a planet with an equilibrium temperature that can support the

existence of liquid water on its surface is much smaller than one year. Because the planet

would transit more often, this significantly decreases the time it takes to collect enough

data to detect the planet and collect more detailed follow-up data. Furthermore, planets

that reside closer to their host stars have a much wider range of angles in which they will

show transiting geometries. The criterion for a planet to show a transiting geometry is

sin(90− i) < R∗
a

(1.1)

where i is the inclination of the orbit in the plane of the sky, R∗ is the radius of the host

star, and a is the semi-major axis of the planet. For a star with 0.2 M�, its radius would

be approximately 5× smaller than the Sun’s, but the habitable zone will be 20 times

closer to the star than the Earth is to the Sun, increasing the range of orbital inclinations

that would show transiting geometry.

From signal to noise and accessibility standpoints, smaller stars are better hunting

grounds for searching for rocky habitable planets, and understanding their masses, radii,

luminosities, and other physical properties is crucial in order to understand the planetary

systems that orbit them. Out of every 10 stars in the Milky Way, 7 of them are M dwarfs;

248 of the 366 stars within 10 parsecs of the Sun are M dwarfs (Henry et al. 2006). Yet,

of the approximately 6000 stars in night sky visible to the naked eye, none of them are M

dwarfs. This fact underscores the reality that M dwarfs - the majority of stars and planet

hosting stars - are less luminous than stars like the Sun, and the potentially habitable
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planets that orbit them are subject to different radiative environments than the Earth.

If we are to search for habitable planets and eventually life in these systems, then we

must begin by understanding the star whose light we will be observing in our telescope.

The M dwarfs make up the lowest mass end of the stellar spectral sequence, with M0

beginning at approximately 0.6 M� (Tarter et al. 2007). The M dwarf spectral sequence

ends when a star is no longer massive enough to sustain nuclear fusion in its core, at

approximately 0.08 M� (Dieterich et al. 2014), although this boundary can change

depending on metallicity and other factors (Helling & Casewell 2014). This mass range is

equal to the mass range spanned by the entire F, G, and K spectral sequences combined.

Therefore, it isn’t surprising that major structural changes occur between earlier, more

massive M dwarfs and later, less massive M dwarfs, even though both are classified as an

M spectral type star.

Down this mass sequence, the rate of nuclear burning decreases. Consequently, the

energy output of the star drops and less energy needs to be transported from the core to

the surface of the star (Chabrier et al. 1996). At approximately 0.33 M�, convection can

more efficiently transport energy towards the surface of the star throughout its interior,

and stars of this mass and lower are fully convective. This contrasts with solar type

stars, whose interiors transport energy largely through radiative diffusion.

The fully convective nature of such a star has consequences for the behavior of

the star over its lifetime, and also for the environment a planet may find itself in. For

stars like the Sun, the magnetic field is generated at the interface between their outer

convective zones and their inner radiative zones (Solanki et al. 2006). Since mid-to-late

M dwarfs lack radiative zones (and therefore they have no convective-radiative interface),
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it was thought that M dwarfs would only have weak magnetic fields (Saar 1996).

However, observations have indicated that M dwarfs are capable of generating large-scale

magnetic fields (Donati et al. 2006). By observing Zeeman splitting with high resolution

spectrographs, M dwarfs have been shown to be able to have magnetic fields with

strengths of several kiloGauss (Johns-Krull & Valenti 1996). These intense magnetic

fields can also produce highly energetic flares. Combined with a close-in habitable zone,

any habitable planets around M dwarfs will have to contend with the effects of this

intense radiation, including atmospheric stripping (Khodachenko et al. 2007), although

these effects may not ultimately render the planet uninhabitable (Tarter et al. 2007).

Regardless of the difficulty M dwarfs present to the planets that may orbit around

them, in order to characterize and understand those planets we will need a way to

measure or infer both the mass and the radius of the host star. For main sequence

stars, stellar models have been able to predict the mass and radius of a star given its

measured flux with accuracies of 1 - 2 percent (Andersen 1991). These models are

also able to account for effects of age and metallicity (Andersen 1991). In contrast,

the mass-luminosity relationship for M dwarfs is not as precisely measured. Delfosse

et al. (2000) used a sample of M dwarfs adopted from Henry & McCarthy (1993)

and Henry et al. (1999a) that had accurate distance measurements and dynamical

mass measurements in order to measure the mass-luminosity relation for low mass

stars. They found that an M dwarf’s mass is most directly correlated with its absolute

(distance corrected) infrared magnitude in the 2 Micron All Sky Survey (2MASS) Ks

band. They found that optical magnitudes do not correlate as well with mass, as

metallicity also affects the optical magnitude, the low temperatures present in M dwarf

stellar atmospheres, molecules begin to form and blanket the optical wavelengths with
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absorption lines and suppress the flux (Allard et al. 1997; Baraffe et al. 1998).

Once we obtain a mass through a distance measurement and a magnitude

measurement, how do we estimate the radius of the star? Directly measuring the radius

of a single star is very difficult, as resolving the disk requires the use of an interferometer,

although several stars have been measured this way, including GJ 176 with a radius

of 0.4525 ± 0.0221 R� and GJ 876 with a radius of 0.3661 ± 0.0059 R� (Boyajian

et al. 2015). Unfortunately, this technique requires the star to be bright at optical

wavelengths, which makes the number of viable M dwarfs to have been measured through

this technique much smaller than for solar-type stars.

Typically, radius measurements of stars are done through the use of eclipsing binary

systems, where both stars are also detected through spectroscopy (so that a radial

velocity orbit can constrain both of their masses). These systems can then be used to

calibrate and test models of stellar structure and atmospheres. While the stellar models

can accurately reproduce the stellar mass-radius relation for stars that have similar

masses to the Sun (Allard et al. 1997), these models become less accurate towards lower

masses (Torres 2013). In particular, low mass stars seem to have larger radii and cooler

temperatures than stellar models would predict. This becomes important for planets

discovered around these systems, as a bigger star means the transiting planet is also

bigger than we initially believed and may no longer be rocky or habitable.

The observed differences between models and observations become more pronounced

below 0.35 solar masses, where M dwarfs become fully convective (Chabrier & Baraffe

1997; Baraffe et al. 2015). This discrepancy cannot be explained as an observational

bias associated with tidal forces between the eclipsing stars due to their proximity (as
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most eclipsing binary systems have short periods). Recently discovered eclipsing binary

systems with periods of 41 days (Kepler-16AB Doyle et al. (2011), LSPM J1112+7626

Irwin et al. (2011b)), well outside the tidal radius, have shown radii that are also inflated

relative to stellar models. Further progress into uncovering what physical processes affect

the stellar mass-radius relation requires the discovery and detailed characterization of

additional systems (at different periods, composition, and activity levels) in order to

disentangle various effects that all might be contributing to our underestimation of M

dwarf radii.

In order to build a planet around a star, one requires the raw metallic materials

necessary to assemble the planet. Stars and gas giant planets are dominated by Hydrogen

and Helium, the elements that make up the vast majority of the Universe. Earth and

other rocky planets, on the other hand, are dominated by heavier elements. However,

it’s not currently known how efficient the planet formation process is (Armitage 2003;

Muñoz et al. 2016). Fischer & Valenti (2005) investigated this question and found that

fewer than 3% of solar-type stars with metallicity lower than that of the Sun have a giant

planet with a period of 4 years or less and an RV semi amplitude of 30 m s−1 or more,

while 25% of solar-type stars with a metallicity of [Fe/H] = 0.3 or higher have such a

planet. They concluded that a power law in metallicity can describe the probability that

a star hosts a close in giant planet, but did not investigate whether this holds for smaller

planets or for long period orbits, due to lack of sufficient observational results. Previous

indications that a planet-metallicity correlation extends to smaller planets (Schlaufman

& Laughlin 2011) were shown to be due to contamination of their sample with giant

stars (Mann et al. 2012). An analysis of 226 stars hosting small transiting planets from

Kepler suggest that the probability of small planets forming is not sensitive to the
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bulk composition of the system (Buchhave et al. 2012a). However, an extended study

utilizing Kepler data has suggested that terrestrial planet formation may be affected by

the metallicity of the environment at formation, with slight differences between rocky

planets, gaseous dwarf planets, and true ice giants (Buchhave et al. 2014a). Recent work

by Wang & Fischer (2015) has suggested that there is a universal planet-metallicity

correlation across all planet sizes and all metallicity values, but this result has been

questioned by Buchhave & Latham (2015) who find that the stellar metallicity does not

impact the radius distribution of the planets that form in a system. An additional study

by Schlaufman (2015) found that a continuum of planet size between 1 R⊕ and 4 R⊕

can form, independent of the availability of solids in the bulk material. The relationship

between stellar metallicity and planet occurrence is still an open question today.

While M dwarfs are currently our best prospects for detecting rocky, habitable

planets whose atmospheres can be studied, in order to make the most of this opportunity

we must turn our attention to the stars themselves. In particular, we must characterize

the sample of nearby M dwarfs, estimate their masses, radii, and metallicities, and

select the stars that are best suited for follow-up observations to hunt for planets.

Unfortunately, prior to this thesis, much of this information was lacking, even though

these M dwarfs represent the closest stars to the Sun. Through my thesis I have aimed

to fill in the gaps in our understanding of these stars and prepare them to be prime

hunting grounds for the next generation of planet hunting missions, and ultimately to

aid in the search for life in the Universe.
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1.2 The MEarth Project as Planet Hunter and

Stellar Observer

My thesis has made extensive use of the MEarth dataset. The MEarth project (Nutzman

& Charbonneau 2008) is designed to search the nearby mid-to-late M dwarfs for transiting

planets. The MEarth project consists of two arrays of telescopes: 8 in the Northern

hemisphere at the Fred Lawrence Whipple Observatory (FLWO) at Mt. Hopkins, AZ

which has been operating since 2008, and 8 telescopes in the Southern hemisphere at

Cerro Tololo International Observatory (CTIO) which have been operating since late

2014. Each telescope is 40 cm in diameter and is controlled robotically. Both installations

use a Schott RG715 glass filter with anti-reflection coating. This filter and the MEarth

magnitude system are described in detail in Chapter 3. This filter with its broad red

sensitivity enables MEarth to maximize the number of photons received from the target

M dwarfs. Both installations collect data every clear night, except the Northern Array

closes in August each year for the summer monsoons.

The MEarth-North target list was selected from the sample presented by Lépine

(2005), a subset of the LSPM-North catalog (Lépine & Shara 2005). Prior to this thesis,

we believed that these stars were within 33 pc of the Sun and had a stellar radius of

R < 0.33R� based upon their proper motion and color (Nutzman & Charbonneau 2008).

The distances to the vast majority of these stars are estimated using their apparent

magnitudes and colors. In many cases, the only optical magnitude that was available

for these stars was one from a photographic plate, with estimated uncertainties of 20%

or more (Lépine 2005). The Southern target list is an incomplete selection of M dwarfs

following the same criteria as the Northern hemisphere target list pulled primarily from
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the RECONS sample.

MEarth’s target stars are spread uniformly across the sky, and therefore typically

only one target star exists in any one target field. Each MEarth telescope has a set of

target stars that it observes each night for planets, iterating between each star before

returning back to the first star on the list. Initially, we selected the exposure times

for MEarth to allow us to collect enough photons such that we could detect a 2.0 R⊕

planet transiting in front of the star (Nutzman & Charbonneau 2008). However, after

comparing with statistical results from Kepler, we altered this observing strategy (Berta

et al. 2013). Now, each target M dwarf is observed with two telescopes in order to

increase our signal to noise, increase the reliability of detections, and probe to smaller

planets. This decreases the rate that MEarth can probe stars for planets but the steep

rise in planet occurrence rate towards smaller planets around M dwarfs (Dressing &

Charbonneau 2015) means that MEarth’s expected yield increases with this observing

strategy (Berta et al. 2013). Additionally, we have implemented a MEarth trigger

observing mode (Berta et al. 2012a). If MEarth, during routine observations, detects a

potential transit-in-progress, the telescope will continue to observe the target instead

of moving on to the next M dwarf in its queue. It will continue to gather data on this

target until it detects an egress. After detecting an egress, an out of transit baseline is

reestablished, then the telescope resumes its normal observation schedule. This allows us

to confirm longer period planets by confirming the transit in the discovery observations

themselves. This trigger mode led directly to the detection of a 1.2 R⊕ transiting planet

GJ 1132b (Berta-Thompson et al. 2015). The discovery trigger identified the planet and

prompted us to obtain follow-up observations and confirm the planetary nature of the

object.
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Since beginning operations in 2008, MEarth has discovered a short period eclipsing

binary (Irwin et al. 2009a), an M dwarf - brown dwarf eclipsing binary (Irwin et al.

2010), as well as a long period (41 day) M dwarf - M dwarf eclipsing binary (Irwin et al.

2011b). Constant monitoring of our target stars has also provided us with measured

rotation periods (Irwin et al. 2011a; Newton et al. 2015b; West et al. 2015). These

rotation periods span hours to over 100 days, with a paucity of intermediate rotators.

Newton et al. (2015b) interprets this gap as an indication that M dwarfs spin rapidly

for approximately 2 billion years, but that once they begin the process of spinning down

this process is very rapid and the star quickly spins down to a rotation period of 100

days and longer.

At the time of writing, MEarth has discovered two exoplanets, one in the northern

hemisphere and one in the southern hemisphere. The first planet discovered by MEarth,

the super-Earth GJ 1214b (Charbonneau et al. 2009), has been the subject of an intense

series of observations meant to measure its atmosphere from the optical (e.g. de Mooij

et al. 2013; Bean et al. 2011; Murgas et al. 2012), to the infrared (e.g. Berta et al.

2012b; Bean et al. 2011; Crossfield et al. 2011; Croll et al. 2011; Désert et al. 2011;

Fraine et al. 2013). The characterization of GJ 1214b was aided largely by the amount of

information already known about the star prior to the discovery of GJ 1214b, including

its trigonometric parallax. This parallax allowed a decent estimate of the true size of

the star and hence the planet, but the relatively poor precision and uncertain accuracy

of the literature parallax estimate for GJ 1214 was a limiting factor in our ability to

characterize the planet. Significant effort has since been made to re-characterize this

object, including deriving a revised parallax (Anglada-Escudé et al. 2013a) with modern

data. Anglada-Escudé et al. (2013a) increased the measured distance to GJ 1214 from
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13 parsec to 14.5 parsec, a 10% increase.

MEarth’s second planet, GJ 1132b (Berta-Thompson et al. 2015), was much easier

to characterize as we could measure the trigonometric parallax and determine a precise

distance measurement to the system with MEarth-South discovery data itself. GJ 1132

is located closer to the Sun than GJ 1214, at only 12 parsec away (π = 83.07 ± 1.69

mas Jao et al. 2005), and GJ 1132b is a 1.2 R⊕ radius planet with a density consistent

with an Earth-like bulk composition. At the time of writing, no further characterization

studies are available, although ground-based instruments at Magellan as well as the

Hubble Space Telescopes have or are executing observing programs on this object. I am

also currently conducting a 100 hour Spitzer Space Telescope program observing GJ

1132 slated to execute at the end of April 2016, and I will return to it at the end of this

chapter.

Accurately estimating the stellar parameters of M dwarfs is vital towards our

understanding of any transiting planet they may host. Any future planetary discoveries

by the MEarth survey will likely be around a star less well-characterized than either GJ

1214 or GJ 1132, making the challenge of conducting detailed exoplanetary studies even

more difficult. One way to better characterize these stars is to determine more accurate

distances to them, since the distances to most of the MEarth targets were initially

estimated using only photometric means with limited precision. I set out to see if the

MEarth images could be calibrated astrometrically in order to measure trigonometric

parallaxes.
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1.3 Trigonometric Parallaxes: The Bottom Rung of

the Distance Ladder

Trigonometric parallaxes are the gold standard in distance estimates. A parallax

measurement requires measuring the position of a star on the sky at various times in

the Earth’s orbit. As the Earth changes position, the relative position of stars on the

sky will change, as the stars lie at finite distances. While trigonometric parallax was

a long-predicted consequence of the Copernican model, the first successful detection

of a a stellar parallax took several centuries to achieve. The first trigonometric

distance to a star was measured for 61 Cyg by Bessel (1838). After this initial success,

parallax measurements became more routine, with hundreds of stars measured over the

subsequent decades. However, it became clear that systematic effects between observers

and observatories often resulted in wildly different determinations of the distance to the

same star. A compilation by Bigourdan (1909) of trigonometric parallaxes known at

that time lists 23 individual measurements of the parallax for 61 Cyg (including that of

Bessel 1838), ranging from 177 milliarcseconds to 559 milliarcseconds. The modern value

(from the HIPPARCOS mission) is 286 milliarcseconds (Perryman et al. 1997).

In 1903, the new technology of photographic plates began to be used in astronomy,

and Frank Schlesinger began working with the technology at the Yerkes 40-inch refractor

in order to attempt to reduce these errors (Schlesinger 1904). The effect of refraction

was limited by designing a plate insensitive to blue light, and use the properties of the

refractor to spread the blue light over as wide an area as possible, so that it would not

be detectable. The technology and techniques that Schlesinger pioneered were adopted

among many observatories, and new measurements of trigonometric parallaxes to nearby
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stars were regularly released. A compilation of 5822 parallax measurements culminated

in the first Yale Parallax Catalog in 1952 (Jenkins 1952), which has since seen numerous

new editions and updates (van Altena 1984; van Altena & Lee 1988; van Altena &

Hoffleit 1996a).

In the modern age, the HIPPARCOS satellite revolutionized astrometry.

HIPPARCOS was a 3.5 year space-based mission that measured the distance to over

100,000 stars with unprecedented precision (Perryman et al. 1997). In addition to

astrometric distance measurements, HIPPARCOS also provided a direct measurement

of the stellar magnitude of its targets (van Leeuwen et al. 1997). The sheer quantity

of stars observed enabled directly measuring the color-magnitude diagram for stars of

known ages in clusters (Pinsonneault et al. 1998), as well as measurements of local

Galactic kinematics (Smart et al. 1998; Reid 1998; Helmi et al. 1999). At the end of its

mission, 99% of all stars with a visual magnitude of 11 or brighter were observed by

HIPPARCOS, and diminishing quantities of more faint stars. Unfortunately, it is this

visual magnitude cut-off that prevented the distances to the most numerous type of star

- the M dwarfs - from being measured. Effort to plug this gap has been slow, since there

is no dedicated facility to conduct this work, although numerous efforts are underway.

As these objects are cool and dim in the optical, parallax programs using infrared

instruments have proved successful (Dupuy & Liu 2012; Vrba et al. 2004). Additionally,

the REsearch Consortium On Nearby Stars (RECONS) survey, a long standing parallax

program at CTIO, has provided a wealth of parallaxes for nearby white dwarfs, brown

dwarfs, and late M dwarfs, currently with 30 papers (Winters et al. 2015; Hosey et al.

2015) identifying and characterizing new stars in the solar neighborhood, many of which

lie within 10 parsecs (see Riedel et al. 2011 and references therein).
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In Chapter 2, I present the results of our analysis of 5 years of MEarth-North

images. Since MEarth had been monitoring these stars for transiting planets, we had

been taking observations at various phases of Earth’s orbit. Therefore, we thought that

it might be possible to use the MEarth planet-hunting data as a way to measure the

distances to our stars and better characterize them. I found that MEarth was capable

of producing precise astrometric measurements, and we began observing every star in

our target list at a 10 day cadence, whether or not we were hunting for planets around

that star. After these additional observations, we published trigonometric parallaxes,

and mass and radius estimates for 1507 M dwarfs with a typical precision of 5 mas.

We found that many of these stars were further away (and therefore brighter) than we

initially believed based on their colors. This means that they are either multiple star

systems or actually more massive than we initially believed them to be. In either case,

the stars become less attractive targets for planet searches, as a stellar companion might

dynamically affect a planet (and at the very least dilute the transit depth), and a more

massive star makes the signal from a planet in that system smaller. I find that the

northern hemisphere census of M dwarfs is mostly complete to a distance of 25 parsecs

for stars of spectral type M5.5V and earlier, and mostly complete for stars earlier than

M7.0V to a distance of 20 parsecs. I confirm via trigonometric distances 8 stars that did

not previously have a measured parallax that lie within 10 parsecs of the Sun.

At the time of this publication, MEarth had only been observing the vast majority

of target stars at astrometric cadence for 2 years. With only 2 years of data, it is only

possible to separate out the effects of proper motion (linear motion in the plane of the

sky) and trigonometric parallax (apparent motion due to the Earth’s orbit). Additional

astrometric signals (since as those due to orbital motion of the star about a close
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companion) are not resolvable on these time scales. Therefore, we did not investigate

them in this chapter. However, since the publication of this chapter, MEarth has

collected several years of additional astrometric data and it will now be possible to look

for astrometric companions to our stars.

Since this publication, the Gaia satellite (Lindegren & Perryman 1998) has launched

and began taking data. GAIA’s mission is to pick up where HIPPARCOS left off.

It will measure the trigonometric distance to every object in the sky that is brighter

than a V magnitude of 20. For these objects, Gaia will have an astrometric precision

of approximately 20 microarcseconds. This includes every target on the MEarth target

list. However, if any of these stars are actually long period multiples, then Gaia’s data

will be incomplete, because it has a finite baseline. In the future, the MEarth data

set (though of lower astrometric precision) can possibly be stitched onto the GAIA

data, extending the time baseline and can be used to measure the dynamical mass of

astrometric multiples.

1.4 The Brightness and Metal Content of our Sun’s

Nearest Neighbors

After measuring the distances to each of the MEarth target stars, I sought to utilize

MEarth as a legacy dataset to measure more accurate optical magnitudes for the nearby

M dwarfs. MEarth is an optical instrument operating with a Schott RG715 glass filter.

The effective wavelength of a typical M-dwarf target, accounting for telluric absorption,

the filter bandpass, and the detector quantum efficiency is 850 nm. Being in the
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red-optical regime, a MEarth magnitude could be used to replace the photographic plate

magnitudes. During each night of observation, the MEarth telescopes take observations

of Landolt standard fields (Landolt 1992). These standards are stars with precisely

measured magnitudes, and are meant to be used to calibrate data, since it is easier to

measure relative brightnesses of stars rather than to directly measure the energy being

received by one particular star.

One problem with calibrating photometric data for M dwarfs is that there are very

few red standard stars, and the effect of the atmosphere is color dependent. Because

blue light scatters more efficiently in the atmosphere than red light, when comparing

our red target M dwarfs brightnesses to a bluer standard star, the atmosphere will have

a profound effect. We found that atmospheric parameters that depend linearly on the

airmass of the observation and the color of the target star were sufficient to describe this

effect and that the MEarth instrument was capable of measuring the apparent magnitude

of an object with 1.5% precision.

In Chapter 3 (Dittmann et al. 2016) I present this analysis and also combine these

measurements with the results from Chapter 2 in order to measure the distance corrected

brightnesses of our target stars at optical wavelengths. When I combine these results

with spectroscopic metallicity measurements performed by Newton et al. (2014) and

Newton et al. (2015a), I find that an optical - infrared color that includes the MEarth

magnitude as the optical magnitude is sensitive to the metallicity of the star. I succeeded

in calibrating a relationship between an M dwarf’s absolute (distance corrected) Ks

band magnitude, its MEarth − Ks color, and its metallicity, with a precision of 0.1

dex in metallicity. This precision is comparable (and possible limited by) the precisions

obtained using infrared spectroscopic techniques. However, obtaining a near-infrared
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spectrum is a time consuming and resource intensive task, and so being able to obtain a

metallicity measurement from broadband photometric measurements alone is much more

efficient. We released metallicity estimates for every MEarth target that had a measured

parallax. Importantly, all of these metallicity measurements were measured uniformly

across the sample, which reduces one source of systematic errors.

We found that median metallicity for the solar neighborhood M dwarfs is [Fe/H] =

−0.030 ± 0.008, indistinguishable from solar neighborhood G dwarfs. Additionally, we

find that 29 / 565 M dwarfs in a 20 parsec volume have a metallicity of [Fe/H] = -0.5

or lower, which is similar to Haywood (2001), who measured that 4% of their 383 solar

neighborhood G dwarfs have a metallicity less than [Fe/H] = −0.5.

In the future, MEarth and other future planet hunting surveys will begin to

uncover the population of planets around these stars. Armed with these metallicity

measurements, it will be possible to settle the question of whether a planet-metallicity

correlation exists.

1.5 Fundamental Parameters: Masses and Radii

While hunting for planets, MEarth is also extremely sensitive to eclipsing binary systems,

as their eclipses are much deeper than planetary transits. Once the MEarth-South

instrument was commissioned, we uncovered the existence of an eclipsing binary system,

LP 661-13 on the second night of observations. In Chapter 4 of this thesis, I present

the MEarth observations for this system as well as high resolution spectroscopic radial

velocity measurements from TRES. LP 661-13 has a 4.7 day orbital period, long enough
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that tidal effects between the two stars are largely diminished. This makes LP 661-13

an ideal target for detailed study and characterization. We obtained observations of

22 primary and secondary eclipses of this system with MEarth-South, and we obtained

14 epochs of high resolution spectroscopic follow up in order to constrain the masses

of these stars. Additionally, a periodic signal is apparent in the MEarth data due to

rotational modulation and the presence of starspots on the star. Importantly, over two

years of observations the signal changes. This allowed us to measure the potential effect

starspots have on determining the fundamental physical parameters of this star system.

LP 661-13 has component masses of 0.3050 ± 0.0056 and 0.1937 ± 0.0027 M�

and component radii of 0.3192 ± 0.0037 and 0.2159 ± 0.0061 R�, which places both

components at the low mass end of the stellar sequence. This makes LP 661-13 a

valuable system, as there are few stars low mass stars who have their physical parameters

measured precisely and it is in this mass regime that the stellar models are least able

to reproduce observations (Torres 2013). While we find each component is marginally

consistent with stellar models, the sum of the radii (a better constrained parameter) is

inflated with respect to stellar models. Obtaining such high precision on the masses and

radii of M dwarfs is a rare occurrence and LP 661-13 joins a small (but growing) list of

stars with such measurements.

In the future, it would be a great benefit to get eclipse observations of LP 661-13 in

bandpasses significantly different than the MEarth bandpass. Having these measurement

in other colors would allow us to measure the light ratio between the two stars across

their spectra, allowing us to place direct constraints on each star’s temperature. Of

particular interest is the Ks band, since this is the band that is most directly sensitive

to stellar mass (Delfosse et al. 2000).
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1.6 The Nearby M dwarfs as a Benchmark Stellar

Sample

Throughout this thesis, I present the trigonometric distances to many of the nearby M

dwarfs, measures of their optical magnitudes, and a luminosity-color-metallicity relation

that combines these results together. However, it should be noted that the MEarth

bandpass is not a standard bandpass. It would be beneficial to have a way to measure

the metallicity of an M dwarf using more commonly used filters. Furthermore, the results

I present in Chapter 3 require a distance measurement to the M dwarf. While this works

for the nearby M dwarfs, many other M dwarfs do not have trigonometric parallaxes and

will be too dim even for Gaia to measure. At Gaia’s limiting magnitude of G = 20,

Gaia will only detect M5V stars at a distance of 500 parsecs, and the distance to these

stars will be measured with 10% accuracy.

The Large Synoptic Survey Telescope (LSST) (Gressler et al. 2014) is set to survey

the entire Southern sky every few nights in the griz filter system. While the main goal

of the survey is independent of low-mass stellar science, a secondary goal is that the

LSST will discover millions of M dwarfs in the Milky Way, and measure their optical

magnitudes. A complementary survey, VISTA is currently surveying the Southern sky

in the near infrared JHKs bands (McMahon 2012). With these two data sets, M dwarfs

are poised to become a useful stellar tool to trace the structure of the Galaxy.

However, in order to realize this promise, we need a method to be able to accurately

measure the metallicities of these stars without a distance. Realizing this, and building on

the experience and results from Chapter 3, I set out to obtain calibrated griz photometry
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of a subset of the MEarth target stars that had a spectroscopic metallicity measurement

from Newton et al. (2015a). What we found was surprising: subtle differences between

the griz filters that define the g′r′i′z′ system, the griz filters on the Sloan Digital Sky

Survey (SDSS) telescope, and griz filter set available at FLWO make measurements in

the r band incompatible. The ζ parameter, a metallicity-sensitive measure of the relative

strength of TiO and CaH, CaH2, and CaH3 spectral features in an M dwarf spectrum

(Lépine et al. 2007) lies at the red edge of the r filter. We discovered that slight changes

in the filter can shift these features into and out of the bandpass and affect the final

metallicity determination.

Despite this, we were able to calibrate the FLWO griz photometric system onto

the USNO observations that define the griz photometric system. Of the 158 stars in

the Smith et al. (2002) standard star network, only 12 have a g′ − i′ color greater than

2, and only 5 of those have a g′ − i′ color greater than 2.5. In contrast, only 3 of 150

of our target M dwarfs have a g − i color less than 2.5. We found that the g − i and

i −Ks colors of an M dwarf can be used to estimate an M dwarf’s metallicity with 0.1

dex precision. We further found that there is no accurate metallicity relation that can

be discerned from Sloan optical magnitudes alone: an infrared magnitude is needed in

order to disentangle the effects of stellar mass and stellar metallicity on color.

In the future LSST and VISTA will complete their surveys, and in the process

study millions of M dwarfs in the Galaxy that have never been examined before. Few of

these objects will have a trigonometric distance measurement any time soon, and only a

handful (if any) will have an infrared spectrum from which a metallicity can be deduced.

A metallicity to each may be estimated, however, with the results in this chapter.

With those metallicity estimates, M dwarfs can be used as tools to map the metallicity
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distribution in the Galaxy and potentially uncover new trends and information in how

the Milky Way was assembled. At the heart of those measurements will lie the nearby

solar neighborhood M dwarfs.

1.7 Upcoming Work and Opportunities

When I started this thesis, we did not have accurate distance measurements to the

majority of the M dwarfs within 25 parsecs of the Sun. Now, 6 years later, we have

measured the distances to 1507 M dwarfs directly. We did not have a photometric

metallicity relationship for these stars. The MEarth M dwarfs have an optical magnitude

measured with 1.5% precision, to replace measurements that could have error bars in

excess of 20%. We have photometrically measured the metallicity distribution of the

nearby M dwarfs by grounding our measurements with spectroscopic determinations,

and have expanded this technique to the Sloan photometric system. It is my hope that

our color-color-metallicity relation is of use to the teams working on LSST and VISTA

and that M dwarfs become useful tools for studies of Galactic structure.

From an exoplanetary standpoint, MEarth has continued hunting for the closest

rocky planets that will be the most amenable to study with future instrumentation. The

discovery of GJ 1132b (Berta-Thompson et al. 2015) occurred during the course of this

thesis. The characterization of this system is just beginning, and I am currently leading

a follow-up effort with the Spitzer space telescope to characterize GJ 1132b and attempt

to discover additional planets in the system. At 12pc, GJ1132b is the closest M dwarf

known to host a transiting rocky planet. Coplanar multiplanet systems are common

around M dwarfs (Ballard & Johnson 2016; Muirhead et al. 2015), so it is possible GJ
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1132 hosts additional rocky planets that have not yet been detected. In Figure 1.1, I

show the photometric sensitivity of Spitzer to additional transiting planets, along with

other known transiting planet systems around M dwarf primary stars. There remains

a vast discovery space where additional planets may exist in the GJ 1132 system, and

the 100 hour Spitzer program that I am leading has the potential to discovery them,

should they exist and show transits. This program will also collect precise observations

of transits of GJ 1132b as well. The sensitivity of Spitzer will also allow us to potentially

detect exomoons orbiting GJ 1132b down to the size of the Galilean satellites.

Throughout my thesis I have also endeavored to hunt for additional planets in the

MEarth data and to push the data to its limits. I have been particularly interested

in the MEarth Trigger data (Berta et al. 2012a), and have utilized machine learning

techniques (Haykin 1998) to compare MEarth triggers to each other in an effort to find

outliers. These outliers, in turn, could prove to be interesting astrophysical phenomena

or (hopefully) long period exoplanets that have evaded detection through phase folding

techniques due to their long orbital periods. Using this technique, I selected one event

and one star (LHS 1140) to send for detailed RV monitoring with the HARPS instrument.

I show this trigger in Figure 1.2.

1.7.1 Future Planet Surveys

New RV and transit surveys slated to focus on the mid-to-late M dwarfs are beginning

to come online. These include the near infrared radial velocity surveys CARMENES

(Quirrenbach et al. 2012), the Habitable Planet Finder Spectrograph (Mahadevan et al.

2012), and SPIROU (Reshetov et al. 2012), and the currently operating photometric
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Figure 1.1: Spitzer’s sensitivity (black lower line) to additional transiting objects in

the GJ 1132 system, compared to their detectability using ground based photometric

(MEarth, green middle line) and RV (HARPS, blue upper line) measurements. The

location of GJ 1132b is marked as the solid orange point, and the Kepler compact M

dwarf systems Kepler-446b,c,d and Kepler-42b,c,d as the blue and green data points,

respectively. The MEarth sensitivity curve assumes an intensive monitoring campaign

by MEarth until the launch of JWST, while the HARPS sensitivity curve is based upon

blind recovery assuming an ambitious 130 data point program. Spitzer’s 4-day monitoring

sensitivity far surpasses extensive campaigns by both MEarth and HARPS. The kink in

the Spitzer sensitivity is due to the rapid loss of sensitivity for planets at periods greater

than the duration of the observations scheduled to be executed. Spitzer is capable of

finding planets the size of Mars (0.53 R⊕) out to periods of 1 day, while even the most

ambitious and high-quality ground based measurements struggle to find planets the size

of the Earth.
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transit survey APACHE (Sozzetti et al. 2013). Additionally SPECULOOS (Gillon et al.

2013) and ExTrA (PI: X. Bonfils) are planning to survey nearby mid-to-late M dwarfs in

the Southern hemisphere for transiting planets. In space, the NASA TESS mission is

currently being built and is planned to launch in 2017 (Ricker et al. 2015). TESS will

be an all-sky, brightness limited survey that will begin by observing the entire Southern

sky in sequential 30 day pointings and then repeat these observations in the Northern

hemisphere.

The nearby M dwarfs that I have characterized in this thesis will be the most

profitable targets for these planet surveys and the planets that these surveys find will

be the planets that the James Webb Space Telescope (JWST) devotes substantial

observing time to. The only rocky planet that has an atmospheric signal accessible to

JWST will be one that orbits one of these stars. It is my hope that the distances, masses,

radii, and metallicities that I present here prove useful in selecting the best targets for

finding planets and that one day we will find a habitable, rocky exoplanet transiting in

front of one of these stars.
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Figure 1.2: MEarth-South trigger for LHS 1140b flagged for potential followup. Here,

MEarth-South measured one low data point, and began confirmation follow-up (green

data points). When those confirmation data points were also low, high cadence follow-up

(blue data points) began until the egress, at which point MEarth-South resumed normal

operations. We deemed this trigger high quality enough to begin RV monitoring.
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Chapter 2

Trigonometric Parallaxes for 1507

Nearby Mid-to-late M dwarfs

This thesis chapter originally appeared in the literature as

J. A. Dittmann, J. M. Irwin, D. Charbonneau, Z. K.

Berta-Thompson The Astrophysical Journal, 784, 156, 2014

Abstract

The MEarth survey is a search for small rocky planets around the smallest, nearest

stars to the Sun as identified by high proper motion with red colors. We augmented our

planetary search time series with lower cadence astrometric imaging and obtained two

million images of approximately 1800 stars suspected to be mid-to-late M dwarfs. We

fit an astrometric model to MEarth’s images for 1507 stars and obtained trigonometric

distance measurements to each star with an average precision of 5 milliarcseconds. Our

30



CHAPTER 2. TRIGONOMETRIC PARALLAXES FROM MEARTH

measurements, combined with the Two Micron All Sky Survey photometry, allowed us

to obtain an absolute Ks magnitude for each star. In turn, this allows us to better

estimate the stellar parameters than those obtained with photometric estimates alone

and to better prioritize the targets chosen to monitor at high cadence for planetary

transits. The MEarth sample is mostly complete out to a distance of 25 parsecs for stars

of type M5.5V and earlier, and mostly complete for later type stars out to 20 parsecs.

We find eight stars that are within 10 parsecs of the Sun for which there did not exist a

published trigonometric parallax distance estimate. We release with this work a catalog

of the trigonometric parallax measurements for 1507 mid-to-late M-dwarfs, as well as

new estimates of their masses and radii.

2.1 Introduction

One of the goals of stellar research is to obtain the complete census of stars within

the solar neighborhood out to a specified distance. A complete volume-limited sample

will inform us about the stellar mass function, stellar formation, and the kinematics of

the Galaxy as well as the nearby stellar clusters for which we can identify members.

Low mass stars vastly outnumber higher mass stars like the Sun, and so the main

difficulty in constructing a volume limited sample is in identifying nearby, low mass,

low luminosity objects and obtaining accurate distances to them. Apparent magnitude

is a poor indicator of proximity; only a couple dozen of the several thousand stars

visible by the naked eye are within 10 parsecs of the Sun (Upgren 1996). Currently, the

most straightforward method to identify potentially nearby stars is from proper motion

surveys, as a star with a high angular velocity is more likely to be nearby to the Sun.
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Proper motion surveys have been conducted for many decades, as the measurements

are relatively simple to make, requiring only images of the same field separated by a

length of time. Proper motion surveys continually improve, as longer time base lines

increase the accuracy of the measurements. A uniform census of nearby stars allows for

characterizing the relative occurrence rates of different types of stars, and to plot the

relationship between intrinsic properties of those stars, including absolute magnitude

and color.

Early attempts at conducting a large survey for high proper motion stars began

in the early 20th century with work by van Maanen (1915), who compiled a list of

stars known at that time whose proper motion exceeded 0.50 arcsec yr−1. This list

was subsequently expanded by Wolf (1919) and Ross (1939), pushing the limit to 0.20

arcsec yr−1. As these surveys progressed, it became apparent that there existed a

large population of high proper motion, low luminosity objects that were previously

undetected due to their faintness. Due to the relatively large numbers of these objects,

obtaining a volume-limited sample of high proper motion stars required deep exposures

of the entire sky, combined with long time baselines. Such a survey was completed over

several years by various groups, most notably from Lowell Observatory (Giclas et al.

1971, 1978), which consists of 11,749 stars, and the New Luyten Catalogue of Stars

with Proper Motions Larger than Two Tenths of an Arcsecond (the NLTT catalog;

Luyten 1979), which contains 58,845 objects. More recently, Lépine & Shara (2005)

compiled a list of 61,977 stars in the northern hemisphere with proper motions larger

than 0.15 arcsec yr−1, identifying over 90% of those stars down to a limiting magnitude

of V ≈ 19.0, excepting the Galactic plane. A subset of this catalog identified in Lépine

(2005) identifies those stars that are likely within 33 pc of the Sun, in order to provide
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the basis for a volume-limited sample for further study and characterization, including

spectral typing and obtaining direct distance estimates to these stars.

Of the several different methods that can be used to obtain distances to stars,

trigonometric parallax is the most accurate. Photometric and spectroscopic parallax

methods, in contrast, assume that the star is single and that the main sequence is

single valued with luminosity as a function of effective temperature. When estimating

the distances to stars through these methods, one might introduce systematic errors

depending on the quality of the data and the models that are assumed.

The first detection of a stellar parallax was for 61 Cyg by Bessel (1838). A catalog of

248 stars with parallaxes determined from plates taken by Prof. Donner at Helsingsfors

from 1891-1892 was released by Kapteyn (1900). Such long delays in parallax studies

became common, as systematic effects between observers and observatories often

resulted in widely different claimed values for the parallax of individual stars. A

compilation by Bigourdan (1909) of trigonometric parallaxes known at that time lists

23 individual measurements of the parallax for 61 Cyg, ranging from 177 mas to 559

mas. The currently accepted value is 285.4 milliarcseconds with an uncertainty of 0.8

milliarcseconds (Perryman et al. 1997).

Great effort was made to reduce the systematic error in parallax work by Schlesinger,

beginning in 1903 with the Yerkes 40 inch refractor (Schlesinger 1904). He utilized

newly designed green-sensitive plates that were insensitive to the out-of-focus blue

light from the refractor, in order to avoid systematic errors in the derived positions

(Schlesinger 1910a,b). These efforts began yielding fruit (see Schlesinger (1910c, 1911),

and companion papers), ultimately producing a catalog of 1870 parallaxes (Schlesinger
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1924). These techniques were widely adopted among many observatories, with new

measurements being published in batches of dozens to hundreds. The total number of

stars with parallaxes grew to 5822 with the compilation of the first Yale Parallax Catalog

(Jenkins 1952).

Astrometry programs have since conducted larger surveys for dimmer objects.

Today, the two major databases of stellar parallaxes come from the General Catalog

of Trigonometric Stellar Parallaxes, Fourth Edition (the Yale Parallax Catalog, van

Altena & Hoffleit 1996b) and the Hipparcos mission (Perryman et al. 1997; van Leeuwen

2007a,b), which combined have distance determinations to approximately 120, 000 stars.

Precisions in the Yale Parallax catalog range from a few mas to 20 mas, while the

Hipparcos catalog routinely obtains precisions of several tenths of milliarcseconds for stars

brighter than V = 8. This brightness cutoff of parallax programs means that low mass

objects such as most M dwarfs and brown dwarfs are systematically underrepresented in

these surveys and almost completely absent from the Hipparcos sample.

Numerous trigonometric parallax programs are currently underway to identify and

determine distances to the nearby missing objects, consisting mainly of low mass stars

and brown dwarfs. As these objects are cool and dim in the optical, parallax programs

using infrared instruments have proved successful (Dupuy & Liu 2012; Vrba et al. 2004).

Additionally, the Research Consortium on Nearby Stars (RECONS) survey1, a long

standing parallax program at CTIO, has provided a wealth of parallaxes from nearby

white dwarfs, brown dwarfs, and late M dwarfs, currently with 30 papers identifying

1RECONS (http://www.chara.gsu.edu/RECONS/) has graciously made their results easily accessible,

and we have used their recent parallax work extensively when comparing to our own.
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and characterizing new stars in the solar neighborhood, many of which lie within 10

parsecs (see Riedel et al. 2011 and references therein). RECONS has utilized astrometric,

photometric, and spectroscopic observing techniques in order to discover and characterize

these systems. Limited compilations of large numbers of measurements of these objects

are also given by Lépine & Gaidos (2011), whose aim is to provide a candidate list

of nearby M-dwarfs with high proper motion for further studies by other groups.

Understanding these stars and their companions requires reliable distance estimates, in

order to estimate their intrinsic luminosities, radii, and other physical parameters.

The small sizes of M dwarfs make them excellent targets for ground-based searches

for transiting small planets. This contributed to a renewed interest in these objects, and

obtaining a volume-limited sample, and accurate distances, are important scientific goals.

MEarth is an ongoing photometric survey of nearby (D . 33 pc) mid-to-late M dwarfs,

designed to be sensitive to planets around these stars as small as 2R⊕ and with periods

extending into the habitable zone (Nutzman & Charbonneau 2008). The advantages

of conducting a transiting planet search around these stars include being sensitive to

rock and ice planets from the ground, the shorter period of a habitable-zone planet,

and the accessibility of the atmospheres of these planets with current or next-generation

instrumentation (e.g., James Webb Space Telescope and the next generation of large

ground-based telescopes). The first planet discovered by MEarth, the super-Earth GJ

1214b (Charbonneau et al. 2009), has been the subject of an intense series of observations

meant to measure its atmosphere from the optical (e.g. de Mooij et al. 2013; Bean et al.

2011; Murgas et al. 2012), to the infrared (e.g. Berta et al. 2012b; Bean et al. 2011;

Crossfield et al. 2011; Croll et al. 2011; Désert et al. 2011; Fraine et al. 2013).

The characterization of GJ 1214b was aided largely by the amount of information
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already known about the star prior to the discovery of GJ 1214b, including its

trigonometric parallax. This parallax allowed a decent estimate of the true size of

the star and hence the planet. The relatively poor precision and uncertain accuracy

of the literature parallax estimate for GJ 1214 was a limiting factor in our ability to

characterize the planet. Significant effort has been made to re-characterize this object,

including deriving a different parallax (Anglada-Escudé et al. 2013a) with modern

data. For example, if GJ 1214 were located at 15 pc away instead of 13 pc, this would

increase the intrinsic luminosity of the star by 0.3 magnitudes, and increase the inferred

radius of the star by 10%. Clearly, accurately estimating the stellar parameters of

M dwarfs is vital towards our understanding of any transiting planet they may host.

Any subsequent planetary discoveries by the MEarth survey will likely be around a

star less well-characterized than GJ 1214, making the challenge of conducting detailed

exoplanetary studies even more difficult.

As MEarth has taken a large number of images of its target stars over the course of

entire observing seasons, we investigated whether the MEarth images themselves could

be used to measure the trigonometric parallax distances to our targets. We found that

the MEarth images are well-suited for astrometric analysis and modified our survey to

provide astrometric measurements of all of our stars every 10 days. This paper presents

the results of that effort. In section 2.2, we present a description of our instruments

and our observing strategy. In section 2.3, we describe our astrometric model, and

validate our method with the subset of our sample that have previously measured

trigonometric distances. Finally, in section 2.4 we compare our results to photometric

distance estimates, we refine the estimates of the mass and radius of the stars in our

survey, and we identify additional stars within 10 parsecs to the Sun.
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A few years from now several additional surveys for planets orbiting M dwarfs will

be operational in the northern hemisphere: These include the planned near infrared

radial velocity surveys CARMENES (Quirrenbach et al. 2012), the Habitable Planet

Finder Spectrograph (Mahadevan et al. 2012), and SPIROU (Reshetov et al. 2012), and

the currently operating photometric transit survey APACHE (Sozzetti et al. 2013). We

hope that the results presented in this paper will be of direct benefit to these projects. At

least three additional M-dwarf transit surveys are planned for the southern hemisphere:

SPECULOOS (Gillon et al. 2013), ExTrA (PI: X. Bonfils), and MEarth-South, a copy of

the MEarth-North observatory located at the Cerro Tololo Interamerican Observatory in

Chile. We may use MEarth-South to undertake a similar effort to provide trigonometric

parallaxes for southern targets.

2.2 Observations

The MEarth Observatory is an array consisting of eight identical f/9 40 cm Ritchey-

Chrétien telescopes on German equatorial mounts at the Fred Lawrence Whipple

Observatory on Mount Hopkins, Arizona. The telescopes are controlled robotically and

collect data every clear night from September through July. The facility is closed every

August for the summer monsoons. Each telescope contains a 2048 x 2048 pixel CCD

with a pixel scale of ≈ 0.76” pixel−1 and a Schott RG715 glass filter with anti-reflection

coating. The cutoff is defined by the CCD response, and the effective bandpass is similar

to the union of the SDSS i and z filters.

Initially we cooled the detectors to −15◦C and did not use a pre-flash. From 2011

onwards, the MEarth cameras operated at −30◦ C, and before each exposure we adopted
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a pre-flash of the detector. This increases the dark current (which we subsequently

subtract off), but has the benefit of suppressing persistence from the previous exposure.

(If the persistent image contained a source that overlaps with the target or reference

stars, this could skew our astrometric measurements.) There is no discernible effect

of any residual persistence on the MEarth photometry, and we do not believe it to be

relevant astrometrically. Prior to 2011, we carefully ordered the observing sequence of

our target fields to avoid source overlap when switching between them.

We gathered flat-field frames each observing night at dawn and dusk. The MEarth

telescopes use German equatorial mounts, which require the telescope tube to be rotated

by 180 degrees relative to the sky upon crossing the meridian. We take advantage of

this for flat fielding by obtaining adjacent pairs of flat field images on opposite sides

of the meridian to average out large-scale illumination gradients from the Sun and the

Moon. Our flat-field correction is further complicated by scattered light concentrating in

the center of the field-of-view, where our target is located (the amplitude of this effect

is approximately 5% of the average value across the CCD). Consequently, we filter out

all large scale structure from the combined twilight flat field, and use it only to track

changes in small scale (high spatial frequency) features such as interpixel sensitivity and

dust shadows. The large scale flat field response was derived from dithered photometry

of dense star fields. We also correct for varying exposure time across the field of view

due to shutter travel time, as well as fringing. We have found these corrections to be

stable, and we update them annually.

We measured stellar positions through a method similar to Irwin (1985): Local sky

background is estimated by binning each image into 64 pixel × 64 pixel blocks, and then

we estimate the peak of the histogram of the intensity of the pixels within each area. We
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then interpolate to estimate the background level anywhere in the image from this lower

resolution background map (Irwin 1985). We measure the stellar location using intensity

weighted first moments (also called a centroid), computed over a circular aperture

(radius 5 pixels prior to 2010 August, and 4 pixels thereafter due to a change in our focus

strategy). Pixels partially inside the aperture are weighted according to the fraction of

the pixel area inside the aperture. The initial aperture locations are estimated from the

expected target location, based on a master MEarth image taken during good weather

conditions, and accounting for proper motion. The solution is then iterated using the

measured pixel coordinates to update the location of the aperture. For more details of

the MEarth photometric data products and processing pipeline, see Berta et al. (2012a).

The MEarth target list consists of ≈ 1800 nearby M dwarfs selected from Lépine

(2005), a subset of the LSPM-North catalog (Lépine & Shara 2005) believed to be

within 33 pc of the Sun (Nutzman & Charbonneau 2008). These targets are uniformly

distributed across the Northern sky (δ > 0◦), such that typically only one target exists in

the MEarth 26’ x 26’ field of view, with the exception of multiple systems and occasional

unrelated asterisms. Therefore, each field must be observed in a pointed manner,

distinguishing MEarth from other photometric transit surveys. Each field of view is,

by design, large enough to contain sufficient comparison stars to obtain high precision

relative photometry and astrometry. Due to the nature of our targets, the comparison

stars are, on average, much bluer (typical r − J = 1.3) than the M dwarf target (typical

r − J = 3.8).

During the summer monsoon, which occurs each year in August, data acquisition

was halted and the telescopes were shut down. This time has been used to perform

maintenance activities, and also major upgrades in 2010 and 2011, which may result in
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significant disturbances to the data, such as changing how the instrument flexes when

pointing in different directions. We will describe our procedure for combining pre-2011

and post-2011 data in section 2.3. Additional hardware failures have occasionally

necessitated removal of the detectors from the telescopes during the observing season,

which resulted in rotational offsets (the mechanism for this alignment is repeatable

to approximately 0◦.5). These changes are likely to result in further disturbances to

photometry and astrometry. We describe how we correct for this later. Table 2.1 lists

the dates where the detectors were removed for each telescope.

Table 2.1:: Dates cameras were removed from the MEarth telescopes

Telescope UT Date

1 2009 Nov 16

1 2010 Oct 29

1 2011 Oct 12

1 2012 Jan 02

1 2012 Feb 01

2 2009 Nov 20

2 2010 Oct 29

2 2011 Oct 12

2 2011 Dec 24

2 2012 Sep 04

3 2009 Nov 16

3 2010 Oct 29

3 2011 Oct 12

3 2012 Feb 07

3 2012 Jun 22

3 2012 Sep 09

3 2012 Dec 28

4 2010 Oct 29

4 2011 Oct 12

4 2012 Apr 26

4 2012 Aug 02

5 2009 Nov 16

5 2010 Feb 09
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Table 2.1 (Continued):

5 2010 May 26

5 2010 Oct 29

5 2011 Oct 12

5 2012 Jan 08

6 2010 Oct 29

6 2011 Oct 12

6 2012 Jan 09

7 2009 Nov 16

7 2010 Oct 29

7 2011 Oct 12

7 2012 Apr 18

7 2012 Oct 25

7 2013 Mar 09

8 2010 Oct 29

8 2011 Oct 12

8 2012 Jan 02

From each observing season (September through July), the MEarth project gathered

data at a roughly 20 − 30 minute cadence for the subset of the targets for which we

were actively searching for planets at that time. Beginning in October 2011, we began

collecting additional data at a roughly 10 day cadence for all other targets for the

purposes of astrometric measurement. In each pointing, we gathered enough exposures

such that we have collected sufficient photons to detect a 2 R⊕planet passing in front of

the target star. As a result, different stars will have a different number of exposures per

pointing. For the purposes of the astrometry presented here, each individual exposure is

treated as a separate data point. The data presented here covers the time period from

2008 September through 2013 July.
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2.3 Analysis

2.3.1 Astrometric Model

We selected images for inclusion in the astrometry fitting if they met the following

criteria: The FWHM for the image is less than 5 pixels (3.5 arcsec), the average

ellipticity of the target stars is less than 0.5, the target star is not more than 15 pixels

away from its assigned location on the CCD, and the airmass at which the image was

taken is not greater than 2.0. These selection criteria typically eliminate 50% of the

MEarth images for each target, but can sometimes eliminate up to 80% of images. Most

eliminated frames are eliminated due to a large FWHM, either due to naturally poor

seeing or wind-shake of the telescope. For each target star, we selected a master image

through an automated routine that selects an image that is of good image quality (low

FWHM, ellipticity, sky noise), and good photometric quality (brightness of the stars

is not significantly different from a typical exposure). The sky-coordinate system for

this image is determined through star matching with the Two Micron All Sky Survey

(2MASS) catalog. When many images meet the criteria to be a suitable “master” image,

we select one image manually. We investigated the effect of our master frame choice

on our final astrometric parameters and find that the choice of master frame does not

significantly affect our astrometric measurements.

Reference stars are selected to be between magnitude 8 and magnitude 13 in the

MEarth passband, are not blends or close binaries, and are unambiguously identified

in the 2MASS catalog. Additionally, in order to avoid effects due to higher order plate

corrections, we attempt to avoid using stars near the edges of the CCD. This is done
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by initially selecting only stars within 600 pixels of the target star (or in the few cases

where there are multiple target stars, the average position of the target stars). If the

total number of reference stars within 600 pixels is less than 12, then the radius of the

circle is increased by 50 pixels at a time until at least 12 reference stars are selected. We

always have at least 12 references stars in each field, and each star is weighted equally in

our astrometric analysis.

Our astrometric time series are fit in an iterative manner, first fitting the plate

constants for each frame, and then stellar motion parameters for each reference star.

This is repeated three times so that the plate constants can converge towards a final

solution. These plate constants are then used to fit for the motion parameters of the

target star.

Each plate is fit through a least squares method with a six constant linear model

based on the positions of the reference stars (the target star is excluded):

x′i = Aixi +Biyi + Ci

y′i = Dixi + Eiyi + Fi (2.1)

where x and y are the original flux-weighted centroid coordinates of the reference star in

pixels, and A,B,C,D,E, and F are the plate constants. x′ and y′ are the reference star

coordinates after the transformation, and are also in pixels. The linear plate constants

allow for a different scale in the x and y directions, allow for translation of the frame

in both directions, and corrects for any instrument rotation, as well as shearing motion

in each frame. When removing the cameras on the MEarth telescopes for repairs or
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maintenance, disturbances to the data are likely. Our plate constants [A,B,C,D,E, F ]

remain very close to the identity matrix plus a shift, [1, 0,∆x, 0, 1,∆y] or a 180 degree

rotation plus a shift, [−1, 0,∆x, 0,−1,∆y] over all images. The effect of higher order

plate constants is mitigated by our selection method for reference stars, and including

higher order terms doesn’t increase the quality of our fit for stars with previously

determined trigonometric parallaxes (see section 2.3.5).

Once we have shifted and stretched the frame to align with the master frame, the

coordinate system of the master frame (generated through star matching between the

master frame and the 2MASS catalog) is applied to convert the x′ and y′ to α (R.A.)

and δ (decl.). Then, we fit for both the proper motion for each reference star and the

parallax for each reference star through the following method.

First, we remove the proper motion of each reference star since the time of the

master frame:

α′i,s = αi,s − µRA,s∆ti

δ′i,s = δi,s − µDecl.,s∆ti (2.2)

The subscript i denotes each image, s denotes the reference star, and the primed

coordinate represents the transformation removing the proper motion since the master

image. We then convert the stellar coordinates from R.A. and Decl. to ecliptic longitude

(λ) and ecliptic latitude (β) through a rotation of the coordinate system. Then, we

remove the parallax motion at the image epoch and add the parallax motion from the

master image:
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λ0,i,s = λi,s + πs(Pλ,0,i,s − Pλ,i,s)

β0,i,s = βi,s + πs(Pβ,0,i,s − Pβ,i,s) (2.3)

where π is the parallax amplitude, and Pλ and Pβ are the parallax factors in each

coordinate for each star, s, and each image, i:

Pλ,i,s = ai

(
sin(λ� − λ0,s)

cos(β0)

)
Pβ,i,s = −1.0× ai

(
cos(λ� − λ0,s)

sin(β0)

)
(2.4)

where ai is the Earth-Sun distance in AU at the time of the image, i, or the master

frame, 0, and λ� is the solar longitude at the time of the image or the master frame.

Finally, one of eight constants is added to each individual star, for all images,

depending on the side of the meridian the image was taken.

λf,s = λ0,s +Gs,1,2,3,4

βf,s = β0,s +Hs,1,2,3,4 (2.5)

where the subscripts 1 and 2 represent different sides of the meridian for the years

2008-2010 (before we changed the camera housing), while 3 and 4 represent the different

sides of the meridian from September 2011 onward. Typical values for G and H

are 0.1 arcsec. All data points are weighted equally, and our model is fit using the

Levenberg-Marquardt χ2 method. We note that in order to avoid degeneracies between
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the parallax and the meridian constants, G and H, it is necessary to obtain data on

both sides of the meridian during the same phase of the Earth’s orbit, and our data

collection strategy was adjusted in the middle of the 2011-2012 observing season in order

to resolve this degeneracy. If this degeneracy was present in pre-2011 data for a field of

view, then those data are discarded. However, as all observations prior to 2011 were

taken at planet-hunting cadence only, this occurrence is very rare, as we observed each

field during the entirety of each observing night. Finally, as the meridian constants are

unique to each individual star, we note that the effects of any differential color refraction

can be partially corrected for through this method as well.

The plate constants, Ai, Bi, Ci, Di, Ei, and Fi (one per image), and the stellar

motion parameters, µs,RA,DEC , πs, Gs,1,2,3,4, and Hs,1,2,3,4 (one per star) are fit iteratively,

while holding the other set fixed, until the solution has converged for the plate constants.

If there are more than 12 reference stars available, reference stars whose motions are

fit to be > 1.0 arcsec yr−1 or whose parallax place them closer than 100 pc are culled

from the sample and the plate constants are refit with the remaining stars. We find only

23 reference stars in 17 fields fit these criteria. After these cuts, the median number of

reference stars per field is 19 and the maximum number of reference stars is 90.

After the plate constants have converged, we fit the astrometric time series for the

target star in the same manner as for the reference stars, fitting for the relative proper

motion between the target star and the reference stars, the relative parallax between the

target and reference stars, and the meridian constants (G1,2,3,4, and H1,2,3,4). To avoid

the effect of singular outliers, we refit our model after excluding points that lie outside

of three standard deviations of the residuals for our initial fit. We perform an additional

test on our data by refitting the parallax signal while holding the proper motion constant
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to the value reported in Lépine (2005). If the fit parallax amplitude changes by more

than 2σ (using the RMS of the residuals to estimate σ), then we discard this star from

the sample. This test eliminated 41 stars from our sample, and we believe that this is

principally due to a degeneracy between the parallax motion and the proper motion,

which can be resolved in the future by gathering additional data at the proper phase of

the year.

We estimate the internal errors in our trigonometric parallax measurement using

a residual permutation algorithm, where we take the residuals from our best fit model,

shift them one time stamp in the residual array, add them back to our best fit model,

and then refit the permuted data set for the parallax amplitude, proper motions, and

meridian offset constants. We apply this method only to our astrometric time series for

the target star and not to the reference stars. This implicitly assumes that the errors

in the frame constants (derived from the astrometric precision of the reference stars)

are negligible compared to the errors in the astrometric precision of the single target

star, which is valid due to the number of reference stars we have contributing to each

plate solution. This method, while not allowing the flexibility of generating thousands

of fake data sets (except for the minority of our stars that have over a thousand data

points), has the benefit of preserving long time-scale correlated noise in our time series,

and we find that our derived errors tend to be larger for stars that have fewer total

measurements.

One concern with estimating our errors through this residual permutation algorithm

is that for the systems which have fewer than 50 data points (for which we have 238 out

of 1507 objects), there may not exist enough permutations to reliably estimate our error

bars. In order to test this, we also estimate our error by refitting 1000 synthetic datasets
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generated by adding white noise to our observed data with a standard deviation equal

to the standard deviation of our initial residuals. We find that the the error bar derived

from this method is comparable in magnitude to the residual permutation method, and

therefore we elect to quote the error bar derived from the residual permutation method

for our results.

2.3.2 Correction to Absolute Parallax

Because our reference stars are all relatively bright stars, the reference frame itself

exhibits a small parallax motion, as each reference star is also subject to the observational

effects of trigonometric parallax. This effect causes us to systematically measure a

smaller parallax angle and therefore a larger distance than if our reference image was

static. We used the Besançon model of the galaxy (Robin et al. 2003)2 to estimate the

parallax of synthetic populations of stars along the same sight-lines as our targets. For

each target, we generate a synthetic star catalog oversampled by a factor of 1000, and

select only stars whose apparent magnitudes are between 8.0 and 13.0 in the I-band (an

adequate approximation of our non-standard filter for this purpose). We select random

subsets of these stars that match our observed reference star magnitude distribution

in order to estimate the average distance to a typical reference star and the associated

uncertainty. Typical corrections for these stars are between 1 and 2 mas, but can be

as high as 4 mas in certain directions. We note that the uncertainty in the absolute

parallax correction is negligible compared to the uncertainty in the relative parallax

2An online tool for generating synthetic star catalogs is graciously provided by the authors at

http://model.obs-besancon.fr/
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measurement, and therefore only quote the error in the relative parallax measurement as

our total error.

2.3.3 Catalog

We release here a catalog of our results for each target star. If you want the best estimate

for the distance to an individual star, use column 17 and the error in column 18. In

order, the columns in this table are:

1. Lépine & Shara (2005) catalog designation number

2. Gliese Catalog number

3. LHS Catalog number

4. NLTT Catalog number

5. Right Ascension of object (J2000, hours)

6. Right Ascension of object (J2000, minutes)

7. Right Ascension of object (J2000, seconds)

8. Declination of object (J2000, degrees)

9. Declination of object (J2000, minutes)

10. Declination of object (J2000, seconds)

11. µRA× cos(Dec) from our best fit model

12. µDec from our best fit model

13. Julian epoch of the first data point in our fit

14. Julian epoch of the last data point in our fit

15. Relative parallax (milliarcseconds)

16. Absolute parallax correction (milliarcseconds)
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17. Absolute parallax (milliarcseconds)

18. Absolute parallax error (milliarcseconds)

19. 2MASS J magnitude

20. 2MASS K magnitude

21. MEarth estimated mass of the object (using the Delfosse et al. (2000) relation; see

section 4.3)

22. MEarth estimated radius of the object (using the Mass-Radius relation presented

in equation 10 of Boyajian et al. 2012)

23. Error in the estimated radius equal to 5% the radius, derived from the scatter in

the mass radius relation presented by Boyajian et al. (2012)

24. Number of data points in our fit

25. Number of reference stars used in our fit

26. MEarth Telescope with which the data were taken

This table is available in its entirety in a machine-readable form in the online

journal.

2.3.4 Validation using stars with previously determined

parallaxes

The subset of the MEarth sample presented here includes 1507 stars for which we

can obtain reliable results. This includes 240 stars for which we were able to locate

a trigonometric parallax determination in the literature, many of which are from the

compilation available in the Yale Parallax Catalog (167 stars, van Altena & Hoffleit

1996b), Hipparcos (41 stars, Perryman et al. 1997) or Lépine (2005). A representative

example of an astrometric time series with MEarth data (for LHS 64) is shown in Figure
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Figure 2.1: Top: Astrometric time series for LSPM J2107+5943 / LHS 64 in ecliptic

longitude. Green data points and blue data points represent data taken on opposite

sides of the meridian, where MEarth’s telescopes have to rotate 180◦ due to our German

Equatorial mounts. The red line corresponds to the best fit to the MEarth data using

our model. Underneath we show the residuals from our best fit model for the ecliptic

longitude of LHS 64 versus the hour angle the image was taken. Our derived parallax,

corrected to absolute parallax of πabs = 41.2 ± 1.7 mas is not significantly different from

the previous measured 41.8±2.7 mas (Harrington & Dahn 1980). Bottom: Same as above

but in ecliptic latitude instead of ecliptic longitude.
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2.1. For this star, we find a parallax amplitude of πabs = 0.0412 ± 0.0017 arcsec, not

significantly different from the previous determination in Harrington & Dahn (1980) of

π = 0.0418 ± 0.0027 arcsec, as reported by van Altena & Hoffleit (1996b). This data

set is taken completely at astrometric cadence, demonstrating that our data collection

strategy is sufficient to measure trigonometric parallaxes of our targets. We further note

that we measure a parallax for GJ 1214 of 72.8 ± 2.4 mas, consistent with the recent

determination of 69.1 ± 0.9 mas by Anglada-Escudé et al. (2013a) and the historical

determination of 77.2 ± 5.4 mas provided by van Altena & Hoffleit (1996b). Therefore,

we are able to accurately measure apparent stellar motion associated with trigonometric

parallax, although in some cases with larger uncertainties than dedicated astrometric

programs such as RECONS (Henry et al. 2006; Jao et al. 2011, and references therein)

and the Brown Dwarf Kinematic Project (BDKP, Faherty et al. 2012). In Figure

2.2 we show the MEarth derived parallax motion compared to the values reported in

the literature for all stars that had a previous trigonometric parallax measurement

available. Literature trigonometric parallax measurements come from Monet et al.

(1992), Harrington et al. (1993), Gatewood et al. (1993), van Altena et al. (1995), van

Altena & Hoffleit (1996b), Tinney (1996), Ducourant et al. (1998), Benedict et al. (1999),

Benedict et al. (2000), Benedict et al. (2001), Dahn et al. (2002), Reid et al. (2003a),

Pravdo et al. (2004), Henry et al. (2006), Pravdo et al. (2006), Smart et al. (2007), van

Leeuwen (2007c), Makarov et al. (2007), Gatewood (2008), Gatewood & Coban (2009),

Lépine et al. (2009), Smart et al. (2010), Riedel et al. (2010), Khrutskaya et al. (2010),

Shkolnik et al. (2012), and Anglada-Escudé et al. (2013a). The scatter of the residuals

when compared to the reported literature value is approximately Gaussian. Fitting this

distribution as a Gaussian, we find a best fit width ≈ 15% larger than the sum of our
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Figure 2.2: Comparison of our trigonometric parallaxes derived from the MEarth data

with previous studies. We find good agreement between the two measurements, with a

typical error of 4 mas, indicating that MEarth is able to reliably estimate trigonometric

parallaxes to our targets. The star in the lower right is LSPM J1631+4051, and we find

a trigonometric parallax of 83.2± 2.6 mas, significantly smaller than the measurement by

Ducourant et al. (1998) of 156 ± 4 mas, but much closer to the measurement by Gliese

et al. (1986) of 100± 29 mas.
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errors and the errors reported in the literature added in quadrature (see Figure 2.3). We

report our measured parallaxes and uncertainties for each target in our catalog.

2.3.5 Additional Plate Constants, Differential Refraction, and

Secular Acceleration

To determine whether the plates are modeled adequately by terms that are strictly linear

in the coordinates, we refit the subsample of target stars with previously determined

trigonometric parallaxes with a second order plate model. We found that the additional

parameters ended up improving our derived value of the parallax relative to the

previously determined value for only approximately half of the stars, and the remainder

of the stars showed a marginal decrease in agreement with previous values. Furthermore,

on average, the fit became worse, as the standard deviation of the residuals to the

literature values increased by 2 mas. Therefore, we do not believe the lack of higher

order terms in our plate model to be a significant source of error in our results, and that

including these higher order terms causes us to fit astrometric noise rather than real

trends associated with our detectors.

Another possible source of error is differential color refraction (DCR) in the

atmosphere through which our measurements are taken. Because the reference stars

(from which the plate constants are derived) are, on average, bluer than the target star,

the relative effects of DCR between the reference stars and the target star could become

important. Stone (2002) measured the effect of differential color refraction in different

optical bands as a function of color and found that the maximum DCR effect in the

I-band for stars with a B-V of 2.0 is 12 mas, suggesting that the effect in our bandpass
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Figure 2.3: Ratio of the deviation of our measured parallaxes from previously determined

parallaxes compared to the total error budget in the two measurements. The black line is

a standard Gaussian with unit variance. We find that our residual permutation algorithm

is able to reliably estimate the errors in our measurement, with the distribution being

approximately Gaussian, with a width only 15% wider than expected. While our error

distribution is asymmetric, we note that very few of our measurements are discrepant by

more 3σ in total error budget.
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is probably small, as the B-V color of a typical late M-dwarf is approximately 1.8.

Nonetheless, we we proceed to estimate the effect that DCR should have on our data.

The effective wavelength of a typical M-dwarf target, accounting for telluric

absorption, the filter bandpass, and the detector quantum efficiency is 850 nm, and is

840 nm for a typical reference star. We assume a typical target is a M5V star (Pickles

1998), and that a typical reference star is a G2V star. The index of refraction for

air at 15◦C, and standard atmospheric pressure (760 mm Hg) at these wavelengths

is n840nm = 1.00027482 and n850nm = 1.00027477 (Ciddor 1996). However, typical

conditions at the MEarth observatory on Mt. Hopkins are significantly different than

standard atmospheric conditions. The seasonal average temperature is 10◦C and the

typical pressure is 575 mm Hg. Additionally, the amount of water vapor in the air

also affects index of refraction of the atmosphere. For a typical relative humidity of

30%, at these conditions the partial pressure of water is 2.8 mm Hg (Ahrens 1994).

Correcting the index of refraction for these effects using the methods in Filippenko

(1982) and Barrell (1951), we find that the expected differential color refraction between

our reference stars and the target M-dwarfs is typically 6 milliarcseconds at airmass =

1.41, and 10 milliarcseconds at airmass = 2.

Our model is capable of accounting for some of the DCR signal with the meridian

constant parameters G and H. These constants are fit on a star by star basis, and

therefore the “mean” DCR correction term for each star in each dataset becomes merged

into the meridian correction for each star. Any residual differential color effect will

only be a second order effect and much smaller than 10 mas, below our threshold for

detection.
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To investigate whether any significant effects due to airmass or color remain in our

data, we show the residuals in each coordinate direction (ecliptic longitude and ecliptic

latitude) as a function of the hour angle at which the image was taken, in Figure 2.1. We

find no significant directional offset between the residuals and the airmass the image was

taken (for the representative star in Figure 2.1 as well as for the sample presented here

in general), and conclude that the effect of differential color refraction in the MEarth

bandpass on our astrometry is negligible.

For nearby stars with large radial velocity, the effect of secular acceleration (a

changing of a star’s angular proper motion as a result of its changing solar distance)

may become important, as our model assumes a constant angular velocity for each

star. Barnard’s star, the fastest moving star in the sky, has a secular acceleration of

approximately 1.2 mas / yr (van de Kamp 1935). Because our astrometric model is

fitting for the average proper motion over a maximum of a 4 year time period, this

can only result in a maximum systematic of ≈ 2.5 mas, below our detection threshold.

Therefore, we ignore any effects of secular acceleration for all of our targets.

We further investigated whether the residuals in our derived parallaxes compared to

previous results was correlated with other external parameters. We find no correlation

with the brightness of our target star, the average brightness of our reference stars,

the color of the target star, the average color of the reference stars, or with intrapixel

variation (evaluated by looking at our residuals as a function of sub-pixel position).
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2.4 Results and Discussion

2.4.1 Comparison to Photometric Distance Estimates

All of the stars in our sample have estimated distances from the Lépine (2005) piece-wise

linear relationship in Vest − J color. The Vest-magnitudes for our targets all come from

this catalog. This relation was calibrated from the 3104 M dwarfs from the LSPM North

catalog (Lépine & Shara 2005) that had trigonometric parallax measurements, and has

a mean error of 35% on the distance estimate. We note that most of the estimated V

magnitudes in Lépine (2005) come from photographic plate measurements, and some

have uncertainties as large as 0.5 mag. We note that high quality V photometry is

available for some of the stars where photographic estimates were used by Lépine (2005),

however for the purposes of this work, we use the estimated V magnitudes compiled

by Lépine (2005). In Figure 2.4, we show the distance modulus as expected from the

photometric distance, using the calibration from Lépine (2005), compared to the value

derived from the MEarth astrometry, as well as stars that have previous trigonometric

parallax determinations available. In this plot, an equal mass binary would have an

offset of 0.75 in distance modulus from the photometric distance modulus estimate.

However, we find that that photometric distance estimates have a significantly higher

scatter than trigonometric measurements, and that the typical scatter in the photometric

measurement is large enough that identifying equal mass binaries through comparison of

photometric estimates with our trigonometric parallaxes is not trivial.

We note that previous estimates of the binary fraction among M0-M5V stars place

the multiplicity fraction at 42%± 9% (Fischer & Marcy 1992), 27%± 16% (Gizis & Reid
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Figure 2.4: Plot of the MEarth distance modulus versus the expected distance modulus

from either previous literature measurements (blue) or the piece-wise linear V-J fit from

Lépine (2005) (red). Unresolved equal mass binaries should fall on the dashed line. We

note that the MEarth astrometric result is consistent with previous parallax studies and

has a much lower dispersion than photometric estimates.
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1995), or 27% ± 3% (Janson et al. 2012a), with a trend towards smaller multiplicity

fraction for lower mass primaries (which the MEarth survey preferentially targets).

Fischer & Marcy (1992) find that the binary distribution for M-dwarfs peaks with

companion objects having an orbital period between 9 and 220 years, and they used

a range of detection techniques, including spectroscopy, speckle interferometry, and

direct imaging. Gizis & Reid (1995) and Janson et al. (2012a) relied on imaging, and

lucky-imaging techniques respectively, and therefore are not as sensitive to tighter

multiple systems. Regardless, there is likely to be a significant amount of contamination

with target stars that are actually unresolved binaries. As the MEarth survey target

list was designed with a distance cut-off, and it is harder to resolve close binaries at

larger distances, it is likely that the contamination is due primarily to unresolved binary

systems further than 33 pc masquerading as single stars estimated to be within 33pc.

Using only a photometric distance measurement means that the volume in which an

equal mass binary can masquerade as a single star is 23/2 larger than the volume in which

we aim to obtain our sample. Removing these stars from our sample before investing

a significant amount of observing time to discover whether these stars have transiting

planets will make the MEarth survey more effective at finding planets. With significantly

improved stellar distances, the limiting factor in distinguishing unresolved multiples

from single stars is the quality of the available photometry that can be either compiled

or gathered for these objects. We are currently working on calibrating the MEarth data

to obtain accurate absolute optical magnitudes, and hope in the near future to use these

data to determine which of our targets are likely binaries. However, for the rest of this

paper we assume that all stars in our sample are single stars.
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2.4.2 Survey Completeness and Mapping the Solar Neighbor-

hood

The MEarth survey is designed to look at nearby mid-to-late M dwarfs within 33 pc of

the Sun, primarily drawn from the catalog compiled by Lépine (2005). However, we note

that in designing this sample, we have introduced spectral type dependent metallicity

biases, as the Vest magnitude has a dependence on metallicity as well as spectral type.

The Lépine (2005) catalog was designed to be approximately 50% complete out to 33 pc

with the goal of being mostly complete out to a distance of 25 pc. With our estimates

of the trigonometric parallaxes for each star, we are now in a position to determine how

complete the census of the solar neighborhood is out to these distances for the types of

stars in the MEarth sample. Assuming that on these small scales the effects of Galactic

structure are negligible, we can assume that the cumulative number of MEarth targets

should increase linearly with the volume, with radius R as R3. In Figure 2.5, we show

the cumulative number of MEarth targets out to 50 pc, with a best fit R3 line, fit to the

cumulative number of stars from 5pc to 15 pc. We omit the cumulative number of stars

on scales smaller than 5 pc because there are not a sufficient number of stars to make a

reliable estimate.

In Figure 2.6, we plot the ratio of the number of stars to the number we expect to

find for stars with a Vest −K < 5.5 (M4.5 and earlier), 5.5 < Vest −K < 6.5 (between

M4.5 and M5.5V), and for stars with a Vest−K > 6.5 (spectral types later than M5.5V).

We plot both the sample of stars for which we measure parallaxes (presented here),

and all stars that originally made the initial MEarth target selection from Nutzman &

Charbonneau (2008), for which the majority MEarth has taken data. For stars that do
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Figure 2.5: Top: Cumulative histogram of the number of MEarth targets as a function

of distance from the Sun. Overplotted is a black R3 line, normalized to the best fit cubic

for the number counts between 5 and 15 parsecs.
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not have a measured parallax from the MEarth data, we use an estimated distance from

a spectroscopic measurement (if available) or its V −K color. Each color bin is fit to an

R3 power law using the cumulative number counts between 5 and 15 parsecs, and the

ratio of the number of stars we find within that distance to that expected from our fit is

what we define as the completeness ratio. The sample of new MEarth parallaxes used to

construct this plot has one known incompleteness: it is missing some stars earlier than

M4.5 in spectral type at distances less than 15 pc, because these stars were too bright

for MEarth to observe efficiently. However, because we base our completeness estimates

on the number of stars between 5 and 15 pc, we therefore underpredict the local density

of M4.5 dwarfs and earlier and appear overcomplete at distances above 15 pc for these

stars in the top panel of Figure 2.6. As expected, this artifact largely disappears in

the bottom panel of Figure 2.6, when we include all stars regardless of whether or not

MEarth measured a new parallax for them. For the full sample, we find that for stars

with a Vest−K color less than 6.5, we are nearly complete out to a distance of 25 parsecs,

but for redder stars, our completeness begins dropping off at the smaller distance of 20

parsecs. New searches for these smaller, redder objects, utilizing WISE data for example,

may identify these missing objects in the near future. We do not find a clear correlation

between completeness and Galactic latitude, which indicates crowding and confusion in

the Galactic plane may not be the limiting factor in identifying the missing systems (see

Figure 2.7).
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Figure 2.6: Top: Completeness ratio for stars with Vest − K < 5.5 (approximately

M4.5 and earlier, blue), 6.5 > Vest − K > 5.5 (between M4.5 and M5.5V, green), and

Vest − K > 6.5 (later than M5.5V, red), where the completeness ratio is defined as the

cumulative number of stars within a distance limit, over what would be expected from

a cubic function fit to the cumulative number between 5 and 15 parsecs. Bottom: Same

as above, but for the full sample of stars from Nutzman & Charbonneau (2008), where

we use the trigonometric distances presented here when applicable, and photometric or

spectroscopic distances from Lépine (2005) for the remainder of the stars.
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Figure 2.7: Completeness ratio for stars with Galactic lattitude b > 20 degrees (blue)

and b < 20 degrees (red), where the completeness ratio is defined as the number of

stars detected, over what would be expected from a cubic function fit to the cumulative

number between 5 and 15 parsecs. We find weak correlation with Galactic coordinate and

completeness, indicating that confusion and source crowding is not the limiting factor in

identifying nearby M-dwarfs. Error bars are strictly Poisson.
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2.4.3 Changes to Stellar Physical Parameters and Application

to the MEarth Planet Survey

We can now estimate the masses and radii of our stars more reliably, aiding our

understanding of the physical characteristics of individual M-dwarfs in the solar

neighborhood. Specifically, we can more reliably estimate the intrinsic brightness of our

targets, and through previously published relationships, estimate the mass and radius of

each star.

Delfosse et al. (2000) obtained an empirical relation between the masses of low mass

stars and their luminosities in the near infrared, with the smallest scatter obtained in the

K band. As each of the MEarth targets have precise K band magnitudes as measured by

2MASS (Skrutskie et al. 2000), we can use these measurements with our trigonometric

parallax measurements to obtain more reliable masses for each star. Similarly, by using

the mass-radius relation for low mass stars obtained by Bayless & Orosz (2006), we can

obtain more reliable radii for each star. Both of these are important for characterizing

MEarth’s sensitivity to planetary transits in these systems.

In Figure 2.8, we show histograms of our newly derived stellar masses and radii

compared to the values derived by Nutzman & Charbonneau (2008), which used the

photometric distance measurement and the same mass-radius relationship. For stars

where the newly estimated mass is M < 0.5 M�, we find a median of the absolute value

of the offset of ∆M ≈ 0.08 M�, whereas if we take the global sample, we find a median

of ∆M ≈ 0.12 M�, as the initial MEarth sample was constructed to be limited to only

the mid-to-late M dwarfs. We note that the stars to which we assign higher mass values

are located further away than photometrically indicated and may instead be unresolved
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binary or multiple systems. Additionally, a systematic trend of the Vest − J colors being

too red would also systematically shift our stars to higher estimated mass once we have

obtained trigonometric parallax distances to them. Similarly, the typical change in the

stellar radius is also ∆R ≈ 0.08 R� for stars whose mass from MEarth astrometry was

M < 0.5 M� and ∆R ≈ 0.12 R� for stars whose final mass was M < 0.8 M�.

Importantly, the stellar radii of our targets determine our sensitivity towards

transiting exoplanets in the systems, as the transit depth is approximately proportional

to the ratio of the areas of the stellar disk and planetary disk. Because MEarth’s

observing strategy is to obtain a per-pointing signal to noise ratio sufficient to detect a 2

R⊕planet transiting in front of the star at a significance of 3σ, an accurate estimation

of the radius is essential to our ability to detect a transiting planet of a given size.

Because large planets tend to be rare around small stars (Gaidos et al. 2012; Morton &

Swift 2013; Dressing & Charbonneau 2013), obtaining the appropriate exposure time is

essential for MEarth to accomplish its science goals. Additionally, the mass of the host

star directly determines the planet’s orbital period at a given separation, and directly

affects the temperature of the planet as well. Therefore, characterization of a planet

directly depends on the host star’s physical parameters. As of the 2012-2013 observing

season, MEarth is using these new radius determinations to determine which targets are

observed in a given season and to set the integration times for these targets.

Aside from the transit depth of a detected companion being dependent on the

stellar radius, we also note that obtaining accurate stellar parameters will also affect

our understanding of any discovered planet’s habitability. The boundaries of habitable

zones is currently a topic of debate (see, for example, Gaidos 2013; Danchi & Lopez

2013; Kopparapu et al. 2013), but even in the most simple definition (distance at which
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Figure 2.8: Top: Histogram of the distribution of stellar masses of the MEarth target

stars based on our previous photometric determinations (blue, Nutzman & Charbonneau

2008) and based on the absolute K magnitude derived from the MEarth astrometric data

and the 2MASS survey (green). We find the peak of our distribution shifts towards

smaller mass stars but there is a significant long tail of stars with higher masses (due to

being further away) than previously estimated. We note that at the extremely high mass

end (M >∼ 0.75M�), the Delfosse et al. (2000) relation is no longer accurate, and that

stars in this region are likely to be unresolved binaries, as color information makes them

unlikely to be earlier type stars. Bottom: Identical, but transforming mass to radius with

the relation published by Bayless & Orosz (2006).
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the equilibrium temperature of a blackbody supports the existence of liquid water),

the period of a planet in the habitable zone of the more massive M-dwarfs in our

sample have longer orbital periods than what can be easily detected with the MEarth

observatory. Therefore, by shifting our priority to smaller M-dwarfs, we are sensitive to

smaller planets at all orbital distances, and increase our rate of recovery for planets in

the habitable zones of the target stars.

2.4.4 New Stars Within 10 pc of the Sun

While the census of the solar neighborhood out to 10 parsecs is largely complete

down to the mid-M dwarfs, there are several stars for which photometric distances

place them within or near to the 10 parsec boundary, but for which there is no

published trigonometric parallax. In the sample presented here, we find 37 stars whose

trigonometric parallaxes place them within the 10 parsec radius boundary. Of those 37

stars, 29 of them have previously measured parallaxes that confirm this distance. The

rest of the stars have photometric V −K distance estimates that place them within 10

parsecs of the Sun, and we therefore confirm their proximity to the Sun.

2.5 Conclusions

With trigonometric parallaxes for 1507 stars, we have greatly enhanced our map of

the solar neighborhood. When the MEarth survey concludes, we will have also probed

this sample with nightly cadence over a multi-month baseline, to measure rotation

periods, activity levels, flare occurrences, and the presence of small planetary bodies

69



CHAPTER 2. TRIGONOMETRIC PARALLAXES FROM MEARTH

approximately 2.0 R⊕ in orbits extending into the classical habitable zone of these stars

(P ≈ 14 days for an M5V star). The scientific yield from the MEarth survey extends

far beyond the goal of finding planets, and in particular, new trigonometric parallaxes

can already begin to yield additional insights into stellar astrophysics - particularly the

unclear relationship between luminosity, metallicity, age, and activity.

We have presented here a catalog of trigonometric parallaxes for 1507 mid-to-late

M-dwarfs, 1267 of which had no previous trigonometric parallax measurement. The

revised distances indicate 8 stars without previous trigonometric parallax measurements

lie within 10pc of the Sun. We have increased the number of stars in the MEarth sample

with trigonometric distance estimates by a factor of 6, and increased the total number

of stars within 25 pc of the Sun with trigonometric parallax measurements by 682 stars,

≈ 30% of the currently identified 25 parsec sample.

Furthermore, our study has better informed us of the stellar parameters of our

targets, most importantly mass and radius. This knowledge has changed the way we

have conducted our survey by changing the priority with which we survey our stars.

Accurate stellar characterization is an essential step in any transiting planet survey, and

these measurements will greatly enhance the MEarth survey, and reduce our uncertainty

in the planet occurrence rate around mid to late M-dwarfs. In addition, MEarth-South,

a copy of the current MEarth-North array, will be operational in Chile in the near

future, surveying an additional ≈ 2000 stars in the southern hemisphere. We will begin

operating this array with astrometric and planet-hunting cadence as well, and expect to

obtain accurate trigonometric parallaxes for these stars as early as 1 year after first light,

with fits improving in subsequent years.
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Our efforts to characterize the nearby stars in the solar neighborhood complement

the GAIA mission, which is set to launch at the end of 2013. Over the course of its

mission, GAIA will systematically survey the entire sky, obtaining astrometric precision

of several microarcseconds for the brightest stars in the sky and collecting data down

to a limiting magnitude of V = 20. However, it will take several years for GAIA to

collect enough data to disentangle the effects of proper motion and parallax motion,

while current ongoing photometric and RV surveys for planets around small stars need

accurate data to characterize their systems in the short term. Until more precise data is

obtained by the GAIA spacecraft, the catalog presented in this paper can characterize

these stellar systems.
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Abstract

The MEarth Project is a photometric survey systematically searching the smallest

stars nearest to the Sun for transiting rocky planets. Since 2008, MEarth has taken

approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs.

We have augmented this survey by taking nightly exposures of photometric standard

stars and have utilized these data to photometrically calibrate the MEarth system,

identify photometric nights, and obtain an optical magnitude with 1.5% precision

for each M dwarf system. Each optical magnitude is an average over many years of

data, and therefore should be largely immune to stellar variability and flaring. We

combine this with trigonometric distance measurements, spectroscopic metallicity

measurements, and 2MASS infrared magnitude measurements in order to derive a

color-magnitude-metallicity relation across the mid-to-late M dwarf spectral sequence

that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We

release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which

did not have an accurate determination of either prior to this work. For an additional 235

stars without a trigonometric parallax, we provide an estimate of the distance assuming

solar neighborhood metallicity. We find that the median metallicity for a volume limited

sample of stars within 20 parsecs of the Sun is [Fe/H] = −0.03± 0.008, and that 29 / 565

of these stars have a metallicity of [Fe/H] = −0.5 or lower, similar to the low-metallicity

distribution of nearby G-dwarfs. When combined with the results of ongoing and future

planet surveys targeting these objects, the metallicity estimates presented here will be

important in assessing the significance of any putative planet-metallicity correlation.
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3.1 Introduction

M dwarfs are the most common type of star in the universe, making up approximately

75% of all stars. Despite their ubiquity, they remain poorly understood. M dwarfs span

a large range in mass, from 0.6 M� to the hydrogen burning mass limit at approximately

0.08 M�. This factor of 7.5 in mass ratio from the early to late M dwarfs is comparable

to the mass ratio between the entirety of the AFGK spectral sequence. Over this mass

range, the photospheric effective temperature of these stars cools such that molecular

species (TiO, VO, CO, FeH, among others) begin to dominate the optical spectrum,

significantly depressing the optical flux as well as cluttering the spectrum with many

overlapping lines and bands. This effect makes line-by-line spectral analysis in these

stars challenging. Modeling these features in bulk is also extremely difficult because

accurate and complete line lists for many identified species are unavailable and some

lines have yet to be identified.

In order to get around this inherent difficulty, progress has been made in calibrating

empirical relations using M dwarf stars in wide visual binaries with better understood

F, G, or K primary stars. Because they are physically associated, they likely formed

out of material with the same bulk composition. Therefore the metallicity measured

for the FGK primary star can reasonably be assumed to be the metallicity of the M

dwarf, and an empirical relation can be calibrated. Bonfils et al. (2005) conducted a

study of 20 M dwarfs binaries with a solar type primary and were able to calibrate a

photometric metallicity relation using the M dwarf’s MK magnitude and (V −K) color

with a precision of 0.2 dex. A further study by Johnson & Apps (2009) found that

this calibration systematically underestimated M dwarf metallicities by nearly 0.3 dex
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for M dwarfs with high metallicities, which was outside the range in the Bonfils et al.

(2005) calibration sample. However, they confirmed a key finding of Bonfils et al. (2005):

the optical − infrared color of an M dwarf is significantly affected by the metallicity

of the star. Schlaufman & Laughlin (2010) expanded this work and attempted to

correct systematic issues with both the Bonfils et al. (2005) and the Johnson & Apps

(2009) calibrations. They altered the calibration on the edges of the metallicity range

investigated, as well as expanded the calibration to a wider range of spectral types and

increased the size of the calibration sample. The standard deviation of their fit was also

reduced to 0.15 dex. All three of these calibrations were tested by Neves et al. (2012) on

an independent sample of FGK - M common proper motion binaries, who found that the

relation in Schlaufman & Laughlin (2010) performed the best, with an RMS residual of

0.19 dex.

Considering spectroscopy, recent progress has been made by moving to near infrared

spectra, where the density of lines is much sparser and it is easier to measure a reliable

continuum value. Rojas-Ayala et al. (2010) found that the combination of the Na I

doublet and the Ca I triplet in the infrared K-band are reliable metallicity indicators,

provided one accounts for the temperature of the star with a temperature indicator, such

as the H2O-K2 index. Rojas-Ayala et al. (2010) calibrated this correlation using common

proper motion pairs of M dwarfs paired with main sequence FGK stars. This calibration

was then updated by Rojas-Ayala et al. (2012) and applied to 133 solar neighborhood

M dwarfs. A similar calibration in the H-band utilizing 22 common proper motion pairs

was created by Terrien et al. (2012) with a precision of 0.14 dex. Newton et al. (2014)

pushed these techniques into the mid-to-late M dwarf regime with spectra of 447 nearby

M dwarfs and found that the metallicity of these stars is correlated solely with the
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equivalent width of the Na line in the near infrared K band to an accuracy of 0.12 dex.

Further studies have found that Magnesium and Aluminum features in the near-infrared

H-band are good indicators of temperature, radius, and the luminosity of the star

(Newton et al. 2015a). Attempts to extend this calibration method to the optical regime,

where spectral instrumentation is more efficient and more prevalent, have also begun to

meet with success. Mann et al. (2013a) combined optical and infrared spectra spanning

0.35 - 2.45 microns and found metallicity sensitive features throughout the spectrum.

While the infrared features produced a tighter calibration with a precision of 0.1 dex, an

optical-only calibration delivered a precision of 0.16 dex. Mann et al. (2014) expanded on

this optical-only approach (with comparable precision) by bootstrapping the calibration

down to later spectral types through early M dwarf - later M dwarf binary pairs.

Interest in M dwarfs has recently grown due to their attractiveness as targets

for planet searches. Their small masses and radii increase the signal amplitudes from

both radial velocity (RV) and transit measurements, making detection and detailed

characterization of any discovered planetary system easier and accessible from the

ground. A number of current and future planet hunting surveys are exclusively focused

on M dwarfs or spend a significant amount of observing time on low mass stars. MEarth

is an ongoing photometric survey of mid-to-late M dwarfs in the solar neighborhood

(distance, D . 33 pc), looking for low mass rocky planets whose periods may extend

into the habitable zones of their stars (Nutzman & Charbonneau 2008; Berta et al. 2013;

Irwin et al. 2015). The MEarth-North array in Arizona has been in operation since 2008,

while a copy of the array in the southern hemisphere, MEarth-South, began operations

in early 2014. MEarth is, by necessity, a targeted survey because the nearby M dwarfs

are distributed uniformly over the sky. There is typically one target per observing field,
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in sharp contrast to wide field transit surveys, which observe every star in the field of

view. By the nature of this design, properly characterizing targets for prioritization is

essential for the survey.

When preferentially selecting low mass stars as targets for planet surveys, other

astrophysical factors may become important in assessing the probability that any

individual star hosts a planetary system. The metallicity of the star may have important

effects on the planet formation process. Fischer & Valenti (2005) found that a simple

power law in metallicity is sufficient to describe the probability that a star hosts a close

and massive planetary companion, and that there is no indication of the migration

process of extrasolar planets polluting their host star’s atmosphere with metals. It is

unclear whether this planet-metallicity correlation extends down to smaller mass planets.

Schlaufman & Laughlin (2011) suggested that a planet-metallicity correlation may be

present for small planets around K dwarf stars, but this was later explained by Mann

et al. (2012) as contamination in their sample by giant stars. Studies of Kepler stars

hosting short period transiting planets have indicated that the existence of large planets

in close-in orbits is correlated with stellar metallicity but the existence of small planets

is not correlated with metallicity (Buchhave et al. 2012b; Everett et al. 2013; Buchhave

et al. 2014b). However, recent work from Wang & Fischer (2015) has again questioned

this conclusion, suggesting that there is a universal planet-metallicity correlation across

all sizes and all metallicities. Schlaufman (2015) also investigates this question and finds

that stellar metallicity does not affect the radius distribution of small planets that form

in a system.

Investigating any putative planet-metallicity correlation down into the M dwarf

regime requires a reliable metallicity measurement for a statistically significant number of
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M dwarfs obtained in a uniform manner, whether that be spectroscopic or photometric.

A well-calibrated metallicity measurement of different elemental species assessed directly

from spectral measurements is ideal but would require substantive amounts of observing

time. Photometric methods lend themselves to larger sample sizes but are hindered

by the need for an accurate distance measurement through trigonometric parallax

combined with a well determined optical - infrared color. Unfortunately, the nearby

M-dwarfs typically lack one or more of these data products. Very few of these stars

had accurate distance measurements, as these stars are too dim to have been measured

by Hipparcos (Perryman et al. 1997). Recently, we have published trigonometric

distances to approximately 1500 northern hemisphere M dwarfs from the MEarth survey

(Dittmann et al. 2014a). Accurate distance determinations to nearby small stars are still

incomplete, particularly in the southern hemisphere, but will soon be much improved

by the GAIA mission, now operating. Generally, these studies have broadly eliminated

the bottleneck of accurate distance measurements preventing further development of

photometric calibration techniques. However, many of the solar neighborhood M dwarfs

have only optical magnitudes from photographic plates, with uncertainties of 20% or

more (Lépine 2005).

In this paper we will describe a photometric calibration of the MEarth bandpass,

allowing us to have a large sample of M dwarfs with optical magnitudes measured

in a uniform manner. We combine these magnitudes with a compilation of direct

distance determinations and spectroscopic measurements to calibrate a color-magnitude-

metallicity relation. This relation is valid for stars between M = 0.10M� and

M = 0.36M� and has a precision comparable to that of spectroscopic techniques. We

release a photometric metallicity estimate for 1567 M dwarf stars in the Northern
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hemisphere observed with the MEarth survey, and compare the metallicities of the

population of nearby M dwarfs with that of nearby G dwarfs. In section 2, we describe

the MEarth observatory, target list, and data collection strategy. Section 3 details

our data analysis method, photometric model, and our calibration of a photometric

metallicity relation. In section 4, we interpret out results for a volume limited sample of

the solar neighborhood. We conclude with brief remarks about future work.

3.2 Observations

While the MEarth-South observatory has been in operation since early 2014, we are

considering the data only from the northern array for this work. The MEarth-North

Observatory is an array consisting of 8 identical f/9 40 cm Ritchey-Chrétien telescopes

on German equatorial mounts at the Fred Lawrence Whipple Observatory on Mount

Hopkins, Arizona. The telescopes are controlled robotically and collect data every

clear night from September through July. The facility is closed every August for the

summer monsoons. Each telescope contains a 2048 × 2048 pixel CCD with a pixel

scale of ≈ 0.76′′ pix−1 and a Schott RG715 glass filter with anti-reflection coating. The

CCD is an e2v CCD42-40 back-illuminated, midband coated AIMO device. The Schott

RG715 glass filter consists of two 1.5 mm thick pieces of glass. We provide a quantum

efficiency tabulation for our CCD and the transmission for our filter in Table 3.1. We

note that this tabulation is for a CCD temperature of −20◦C, and that there should

be a small difference from the operating temperature of −30◦C, which we have not

measured. The effect of the telescopes’ mirrors on the overall quantum efficiency is

also negligible. While an aluminum coating would vary in reflectivity by approximately
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20% over our bandpass, we are using a customized enhanced aluminum coating from

Spectrum Coatings (Deltona, FL), with variations expected to be less than 1%.

While MEarth-North has been in operation since 2008, in the 2010-2011 season we

replaced our Schott RG715 glass filter with a custom filter similar to a Cousins I filter,

in the hope that it would reduce noise from changes in the precipitable water vapor.

However, this filter setup did not decrease the noise in our observations, so we switched

back to the Schott RG715 filter for the following years. Because of this instrumental

change, we will be using data from only the 2011-2014 seasons for the purposes of the

absolute photometry presented here.

The MEarth cameras are operated at −30◦C, and before each exposure we adopt a

pre-flash of the detector. While this increases the dark current (which we subsequently

subtract off), it suppresses persistence from the previous exposure. We do not detect any

discernible effects of residual persistence on the MEarth photometry (at the millimag

level used for the planet survey), and we do not believe it to be significant. Each night

we gather flat field frames at dawn and at dusk. Because the MEarth telescopes use

German equatorial mounts, we must rotate the telescope by 180◦ relative to the sky when

crossing the meridian. We take advantage of this for flat fielding by obtaining adjacent

pairs of flat field images on opposite sides of the meridian to average out large-scale

illumination gradients from the Sun and the Moon. Scattered light concentrates in the

center of our field of view where our target is typically located. The amplitude of this

effect is approximately 5% of the average value of the sky across the CCD. In order to

correct for this, we filter out all large scale structure from our combined twilight flat

field and use it only to track small scale features such as inter pixel sensitivity and dust

shadows. We derive the large scale flat field response from dithered photometry of dense
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Table 3.1:: Quantum Efficiency (QE) of the MEarth CCD, and Filter Throughput (Stub)

Wavelength (nm) QE (CCD) Transmission (MEarth Filter) Product

650 0.907 0.000 0.000

660 0.901 0.000 0.000

670 0.895 0.000 0.000

680 0.887 0.000 0.000

690 0.879 0.005 0.005

700 0.869 0.059 0.051

710 0.857 0.311 0.267

720 0.845 0.666 0.563

730 0.831 0.866 0.720

740 0.816 0.941 0.768

... ... ... ...

This table is available in its entirety in machine-readable form in the online version of

the paper.

82



CHAPTER 3. THE MEARTH PHOTOMETRIC SYSTEM

star fields. Due to the longer wavelength to which our bandpass extends, we must also

correct for fringing on the CCD. We find that this effect has an amplitude of 3% across

the field of view of the CCD. Fringe frames are gathered by taking long exposures of

sparsely populated fields and co-adding them together.

We measure the non-linearity of our detectors using a dedicated sequence of dome

flats. At all count levels, the MEarth CCDs have a slightly nonlinear conversion of

photoelectrons to data number, increasing from 1% to 2% at half the detector full well to

3% to 4% near saturation. In order to perform accurate photometry, this effect needs to

be minimized and corrected. The MEarth target stars are generally a different magnitude

than the comparison field stars. The MEarth pipeline has been developed to minimize

non-linear CCD effects as part of our planet search program. Our exposure times are set

to avoid surpassing 50% of our detector’s full well in order to minimize the nonlinearity

effect, and our nonlinearity measurements are used to correct for the remainder of this

effect. After these corrections we see no evidence that nonlinearity plays a significant

role in our photometric performance at the level required for transit searching. We also

correct for varying exposure time across our field of view due to shutter travel time. Due

to the low exposure times needed to measure this effect, we measure the exposure time

correction at low exposure times with a series of short dome flats and then measure the

shutter pattern with a series of twilight flats. Using twilight flats reduces additional

error from linearity correction when deriving the shutter pattern. We find the linearity

correction and fringing pattern to be stable. During the summer monsoon, which occurs

each year in August, data acquisition is halted and the telescopes are shut down. This

time is used to perform maintenance activities on the telescopes.

We measure stellar positions using a method similar to that of Irwin (1985). We
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estimate local sky background by binning each image into 64×64 pixel blocks, and

measure the peak of the histogram of the intensity of these pixels. We then interpolate

this lower-resolution map to measure the background level anywhere in the image.

Stellar locations are measured using intensity weighted first moments (the centroid of

the star), and the total flux is measured using an 8 pixel (≈ 6.2 arcsec) aperture radius

in an effort to closely match the measurements done by the ongoing Landolt standard

stars project (see: Landolt 2013 and references therein). Pixels that lie partially within

this circular aperture are weighted according to the fraction of that pixel that lies within

the ideal circular aperture. Sky background is estimated with a sky annulus between 24

and 32 pixels (18.6 - 24.8 arcsec) away from the stellar photocenter. We also adopt an

aperture correction (Stetson 1990) in order to correct for the flux that falls outside of

our aperture. The typical size of this correction is 0.04 mag.

The MEarth-North target list consists of 1844 nearby M dwarfs selected from Lépine

(2005), a subset of the LSPM-North catalog (Lépine & Shara 2005) believed to be within

33 pc of the Sun and with stellar radius R < 0.33R� (Nutzman & Charbonneau 2008).

These targets are uniformly distributed across the northern sky (δ > 0◦) such that

typically only one target exists in the MEarth 26′x 26′ field of view, with the exception of

multiple systems and occasional unrelated asterisms. Each field is targeted individually,

and is selected to contain sufficient comparison stars to obtain high precision relative

photometry and astrometry.

For each observing season (September through July), MEarth gathers data at two

different cadences. All targets are observed at approximately 10 day intervals (when they

are visible) as part of the MEarth astrometric program, for which we recently published

trigonometric parallaxes to a majority of our targets (Dittmann et al. 2014a). These
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observations take place at a variety of air masses, depending on when the scheduler can

fit an observation between planet search target observations. For nights where the object

is visible on both sides of the meridian, we sometimes schedule two astrometric data

points in one night in order to resolve degeneracies in our parallax model (see Dittmann

et al. 2014a for details regarding our astrometric reduction pipeline).

A subset of these targets is selected for our planet search campaign, and is observed

each night. Within that night, our planet search targets are observed at a 20-30 minute

cadence, ensuring that we obtain at least two in-transit data points for a typical one

hour duration transit. Because we are monitoring these stars for planets, observations

are taken at many different airmasses throughout the night. We discuss how we take

advantage of this for our photometric analysis in section 3.3. For the results presented

here, we have utilized all of the MEarth data taken at both astrometric and planet search

cadence.

In addition to our target observations, each night we observe Landolt standard

star fields (Landolt 1992, 2009, 2013; Clem & Landolt 2013). We typically observe 3-4

standard star fields per telescope in a given night and each field is observed only once

in any given night in order to minimize its impact on the main survey (we explain how

we mitigate the effects of color in our calibrated photometry despite these observational

constraints later in this chapter). Standard fields tend to be taken at the beginning

of the night, and at higher airmass than target observations. We show a histogram of

the airmass for all standard field observations across all telescopes in Figure 3.1. The

absence of observations at low airmass is due to the difference in latitude and declination

between our observatory and the equatorial standard star fields. The secondary peak

at an airmass of 1.3 is a feature of our scheduling system. To avoid exclusively taking
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Landolt standard observations at high airmass, we use a zenith distance threshold for

fields that are up for significant portions of the night to prefer lower air masses. Aside

from this, it is readily apparent that while we obtain observations of standard star fields

at all air masses, the distribution of observed air masses does not reflect the relative

amount of time that any given standard field is visible at that airmass. However, we do

not believe that this has any significant effects on our derived photometry.

3.3 Analysis

All data (long cadence, calibration fields, and short cadence) were reduced using the

MEarth data reduction pipeline (see Berta et al. 2012a for an in-depth description of the

MEarth data reduction procedure). In order to calibrate MEarth’s measured photometry

onto an absolute scale, we must make corrections for the effects of the atmosphere and

light loss in the telescope. These effects are both color dependent and airmass dependent.

We adopt the following model:

m∗,MEarth = zi−2.5 log10(fobs/texp)−AC−
(
k1,i+k2,i(m∗,MEarth−m∗,K)

)
×(X−1) (3.1)

where m∗,MEarth is the magnitude of the star in the MEarth band, m∗,K is the magnitude

of the star in the 2MASS Ks band, zi is the zero point of the telescope, fobs is the

observed flux (in counts) for the star, texp is the exposure time of the image, AC is the

aperture correction for the image, k1 and k2 are fitted coefficients to correct for airmass

and color effects, respectively, and X is the airmass of the object. i denotes the night

that the observation was taken.
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Figure 3.1: Histogram of the observed air masses for all of the Landolt standard fields

observed across all telescopes during the course of the survey. The distribution is very

non-uniform and does not reflect the time each standard field spends at any given airmass.

The dearth of observations at low airmass is due to the latitude difference between Mt.

Hopkins, Arizona and the Landolt equatorial standard fields observed in our program.

Our scheduling program utilizes a zenith distance threshold to avoid exclusively observing

Landolt fields at high airmass as soon as they rise, which creates the secondary peak in

the histogram at 1.3 air masses.
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While the standard field observations alone are too few in number on any given

night to provide simultaneous constraints in k1 and k2, we utilize all the stars of sufficient

brightness in every target field to also inform our fits. Traditionally, standard star fields

are tracked across the sky and periodically revisited during the night, allowing multiple

measurements of the same standard stars across a range of airmasses. However, because

we are calibrating the MEarth photometric system itself, and utilizing MEarth-Ks color

in our nightly fits, we can utilize every observed star with a unique 2MASS identifier

to constrain the airmass and color coefficients of our fits. Due to the sheer number of

these stars compared to the number of Landolt standards, these stars dominate the fit

for these parameters in any given night. This method allows us to benefit from sampling

a wide range of airmasses continually throughout the night rather than a handful of

discrete pointings from the Landolt standard field observations. The zero point of each

telescope, however, is uniquely constrained by the standard field observations. We use

reference stars that are between MEarth magnitudes 9.0 and 13.0, which have sufficient

signal to noise (S/N) ratios without being saturated in the image.

We fit our observations iteratively, first determining k1 and k2 for each individual

night using all the data that were taken on that night, and then fitting for the zero

point (zi) of the telescope using solely the standard field observations. While our filter is

different from the filters used by Landolt (1992, 2009, 2013) and Clem & Landolt (2013),

we base our zero point correction to most closely match the Landolt I measurements

for these stars at MEarth-Ks color = 0. We reduce the data from each telescope

independently from the data from other telescopes, in order to avoid systematic color

effects that may be present between the different telescopes. However, we have recently

changed MEarth’s observing strategy such that we observe target stars on two telescopes
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to increase our signal to noise per star and mitigate systematic effects in our search for

small transiting extra-solar planets (Berta et al. 2013). For stars that have been observed

in this mode, we are able to compare independent measurements of the broadband

MEarth magnitude and assess possible systematic effects with our data (see section

3.3.1).

We remove non-photometric data by discarding a night if the standard deviation of

the residuals across all images taken that night is greater than 0.02 magnitudes. After

this cut, each telescope has between 100 and 200 photometric nights of data, depending

on whether each telescope was operating or being repaired on any given night deemed to

be photometric. On any photometric night, each telescope obtains approximately 10,000

individual measurements of stellar fluxes, across the M-dwarf target stars, comparison

stars in the field, and the Landolt fields. In Table 3.2, we list the color and airmass

coefficients as well as the zero points for each telescope on each night that was deemed

photometric, while in Table 3.3 we list the MEarth magnitude determined for each

Landolt standard star observed.

3.3.1 The MEarth optical magnitudes for 1802 M dwarfs

We apply our derived coefficients to all of our available data points for each MEarth

target, estimating a MEarth band magnitude using equation 5.1. We report the

MEarth magnitude as the median of all of our measurements across all photometric

nights and all observing seasons. We estimate our error as the median absolute deviation

(MAD) from this median value, and adjust it to 1 Gaussian σ by multiplying by 1.48

(Hoaglin et al. 1983). This method ensures that single erroneous data points, which
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Table 3.2:: Nightly Photometric Coefficients (Equation 5.1) (Table Stub)

Date Color Coefficient Airmass Coefficient Zero Point Telescope

2011-10-13 0.0006 0.062 20.695 tel03

2011-10-13 0.0033 0.058 20.448 tel01

2011-10-14 -0.0040 0.066 20.512 tel04

2011-10-14 0.0002 0.068 20.699 tel07

2011-10-14 0.0050 0.048 20.515 tel05

2011-10-15 -0.0062 0.086 20.700 tel03

2011-10-15 -0.0049 0.081 20.744 tel08

2011-10-15 -0.0028 0.078 20.760 tel06

2011-10-15 -0.0013 0.075 20.430 tel01

2011-10-15 -0.0007 0.086 20.699 tel02

... ... ... ... ..

This table is available in its entirety in machine-readable form online.

90



CHAPTER 3. THE MEARTH PHOTOMETRIC SYSTEM

Table 3.3:: MEarth Magnitudes of Landolt Standards (Table Stub)

Landolt Star mMEarth err

SA92 263 10.703 0.033

SA92 348 11.443 0.032

SA92 409 9.264 0.036

SA92 342 11.096 0.031

SA92 335 11.809 0.032

SA92 253 12.762 0.035

SA92 250 12.363 0.035

SA92 245 11.982 0.037

SA95 43 10.179 0.034

SA95 41 12.866 0.036

... ... ...

This table is available in its entirety in machine-readable form online.
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could be contaminated from cosmic rays in the image, flares from the M-dwarf itself, or

other reasons from significant skewing our measurement. We note that for some of our

stars the reported uncertainty in the MEarth magnitude is greater than the standard

deviation required for any individual night to be considered photometric in our analysis.

This is likely an astrophysical effect, as many M-dwarfs stars are variable in time due to

stellar activity and rotation (starspots rotating in and out of view Irwin et al. 2011a),

and we do not consider this to be an indication of significant systematic errors associated

with our measurements.

The median uncertainty in our MEarth magnitudes is 0.015 mag, or 1.5%. We show

a histogram of these errors in Figure 3.2. A small number of our targets have errors bars

significantly larger than this typical value. 143 of 1802 stars have a error bar greater than

0.03 magnitudes, and 9 stars have an error greater than 0.05 magnitudes. Extremely

large uncertainties are typically due to contamination of our target flux with that of a

brighter companion. We indicate whether a star may be potentially contaminated in

Table 3.4 (see below). We remove blended stars which we believe to be so significantly

blended from a particularly close and bright companion that we do not believe our

measurements accurately reflect either the combined magnitude or the magnitude of one

of the components.

MEarth has begun observing our target stars with two telescopes in order to

increase our signal to noise and sensitivity to small planets (Berta et al. 2013). This

change in survey strategy allows us to independently measure the MEarth magnitude

of these stars and assess possible sources of systematic error in our absolute photometric

calibration. 322 of our stars have measurements with multiple MEarth telescopes, and

we show a histogram of the difference between these measurements in Figure 3.2. The

92



CHAPTER 3. THE MEARTH PHOTOMETRIC SYSTEM

0.00 0.01 0.02 0.03 0.04 0.05
Median Absolute Deviation × 1.48 (mag)

0

50

100

150

200

250

300

350

400

N
u
m
b
e
r

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
∆mMEarth

0

10

20

30

40

50

60

70

80

N
u
m
b
e
r

Figure 3.2: Top: Histogram of the internal errors of the MEarth magnitude for each

target star. Typical errors are 0.015 magnitudes, and are derived from the absolute de-

viation from the median of all data points for the target star, adjusted to 1σ. Bottom:

Histogram of the difference between the MEarth magnitude measured for 322 of our

target stars that have measurements taken with multiple MEarth telescopes. The 68th

percentile of the absolute difference between the magnitude measurements between tele-

scopes for the same star is 0.018 magnitudes, approximately the typical error for stars

with only single telescope measurements. Therefore, we do not believe that there are any

significant systematic effects between telescopes and that they all are calibrated to the

same magnitude system. The median number of data points a star has is 123, and less

than 5% of our sample have fewer than 30 photometric observations.
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68th percentile of the absolute difference between the magnitude measurement of the

same star measured from different telescopes is 0.018 magnitudes, approximately the

same as the internal error determined from individual telescopes. Therefore, we conclude

that each MEarth telescope is calibrated to the same photometric system and that there

are no additional uncertainties accrued by combining the magnitude measurements from

multiple telescopes. We proceed with this assumption for the rest of this paper.

We list the optical magnitude of each star in Table 3.4. We also provide three blend

flags to indicate whether the magnitude measured for this star may have significant

contribution from either a binary companion, nearby bright star, or a star lying

underneath the aperture for the target star. Our first blend flag indicates whether

the aperture contains any additional stars other than the target star. This includes

background objects as well as close common proper motion pairs. In many cases,

this contamination is negligible, but we recommend assessing the importance of the

contaminating flux using the MEarth finder charts available on the MEarth website1.

Our second blend flag is for objects that have two individual entries in the LSPM-North

catalog but are unresolved in the MEarth telescopes. Additionally, some of these objects

are also unresolved in 2MASS. Our third blend flag indicates a known blended object

that also has only a single entry in the LSPM-North catalog. For these sources, we

also provide a reference. These sources include visual binaries split in guider-camera

observations at IRTF as well as spectroscopic binaries and those identified via imaging.

Finder charts include plate scans from the Digitized Sky Survey, which when combined

with the high proper motion nature of our stars, allow us to see whether there is

1https://www.cfa.harvard.edu/MEarth/Welcome.html
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significant contaminating stellar flux at the current position of the M dwarf.

3.3.2 A color-magnitude-metallicity relation anchored by

spectroscopic measurements

Past studies have indicated that the locations of M-dwarfs on the (V -Ks) —MK color

magnitude diagram is significantly affected by the star’s metallicity (Bonfils et al. 2005;

Johnson & Apps 2009; Neves et al. 2012; Schlaufman & Laughlin 2010). Because an

M-dwarf’s absolute Ks band magnitude seems to be almost entirely determined by the

star’s mass (Delfosse et al. 2000), the metallicity dependence originates primarily in

the optical magnitude of the star. The cooler temperature in these stars’ atmospheres

allow the formation of many molecules with broad (and overlapping) absorption bands

that act to suppress the optical flux, creating this effect. By combining existing distance

measurements and spectroscopic metallicity measurements with our MEarth magnitude

measurements, we can create a classical color-magnitude diagram using MEarth as the

optical component of the color.

In Figure 3.3, we plot the color-magnitude diagram for the 307 stars for which

we have a trigonometric distance measurement and a near-infrared spectrum from

Newton et al. (2014). For stars with multiple trigonometric distance determinations we

utilize the observation with the lowest formal reported error bar instead of averaging

all observations, in order to minimize combining systematic effects between individual

surveys in the averaging process. Metallicity measurements based on the NIR spectra

are taken from Newton et al. (2015a), who combined the metallicity calibrations of Mann

et al. (2013a) for early type M-dwarfs and Mann et al. (2014) for later type M-dwarfs.
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The more metal rich stars at a given MK are redder than those that are more metal poor,

as has been noted in previous studies (Bonfils et al. 2005; Neves et al. 2012; Schlaufman

& Laughlin 2010). We have fit a smoothed two-dimensional (2D) spline to these data

using the method described by Dierckx (1981) and show the [Fe/H] = 0 main sequence

in Figures 3.3 and 3.4. Color-magnitude main sequences at the mean solar neighborhood

metallicity of [Fe/H] = -0.1 and at solar metallicity ([Fe/H] = 0.0) are available in Table

3.5.

The dispersion in metallicity from this interpolation is 0.11 dex, equal to the precision

derived from the spectroscopic measures themselves. We note that as this method is

calibrated to existing infrared spectroscopic metallicity determinations, it inherits any

systematic errors associated with those measurements. We find no significant systematic

trend with the absolute K-band magnitude of the star or with the MEarth-Ks color of

the star. We note that the majority of our sample lies between MK = 6.5 and MK = 9.0

(between 0.36M� and 0.11M� using Delfosse et al. 2000). Therefore, this is the domain

over which our results are the most robust and well-constrained. The higher mass M

dwarfs included in the calibration are mostly stars that had inaccurate optical colors

and parameters that were inaccurately estimated, before we obtained trigonometric

parallaxes for most of these targets. Our attempt to exclude these higher mass stars

using the color-based estimates is likely to introduce a bias that systematically excludes

bluer (more metal poor) stars for masses (as estimated using the more reliable MK-based

calibration) above 0.31M�. The MEarth sample also has few targets with MK > 9.0.

Therefore, the interpolation is not as strongly constrained in this regime. While we

report metallicity estimates for stars in these magnitude ranges, they should be treated

with more caution than the results reported for stars with 6.5 ≤ MK ≤ 9.0. We present
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Figure 3.3: Top: Absolute K band magnitude vs MEarth-Ks color for 307 stars that

have a trigonometric parallax and an infrared spectroscopic measurement. The color

scale is the infrared spectroscopic measurement. While MK is an excellent mass indicator

(Delfosse et al. 2000), we find that the MEarth-Ks color of an M dwarf is correlated with

the metallicity of the object. Increased metallicity results in a redder color due to line

blanketing at optical wavelengths. The black line is our interpolated main sequence at

[Fe/H] = 0.0.

Bottom: Residuals in our 2 dimensional metallicity interpolation as a function of MEarth-

Ks color and MK . We find no significant systematic trends. The standard deviation of

our 2D interpolation is 0.11 dex, comparable in precision to the infrared spectroscopic

metallicity indicators.
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Figure 3.4: Same as for the top panel Figure 3.3 but for the entire MEarth sample and

utilizing our 2-dimensional photometric metallicity interpolation instead of independent

spectroscopic metallicity results. The black line is a solar metallicity main sequence. Our

work increases the number of nearby M dwarfs with metallicity estimates, and provides

a statistically significant sample measured in a uniform manner.
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Table 3.5:: Color-Magnitude Sequence at [Fe/H] = -0.1 and [Fe/H] = 0.0 (Table Stub)

mMEarth −mK MK([Fe/H] = −0.1) MK([Fe/H] = 0.0)

2.100 6.452 5.992

2.103 6.487 6.028

2.105 6.487 6.063

2.108 6.523 6.098

2.110 6.558 6.134

2.113 6.558 6.169

2.116 6.593 6.205

2.118 6.629 6.240

2.123 6.664 6.275

2.126 6.664 6.311

... ... ...

This table is available in its entirety in machine-readable form online.
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our metallicity estimates, along with our optical magnitude measurements, for our full

sample in Table 3.4. There are 277 stars in our sample that do not have a trigonometric

distance estimate. For these stars, we fix the star’s metallicity at [Fe/H] = -0.1 and

provide an estimate of the distance modulus (m−M) of the star.

We show the color-magnitude diagram for all MEarth targets with a determined

magnitude and trigonometric parallax, using the metallicities inferred from our relation,

in Figure 3.4. We note that 29 stars are much redder than what is expected from their

absolute K-band magnitude and lie significantly outside the calibration range for our

spline. This far from our calibrated sequence our calibration turns-over and our method

assigns them unrealistically low metallicities. An unresolved equal-mass binary would be

shifted upwards by 0.75 magnitudes in Figure 3.4. An unresolved binary of unequal mass

will be shifted upwards (due to the extra luminosity) but also to redder colors (as the

the average color of pair is shifted). Undoubtedly our sample must contain a significant

number of unknown, unresolved binaries. We suggest that these redder or over luminous

stars that lie outside of our interpolation regime may be unresolved multiples. For each

star, if our metallicity interpolation predicts a higher metallicity for a hypothetical star

at the same absolute magnitude but 0.25 magnitudes bluer, then we flag this as an over

luminous source in Table 3.4.

There are 894 stars in our sample that have spectral types determined from optical

spectra by various groups (see Table 3.4 for spectral types and sources). These spectral

types are compiled from the literature and, in cases where there are more than one

spectral type measurement, we prioritize spectral typing methods involving direct

comparison to spectral standards (Lépine et al. 2013b). In some cases, the spectral type

is derived from measurements of molecular band indices. We do not average spectral
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types from multiple sources, but use the spectral type from the highest priority source.

We have investigated the evolution of the MEarth-Ks color of a star as a function

of spectral types (see Figure 3.5). We find that a 4th order polynomial is sufficient

to capture the evolution of the MEarth-Ks color through this spectral range. This

polynomial is:

MEarth-Ks = (−4.5×10−4)×N4+(6.5×10−3)×N3−(3.2×10−3)×N2+(3.6×10−2)×N+1.9

(3.2)

where N is the numerical spectral type of the star, 0 being an M0 type star, 5 being

equivalent to an M5.0, and 10 being an L0 dwarf.

While the MEarth-Ks color of a star is a good indicator of spectral type through

mid-M spectral sequence, we find that for the earliest M dwarfs the MEarth-Ks color

does not change substantially. Furthermore, the MEarth sample selection criteria are

designed to eliminate early M stars from our sample. Early type M dwarfs that make

it into our sample are likely to be systematically redder than typical stars of that

spectral type, so that they may masquerade as later type stars when utilizing simple

color cuts. Therefore, these stars may not be representative of early M stars in general,

and we suggest caution when using this equation for spectral types earlier than M2.

At the earliest spectral bins we also have a higher proportion of outliers. These may

be systematically affected by contamination if they are close to another star or may

be subject to higher systematics than the later spectral types that we are targeting

in our observations (greater nonlinearity or saturation). These red outliers are LSPM

J1204+7603 and LSPM J2307+1501. LSPM 1204+7603 is flagged as a potential blend
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Figure 3.5: The MEarth-Ks color as a function of M dwarf spectral type with a third

order polynomial fit through the sequence (shown as a black line). The star earlier than

M0 is a late K dwarf while M10 and later begins the L dwarf sequence. All spectral types

are taken from the literature and are not be determined in a strictly uniform manner. We

find that the average MEarth-Ks color sequence continuously becomes redder for later

spectral types although there is significant amount of variation due to metallicity, which

this fit does not take into account.
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with other background stars. We believe that this is the cause for this star being an

outlier. The magnitude of LSPM 2307+1501 does not appear to be an outlier in our

analysis. We suggest the reported spectral type may be incorrect.

3.4 Discussion

3.4.1 The metallicity of the solar neighborhood M dwarfs

We present a large sample of uniformly determined metallicity estimates for northern M

dwarfs in the solar neighborhood. While the applicability of this technique is somewhat

limited due to the non-standard nature of our bandpass and the requirement of an

accurate distance measurement to the star, we can use the measurements for 1567 stars

with trigonometric parallax measurements in order to investigate the nature of the

nearby M dwarf population.

We restrict ourselves to a volume complete sample in the Northern hemisphere

to avoid potential biases. Dittmann et al. (2014a) showed that the MEarth sample is

nearly complete out to a distance of 20 parsecs within the color, estimated distance,

and Rest < 0.33R� sample selection criteria of Nutzman & Charbonneau (2008). We

will restrict ourselves to this volume for this analysis. While Dittmann et al. (2014a)

corrected for the subsample of stars culled from the MEarth sample for being too bright

for our survey or too close to a bright star, we do not make such a correction here as

these missing stars do not have a MEarth magnitude. We do not believe that this will

significantly affect our results because there are not many of these stars and they are

likely to not be significantly biased in metallicity. Furthermore, the study in Dittmann
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et al. (2014a) divided the MEarth sample by spectral type, for which completeness can

vary as a function of distance. Here we are studying the entire MEarth sample and

therefore dilute the effect of a handful of known nearby stars being removed from the

analysis.

In Figure 5.2 we show the metallicity distribution of M-dwarfs in the solar

neighborhood within 20 parsecs of the Sun. The median value of these metallicities

is [Fe/H] = −0.03 ± 0.008, approximately solar metallicity. The sharp drop beginning

at [Fe/H] = 0.15 is due to the saturation of the sodium line used in these metallicity

measures (Newton et al. 2015a). Because our photometric metallicity calibration is

based upon spectroscopic measurements derived from these lines, we may be subject to

systematic errors at high metallicity. Therefore, this sharp drop off and lower proportion

of stars at high metallicities may not be real, and the excess of stars between [Fe/H] =

0.10 and [Fe/H] = 0.15 is likely to be distributed across larger metallicities.

We avoid this potential source of systematic error by looking strictly at the relative

proportion of stars in our sample that are metal poor (excluding the stars which were

excluded for being outside of our calibration range). For this sample, 29 of the 565 of

our stars within 20 parsecs have a metallicity of [Fe/H] = −0.5 or less, approximately

5%. This is comparable to the proportion measured by Haywood (2001), who measured

that 4% of their 383 solar neighborhood G dwarfs have a metallicity less than [Fe/H] =

−0.5. We cannot reject the null hypothesis that the local M-dwarfs are drawn from the

same metallicity distribution of the local G-dwarfs based upon the fraction of metal poor

stars. Therefore, they are likely derived from the same star formation history.
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Figure 3.6: Histogram of the metallicities of the M dwarfs within 20 parsecs of the Sun

in the MEarth sample. The black line at [Fe/H] = 0.0 is the value for the Sun. The

median metallicity for these solar neighborhood M dwarfs is [Fe/H] = −0.03 ± 0.008,

coincident with the solar metallicity. The asymmetric distribution of metallicities may be

partially due to the saturation of lines at high metallicity in the spectroscopic sample used

to calibrate our photometric relation. This saturation occurs around [Fe/H] ≈ 0.2. If so,

then the true metallicity of stars shown here with [Fe/H] > 0.1 may be distributed out to

higher metallicity. We find that the metallicity distribution of the solar neighborhood M

dwarfs is similar to that of the solar neighborhood G dwarfs.
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3.5 Conclusions

We have calibrated the MEarth photometric system using standard star observations

taken routinely as part of general MEarth operations. By combing these results with

trigonometric distance measurements and spectroscopically determined metallicity

estimates from Newton et al. (2014, 2015a), we have calibrated a new color-magnitude-

metallicity relation. The location of an M dwarf in MK vs MEarth-Ks space is a

metallicity indicator with comparable precision to infrared spectroscopic measurements,

and we provide a photometric metallicity estimate for 1567 northern M dwarfs in the

solar neighborhood with precisions of 0.1 dex. We find that the metallicity distribution

and its median value are consistent with that of the nearby G dwarfs.

The nearby northern M dwarfs tabulated here are a promising hunting ground for

ongoing planet searches like MEarth (Nutzman & Charbonneau 2008) and APACHE

(Sozzetti et al. 2013), and also future surveys like CARMENES (Quirrenbach et al. 2012),

the Habitable Planet Finder Spectrograph (Mahadevan et al. 2012), SPIROU (Reshetov

et al. 2012), and EXTRA (X. Bonfils, personal communication). Planets found by these

endeavors will allow us to investigate correlations between planet occurrence rate and

stellar metal abundances. However, in order to do so, we need not only an accurate

measure of M dwarf metal content, but also the capability to apply this uniformly on a

statistically significant number of stars. The metallicities presented here offer a precision

comparable to spectroscopic techniques, but the advantage of being applied over a much

larger sample without the need of a significant investment in additional telescope time.

Future improvements in this method will be made possible by GAIA2, which is set to

2http://sci.esa.int/gaia/
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provide unparalleled astrometric precision, allowing us to remove unresolved binaries

and obtain much more precise absolute magnitudes for these objects.

Building on other studies, we have shown that an optical - infrared color is an

excellent metallicity indicator. If a similar relation can be inferred for metallicity and

distance in the Sloan (g′,r′,i′,z′) standard bandpasses, this would be a resource for future

surveys like LSST, which is expected to uncover millions of M dwarfs. Towards this end,

we have recently begun an effort to gather the necessary data on a subset of the stars

presented here to explore this question. We plan to publish and release those data in a

future publication.
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Abstract

We report the detection of stellar eclipses in the LP 661-13 system. We present the

discovery and characterization of this system, including high resolution spectroscopic

radial velocities and a photometric solution spanning two observing seasons. LP 661-13

is a low mass binary system with an orbital period of 4.704364+0.000040
−0.000008 days at a distance

of 24.9 ± 1.3 parsecs. LP 661-13A is a 0.3057 ± 0.0032 M� star while LP 661-13B is

a 0.1937 ± 0.0014 M� star. The radius of each component is 0.3130 ± 0.0037 R� and

0.2159 ± 0.0061 R�, respectively. We detect out of eclipse modulations at a period

slightly shorter than the orbital period, implying that at least one of the components is

not rotating synchronously. We find that each component is slightly inflated compared

to stellar models, and that this cannot be reconciled through age or metallicity effects.

As a nearby eclipsing binary system where both components are near or below the

full-convection limit, LP 661-13 will be a valuable test of stellar models.

4.1 Introduction

The fundamental properties of low-mass stars remain a significant challenge for stellar

structure models, despite their accuracy in the solar-mass regime (Torres 2013). The

discrepancies between models and measurements become more pronounced below 0.35

solar masses (approximately spectral type M3.5 V), where these stars are thought to lose

their radiative zones in their interior and become fully convective (Chabrier & Baraffe

1997; Baraffe et al. 2015).

The M dwarf spectral sequence spans a large range of mass, from 0.6 M� at the
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earliest spectral types down to the main sequence turn off at approximately 0.08 M�.

This mass range spans important transitions in the physical structure of the interior

of these stars. Notably, these stars transition to the fully convective regime midway

through the spectral sequence, at 0.35M� , and degeneracy pressure becomes increasingly

important in the core (Chabrier & Baraffe 1997). These transitions must be accurately

captured in stellar models and their effect on the equations of stellar structure must

ultimately be reflected in the temperatures and radii of these stars.

Testing the mass-radius relation for low-mass stars is routinely done through the

study of eclipsing binary (EB) systems. Precise radial velocity measurements taken

throughout the orbit are sensitive to the component masses of the system, while

measurements of the eclipse depths and shapes are sensitive to the radii of the eclipsing

stars. The best-observed, detached, double-lined EBs can provide measurements accurate

at the 1% level, allowing these systems to become strong tests of current stellar models

(Torres et al. 2010).

One of the closest and most well studied eclipsing binary systems is CM Draconis

(CM Dra). CM Dra is an eclipsing M dwarf binary at a distance of 14.5 parsecs from the

Sun (Eggen & Sandage 1967; Lacy 1977). CM Dra also contains a white dwarf at a wide

separation from the M dwarf pair. As instrumentation and modeling have improved, the

masses and radii of the two M dwarfs are now measured at the 0.5% level (Metcalfe et al.

1996; Morales et al. 2009). Both stars in the CM Dra eclipsing binary are spectral type

dM4.5 with masses of 0.23 and 0.21 solar masses and radii of 0.25 and 0.24 solar radii

and orbit in a 1.7 day orbit (Morales et al. 2009). The radii of these stars are inflated at

the 5%− 7% level (Morales et al. 2009), and this remains a problem even with the latest

stellar models (Baraffe et al. 2015).
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This problem is not restricted to a handful of systems. Taking only the most

well-measured eclipsing binary systems in aggregate, low-mass stars tend to be inflated

in radius and cooler in temperature than stellar models predict (Torres 2013). The

number of low mass stars with stellar radii measured through interferometry is low

(Boyajian et al. 2015), and often do not have any direct means to measure a precise

mass. High precision measurements of stellar masses and radii for individual stars are

obtained through measurements of eclipsing binary light curves and radial velocities

(RVs). Photodynamical analyses of recently discovered triple systems (such as KOI-126,

Carter et al. 2011a and Kepler-16 Doyle et al. 2011) allow even more accurate physical

parameters measurements than classical eclipsing binaries due to the presence of eclipses

between all three members of the system. However, since the eclipse probability and the

probability of detection are strong functions of orbital separation, these systems tend to

be dominated by close-in binaries. This makes them more susceptible to the effects of

tidal forces between the stars and makes them likely to be tidally locked, preventing the

stars from spinning down over their lifetime. This effect makes it more likely for these

systems to be magnetically active and to remain significantly magnetically active over

their main-sequence lifetimes. If magnetic activity can significantly affect the interior

structure of low-mass stars, then this can create an observational bias in the observed

radii of these stars, especially if these effects are not accounted for in models.

One way around this problem is to search for low-mass eclipsing binary systems

that have sufficiently long periods that both stars essentially evolve as “single” stars,

and collect enough high-quality data to constrain their physical parameters to sufficient

accuracy to test existing stellar models. While difficult, several such systems have

recently been discovered and characterized. The Kepler-16 system consists of a 41 day
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period eclipsing binary system orbited by a planet in a 229 day orbit, all exhibiting

mutual occultations of each other (Doyle et al. 2011). The presence of both stellar

occultations and planetary transits in this unique system allowed for extremely precise

physical parameters of this system to be measured. The secondary star in the system

is a 0.202 M�, 0.226 R� star with a mass and radius measured with sub-1% precision.

Our group has discovered a 41-day eclipsing binary, LSPM J1112+7626, consisting of

two M-dwarfs. These stars have masses of M1 = 0.395 M� and M2 = 0.275 M� and radii

of R1 = 0.382 R� and R2 = 0.300 R�. In addition to these long period systems, several

other eclipsing binary systems with low-mass stellar components have recently been

found with periods in the 5-20 day range (Schwamb et al. 2013; Gómez Maqueo Chew

et al. 2014; Zhou et al. 2015a). Some of the components in these systems show radii that

are consistent with stellar models, while some show significant radius inflation. Assessing

the cause of the radius inflation phenomenon in low mass stars requires the discovery

of sufficient numbers of these systems with sufficiently different physical characteristics

(orbital separation, metallicity, etc) as well as accurate determinations of the mass and

radius of each component.

MEarth is an ongoing photometric survey of mid-to-late M dwarfs in the solar

neighborhood (Distance, D . 33 pc), looking for low mass rocky planets whose periods

may extend into the habitable zone of their star (Nutzman & Charbonneau 2008; Berta

et al. 2013; Irwin et al. 2015). The MEarth-North array in Arizona has been in operation

since 2008, and a copy located in Cerro Tololo, Chile has been in operation since early

2014. By virtue of being designed to be sensitive to small planets transiting these stars,

MEarth is also highly sensitive to eclipsing binary systems.

Here we present the discovery of an eclipsing binary system revealed during the
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commissioning phase of the MEarth South array. This system shows out of eclipse

modulations due to star spots which change between observing seasons. Through

long-term out of eclipse monitoring, we are able to assess the impact that transient

starspots have on our ability to measure the radii of each component, which in turn

allows us to more reliably probe the physical parameters of this system and assess our

errors. We utilize multiple eclipse measurements with the MEarth telescopes as well as

radial velocity (RV) measurements in order to constrain the masses and radii of both

components to high accuracy and test existing stellar models. In section 2, we detail

the MEarth-South array, the discovery, and the follow-up observations of this system.

In section 3, we present a joint analysis of the RV and photometric data and constrain

the physical parameters of the system. In section 4, we discuss the implications of these

measurements in regards to existing theoretical stellar models.

4.2 Observations

4.2.1 The MEarth-South Observatory

MEarth-South, like its Northern counterpart, consists of eight f/9 40 cm Ritchey-Chrétien

telescopes on German equatorial mounts. The telescopes are located at Cerro-Tololo

International Observatory (CTIO) in Chile (Irwin et al. 2015). The telescopes are

automated and take data on every clear night. Each telescope contains a 2048 × 2048

pixel CCD with a pixel scale of approximately 0.84′′/ pixel. We utilize a Schott RG715

glass filter with an anti-reflection coating. For information about our filter curve and

photometric system, see Dittmann et al. (2016). We expect that the MEarth-South
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photometric system is slightly different from the North, and that the results in Dittmann

et al. (2016) might show minor differences with the Southern array. The MEarth-South

CCDs are e2v CCD230-42 devices with a NIR optimized coating with fringe suppression.

We operate the MEarth cameras at −30◦ C, and before each exposure we pre-flash the

detector. This increases the dark current (which we subtract off), but it also eliminates

persistence from the previous exposure.

We gather sky flat field frames at dawn and at dusk. Since MEarth uses German

equatorial mounts, we must rotate the telescopes by 180 degrees relative to the sky when

crossing the meridian. Therefore, we take two sets of flat fields, taking adjacent pairs of

flat fields on opposite sides of the meridian. This procedure also allows us to average

out large-scale illumination gradients from the Sun and the Moon. This scattered light

also concentrates in our detectors in the center of the field of view. The amplitude of

this scattered light effect is approximately 5% of the average value of the sky across

the CCD. In order to correct for this, we filter out the large scale structure from our

combined twilight flat field and use the residual flat field to track small scale features

such as inter-pixel sensitivity and dust shadows on the detector. We derive the large

scale flat field response from dithered photometry of dense star fields.

We measure the nonlinearity of the MEarth detectors using a dedicated sequence of

dome flats. At all count levels, the MEarth CCDs have a slightly nonlinear conversion

of photoelectrons to data number. This nonlinearity increases from 1%-2% at half the

detector full well to 3%-4% near saturation. We correct for this effect as part of the

general MEarth data reduction pipeline. Our exposure times are set to avoid surpassing

50% of the detector’s full well in order to minimize this effect.
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The MEarth-South target list is designed to be similar to the northern array’s

target list (Nutzman & Charbonneau 2008). MEarth-South observes a selection of

nearby M dwarfs believed to be within 33 parsecs (pc) of the Sun and with a stellar

radius R < 0.33R�. The completeness of the target list and the number of targets with

measured parallaxes is much lower in the South than in the North because the target

list has been assembled from a much wider array of sources. No analogous compilation

existed for the Southern hemisphere. For this reason, and also the availability of

follow-up resources, the majority of our targets lie above −30◦ DEC, rather than being

distributed uniformly across the Southern sky (δ < 0◦). Typically there is only one target

in each MEarth-South 26′× 26′ field of view, with the exception of wide multiple systems

and occasional unrelated asterisms. Each field is targeted individually and is selected to

contain sufficient comparison stars to obtain high precision relative photometry.

Each clear night MEarth observes a set of visible target stars at a cadence of

approximately 20-30 minutes. This ensures that we obtain at least two in-transit data

points for a typical one hour duration transit. If the real-time reduction software detects

a potential transit (or eclipse) in-progress, standard cadence observations of other targets

on that telescope are interrupted in order to perform high cadence follow-up of the

potential event-in-progress (see Berta et al. 2013 for a description of the MEarth trigger).

Normal operations are resumed when the event is deemed to be over or spurious and the

flux from the star has returned to its normal level.
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4.2.2 Initial Detection and Follow-up

A primary eclipse of LP 661-13 (06h56m18s.95, -08◦35′46.1′′; alternate names NLTT

17194, 2MASS J06561894-0835461) was first discovered on 28 January 2014, on the

second night of commissioning observations of the MEarth-South array (see Figure 4.1

for a finding chart for this system). Due to being in commissioning phase, the MEarth

trigger was not yet being used. Therefore, only 6 in-eclipse data points were taken

during the event. Subsequent eclipses were observed on the nights of February 16, 2014

(primary eclipse) and February 23, 2014 (secondary eclipse), and utilized the MEarth

trigger. These events, combined with out-of-eclipse monitoring in the intervening nights,

allowed us to unambiguously identify the orbital period as approximately 4.704 days.

Armed with orbital period of the system, we began strategic targeting of radial velocity

observations and subsequent eclipse measurements.

We obtained radial velocity measurements with the Tillinghast Reflector Echelle

Spectrograph (TRES) on the 1.5 m Tillinghast reflector located at the Fred Lawrence

Whipple Observatory (FLWO) on Mt. Hopkins, Arizona. We used the medium (2.3′′)

fiber, which yields a resolving power of R = ∆λ
λ

= 44, 000. We obtained 14 observations

of LP 661-13 with TRES, with 8 exposures taken in the 2014 observing season (18

February 2014 - 28 March 2014) and 6 taken in the 2015 observing season (27 December

2014 - 06 January 215). Total exposure times were 1 hour per observation, except for one

exposure which was was 40 minutes. We obtained Thorium-Argon (ThAr) wavelength

calibration exposures both before and after each science exposure. These wavelength

calibration exposures were obtained with the same fiber as the one used to take the data

on the target itself.
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Figure 4.1: Finding chart for LP 661-13. The top image is archival data taken by the

SuperCOSMOS survey from 1989. The bottom image is a MEarth image taken in 2014.

The SuperCOSMOS image indicates that there is a faint background star that currently

sits in the MEarth aperture for LP 661-13. We address this third light contamination

later in the text.
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Follow-up photometric observations of both primary and secondary eclipses were

performed with the MEarth-South telescopes. We observed 11 unique eclipse events with

6 different telescopes. In addition to the observations of individual eclipses, we monitored

the brightness of LP 661-13 out of eclipse on each clear night from CTIO in order to

assess the variability of the system due to the stellar rotation of each component bringing

star spots into and out of view. We have obtained 9173 individual observations of LP

661-13, with 5098 observations being in-eclipse measurements and 4075 out-of-eclipse

measurements.

4.3 Analysis

4.3.1 Spectroscopy

We reduced our TRES spectroscopic data with standard IRAF1 data reduction packages,

using the procedure of Buchhave et al. (2010).Once these data are reduced, we use

a two-dimensional cross correlation algorithm TODCOR (Zucker & Mazeh 1994), which

uses user-given templates to match each component in the system, derive their radial

velocities, and measure their light ratio in the observed spectral bandpass. For both

components we used a single epoch observation of Barnard’s star (GL 699) taken on 18

April 2011 as our template. Barnard’s star has a spectral type of M4 (Kirkpatrick et al.

1991), and is suitable for both stars in this analysis. We also performed a reduction

1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Asso-

ciation of Universities for Research in Astronomy, Inc., under cooperative agreement with the National

Science Foundation
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using the later type Wolf 359 as a template but found Barnard’s star to yield more

precise results. We correlated our spectra using the wavelength ranges of 7380-7500Å and

8500-8625Å (aperture numbers 43 and 49). These regions contain molecular features and

the atomic calcium triplet, which produce strong correlations and are able to robustly

identify both components in the spectrum.

For three of our observations, the velocities of the two stars are too similar to

separate into distinct components with TODCOR. For these observations we measure only

a single peak, which we assign as the radial velocity of solely the primary component.

Once we obtained an initial solution for each epoch, we averaged the fitted light

ratio for each epoch for which we could distinctly measure the cross-correlation peaks

for each component. We then fixed the light ratio to this value and re-derived the

best fit radial velocities for each component. We find a best fitting light ratio of

L2/L1 = 0.444 + /− 0.07.

We report the radial velocities from this analysis in Table 4.1 and show a plot of the

heliocentric radial velocities in Figure 4.2. We estimate the uncertainty of our velocities

(based on the standard deviation of our residuals) as 0.26 km s−1 for the primary and

0.78 km s−1 for the secondary, and a heliocentric velocity for the system of 24.24± 0.07

km s−1 (see modeling section 4.4). In deriving these velocities, we assume a barycentric

velocity for Barnard’s Star of −110.47 km s−1. Errors in this quantity (both systematic

and white noise) would affect the final barycentric velocity of the LP 661-13 system, but

are insignificant in deriving the system parameters.
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Table 4.1:: TRES Radial Velocities for LP 661-13

Date (HJD) v1 (km s−1) v2 (km s−1)

2456706.6860 −14.47 86.76

2456709.6879 51.02 −18.27

2456738.6348 15.54 –

2456740.6439 15.22 –

2456741.6794 59.55 −30.71

2456742.6816 48.07 −13.27

2456743.6887 −0.63 62.44

2456744.6744 −10.73 80.24

2457018.8716 48.60 −13.92

2457019.8231 61.09 −34.30

2457020.8999 15.98 –

2457025.8228 4.94 55.33

2457026.8140 −13.15 83.67

2457028.8371 62.92 −36.23
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4.3.2 Photometry

We measure stellar positions using a method similar to Irwin (1985). We estimate the

local sky background by binning each image in 64 × 64 pixel blocks and measure the

peak of the histogram of the intensity of these pixels. This lower-resolution map is then

interpolated to measure the background level anywhere in the image. Sky background

is estimated with a sky annulus between 18 and 24 pixels away from the stellar photo

center. We measure stellar locations from the intensity weighted first moment (i.e. – the

centroid) of the star.

We measure the total flux using an 6 pixel (≈ 5.04′′) aperture radius. We weight

pixels that lie partially within this circular aperture by the fraction of the pixel that lies

within the ideal circular aperture. We also adopt an aperture correction to correct for the

stellar flux that falls outside of our aperture. The typical size of an aperture correction is

0.04 magnitudes, but can vary from night to night depending on atmospheric conditions

(predominantly seeing). In Table 4.2, we provide the corrected photometry for LP 661-13

across all telescopes and both seasons of data.
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Figure 4.2: Top: Radial velocity signal from each component of LP 661-13. The primary

component is in blue and the secondary component is in red. We find a primary mass of

M1 = 0.3057± 0.0032 M� and M2 = 0.1930± 0.0014 M�) orbiting with a period of P =

4.7043518+0.0000017
−0.0000014 days. Bottom: Residuals from the fit. We find an RMS precision of

0.26 km s−1 for the primary component and 0.78 km s−1 for the secondary component.
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There is a marginal Roentgan Satellite (ROSAT) detection in the ROSAT faint

source catalogue (Voges et al. 2000). The potential source has a count rate of 3±1×10−2

counts per second. This corresponds to a flux density of approximately 1.70±0.56×10−13

ergs cm−2 sec−1. While this may be interesting to assess the significance of the X-ray

emission with stellar activity and radius inflation, further X-ray data to confirm this

potential detection are needed.

4.3.3 Astrometry

With two seasons of photometric data from the MEarth observatory, we are able to

utilize the MEarth astrometric pipeline to measure the trigonometric distance to LP

661-13. The astrometric pipeline is described in detail in Dittmann et al. (2014b), but we

summarize it here. We eliminate nights for which the full-width half-max for the image

is greater than 5 pixels (approximately 3.5 arcseconds), or the average ellipticity of the

target stars is greater than 0.5 (typically due to wind shake). We also eliminate images

for which the pointing on the image is more than 15 pixels discrepant from the master

MEarth image. We fit each image with a linear model in both the x and y coordinates,

which allows for translation, rotation, shearing and pixel scale variations. We also include

a separate constant offset between data taken on opposite sides of the meridian, to

accommodate the image flip that results from the telescope’s german equatorial mount.

We choose reference stars that lie within 600 pixels of the target star to avoid

higher order effects at the edges of the CCD. We fit our astrometry iteratively, first

fitting the linear plate model to each frame and then fitting for the proper motion and

parallax of each star until convergence. Internal errors are estimated through a residual
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permutation. This provides the advantage that it preserves time-correlated noise in our

error assessment but tends to be a weaker way to estimate errors for series with few data

points. However, we have over 9000 data points and do not believe our astrometric error

bars are underestimated.

We perform our astrometric analysis for only the telescope which has the largest

number of data points over the largest time baseline. This time baseline ensures we can

resolve any degeneracies between the proper motion and the parallax of the star. Using

only one telescope eliminates possible systematics with combining data from multiple

telescopes. Additionally, observations from other telescopes were targeted observations of

eclipses and are of little use for astrometric analysis, which require data to be taken over

the Earth’s entire orbit. We show our astrometric time series in Figure 4.3, and measure

a trigonometric parallax of π = 40.2 milliarcseconds (mas) with an internal error of 1.0

mas. However, since MEarth-South astrometry has not been benchmarked to a sample

of stars with previously measured parallaxes (unlike MEarth-North), we inflate this error

bar by a factor of 2 to be conservative. This corresponds to a distance of D = 24.87± 1.3

parsecs (pc). We do not calculate a correction from relative parallax to absolute parallax,

as this effect is smaller than our errors. We find proper motions of 75.1± 2.0 mas yr−1 in

the RA direction and −227.3 ± 2.0 mas yr−1 in the DEC direction, where we have also

inflated our internal error bars in the same manner as for the parallax amplitude. These

values are consistent with the proper motion of 76.9± 5.5 max yr−1 in the RA direction

and −219.6± 5.5 max yr−1 previously reported by Salim & Gould (2003)
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Figure 4.3: Trigonometric parallax signal from MEarth-South images in ecliptic lon-

gitude (left) and ecliptic latitude (right) for LP 661-13. We follow the procedure of

Dittmann et al. (2014b), as MEarth-South and MEarth-North were built to be nearly-

identical arrays. We find a parallax of π = 40.2±2.0 mas, which corresponds to a distance

of 24.87± 1.3 parsecs.
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4.4 System Modeling

We model this system following a similar procedure as Irwin et al. (2011b). While for

LSPM J1112+7626 Irwin et al. (2011b) notes that the system is eccentric and therefore

the photometric and spectroscopic solutions are highly interrelated, for LP 661-13 we

find no detectable eccentricity, and so the analysis is made simpler. We model the system

using the light curve generator from JKTEBOP2 (Southworth et al. 2004; see Southworth

2013 for the most recent version). JKTEBOP is based on the eclipsing binary program

EBOP (Popper & Etzel 1981). We use a modified version derived from Irwin et al. (2011b)

which computes the integrals analytically using the method of Mandel & Agol (2002)

and its erratum.

The out of eclipse light curve modulation indicates that there is significant spot

activity on the surface of at least one component of the system, possibly both. This

complicates the analysis as starspots have the capability of causing systematic errors in

the measurement of the stellar radii as well as the surface brightness ratio of the two

components, which is derived from the eclipse depths. Spots occulted during the eclipse

reduce the observed depth of the eclipse relative to a non-spotted star, since a relatively

dimmer portion of the star is being occulted. Conversely, the presence of non-occulted

spots systematically increases the eclipse depth as the eclipse is preferentially obscuring

brighter portions of the star. In reality, it is likely that both occulted and unocculted

spots exist in any given eclipse. It is extremely difficult to infer the true spot distribution

of a system, except in cases where eclipse deviations (i.e. spot crossing events) are

readily distinguished in the light curve. Out of eclipse modulations can help assess spot

2See http://www.astro.keele.ac.uk/jkt/codes/jktebop.html for the original JKTEBOP code
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coverage, but are sensitive to only asymmetric distribution of star spots. A uniformly

spotted star would show no variation at all because a starspot rotating out of view would

be replaced by an identical spot rotating into view. Identifying, or failing to identify,

multiple frequencies in the out of eclipse modulations can also help determine whether

the starspots are concentrated on one star or if both components display significant

asymmetric spot coverage, although if only one period in the out-of-eclipse modulation

is detected it is impossible to determine on which component the signal originates.

We adopt the spot model from Irwin et al. (2011b), which assumes that the out of

eclipse modulations are solely due to starspots, and assumes a simple sinusoidal form for

the modulations. The functional form for these modulations is:

∆Li
Li

= ai sin

(
2πFit

P

)
+ bi cos

(
2πFit

P

)
−
√
a2
i + b2

i (4.1)

where t is the time, L is the light from the star, i denotes each component of

the system, ai and bi are the constants expressing the amplitude and the phase of the

out-of-eclipse modulation, and Fi is the ratio of the rotational frequency of the star to

the orbital frequency.

In the present case, we find only one significant period for the out of eclipse

modulations. However, since the observed modulation has a period close to the orbital

period of the system, it is possible that both stars have similar periods and that they

are close to a tidal locking scenario. This means that we cannot be sure on which

component the starspots originate, and we must account for this systematic uncertainty.

Unfortunately, fitting a spot model on both components is degenerate, given the limited

information available from a single modulation derived from total integrated light
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measurements. In order to assess the full range of possible physical parameters that are

consistent with the data, we fit a series of models with different spot parameters, which

we describe below.

We fit the photometric light curve (both in and out of eclipse) independently from

the RV data. Because we do not detect an eccentricity in the system, the RV data and

the photometric data are sensitive to independent system parameters. However, when

we model the radial velocities of each component, we utilize the photometric solution for

the orbital period, phase, and orbital inclination of the system. We assume that there is

no third light in the system.

We fit two different models, one where there are starspots on only the primary

component of the system, and one where the spots are concentrated on solely the

secondary component of the system. We also fit the data from the 2014 season and the

2015 season independently, and allow the starspot modulation to change between seasons.

Through this method, we aim to explore the possible effect that starspot contamination

can have on our inference of the stellar radii. We explore this parameter space using

the emcee code (Foreman-Mackey et al. 2013), which is a python implementation of the

Affine Invariant Markov Chain Monte Carlo sampler. Each model is initiated with 100

walkers in a Gaussian ball located at an approximate solution. We run the chain for 2

million steps, and discard the first 200,000 steps to allow the solution to “burn-in”. We

use uninformative (unbound, uniform) priors for all of our model parameters, except

for the limb darkening law. Quadratic limb darkening parameters are initiated with the

model of Claret (2000) for each component utilizing an approximate temperature (Teff

= 3700K, log(g) = 5.0) and the Cousins I band filter. Each coefficient is allowed to vary

freely, but not exceed a 10% deviation from this theoretical value. This allows the model
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to adjust for differences in the actual star compared to the theoretical parameters as well

as for the slight differences between our bandpass and Cousins I without venturing into

physically implausible parameter space. Letting the limb darkening parameters float in

this way allows us to explore our prior, and we do not contend that our results are a

physical measurement of the actual limb darkening parameters for these stars.

In Table 4.3 we list the physical parameters of our model (not including the

normalizations for each telescope and each eclipse), and in Tables 4.4 and 4.5 we show

the resulting best fit model and the 16th and 84th percentile (approximately 1σ) for

each parameter for each season. We are able to fit our measured light curves equally

well regardless on which star we place starspots. However, if we place the starspot signal

on the secondary component, the out of eclipse model parameters vary significantly

between observing seasons, whereas if the starspot signal is originating on the primary

component, the parameters are stable between seasons. Particularly, F, the ratio between

the orbital and rotational frequency has different values for each season if the secondary

component is responsible for the star spot modulation signal. Since the rotation period

of the star should not change (and the effect of differential rotation for star spots at

different latitudes is small), we conclude that the starspot signal must be originating on

the primary component and we will utilize the model for which starspots are located on

the primary component for the rest of this paper. We note, however, that this choice does

not significantly affect the values of the masses and radii of the components but does

change the uncertainty. While the light curves themselves are most directly sensitive to

the sum of the component radii and their ratio, with our data we are able to separate

these two variables and measure the individual component radii themselves.

The base spottedness and the fraction of eclipsed spots model parameters are
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unconstrained by the data, and allowed to float to allow us to explore parameter space

and assess our total uncertainty in our derived physical parameters. In order to assess

possible systematic uncertainties associated with these model parameters, we also run

MCMC chains holding these parameters fixed at 0.0, 0.25, 0.50, 0.75, and 1.0. We find

that these parameters typically induce a 1.5% variation in the uncertainty of the radii of

the component stars, and a negligible effect on the mass of the stars (which is primarily

constrained with the RV data). While this systematic error is partially explored by

letting these model parameters float in the chain, there will likely be some residual

systematic error not captured in our MCMC runs.

For our final solution, we fit both seasons jointly, requiring the same physical

parameters across seasons but allowing the starspot model to change (but not change

components). We have also fixed the fraction of eclipsed spots (f1) to 1.0 and the base

spottedness of the star (f2) to 0.0, as it would take unlikely spot distribution on the

surface of the star to significantly change these parameters. See Irwin et al. (2011b) for

a detailed investigation into the role that these parameters play in affecting measured

masses, radii, and brightness temperatures. We also fix the orbital eccentricity at 0, as

we see no evidence for orbital eccentricity in this system from our eclipse timings (e

< 4×10−4, 95% confidence). In Table 4.6, we list the final model parameters for our joint

fit of both seasons of data assuming starspots distributed on the primary component

and in Table 4.7 we list the physical parameters, including component masses and radii,

for the LP 661-13 system. In Figures 4.4 and 4.5 we show each individual primary and

secondary eclipse as well as their residuals with this model.
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Table 4.2:: MEarth Photometry for LP 661-13

Date (HJD) ∆ magnitude error (mag) telescope

2456705.52764 0.007709 0.001958 tel15

2456705.52824 0.011443 0.001956 tel15

2456705.53032 0.006192 0.001937 tel15

2456705.53092 0.004161 0.001935 tel15

2456705.53152 0.004771 0.001931 tel15

... ... ... ...
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Table 4.4:: Parameters for Model With Starspots on Primary Component

Parameter 2014 Season 2015 Season

JMEarth 0.8705+0.0298
−0.0268 0.8698+0.0261

−0.0177

(R1 +R2)/a 0.0574+0.0007
−0.0008 0.0574+0.0005

−0.0004

R2/R1 0.6836+0.1065
−0.1539 0.7500+0.0674

−0.0717

cos i 0.0425+0.0008
−0.0013 0.0426+0.0005

−0.0006

M2/M1 0.6314+0.0033
−0.0033 0.6316+0.0033

−0.0035

K1 +K2 100.77+0.42
−0.42 100.77+0.44

−0.41

u1,1 0.2474+0.0188
−0.0189 0.2579+0.0105

−0.0269

u1,2 0.6102+0.0376
−0.0608 0.6413+0.0105

−0.0218

u2,1 0.4901+0.0530
−0.0272 0.4723+0.0305

−0.0116

u2,2 0.4123+0.0324
−0.0299 0.4157+0.0292

−0.0306

F 1.2288+0.0030
−0.0145 1.2284+0.0039

−0.0160

f1 0.0684+0.2328
−0.0473 0.0561+0.1512

−0.0353

f2 0.0157+0.0838
−0.0110 0.0104+0.0212

−0.0070

a 0.0009+0.0005
−0.0007 0.00035+0.00026

−0.00035

b −0.0003+0.0003
−0.0002 −0.00016+0.00027

−0.00023

ecosω −0.00003+0.00003
−0.00006 0.000000+0.000017

−0.000038

esinω −0.000003+0.000450
−0.000090 −0.000003+0.000038

−0.000054

P 4.704364+0.000040
−0.000008 4.704360+0.000005

−0.000005

T0 105.5602+0.0001
−0.0006 105.5598+0.0003

−0.0003

γ 23.9313+0.0929
−0.0922 23.9349+0.0897

−0.0949
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Table 4.5:: Model Parameters for Starspots on Secondary Component

Parameter 2014 Season 2015 Season

JMEarth 0.9114+0.0453
−0.0294 0.8729+0.0254

−0.0252

(R1 +R2)/a 0.0580+0.0012
−0.0010 0.0573+0.0006

−0.0006

R2/R1 0.6894+0.1558
−0.0929 0.7493+0.1297

−0.0722

cos i 0.0430+0.0015
−0.0014 0.0424+0.0008

−0.0007

M2/M1 0.6314+0.0046
−0.0053 0.6319+0.0047

−0.0049

K1 +K2 100.6848+0.4666
−0.3399 100.8730+0.4660

−0.5094

u1,1 0.2393+0.0230
−0.0116 0.2582+0.0100

−0.0167

u1,2 0.5777+0.0469
−0.0316 0.6395+0.0122

−0.0361

u2,1 0.5048+0.0379
−0.0352 0.4767+0.0406

−0.0156

u2,2 0.4034+0.0331
−0.0239 0.3927+0.0357

−0.0161

F 1.778+0.0102
−0.4461 0.9098+0.2803

−0.0052

f1 0.0193+0.2414
−0.0182 0.0023+0.0075

−0.0016

f2 0.0154+0.0850
−0.0144 0.0024+0.0105

−0.0015

a 0.0033+0.0019
−0.0032 0.0017+0.0037

−0.0021

b 0.0010+0.0006
−0.0009 0.00010+0.0038

−0.0039

ecosω −0.000058+0.000041
−0.000067 −0.000055+0.000031

−0.000029

esinω −0.00000+0.00181
−0.00069 0.000013+0.00012

−0.000029

P 4.70438+0.00002
−0.00001 4.704362+0.0000051

−0.0000052

T0 105.56034+0.00006
−0.00006 105.55972+0.00033

−0.00034

γ 23.9106+0.1143
−0.0924 23.9136+0.09975

−0.1052
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Table 4.7:: Physical parameters of LP 661-13

Parameter Value Source

M1 (M�) 0.3057± 0.0032 This work

M2 (M�) 0.1930± 0.0014 This work

R1 (R�) 0.3192± 0.0037 This work

R2 (R�) 0.2159± 0.0061 This work

V 14.03 Reid et al. (2004b)

R 12.75 Reid et al. (2004b)

I 11.17 Reid et al. (2004b)

J 9.63± 0.02 Skrutskie et al. (2000)

H 9.07± 0.02 Skrutskie et al. (2000)

Ks 8.76± 0.02 Skrutskie et al. (2000)

Spectral Type M3.5 Reid et al. (2004b)

NIR Spectral Type M4.27 Terrien et al. (2012)

Distance (pc) 24.9± 1.3 This work

Proper motion (RA, mas yr−1) 75.1± 2.0 This work

Proper motion (DEC, mas yr−1) −227.3± 2.0 This work

γ (km/s) 23.95+0.15
−0.14 This work
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Figure 4.4: Photometric data of all primary eclipses (offset for clarity) from the 2014 -

2015 observing seasons and our model with starspots located on the primary component.

We have corrected the data for normalization, meridian offsets, and common mode, which

are known systematics in the MEarth data. Residuals are are located in the lower plot.

Each color represents data taken from a different MEarth-South telescope.
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Figure 4.5: Photometric data of all secondary eclipses (offset for clarity) from the 2014

- 2015 observing seasons. The partial secondary eclipse was data taken before we knew

the period of the LP 661-13 system. MEarth-South automatically detected an event in-

progress and began collecting high cadence follow-up observations until the event ended

before resuming normal operations. The colors correspond to the same telescopes as in

Figure 4.4. Residuals from the fit are shown in the lower panel.
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4.4.1 Third Light

Archival SuperCOSMOS images (see Figure 4.1) indicate that there is a faint background

star currently in the MEarth aperture for LP 661-13. This third light can potentially limit

our ability to measure the fundamental parameters of each component in this system.

The SuperCOSMOS catalogues measures this background star to be 5.3 magnitudes

fainter than LP 661-13 in the 103a-E red plate bandpass. Unfortunately, we do not know

the color of the background star and therefore do not know the magnitude difference

in the MEarth bandpass. While it is unlikely that the background star is as red as LP

661-13, we can measure the maximum possible effect that third light contamination has

on determination of LP 661-13’s physical parameters by repeating our analysis with

third light fixed (arbitrarily) at 1% of the total light of the system. In Tables 4.6 and

4.7 we list the system parameters jointly fitting both seasons of data for third light, L3

= 0 and 0.01 for models with starspots only on the primary stellar component, and for

starspots only on the secondary stellar component. The most likely physical scenario is

one where the starspots are concentrated on the more luminous primary and that third

light is insignificant for this system. We find that with 1% third light contamination,

the masses and radii of each component of LP 661-13 are affected at the 0.5% level, and

therefore we do not believe third light to be a significant concern for this system.

4.5 Discussion

We have measured the masses of the primary and secondary components of LP 661-13

to a precision of 1.5% and 1.1% and the radii to 1.1% and 1.8%, respectively. Our error
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in the mass measurements is dominated by the precision of the TRES instrument while

the error in the radii is dominated predominantly by the systematics associated with

the starspots, and further seasons of data will aid in reducing these errors. Particularly,

if the starspot signal changes significantly between seasons this will aid our ability to

break the degeneracies of this model. In future seasons, LP 661-13 will achieve wider

separation with the background star, allowing us to measure its color and assess its third

light contribution.

Interestingly, the orbit of this system is circular while at least one of the components

is not rotating synchronously with the orbit. However, tidal theory suggests that the

timescale for synchronous rotation is much shorter than the time scale for circularization,

so it is unclear how this system can currently be in the state that we observe it in. We

are unable to offer an explanation of this phenomenon.

With these measurements in hand, we can now use these stars as tests of stellar

models. In Figure 4.6 we plot the masses and radii for other low-mass eclipsing binary

systems, along with the stellar models of (Baraffe et al. 2015) for a 5 Gyr system of solar

metallicity. We find that each of the individual components of LP 661-13 are higher

than, but marginally compatible with, the most recent stellar models. However, since

in eclipsing binary observations the sum of the component radii are better determined

than each individual component’s radius we can investigate whether this radius sum is

significantly higher than expected from stellar models. This also allows us to utilize

the 1% precision of our mass measurements in order to fully leverage the available data

and test these models. We find that given the measured stellar masses of 0.305M� and

0.193M�, that we expect a total radius sum of 0.510 ± 0.005R�. The measured radius

sum, 0.536 ± 0.006R� lies 5% above the model value, implying a significant radius
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inflation at 4σ confidence.

One of the most straightforward ways in which an M dwarf might be inflated is

due to youth. M dwarfs take significantly longer to settle onto the main-sequence than

solar type stars, and may maintain significantly larger radii for up to a billion years. If

LP 661-13 is relatively young, we might expect both components to be slightly inflated.

We find no evidence for Lithium in either component in our measured spectra, which

can set a lower limit on their age. However, since both stars are fully convective, any

Lithium originally present in the star would be convected into the interior and destroyed

in approximately 10 Myr (Baraffe et al. 2015). Using the stellar models from Baraffe

et al. (2015), we find that in order to reproduce the radius sum that we measure, LP

661-13 would need to be approximately 200 Myr old. However, we find no detectable

eccentricity in the system and the circularization timescale is 4.3 Gyr. Therefore, we find

it unlikely that the average inflation of these stars can be explained through youth and

that it is likely that LP 661-13 is a field age system. Furthermore, at this age, we would

expect significant X-Ray activity from the system, for which we do not have significant

evidence in archival ROSAT data.

Another possible mechanism that may be responsible for M dwarfs’ inflated radii

is the presence of metals in the atmosphere. The presence of metals and the cool

temperatures present in the atmospheres are conducive to the formation of molecules. In

turn, these molecules act as a significant source of opacity in the optical, suppressing

the amount of energy that is emitted in these frequency bands. To compensate for this

the star emits significantly more light in the infrared than in the optical compared to

a blackbody spectrum. However, it is possible that the star may also expand slightly

to have a greater surface area from which to emit the energy it is producing in the
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Figure 4.6: The masses and radii for nearby double lined low-mass eclipsing binary stars

with highly precise measurements. We plot SDSS-MEB-1 (Blake et al. 2008), GJ 3236

(Irwin et al. 2009b), CMDra (Morales et al. 2009), LP 133-373 (Vaccaro et al. 2007), MG1-

2056316, KOI-126 (Carter et al. 2011b), CU Cnc (Ribas 2003), 1RXSJ154727 (Hartman

et al. 2011b), HATS551-027 (Zhou et al. 2015b), LSPM J1112+7626 (Irwin et al. 2011b),

and WTS19g-4-02069 (Nefs et al. 2013) in red. LP661-13 A and B are indicated by the

dark blue crosses. The black line is the stellar model from Baraffe et al. (2015) for a 5

Gyr system with solar metallicity. We find that in aggregate the stellar models tend to

underpredict the radius for a star of a given mass. While the radius for each component of

LP 661-13 is marginally consistent with the stellar models, we find that the much better

constrained radius sum is significantly inflated compared to that predicted by the stellar

model.
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stellar interior. In this case, the presence of more metals would lead to a slightly larger

radius than for a star depleted in metals. While the new stellar models published by

Baraffe et al. (2015) are not computed over a range of different metallicities, previous

versions of these models (Baraffe et al. 1998), found that metallicity can only account

for a 3% increase in the radius from [Fe/H] = -0.5 to [Fe/H] = 0.0. Since the average

radius inflation for LP 661-13 is higher than this, it is unlikely that metallicity can fully

account for the discrepancy from the stellar models, and likely there is still theoretical

considerations to be addressed to fully understand the mass-radius relation of low-mass

stars.

4.6 Conclusions

We present here the discovery and analysis of the eclipsing M dwarf - M dwarf binary LP

661-13. We have collected 2 years of eclipse data and precise radial velocity measurements

of both components in order to obtain accurate, model-independent measurements of

their masses and radii. We find that LP 661-13A is a 0.3057 ± 0.0032 M� star with a

0.307+0.010
−0.007 R� radius while LP661-13B is a 0.1930 ± 0.0014 M� star with a 0.231+0.014

−0.016

R� radius. Both components are slightly inflated in radius when compared to stellar

models. However, the radius sum (which is much better constrained) is significantly (4

σ) inflated when compared to the expected radius sum from stellar models. Because

the orbit of the system is circularized, it is unlikely that this inflation can be explained

through youth. Metallicity is also insufficient to explain the total radius inflation we

observe.

In the future, the most straightforward way to improve the measurements of this
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system is to continue out of eclipse monitoring and obtain additional eclipse observations.

Because we have observed some spot evolution between observing seasons, additional

evolution will help to break the degeneracies between starspot coverage and inferred

stellar radii in the model and provide better constraints on the fundamental parameters

of this system. Additionally, we can potentially probe the origin of the radius inflation

by investigating the marginal X-ray activity as seen by ROSAT and attempt to measure

its surface magnetic field. Eclipse measurements in other photometric bandpasses will

allow us, with the trigonometric parallax distance we have in hand, to measure the

effective temperatures of each component as well, which will serve as another test of

stellar models. LP 661-13 represents another low-mass stellar test case measured with

high accuracy and will be a useful benchmark for current and future stellar models. LP

661-13 is positioned equatorially on the sky and therefore is a good object for further

study from both northern and southern facilities.
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Abstract

The USNO u′g′r′i′z′ photometric system has become the standard magnitude system

for large-scale photometric surveys. However, the USNO system lacks a significant

number of photometric standard stars at red colors, leaving this end of the system

poorly constrained. We have obtained measurements of g′r′i′z′ photometric standard

stars with a sloan griz filter set along with observations of 150 mid-to-late M dwarfs in

the solar neighborhood with a precision of 1%. We provide linear relations to convert

measurements between our griz photometric system and the g′r′i′z′ system. Magnitudes

we measure in our griz system of mid-to-late M dwarfs that overlap with the Sloan

Digitized Sky Survey (SDSS) are found to be inconsistent, and we conclude that the

differences between the SDSS griz filters and our griz filters, when convolved with

an M dwarf stellar spectrum, create significant differences. These differences are not

reconcilable through typical color equations, and therefore the photometric metallicity

relations found in SDSS data will not apply surveys that utilize Sloan-like filters. We find

that there is no combination of colors in griz filters alone that can reliably determine an

M dwarf’s metallicity to reasonable accuracy. However, we find that if a near infrared

K band magnitude is included, that the (g − i, i − K) color plane can be used to

photometrically determine an M dwarf’s metallicity to 0.1 dex precision. This relation

is comparable in precision to NIR spectroscopic methods that have been developed

in recent years. Source overlap between the Large Synoptic Survey Telescope (LSST)

survey and the Visible and Infrared Survey Telescope for Astronomy (VISTA) survey

will allow M dwarfs to act as chemical probes of the Milky Way.
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5.1 Introduction

M dwarfs make up 75% of all stars in the Milky Way. The M dwarf sequence begins at

approximately 0.6 M� and ends at the main sequence turn off at 0.08 M�, although this

boundary can vary with age and composition. Midway through this mass sequence, M

dwarfs lose their interior radiative zone and become fully convective from core to surface.

In contrast, the Sun’s outer convective envelope (containing 2% of the solar mass) only

extends approximately 200,000 km (28% of the solar radius) inwards. Models of stellar

structure that try to capture these changes have difficulties reproducing the observed

mass-radius relation at the low mass end (Torres 2013). Particularly, stellar models tend

to under predict the radius and over predict the temperature compared to observations.

The temperatures present in M dwarf atmospheres allow molecular species such as

TiO, VO, FeH, and CaH, among others, to form. These molecules blanket the optical

spectrum with many overlapping lines and bands, eliminating the spectral continuum

and suppressing the star’s optical flux. Complete line lists for identified species in M

dwarf atmospheres, particularly at relevant temperatures, are lacking and some species

remain to be identified. The absence of continuum also inhibits directly measuring an M

dwarf’s metallicity from direct measurements of line strengths.

While forward modeling an M dwarf spectrum to compare to observations and

measure metallicities has proven difficult, empirical relationships have shown significant

ability to determine an M dwarf’s physical properties. M dwarfs in wide binaries with

more massive F, G, or K primary stars likely formed out of the same bulk composition.

Therefore, the metallicity measured in the primary star can be assumed for the M dwarf

to calibrate an empirical relation. Bonfils et al. (2005) analyzed a sample of 20 M dwarfs
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with solar type primary stars and calibrated a photometric metallicity relation using

the stars’ absolute K band magnitudes (MK and its V −K color). They estimated the

precision of this relation to be 0.2 dex. However, Johnson & Apps (2009) found that

this calibration was not useful outside of Bonfils et al. (2005)’s narrow calibration range

and significantly underestimated the metallicity of M dwarfs with high metallicities.

Follow-up work by Schlaufman & Laughlin (2010) expanded the calibration sample and

widened the spectral type range as well. Their photometric metallicity relation had a

precision of 0.15 dex, although Neves et al. (2012) tested this calibration on a separate

sample of FGK - M common proper motion binaries and found an RMS precision of 0.19

dex in metallicity.

Advances in estimating metallicity directly from a stellar spectrum have been made

by moving from the optical to the near infrared, where the density of spectral lines and

molecular features is much lower. Rojas-Ayala et al. (2010) found that the combination

of the Na I doublet and the Ca I triplet in the K-band can reliably determine an M

dwarf’s metallicity with a correction for the effects of temperature. This calibration was

then updated by Rojas-Ayala et al. (2012) and applied to 133 solar neighborhood M

dwarfs. A similar metallicity index in the near infrared H band was discovered by Terrien

et al. (2012) with a precision of 0.14 dex. Taking a broad approach, Mann et al. (2013a)

used stellar spectra spanning 0.35 - 2.45 microns and found metallicity sensitive features

throughout. Infrared features produced a metallicity precision of 0.1 dex, but they found

an optical-only calibration could be accurate to 0.16 dex (Mann et al. 2013a). By using

early M dwarf - late M dwarf binary pairs, Mann et al. (2014) was able to bootstrap this

calibration towards lower mass stars. These techniques were also refined and pushed

towards redder target stars by Newton et al. (2014), who obtained metallicities for 447
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nearby M dwarfs with a precision of 0.12 dex using solely the K band Na line.

The Sloan Digital Sky Survey (SDSS) has provided us with 32 million M dwarfs in

its photometric study (Bochanski et al. 2010), of which 40,000 M and L dwarfs have

optical spectra (West et al. 2008). These stars have also served as useful probes of the

local Milky Way thin and thick disks (Fuchs et al. 2009; Bochanski et al. 2010). The

ratio of the strengths of an M dwarf’s TiO and CaH molecular indices serves as a useful

metallicity indicator, and these indices can be measured directly from the SDSS spectra

of SDSS M dwarfs (Lépine et al. 2007). West et al. (2011b) took advantage of this index

in order to identify a correlation between these indices and the g − r and r − z colors of

SDSS M dwarfs. Even though this relationship was coarse, West et al. (2011b) was able

to exploit the ubiquitousness of M dwarfs in the Milky Way and this relation in order to

probe the metallicity distribution of the Milky Way as a function of height above the

Galactic plane.

The future Large Synoptic Survey Telescope (LSST) is slated to be on sky in 2019.

LSST will observe the full southern sky in the Sloan ugriz filters every few nights,

collecting millions of exposures over its 10-year survey lifetime. During this survey, LSST

will uncover millions of M dwarfs in the Milky Way, out to a distance of 10 kpc. As

LSST is a photometric survey only, it will be necessary to push photometric techniques

as far as possible in preparation for the wealth of data and discoveries that LSST is set

to unveil.

In this paper, we describe calibrations and differences between various filter systems.

In order to clarify this discussion, we will define here the various filter systems and

nomenclature we will use through the rest of this paper. The Sloan filter system,
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particularly the response function of its filters, is defined in Fukugita et al. (1996).

However, the academic definition of this filter system is also defined by the camera at

the SDSS Monitor telescope, whose sensitivity is different from the system used for the

SDSS survey. In fact, Fukugita et al. (1996) defines the Sloan filters themselves, but does

not describe any physical Sloan photometric system.

There are currently two nominal Sloan photometric systems, with differences that

will become important throughout this text. There is the primed u′g′r′i′z′ system and

the unprimed ugriz system. The primed system is defined by the United States Naval

Observatory (USNO) 40 inch telescope, which defines a network of primary standard

stars and their primed magnitudes (Smith et al. 2002). In contrast, the unprimed ugriz

system refers to the magnitudes as measured by the SDSS survey itself. The differences

between these systems originate in shifts in the Sloan filters in the SDSS telescope.

The filters used for the SDSS survey, when placed under vacuum in the same housing

as the SDSS detectors, show a decrease in their effective refractive index. Because

the Sloan filters use an interference cutoff at the red end of each filter, this moves

the red edges of the filter blueward by approximately 2.5% of the cutoff wavelengths,

compared to the u′g′r′i′z′ system at USNO, where the filters are kept in ambient air.

The SDSS collaboration has provided linear transformations with small color terms to

convert between the primed and unprimed systems, but they explicitly note that these

transformations are not to be applied to very cool objects or objects with complex

spectra1. M dwarfs, by their nature, are very cool objects and have complex spectra, and

therefore we can expect there to be significant differences between the u′g′r′i′z′ system

1http://classic.sdss.org/dr7/algorithms/fluxcal.html
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and the ugriz system for these stars.

In this paper, we describe a photometric calibration of the Sloan system for cool, red

objects observed with the Fred Lawrence Whipple Observatory (FLWO) 48 inch telescope

with KeplerCam. All together, we will discuss 3 photometric systems. The primed

u′g′r′i′z′ system magnitudes, which we described above, are measurements defined by

the USNO 40 inch telescope and the network of standard stars observed in Smith et al.

(2002). We will further reference two unprimed systems, which we will denote with

subscripts. uSDSSgSDSSrSDSSiSDSSzSDSS will refer to the system defined by the SDSS

survey, with its shifted filter system. u48g48r48i48z48 will refer to the observations we

describe in this paper, taken using the FLWO 48 inch telescope with Keplercam and its

set of Sloan filters.

We have observed 150 mid-to-late M dwarfs in g48, r48, i48, and z48 from this site

on photometric nights, calibrated against Sloan standard stars from the primed system

observed on these same nights. By combining these observations with trigonometric

parallax measurements and spectroscopic metallicity measurements, we calibrate a

luminosity-color-metallicity relation with a precision of 0.12 dex and a color-color

metallicity relation with a precision of 0.10 dex. In section 2, we describe our observing

program and our target stars. In section 3, we detail our analysis method, our

photometric model, and a detailed description of our photometric system, as well as

a conversion between the g48r48i48z48 and the g′r′i′z′ system. Section 4 details our

metallicity relation and implications for LSST.
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5.2 Observations

All observations were taken with the 48-inch telescope on Fred Lawrence Whipple

Observatory (FLWO) on Mt. Hopkins, AZ with the KeplerCam CCD. KeplerCam uses

back illuminated 4096×4096 Fairchild CCD 486 detector with a pixel scale of 0.336′′

pix−1 unbinned. All images were taken in the 2×2 binning mode, with a detector full well

of 100,000 counts per pixel. KeplerCam images are read out by 4 amplifiers, subdividing

its 23.1× 23.1 arcmin field of view into 4 equal sections. For this work, we used only one

quarter of the full CCD, with all of our targets centered in amplifier 2. This is typical of

work done with this instrument, as amplifier 2 has the lowest gain and a more uniform

flat field, though the full CCD was used for the Kepler Input Catalog.

The FLWO 48-inch has a set of Sloan filters available for use. 2 In Figure 5.1,

we show the filter transmission curves for the 48-inch Sloan filters, and we list the

transmission curve for each filter in Table 5.1.

We obtained data on 21 nights that we believed were going to yield photometric

conditions based upon satellite imagery and the meteorological instrumentation on

Mt. Hopkins. Due to this opportunistic observing strategy, these nights were typically

shared with other observing programs on the instrument on a first-half/second-half basis,

although occasionally we were the sole program observing on a given night.

Each observing night, prior to sunset, we obtained a series of bias and g′r′i′z′

2The filters used in this work differ from the Sloan filter set used to make the Kepler Input Catalog

(KIC) (Brown et al. 2011), as the FLWO filter set was replaced in 2011. We caution that the results

presented in this paper should not necessarily be applied to the magnitudes reported in the KIC, as

differences in these filter sets may be significant.
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Figure 5.1: Filter transmission profiles for the ugriz filter set available at the FLWO

48-inch telescope. These filters are a different filter set than those used to make the KIC

(Brown et al. 2011). The new filters more closely match the definitional Sloan filters. We

make the filter curves available in Table 5.1.

161



CHAPTER 5. SLOAN PHOTOMETRY FOR THE NEARBY M DWARFS

dome flat images for calibration purposes. We began science observations with a

series of equatorial Landolt standard fields (Landolt 1992) with measured g′r′i′z′

magnitudes from Smith et al. (2002). We only observed standard fields that are at or

below an airmass of X = 2.0. We took 8 exposures of each field, in the filter order

g48, r48, i48, z48, z48, i48, r48, g48, providing two independent frames per filter per pointing.

After this set of calibration images, we took a set of exposures of two or three bright

(rSDSS ≈ 14) Sloan Digitized Sky Survey (SDSS) M dwarfs from West et al. (2011b).

These calibration and SDSS M dwarf observations typically take between 60 and 90

minutes to perform. Once complete, we obtained g48, r48, i48, z48, z48, i48, r48, g48 science

images of our target M dwarfs. Before observing each field, an acquisition image was

taken to verify pointing and to move the target star to the same region on the detector

(typical precision of 10 pixels).

Our target M dwarfs are a subset of the MEarth-North target list. The MEarth-

North target list is itself a subset of 1844 nearby M dwarfs from the LSPM-North

catalog (Lépine & Shara 2005) believed to be within 33 parsecs of the Sun (Lépine

2005). Our targets are further downselected to stars whose colors indicate that they

likely have R < 0.33R� (Nutzman & Charbonneau 2008). For this program, we further

required that our targets have trigonometrically measured distances, and metallicity

measurements derived from near infrared spectroscopy from Newton et al. (2015a). One

set of target observations is chosen to take the same amount of exposure time as our

standard field and SDSS M dwarf observations, typically one hour. After each set of

target stars we repeat our standard star and SDSS M dwarf observations, replacing fields

that have set with fields that are rising. Each set of target star observations contains a

new set of targets; we do not return to the same target stars in a given night. However,
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on some nights we do obtain additional observations of target stars that had been

observed in previous nights in order to assess possible systematic errors between nights.

The majority of target stars are observed on only one individual night. We begin and

end each night of observations with a set of standard star observations, to ensure that

we have full time-domain coverage of the atmospheric conditions.

The data presented here were taken between October 28, 2014 and June 01, 2015,

Arizona time. Typical seeing on Mt. Hopkins on photometric nights and across our

observations is 1′′. We combined our bias frames from each night with the IRAF3

command zerocombine. We bias-subtract each image and then median-combine our

bias subtracted flat field images. We divide each image by the normalized flat field to

correct for flat-fielding effects. We have not corrected our z48 band images for fringing

effects nor made a nonlinearity correction. We performed aperture photometry using the

task PHOT in the IRAF DAOPHOT package. We utilized a 13 pixel (8.7′′) diameter

aperture for all observations, with an inner sky annulus of 15 pixels and an outer sky

annulus of 20 pixels. Using apertures of 10 pixels (with the same sky annulus) and 16

pixels (with an inner and outer sky annulus at 20 and 25 pixels) did not significantly

change the number of measured counts (in ADU). Therefore, we believe that we are

not significantly affected by counts that lie outside of our aperture and do not need to

perform an aperture correction. All observed calibration and target stars are chosen to

be contamination-free (or nearly contamination-free in the case of close binaries) and we

do not believe contamination to be a significant source of error in our measurements.

3IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Asso-

ciation of Universities for Research in Astronomy, Inc., under cooperative agreement with the National

Science Foundation.
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5.3 Analysis

We adopt the following model to describe out observations:

m∗,f = zif − 2.5 log10(fobs/texp)−
(
ki1,f + ki2,f (m∗,g −m∗,i)

)
×(X − 1) (5.1)

where m∗,f is the magnitude of the star in filter f , zif is the zero point of the instrument

on night i in filter f , fobs is the observed flux (in counts per second) for the star, texp is

the exposure time of the image, ki1,f and ki2,f are fitted coefficients for airmass and color

effects, respectively, for night i in filter f , and X is the airmass of the object. Here, i

and f denote the night of the observation and the filter used.

We initialize the 48-inch system close to the g′r′i′z′ system defined in Smith et al.

(2002) by fitting for the airmass coefficient, color coefficient, and zero point offset for

each night and each filter. Once we have this initial solution, we relax the requirement

that our measured magnitudes match that of Smith et al. (2002) and we fit for the

g48r48i48z48 magnitudes for each star. We then iterate between fitting the magnitude

of each star across all nights and the nightly atmospheric coefficients for each night

until the solution has converged. During this process, we eliminate 3 nights for which

the standard star magnitudes show RMS deviations great than 0.05 magnitudes (23

December 2014, 4 January 2015, and 08 May 2015). These nights also show significantly

higher extinction (via the telescope zero points) than for other nights and we believe

these nights to not be photometric. We also eliminate two additional nights, April 8-9,

2015. On these nights there was an error with the telescope filter wheel control system,

and observations were not taken in the correct filters. The median absolute deviation
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(MAD, Hoaglin et al. 1983) for any given night ranges from 0.005 magnitudes to 0.02

magnitudes. In Table 5.2, we list the atmospheric parameters (k1, k2, z) for each filter on

each night as well as the MAD for each night.

All together, we obtained observations on 16 nights that exhibited photometric

conditions. On these 16 nights, we obtained observations of 34 standard stars from

the selected areas in Landolt (1992) with g′r′i′z′ measured by Smith et al. (2002),

observations of 10 M dwarfs from SDSS, and observations of 150 mid-to-late Northern

hemisphere M dwarfs from the LSPM-N catalog. In Tables 5.3 and 5.4 we list the

observed 48-inch Sloan g48r48i48z48 magnitudes for our standard stars and target M

dwarfs, respectively. For our target stars, we also list the MAD for the night the

measurement was made, whereas for the standard stars and SDSS M dwarfs we list

the MAD across all photometric nights of observations for that star. We also list the

variance for each star. The magnitudes for stars with high variance (0.05 magnitudes

and larger) should be treated with caution. Particularly, M dwarfs with high variance

in their blue magnitudes may have been undergoing a flare at the time of observations.

Due to the low number of total observations made of each star, we cannot eliminate data

points based on stellar activity.

5.3.1 Converting between the FLWO Sloan and the USNO

Sloan Systems

It is desirable to be able to convert our native FLWO g48r48i48z48 magnitude system to

the USNO g′r′i′z′ system. Unfortunately, the g′r′i′z′ system lacks a significant number

of red standard stars. Of the 158 stars in the Smith et al. (2002) standard star network,
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only 12 have a g′ − i′ color greater than 2, and only 5 of those have a g′ − i′ color greater

than 2.5. In contrast, all of our observed SDSS M dwarf stars have a g − i color greater

than 2 and only 3 of 150 of our target M dwarfs have a g− i color less than 2.5. We show

a histogram of the g48− i48 colors for the Sloan standard stars and for our M dwarf target

stars in Figure 5.2. This lack of red standard stars in the USNO g′r′i′z′ system limits

the effectiveness of converting between these two systems. When fitting the atmospheric

color coefficient (k2) in our native system, we made use of the SDSS M dwarfs we

observed as part of our calibration observations. As these M dwarfs are significantly

redder than the USNO standards, they are affected by the k2 term more than bluer

stars and therefore have significant weight in determining that term in our model, even

though all stars are weighted equally. While this is desirable because we would like our

photometric system to be constrained over as broad a color range as feasible, we may also

accrue additional error at the blue color end because the USNO g′r′i′z′ system did not

have to fit atmospheric color effects for stars this red. Nevertheless, we adopt a simple

linear model in g − r color space to convert our measured griz magnitudes to the g′r′i′z′

photometric system. We use solely our observations of stars from Smith et al. (2002),

and do not use our SDSS M dwarf observations or convert their SDSS magnitudes from

West et al. (2011b) to the g′r′i′z′ system. We find:

g48 − g′ = −0.0228(g48 − i48) + 0.0119 (5.2)

r48 − r′ = −0.0016(g48 − i48)− 0.0046 (5.3)

i48 − i′ = −0.0075(g48 − i48)− 0.0075 (5.4)

z48 − z′ = −0.0192(g48 − i48)− 0.0019 (5.5)
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The median absolute deviation of these relations are 0.015, 0.012, 0.016, and 0.017

magnitudes for the g-band, r-band, i-band, and z-band, respectively. In Figure 5.3, we

plot these relations along with all of the photometric standards observed in our program.

5.3.2 The problem with r48, r
′, rSDSS and red stars

We further find that our calibration observations of SDSS M dwarfs show significant

differences in measured magnitudes in our Sloan g48r48i48z48 system when compared

directly to the SDSS magnitude system. The differences in magnitudes between the

g48r48i48z48 magnitudes and the gSDSSrSDSSiSDSSzSDSS magnitudes for our observed

SDSS M dwarfs have median absolute deviations of 0.1 magnitudes or larger in all filters,

making direct conversion between the SDSS magnitude system and our Sloan magnitude

system at red colors highly uncertain. The reason for this dispersion is likely due to the

significant difference between the SDSS filters (which exhibited an effective wavelength

shift when put under a vacuum in the SDSS telescope) and the shape of an M dwarf

spectrum in this wavelength regime. In Figure 5.4, we plot the Sloan and SDSS filter

passbands on top of an M4V stellar spectrum. We note in particular that the edge of

the r′ band lies close to a prominent molecular TiO feature, and therefore small shifts in

the bandpass or sensitivity of the filter may significantly affect the r magnitude, making

estimating stellar parameters with high accuracy difficult. In contrast, the g-band is

relatively free of this problem (although there are features at the edges of all filters).

Therefore, for the rest of this paper, we will utilize our Sloan g48 measurements in

obtaining a photometric metallicity relation relevant for M dwarfs in place of r48.
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Figure 5.2: Histogram of the g′ − i′ colors of the g′r′i′z′ standard star network (blue)

with the measured g48 − i48 colors of our target M dwarfs (green). The primed system

standard star network lacks a significant number of red standard stars, making the red

end of the Sloan filter system highly uncertain. In contrast, nearly all of our target M

dwarfs have a g48 − i48 color greater than 2.5, making the atmospheric color term much

more important when performing our calibration.
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Figure 5.3: Differences between the 48-inch FLWO Sloan system and the USNO Sloan

system as a function of g− i color in the FLWO Sloan system. Each blue point represents

an observed star from the standard star network presented in Smith et al. (2002). We note

that the USNO g′r′i′z′ system lacks standard stars at significantly red colors. Particularly,

only 5 of the 158 standard stars in Smith et al. (2002) have a g′ − i′ > 2.5 while only 3

of our 150 target M dwarfs have a g48 − i48 < 2.5. The lack of dwarf standard stars at

these colors (where the k2 term in equation 5.1 becomes more significant) may account

for some of these differences in our filter system, as Smith et al. (2002) did not have to

account for these red of colors.
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Figure 5.4: Filter curves for the ugriz filter system (magenta, green, red, yellow, black),

with the SDSS filters as solid lines and the FLWO 48-inch filter system as dashed lines.

An M4V spectrum from the Pickles (1998) library is plotted in blue. We note the large

difference in the red cutoff in the two r filters and its placement close to a sharp molecular

TiO feature in the stellar spectrum. For this reason, we recommend not using broad band

r measurements for photometric studies of M dwarfs, as slight differences between filters

and radial velocity differences in stars may push this feature into and out of the broad

band filter, creating metallicity and kinematic biases. Instead, we recommend the use of

the g band magnitudes for these stars, as this portion of the spectrum does not exhibit

this problem.
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5.4 Discussion

5.4.1 A luminosity-color-metallicity relation for mid-to-late M

dwarfs

Armed with natively measured griz magnitudes for 150 mid-to-late M dwarfs with

spectroscopically measured metallicities, we can calibrate a photometric metallicity

relation and eliminate the need for (time-consuming) spectroscopic measurements and

allow M dwarfs in large-scale surveys to be used as Galactic probes. We first attempt

to calibrate a luminosity-color-metallicity relation, as the M dwarfs in our sample all

have measured trigonometric parallaxes. In Figure 5.5, we plot the absolute 2MASS

Ks magnitude and the absolute i48 magnitude for our M dwarf sample as a function of

g48 − i48 color. Metallicity measurements are taken from Newton et al. (2015a), which

is a calibration of the metallicity combinations of Mann et al. (2013a) and Mann et al.

(2014). Similar to previous studies (Bonfils et al. 2005; Neves et al. 2012; Schlaufman

& Laughlin 2010) and our own previous work (Dittmann et al. 2016), we find that at a

fixed absolute magnitude (both i48 and MK), metal rich M dwarfs are generally redder

than their metal poor counterparts.

We fit a 2d linear spline in color, absolute magnitude, and metallicity to our target

stars using the method described in Dierckx (1981). We overplot a [Fe/H] = 0 main

sequence of this interpolation in Figure 5.5, and make this main sequence available

in Table 5.5. Our interpolation utilizing g48 − i48 and Mi is able to reproduce the

measured metallicities with a median absolute deviation of 0.080 dex (0.118 dex standard

deviation), comparable to the precision of the spectroscopic measurements themselves.
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Figure 5.5: Color-Luminosity-Metallicity diagrams for the target M dwarfs in our ob-

serving program. The top plot shows the absolute K band magnitude as a function of

g48− i48 color, while the bottom plot shows the absolute i48 band magnitude as a function

of g48 − i48 color. Target star data points are colored according to their spectroscopic

metallicity derived from near-infrared spectra (Newton et al. 2015a). We plot an interpo-

lated [Fe/H] = 0 main sequence in black. As we found in Dittmann et al. (2016) for these

stars, the more metal rich stars at a given MK appear redder in color than metal poor

stars. We have calibrated a (g − i, MK) metallicity relationship with a median absolute

deviation of 0.080 dex and a (g48− i48, MK) metallicity relationship with a median abso-

lute deviation of 0.077 dex. We do not make any attempt to remove possible unresolved

binaries or over luminous sources. Both binaries and over luminous sources will have a

bright absolute magnitude than their color would suggest, allowing them to masquerade

as metal-rich stars of higher mass.
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Our interpolation utilizing g48 − i48 and MK performs slightly better, with a median

absolute deviation of 0.077 dex (0.114 dex standard deviation).

5.4.2 A color-color-metallicity relation for mid-to-late M dwarfs

A significant downside of requiring an absolute magnitude to determine through

photometric means an M dwarf’s metallicity is the requirement of a distance

measurement or estimate of the star in question. The upcoming LSST survey will

discover millions of M dwarfs in the Milky Way, but very few of these stars will be bright

enough to have a distance measurement from GAIA or will ever have a near-infrared

spectrum taken from which to determine metallicity. Therefore, their use as Galactic

probes will be limited by our ability to determine their fundamental properties from

purely photometric data.

West et al. (2011b) note that the metallicity indicator ζ, a measure of the relative

strength of the TiO and CaH bands (Lépine et al. 2007), correlates with the SDSS g − r

and r − z colors of SDSS M dwarfs. West et al. (2011b) also note that ζ correlates with

an M dwarf’s height above the Galactic plane. Because height above the Galactic plane

is expected to increase with age, they suggest that ζ is a useful metallicity indicator, as

older stars are more likely to be metal poor. In Figure 5.6 we plot our measured g−r and

r−z colors for our target stars, again colored by their measured spectroscopic metallicity.

We do not find a significant metallicity calibration with this color combination alone.

We believe this failure to be due to the shift in the SDSS r filter when compared to the

standard r′ filter (see section 5.3.2), as the spectral features present in ζ lie near the red

edge of the r′ band.
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Figure 5.6: g48 − r48 vs r48 − z48 for our target M dwarfs. Each data point is colored

with the spectroscopic metallicity determined by Newton et al. (2015a). This color index

has been previously shown by West et al. (2011b) using SDSS data to be correlated with

ζ (Lépine et al. 2007), an optical spectroscopic metallicity indicator. The ζ index relies

on the relative strength of the TiO features and CaH, CaH2 and CaH3 features, which lie

between 681.4 and 699.0 nanometers. The location of the TiO feature in particular lies

on the red cut-off of the SDSS r-band filter. We suggest that the photometric metallicity

relationship found by West et al. (2011b) applies to data taken with only the (wavelength-

shifted) SDSS filters and is not valid for studies with filters closer to the Sloan photometric

system. We do not find any significant correlation with metallicity solely with these two

colors.
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We attempted to calibrate a color-color metallicity relation utilizing our remaining

colors. In Figure 5.7 we show the g48 − i48 vs. i48 − z48 color plane for our observed

targets. We find a slight correlation with metallicity with these two colors. The median

absolute deviation in the metallicity of our interpolation when attempting to predict

the metallicity of our target stars is 0.093 dex, while the standard deviation is 0.160

dex. This is only slightly smaller than the 0.19 dex standard deviation of the metallicity

of our target stars. Therefore, while we find that a star’s location in the g48 − i48 vs.

i48− z48 color-color plane is marginally sensitive to an M dwarf’s metallicity, we find that

this relation is too inaccurate to be of use in future studies. Furthermore, we find that

there is no precise color-color metallicity indicator that uses solely optical Sloan colors.

If we use data from the 2 Micron All Sky Survey (2MASS) (Skrutskie et al. 2000),

we are able to find a set of colors that is sufficiently correlated with metallicity to create a

robust calibration. In particular we find that utilizing the 2MASS Ks band photometric

data is the most effective. This is not surprising, as Delfosse et al. (2000) has previously

found that the absolute Ks magnitude of an M dwarf is a good indicator of the star’s

mass and is not particularly sensitive to metallicity. Using the Ks magnitude in one of

our colors allows us to decouple the color change caused by a changing stellar mass with

the color change caused by the increase or decrease of metals in the stellar atmosphere.

In Figure 5.8, we show the g48− i48 vs. i48−Ks color plane for our observed targets,

with each data point colored by its spectroscopically determined metallicity. We find

these colors to be an indicatior of the metallicity of the object, with a bluer g48 − i48 at

a given i48 −Ks color trending towards lower metallicities. An interpolation using our

data is able to reproduce the spectroscopically measured metallicities from Newton et al.

(2015a) with a median absolute deviation of 0.065 dex (standard deviation of 0.096 dex).
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Figure 5.7: g48 − i48 vs i48 − z48 for our target M dwarfs. Each data point is colored

with the spectroscopic metallicity determined by Newton et al. (2015a). We show an

interpolated [Fe/H] = 0 main sequence in black. While these two colors show a slight

correlation in metallicity, the standard deviation of the residuals of our interpolation is

0.16 dex. This is only slightly less than the natural standard deviation of our sample

(0.19 dex), and therefore these two colors do not provide a very sensitive metallicity

diagnostic. We are unable to find any color-color metallicity sensitive index that relies

solely on measurements in the Sloan optical bands.
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Figure 5.8: g48 − i48 vs i48 − Ks for our target M dwarfs. Each data point is colored

with the spectroscopic metallicity determined by Newton et al. (2015a). We show an

interpolated [Fe/H] = 0 main sequence in black. Our interpolation is able to reproduce

these spectroscopically determined metallicities with a median absolute deviation of 0.065

dex, and a standard deviation of 0.107 dex, comparable to the precision of the spectro-

scopically determined parameters themselves. Including a near-infrared magnitude in our

color-color relations significantly improves our ability to determine the metallicity of M

dwarfs, and will be essential if M dwarfs are to be used as probes of Galactic structure

and assembly.
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5.4.3 Potential Effects of Activity, Age, and Surface Gravity

When calibrating broadband photometric relations to stellar physical parameters,

like metallicity, it is important to consider possible systematic effects associated with

other physical parameters of the star. Low-mass subdwarf stars are older, smaller, low

metallicity stars that are kinematically associated with the Galactic halo. Their smaller

sizes means that at a given color, a subdwarf will have a dimmer absolute magnitude

(Lépine et al. 2007), moving the target lower in the plots in Figure 5.5, as well as in

Figure 3.3. This method would assume, however, that these stars were low mass main

sequence stars instead ofe sub dwarfs, and therefore underestimate their mass. Since we

would erroneously believe the star to be a lower mass (instead of a subdwarf), we would

also believe that the star had a lower metallicity than it actually had.

Lépine et al. (2007) found that dwarfs and subdwarfs can be distinguished by where

they fall in the [CaH2+CaH3,TiO5] spectral indices diagram. However, this method

requires the collection of optical spectra for all of our targets, which are not currently

available. We are currently undertaking a survey to collect low resolution optical spectra

of many of our targets, however. In the Solar Neighborhood, the population of stars is

dominated by the thin disk, and the relative number of halo subdwarfs is expected to

be small, and therefore we do not believe that subdwarf contamination is a significant

effect on our results. Similarly, we ignore potential contamination from young stars, as

the relative number of young systems in our sample of field stars should be small.

Activity and surface gravity are additional eternal parameters which may

significantly affect a target M dwarf’s color, aside from metallicity. More active stars

with stronger magnetic fields may be able to inflate the upper atmosphere of the star.
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Because this is where the emergent stellar spectrum is generated, the spectrum will have

a lower surface gravity than for a comparatively inactive star of the same spectral type.

This will decrease the width of the spectral features throughout the spectrum and in all

photometric passbands. Because of this, it is not possible to say a priori how the color

of an M dwarf will change with a corresponding change in magnetic field as the effect

will depend on the relative strength change of the lines within each passband. We have

not calibrated this effect in this chapter or in chapter three. Additionally, the effect

of surface gravity and stellar activity was not calibrated in the original spectroscopic

determinations of our M dwarfs, as the spectral measurements themselves are calibrated

off of wide FGK - M star binaries for which the metallicity was determined from the more

massive primary star and correlated with M dwarf spectral features - irrespective of the

M dwarfs potential activity. Therefore, this potential systematic effect is embedded at a

fundamental level within our sample. These effects, if left uncalibrated, may represent

a lower limit of precision photometric metallicity calibrations may achieve, and larger

samples are needed in order to calibrate all of these potential effects. However, we have

shown that these photometric measurements are correlated with spectroscopically based

metallicity determinations, and we believe that the majority of the photometric variation

seen in the M dwarf population can be attributed to the effects of metallicity.

5.4.4 Implications for the Large Synoptic Survey Telescope

(LSST)

We have found that there is no precise color-color-metallicity relation for M dwarfs that

relies solely on the optical g48r48i48z48 magnitudes of an M dwarf. In order to accurately
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determine an M dwarf’s metallicity using photometric data alone, a near infrared

magnitude measurement is essential. LSST will observe the entire southern sky every

few days with an 8 meter telescope in the Sloan photometric system. However, LSST

will not observe in the near infrared J, H, or Ks bands. While the survey will discovery

millions of M dwarfs in the Milky Way with its unprecedented depth, one would not

be able to determine stellar metallicities solely from these data, and therefore they will

not be useable for determining the chemical structure of the Milky Way. Losing the

lower mass end of the main sequence is detrimental, as on average the M dwarfs should

be older than other dwarf stars in the Milky Way, as their main sequence lifetimes are

greater than a Hubble time. Therefore, M dwarfs have the potential to probe the earliest

formation epoch of the Milky Way, provided their kinematic history hasn’t been erased

and can be recovered. Furthermore, being at the lowest mass end of the main-sequence,

any changes in the initial mass function over the lifetime of the Milky Way will be felt

most strongly by stars on extremes of the main sequence. For these reasons, it is essential

that LSST be able to measure the metallicities of the M dwarfs it discovers.

The VISTA survey is a European survey aiming to map the Southern hemisphere

in the 2MASS J and Ks bands to a limiting magnitude of J = 20.2 and Ks = 18.5,

significantly deeper than the 2MASS catalog. Due to the red colors of M dwarfs, many

of the new M dwarfs detected by LSST at optical passbands will have a counterpart

detected in the VISTA Hemisphere Survey. These two data sets, when combined, will

allow the photometric determination of the metallicities of M dwarfs throughout the

Galaxy and enable their use as chemical probes of the Milky Way.
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5.5 Conclusions

We used the 48-inch telescope and KeplerCam at the FLWO on Mt. Hopkins, AZ to

measure Sloan griz magnitudes for 150 Northern hemisphere solar neighborhood M

dwarfs. By combining these measurements with known trigonometric parallaxes and

spectroscopic metallicity measurements from Newton et al. (2015a), we have calibrated a

new color-magnitude-metallicity relation and a color-color-metallicity relation. We find

that the location of an M dwarf in the MK (or Mi) vs g48 − i48 plane is a metallicity

indicator with a standard deviation of 0.114 (or 0.118) dex.

We further find that metallicity indicators that do not rely on a distance

measurement but solely on an optical colors are unable to accurately determine the

metallicity of an M dwarf. Previous SDSS color-color relations that correlated with the

spectroscopic ζ parameter (itself believed to be a metallicity indicator) are shown not to

be effective. We ascribe this result to known shifts in the SDSS r-band filter relative to

the r′ and r48 filter.

We have found an accurate color-color-metallicity relation that utilizes a near

infrared magnitude in one of its colors. We find that the location of an M dwarf in the

g48 − i48 vs. i48 −Ks color plane is a robust indicator of the star’s metallicity, with a

standard deviation of 0.096 dex. In order for future all sky surveys to take advantage of

this relationship, LSST and VISTA sources will have to be cross-matched.
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Table 5.1:: Filter transmission for the FLWO 48-inch telescope

Filter Wavelength (nm) Percent Transmission

u 200 0.00000

u 201 0.00016

u 202 0.00032

u 203 0.00000

u 204 0.00001

... ... ...
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Table 5.5:: [Fe/H] = 0.0 Main Sequence Colors and Absolute Magnitudesa

g48 − i48 i48 −Ks i48 − z48 Mi MK

2.500 2.748 0.578 8.701 5.954

2.541 2.768 0.594 8.936 6.168

2.582 2.789 0.610 9.158 6.369

2.622 2.812 0.626 9.369 6.558

2.663 2.836 0.643 9.570 6.734

... ... ... ... ...

a) In all cases we have interpolated a [Fe/H] = 0 main sequence using g48 − i48, the

spectroscopic metallicity, and the variable in one of the other 4 columns. We do not

recommend using the i48 −Ks, i48 − z48, Mi, or MK columns with each other, as the

interpolations that produced them are fitted independently.
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Gómez Maqueo Chew, Y., et al. 2014, A&A, 572, A50

Gressler, W., et al. 2014, in Proc. SPIE, Vol. 9145, Ground-based and Airborne

Telescopes V, 91451A

Harrington, R. S., & Dahn, C. C. 1980, AJ, 85, 454

—. 1984, IAU Circ., 3989, 1

Harrington, R. S., et al. 1993, AJ, 105, 1571

Hartman, J. D., Bakos, G. Á., Noyes, R. W., Sipőcz, B., Kovács, G., Mazeh, T.,
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Lépine, S., & Gaidos, E. 2011, AJ, 142, 138
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Mann, A. W., Gaidos, E., Lépine, S., & Hilton, E. J. 2012, ApJ, 753, 90

Martin, E. L., & Kun, M. 1996, A&AS, 116, 467

Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E.

2001, AJ, 122, 3466

Mayor, M., & Queloz, D. 1995, Nature, 378, 355

203



REFERENCES

McCarthy, C., Zuckerman, B., & Becklin, E. E. 2001, AJ, 121, 3259

McCullough, P. R., Stys, J. E., Valenti, J. A., Fleming, S. W., Janes, K. A., &

Heasley, J. N. 2005, PASP, 117, 783

McMahon, R. 2012, in Science from the Next Generation Imaging and Spectroscopic

Surveys, 37

Metcalfe, T. S., Mathieu, R. D., Latham, D. W., & Torres, G. 1996, ApJ, 456, 356

Monet, D. G., Dahn, C. C., Vrba, F. J., Harris, H. C., Pier, J. R., Luginbuhl,

C. B., & Ables, H. D. 1992, AJ, 103, 638

Montagnier, G., et al. 2006, A&A, 460, L19

Morales, J. C., et al. 2009, ApJ, 691, 1400

Morton, T. D., & Swift, J. J. 2013, submitted, ArXiv:1303.3013

Motalebi, F., et al. 2015, A&A, 584, A72

Moutou, C., Coustenis, A., Schneider, J., St Gilles, R., Mayor, M., Queloz, D., &

Kaufer, A. 2001, A&A, 371, 260
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