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Abstract

This thesis addresses the distributions of baryonic matter on three scales: the

outskirts of the gas and galaxy profiles in galaxy clusters, the clustering of galaxies of

galaxies on large scales and its relation to the underlying matter distribution, and the

extremes of the galaxy distribution: the connections between the most distant galaxies

ever discovered and the closest galaxies to our own, the Local Group Dwarfs. We begin

with investigations of the outskirts of galaxy clusters, where long-standing analytical

models of structure formation as well as recent simulations predict the existence of steep

density jumps in the gas (the ‘virial shock’) and dark matter profiles near the virial

radius. We describe a new method for deriving models for the gas distribution in galaxy

clusters, which relies on a few basic assumptions — including the existence of the virial

shock and a coincident density jump in the dark matter — and show a resulting profile

for the gas that is in good agreement both with X-ray observations of cluster interiors

and simulations of the outskirts, and requires fewer parameters than the traditional

three-parameter �-model.

Recent simulations have strengthened the arguments in favor of the existence of a

dark matter density jump, arising from the accumulation of particles at the apocenter of

their first orbit. Since cluster member galaxies are expected to follow similar collisionless

dynamics as the dark matter, the galaxy density profile should show a steep density
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jump as well. We present evidence for a feature consistent with a density jump in galaxy

density profiles constructed from photometry from the Sloan Digital Sky Survey and

Hectospec (MMT) spectroscopy of cluster members and discuss avenues for probing the

density jumps with future data sets.

Moving to larger scales where massive galaxies of di↵erent types are expected to

trace the same large-scale structure, we present a test of this prediction by measuring

the clustering of red and blue galaxies at z ⇠ 0.6 using the CMASS sample of galaxies

from the 12th Data Release of SDSS-III. The stochasticity between these two samples is

quantified via the correlation coe�cient r, which can be constructed from two di↵erent

statistics. Both statistics indicate that on intermediate scales (20 . R . 100 h�1Mpc)

there is low stochasticity between the two samples of galaxies, providing a constraint on

a key systematic in using large galaxy redshift surveys for cosmology.

In cosmology, dense redshift surveys permit the measurement of the scale of baryon

acoustic oscillations (BAO), which appear as a modest amplification at scales of about

R = 105 h�1Mpc in the two-point auto-correlation function of galaxies, provided that

there is a su�ciently high density of galaxies with accurately measured three-dimensional

positions. As a result, due to the expense of spectroscopic observations, to date most

BAO analyses have been performed at fairly low redshifts where present surveys can

attain the requisite densities without sacrificing e�ciency. We present a new method of

measuring the BAO using the cross-correlation of a sparse spectroscopic sample with a

denser, photometric sample of galaxies that will allow us to extend BAO measurements

to higher redshifts than are presently accessible with spectroscopy alone. We discuss

applications of this new method to current and upcoming datasets.
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Finally, we connect galaxies both near — the Local Group dwarf galaxies — and

far — the high-redshift galaxies discovered by space-based observatories like Hubble and

Spitzer. We evolve the local dwarfs back in time using stellar population synthesis code

and juxtapose the properties of their ancient selves against those of the galaxies already

discovered at high redshift. We additionally compare the properties of the dwarfs’

progenitors with the detection limits of the future James Webb Space Telescope (JWST ),

finding that JWST should be able to detect the progenitors of galaxies similar to a few

of the brightest local galaxies.
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Chapter 1

Introduction

Optical and infrared observations of the extragalactic sky yield seas of luminous

galaxies that exhibit a variety of colors, morphologies, and sizes. The distributions

of these galaxies are studied extensively via galaxy redshift surveys such as the CfA

Redshift Survey (Geller & Huchra 1989), the Sloan Digital Sky Survey (York et al. 2000),

and the 2dF Galaxy Redshift Survey (Colless et al. 2001). These surveys provide the

three-dimensional positions of galaxies in the universe and have revealed that galaxies

are distributed along filaments, with galaxy clusters — large groups of hundreds to

thousands of galaxies — arising at the nodes where the filaments intersect.

At the same time, cosmological investigations have firmly established that baryonic

matter, or the ordinary matter that makes up the luminous content of galaxies that

these surveys observe1, comprises only a small fraction — about 5% — of the universe’s

1
It is worth noting that in cosmology, the term “baryons” includes not just protons and neutrons but

also electrons, which are actually leptons.
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CHAPTER 1. INTRODUCTION

mass-energy density. The vast majority is in the form of dark energy (⇠ 70%) and

dark matter (⇠ 25%) (Ade et al. 2015), two unknown quantities whose natures modern

cosmology and astrophysics aim to determine. Dark energy drives the acceleration of the

expansion of the universe, whereas dark matter, whose influence is imparted in the form

of gravitational attraction, tends to counteract the e↵ect of dark energy on small scales

by clumping matter together.

The standard model of cosmological structure formation stipulates that galaxies

form in the potential wells of dark matter halos. Accordingly, the filaments of galaxies

at large scales are expected to trace massive threads of dark matter, and the galaxy

cluster nodes are themselves embedded in dark matter halos. The nodes continue to

grow to the present day via the accretion of matter onto the cluster from the filaments

and from mergers of clusters, physical processes that, as we shall see, are expected to

impart signatures on the outer profiles of clusters.

In what follows, we explore in detail the distributions of matter in these regimes

and the questions that they present. We begin in the nodes of the matter distribution,

galaxy clusters, which have played a fundamental role in the development of modern

astrophysics, and then transition to galaxy distributions on large scales, which are

at present one of the primary and most competitive probes of cosmology. Lastly, we

consider galaxies at two extremes: the dwarf galaxies that surround the Milky Way and

Andromeda on small scales in the Local Group, whose nearness to our galaxy implies

that we can attempt detailed studies of stellar contents and star formation histories, and

the high-redshift galaxies discovered by the Hubble Space Telescope and Spitzer, which

are the most distant galaxies yet discovered and thus serve as an important means of

probing the universe at very early times.

2



CHAPTER 1. INTRODUCTION

1.1 Clusters of Galaxies

Studies of galaxy clusters have been intertwined with the development of modern

cosmology from the outset (for recent, comprehensive reviews of various aspects of

galaxy cluster astrophysics and cosmology, see Voit 2005; Allen, Evrard, & Mantz 2011;

Kravtsov & Borgani 2012; we will discuss only the most salient aspects here). The

first evidence for dark matter came from Swiss astronomer Fritz Zwicky’s observations

of the nearby Coma Cluster in the 1930s. He found a discrepancy between the mass

he estimated from the stellar content of the cluster’s constituent galaxies and the mass

that he determined from their velocity dispersions and referred to the missing matter as

“dark matter,” the name it still bears today. While subsequent observations reinforced

and continue to support Zwicky’s conclusions, some of the missing matter ended up

being accounted for in the 1970s with the advent of X-ray astronomy. Results from the

first X-ray astronomy mission, the Uhuru satellite, indicated that galaxy clusters have

extended X-ray halos arising as thermal bremsstrahlung from hot gas of about 107 K in

the clusters (e.g., Cavaliere, Gursky, & Tucker 1971; Gursky et al. 1971), revealing the

final component of the cluster mass.

Today, galaxy clusters are often termed the “laboratories” of astrophysics. As

discussed at the beginning, these objects are agglomerations of galaxies, but the galaxies

themselves make up only a minority of the total mass of the cluster. Most of the mass is

in the form of dark matter, but even up to about 90% of the luminous, baryonic matter

is in the form of this hot, intracluster gas that continues to be studied with modern

X-ray missions like Chandra and Suzaku. The baryonic and dark components of galaxy

3



CHAPTER 1. INTRODUCTION

clusters coexist in the same proportions within clusters as in the universe as a whole,

making each galaxy cluster e↵ectively a “mini-universe” that provides an invaluable

glance into the processes that have shaped the universe on a manageable scale.

The three components of galaxy clusters — dark matter, gas, and galaxies — are

probed in various ways. In the next few sections, we discuss how these components

permit various methods of detecting clusters and, in turn, empower clusters as probes of

cosmology. Lastly, we will turn to the next frontier in galaxy cluster astrophysics, the

outskirts of galaxy clusters, which have demanded increasing attention in recent years

due to the enhanced ability of simulations to capture features at such low densities as

well as the availability of data from wide-field imagers and spectrographs that permit

e�cient observations of these regions.

1.1.1 Detection of Galaxy Clusters

The earliest major catalog of galaxy clusters was the Abell catalog, compiled by

astronomer George Abell from the Palomar Observatory Sky Survey, a large extragalactic

survey conducted using the 48 inch Schmidt telescope on Mount Palomar, California

(Abell 1958). These 1,682 Abell clusters (out of an initial sample of 2,712) were selected

and classified as such on the basis of their richness and compactness; in particular,

he stipulated that a cluster must have at least 50 member galaxies no more than two

magnitudes fainter than the third brightest galaxy and that these member galaxies need

to be within a radius of 1.5 h�1Mpc of the cluster’s center. Follow-up studies of these

and other clusters found that cluster members tend to be early type galaxies, with redder

colors and old stellar populations, with the population of blue, star-forming galaxies

4



CHAPTER 1. INTRODUCTION

increasing towards the outskirts of the cluster (e.g., Dressler 1980).

Optical and infrared survey data continue to provide a valuable means of detecting

galaxy clusters. The fact that cluster members are primarily red ellipticals led to the

development of a new method of cluster detection, the red sequence method (e.g.,

Gladders & Yee 2000), that can be automated to quickly process survey data looking

for clusters. The z = 0 spectrum of an elliptical galaxy features a prominent break at

4000 angstroms arising from the dearth of young blue stars in the galaxy. As the galaxy

is redshifted, the location of the break moves to increasingly red wavelengths. If one

chooses filters that straddle the 4000 angstrom break at a given cluster cluster redshift

and then constructs a graph of galaxy color, where “color” is defined as the di↵erence in

magnitudes measured in each filter, against magnitude, the cluster members occupy a

linear feature in this color-magnitude space whose color-intercept depends on the redshift

of the cluster (examples of such diagrams are furnished in Chapter 3); identification of

this feature then provides a sample of prospective cluster members, and the cluster can

be detected as an overdensity of these red sequence galaxies on the sky.

Methods based on the red sequence have yielded large catalogs of galaxy clusters

down to fairly low masses and richnesses; for instance, Hao et al. (2010) used this

method combined with the brightest cluster galaxy (BCG) feature in galaxy clusters to

present a catalog of over 55,000 rich galaxy clusters from SDSS DR7. Given the wealth

of deep, multiband optical and infrared data that is becoming available from current and

upcoming extragalactic surveys such as the Dark Energy Survey (DES) and the Large

Synoptic Survey Telescope (LSST), substantial e↵ort is being expended into optimizing

and extending the red sequence algorithm to e�ciently cover the extent of such large

surveys and to make use of the multiband photometry, resulting in the recent redMaPPer
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CHAPTER 1. INTRODUCTION

algorithm (Ryko↵ et al. 2014).

Other catalogs of galaxy clusters have been produced by detecting signatures of the

gas content of galaxy clusters. Galaxy clusters have been detected using their X-ray

emission in large X-ray surveys, such as in the ROSAT All-Sky Survey (Voges et al.

1999; Pi↵aretti et al. 2011) and, serendipitously, in the XMM Cluster Survey (Mehrtens

et al. 2012), which have yielded catalogs of these objects. Due to cosmological surface

brightness dimming, the detection of clusters using X-ray emission depends on redshift,

so that the minimum mass required for detection increases at higher redshifts; this is

accordingly an ine�cient method for detecting high-redshift clusters. However, the

galaxy cluster gas can also be probed at millimeter wavelengths as it leaves a signature

known as the Sunyaev-Zel’dovich e↵ect (SZE) in the CMB (Sunyaev & Zel’dovich 1972).

The thermal SZE arises from inverse Compton scattering of CMB photons o↵ of electrons

in the gaseous intracluster medium of galaxy clusters and appears as a temperature

decrement at frequencies less than about 218 GHz and an increment at higher frequencies;

this signal, unlike the X-ray surface brightness, is redshift-independent. This has allowed

the major SZE surveys, the Atacama Cosmology Telescope (ACT) and the South Pole

Telescope (SPT), to produce large catalogs of massive galaxy clusters out to redshifts

z & 1 with a nearly uniform selection function (Hasselfield et al. 2013; Bleem et al. 2015).

These preceding methods of cluster detection have focused on the baryonic

components of galaxy clusters. However, wide-field imaging surveys can also indirectly

probe the dark matter halos of galaxy clusters. The technique of weak gravitational

lensing is sensitive to the total mass distributions of galaxy clusters, which act as

lenses that distort the shapes of background galaxies. In the weak lensing regime, these

distortions are too small to be distinguished from intrinsic variations in shape and
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orientation for any individual background galaxy but can be measured statistically for

an ensemble of background galaxies. In practice, this has primarily been used to measure

masses for individual clusters that were already discovered via another method, but more

recently, the weak lensing signal has been considered as a promising means of detecting

clusters by mapping the background distortions. Several surveys, including the Deep

Lens Survey (Wittman et al. 2006) and the Subaru Weak Lensing Survey (Miyazaki

et al. 2007), have successfully employed this method to detect galaxy clusters in small

patches of sky.

These methods, taken together, have provided catalogs of thousands of objects.

Most of these approaches, in addition to yielding the location of the cluster, can also

be used to estimate the cluster mass. As we will see in the next section, both of these

quantities are essential for using clusters of galaxies as cosmological probes.

1.1.2 Galaxy Cluster Cosmology

The standard model of structure formation in the universe holds that galaxy

clusters arise from the gravitational collapse of matter surrounding the largest peaks

in the primordial density field; accordingly, the distribution and abundance of clusters

is sensitive to the properties of this field, which are determined by the underlying

cosmology (e.g., Press & Schechter 1974; Kaiser 1984; Bardeen et al. 1986). Accordingly,

construction of the cluster mass function, N(M, z), which describes the number of

clusters above a given mass M in a given redshift bin centered on z provides a powerful

cosmological probe. The dominant source of systematic uncertainty comes from the

determination of the cluster mass, which can be done in a number of ways, each with its
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own challenges and assumptions.

For instance, spectroscopy of cluster members can be used to measure velocity

dispersions, which yield the mass of the cluster via the virial theorem. However, this

assumes that the cluster galaxy orbits are in equilibrium, an assumption that can be

violated in highly disturbed clusters and in cluster outskirts (e.g., Rines et al. 2013). The

X-ray emission from galaxy clusters can be used to construct the gas density profile and

the radial temperature profile of the cluster; these two quantities yield the total mass of

the cluster under the assumption of hydrostatic equilibrium, which has been done for

several large samples of clusters (e.g., Vikhlinin et al. 2006, 2009a; Martino et al. 2014).

Weak gravitational lensing probes the total mass distribution in galaxy clusters but is

susceptible to several sources of uncertainty, among them issues of halo triaxiality, the

intrinsic alignments of background galaxies, and uncorrelated structure along the line of

sight (Becker & Kravtsov 2011). On the other hand, weak lensing is free of many of the

assumptions required to use the baryonic methods of mass estimation (i.e. X-rays), so

weak lensing masses are often compared to other masses in order to quantify the biases

inherent in these other methods (e.g., Hoekstra et al. 2012; Mahdavi et al. 2013; Gruen

et al. 2014).

However, an even more fundamental issue than the method of mass determination

is the definition of the mass. Galaxy clusters are extended structures that do not have a

clearly defined edge or end to their mass distributions. Accordingly, the sizes of clusters

are defined in terms of overdensities with respect to a given background density;R�,

where � is a constant, is the radius within which the mean mass density enclosed is equal

to � times the background density ⇢
b

at the cluster redshift, or ⇢̄(R < R�) = �⇢
b

(z).

The values typically employed in galaxy cluster studies are � = 200, 500. The background

8
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density is taken to be either the critical density ⇢
c

(z) ⌘ 3H(z)2/8⇡G, where H(z) is the

Hubble parameter at redshift z, or the mean matter density ⇢
m

(z) = ⇢
c

(z)⌦
m

(z), the

latter of which is usually only used with � = 200. The radius often includes a subscript

c or m (i.e., R200c, R200m) to clarify which background density is being used. The mass

of the cluster can then be parametrized as M�, the mass enclosed within a sphere of

radius R�. Typical sizes and masses of clusters are about R200c ⇠ 1 � 2 h�1Mpc and

M200c ⇠ 1014 � 1015 h�1M�, where M� is the mass of the sun.

The virial radius is a similar quantity often used in galaxy cluster cosmology and

astrophysics. This term is meant to denote the radius within which matter in the cluster

is virialized, or stable and gravitationally bound, and outside of which matter is infalling,

but in practice it is often used interchangeably with R200c, implying that �vir,c ⇡ 200.

However, there exist approximate analytical formulas for the true virial density contrast

�vir,c that depend on cosmological parameters (e.g., Bryan & Norman 1998); these prefer

a value of �vir,c ⇡ 100 for the most recent cosmological parameters (Ade et al. 2015). In

general, R200c < Rvir,c < R200m, and all three measures are in widespread use in reference

to the galaxy cluster outskirts.

1.1.3 The Outskirts of Galaxy Clusters

The outskirts of galaxy clusters contain a wealth of information about astrophysical

processes. Among the diverse and compelling set of investigations that can be conducted

in the outskirts are tests of cosmological theories of structure formation (e.g., Fillmore

& Goldreich 1984; Bertschinger 1985; Diemer & Kravtsov 2014; Lau et al. 2015),

examinations of the evolution of galaxies as they enter the dense environments of clusters
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(e.g., Haines et al. 2013; Just et al. 2015), and probes of the environmental dependence of

how luminous matter traces the mass distribution of the universe (e.g., Bahcall & Kulier

2014). However, the low matter densities in the outskirts as well as the large areas that

they cover on the sky make these regions extremely challenging to probe observationally

(for a recent summary of the prospects and challenges, see Reiprich et al. 2013). Recent

advances, both in observations and simulations, have reinvigorated the study of these

regions.

Simple analytical models of structure formation have long predicted that the

outskirts of galaxy clusters should feature steep density jumps in the gas and dark

matter profiles (e.g., Fillmore & Goldreich 1984; Bertschinger 1985). The density jump

in the gas profile is a strong shock that arises from the accretion of gas onto the cluster.

This shock is referred to as the ‘virial shock’ as it is expected to be located around

the virial radius, but it has yet to be detected in galaxy clusters. Past R500, the X-ray

surface brightness falls o↵ quickly, making it di�cult to detect features in the outskirts

using standard observation strategies. Kocsis, Haiman, & Frei (2005) predicted the

signature of the virial shock in observations of the thermal SZE, but thus far those

measurements have not been able to constrain this feature either. However, the most

recent hydrodynamical simulations have rea�rmed the predictions of accretion shocks at

around ⇠ 1.3R200c (at z = 0) with Mach numbers of about M ⇠ 2.7 (Schaal & Springel

2015).

Recent dark matter simulations have strengthened the arguments in favor of a

density jump in the outer dark matter profiles as well. The analysis of Diemer & Kravtsov

(2014) identified a density jump corresponding to the accumulation of recently-accreted

particles at the apocenter of their first orbit. The location of the jump depends on the

10



CHAPTER 1. INTRODUCTION

mass accretion rate but generally occurs near the virial radius. These density jump

features, if detected in observations, would provide confirmation of our understanding of

cosmological structure formation. Furthermore, detecting the dark matter jump would

provide a new test of the collisionless nature of dark matter, and its location could serve

as a physically-motivated definition of cluster boundaries in place of R� (e.g., More,

Diemer, & Kravtsov 2015). These implications make the infall regions at the outskirts

of clusters, where large-scale filaments connect to the clusters, a compelling focus for

both observational campaigns and further theoretical investigations, which this thesis

will provide in Chapters 2 and 3.

1.2 The Clustering of Galaxies on Large Scales

Moving beyond galaxy clusters, on large scales the distribution of galaxies in the

universe provides an important cosmological probe under the assumption that the

galaxies trace the underlying mass distribution. More specifically, galaxy redshift surveys

assume that the population of galaxies that they target are tracers of the large-scale

mass distribution; for instance, the SDSS-III Baryon Oscillation Spectroscopic Survey

(BOSS; Dawson et al. 2013), targets luminous red galaxies (LRGs), while the upcoming

Dark Energy Spectroscopic Instrument (DESI; Levi et al. 2013) will target LRGs and

emission line galaxies (ELGs). A key source of systematic uncertainty in such surveys is

understanding the extent to which each target population traces large-scale structure.

We can expect that galaxies demonstrate a variety of clustering behaviors. For

instance, as has already been discussed, red galaxies — which form the bulk of galaxy

cluster members — tend to be more clustered than blue galaxies, which are more
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typically found in the field. Several studies have split samples of galaxies according

to color or luminosity (e.g., Swanson et al. 2008; Ross et al. 2014) and studied their

relative clustering to place constraints on this systematic and analyze its e↵ects on one of

the primary cosmological probes from redshift surveys, the baryon acoustic oscillations

(BAO).

BAO refer to sound waves in the early universe that were able to travel a certain

distance before recombination, leaving an overdense shell at a characteristic acoustic scale

of about R = 100 h�1Mpc. This scale results in a preferred location for galaxies to cluster

today and serves as a “standard ruler” (for a review of this method and its principles,

see Weinberg et al. 2013). The first detection of the BAO occurred in 2005 (Cole et al.

2005; Eisenstein et al. 2005) using data from the 2dFGRS and SDSS. At present, the

BAO method is one of the most competitive cosmological probes and has allowed percent

level measurements of the distance scale at z = 0.57 (Anderson et al. 2014). However,

the detection of this feature requires a su�cient density of spectroscopically observed

galaxies, which can represent a significant investment of observing time. More formally,

as described in Weinberg et al. (2013), the error on each Fourier mode in a survey is

given by �
P

/P = (nP + 1)/nP , where P is the power spectrum and n is the density of

spectroscopic galaxies; for n < 1/P , the error becomes large, decreasing the information

imparted by the mode.

In subsequent chapters, we will consider these issues in more detail. In particular,

in Chapter 4, we will present a detailed study of the key systematic in galaxy redshift

surveys — the extent to which certain types of galaxies trace large-scale structure —

by examining the stochasticity between red and blue samples of galaxies. In Chapter 5,

we address the other di�culty in using the BAO method, the need for su�ciently dense
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spectroscopy, by presenting a new method of measuring the BAO in sparse spectroscopic

data sets via cross-correlations with dense photometry.

1.3 High Redshift Galaxies & Dwarf Galaxies

Lastly, we consider galaxies at two extremes — the most distant galaxies ever

discovered and the closest neighbors of the Milky Way, the Local Group dwarf galaxies.

The current major optical and infrared space observatories, the Hubble Space Telescope

and the Spitzer Space Telescope, have pushed the boundaries of observations of galaxies

to the first hundreds of Megayears after the Big Bang, a period known as the epoch of

reionization (z & 6). These observations have not found enough galaxies to reionize the

universe, suggesting that there must be a fainter population of high-redshift galaxies

that these current missions are not able to probe (e.g., Alvarez et al. 2012; Finkelstein et

al. 2012; Bouwens et al. 2015; Robertson et al. 2015). The upcoming 6.5 meter James

Webb Space Telescope (JWST ) will be able to detect galaxies to fainter limits.

On the other hand, the dwarf galaxies of the Local Group are believed to be

similar to the most abundant galaxies at the epoch of reionization, as their old stellar

populations and low masses suggest that they formed their stars at early times, making

them relics of the early universe (e.g, Bullock et al. 2000; Ricotti & Gnedin 2005; Loeb

& Furlanetto 2013). The proximity of these dwarf galaxies empowers detailed studies of

their star formation histories. These investigations have found mixed results, with some

dwarfs showing significant late-time star formation (Brown et al. 2014; Weisz et al. 2014;

Weisz, Johnson, & Conroy 2014); nevertheless, some of the galaxies may be true relics,

and their progenitors await discovery at higher redshifts. In Chapter 6, we address this
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issue, aiming to determine whether JWST will, in fact, be able to reveal the progenitors

of these populous galaxies.

We will address a number of the questions raised here in the subsequent chapters.

Beginning on small scales, we will explore density jumps in the outskirts of galaxy

clusters in Chapters 2 and 3, before transitioning to larger scales in Chapters 4 and 5.

On these large scales, we will investigate a key systematic in galaxy redshift surveys as

well as develop a new method to measure the cosmic distance scale with sparse datasets.

Finally, in Chapter 6, we will move to the extremes of the universe to discuss the

prospects for detecting analogues of the most familiar local galaxies at high redshifts.
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Chapter 2

A Simple Physical Model for the Gas

Distribution in Galaxy Clusters

Anna Patej & Abraham Loeb, 2015, The Astrophysical Journal Letters, 798, L20

2.1 Introduction

Gas hotter than 107 K permeates the intergalactic media of galaxy clusters and

constitutes the dominant baryonic component of these virialized objects. Understanding

the properties and distribution of this intracluster gas yields insights into cosmology and

the physics of galaxy clusters. For example, knowledge of the density and temperature

profiles of the gas from X-ray data, coupled with the assumption of hydrostatic

equilibrium, provides an estimate of the total mass of the cluster, which can be used

statistically to constrain cosmological parameters (Vikhlinin et al. 2009b; Ettori et al.

2013). High-resolution hydrodynamical simulations incorporate the physical phenomena
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– supernova, AGN feedback, as well as radiative cooling – that shape the observed

density and temperature profiles of galaxy clusters (see Kravtsov & Borgani 2012; and

references therein).

At the intersection of the observational and theoretical fronts lies analytical

modeling of the density profiles of X-ray emitting intracluster gas. The gas density

has been described by a variety of functions, most notably the �-model (Cavaliere &

Fusco-Femiano 1976) and modifications thereof (Vikhlinin et al. 2006). Such functions

are either ad hoc models with many parameters to provide fitting flexibility or motivated

using unfounded physical assumptions (the popular �-model, for example, is derived

assuming the isothermality of the cluster gas). More recent works have attempted to

establish physically motivated models via the assumptions of hydrostatic equilibrium

and, for instance, a polytropic equation of state (Ostriker, Bode, & Babul 2005; Bulbul

et al. 2010) or an analytical temperature profile tailored to data (Ascasibar & Diego

2008). However, these models still typically require more parameters than the simple

�-profile to model the range of cluster features observed in X-ray data and impose quite

stringent constraints on the physics of the gas. Our goal is to provide a prescription for

a new family of profiles that satisfies a set of simple physical assumptions and that has

su�cient fitting flexibility to improve upon – but as many or fewer parameters as – the

standard �-model.
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2.2 Background

2.2.1 Gas Density Profiles

Galaxy cluster gas density profiles have been traditionally described by the

three-parameter �-model,

⇢g(r) =
⇢0

(1 + (r/r
c

)2)3�/2
, (2.1)

with a standard value of � = 2/3. The �-model is physically motivated; that is, it

may be derived from the equation of hydrostatic equilibrium assuming that the gas is

isothermal and that the total matter distribution is described by a King model (Cavaliere

& Fusco-Femiano 1976). However, the cluster gas is not isothermal (Vikhlinin et al. 2005;

Pratt et al. 2007; Leccardi & Molendi 2008). Furthermore, the �-model is limited in its

ability to describe the observed features of galaxy cluster gas density distributions. Many

clusters, particularly the relaxed clusters most often targeted for X-ray measurements,

feature cuspy profiles, while the �-model produces a central core, which is more typical

of merging systems (Vikhlinin et al. 2006). Accordingly, analyses relying on the �-model

often exclude data in the centers out to large radii in order to obtain good fits (e.g.,

Pointecouteau et al. 2004).

To circumvent this issue, many papers have built upon the �-model by adding

more parameters to increase modeling flexibility. One such model is the double �-model

(e.g., Mohr, Mathiesen, & Evrard 1999), which simply adds an additional �-profile with

a di↵erent core radius and � parameter to separately fit the inner and outer regions.

Another, more recent model is that of Vikhlinin et al. (2006), who modified a �-model
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base by adding functional features to match observations, yielding a ten-parameter

model:

⇢2g(r) =
⇢20,1

(1 + (r/r
s

)�)✏/�
(r/r

c,1)�↵

(1 + (r/r
c,1)2)

3�1�↵/2
+

⇢20,2

(1 + (r/r
c,2)2)

3�2
. (2.2)

However, although such models greatly improve the fit to data, their forms are no longer

motivated by physical principles but are rather constructed from knowledge of variations

in cluster gas profiles. Our approach is di↵erent; rather than starting with a knowledge

of gas profiles, we begin with a few physical and cosmological requirements, in particular

that the virialized baryon content of the cluster is representative of the universe and that

the cluster features a virial shock.

2.2.2 The Virial Shock

Cosmological theories of structure formation predict that matter accreting onto

galaxy clusters should experience a shock, termed the ‘virial shock,’ coinciding roughly

with the virial radius of the cluster (e.g., Bertschinger 1985). Detection of such a shock

around a cluster would serve as an important probe of cosmological infall and accretion.

Previous work has examined the impact of shocks on relations between X-ray observables

such as the luminosity-temperature relation (Cavaliere, Menci, & Tozzi 1997), but we

will instead relate the physics of the shock and the dark matter content of the cluster in

deriving families of gas density profiles.

To do so, we will rely on the Rankine-Hugoniot shock jump conditions, which, for

the gas density, state that (Landau & Lifshitz 1987):

�g ⌘
⇢2
⇢1

=
(� + 1)M2

(� � 1)M2 + 2
, (2.3)
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where � is the gas adiabatic index, M denotes the shock Mach number, and ⇢2 and ⇢1

are the densities of the cluster gas and the infalling gas, respectively, at the shock. For a

monatomic gas with � = 5/3, the maximum value of the jump is �g = 4 as M ! 1.

Diemer & Kravtsov (2014) have recently found that dark matter profiles in fact

exhibit a similar jump near the virial radius of the cluster (see also Adhikari, Dalal,

& Chamberlain 2014) . In analogy to the gas shock jump parameter �g, we will

parameterize the jump in the dark matter density by �DM.

2.3 Method

We seek to obtain gas density profiles not from an ad hoc prescription tailored

to suit a data set, but rather from making only a few simple assumptions about the

structure and physics of the galaxy cluster, including the virial density jumps discussed

above. As shall be explored further in §2.4, the result is a family of profiles with up to

as many parameters as the �-model, but better able to accommodate the diversity of

features observed in cluster gas profiles.

2.3.1 Assumptions

Our model galaxy cluster is spherically symmetric, with a virial shock occurring at

a radius s and a known dark matter profile ⇢DM(r). We define f
g

= ⌘⌦
b

/⌦
DM

, where ⌘

is a parameter fixing the fraction of baryons in the gas phase within s, and ⌦
b

and ⌦
DM

are the cosmological density parameters of baryons and dark matter, respectively. We

then assume the following three conditions:
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I. Mg(< s) = f
g

MDM(< s)

II. ⇢g(s�) = �g⇢g(s+)

III. ⇢g(r) = f
g

⇢DM(r) for r > s, and for all r if �g = 1

where the minus and plus indicate the regions just to the inside and outside of the shock,

respectively, and we assume that a dark matter jump is coincident with the gas shock, so

that �DM = ⇢DM(s�)/⇢DM(s+); hereafter, for simplicity, we will refer to the dark matter

profile with this jump by the name of the unperturbed dark matter model, so we note

that, for a given dark matter model ⇢m(r) internal to s, the profile external to s is in fact

⇢DM(r) = ⇢m(r)/�DM.

Lastly, to allow us to solve for a profile, we introduce one additional assumption:

denoting x = r/r
s

, where r
s

is a scale radius in a given model, and referring to condition

I, we employ the following ansatz:

1

f
g

Mg(x) = MDM(⇠x
n), (2.4)

where ⇠ and n are parameters to be found. This choice of parametrization has the

benefits of being mathematically simple and preserving scale invariance. We now apply

these conditions to find profiles for the gas internal to the virial shock.
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2.3.2 General Derivation

Beginning with the relation defined by equation (2.4), we obtain the gas density

profile as:

⇢g(x) =
1

4⇡x2

dMg

dx
=

f
g

4⇡x2

d

dx
MDM(⇠x

n), (2.5)

⇢g(x) = f
g

n⇠3x3n�3⇢DM(⇠x
n). (2.6)

Now, using conditions II and III, we see that:

⇢g

✓
s

r
s

◆
= f

g

n⇠3

s

r
s

�3n�3

⇢DM

✓
⇠


s

r
s

�
n

◆
; (2.7)

the argument of the dark matter function then yields:

⇠


s

r
s

�
n

=
s

r
s

) ⇠ =


s

r
s

�1�n

, (2.8)

and the normalization gives:

n⇠3

s

r
s

�3n�3

=
�g

�DM

⌘ �. (2.9)

Combining these two expressions then provides us with ⇠ and n in terms of our physical

variables:

n = �, (2.10)

⇠ =

✓
s

r
s

◆1��

. (2.11)

This means that our final expression for the gas density is simply:

⇢g

✓
r

r
s

◆
= �f

g

⇣r
s

⌘3��3

⇢DM

✓
s

r
s

hr
s

i�◆
. (2.12)
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2.3.3 Power Law Profile

To motivate our method, we first obtain a family of gas density profiles assuming a

simple power law for the dark matter density profile,

⇢DM(r) =
A

rk
, (2.13)

with k < 3. This profile describes, for instance, the singular isothermal sphere with

k = 2. For this profile, r
s

= 1, and equation (2.12) yields:

⇢g(r) =
�f

g

A

sk(r/s)3+�(k�3)
. (2.14)

It is straightforward to verify that such a profile fulfills the conditions of §2.3.1.

2.3.4 Einasto Profile

We next consider the Einasto profile (Einasto 1965),

⇢DM(r) = A exp


�

2

↵

✓
r

r
s

◆
↵

�
, (2.15)

which recent cosmological simulations have found to be a very good description of dark

matter halos (e.g., Ludlow et al. 2013), but which has not yet enjoyed as widespread

use as some other models, partly due to the lack of closed-form expressions for many

quantities of interest, such as the surface density (Retana-Montenegro, et al. 2012).

However, the gas density derived from this profile using our method does have an

analytical form:

⇢g(r) = �f
g

A
⇣r
s

⌘3��3

exp


�

2

↵

✓
s

r
s

◆
↵ ⇣r

s

⌘�↵
�
. (2.16)
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2.3.5 NFW Profile

We now apply our method to the widely-used Navarro-Frenk-White (NFW)

(Navarro, Frenk, & White 1997) profile,

⇢DM(r) =
A

r/r
s

(1 + r/r
s

)2
, (2.17)

which has been demonstrated to provide a good fit to dark matter halos in simulations.

Using equation (2.12), we find:

⇢g(r) = �f
g

A
(r/s)2��2

r/r
s

⇣
1 + (s/r

s

) (r/s)�
⌘2 . (2.18)

Our profile has two parameters fixed by the choice of an NFW dark matter profile,

the amplitude A = ⇢
c

�
c

and the scale radius r
s

. These can be obtained independently

of the gas data (for instance, via weak lensing). The other three are free parameters:

the gas fraction f
g

, the shock radius s, and the jump ratio �. Qualitatively, our analytic

expression for the gas density yields a cuspy inner profile for 1 < � < 1.5, a pure core for

� = 1.5, a core with an inner decline for 1.5 < � . 2, and a central depression for � & 2.

Examples of these profile types are illustrated in Figure 1.

2.3.6 Generalized NFW Profiles

The NFW profile of the preceding section can be characterized by its behavior at

two extremes – in the large r limit, ⇢NFW ⇠ r�3, while for small r, ⇢NFW ⇠ r�1. However,

dark matter halos do exhibit some scatter, particularly in their internal structure. As a

result, it is possible to consider the NFW profile as a special case of a broader family of
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Figure 1.—: Gas profiles for various choices of �, assuming an NFW dark matter profile

as described in §2.3.5, plotted against the deprojected gas density profiles of three clusters

with various morphologies.
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models, the generalized NFW profiles:

⇢(r) =
A

(r/r
s

)↵ (1 + r/r
s

)3�↵

, (2.19)

which ensure that for large r, ⇢ ⇠ r�3, while allowing for variations in the central region,

for which ⇢ ⇠ r�↵.

Both cosmological simulations and observational data have yielded diverse estimates

for the value of the ↵ parameter. As discussed above, the work of Navarro, Frenk, &

White (1997) yielded ↵ = 1, in good agreement with simulations and data. On the other

hand, the simulations of Moore et al. (1999) suggested that ↵ = 1.5, which is an upper

bound of the range of the recent results of Schaller et al. (2014), whose simulations

found dark matter slopes that tend to be steeper than that of the NFW model for small

clusters, and similar to NFW for large clusters. On the observational side, several e↵orts

have obtained values of ↵ < 1 (Newman et al. 2013; and references therein), while other

analyses have concluded that ↵ ⇡ 0.9� 1.2 (Oguri et al. 2009; Richard et al. 2009; Saha

& Read 2009).

We can test the implications of these variations for our method by deriving a family

of profiles for the generalized NFW profile. From equation (2.12), we obtain:

⇢g(r) = �f
g

A
(r/s)(3�↵)�+↵�3

(r/r
s

)↵(1 + (s/r
s

)(r/s)�)3�↵

. (2.20)

We immediately see that this profile reduces to equation (2.18) for ↵ = 1.

In principle, we are interested in the regime in which the profiles yield either cuspy

or cored interiors, which are the two observed types of gas density profile, as will be

explored further in §2.4. From equation (2.20), this condition can be expressed as:

(3� ↵)�� 3 . 0, (2.21)
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which imposes a constraint on the allowed values of �. We thus find that, for ↵ = 1,

as before, � . 3/2, while for ↵ = 3/2, � . 2, and for ↵ = 2, � . 3. Accordingly, we

see that by modifying the value of ↵, we can alter the range of acceptable � values.

However, for the remainder of the paper, we will use the gas profile that we obtained

from the standard NFW (↵ = 1) dark matter profile, defined by equation (2.18).

2.4 Comparison with Observations

Having established the mathematical structure of our model (equation (2.18)), we

now aim to test it against observational data. We use deprojected gas density profiles

from Vikhlinin et al. (2006) (hereafter V06), which consists of 13 low-redshift, relaxed

clusters and groups, and the low-redshift sample of Vikhlinin et al. (2009a) (V09), which

provides a more representative sample of clusters, including both relaxed and disturbed

systems. We defer to the above papers for additional details on the data, but we note

that we adopt the same ⇤CDM cosmological parameters: h = 0.72, ⌦⇤ = 0.7, and

⌦
m

= 0.3.

We fit both our model and the �-model to the data, excluding USGC S152 since it

has no listed r500 – the radius corresponding to a density of 500 times the critical density

⇢
c

– or c500 – the corresponding concentration parameter – value. For the clusters in

the 2006 sample, we have all of the quantities – the redshift z, c500, and r500 – needed

to determine the NFW parameters of our model. For the V09 sample, we lack only

individual c500 values, and instead assume a fixed value of c500 = 3.5 for all the clusters,

which is reasonable for the mass range of these clusters (see V06 and V09 and references

therein).
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To transform the mass density to a number density, we use ⇢
g

= 1.274m
p

(n
e

n
p

)1/2,

where the conversion factor assumes a primordial abundance of helium and a Z = 0.1Z�

abundance of heavier elements. We additionally constrain our fits to 20 kpc < r < r500;

the lower limit is imposed to avoid the contribution of the central galaxy, and the

upper limit excludes the data points that are beyond the field-of-view of Chandra and

are instead extrapolated from the model of V06. The results of our fits to the clusters

are summarized in Figure 2 and examples of our fits are shown in Figure 3 for relaxed

clusters and Figure 4 for merging systems. We now discuss these in turn.

2.4.1 Fit Parameters

The top left panel of Figure 2 shows the distribution of fitted f
g

parameters, which

are generally reasonable gas fraction estimates. However, it is worth noting that the

f
g

parameter measured here is the gas fraction interior to the shock radius s, as per

condition I, as well as the local gas fraction normalization of the profile exterior to s,

following condition III. Interior to s, the gas fraction is not constant (except in the

case where �g = 1 and the interior profile is simply a scaled NFW profile). The radial

variation of the ratio of our profile to its progenitor NFW profile is shown in the bottom

left panel of Figure 2 for four clusters with various values of �.

The distribution of fitted � parameters is given in the top right panel of Figure 2,

from which it is clear that the data favor values of � . 1.5. This trend can be partly

explained by the composition of our sample, which comprises primarily relaxed clusters

with cuspy central profiles. This suggests that �g and �DM should be comparable. The

recent simulations of Schaal & Springel (2015) favor M ⇡ 2.7, which for a gas with
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Figure 2.—: A summary of the results of fitting our model to the cluster sample. Top:

the distribution of fitted f
g

(left) and � values (right) for the V06 and V09 samples. The

parameter s is poorly constrained and thus not included. Bottom: the radial variation

of ⇢�/⇢NFW (left) and the scaled temperature profiles (right) resulting from a numerical

computation using the equation of hydrostatic equilibrium and our density model for four

clusters alongside the average temperature profile from V06 in black.
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Figure 3.—: Examples of fits to a subsample of gas density profiles of relaxed clusters

for which our model (green) provides a reasonable description over the range of radii

considered; the �-model (blue) is shown for comparison. The lower panel shows the

normalized residual, � (see text).
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Figure 4.—: Same as Figure 3, but for systems identified as mergers by V09.
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� = 5/3 implies a shock jump of �g ⇡ 3; these simulations coupled with our inferences

from X-ray data thus suggest that �DM ⇡ 2-3.

An additional consequence of these low � values is that the model is not very

sensitive to the value of s; indeed, by construction, if � = 1, the s parameter disappears

from the model entirely. Accordingly, the s parameter is not well-constrained, and the

fitting procedure typically chooses a value at one of the fitting limits. These results thus

indicate that our model is really at most a two-parameter model; the use of our model

with even fewer parameters is discussed further in §2.4.3.

We present one other result in Figure 2: in the bottom right panel, we show

the temperature profiles obtained for four relaxed clusters by numerically solving the

equation of hydrostatic equilibrium with sensible initial conditions for each cluster. For

comparison, we scale all the temperature profiles by their peak value T
p

and also plot the

average analytical model of V06; we see good agreement between the analytical model

and our numerical profiles for relaxed clusters. Since this suggests that our model is in

agreement with the detailed prescriptions of V06, we now turn to comparisons with the

traditional �-model.

2.4.2 Model Comparison

Figures 3 (relaxed clusters) and 4 (merging clusters) show a subset of clusters fitted

with both our model and the �-model for which our model provides a good description

of the behavior of the gas over the fairly wide range of radii we consider. The bottom

panel in each of the plots shows the normalized residual � = (⇢
m

� ⇢
d

)/⇢
d

, where m

and d refer to the model and data, respectively. These residuals provide a measure for
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comparing the fits, as we cannot use the reduced �2, for not only are we fitting to data

reconstructed via the analytical model of V06, but we are doing so with a model whose

parameters are non-linear, rendering the statistic formally untenable.

We make such a comparison in Figure 5, in which we show the distribution of

maximum normalized residuals |�| for all clusters. The distributions are clearly more

favorable for our model. If we compare the values of these maximum residuals, we find,

as expected, that our model does better in the central regions where the �-model cannot

accommodate a cusp, but we also see significant improvement using our model in the

outer regions of the clusters, where the �-model yields several large outliers.

Accordingly, we find that our model provides a good description for many of the

clusters in our sample, and improves upon the �-model for most clusters over the range

20 kpc < r < r500, although our model does tend to not be a good description of the

lowest mass clusters in our sample (M500 . 3 ⇥ 1014M�). Additionally, as can be seen

by way of comparing Figures 3 and 4, our model tends to be a better description for

relaxed systems than merging ones. This is not particularly surprising, as our derivation

assumes fairly basic properties (such as spherical symmetry and a simple NFW model

for the dark matter) that may not hold in the case of mergers. Furthermore, compared

to the �-model, we make substantial improvements to fitting the central regions of the

relaxed clusters, primarily due to one parameter, �.

2.4.3 Extensions of the Model

The results of the preceding sections have indicated that our model is in fact

most strongly dependent on the parameter �, which controls the shape of the profile.
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Figure 5.—: Histograms of the maximum normalized residual |�| from fitting our model

(green) and the �-model (blue) to all clusters. The lefthand panel considers the values of

|�| over the entire radial range of each cluster (20 kpc < r < r500), while the righthand

panels show the distributions using truncated ranges: the central region (top), 20 kpc <

r < 400 kpc, and the outer region (bottom), 400 kpc < r < r500.
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Accordingly, it is possible to use this model as a one-parameter family of profiles by fixing

s to some reasonable value (for instance, for these low-redshift clusters, s ⇡ 2-3 Mpc is

acceptable since s ⇠ r
vir

⇠ 2r500) and also fixing f
g

= ⌦
m

/⌦
DM

(⌦
b

/⌦
m

� f⇤), where

f⇤ is the fraction of baryonic matter in stars and for which values can be estimated

independently based on optical/infrared data.

Our model, having been derived from the NFW profile, is of course dependent upon

the NFW parameters r
s

and �
c

, for which r� and corresponding c� (where � indicates

the overdensity with respect to the critical density) should be determined. These can be

obtained through other means, such as weak lensing. However, one can also leave these

parameters free in the fit and obtain a model with the three free parameters (�, r
s

, �
c

)

instead of (�, f
g

, s). In any case, the model has significant freedom and yet enough

simplicity to provide an attractive alternative to the �-model.

2.5 Discussion

By imposing only three simple cosmological and physical conditions that a gas

density profile must satisfy, we have derived a family of profiles, characterized primarily

by a single parameter �, that provide a good description of observational data over a

wide range of radii. Our model can be used with 1-3 free parameters, each of which

possesses a physical interpretation – � and s come from the condition that there exist

a virial shock on the outskirts of the cluster and represent its strength (relative to

the dark matter jump) and location, respectively, while f
g

is a gas fraction parameter

that fixes how much of the baryonic matter of the cluster is in the gas phase within s.

However, upon comparison with X-ray data, we find that observations favor low values
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of �, the main parameter controlling the shape of the profile, which in turn leads to

the s parameter being poorly constrained. Additionally, average values of f
g

can be

estimated from the literature, and fixing both it and s to reasonable values leaves us

with a one-parameter model.

The derivation of our model assumes that the dark matter distribution internal to s

follows an NFW profile; accordingly, we have additional NFW parameters in our model.

We do not necessarily count these as free parameters, since for many clusters they can

be obtained from other data sets. However, in lieu of additional information, one can

also consider an alternative model with the three parameters (�, r
s

, �
c

) and s and f
g

fixed, as discussed above.

Upon comparison with data, we find that our model provides enhanced flexibility

over the �-model in the central regions of clusters, which can feature either prominent

cores or cusps, while not introducing more parameters. Our model thus does not require

an arbitrary radius cuto↵, which is often necessary for modeling with the � profile. We

find satisfactory agreement between our model and the data for both relaxed clusters

and mergers, although as a whole our model is a better description for relaxed systems.

This is understandable, since mergers can violate some of the assumptions that we make.

Overall, our family of functions provides a simple but accurate model of the galaxy

cluster gas density distribution. We anticipate that it will have applications in both

observational and theoretical work. From observations, we await confirmation of the

virial shock, whose strength and location will provide an evaluation of our model

parameters. On the theoretical side, our model can be used as a simple description of

a wide range of cluster gas morphologies in numerical simulations. Furthermore, the
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prescription we present herein is not limited to the model that we present; in addition

to the other families of profiles that we derived in §4.3, there are numerous extensions

and modifications of our conditions that can be imposed to generate yet other models.

Future e↵orts may build upon this framework to introduce additional physics of galaxy

clusters into the modeling of their gas distributions.
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Chapter 3

Density Jumps Near the Virial

Radius of Galaxy Clusters

Anna Patej & Abraham Loeb, accepted for publication in The Astrophysical Journal

(2016)

3.1 Introduction

Galaxy clusters contain a representative sample of the matter in the universe: the

dominant constituent is dark matter, while the baryonic components include hot gas

and the galaxies themselves (for a review, see Voit 2005). A longstanding analytical

prediction for cosmological structure formation is the existence of a shock bounding the

hot, gaseous intracluster medium and a corresponding jump in the dark matter profile,

both near the virial radius of the galaxy cluster (e.g., Bertschinger 1985; Lau et al.

2015). More recently, simulations by Diemer & Kravtsov (2014) (hereafter DK14) have
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reinforced the expectation that the dark matter halo itself should exhibit a sharp density

steepening near the virial radius (see also Adhikari, Dalal, & Chamberlain 2014).

The member galaxies of a cluster are expected to trace the cluster’s dark matter

profile in the cluster outskirts, as they are subject to similar collisionless dynamics;

accordingly, we may expect to see such a feature not just in the dark matter profile but

also in the galaxy density profile. Tully (2010) examined the distributions of the galaxies

in the Coma and Virgo clusters and detected sharp density cut-o↵s at radii of 3 and

2 Mpc, respectively, from the cluster centers, which he identified with the caustics of

second turnaround. These correspond roughly to the virial radii of these clusters (e.g.,

Kubo et al. 2007; Karachentsev et al. 2014). The analysis of Trentham & Tully (2009)

identified a similar feature in the galaxy group NGC 1023.

More, Diemer, & Kravtsov (2015) mentioned that hints of such a jump may have

been seen in other data sets. For instance, Tully (2015) measured the second turnaround

radius, which is associated with the aforementioned density jumps, of several groups

and clusters. Additionally, Rines et al. (2013) (hereafter R13) presented spectroscopic

velocities for cluster members in 58 galaxy clusters, from which they reconstructed the

density profiles, which appear to show a deficit of galaxies with respect to an NFW

profile (Navarro, Frenk, & White 1997). However, they noted that their results at large

radii from the cluster center may be a↵ected by having few spectroscopically observed

cluster members in the exterior regions.

In this paper, we focus on the R13 sample of clusters and use public data from

the Sloan Digital Sky Survey (SDSS) (York et al. 2000) to select cluster members

photometrically. Rather than use spectroscopic velocities, we construct the radial number
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density profiles of member galaxies and fit them with two functional forms to examine

whether we can detect a feature consistent with the predicted density jump in any of the

individual clusters using available data sets. We intend to see if there is any evidence for

such a feature in order to inspire future, detailed investigations of bias and systematics

using simulations. Where applicable, we assume the standard ⇤CDM cosmology with

⌦⇤ = 0.73 and ⌦
m

= 0.27, consistent with the parameters selected by DK14 to enable

direct comparison. To compare results across clusters we also use the measure R�, which

is the radius within which the mean mass density ⇢̄ = �⇢
b

(z), where ⇢
b

is a specified

cosmological background density and � is the density contrast with respect to ⇢
b

(z).

3.2 Data

3.2.1 SDSS Catalogs

To probe the existence of the density jump predicted by DK14, we focus our

attention on the sample of 56 low-redshift (0.1 < z < 0.3) galaxy clusters from R13 (of

their original 58 clusters, we do not include MS0906/A750 in our samples, since these

clusters are nearly coincident and hence it is di�cult to make a clean selection of member

galaxies for each). Since their cluster sample was selected from regions of sky covered by

SDSS, we use publicly available data from the most recent Data Release 12 (Alam, et al.

2015) to select cluster members.

We obtain photometric catalogs from the SDSS SkyServer SQL server1. For each

1
http://skyserver.sdss.org/dr12/en/tools/search/sql.aspx
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cluster, we query galaxies within 1.5 degrees of the cluster center (which, from R13, is

the X-ray center) in both right ascension (RA) and declination. We further restrict our

query to sources in the ‘Galaxy’ view with observed r-band magnitude between 14 and

22 and which have ‘clean’ photometry as determined by the SDSS pipeline. For each

galaxy, we obtain the dereddened ‘model’ magnitudes (which we will use throughout

the remainder of this work), corrected for Galactic extinction according to Schlegel,

Finkbeiner, & Davis (1998) by the SDSS pipeline, and we also select photometric redshift

estimates and associated redshift quality estimates from the ‘Photo-z’ table.

3.2.2 Cluster Member Selection

We will test two cluster member selections. The first, which we will refer to as

Selection A, is based solely on photometry, primarily comprising red cluster galaxies

selected from their location on a color-magnitude diagram but also including some

galaxies with su�ciently secure photometric redshift estimates that are blueward of

the red sequence. The second, which we call Selection B, folds in the spectroscopy of

R13 to include additional cluster members and to reject some of the photometrically

selected galaxies whose redshift estimates place them beyond the cluster. These selection

procedures are outlined in more detail in the following sections.

Red Sequence Cluster Member Selection

Both of our methods of cluster member selection are based upon the target selection

process of R13, which relied on the red sequence method of Gladders & Yee (2000).

The red sequence refers to a linear feature in the color-magnitude diagram of galaxies
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in a cluster field that arises from the population of red, early-type galaxies that have

been observed to comprise the majority of cluster members. By selecting galaxies within

a range around this line, we can obtain a sample of cluster members. As in R13, we

construct a diagram of g� r vs r and fix the slope of the red sequence line to �0.04. We

then select the appropriate intercept by examining the distribution of galaxies within

5 arcminutes of the cluster center. We can also use the spectroscopic data publicly

available from R13; by matching their spectroscopic catalogs to SDSS photometry, we

can additionally calibrate our red sequence selection, as will be described in Section

3.2.2.

Having thus identified the linear red sequence feature, we select galaxies that are

within an o↵set of 0.1 magnitude above the red sequence line, and 0.15 magnitude below

the red sequence line, as illustrated in Figure 3.1. This is in contrast to the choice of

±0.3 magnitude in the photometric target selection process of R13, which was found

to be much wider than the actual red sequence as indicated by the spectroscopy. The

asymmetry of the limits above and below the red sequence is motivated by the results

of Section 5.2 and Figure 16 of R13, which suggest that there are fewer cluster members

above the red sequence than below it, as confirmed by the righthand panel of Figure 3.1,

which shows the distribution of spectroscopically confirmed members.

Since the red sequence method selects a specific population of galaxies, it is worth

examining whether the exclusion of other types of galaxies in the cluster a↵ects our

result. The analysis of Dressler (1980), which examined the galactic populations of over

50 galaxy clusters, found that blue, late-type galaxies comprise a small fraction of the

populations of rich galaxy clusters, although this fraction increases as the density of

galaxies decreases. This is supported by the spectroscopic data provided by R13, who
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Figure 3.1.—: The red sequence cluster member selection for example cluster A1068.

Left : in the color-magnitude diagram, we initially plot the location of galaxies within

5 arcminutes of the cluster center, which should be dominated by cluster members, to

provide an indication of the red sequence. Right : The galaxies selected by the red sequence

method using the limits described in Section 3.2.2; we plot the galaxies thus selected that

are within 2.5 h�1Mpc of the cluster center. The labelled intercept (g � r)
i

is selected to

be the value at r = 16. Bottom: The cluster members as selected via the spectroscopy of

R13, which can be used to verify the red sequence selection.
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find that within the virial radius of the cluster the fraction of blue galaxies is . 10%,

while over the entire radial range for which they obtained spectra, the fraction is . 15%.

Selection A

In Selection A, we add to the red sequence selection galaxies with photometric

redshifts, primarily in order to also select cluster members that are blueward of the red

sequence. We restrict our attention to galaxies that have secure photometric redshifts,

as indicated by the ‘photoErrorClass’ (an SDSS quality marker that categorizes galaxies

on the basis of their photometric errors) and ‘zErr’ tags; the former we select to be equal

to 1, the highest class, and the latter we restrict to be less than 0.03, consistent with the

photo-z scatter2. We then mark as additional cluster members galaxies that were not

originally selected via the red sequence method and whose photometric redshift estimate

is within 0.03 of the cluster redshift provided by R13.

The population of galaxies with photometric redshift estimates of su�cient quality

as indicated by the SDSS pipeline is too small for most clusters to use as the basis for

our analysis; within the central 1.5 h�1Mpc, there are on average only about 60 galaxies

with photometric redshifts satisfying |z
c

� z
g

| < 0.03 and subject to the above quality

cuts, many of which were already picked up via the red sequence method. Additionally,

basing a selection on these redshifts would exclude most cluster members with r & 19.

Accordingly, as noted above, we must combine them with the galaxies selected via the

red sequence method. This final selection, denoted Selection A, for an example cluster is

shown in the lefthand panel of Figure 3.2.

2
http://www.sdss.org/dr12/algorithms/photo-z/
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As an additional step in verifying our cluster member selection, we construct a

projected radial density plot consisting of the total radial density profiles of all sources

in our catalog (subject to r < 20) as well as the non-cluster density profile, computed by

subtracting the counts of cluster members from the total number of galaxies in each bin.

In the total profile, we expect to see a steep increase in galaxies at small radial distances

that flattens out at large R. After subtracting out the contribution from these cluster

members, the resulting non-cluster member profile should be roughly flat. Figure 3.3

shows these density plots for four example clusters, using Selection A.

Selection B

While neither the SDSS photometric redshifts nor the spectroscopy of R13 identify

enough cluster members for our analysis, we can use this additional information to refine

the red sequence selection in a second selection. As before, after selecting red sequence

cluster members using the procedure outlined in Section 3.2.2, we add in bluer cluster

members based on SDSS photometric redshifts as described in Section 3.2.2. However,

in this case, we can further refine the selection by also rejecting cluster members if the

SDSS photometric redshifts are su�ciently secure and the members in question have

redshifts in the range |z
c

� z
g

| < 0.03, where z
c

is the cluster redshift and z
g

is the

photometric redshift estimate.

We can use the spectroscopic data of R13 similarly. After matching their tables

to the SDSS catalogs, we add in cluster members as identified by the spectroscopy and

reject galaxies that were originally selected by the red sequence method or photometric

redshifts but are identified as non-members by R13. This method of cluster member
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Figure 3.2.—: Top: The cluster member selection for example cluster A1068 using Se-

lection A, which comprises galaxies selected using the red sequence method and galaxies

with SDSS photometric redshifts, which add in some galaxies blueward of the red se-

quence. Bottom: The cluster member selection for this same cluster using Selection B,

which combines the red sequence, photometric redshifts, and spectroscopic redshifts.
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selection, which we term ‘Selection B,’ is summarized in the righthand panel of Figure

3.2. This selection is more observationally expensive than Selection A, so it is worth

testing both methods to see whether the additional information makes a di↵erence in

the results. On average, the numbers of cluster members selected by these two methods

di↵er by about 5% within 1.5 h�1Mpc of the cluster center. We will test the e↵ect of this

selection on our analysis in Section 4.4.

We note, however, that both of our selection methods will still include some level of

contamination, primarily arising from the red sequence selection, which cannot be wholly

refined with the quantity of more secure data available. Nonetheless, we do not believe

that this contamination will have a significant impact on positive results – that is, the

contamination should not mimic the signature of the density jump, as the non-cluster

member red sequence galaxies are expected to be distributed roughly uniformly over

the sky. However, the contamination could potentially wash out a density jump if the

background level approaches or exceeds the cluster density in the outskirts. This means

that, while our results can suggest the existence of a potential density jump, the lack of

a density jump feature in our data does not necessarily indicate that the cluster does not

have such a feature but rather that the data are simply not clean enough to detect it.

3.3 Method

3.3.1 Approach

Our fiducial analysis relies on cluster members selected as described in Section 6.2,

subject to a magnitude cut of r < 20. We determine the number counts of galaxies in
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Figure 3.3.—: Plots of the projected densities of galaxies with r < 20 in four cluster

fields: A1068, A1302, A1132, and A1246. Both the total galaxy density (black points)

and the cluster density (red points) are expected to rise steeply towards the cluster center.

The blue points show the density after removing cluster members from the total count,

with a line drawn to indicate the average value beyond 20 arcminutes for comparison.

The non-cluster galaxy distribution should be roughly flat if we have adequately selected

cluster members, as for A1068 and A1302. A1132 and A1246, on the other hand, show

some residual overdensity.
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bins of 0.1 h�1Mpc, from which we construct the projected number density profile of

member galaxies, N(R), with R indicating the projected radius, using the cluster centers

listed in R13. We use Poissonian error bars.

We employ two methods to test for evidence of the density jump. The first is to

try to detect a density jump in these profiles by fitting to them a cluster density model

with a jump and compare it to a fit using a model without the jump. In the second,

we avoid reference to a specific functional form and instead use non-parametric splines

to see whether we can naturally extract a steepening of slope in the projected profiles,

which would suggest the signature of a density jump.

In the first method, we fit the profiles using the fitting formula provided by DK14

to incorporate their predicted density steepening:

nDK(r) = nin(r)

"
1 +

✓
r

r
t

◆
�

#� �
�

+ n
m

"
b
e

✓
r

5R200

◆�se

+ 1

#
. (3.1)

As suggested by the results of the fits of DK14 to simulation data, we fix � = 6 and

� = 4, a choice that yields a dependence of r
t

on the mass accretion rate, �:

r
t

=
�
0.62 + 1.18e�2�/3

�
⇥R200 (3.2)

We further select the NFW profile with two parameters, n
s

and r
s

, as our inner density

profile nin:

nNFW(r) =
n
s

r/r
s

(1 + r/r
s

)2
. (3.3)

We note that DK14 used the Einasto function (Einasto 1965) instead of the NFW for the

inner profile, but in the regime of interest, the distinction between the two is negligible.

We will refer to the model given by Equation 3.1 with nin(r) = nNFW(r) as the ‘Density
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Jump’ model, or ‘DJ’ model in abbreviation. We note that this model is a spherical

one and thus may not be a good description of clusters undergoing mergers or featuring

significant substructure, but there are only a few clusters potentially identified as such

in R13, specifically A667, A773, A1758, A1902, A1914, and A2219, so that we do not

expect this to have a significant impact on our analysis.

Since the density jump feature occurs around the virial radius, we use a fitting range

of R < 2R200, which is beyond the range that is typically fitted well by an NFW profile

(we also exclude the inner R < 0.1Rvir in the fit, consistent with DK14). Accordingly,

the two models that we will compare via fitting will be the DJ profile and a profile given

by an NFW profile with an outer term:

n(r) = nNFW(r) + n
m

"
b
e

✓
r

5R200

◆�se

+ 1

#
. (3.4)

These profiles are projected numerically and fitted to our galaxy density data. The free

parameters in our fit are n
s

, r
s

, b
e

, and s
e

for both profiles; the full DJ formula has

one additional free parameter, �. We restrict the fits to the range 0 < � < 5 and to

reasonable values of n
s

(< 5000 gal/h�3Mpc3) and r
s

, the latter of which is restricted

by the value of the NFW concentration parameter, c = R200c/rs. Observations have

suggested that this value is lower for galaxy profiles than for dark matter (e.g., Lin,

Mohr, & Stanford 2004; Hansen et al. 2005; Budzynski et al. 2012), and we set the range

as 2.0 < c < 6.0 in our fits. We refer to the Appendix of DK14 for appropriate ranges for

s
e

(0.5� 2.0) and b
e

(0.1� 4.0). We additionally fix n
m

, which will be discussed further

in Section 3.3.2, and we select as our upper limit of integration R = 10Rvir, same as used

by DK14.

We then examine the results of the fits using the Akaike Information Criterion

49



CHAPTER 3. DENSITY JUMPS IN GALAXY CLUSTERS

(AIC; Akaike 1974) and the Bayesian Information Criterion (BIC; Schwarz 1978), which

provide a means of comparing models fitted to data. As the use of these methods in

astrophysics and cosmology has been discussed in a number of papers (e.g., Takeuchi

2000; Liddle 2007; Broderick et al. 2011; Tan & Biswas 2012), we simply mention the

most salient qualities here and refer the reader to these works for further details. To

apply these criteria, we compute the following statistics for each fit:

AIC = �2 + 2p+
2p(p+ 1)

N � p� 1
, (3.5)

BIC = �2 + p ln(N ), (3.6)

where p is the number of parameters in the fit, N is the number of data points being

fitted, and �2 is the standard minimized goodness-of-fit parameter. In the case of

the AIC, we have also included a correction term of 2p(p + 1)/(N � p � 1) which is

recommended for small values of N (Burnham & Anderson 2002, 2004). The model

that is preferred by these criteria is the one with the lower IC = AIC, BIC value. If we

compute �IC = IChigh � IClow, then, roughly, values of �IC = 1 � 5 are indicative of

‘positive’ evidence in favor of the model with lower IC and values of �IC > 5 denote

‘strong’ evidence (e.g., Liddle 2007; Broderick et al. 2011).

Our second method consists of smoothing the profiles by fitting a smoothing cubic

spline to our data. For a data set with measured values y
i

and errors �
i

at a set of points

r
i

, the smoothing spline f(r
i

) is constructed to satisfy the condition

NX

i=1

✓
y
i

� f(r
i

)

�
i

◆2

 S, (3.7)

where S is a constant that interpolates between smoothing and fitting: that is, when

S = 0, the spline is forced to pass through every data point, so that there is no
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smoothing, whereas as S is increased, the curve becomes smoother at the expense of the

fit (de Boor 2001). Reinsch (1967) argues that the smoothing parameter S should be

chosen in the range N �

p

2N  S  N +
p

2N , where N is the number of data points

over which we construct the spline, if the �
i

are estimates of the standard deviation in

y
i

. We accordingly choose three values within this range to compare to an NFW fit:

S = N �

p

2N , N , N +
p

2N . The NFW model is expected to be a good fit to the

inner parts of the profile, so we use the analytical expression for the projected NFW

density (e.g., Wright & Brainerd 2000) to fit the cluster galaxy density profiles within

R200, establishing the values of n
s

and r
s

. We then calculate the logarithmic derivative

d log(N)/d log(R) of the splines for each cluster to test for the presence of the density

jump feature, comparing it to the logarithmic derivative of the NFW fit.

3.3.2 Fixed Parameters

As noted in Section 6.1, we define measures of cluster size such that the mean mass

density inside the radius R� is ⇢̄ = �⇢
b

(z); commonly used values are R500 and R200.

The other quantity that needs to be specified is the background density ⇢
b

(z); one choice

often used in observational work is the critical density ⇢
c

(z) ⌘ 3H(z)2/8⇡G, where H(z)

is the Hubble parameter at redshift z, which is given by H(z)2 = H2
0 [⌦m

(1 + z)3 + ⌦⇤]

with H0 = 100 h km/s/Mpc. Another choice is to use the mean matter density

⇢
m

(z) = ⇢
c

(z)⌦
m

(z), where ⌦
m

(z) = ⌦
m

(1 + z)3/ [⌦
m

(1 + z)3 + ⌦⇤], which is used with

� = 200.

As noted above, DK14 use the mean matter density ⇢
m

(z) to define the radius

R200 = R200m used in the fitting formula given by Equation (3.1). However, R13 measures
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R200 = R200c for their sample of clusters using the critical density as reference, so we

need to convert their measure to that of DK14. To do so, we note that a given mean

density ⇢̄ may be written in two ways:

⇢̄ = �
c

⇢
c

(z) = �
m

⇢
m

(z). (3.8)

If we specify that ⇢ = ⇢NFW, then in the outskirts of the cluster (i.e., including near

R200), we have:

⇢̄(R�) /
1

R3
�

. (3.9)

Combining this relation with Equation (3.8) yields

R200m

R200c

=

✓
1

⌦
m

(z)

◆1/3

. (3.10)

For z = 0.1� 0.3, this implies that

R200m ⇡ 1.4⇥R200c. (3.11)

Accordingly, for simplicity, we will henceforth refer to R200m as R200, and the values from

R13 will be converted to this measure using Equation (3.11).

Lastly, we need to establish an appropriate value for n
m

. We note that the original

prescription of DK14 defines Equation (3.1) in terms of mass densities ⇢ rather than

number densities n, and their fitting results assume a fixed value of ⇢
m

(z) = ⇢
c

(z)⌦
m

(z).

The translation into a number density needs to take into account the impact of the

primary selection function by which we obtain cluster members, the red sequence

method. In the absence of a cluster, this method would select a population of galaxies

that lies in the appropriate region of color-magnitude space; in this case, the projected

density of these galaxies is expected to be roughly constant across the field of view.
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Recalling the outer profile term of Equation (3.1),

nout(r) = n
m

"
b
e

✓
r

5R200

◆�se

+ 1

#
, (3.12)

we can analytically determine the contribution to the surface density of the last, constant

term. The surface density is the line-of-sight integral,

N(R) = 2

Z 1

R

n(r)r
p

r2 �R2
dr; (3.13)

this integral diverges for a constant n(r). However, in practice we must truncate this

integral at some maximum radius Rmax. As noted above, DK14 use Rmax = 10Rvir ⇡

9R200. In that case,

N
m

(R) = 2n
m

Z 9R200

R

r
p

r2 �R2
dr, (3.14)

N
m

(R) = 18n
m

R200

s

1�

✓
R

9R200

◆2

. (3.15)

For the scales of interest in our fits, R . 2R200 (and even a bit beyond), this value is

roughly constant near the value at R = 2R200,

N
m

⇡ 17.6n
m

R200. (3.16)

The redshift dependence of N
m

can be determined by applying the red sequence

method in test fields that are not centered on low redshift clusters. If we select a

population of galaxies with this method, then we can construct the projected density in

a given radial bin i as

N
m,i

=
N

i

⇡
�
R2

i,max �R2
i,min

� , (3.17)

=
1

D
A

(z)2

"
N

i

⇡
�
✓2
i,max � ✓2

i,min

�
#
, (3.18)
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where N
i

is the number of galaxies in the ith bin and D
A

(z) denotes the angular diameter

distance. We expect that the angular projected density (the term in brackets) over the

radial range is a roughly constant value, which we denote by ⌘. Then

N
m

(z) =
⌘

D
A

(z)2
=

⌘(1 + z)2

D
c

(z)2
, (3.19)

where D
c

is the comoving distance, which at the small redshifts considered here, is given

by D
c

(z) ⇡ (c/H0)z. Upon setting ⌘̃ = ⌘/(c/H0)2, we have:

N
m

(z) = ⌘̃
(1 + z)2

z2
. (3.20)

To obtain the value of ⌘̃, we apply our red sequence cuts in random test fields from SDSS

(also subject to our initial magnitude cut of r < 20) and fit N with the above function.

This yields ⌘̃ ⇡ 0.08 h2 Mpc�2.

Accordingly, combining Equation (3.16) with (3.20), we find that:

n
m

(z, R200) =
4.55⇥ 10�3

R200

(1 + z)2

z2
. (3.21)

We fix this value individually for each cluster using its measured redshift and R200 (the

latter converted as discussed above) from R13. This equation sets the background red

sequence level and its applicability can be verified by examining the large R behavior of

our fits in Section 4.4.

3.4 Results

3.4.1 Fitting

The results of fitting the projected number density profiles with Equations (3.1) and

(3.4) are summarized in Table 3.1 for both the fiducial method and variations, the latter
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of which will be discussed in the next section. We note that the DJ model will always

show a density jump-like feature if the parameters are constrained to their indicated

values as in Section 3.3.1. However, as the DJ model has one additional parameter than

the NFW+Outer model, we then compare the two fits using the AIC and BIC, which

can test whether the improvement in the fit is significant given the addition of this

parameter. We compute, in each case, �IC = ICNFW+O � ICDJ. Since lower values of IC

are favored, this quantity will be positive if the criteria indicate evidence in favor of the

DJ model. In Table 3.1, we thus first list in the column, ‘% �2
DJ/ndf < �2

NFWO/ndf,’ the

number of galaxy clusters for which the reduced �2 is lower for the DJ model and second

the number of galaxy clusters whose fits pass a general quality cut, including requiring

that �2/ndf < 3 for the DJ model and a more generous �2/ndf < 5 for the other. The

next two columns indicate how many clusters have �IC = ICNFW+O � ICDJ > 0 for each

criterion, which would suggest evidence in favor of the DJ model. The last two columns

indicates how many clusters have one of the �IC > 5, indicating strong evidence in favor

of this model.

Our fiducial method uses a binning of �R = 0.1 h�1Mpc and employs a magnitude

cut of r < 20. We use two selection methods to identify cluster members; as discussed

in more detail in Section 6.2, Selection A is based on SDSS photometry and Selection B

refines the first with R13 spectroscopy. Using Selection A, only about 13% (7 clusters)

of the original 56 clusters have both �IC > 5. We see that refining the cluster member

selection yields a higher number of clusters for which the DJ model is a better description

than a simple NFW model with an outer term, with about 25% of these clusters having

both �IC > 5. However, the results of individual clusters are consistent between the

selection methods – the seven clusters with the strongest evidence in favor of the density
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jump using Selection A (A655, A1033, A1246, A1437, A1689, A1914, and A2034)

continue to have �IC > 5 using the second selection. These clusters (along with the

more marginal case A1835, which has only one �IC > 5 using Selection A) are shown in

Figure 3.4 for Selection A fits and Figure 3.5 for Selection B; however, using Selection

B several other clusters also reveal strong (and for some even stronger) evidence for a

density jump. In both cases, the cluster with the strongest evidence for a density jump

is A1689.

Furthermore, the increase in the number of clusters with IC evidence in favor of

the DJ model using Selection B suggests that it may be beneficial to investigate these

profiles further with a cleaner cluster member selection, with either a sample of galaxies

with high-quality photometric redshift estimates or with a su�ciently dense sample

of galaxies with secure spectroscopic redshifts. Additionally, a few of these clusters

(particularly A1246) show some residual overdensity at roughly ✓ < 50 of the cluster

center after the cluster member selection (c.f. Figure 3.3), which could be indicative

either of having missed some population of galaxies in our selection or that there are

some other agglomerations of galaxies along the line of sight that contribute to the

overdensity. Other clusters, like A655, have some additional features in their density

profiles at large R, which could be indicative of infalling groups of galaxies. High-quality,

dense redshift estimates would help resolve these ambiguities.

We additionally test the fits by making the radial bins twice as large (�R =

0.2 h�1Mpc). In this case, the reduced �2 values are a bit worse for Selection A, as

indicated in Table 3.1. We find that the larger binning yields the greatest drop in the

number of clusters with evidence favorable towards the DJ model using the AIC; the

BIC results, however, are virtually unchanged from the earlier case. The discrepancy
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Figure 3.4.—: Plots of the projected number density profiles for the 8 clusters with the

highest �AIC and �BIC values in the fiducial analysis using Selection A. Three fitted

functions are shown: a base NFW, fitted interior to R200, an NFW+Outer model, given

by Equation (3.4) and fitted interior to 2R200, and the full Density Jump model given by

Equation 3.1 with an inner NFW profile, fitted interior to 2R200.
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Figure 3.5.—: Plots of the projected number density profiles for the 8 clusters with

�IC > 5 using both selection methods, with fits shown for the profiles constructed using

Selection B. The curves are the same as in Figure 3.4.
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is likely caused by the smaller number of data points over which we fit relative to the

number of parameters, which a↵ects the correction term for the AIC.

Lastly, we examine the e↵ects of possible small miscentering on our results. We take

the eight clusters in Figure 3.4 and redo the fiducial Selection A analysis after shifting

the centers of each cluster by roughly 50 kpc, approximately the radius of a brightest

cluster galaxy. We find that all 8 clusters continue to have �IC > 0, and 7 have both

�IC > 5. A1835, the already the marginal case in the original analysis, ends up with

both �IC ⇠ 2� 3. This suggests that our strong results are stable with respect to small

errors in the centering of the cluster.

3.4.2 Smoothing Splines

In addition to fitting the projected galaxy density profiles with Equations (3.1)

and (3.4), we also fit a smoothing cubic spline as described in Section 3.3.1. This latter

approach has the benefit of being model-independent; we use the spline fits to construct

a smooth logarithmic derivative of the profile to test for the existence of a density jump.

First, to provide context for the spline results, in Figure 3.6, we plot the DJ model

at fixed � = 4 for various redshifts, which determine n
m

, and for an example fixed

Table 3.1:: Information Criteria Results

Method % �2
DJ/ndf < �2

NFWO/ndf �AIC > 0 �BIC > 0 �AIC > 5 �BIC > 5 Both > 5

Fiducial, Sel. A 38/56 18 22 8 7 7

Fiducial, Sel. B 43/56 32 32 16 20 14

�R = 0.2 h�1Mpc, Sel. A 34/55 12 22 5 7 5
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redshift z = 0.15, we also show the variation with �. The bottom panel of each plot

shows the corresponding logarithmic derivatives. The e↵ect of the redshift dependence

is to make the density jump steeper at higher redshift due to the lower background n
m

.

At a fixed n
m

, a smaller value of � means a shallower density jump, whose maximum

amplitude slope is attained at larger radii, although the values of b
e

and s
e

, which are

free parameters in our fits, also contribute to the variation in the amplitude.

Figure 3.6 can be compared to Figure 13 of DK14. While the behavior of the

density jump is qualitatively the same, we note that in our analysis, the maximum slope

amplitudes are smaller than those predicted by DK14 due to the elevated background;

accordingly, in our case the maximum slope amplitudes are governed not only by the

mass accretion rate � but also the redshift of the cluster. However, the density jump

location also depends on �.

Accordingly, we model our spline fits on Figure 3.6. We show the cubic spline fits for

the same subset of clusters selected via the information criteria in the fiducial analysis.

Figure 3.7 shows the spline fits for Selection A, while Figure 3.8 is its counterpart for

Selection B. The spline fits do appear to pick up a modest steepening of slope, consistent

with the low redshift of these clusters. Since at low redshift we can expect to almost

exclusively detect very large density jumps (� ⇡ 5), which are likely uncommon, it is

perhaps not surprising that the number of clusters for which the information criteria

suggest strong evidence for the jump is fairly low.
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Figure 3.6.—: The projected density jump is a steepening of slope that can be analyzed

using the logarithmic derivative of the DK14 model for four combinations of s
e

and b
e

values. The redshift dependence enters via n
m

(z, R200) as given by Equation (3.21), and

we show the result for three values of z in the range of the R13 clusters at fixed � = 4.

For the z = 0.15 case we also show the variation of the profile with �. An NFW profile

(dashed) is drawn for comparison. All other model parameters are fixed.

61



CHAPTER 3. DENSITY JUMPS IN GALAXY CLUSTERS

0.5

1.0

1.5

2.0

2.5

lo
g 1

0(
N

[h
2 M

p
c�

2
])

A655

NFW

S = N +
p

2N

S = N

S = N �

p

2N

�2.0

�1.5

�1.0

�0.5

0.0

d
lo
g
N
/d

lo
g
R

0.5

1.0

1.5

2.0

2.5

lo
g 1

0(
N

[h
2 M

p
c�

2
])

A1689

0.1 1.0
R/R200

�2.0

�1.5

�1.0

�0.5

0.0

d
lo
g
N
/d

lo
g
R

A1033

A1914

0.1 1.0
R/R200

A1246

A2034

0.1 1.0
R/R200

A1437

A1835

0.1 1.0
R/R200

Figure 3.7.—: The top panel shows spline fits for various values of the smoothing param-

eter S for the clusters in Figure 3.4. The lower panel displays the logarithmic derivatives

of the splines. An NFW fit and its logarithmic derivative (dashed line) are shown for

comparison.
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Figure 3.8.—: Same as Figure 3.7, but for Selection B profiles.
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3.5 Discussion

We have tested whether cluster galaxy density profiles show evidence for a density

jump feature near the virial radius using two methods: profile fitting and spline

smoothing. We have examined the evidence in favor of the presence of a steep density

jump in the galaxy density profiles of clusters, and also investigated the results via spline

smoothing.

There does appear to be some dependence of our results on cluster redshift. In

our fiducial analysis of Section 3.4.1, the seven clusters that showed strong evidence

(both �IC > 5) for the density jump using Selection A spanned the redshift range of

roughly z = 0.1 � 0.2, which omits the higher redshift clusters (although an eighth

cluster, A1835, with one �IC > 5 value, is at z = 0.25). However, employing Selection B

enlarges the sample of strong evidence clusters, and extends this to about z = 0.1� 0.25,

e↵ectively the entire range of R13. More massive clusters tend to show stronger

evidence for a density jump: these same 8 clusters have virial masses in the range

Mvir = (2 � 11) ⇥ 1014 h�1M�, while a significant fraction of the clusters in the R13

sample have Mvir = (0.3� 2)⇥ 1014 h�1M� (and may also be considered galaxy groups).

This trend continues even when considering the additional clusters that pass the criteria

using Selection B. This behavior can be expected, as higher mass clusters tend to have

higher values of � and their profiles are likely to be better sampled than lower mass

systems.

We see variations based on the cluster member selection. Our primary selection

uses only photometric data, but redoing the analysis with the inclusion of the R13
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spectroscopy does shift the results; in particular, the refined selection yields a larger

sample of clusters that show some evidence for the jump. This suggests that additional

data is required to make a firm detection of the density jump. This additional data

could be in the form of dense spectroscopy out to large radii of cluster member galaxies,

building upon the R13 catalog, which would provide the most secure cluster member

determination. Otherwise, high-quality photometric redshifts could also improve upon

our estimates.

Additionally, it is worth noting that in interpreting these results it is necessary to

keep in mind some of the other factors that can impact the jump signature. In particular,

cluster asphericity and contamination by other small groups and clusters along the line

of sight can contribute to a diminishing of the jump signal. The latter of these can be

addressed with redshift estimates. For the first, we note that the signature of the jump

becomes more pronounced and thus easier to detect when � is large; however, clusters

with large values of � may be more likely to have disturbed shapes and substructures,

which when examined in projection could obscure the signature of the density jump.

More generally, it would be useful to compare the results in Table 3.1 to simulations.

Mock halo catalogs could give an indication of the conditions needed for a cluster to

show a discernible jump and thus the fraction of clusters in which we can expect to find

this signature, which would provide context for the fractions we find using observational

data. While this is a promising avenue for future analyses, such a comparison is beyond

the scope of this work.
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3.6 Summary and Conclusions

Using the cluster sample of R13 and optical data from SDSS, we have searched

for the signature of a density jump feature near the virial radius (⇠ R200) predicted

by the simulations of DK14. Our fiducial analysis selects cluster members from SDSS

photometric catalogs using the red sequence method and photometric redshifts, and

compares this to a selection refined by the inclusion of the spectroscopy of R13. After

constructing the radial density profiles of the clusters, we fit two models, one with a

density jump — Equation (3.1) — and one without — Equation (3.4) — and used the

Akaike and Bayesian Information Criteria (AIC and BIC) to examine the evidence in

favor of the density jump model. These criteria indicate that, using our fiducial methods,

at least 10% showed strong evidence (�IC > 5) for the model that includes a density

jump. The clusters with strong evidence for the density jump tend to have a higher mass

(Mvir & 2 ⇥ 1014h�1M�), as expected. The cluster with the strongest evidence for the

jump in this sample is Abell 1689.

We examined varying some of the parameters in our analysis. We find that using

a larger bin size yields fewer clusters with strong evidence (if we stipulate a strong

result for both criteria; the AIC appears to be most a↵ected by the binning) for the

density jump. However, if we require only one of the information criteria to yield strong

evidence, then we are in excellent agreement with the fiducial analysis. We also probed

the e↵ects of possible small errors in centering; these were found to have negligible e↵ect

on our results.

We additionally tested our results using cubic smoothing splines. The spline
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analysis appears to indicate some steepening of slope in these clusters, but these tend

to be modest, suggesting the comparison to the theoretical predictions of DK14 may

be complicated by background and projection e↵ects. In the case of the former, a high

background can diminish the signal, while the latter acknowledges that since clusters

can have diverse shapes, the density jump is not necessarily localized at a single radius,

which can lead to modifications of the signal in projection.

Finally, varying the cluster member selection methods does appear to have an

e↵ect on the results; in particular, including the most secure cluster member indicators

(spectroscopic redshifts) increases the number of clusters for which we have strong

evidence in favor of a model with a density jump. Thus, our conclusions are limited

by the availability of data for the identification of galaxy cluster members. While the

red sequence method provides a means of identifying the majority of cluster members,

which tend to be red, early type galaxies, it does not readily provide a means of rejecting

interloping red galaxies from higher redshifts or for including the smaller population of

member galaxies blueward of the red sequence. While the spectroscopic observations of

R13 provide an excellent start, it would be useful to extend their samples with additional

redshift estimates to improve the completeness in the cluster outskirts, mitigating

observational selection e↵ects that can mimic a density steepening.

Accordingly, at present, neither the extant photometry nor spectroscopy of these

clusters provides adequate numbers of confirmed member galaxies out to su�ciently

large radii to significantly improve upon our methods. However, in order to better

constrain the density jump feature and precisely determine its amplitude and position,

future e↵orts will require either secure photometric redshifts or additional spectroscopy

to refine the cluster galaxy density profiles. Future work using mock halo catalogs could
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help pinpoint the conditions under which clusters can be expected to show a discernible

density jump to help guide these observational endeavors.
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Chapter 4

Quantifying the Color-Dependent

Stochasticity of Large-Scale

Structure
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4.1 Introduction

Large-scale galaxy redshift surveys such as the Sloan Digital Sky Survey (SDSS-III

DR12; Alam, et al. 2015) use the distribution of galaxies in the universe to constrain

cosmological parameters in a manner complementary to other cosmological probes,

including measurements of the cosmic microwave background (e.g., Ade et al. 2015)

and supernovae (e.g., Suzuki et al. 2012). Within the scope of galaxy redshift surveys,
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major projects like SDSS-III’s Baryon Oscillation Spectroscopic Survey (BOSS; Dawson

et al. 2013) as well as future experiments like the Dark Energy Spectroscopic Instrument

(DESI) (Levi et al. 2013) target specific types of galaxies: luminous red galaxies (LRGs),

and LRGs and emission line galaxies (ELGs), respectively. Accordingly, a key source

of systematic uncertainty in these surveys is the knowledge of the extent to which the

subset of galaxies observed probes the large-scale structure of the universe.

Local bias argues for a minimal level of stochasticity on large scales (Coles

1993; Scherrer & Weinberg 1998) and investigations of halo clustering suggest that

halos of di↵erent masses do roughly trace the same large-scale structure (e.g, Seljak

& Warren 2004; Hamaus et al. 2010). Accordingly, we may expect galaxies to be

roughly non-stochastic (e.g., Tegmark & Bromley 1999). An informative test of these

predictions can be obtained by measuring whether red and blue galaxies trace the same

large-scale structure. The mathematical framework of this question can be developed

straightforwardly using the concept of a fractional overdensity field,

�(x) =
⇢(x)

⇢̄
� 1. (4.1)

In the simplest scenario, we can relate the distribution of red and blue galaxies to this

underlying matter distribution via linear, deterministic bias parameters as:

�
b

(x) = b
b

�(x), �
r

(x) = b
r

�(x), (4.2)

from which it is possible to compute the correlation function as ⇠(R) = h�(x)�(x+R)i.

71



CHAPTER 4. COLOR-DEPENDENT STOCHASTICITY OF LSS

Combined with Equation (4.2), this yields the relations:

⇠
bb

(R) = b2
b

⇠(R), (4.3)

⇠
rr

(R) = b2
r

⇠(R), (4.4)

⇠
br

(R) = b
b

b
r

⇠(R). (4.5)

Taking the square root of the ratios of the autocorrelations yields estimates of the

relative bias brel between red and blue galaxies (e.g., Croton et al. 2007; Coil et al. 2008;

Guo et al. 2013; Skibba et al. 2014). Constructing the correlation coe�cient, r
⇠

, we find:

r
⇠

⌘

⇠
br

p

⇠
bb

⇠
rr

= 1. (4.6)

However, the formalism of Equation (4.2) has several obvious failures, one of which

is that it permits values of �
b

, �
r

< �1 if b
b

, b
r

> 1, and so must be superseded by a more

realistic model. To this end, we follow Dekel & Lahav (1999) in defining, for g = b, r,

✏
g

(x) ⌘ �
g

(x)� b
g

�(x), (4.7)

a random bias field that introduces stochasticity into the relations between the two

galaxy samples. In this case, if we calculate the correlation coe�cient, we see that r
⇠

6= 1.

The key to discerning the presence of stochasticity, then, is the measurement

of the correlation coe�cient. We use pair counting to calculate both the traditional

correlation function statistics as well as the more recent ! statistic of Xu et al. (2010)

using the BOSS CMASS sample of galaxies from SDSS-III DR12; we then calculate a

correlation coe�cient for each statistic. Our focus is on intermediate scales, roughly

20 . r . 100 h�1Mpc, which can be compared to the results of previous analyses

at smaller scales using similar statistical methods (e.g., Zehavi et al. 2005). Our
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approach also provides an alternative to analyses of colour-dependent clustering using

the complementary counts-in-cells method (e.g., Wild et al. 2005; Swanson et al. 2008).

Throughout we assume a flat ⇤CDM cosmology with ⌦
m

= 0.274, which is consistent

with Anderson et al. (2012).

4.2 Data

The SDSS-III DR12 contains spectra of over 1.3 million galaxies and ugriz imaging

of 14555 sq. degrees of sky obtained using a 2.5 m telescope at Apache Point Observatory

(York et al. 2000; Gunn et al. 2006; Alam, et al. 2015). A series of publications outlines

the technical details of SDSS instrumentation (Fukugita et al. 1996; Smith et al. 2002;

Doi et al. 2010; Smee et al. 2013) and the data processing pipelines (Lupton et al. 2001;

Pier et al. 2003; Padmanabhan et al. 2008; Bolton et al. 2012; Weaver et al. 2015). We

perform our analysis on the CMASS sample of BOSS galaxies, which is defined via

colour and magnitude cuts as in Eisenstein et al. (2011), Dawson et al. (2013), and Reid

et al. (2015). We further narrow our attention to the redshift range 0.55 < z < 0.65,

so selected as to avoid incompleteness of the CMASS sample at higher redshifts and to

bypass lower redshifts where the CMASS colour cuts exclude blue galaxies. To divide

the sample into red and blue galaxies, we use the criterion of Masters et al. (2011), which

selects red galaxies using the simple colour cut g � i > 2.35. These cuts yield 232,759

red galaxies and 61,301 blue galaxies. In addition to the data, we select two subsamples

of random points distributed across the survey area to correspond to the red and blue

galaxies such that each set has roughly 50 times the number of galaxies as the data

subsamples.
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Since this colour cut yields roughly four times more red galaxies than blue, we

use the redshift distribution of galaxies, shown in Fig. 4.1, to generate weights wcolour

for the blue galaxies that match their distribution to the red galaxies, which we will

use in addition to the standard data weights. The colour weights match the redshift

distributions to ensure that the large-scale structure variations in the survey are equally

weighted, thereby reducing sample variance in the comparison of clustering between the

two samples. The final weighting that we use is then:

wtotal = wcolourwsys(wzf

+ w
cp

� 1), (4.8)

where wcolour = 1 for red galaxies and wcolour = N
r

(z)/N
b

(z) > 1 for blue galaxies, wsys is

a systematic weight that accounts for observing conditions, and w
zf

and w
cp

account for

redshift failures and close pairs, respectively (c.f. Anderson et al. 2012; Ross et al. 2014).

We additionally match the redshift distribution of the randoms to that of the data.

It is worth noting that the simple colour cut of Masters et al. (2011) is not the

only choice for dividing the galaxy sample into red and blue subsets; other works have

employed di↵erent cuts, such as the luminosity dependent colour cut of Zehavi et al.

(2011) and Guo et al. (2013). However, for the purposes of this work, the exact choice

of the colour cut is not significant, since we make the randoms trace the galaxy redshift

distributions. In essence, all we require is a simple criterion by which to divide the

sample into two categories, which we compare via two statistics.
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Figure 4.1.—: A histogram of the distribution of galaxies in the DR12 CMASS South

sample over 0.55 < z < 0.65. The lefthand panel shows the original division into red and

blue galaxies following the simple colour cut described in Section 6.2; in the righthand

panel, we show the distribution after weighting the blue sample to match the red galaxies.
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4.3 Procedure

4.3.1 Statistics

One of the standard methods of calculating the galaxy correlation function is the

Landy-Szalay estimator (Landy & Szalay 1993):

⇠(r) =
DD(r)� 2DR(r) +RR(r)

RR(r)
, (4.9)

where the terms DD, DR, and RR denote normalised data-data, data-random, and

random-random pair counts. In analyzing red and blue galaxy clustering, we may thus

define the auto-correlations of blue galaxies and red galaxies as:

⇠
bb

(r) =
D

b

D
b

(r)� 2D
b

R
b

(r) +R
b

R
b

(r)

R
b

R
b

(r)
, (4.10)

⇠
rr

(r) =
D

r

D
r

(r)� 2D
r

R
r

(r) +R
r

R
r

(r)

R
r

R
r

(r)
, (4.11)

and the cross-correlation (blue-red) as:

⇠
br

(r) =
D

b

D
r

(r)�D
b

R
r

(r)�D
r

R
b

(r) +R
b

R
r

(r)

R
b

R
r

(r)
. (4.12)

From these functions we can then compute the cross-correlation coe�cient,

r
⇠

=
⇠
br

p

⇠
rr

⇠
bb

, (4.13)

which provides a measure of the stochasticity.

However, while correlation functions provide a useful measurement of the

stochasticity parameter, it is possible to extend this analysis by using a statistic that

is both more computationally e�cient and less susceptible to poorly constrained or
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measured fluctuations from both small and large scales. Such a statistic is provided by

Xu et al. (2010), who define an !
`

statistic whose monopole term is:

!0(rs) = 4⇡

Z
W (r, r

s

)⇠(r)r2dr, (4.14)

where W is a smooth, compensated filter, chosen by Xu et al. (2010) (see also

Padmanabhan et al. 2007) to be:

W (x) = (2x)2(1� x)2
✓
1

2
� x

◆
1

r3
s

, (4.15)

where

x =

✓
r

r
s

◆3

. (4.16)

The smoothness of the filter function W means that !0 is largely insensitive to small-scale

power, while the fact that W integrates to zero removes the sensitivity to large-scale

power and reduces the risk of including large-scale systematic errors.

Now, following Xu et al. (2010), if we define a simple pair-count estimator of the

correlation function as:

⇠(r) =
DD(r)

RR(r)
� 1, (4.17)

then by substituting into Equation (4.14), we obtain:

!0(rs) = 4⇡

Z
W (r, r

s

)
DD(r)

RR(r)
r2dr, (4.18)

with the integral of the �1 term in Equation (4.17) vanishing since we have selected

a compensated filter. The DD term has a simple mathematical interpretation: DD is

simply a weighted count over pairs at a given separation. That is, DD can be written as

a sum of Dirac delta functions:

DD(r) =
X

j

⌘
j

�
D

(r � r
j

), (4.19)

77



CHAPTER 4. COLOR-DEPENDENT STOCHASTICITY OF LSS

where ⌘
j

is the product of the wtot of the two galaxies in the pair. The RR term, on the

other hand, is a description of the survey region, and may be written as:

RR(r) = N2
D

�(r)
4⇡r2dr

V
. (4.20)

Here, N
D

is the weighted number of (data) galaxies, and V is the total survey volume.

�(r) is a function that takes into account the survey boundaries; that is, it measures the

fraction of pairs that are lost because the central galaxy around which the pair counts

are being computed is close to the boundaries. �(r) can be approximated by counting

up RR pairs and then fitting a polynomial to the formula defined in Equation (4.20).

With � thus calculated, rearranging this equation yields:

V

N2
D

1

�(r)
=

4⇡r2dr

RR(r)
. (4.21)

Returning to Equation (4.18), we find:

!0(rs) =

Z
W (r, r

s

)
X

j

⌘
j

�
D

(r � r
j

)
4⇡r2

RR(r)
dr. (4.22)

The �
D

function then collapses the integral so that, upon substituting Equation (4.21)

and absorbing ⌘
j

into W , we obtain the following summation:

!0(rs) =
V

N2
D

X

j

W (r
j

, r
s

)

�(r
j

)
. (4.23)

Accordingly, we see that the !0 statistic reduces to a discrete sum over pairs.

So defined, !0 reveals several additional advantages over the traditional ⇠ statistic

(Padmanabhan et al. 2007; Xu et al. 2010). First, when computing ⇠, we initially bin

the data to compute the pair counts at a discrete set of points. When computing !0, on

the other hand, we sum over each pair individually, which eliminates binning concerns.

Additionally, the computation of ⇠ is time-consuming since the number of randoms is
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typically chosen to be about 50 times the number of data points; while RR still needs to

be computed in order to obtain �, one can use far fewer points in order to simply get an

estimate of the geometry of the survey.

Now, we can define ! analogues to all the correlation function statistics. The

correlation functions themselves are translated into:

!
bb

(r
s

) =
V

N2
b

X

j2DbDb

W (r
j

, r
s

)

�(r
j

)
, (4.24)

!
rr

(r
s

) =
V

N2
r

X

j2DrDr

W (r
j

, r
s

)

�(r
j

)
, (4.25)

!
br

(r
s

) =
V

N
b

N
r

X

j2DbDr

W (r
j

, r
s

)

�(r
j

)
. (4.26)

From these, we construct an ! coe�cient analogous to r
⇠

as:

r
!

=
!
br

p

!
bb

!
rr

, (4.27)

which will provide a measurement of the stochasticity. In order to reduce the amount of

subscripts in certain contexts, we note that we will use ! and !0 for the Xu et al. (2010)

statistic interchangeably throughout the remainder of this work. We calculate the ⇠ and

! statistics for three selections of random galaxies, and average the results for r for our

final result.

4.3.2 Error Analysis

We employ the jackknife method of error estimation to derive error bars for our

measurements of ⇠ and !. In the jackknife method, we first subdivide our survey into N

roughly commensurate regions, then compute the statistics N times, each time leaving

out one of the previously defined regions. Then, the jackknife mean of the measurements
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may be written:

⇣
J,i

=
X

j 6=i

⇣
j

N � 1
=

N ⇣̄ � ⇣
i

N � 1
. (4.28)

From this, we may derive the errors as:

�2
J,⇣̄

=
N � 1

N

NX

i=1

(⇣
J,i

� ⇣̄)2. (4.29)

The remaining issue is the definition of these regions. We use the method of Voronoi

tessellation, in which we select a set of N central points within the survey volume, and

then for each of these points compute the locus of points that are closer to that central

point than any other. In practice, we choose a random sample of 150 galaxies to serve

as the central points. Then, to obtain Voronoi regions that are similar in size we iterate

over this selection, splitting the largest region by selecting two new central points from

within that region and merging the smallest region into its neighbors by removing its

central point and recomputing the regions. Although the regions are not exactly the

same size, with the smallest and largest Voronoi region di↵ering by . 50%, we have

verified numerically that these modest variations do not measurably bias our result.

The result of this process is shown in Fig. 4.2, which shows the final set of Voronoi

regions for one of the three runs that contributes to our final averaged value for r.

Each of the final Voronoi regions spans an area of roughly 14555/150 ⇡ 100 sq. degrees,

or roughly 10 degrees on each side, which amounts to a transverse comoving distance

of roughly 1.6 h�1Gpc at z = 0.6, the midpoint of our redshift range. Having thus

computed the Voronoi regions V
i

, we obtain the jackknife regions J
i

as J
i

=
P

V
n

� V
i

.
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Figure 4.2.—: Definition of 150 Voronoi regions over the entire SDSS survey area that

are used in the computation of jackknife errors for one run.
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4.4 Results

We compute both the ⇠ and ! statistics for the CMASS sample of galaxies in three

iterations, each with a di↵erent selection of randoms and of Voronoi regions, which

allows us to test the stability of the results. For the correlation function, we choose a

binning of �R = 5 h�1Mpc, while for !, we select 9 values of R
s

for which to calculate

the statistic, each spaced by 10 h�1Mpc. The correlation functions — the blue and

red auto-correlations, and the blue-red cross-correlation — and the corresponding !

statistics are computed in Fig. 4.3 for one of the runs.

From the three correlation functions, we obtain the correlation coe�cient r
⇠

,

shown in the left-hand panel of Fig. 4.4 for one of the iterations, and fit to it

a horizontal line. Although we compute the correlation functions themselves out

to large scales, for the calculation of the correlation coe�cient, we use the range

20 < R < 80 h�1Mpc. We also fit the analogous coe�cient r
!

(albeit in the slightly

extended range 20 < R
s

< 100 h�1Mpc), the results of which can be seen in the

righthand panel of Fig. 4.4 for one of the runs. The reduced covariance matrices used in

that iteration are furnished in Fig. 4.5. It is worth noting that the ⇠ covariance matrix

is highly diagonal; this is likely due to shot noise in the blue subsample of galaxies.

The ! covariance matrix, on the other hand, does demonstrate some covariance due to

integrating ⇠ over overlapping kernels.
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Figure 4.3.—: Left: Blue-blue (top), red-red (middle), and blue-red (bottom) correlation

functions, computed using a bin size of 5 h�1 Mpc and scaled by R2. Right: Blue-blue,

red-red, and blue-red !0 functions, computed using an R
s

spacing of 10 h�1 Mpc and

scaled by R2
s

.

83



CHAPTER 4. COLOR-DEPENDENT STOCHASTICITY OF LSS

20 30 40 50 60 70 80
R [h�1Mpc]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
r

r⇠

20 30 40 50 60 70 80 90 100
Rs [h�1Mpc]

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

r

r!

Figure 4.4.—: The correlation coe�cient, r
⇠

(left) and the analogous coe�cient r
!

(right)

given by the best fit line (solid) from one run. A dashed line is drawn at r = 1 for

comparison. Our results using the ! statistic indicate less stochasticity on intermediate

scales than the noisier analysis using correlation functions.

We average the stochasticity parameters r that we measure this way from the three

iterations; the resulting values are:

hr
⇠

i = 0.978± 0.014, (4.30)

hr
!

i = 0.996± 0.011. (4.31)

Although r
⇠

is lower than r
!

, the results of both suggest low stochasticity on intermediate

scales. The di↵erence in these values is possibly influenced by the substantial scatter for

R & 45 h�1Mpc in r
⇠

, to which the ! statistic is less susceptible.

However, our results averaging over scales are driven primarily by the smaller scale

values, as these are better measured in ⇠ and !. Accordingly, we test our results by
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varying the minimum radius and refitting r
⇠

and r
!

for the same run as depicted in

Fig. 4.4. The resulting values of r
⇠

and r
!

are plotted as a function of Rmin in Fig. 4.6.

From this, we see that r
⇠

has a much stronger dependence on the minimum radius of

the fit than r
!

, and shows a steep decline as Rmin increases, which may be due to a

systematic at large scales, while r
!

remains roughly constant. This suggests that !,

which demonstrates less variation, is a promising statistic for this type of analysis.

For both statistics, using a minimum fitting radius that is < 20 h�1Mpc shows

results that deviate from what would be obtained using a slightly larger minimum radius.

For ⇠, r
⇠

is larger, while for !, r
!

is smaller when Rmin < 20 h�1Mpc. Accordingly, to

avoid results that are driven by these small scales, we recommend using a fitting range

R & 20 h�1Mpc, and the results that we quote use that range.

4.5 Discussion

Our results align well with previous studies using correlation function analyses,

although given the various data sets and definitions of colour cuts employed in these

works, the exact values cannot directly compared; rather we simply note the consistency

of the results among similar analyses. With data from SDSS DR7, Zehavi et al. (2011)

found that r
⇠

is consistent with 1 on the largest of scales that they consider (roughly

10 < R < 40 h�1Mpc). This agrees with the results of Wang et al. (2007), whose analysis

of SDSS DR4 established similar results for R ⇠ 10 h�1Mpc. Our measured value of r
!

aligns well with these results.

A complementary approach was pursued by Wild et al. (2005) and Swanson et al.
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Figure 4.5.—: The reduced covariance matrices for the correlation coe�cient, r
⇠

(left), and

the analogous coe�cient, r
!

(right), calculated for R < 80 h�1Mpc and R
s

< 100 h�1Mpc

from the run whose results are shown in Fig. 4.4. These matrices are used to calculate

the �2 for fitting r.
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Figure 4.6.—: The fitted values of r
⇠

and r
!

as a function of Rmin, the minimum radius

used in the fit, for one run. The results using the ⇠ statistic are more strongly dependent

on the fitting range than those using !.
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(2008) in the form of the counts-in-cells method. Wild et al. (2005) used data from

the 2dF Galaxy Redshift Survey to investigate r
⇠

on scales of 7 < R < 32 h�1Mpc.

Their value of r
⇠

increases from roughly r
⇠

⇡ 0.87 at R = 7 h�1Mpc to r
⇠

= 0.97 at

R ⇡ 30 h�1Mpc. Swanson et al. (2008) relied on SDSS DR5 to obtain similar values for

R & 25 h�1Mpc, concluding that r
⇠

⇡ 0.97 as well on such large scales. These results are

in good agreement with our values for r
⇠

, but are somewhat lower than what we measure

for r
!

. Additionally, Blanton (2000) used this method to find that r
⇠

⇠ 0.87 � 0.95

for samples of early and late-type galaxies in the Las Campanas Redshift Survey on

15 h�1Mpc scales, which is consistent with our lower bound from the ⇠ statistic.

It is worth noting that in these works as well as our own the correlation coe�cient is

compared to r
⇠

= 1 to determine the level of stochasticity, but in a few bins, our values

of r
⇠

exceed 1. To examine why this is so, we recall the Dekel & Lahav (1999) formalism

of Equation (4.7), which describes the red and blue galaxy distributions as:

~�
r

b
r

= ~� + ~✏
r

⌘ ~↵, (4.32)

~�
b

b
b

= ~� + ~✏
b

⌘ ~↵ + ~�. (4.33)

Defining a correlation matrix M , we may then compute the correlation coe�cient as:

r2
⇠

=
h~↵TM(~↵ + ~�)i2

h~↵TM~↵ih(~↵ + ~�)TM(~↵ + ~�)i
, (4.34)

r2
⇠

=
h~↵TM~↵i2

h~↵TM~↵i
h
h~↵TM~↵i+ h

~�TM ~�i
i , (4.35)

where the cross terms have gone to zero upon taking the expectation value. This means

that:

r
⇠

=

s
h~↵TM~↵i

h~↵TM~↵i+ h

~�TM ~�i
⌘

s
⇠
↵

⇠
↵

+ ⇠
�

. (4.36)
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Accordingly, we have expressed r
⇠

in terms of the autocorrelation function of ~� = ~✏
b

� ~✏
r

.

If ⇠
�

= 0, then r
⇠

= 1, as expected. However, if ⇠
�

> 0, then r
⇠

< 1, but if ⇠
�

is negative,

then r
⇠

will in fact exceed 1. We note that our definition of stochasticity relies on the

correlation function so it does not rule out local stochasticity that is uncorrelated at

large separations.

4.6 Comparison with Simulations

To provide some context for our results, we apply these methods to a catalog

produced from a cosmological N-body simulation run with the Abacus code (Ferrer et

al. in prep; Metchnik & Pinto in prep.), which used 40963 particles in a 3.5 h�1Gpc box,

yielding particle masses of 5 ⇥ 1010 h�1M� with a Plummer softening of 105 h�1kpc.

Halos at a given redshift were found by the friends-of-friends algorithm (Davis et al. 1985)

with a linking length parameter b = 0.2. We select a full-sky survey of halos, over which

we define 145 Voronoi regions, in an annulus corresponding to the range 0.55 < z < 0.65.

We extract the real-space centre-of-mass positions of halos that fall into one of two

well-separated mass bins, (0.5� 1.0)⇥ 1013 h�1M� and (0.5� 1.0)⇥ 1014 h�1M�. These

mass ranges do not correspond to the masses of the CMASS galaxies; rather, the lower

mass bin is selected so as to have at least 100 particles in the halo, while the other is

chosen to be significantly more massive. This split yields 2,183,762 low mass and 113,740

high mass halos.
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Figure 4.7.—: The coe�cient r
!

for the simulated catalog from the best fit line (solid)

shown. A dashed line is drawn at r = 1 for comparison.
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Figure 4.8.—: The reduced covariance matrix for the correlation coe�cient coe�cient,

r
!

, measured from the simulated catalogs, which is used for calculating the �2 for the fit

shown in Fig. 4.7.

We then follow the same procedure as outlined in Section 4.3 to measure the

coe�cient r
!

, although we only use one run for the simulated catalog, and only 10⇥

randoms. Fig. 4.7 shows the variation of r
!

as a function of R
s

, as well as the best fit

horizontal line to the points, and Fig. 4.8 shows the reduced covariance matrix used for

the fitting. We find a best fit value of r
!

= 0.984± 0.006. This measured value is slightly

lower than what we found in the data using this same statistic, although the ranges

of values are consistent with each other, and with the value of r
⇠

that was calculated

for DR12. However, as noted above, the samples that we use here are not directly

comparable to the red/blue split used in the data as these halos are more massive than

the CMASS galaxies. Instead, what the simulation results indicate is that a halo model

does involve some stochasticity, and provide a lower bound on r, which would likely be
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higher for halo masses more closely attuned to CMASS.

4.7 Summary and Conclusions

Using the CMASS sample of galaxies from SDSS DR12, we have measured

the clustering of red and blue galaxies using correlation functions and the !0

statistic of Xu et al. (2010). From these functions, we constructed the stochasticity

parameter r and analysed its value over intermediate scales, which we take as roughly

20 . R . 100 h�1Mpc. Basing our results primarily on the ! statistic, we found that

r > 0.974, indicating low levels of stochasticity on these scales. Taking into account the

results using the standard correlation function statistics, this bound decreases slightly to

about r > 0.95.

Our results are in good agreement with the results of previous correlation function

studies, including those of Wang et al. (2007) and Zehavi et al. (2011). We also compared

these values to the value of r
!

obtained from a simulated halo catalog. We found that the

simulated catalog prefers a slightly lower value of r
!

than does the data; nevertheless, the

values are consistent with each other as well as with the results of using the ⇠ statistic

on the data. However, due to the high mass ranges of the simulated halos, the value of r

from this simulation may be lower than what we would obtain from halos with masses

more closely corresponding to those of CMASS galaxies.

We have additionally established the utility of the !0 statistic in analyzing

the stochasticity. As the results of Section 4.4 indicate, the traditional correlation

function statistics yield noisy estimates of r on large scales. In addition to being more

91



CHAPTER 4. COLOR-DEPENDENT STOCHASTICITY OF LSS

computationally e�cient, the !0 statistic is less susceptible to these fluctuations, making

it a promising tool for future investigations, possibly at larger scales.
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Chapter 5

Analyzing Baryon Acoustic

Oscillations in Sparse Spectroscopic

Surveys via Cross-Correlations

Anna Patej & Daniel Eisenstein, to be submitted to Monthly Notices of the Royal

Astronomical Society (2016)

5.1 Introduction

The signature of baryon acoustic oscillations is a peak in the clustering of galaxies

at large scales that is a relic of propagating sound waves in the early universe and whose

location depends on the distance the waves were able to cover prior to recombination (for

a recent review, see Weinberg et al. 2013). Major redshift surveys like the Sloan Digital

Sky Survey’s (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al.
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2013) and the 2dF Galaxy Redshift Survey (2dFGRS; Colless et al. 2001) have analyzed

the clustering of galaxies in order to detect this feature and use it to measure the

cosmological quantities D
A

(z), the angular diameter distance, and H(z), the Hubble

parameter (Eisenstein et al. 2005; Cole et al. 2005). BOSS has already attained percent

level precision distance measurements using the BAO method at z = 0.57 (Anderson et

al. 2014).

However, most detections of the BAO feature in samples of galaxies thus far have

occurred at fairly low redshifts, where these galaxy redshift surveys are able to attain

su�ciently high densities of spectroscopically observed galaxies. However, present and

future surveys such as eBOSS (Dawson et al. 2016) and the Dark Energy Spectroscopic

Instrument (DESI) (Levi et al. 2013) will push the availability of spectra at higher

redshifts by targeting quasars in addition to lower redshift galaxies. The densities of

these objects are, nevertheless, expected to be lower than what is needed for measuring

the BAO in the standard ways with auto-correlations. Accordingly, new methods need

to be developed for leveraging such sparse datasets.

To this end, in this paper we develop a new method for measuring the BAO signal

with sparse spectroscopic data. Our method consists of cross-correlating the sparse

data with a dense photometric sample to enhance the signal. We present this method,

deriving explicit forms for the correlation function and the covariance matrix. We then

apply it to data from SDSS to verify whether we can detect the BAO peak. In what

follows, we use a flat ⇤CDM cosmology with ⌦
m

= 0.314 and h = 0.673, consistent with

Planck 2015 parameters (Ade et al. 2015).
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5.2 Data

As in Chapter 4, we use the color cut-defined CMASS sample of galaxies from

Data Release 12 of SDSS-III (Eisenstein et al. 2011; Dawson et al. 2013; Alam, et al.

2015; Reid et al. 2015) for our spectroscopic sample. These data were obtained with

a 2.5 m telescope at Apache Point Observatory (York et al. 2000; Gunn et al. 2006)

whose instrumentation is well-documented (Fukugita et al. 1996; Smith et al. 2002; Doi

et al. 2010; Smee et al. 2013) and for which a set of data processing pipelines has been

developed (Lupton et al. 2001; Pier et al. 2003; Padmanabhan et al. 2008; Bolton et

al. 2012; Weaver et al. 2015). To obtain a su�ciently sparse sample of spectra for the

validation of the method that we will describe in the next section, we restrict the redshift

range, focusing only on those galaxies for which z > 0.6. This yields 205,367 galaxies,

and we select a set of random points five times larger than this for the construction of

the correlation function. The photometric sample used in this paper comes from SDSS

DR9 (Ahn et al. 2012) and comprises 6,594,677 galaxies; we use a catalog of randoms

two times larger than this to construct the correlation function.

5.3 Method

For a spectroscopic survey of galaxy density n
s

, the variance on each Fourier mode

is �2
s

= (P
s

+ 1/n
s

)2, so that the signal to noise (S/N) is given by (Weinberg et al. 2013):

S

N
=

n
s

P
s

1 + n
s

P
s

, (5.1)
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where P
s

denotes the power spectrum P
s

(k). From this, we immediately see that the

S/N per mode approaches 1 when n
s

P
s

� 1 but decreases when n
s

P
s

< 1, so that the

relevant quantity to track is nP . Let us assume we have a photometric dataset with

some n
p

and P
p

. Both the spectroscopic and photometric samples are biased tracers of

the underlying matter distribution such that:

�
s

(x) = b
s

�(x), �
p

(x) = b
p

�(x)

Accordingly, we may write the power spectra as P
s

(k) = b2
s

P (k) and P
p

(k) =

b2
p

(n
p

/N
p

)P (k), with the factor of n
p

/N
p

= 1/L
p

, where L
p

is the depth of the

photometry, approximately accounting for the fact that we are converting the

three-dimensional P (k) to the two-dimensional P
p

(k).

When we cross-correlate a photometric sample to the spectroscopic sample, we

obtain the power spectrum of the cross-correlation as P
x

= (n
p

/N
p

)b
s

b
p

P with variance

�2
x

= P 2
x

+�
s,2�p,2, where the subscript “2” indicates projection, so that the signal-to-noise

becomes:

✓
S

N

◆2

=
P 2
x

P 2
x

+ (b2
s

[n
s

/N
s

]P
s

+ 1/N
s

)(b2
p

[n
p

/N
p

]P
p

+ 1/N
p

)
, (5.2)

✓
S

N

◆2

=

✓
1 +

n
s

N
s

N
p

n
p


1 +

1

n
s

b2
s

P

� 
1 +

1

n
p

b2
p

P

�◆�1

, (5.3)

✓
S

N

◆2

=

✓
1 +

L
p

L
s


1 +

1

n
s

b2
s

P

� 
1 +

1

n
p

b2
p

P

�◆�1

. (5.4)

Accordingly, we see that with the cross-correlation, when n
s

P
s

gets small, we can

compensate with the n
p

P
p

term.

To see when this method would improve upon the results of using the auto-

correlation, let us estimate the number of modes that we could measure. For a

spectroscopic sample with constant density, the e↵ective number of modes N
s

in a shell
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of width �k is given by:

N

s

=
AL

s

2(2⇡)3
4⇡k2�k ⇥

✓
n
s

P
s

1 + n
s

P
s

◆2

. (5.5)

In the case of the photometric sample, we have k
z

= 0, which means that

N

p

=
A

(2⇡)2
2⇡k�k ⇥

✓
1 +

L
p

L
s


1 +

1

n
s

b2
s

P

� 
1 +

1

n
p

b2
p

P

�◆�1

. (5.6)

We are looking for the case wherein R = N

s

/N
p

< 1, which means that

R =
kL

s

2⇡

✓
1

1 + 1/(n
s

b2
s

P )

◆2

⇥

✓
1 +

L
p

L
s


1 +

1

n
s

b2
s

P

� 
1 +

1

n
p

b2
p

P

�◆
, (5.7)

and if we assume that n
s

b2
s

P ⌧ 1 (the limit in which the auto-correlation method begins

to lose information), this simplifies to:

R =
kL

s

2⇡

�
n
s

b2
s

P
�2

⇥

✓
L
p

L
s

⇥
n
s

b2
s

P
⇤�1


1 +

1

n
p

b2
p

P

�◆
, (5.8)

R =
kL

p

2⇡

✓
1 + 1/(n

p

b2
p

P )

1/(n
s

b2
s

P )

◆
. (5.9)

Let us denote ⌘
s

= n
s

b2
s

P and ⌘
p

= n
p

b2
p

P , so that:

R =
kL

p

2⇡

1 + ⌘�1
p

⌘�1
s

. (5.10)

To satisfy R < 1, we require

⌘�1
s

>
kL

p

2⇡

�
1 + ⌘�1

p

�
. (5.11)

We can generally get very high photometric densities, so that we can take ⌘�1
p

! 0.

Accordingly, for a reasonable photometric depth of L
p

= 500 h�1Mpc and k =

0.15 hMpc�1, we require ⌘
s

. 0.08.

In practice, the projected cross-correlation function between the spectroscopic and

photometric samples can be constructed via the Landy-Szalay estimator (Landy &

98



CHAPTER 5. ANALYZING BAO IN SPARSE SPECTROSCOPIC SURVEYS

Szalay 1993),

w(r) =
D

s

D
p

(r)�D
s

R
p

(r)�D
p

R
s

(r) +R
s

R
p

(r)

R
s

(r)R
p

(r)
, (5.12)

where D indicates the data and R denotes the random points; p and s refer to the

photometry and spectroscopy, respectively. While the Landy-Szalay estimator is

normally defined as providing an estimate of ⇠(r), the full three-dimensional correlation

function, in our case we only know the positions of the galaxies on the sky for the

photometric sample. Accordingly, when we compute the correlation function, we used

only spectroscopic galaxies as our central points and then calculate pair counts in

two-dimensional annular bins around the central galaxy, assuming that the photometric

galaxies in the bin are at the same redshift as the spectroscopic galaxy to convert

angular separations into physical distances. Thus, the resulting correlation function is

by construction the projected correlation function w(r), which has the benefit of not

requiring redshift-space corrections.

To compute errors on our measurements, we divide the spectroscopic survey area

into 150 roughly commensurate regions using Voronoi tessellation and then employ the

jackknife method. In the next section, we treat the problem more formally, deriving

explicit forms not only for the projected correlation function but also the covariance

matrix, which can be calculated numerically and used in fitting the theoretical forms to

the data.
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5.4 Derivation

Let us assume that we have two samples of galaxies: a spectroscopic sample with

fractional overdensity field �
s

(r), and the other a photometric sample. For this latter

sample, we can calculate a projected overdensity field as:

�
p

(✓) =

R
dr0 r02n

p

(r0)�
p

(r0)R
dr0 r02n

p

(r0)
. (5.13)

Defining the normalization factor as

N ⌘

Z
dr0 r02n

p

(r0), (5.14)

this may be written simply as

�
p

(✓) =
1

N

Z
dr0 r02n

p

(r0)�
p

(r0). (5.15)

The correlation of �
s

and �
p

, noting that r = (r,✓), is then

w(R) = h�
s

(r)�
p

(✓ +R/r)i, (5.16)

w(R) =

R
d3r �

s

(r)n
s

(r)W(r, ⌘)
R
d2✓0 �

p

(✓0)NS(✓,✓0,R, r)R
d3r n

s

(r)W(r, ⌘)
R
d2✓0 NS(✓,✓0,R, r)

. (5.17)

Here, W is a weighting function that may depend on r and other variables independent

of r, collectively referred to as ⌘, and S is a selection function that depends on the

angular coordinates of the galaxies. If we focus on a single separation, then the selection

function is a Dirac delta function:

S(✓,✓0,R, r) = �
(2)
D

(r✓0
� (r✓ +R)) . (5.18)

Using Equations 5.15 and 5.18 and writing out explicitly r = (r,✓), Equation 5.17
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becomes:

w(R) =

R
dr r2n

s

(r)W(r, ⌘)
R
d2✓ �

s

(r,✓)
R
d2✓0 �

(2)
D

(r✓0
�(r✓+R))

R
dr0 r02n

p

(r0)�
p

(r0,✓0)
R
dr r2n

s

(r)W(r, ⌘)
R
d2✓

R
d2✓0 �

(2)
D

(r✓0
�(r✓+R))

R
dr0 r02n

p

(r0)
.

(5.19)

The delta function collapses the ✓0 integral in both the numerator and denominator,

giving 1/r2, and in the denominator, the ✓ integral can be immediately evaluated to a

constant, yielding:

w(R) =

R
dr n

s

(r)W(r, ⌘)
R
d2✓ �

s

(r,✓)
R
dr0 n

p

(r0)�
p

(r0,✓ +R/r)

4⇡
R
dr n

s

(r)W(r, ⌘)
R
dr0 r02n

p

(r0)
. (5.20)

Rearranging the order of integration gives:

w(R) =

R
dr n

s

(r)W(r, ⌘)
R
dr0 r02n

p

(r0)
R
d2✓ �

s

(r,✓)�
p

(r0,✓ +R/r)

4⇡
R
dr n

s

(r)W(r, ⌘)
R
dr0 r02n

p

(r0)
. (5.21)

With an eye towards an application to catalog data, we note that the correlation

function is constructed from pair counts of galaxies, normalized by pair counts of random

galaxies, so that:

w(R) =
N

s

N
p

R
s

R
p

=
(D

s

�R
s

)(D
p

�R
p

)

R
s

R
p

. (5.22)

This allows us to identify the numerator and denominator of Equation 5.21 with N
s

N
p

and R
s

R
p

.

5.4.1 Expectation Value

Taking the expectation value of Equation 5.21 yields:

hw(R)i =

R
dr n

s

(r)W(r, ⌘)
R
dr0 r02n

p

(r0)
R
d2✓ h�

s

(r,✓)�
p

(r0,✓ +R/r)i

4⇡
R
dr n

s

(r)W(r, ⌘)
R
dr0 r02n

p

(r0)
. (5.23)
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Focusing on the numerator,

hN
s

N
p

i =

Z
dr n

s

(r)W(r, ⌘)

Z
dr0 r02n

p

(r0)

Z
d2✓ h�

s

(r,✓)�
p

(r0,✓ +R/r)i, (5.24)

we can use the Fourier transform,

�(r) =
1

(2⇡)3/2

Z
d3k �ke

ik·r, (5.25)

as well as the formalism of Dekel & Lahav (1999), which relates the �
g

= �
s

, �
p

fields to

the underlying matter density field � ⌘ �
m

as:

�
g

= b
g

� + ✏
g

, (5.26)

to write the expectation value of two �s as:

h�(r,✓)�(r0,✓ +R/r)i =
b
s

b
p

(2⇡)3

Z Z
d3kd3k0

h�k�k0
ieirk?·✓eirkqeir

0k0
?·(✓+R/r)eir

0
k

0
q , (5.27)

where we are using the flat sky approximation and have written k =
p
k2
? + k2

q , with k?

indicating the transverse components of k and kq indicating the line-of-sight component.

Then, using

h�k�k0
i = �

(3)
D

(k + k

0)P (k), (5.28)

and integrating over k yields

h�(r,✓)�(r0,✓ +R/r)i =
b
s

b
p

(2⇡)3

Z
d3k0 P (k0)e�irk0

?·✓e�irkqeir
0k0

?·(✓+R/r)eir
0
k

0
q , (5.29)

=
b
s

b
p

(2⇡)3

Z
d3k0 P (k0)e�irk0

?·✓eir
0k0

?·(✓+R/r)e�i(r�r

0)k0q . (5.30)

Thus,

hN
s

N
p

i = b
s

b
p

Z
dr n

s

(r)W(r, ⌘)

Z
dr0 r02n

p

(r0)

Z
d2✓

(2⇡)3

⇥

Z
d3k0 P (k0)e�irk0

?·✓eir
0k0

?·(✓+R/r)e�i(r�r

0)k0q , (5.31)
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If we assume that the line of sight weighting is much larger than the BAO scale, then we

may approximate k =
p

k2
? + k2

q ⇡ k?, and we can split up the last integral:

hN
s

N
p

i = b
s

b
p

Z
dr n

s

(r)W(r, ⌘)

Z
dr0 r02n

p

(r0)

Z
d2✓

(2⇡)3

⇥

Z
d2k0

? P (k0
?)e

�irk0
?·✓eir

0k0
?·(✓+R/r)

Z
dk0

q e
�i(r�r

0)k0q , (5.32)

= b
s

b
p

Z
dr n

s

(r)W(r, ⌘)

Z
dr0 r02n

p

(r0)

Z
d2✓

(2⇡)3

⇥

Z
d2k0

? P (k0
?)e

�irk0
?·✓eir

0k0
?·(✓+R/r)2⇡�

D

(r � r0), (5.33)

= b
s

b
p

Z
dr r2n

s

(r)W(r, ⌘)n
p

(r)

Z
d2✓

(2⇡)2

Z
d2k0

? P (k0
?)e

�irk0
?·✓eirk

0
?·(✓+R/r).

(5.34)

Now, the ✓ terms cancel, making the integral over that variable trivial:

hN
s

N
p

i = b
s

b
p

Z
dr r2n

s

(r)W(r, ⌘)n
p

(r)
4⇡

(2⇡)2

Z
d2k0

? P (k0
?)e

irk0
?·R/r, (5.35)

=
b
s

b
p

⇡

Z
dr r2n

s

(r)W(r, ⌘)n
p

(r)

Z
d2k0

? P (k0
?)e

ik0
?·R. (5.36)

We can then identify:

w
p

(R) ⌘
1

2⇡

Z
d2k0

? P (k0
?)e

ik0
?·R, (5.37)

where w
p

is the projected correlation function, which has been used extensively in galaxy

clustering analyses (e.g., Coil et al. 2008; Zehavi et al. 2011; Nuza et al. 2013) as it is

less a↵ected by redshift space distortions. The function w
p

can be calculated as the

line-of-sight integral of the three-dimensional correlation function,

w
p

=

Z 1

�1
drq⇠(r?, rq). (5.38)

Returning to our derivation, we find

hN
s

N
p

i = 2b
s

b
p

Z
dr r2n

s

(r)W(r, ⌘)n
p

(r)w
p

(R). (5.39)
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Finally, this yields

hw(R)i =
b
s

b
p

2⇡
w

p

(R)

R
dr r2n

s

(r)W(r, ⌘)n
p

(r)R
dr n

s

(r)W(r, ⌘)
R
dr0 r02n

p

(r0)
. (5.40)

To gain some intuition for the behavior of hwi, we assume that the distributions of the

spectroscopic and photometric galaxies are given by boxcar functions of lengths L
s

and

L
p

, respectively, which represent the depths of the survey, and L
s

< L
p

. Let us also

assume the weighting is independent of r, and equal to 1. In that case, the integral

normalization gives:
R
dr r2n

s

(r)W(r, ⌘)n
p

(r)R
dr n

s

(r)W(r, ⌘)
R
dr0 r02n

p

(r0)
=

R
Ls/2

�Ls/2
dr r2

R
Ls/2

�Ls/2
dr

R
Lp/2

�Lp/2
dr0 r02

=
L3
s

L3
p

L
s

=
L2
s

L3
p

⇠

1

L
. (5.41)

Accordingly, we see that this factor roughly scales as the inverse of the depth of the

survey.

5.4.2 Covariance

The covariance is given by:

C(R,S) ⌘ h[w(R)� hw(R)i][w(S)� hw(S)i]i, (5.42)

= h[w(R)w(S)� hw(S)iw(R)� hw(R)iw(S) + hw(R)ihw(S)i]i, (5.43)

= hw(R)w(S)i � hw(R)ihw(S)i. (5.44)

The numerator of first term, which we will refer to as N
C

for simplicity, in Equation

(5.44) may be written out as:

hN
C

i =D
C

hw(R)w(S)i (5.45)

=

Z
dr1 ns

(r1)W(r1, ⌘)

Z
dr01 r

02
1 np

(r01)

Z
dr2 ns

(r2)W(r2, ⌘)

Z
dr02 r

02
2 np

(r02)

⇥

Z
d2✓1

Z
d2✓2h�s(r1,✓1)�p(r

0
1,✓1 +R/r1)�s(r2,✓2)�p(r

0
2,✓2 + S/r2)i, (5.46)
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where D
C

stands for the denominator. Again using the Dekel & Lahav (1999) formalism

so that �
g

= b
g

� + ✏
g

, this immediately becomes:

hN
C

i =b2
s

b2
p

Z
dr1 ns

(r1)W(r1, ⌘)

Z
dr01 r

02
1 np

(r01)

Z
dr2 ns

(r2)W(r2, ⌘)

Z
dr02 r

02
2 np

(r02)

⇥

Z
d2✓1

Z
d2✓2h�(r1,✓1)�(r

0
1,✓1 +R/r1)�(r2,✓2)�(r

0
2,✓2 + S/r2)i. (5.47)

The expectation value may be expressed as a Fourier transform:

h�(r1,✓1)�(r
0
1,✓1 +R/r1)�(r2,✓2)�(r

0
2,✓2 + S/r2)i =

1

(2⇡)6

Z Z Z Z
d3kd3k0d3qd3q0

⇥ h�k�k0�q�q0
ieir1k?·✓1eir

0
1k

0
?·(✓1+R/r1)eir2q?·✓2eir

0
2q

0
?·(✓2+S/r2)eir1kqeir

0
1k

0
qeir2qqeir

0
2q

0
q .

(5.48)

Using Wick’s theorem, we can write the expectation value as:

h�k�k0�q�q0
i = h�k�k0

ih�q�q0
i+ h�k�qih�k0�q0

i+ h�k�q0
ih�k0�qi. (5.49)

The first term in this expansion can immediately be identified with hw(R)ihw(S)i, which

cancels the second term in Equation (5.44). Then, we express the remaining factors in

terms of the power spectrum:

h�k�qih�k0�q0
i = �

(3)
D

(k + q)P (q)�(3)
D

(k0 + q

0)P (q0), (5.50)

h�k�q0
ih�k0�qi = �

(3)
D

(k + q

0)P (q0)�(3)
D

(k0 + q)P (q). (5.51)

Let us denote the Fourier transform of the first of these terms by A and that of the

second by B.
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Beginning with term A, we find:

A =
1

(2⇡)6

Z Z Z Z
d3kd3k0d3qd3q0 h�k�qih�k0�q0

i

⇥ eir1k?·✓1eir
0
1k

0
?·(✓1+R/r1)eir2q?·✓2eir

0
2q

0
?·(✓2+S/r2)eir1kqeir

0
1k

0
qeir2qqeir

0
2q

0
q , (5.52)

=
1

(2⇡)6

Z Z Z Z
d3kd3k0d3qd3q0 �

(3)
D

(k + q)P (q)�(3)
D

(k0 + q

0)P (q0)

⇥ eir1k?·✓1eir
0
1k

0
?·(✓1+R/r1)eir2q?·✓2eir

0
2q

0
?·(✓2+S/r2)eir1kqeir

0
1k

0
qeir2qqeir

0
2q

0
q , (5.53)

=
1

(2⇡)6

Z Z
d3kd3k0 P (k)P (k0)eir1k?·✓1eir

0
1k

0
?·(✓1+R/r1)e�ir2k?·✓2e�ir

0
2k

0
?·(✓2+S/r2)

⇥ eir1kqeir
0
1k

0
qe�ir2kqe�ir

0
2k

0
q , (5.54)

=
1

(2⇡)6

Z Z
d3kd3k0 P (k)P (k0)eir1k?·✓1eir

0
1k

0
?·(✓1+R/r1)e�ir2k?·✓2e�ir

0
2k

0
?·(✓2+S/r2)

⇥ eikq(r1�r2)eik
0
q(r

0
1�r

0
2). (5.55)

We can again separate the integrals:

A =
1

(2⇡)6

Z Z
d2k?d

2k0
? P (k?)P (k0

?)e
ir1k?·✓1eir

0
1k

0
?·(✓1+R/r1)e�ir2k?·✓2e�ir

0
2k

0
?·(✓2+S/r2)

⇥

Z
dkq e

ikq(r1�r2)

Z
dk0

q e
ik

0
q(r

0
1�r

0
2), (5.56)

=
1

(2⇡)6

Z Z
d2k?d

2k0
? P (k?)P (k0

?)e
ir1k?·✓1eir

0
1k

0
?·(✓1+R/r1)e�ir2k?·✓2e�ir

0
2k

0
?·(✓2+S/r2)

⇥ 2⇡�
D

(r1 � r2)2⇡�D(r
0
1 � r02), (5.57)

=
1

(2⇡)4

Z Z
d2k?d

2k0
? P (k?)P (k0

?)e
ir1k?·✓1eir

0
1k

0
?·(✓1+R/r1)e�ir2k?·✓2e�ir

0
2k

0
?·(✓2+S/r2)

⇥ �
D

(r1 � r2)�D(r
0
1 � r02). (5.58)

We may now insert this expression into Equation (5.47) to take advantage of the Dirac
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delta functions:

hAi = b2
s

b2
p

Z
dr1 ns

(r1)W(r1, ⌘)

Z
dr01 r

02
1 np

(r01)

Z
dr2 ns

(r2)W(r2, ⌘)

Z
dr02 r

02
2 np

(r02)

⇥

1

(2⇡)4

Z
d2✓1

Z
d2✓2

Z Z
d2k?d

2k0
? P (k?)P (k0

?)e
ir1k?·✓1eir

0
1k

0
?·(✓1+R/r1)

⇥ e�ir2k?·✓2e�ir

0
2k

0
?·(✓2+S/r2)�

D

(r1 � r2)�D(r
0
1 � r02), (5.59)

=
b2
s

b2
p

(2⇡)4

Z
dr1 ns

(r1)
2
W(r1, ⌘)

2

Z
dr01 r

04
1 np

(r01)
2

Z Z
d2k?d

2k0
? P (k?)P (k0

?)

⇥ ei(r
0
1/r1)k

0
?·Re�i(r01/r1)k

0
?·S

Z
d2✓1 e

i(r1k?+r

0
1k

0
?)·✓1

Z
d2✓2 e

�i(r1k?+r

0
1k

0
?)·✓2 , (5.60)

=
b2
s

b2
p

(2⇡)4

Z
dr1 ns

(r1)
2
W(r1, ⌘)

2

Z
dr01 r

04
1 np

(r01)
2

Z Z
d2k?d

2k0
? P (k?)P (k0

?)

⇥ ei(r
0
1/r1)k

0
?·(R�S)(2⇡)2�(2)

D

(r1k? + r01k
0
?), (5.61)

=
b2
s

b2
p

(2⇡)2

Z
dr1 ns

(r1)
2
W(r1, ⌘)

2

Z
dr01 r

04
1 np

(r01)
2

Z
d2k?P (k?)P (r1k?/r
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Now, let u = r1k?, so that:
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which yields:
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We can proceed along similar lines for term B.
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We split the integrals, assuming small angles:
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Plugging this into Equation (5.47) yields
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We set u = r1k? again, so that:

hBi =
b2
s

b2
p

(2⇡)2

Z
dr1 r

2
1ns

(r1)W(r1, ⌘)np

(r1)

Z
dr01 r

02
1 ns

(r01)W(r01, ⌘)np

(r01)

⇥

Z
d2u

1

r21
P

✓
u

r1

◆
P

✓
u

r01

◆
e�iu·R/r1e�iu·S/r

0
1 . (5.76)
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Lastly, the denominator of the covariance is given by:
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Accordingly, with:
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We see that the covariance matrix has two distinct terms: the first integrates over the

spectroscopic and photometric samples separately, whereas the second mixes the two

samples.
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5.4.3 Binning

Binning data leads us to the following representation of the correlation function in

an annulus bounded by R1, R2:
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Beginning with Equation 5.40, which gives:
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and writing k?
0
·R = k0

?R cos(�), we obtain the following representation in terms of the

Bessel function J0:
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Now, the integral over R can be done by making use of the properties of Bessel functions,

leading to a final result of:
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We also compute the binned covariance. In this case we have two terms to consider:
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Accordingly, for the first term we find:
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which, with u ·R = uR cos(�
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For the second term,
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Thus, the binned covariance becomes (c.f. Eq. 5.81), with C a function of four

quantities R1, R2, S1, S2:
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5.5 Results

We compute the projected correlation function w(R) using the Landy-Szalay

estimator with a binning of 5 h�1Mpc; the result is plotted in Figure 5.1. We fit

two computed projected correlation functions, one derived using a CAMB power

spectrum (Lewis, Challinor, & Lasenby 2000) that includes the BAO, and the other a

smooth, BAO-less power spectrum derived using the prescriptions of Eisenstein & Hu

(1998), to the data. In both theoretical prescriptions of the correlation function, we

include a nuisance parameter in the form of an additive constant w0, which corresponds

to excess power at very large scales and which is left a free parameter.

Accordingly, we fit to a function of the form w = aw
c

+ w0, where w
c

is the

calculated correlation function and a and w0 are parameters to be found. Prior to

fitting, we normalize w
c

to the value of the data at R = 27.5 h�1Mpc. We obtain a

�2/ndf = 23.339/23 = 1.015 for the BAO curve and a �2/ndf = 26.891/23 = 1.169 for

the no BAO curve, with ��2 = 3.6. In both cases, w0 is a little under 3⇥10�4, indicating

only a modest level of systematics. Thus, our results indicate a 1.9� preference for the

BAO.

The results in Figure 5.1 align well with the prediction for the correlation function

with BAO at intermediate-to-large scales. We note that while we do not have to consider

redshift-space distortions with w, since we do not account for where the photometric

galaxies are located along the line of sight, there are non-linear corrections that could

have some impact at small scales (R . 10 h�1Mpc), but these are not expected to yield

major changes at large scales. Accordingly, our measurements yield a feature consistent
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Figure 5.1.—: The projected correlation function w plotted against two theoretical curves:

the solid black line is the predicted projected correlation function in the presence of BAO,

while the dashed violet curve is the expectation without BAO. The data show a bump

near 100 h�1Mpc consistent with the BAO signal.
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Figure 5.2.—: The reduced covariance matrix for the cross-correlation, estimated from

the Voronoi jackknife samples and used to fit theoretical curves to w.
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with the BAO signal at R ⇠ 100 h�1Mpc in the projected correlation function.

5.6 Summary and Conclusions

In this work, we have laid out a new method for detecting the BAO in sparse

spectroscopic datasets by cross-correlating the spectroscopy with photometry, for which

greater densities of galaxies can be attained at far smaller cost. We analytically computed

the projected correlation function and presented an explicit form for the covariance

matrix, which can be calculated numerically and used to fit models to the data. We then

applied the method to high-redshift data from SDSS.

We find that this new method can reveal the BAO signal in sparse data. This

implies that cross-correlations of spectroscopy and photometry will provide a viable

means with which to extend BAO measurements to higher redshifts even before the

completion of major future surveys. Of particular interest may be the application of

this method to detect the BAO in the clustering of high redshift quasars observed by

present and upcoming surveys like the extended Baryon Oscillation Spectroscopic Survey

(eBOSS) and the Dark Energy Spectroscopic Instrument (DESI). The eBOSS quasar

sample, for example, is expected to have an average nP = 0.040 (Zhao et al. 2016) over

the redshift range 0.6 < z < 2.2, which would make this method an e↵ective way to

detect the BAO in that sample.

117



CHAPTER 5. ANALYZING BAO IN SPARSE SPECTROSCOPIC SURVEYS

5.7 Acknowledgments

We would like to thank Aaron Bray for providing us with the photometric data files

used in this paper and for generating the corresponding random catalog. We additionally

thank Lehman Garrison for generating the CAMB power spectrum used to calculate the

theoretical BAO curve in Figure 5.1.

This work was supported by U.S. Department of Energy Grant No. DE-SC0013718,

and made use of tools from the Python packages NumPy (van der Walt, Colbert, &

Varoquaux 2011), SciPy (Oliphant 2007), and Matplotlib (Hunter 2007), and also relied

on ROOT (Brun & Rademakers 1997; see also http://root.cern.ch/).

This paper relies on data from SDSS-III. Funding for SDSS-III has been provided

by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science

Foundation, and the U.S. Department of Energy O�ce of Science. The SDSS-III web

site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating

Institutions of the SDSS-III Collaboration including the University of Arizona, the

Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon

University, University of Florida, the French Participation Group, the German

Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the

Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University,

Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max

Planck Institute for Extraterrestrial Physics, New Mexico State University, New

York University, Ohio State University, Pennsylvania State University, University of

118



CHAPTER 5. ANALYZING BAO IN SPARSE SPECTROSCOPIC SURVEYS

Portsmouth, Princeton University, the Spanish Participation Group, University of

Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of

Washington, and Yale University.

119



Chapter 6

Detectability of Local Group Dwarf

Galaxy Analogues at High Redshifts

Anna Patej & Abraham Loeb, 2015, The Astrophysical Journal Letters, 815, L28

6.1 Introduction

Local Group dwarf galaxies allow investigation into a wide range of astrophysical

and cosmological processes; in addition to being representative of the most populous

type of galaxy in the universe, their nearness enables detailed investigations of their

stellar populations (for a recent overview, see McConnachie 2012). Due to their low

masses and typically old stellar populations, many of these dwarfs are believed to have

had the majority of their stars produced at early cosmic times and then had further star

formation suppressed by reionization at redshifts z ⇠ 6 � 10 (e.g, Bullock et al. 2000;

Ricotti & Gnedin 2005; Loeb & Furlanetto 2013). Observational arguments in favor of
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this interpretation for some of the dwarfs have been based on their statistical properties

(Bovill & Ricotti 2009) and star formation histories (Brown et al. 2014; Weisz et al. 2014;

Weisz, Johnson, & Conroy 2014). In this scenario, wherein some of these galaxies formed

most of their stars at early cosmic times and are accordingly “fossils” of those times,

some of the present-day dwarfs should be similar to their progenitors at higher redshifts.

The advent of optical and infrared space-based telescopes – the Hubble Space

Telescope (HST ) and the Spitzer Space Telescope – has allowed for the identification

of numerous high-redshift (z & 6) galaxies, whose properties, including their sizes, star

formation rates, and masses, have now been examined in detail (e.g., Stark et al. 2009;

Labbé et al. 2010; Oesch et al. 2010; Bouwens et al. 2011; Ellis et al. 2013; Ono et

al. 2013). However, current observations are missing a population of fainter galaxies

that are needed to reionize the universe at these high redshifts (e.g., Alvarez et al. 2012;

Finkelstein et al. 2012; Bouwens et al. 2015; Robertson et al. 2015). Discovering some of

these fainter galaxies will be within the purview of future observatories like the James

Webb Space Telescope (JWST ).

Part of this population of fainter galaxies is likely to consist of the progenitors of

galaxies like the Local Group dwarfs. Boylan-Kolchin et al. (2015) used an analysis of

the UV luminosities of the dwarfs to determine that JWST should be able to detect

progenitors of galaxies like the Large Magellanic Cloud. Here, we compare the physical

properties of the local dwarfs and the high-redshift galaxies that have already been

detected, and place them in the context of the predicted detection limits for JWST to

examine the fraction of dwarf progenitors – and thus the fraction of missing light – that

may be observable in the near future. Throughout our discussion, we use the standard

cosmological parameters ⌦
m

= 0.3, ⌦⇤ = 0.7, and H0 = 70 km/s/Mpc.
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6.2 Data

We obtain data for over 100 local galaxies from McConnachie (2012), including their

V band Vega magnitude m
V

, half-light radius r, ellipticity ✏, and average metallicity

h[Fe/H]i. To provide direct comparison with the high-redshift data, we convert r
h

to the

circularized half-light radius, r
h

= r
p

1� ✏, that is commonly employed. We select only

the 87 galaxies that have all these quantities measured in McConnachie (2012), and note

in particular that this excludes the Large and Small Magellanic Clouds (LMC and SMC).

We use metallicity as an input to the Flexible Stellar Population Synthesis (FSPS)

code (Conroy et al. 2009; Conroy & Gunn 2010) to scale the galaxies back to z = 6, 7.

Following the results of Weisz et al. (2014), who analyzed the star formation histories

(SFHs) of a subsample of 38 of these dwarfs, we remove those galaxies whose SFHs

indicate that the majority of their stellar populations were formed later than these

redshifts. We keep those whose SFHs are consistent with at least 50% (within errors) of

the stars having been formed prior to z = 6, 7, as well as all the remaining galaxies from

McConnachie (2012) whose SFHs have not yet been measured, for a total of 73 galaxies.

We use a delayed tau-model with ⌧ = 0.2 Gyr, which assumes an early starburst such

that nearly all the stars we see today already existed at the redshifts of interest. The

code also calculates the evolution to z = 0, from which we take the predicted V band

magnitude and compare it to m
V

from McConnachie (2012) to obtain a correction

for the stellar mass of each galaxy; we then use these values to correct the z = 6, 7

magnitudes since we assume that all the stars we see today were already present at those

high redshifts.

122



CHAPTER 6. DETECTABILITY OF DWARF GALAXY PROGENITORS

The corresponding parameters for observed z = 6 and z = 7 galaxies are obtained

from several sources. The Spitzer IRAC 3.6 µm fluxes of a sample of z ⇠ 6 galaxies are

based on Gonzalez et al. (2012), and the 4.5 µm fluxes of z ⇠ 7 galaxies are taken from

Labbé et al. (2010). We adopt the 2� lower and upper limits on the fluxes, corrected

to S/N = 5, which gives F3.6 = [38.9, 667.0] nJy and F4.5 = [13.3, 637.5] nJy. Oesch et

al. (2010) provides a value of r
h

= 0.7± 0.3 kpc for detected galaxies at these redshifts,

measured from near-infrared observations using HST. We again adopt the 2� bounds on

this quantity; accordingly, the range of observed sizes that we use is 0.1� 1.3 kpc.

The future JWST mission’s NIRCam imager will have two filters, F356W and

F444W, which will cover the bandwidth of the Spitzer filters above. For the purposes of

this comparison, we will assume that the Spitzer 3.6 µm filter is identical to F356W and

the 4.5 µm filter is identical to F444W.

6.3 Comparison of Physical Parameters

We use the FSPS-derived fluxes and the sizes r
h

to calculate the surface brightness in

Jy/arcsec2 for the dwarfs at z = 6 and z = 7. We selected those galaxies with cumulative

SFHs & 0.5 (within the error profile) at early times from Weisz et al. (2014) and used

⌧ = 0.2 Gyr to scale them, as discussed in Section 6.2, as well as all the remaining

galaxies that do not have measured SFHs. We additionally plot the region bounded by

the 2� limits on the surface brightness and half-light radius for galaxies detected at z ⇠ 6

and z ⇠ 7, using Spitzer 3.6 µm and 4.5 µm fluxes, respectively. Figure 6.1 shows these

regions alongside the scaled galaxies selected from Weisz et al. (2014) and the remaining

galaxies from McConnachie (2012). From this, we see that virtually none of the local
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dwarf analogues have been detected yet.

Nevertheless, the sizes of the dwarfs and the high redshift galaxies agree extremely

well, excluding the extreme smallest and faintest objects. However, we do not include in

our comparison a scaling of r
h

with redshift. Luminous galaxies at higher redshifts have

been observed to have their sizes scaled by a factor of (1+ z)�s, where s is in the range of

1.0� 1.5 (e.g., Oesch et al. 2010; Mosleh et al. 2012). There is some indication, however,

that at the lowest luminosities yet studied, the half-light radius remains approximately

constant with redshift (see Figure 12 of Ono et al. 2013). Our results are consistent with

the notion that the Local Group galaxies had roughly the same size at high redshifts as

they have at present.

6.4 Predictions for JWST

JWST will rely on the NIRCam imager (Rieke et al. 2005; Beichman et al. 2012)

to obtain photometry of high-redshift galaxies. We use the prototype exposure time

calculator (ETC) for NIRCam1 to compute the signal-to-noise ratio for the dwarf galaxies

scaled back to high redshifts. We assume a total of 100 hours of exposure time; with

such a set-up, the ETC predicts that a point source flux of 1.0 nJy can be detected in

F356W and 2.0 nJy in F444W.

We can then calculate the minimum surface brightness for the local galaxy analogues

in each band. We assume that, as is currently done with HST/Spitzer observations

of high redshift galaxies, the size of the galaxies is measured from bands at shorter

1
http://jwstetc.stsci.edu/etc/input/nircam/imaging/
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Figure 6.1.—: The surface brightness-size relation for z ⇠ 6 (left) and z ⇠ 7 (right)

galaxies using Spitzer 3.6 µm and 4.5 µm fluxes, respectively, as well as sizes measured

from HST. The region bounded by solid lines indicates the portion of the parameter

space that has been observed by current programs. The shaded region indicates the part

of the parameter space that should be accessible to JWST, with the size limit coming the

di↵raction limited radius in the 2.0 µm filter (see Section 6.4).
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wavelengths. Accordingly, in Figure 6.1, we also plot a shaded region bounded by

the di↵raction-limited radius in the 2.0 µm filter at these redshifts and by the surface

brightness corresponding to the S/N=5 fluxes calculated by the ETC. We caution,

however, that when comparing the sizes care must be taken, as the data for the galaxies

uses the half-light radius, whereas the minimum size prediction for JWST is given by

the radius of a high redshift object in the di↵raction limit.

From Figure 6.1, we can see that JWST can be expected to discover some of the

local dwarfs if their stars already formed at early cosmic times. In particular, we predict

that roughly 60-65% of the combined light of this subsample of dwarfs (corresponding

to a detection of 9/73 dwarfs at 4.5 µm and 13/73 dwarfs at 3.6 µm) will be accessible

to JWST. However, due to the selection criteria we imposed in Section 6.2, some of the

brightest dwarf galaxies in the Local Volume were omitted from our analysis, including

the Magellanic Clouds and Fornax; if such galaxies were able to be captured by our

procedure, these fractions could be higher. This di↵ers from Boylan-Kolchin et al.

(2015) primarily due to our uniform assumption that the galaxies we analyze formed

most of their stars at very early times. If it is the case that significant star formation

occurs late in the galaxy’s evolution, then there will not be enough light emitted to

render the galaxy detectable even by JWST. Accordingly, the predicted fluxes will need

to be scaled by the fraction of stars formed by z ⇠ 6, 7 once more of the galaxies have

their star formation histories analyzed.

We can compare some of our results for individual galaxies directly to the predictions

of Boylan-Kolchin et al. (2015) in their Figure 4, which shows the predicted detectability

at z ⇠ 7 of a few Local Group dwarfs from the UV luminosity function. None of the

galaxies from McConnachie (2012) whose progenitors we predict to be detectable at
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z ⇠ 7 are included in the sample of Boylan-Kolchin et al. (2015). Of the dwarfs that

Boylan-Kolchin et al. (2015) studied, our analysis includes Canes Venatici I, Draco,

Leo T, Sculptor, and Ursa Minor; the remainder of their dwarfs were excluded in our

analysis due to their incompatible SFHs or lack of required r
h

or m
V

data. We find that

the progenitors of these galaxies are not expected to be detectable at high redshifts by

JWST, which agrees with the predictions of Boylan-Kolchin et al. (2015).

6.5 Additional Prospects

Our calculated fluxes are predicated upon the assumption that the stellar populations

of the z = 0 dwarfs are the modern analogues of the stars at z ⇠ 6� 7. However, these

stars may be supplemented by PopIII-like stars, which are predicted to have masses in

the range 10 � 1000M� and short lifetimes (Abel, Bryan, & Norman 2002; Prescott et

al. 2009; Cassata et al. 2013; Loeb & Furlanetto 2013; Sobral et al. 2015). Accordingly,

in Figure 6.2 we consider the scenario in which the dwarf galaxies are 10 times more

luminous at high redshifts due to an ancient population of stars that no longer exists,

which would represent extremely optimistic prospects for detectability.

In this case, we find that some of the dwarf progenitors could be among the galaxies

already found with HST and Spitzer. The fraction of the light of the sample of dwarfs

considered here that would potentially be detectable by JWST would increase to ⇠67%.

This scenario can be distinguished from the fiducial one based on spectroscopy; several

theoretical works have indicated that such a massive stars would have strong helium

line emission, which would distinguish these stellar populations (Bromm et al. 2001;

Tumlinson at al. 2001; Schaerer 2003). However, this is a highly optimistic estimate,
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Figure 6.2.—: Same as Figure 6.1, but assuming the ancient stars were 10 times more

luminous than those in the dwarfs today.
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considering that it would require dominance of Population III stars at these redshifts.

An alternative source of an increase in surface brightness at early times may be

provided by tidal stripping. The simulations of Peñarrubia, Navarro, & McConnachie

(2008) illustrate the e↵ect of tidal stripping on dwarf galaxies by massive halos. This

e↵ect decreases both the sizes and surface brightnesses of the dwarf galaxies. If tidal

stripping has a↵ected some of the dwarfs, then it is likely that at higher redshifts they

were both brighter and larger, which would make the analogues of these galaxies more

likely to be detectable, although observations suggest that that the population of dwarfs

significantly a↵ected is small (e.g., Kirby et al. 2013).

In addition to the enhanced capabilities of JWST relative to HST and Spitzer, we

note that further gains in sensitivity can be made using gravitational lensing (Mashian

& Loeb 2013; Atek et al. 2015). Lensing has already permitted the discovery of high

redshift galaxies even smaller than the sizes considered here (e.g., Kawamata et al.

2015); this technique using JWST is likely to be able to probe a larger sample of dwarf

progenitors.

6.6 Conclusions

We have compared the physical properties of Local Group dwarf galaxies to

high-redshift galaxies. We find that the sizes of the two populations agree very well, but

when translated to higher redshifts, these dwarfs are too faint to be detected at present.

However, in a deep field, the upcoming JWST mission should be able to detect analogues

of the brightest of these objects, assuming that their stars formed early. The number of
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detectable galaxies increases if we assume a population of ancient, massive stars in these

galaxies at high redshifts; spectroscopy and number counts will enable us to distinguish

these two scenarios. Additionally, gravitational lensing and the e↵ects of tidal stripping

can amplify the potential for analogues of these galaxies to be detected at high redshifts.
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Chapter 7

Conclusions and Future Endeavors

In this thesis, we have broadly addressed distributions of baryonic matter in three

distinct regimes: cluster scales, large scales, and at the extremes of the universe – the

nearby Local Group and the most distant galaxies ever discovered. In the first two

chapters after the introduction, we focused on the outskirts of galaxy clusters, the

current frontier in galaxy cluster astrophysics. In Chapters 4 and 5, we moved from

the small scales of clusters to large scales, where the distributions of galaxies provide a

competitive cosmological probe in the form of the BAO method. Lastly, in Chapter 6,

we considered the detectability of the progenitors of the Local Group dwarf galaxies at

high redshifts with JWST.

More specifically, in Chapter 2, we described a new model for galaxy cluster gas

profiles that is derived from only a few simple physical and cosmological conditions on

galaxy clusters, including the predictions of a virial shock on the outskirts of the gas

profile and a corresponding steep dark matter jump. We found that our model compares

well with observations of the interior regions of galaxy clusters in spite of its simplicity.
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After the publication of this work, Lau et al. (2015) also found good agreement between

the results of their simulations of the gas and dark matter behavior in the cluster

outskirts and the predictions of our model. However, the predictions for the outskirts

remain to be tested observationally, as the virial shock has yet to be detected. Deep

Chandra imaging now exists of the outskirts of Abell 133 and 1795 (Vikhlinin et al. in

prep), which may yield hints of this feature. Future work can attempt to extend our

model by incorporating additional physics of galaxy cluster gas.

In Chapter 3, we addressed the existence of steep density jumps in cluster outskirts,

which are longstanding predictions of analytical models of structure formation and recent

simulations. Under the assumption that the cluster member galaxies follow similar

collisionless dynamics as the dark matter, the cluster member distribution should show

a steep density jump as well. We constructed the projected cluster member number

density profiles of a sample of 58 galaxy clusters using a combination of photometry and

spectroscopy and fit them with two profiles, one that includes a density jump and one

without. We find that some of the clusters do strongly prefer the model that includes

the density jump, providing substantial evidence in favor of the existence of the jump.

However, we found that the strength of the signal increases with the security of

the cluster member identification, highlighting the need for additional spectroscopy of

the cluster outskirts to constrain the location and amplitude of the feature. With these

estimates, the density jump could be used as a physically-motivated indicator of galaxy

cluster size (e.g., More, Diemer, & Kravtsov 2015) and moreover provide an important

test of the common assumption that the individual cluster galaxies in the outskirts are

collisionless.
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In Chapter 4, we tested whether red and blue galaxies trace the same large-scale

structure. We found that this is indeed the case, detecting only minute amounts of

stochasticity on intermediate scales, which constrains a key systematic in using galaxy

redshift surveys for cosmology. Additionally, we established the utility of the smooth Xu

et al. (2010) statistic in analyzing the stochasticity.

In Chapter 5, we described a new method of detecting the BAO in sparse

spectroscopic data sets. Our method uses the cross-correlation of the spectroscopic

sample with a much denser photometric sample of galaxies to enhance the BAO signal.

We detected the BAO signal using this method with sparse z > 0.6 SDSS CMASS galaxy

data and dense SDSS photometry. This approach will prove useful for future work

attempting to measure the BAO at high redshifts, particularly using quasar and OIII

emitter samples from DESI and Euclid, respectively.

Lastly, in Chapter 6, we compared the properties of the Local Group dwarf galaxies

and the high redshift galaxies discovered using Hubble and Spitzer. We verified that

the progenitors of the dwarfs are too faint to have been discovered by these present

observatories, but that the upcoming JWST will have slightly better prospects, and

should be able to detect the progenitors of a handful of the brightest local galaxies.

Accordingly, in tracing the distributions of baryons from the small scales of galaxy

clusters to the large scales of filaments and voids and beyond in this thesis, we have

pushed the limits of available datasets. We explored the topic of density jumps in galaxy

clusters, which have only recently begun to be probed in detail due to the di�culty of

observing and simulating the outskirts where these features are predicted to appear. On

large scales, we proposed a new method for obtaining useful BAO measurements when
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datasets are sparse, as with high redshift quasars. We also considered the potential of a

future observatory to detect small and faint galaxies at very high redshifts that current

observatories cannot probe. These investigations all point towards an exciting near-term

future in astrophysics, as upcoming datasets are likely to empower innovative inroads

into these questions.
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Labbé, I., et al. 2010, ApJL, 716, 103

Landau, L., & Lifshitz, E. 1987, Course of Theoretical Physics, Vol. 6: Fluid Mechanics

(New York)

Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64

138



REFERENCES

Lau, E. T., et al. 2015, ApJ, 806, 68

Leccardi, A., & Molendi, S. 2008, A&A, 486, 359

Levi, M., et al. (DESI Collaboration), 2013, arXiv: 1308:0847

Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473

Liddle, A. R. 2007, MNRAS, 377, L74

Lin, Y-T., Mohr, J. J., & Stanford, S. A. 2004, ApJ, 610, 745

Loeb, A., & Furlanetto, S. R. 2013, The First Galaxies in the Universe (Princeton

University Press)

Ludlow, A. D., et al. 2013, MNRAS, 432, 1103

Lupton, R., Gunn, J.E., Ivezic, Z., Knapp, G., & Kent, S. 2001, Astronomical Data

Analysis Software and Systems X, v.238, 269

Mahdavi, A., et al. 2013, ApJ, 767, 116

Martino, R., et al. 2014, MNRAS, 443, 2342

Mashian, N., & Loeb, A. 2013, JCAP, 12, 017

Masters, K. L. et al. 2011, MNRAS, 418, 1055

McConnachie, A.W., 2012, AJ, 144, 4

Mehrtens, N., et al. 2012, MNRAS, 423, 1024

Metchnik, M., & Pinto, P. in prep.

Miyazaki, S., et al. 2007, ApJ, 669, 714

Mohr, J., Mathiesen, B., & Evrard, A. 1999, ApJ, 517, 627

Montero-Dorta, A. D., & Prada, F. 2009, MNRAS, 399, 1106

Moore, B., et al. 1999, MNRAS, 310, 1147

More, S., Diemer, B., & Kravtsov, A. 2015, arXiv: 1504.05591

Mosleh, M., et al. 2012, ApJ, 756, 12

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

139



REFERENCES

Newman, A. B., et al. 2013, ApJ, 765, 25

Nuza, S. E., et al. 2013, MNRAS, 432, 743

Oesch, P. A., et al. 2010, ApJ, 709, 21

Oguri, M., et al. 2009, ApJ, 699, 1038

Oliphant, T. E. 2007, Computing in Science & Engineering, 9, 10

Ono, Y., et al. 2013, ApJ, 777, 155

Ostriker, J. P., Bode, P., & Babul, A. 2005, ApJ, 634, 964

Padmanabhan, N., White, M., & Eisenstein, D. J. 2007, MNRAS, 376, 1702

Padmanabhan, N., et al. 2008, ApJ, 674, 1217
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