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Semiclassical Time Propagation and the Raman Spectrum of Periodic Systems

Abstract

The first half of this thesis introduces the time-dependent W.K.B. approximation of quantum

mechanics from basic principles in classical and quantum mechanics. After discussing the van

Vleck-Morette-Gutzwiller propagator, the real-trajectory time-dependent W.K.B. approximation of

a coherent state is introduced. This is also called the off-center “thawed” Gaussian approximation

and has a closed-form solution consisting of a Gaussian with time-dependent position and

momentum, dispersion, and position-momentum correlation. This result is then extended to

third order in the classical action of guiding real trajectories - a parabolization in phase space,

and equivalently, a uniformization over two saddle points - allowing for the novel treatment

of non-linearity in its underlying classical dynamics. The result is another simple closed-form

solution, but this time made up of Airy functions and their derivatives multiplied by an exponential.

Unlike the lower-order treatment, which stopped at linearization of phase space, this expression is

able to capture global as well as local non-linear dynamics at finite Planck’s constant.

We then proceed to discuss another uniformization of the semiclassical primitive propagator:

the Heller-Herman-Kluk-Kay (H.H.K.K.) propagator. The H.H.K.K. involves an integral over all

of phase space which can be trimmed down to only a one-dimensional integral, regardless of the

dimensions of the system, by appealing to similar guiding manifold techniques discussed in the

previous section. This is the basis for the directed H.H.K.K. propagator which we investigate.

Though many possibilities for speeding up the semiclassical evaluation of H.H.K.K. been examined

over the years, few have focused on using the actual dynamics of underlying trajectories to simplify

its computation. Our findings offer encouraging evidence about the promise of this direction.

The second half of this thesis is concerned with describing the Raman spectrum of graphene

within the Born-Oppenheimer approximation using the Kramers-Heisenberg-Dirac (K.H.D.)

formalism. The electronic and vibrational properties of graphene are introduced, along with simple

tight-binding methods of calculating them. With these tools, K.H.D. is then applied to explain the

origin of the unique and few prominent peaks in graphene’s Raman spectrum. Here, the dominant
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effect of graphene’s linear Dirac cone in its electronic dispersion is easily seen. The latter leads

to novel electron-light-phonon “sliding transitions” that explain the brightness of the overtone 2D

peak.

Finally, some more minor results on the subject of the asymptotic zeros of orthogonal

polynomials are presented.
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3 Introduction

This thesis is broadly split into two main sections: 1. semiclassical time propagation, and 2. Raman

spectra of extended periodic 1d and 2d systems within the Born-Oppenheimer approximation.

The overarching subject joining these disparate fields is classical and quantum mechanics.
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4 An Introduction into Semiclassical

Time Propagation

In this chapter, we largely follow Tannor’s Introduction to Quantum Mechanics A Time-Dependent

Perspective[1] as well as my advisor Rick Heller’s as-yet unpublished book, provisionally titled

The Semiclassical Way to Dynamics and Spectroscopy.

4.1 Lagrangian Mechanics

We posit that our system is characterized by its position q(t) and velocity q̇(t). We assume that

the two contribute to our system’s dynamics in a separable manner, and we call such a system

“mechanical”:

L = T (q̇)− V (q). (4.1)

d
dt

�
∂L

∂q̇

�
− ∂L

∂q
= 0. (4.2)

When T = m q̇2

2
, Lagrange’s equations reduce to

m
d2q
dt2

= −∂V

∂q
. (4.3)

These are Newton’s equations.

1



Notice that q(t) and q̇(t) are explicitly dependent on the time t and L(q̇, q, t) is explicitly

dependent on q and q̇. It may also be explicitly dependent on t if, for instance V (q, t) is explicitly

dependent on t. Importantly, L(q̇, q, t) is also implictly dependent on t too since q(t) and q̇(t) are

explicitly dependent on t. Thus,

dL
dt

=
∂L

∂t
+

∂L

∂q
q̇ +

∂L

∂q̇
q̈. (4.4)

4.2 Hamiltonian Mechanics

We perform a Lagrange transformation to obtain the Hamiltonian:

H =
∂L

∂q̇
· q̇ − L, (4.5)

where ∂L
∂q̇

≡ p.

We have thus replaced our velocity q̇ with momentum p. Instead of a second-order partial

differential equation of motion, we now have two first-order ordinary differential equations of

motion:
dx
dt

= Λ · x, (4.6)

where

Λ =




0 −IN×N

IN×N 0


 (4.7)

and

x =




p

q


 , (4.8)

for p, q ∈ RN . Λ is the symplectic matrix and it defines the dynamics of p and q; Hamiltonian

dynamics are a symplectic - and relatedly, area preserving - transformation.

2



4.2.1 Principal Functions

The action

S(q, t) ≡ S[q(t)](qt, q0, t) =

� t

0

dt�L(q(t), q̇(t), t�). (4.9)

Our short-form sets qt = q and q0 = 0 (the latter we don’t bother showing in our function

arguments).

Hamilton’s principal function

R(q, E) ≡ R[q(t)](qE, q0, E) =

� E

0

dE �L(q(t), q̇(t), E �). (4.10)

4.2.2 Variations of the Principal Functions

To find classical trajectories, we solve for the solutions q(t) of

δS(q, t)|q(t) = 0. (4.11)

This is equivalent to Lagrange’s equations of motion and to Hamilton’s equations.

It is also often useful to know

pt =
∂S

∂qt

����
q0,t

, (4.12)

−p0 =
∂S

∂q0

����
qt,t

, (4.13)

and

− E =
∂S

∂t

����
q0,qt

. (4.14)
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4.3 Propagators

4.3.1 Feynman Propagator

Propagating quantum states in time requires finding their Green’s functions. The path integral

formulation of the Green’s function in quantum mechanics is called the Feynman propagator and

is:

�q�| e−iHt
� |q� =

� m

2πi�t

�1/2 �
D[q(t)]ei

S(q,q�,t)
� . (4.15)

This expression involves a functional integral over all pathways, be they classical or “virtual”,

between q� and q in time t. A cartoon of such paths is shown in Figure 4.1. Classical paths make

up a set of measure zero of all the paths that must be considered therein.

Feynman Propagator Applied to the Harmonic Oscillator Hamiltonian

q'

q

q

t

q(t)

Figure 4.1: Examples of paths between q� and q in time t that must be included in the path integral
of Eq. 4.15.

For a harmonic oscillator,

�q| e−iHt |q�� =
�

mω

2πi sinωt
exp

�
imω

2

(q2 + q�2) cosωt− 2qq�

sinωt

�
.
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Form = ω = 1 and q� = 1 Figure 4.2 shows one period of motion from this formula.
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This has a very nice correspondence to the evolution of a completely classical position manifold

q� in phase space. Figure 4.3 shows how such a manifold looks during the first half of its orbit.

Since it is exactly known in q-space, it is completely undetermined in p-space, which agrees with

the quantum uncertainty principle or Fourier relations.
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It can be shown that the prefactor of this expression is proportional to the classical overlap of

the intersection between the q and q� manifolds. Also, the phase of this propagator is equal to the

classical action of the harmonic oscillator. Figure 4.4 shows a cartoon of this correspondence. This

suggests that a (semi-)classical analog to the quantum propagator might exist that only depends on

classical paths.

p

q

q

∂2S
∂q∂q'α

q'

α eiS(q,q',t)

- 10 - 5 5 10
q

- 2

- 1

1

2
Real Part

Figure 4.4:

It turns out that, up to order �2, this correspondence is exact for all Hamiltonians and other

representations of the propagator (other than the position state representation).

Feynman Propagator Applied to a Coherent State

Let our initial state be a coherent state:

Ψβ(q, t) =
4

�
2

πσ2
exp

�
ipβ (q − qβ)−

1

σ2
(q − qβ)

2

�
, (4.16)

where σ ∈ R > 0 is proportional to the spread in position space, pβ is its central momentum, qβ is

its central position.

This state will be dealt with more formally at the end of this chapter. We choose to examine its

propagation right now for the simple reason that it is easier to visualize in phase space since it is

localized in both p and q.
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σ

qβ

1/σpβ

p

q

Figure 4.5: A coherent state in phase space and projected onto position and momentum space.

Applying the Feynman propagator to this state produces:

� ∞

−∞
dq� �q| e−iHt |q�� �q� |Ψβ � (4.17)

=

�
−imω csc(tω) exp

�
−iσ2(m2q2ω2+pβ2)−2mω cot(tω)(q2+qβ(qβ+ipβσ2))+2mqω(2qβ+ipβσ2) csc(tω)

2mσ2ω cot(tω)+4i

�

�
2
σ2 − imω cot(tω)

.

For m = ω = σ = 1 and (pβ, qβ) = (0, 1) Figure 4.6 shows one period of motion from this

formula.
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Again, this propagation correspondences exactly to the evolution of its corresponding classical

density in phase space. Figure 4.3 shows a confidence inverval of this density drawn in red, also

equivalent to the coherent state’s Wigner representation. Since it is partly known in q-space, the

coherent state is partly undetermined in p-space - again in agreement with the quantum uncertainty

principle or Fourier relations. The first half of its orbit is depicted in the Figure.
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4.3.2 Van Vleck-Morette-Gutzwiller Propagator

Having thus motivated the classical correspondence of the Feynman path integral, we can

summarize by writing that up to order �2

semiclassical amplitude ≈
�

intersections

�
classical probability density of intersection

× exp (i× classical action of intersecting trajectory)

Formally, as can be proven rigorously, this is:

=⇒ �q�| e−iHt
� |q� =

�

all classical paths

�

−
∂2S
∂q�∂q

2πi�
ei

S
� . (4.18)

This is the van Vleck-Morette-Gutzwiller (v.V.M.G.) propagator.

4.4 Stationary Phase

All semiclassics boils down to integration by stationary phase, or for complex arguments in

exponentials, the method of steepest descents. We summarize it here and use the approach by

Ursell ’57[2].

�
dzg(z) exp

�
1

�
f(z,α)

�
(4.19)

− 1

2
u2 = f(z)− f(z0) =

1

2
(z − z0)

2f ��(z0) + . . . , (4.20)

where

f �(z)
dz
du

= −u. (4.21)
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Since f ��(z0) �= 0, this transformation is regular and one-to-one in a domain about z = z0.

Hence, there is an expansion of the form

g(z)
dz
du

= −g(z)
u(z)

f �(z)
=
�

m

cmu
m, (4.22)

valid in small circles |z − z0| ≤ Rz and |u| ≤ Ru

Hence,

exp

�
1

�
f(z0)

� �

C(U)

g(z) exp

�
1

�
f(z)

�
dz (4.23)

=

� U

−U

g(z)
dz
du

exp

�
− 1

2�
u2

�
du (4.24)

=

� U

−U

��

m

cmu
m

�
exp

�
− 1

2�
u2

�
du (4.25)

=
�

m

�
1
2
(m+1)

� �−
1
2U

−�−
1
2U

vm exp

�
−1

2
v2
�
dv. (4.26)

The contour of integration in the u-plane is now chosen to be the real axis near u = 0. Letting

� → 0 changes the limits of integration such that they range from −∞ to ∞. This corresponds to

the curve of steepest descent:

�
g(z) exp

�
1

�
f(z)

�
dz ≈ exp

�
1

�
f(z0)

��

m

cm�
1
2
(m+1)

� ∞

−∞
vm exp

�
−1

2
v2
�
dv. (4.27)

a convergent expansion in terms of incomplete factorial functions.

Summing over all saddle points, which contribute dominantly, evaluates this integral if they are

well separated; the area that the integral encompasses between must be larger than �.
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4.5 Uniformization

Uniformization refers to extending the approach presented above such that it is “uniformly”

convergent even when two (or more) saddle points are coalescing. Once again we use the approach

by Ursell ’57[2].

If there are two convergent saddle points as α → 0, the polynomial in f(z) must be kept to one

order higher. Let us try, then, to represent f(z,α) by the cubic

f(z,α) =
1

3
u3 − ζ(α)u+ A(α). (4.28)

g(z)
dz
du

=
�

m

pm(α)(u
2 − ζ)m +

�

m

qm(α)u(u
2 − ζ)m. (4.29)

Then,

exp

�
−1

�
A(α)

� �
g(z) exp

�
1

�
f(z,α)

�
dz (4.30)

≈
�

m

pm

�
(u2 − ζ)m exp

�
1

�

�
1

3
u3 − ζu

��
du+

�

m

qm

�
u(u2 − ζ)m exp

�
1

�

�
1

3
u3 − ζu

��
du.(4.31)

It remains to evaluate the integrals

Fm(ζ, �, Cj) =
1

2πi

�

Cj

dz (z2 − ζ)m exp

�
z3

3
− ζz

�
, (4.32)

Gm(ζ, �, Cj) =
1

2πi

�

Cj

dz z(z2 − ζ)m exp

�
z3

3
− ζz

�
, (4.33)

where the contours of integration are C1 from ∞e−
1
3
πi to ∞e

1
3
πi, C2 from ∞e

1
3
πi to ∞eπi, and C3

from∞eπi to∞e−
1
3
πi.
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The contours of integration ensure that each F (Cj) and G(Cj) is linearly dependent on the

other two such that

Fm(ζ, �, C1) + Fm(ζ, �, C2) + Fm(ζ, �, C3) = 0, (4.34)

and the same with the Gms.

Furthermore,

Fm(ζ, �, C2) = exp

�
4

3
mπi+

2

3
πi

�
Fm(ζe

2
3
πi, �, C1), (4.35)

Gm(ζ, �, C2) = exp

�
4

3
mπi+

4

3
πi

�
Gm(ζe

2
3
πi, �, C1), (4.36)

and

Fm(ζ, �, C3) = exp

�
4

3
mπi+

2

3
πi

�
Fm(ζe

2
3
πi, �, C2), (4.37)

Gm(ζ, �, C3) = exp

�
4

3
mπi+

4

3
πi

�
Gm(ζe

2
3
πi, �, C2). (4.38)

With these identities, the contour integrals in Eqs 6.21 and 6.22 can be evaluated, and their

results are shown in Table 4.1 for the different contours Cj .

j F0(ζ, �, Cj) F1(ζ, �, Cj) G0(ζ, �, Cj) G1(ζ, �, Cj)

1 �
1
3 Ai

�
ζ

�
2
3

�
0 −�

2
3 Ai �

�
ζ

�
2
3

�
−�

4
3 Ai

�
ζ

�
2
3

�

2 e
4πi
3 �

1
3 Bi

�
e
2πi
3 ζ

�
2
3

�
0 −e

4πi
3 �

2
3 Bi �

�
e
2πi
3 ζ

�
2
3

�
−e

8πi
3 �

4
3 Bi

�
e
2πi
3 ζ

�
2
3

�

3 −�
1
3

�
Ai

�
ζ

�
2
3

�
+ e

4πi
3 Bi

�
e
2πi
3 ζ

�
2
3

��
0 �

2
3

�
Ai �

�
ζ

�
2
3

�
+ e

4πi
3 Bi �

�
e
2πi
3 ζ

�
2
3

��
�
4
3

�
Ai

�
ζ

�
2
3

�
+ e

8πi
3 Bi

�
e
2πi
3 ζ

�
2
3

��

Table 4.1:

4.6 Coherent States

Following Heller ’91[3], we consider the operator

â ≡ 1√
2�mω

(mωx̂+ ip̂). (4.39)
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A coherent state |α� is defined as the eigenstate of this operator:

â |α� = α |α� , (4.40)

where

α =
1√

2�mω
(mωqα + ipα). (4.41)

In position space this becomes,

�q |â|α� = α �q |α� (4.42)

=
1√

2�mω

�
mωq + �

∂

∂q

�
�q |α� . (4.43)

The solution to this differential equation is:

Ψα(q) ≡ �q |α� =
�
m�ω
π�

�1/4

exp

�
−mω

2�
(q − qα)

2 +
i

�
pα(q − qα)

�
. (4.44)

This is a Gaussian wavepacket with average position �α |q̂|α� = qα, average momentum

�α |p̂|α� = pα.

The term “coherent state” is intimately tied to the underlying harmonic Hamiltonian for which

it is the ground state. Namely, if we write mω
2� ≡ a+ib

2� , coherent states are only those for which

b = 0. All others, for this combination of m and ω, are generally called squeezed states. However,

in general, one deals with “coherent states” in anharmonic systems (without a necessarily clear

harmonic analogue orm and ω) and the term is still used.
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The term “squeezed state” is clear upon examining the uncertainties of the two conjugate

degrees of freedom:

Δx2 =
�
α
��(x̂− xα)

2
��α
�
=

�
2a

, (4.45)

Δp2 =
�
α
��(p̂− pα)

2
��α
�
=

a�
2

+
b2�
2a

, (4.46)

ΔxΔp =
�
2

�
1 +

b2

a2
. (4.47)

With b finite, the uncertainty relation ΔxΔp is not at its lower bound. An equivalent definition

of a coherent state is one for which its uncertainty relation is minimized. Clearly, in order to

“minimize” something you need a parameter (in this case ω), and so a corresponding harmonic

potential is again necessary for the term “coherent state” to have its traditional meaning. In this

thesis, we will refer to anything that is a Gaussian in position space as a “coherent state”, hedging

on the fact that a corresponding harmonic oscillator can always be made to correspond to its “ω”.

As a final point, coherent states are a fine basis set, just like q-states and p-states, except they

are overcomplete and not orthogonal to each other:

I =
1

2π�

� �
dqαdpα |α� �α| (4.48)

=
1

π

� �
d(�α)d(�α) |α� �α| (4.49)

=
1

π

�
d2α |α� �α| . (4.50)
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5 The (Off-Center) Thawed Gaussian

Approximation

5.1 Introduction

In this chapter we present the off-center thawed Gaussian approximation (OCTGA), a semiclassical

wavepacket method, for multiple dimensions. Its accuracy and performance calculating Gaussian

autocorrelations is examined and it is demonstrated that only a single trajectory is sufficient per

overlap (in phase space) for every timestep regardless of the dimensionality of the model system,

as long as the underlying saddle points are sufficiently separated. This stands in stark contrast to

HK’s exponential proliferation of trajectories (and associated stability matrices) with increasing

degrees of freedom. Furthermore, the selection of the appropriate OCTGA trajectories is shown to

be a “soft” root-finding problem that can be exploited to find a simpler one-dimensional manifold of

trajectories which to follow. Thus, OCTGA can be a very useful semiclassical method in harmonic

and excited anharmonic many-body systems.

Semiclassical quantum wave packet evolution[4, 5, 6] is a powerful method to evolve quantum

states using classical trajectories. Many efficient methods exist but perhaps the most widely used is

the Herman-Kluk (HK) propagator[7], based on frozen Gaussians[8]. In brief, the HK propagator

is a stationary phase approximation of the quantum coherent state propagator evaluated in an

uniformized initial value representation. Every time step requires the calculation of the overlap of

a “swarm” of “frozen” Gaussians, often selected by Monte Carlo-based sampling dependent on the
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Gaussian initial state. The propagation of every such Gaussian is governed by its central classical

trajectory and each Gaussian’s contribution to the propagator’s value at a timestep is dependent on

the classical action of its central trajectory as well as elements of its stability matrix. In practice,

computation of these elements, first order differentials of final position and momenta with respect

to initial position and momenta, is the most numerically intensive part of the procedure.

Unfortunately, HK suffers from an exponentially growing number of trajectories being

necessary for convergence as the number of degrees of freedom increases. The calculation of

every trajectory’s associated stability matrix elements is thus doubly confounded: Not only do

the number of matrix elements grow exponentially with degrees of freedom, the number of times

these elements must be calculated also proliferates with the growing number of trajectories. Efforts

have been made to address this issue, the most notable of which are cellular dynamics[9] and

Filinov filtering[10]. However, these methods have proven ineffective in integrable systems and

only reduce the growth of trajectories necessary to a point.

One way around this unfavorable scaling is to take a more targeted approach in selecting

trajectories and allowing the coherent states to evolve internally under some potential instead of

remaining “frozen”. Such a method was described for the case of one particle in two dimensions,

a chaotic system by this group in Ref. [11], and in integrable systems in Ref. [12], called the

off-center thawed Gaussian approximation (OCTGA). A short review of the OCTGA can be found

in Ref. [13]. By exploiting the fact that the classical and quantum distribution of Gaussians remains

the same in phase space, the OCTGA is able to locally approximate a part of a larger quantum wave

function by a Gaussian wave packet propagated under an appropriately chosen time-dependent

potential.

For the case of auto and cross-correlation functions, essential to many measurables such as

spectra[6], the wave function’s overlap with its initial state at a range of times constitute the local

regions of interest. At one end of the spectrum, this problem could be solved semiclassically

through the use of the Van Vleck-Gutzwiller propagator, employed in a uniformizing way by

integrating it (not by stationary phase) over initial and final wave functions[14]. At the other end
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of the spectrum and far simpler to execute, this overlap could be captured by propagating a single

Gaussian initial state via a classical trajectory defined by its expectation values of positions and

momenta, and the environs of that trajectory. This is the “thawed Gaussan” wave packet method

(TGA). Unfortunately, for anharmonic potentials, selecting such a classical trajectory centered in

the middle of the Gaussian leads to results that are a poor approximation to the evolving wave

function at even moderate times.

The OCTGA is an easy extension of the thawed Gaussian method where the Gaussian

wavepacket is propagated under the potential expanded to second order around a guiding classical

trajectory that is generally not at the center of the Gaussian. Several guiding trajectories, along with

their corresponding guided wavepackets may be needed, one for each separate classical overlap

contribution to the correlation function. There may be zero, one, or many of these zones at any

one time. The guiding trajectory begins inside the phase space distribution of the initial state and

travels to the center of the overlap in phase space at the time step of interest (see Figure 5.1 for a

typical picture of overlaps in phase space).

The off-center guiding approach was initially applied for perhaps the worst imaginable case

one would think: chaotic systems[11]. It has since been very successfully extended to an integrable

two-dimensional system[12].

Given the large literature and growing activity in wavepacket based propagation schemes, it is

very surprising that the OCTGA approach has not seen more development. The promise it holds

of needing so few trajectories and wavepackets as opposed to typically hundreds of thousands or

millions for HK, is alluring. Will it work in many dimensions, and does it have the promise of

becoming a much faster (and more intuitive) semiclassical propagation scheme? Regarding many

dimensions: off center guiding still requires only one trajectory per family of arriving trajectories

in any number of dimensions, and no other trajectories at all for parts of the wave function that

have not approached the target vicinity.

The purpose of this paper therefore is to extend the work of Ref [11, 12], the so called

“off-center thawed Gaussian approximation”, to many dimensions. In an effort to demonstrate
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OCTGA’s clear advantages in higher dimensions, we compare the two methods’s performance

with a model system containing many degrees of freedom and show that the OCTGA offers a

strong semiclassical wavepacket alternative to HK.

5.2 Derivations

In this derivation vectors will be denoted by lowercase bold letters while matrices will be denoted

by uppercase bold letters (ie. a and A respectively), be they greek or latin.

We present two equivalent derivations:

5.2.1 Derivation #1

GVVMG(q, q�, t) = (2πi)−
N
2

�

paths

�
det

∂2S(q, q�)

∂q∂q�

�1/2

exp [iS(q, q�, t)] , (5.1)

where q� and q are the initial and final positions respectively for time t (� = 1 throughout).

Ψβ(q, 0) =

��
2

π

�N

detΣ

�1/4
exp

�
i

�
�
ξ ·
�
q − qβ

�
+
�
q − qβ

�
·Σ ·

�
q − qβ

�
+ γ
��

. (5.2)

Σ
− 1

2
ii =

�
Σ

− 1
2

ii

�T
and is proportional to the spread of the Gaussian along qi,Σij for i �= j describes

qi-qj correlation, �ξ is equal to the central momentum while �ξ describes p-q correlation.

Instead of the full semiclassical propagator, let us apply the harmonically approximated

semiclassical (h.s.c.) propagator,

Ghsc(q, q�, t) =
�

paths

��
∂2S(q, q�)

∂q∂q�

�1/2
�har

exp
�
iShar(q, q�, t)

�
, (5.3)

to this initial state,

Ψhsc
β (q, t) =

� ∞

−∞
dq� Ghsc(q, q�, t)Ψβ(q

�, 0), (5.4)
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where we have expanded the action S(q, q�) up to second order around an initial q0 and its time

evolute qt:

Shar(q, q�, t) = S(q = qt, q
� = q0) +

�
∂S

∂qt

�

q=qt,q
�=q0

· (q − qt) +

�
∂S

∂q0

�

q=qt,q
�=q0

· (q� − q0)

+
1

2
(q − qt) ·

�
∂2S

∂q2
t

�

q=qt,q
�=q0

· (q − qt) +
1

2
(q� − q0) ·

�
∂2S

∂q2
0

�

q=qt,q
�=q0

· (q� − q0)

+(q� − q0) ·
�

∂2S

∂q0∂qt

�

q=qt,q
�=q0

· (q − qt).
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Substituting in the expanded action in Eq. 5.4 yields,

Ψhsc
β (q, t) (5.5)

= (2πi)−
N
2

��
2

π

�N

detΣ

�1/4�

paths

�
det

∂2S

∂qt∂q0

�1/2 � ∞

−∞
dq� (5.6)

× exp

�
i

�
S(qt, q0) +

�
∂S

∂qt

�

q0

· (q − qt) +

�
∂S

∂q0

�

qt

· (q� − q0)

+
1

2
(q − qt) ·

�
∂2S

∂q2
t

�

q0

· (q − qt) +
1

2
(q� − q0) ·

�
∂2S

∂q2
0

�

qt

· (q� − q0)

+(q� − q0) ·
�

∂2S

∂q0∂qt

�
· (q − qt) + ξ ·

�
q� − qβ

�
+
�
q� − qβ

�
·Σ ·

�
q� − qβ

�
+ γ

��

= (2πi)−
N
2

��
2

π

�N

detΣ

�1/4�

paths

�
det

∂2S

∂qt∂q0

�1/2 � ∞

−∞
dq� (5.7)

× exp

�
i

�
S(qt, q0) +

�
∂S

∂qt

�

q0

· (q − qt)−
�
∂S

∂q0

�

qt

· q0

+
1

2
(q − qt) ·

�
∂2S

∂q2
t

�

q0

· (q − qt) +
1

2
q0 ·

�
∂2S

∂q2
0

�

qt

· q0

−q0 ·
�

∂2S

∂q0∂qt

�
· (q − qt)− ξ · qβ + qβ ·Σ · qβ + γ

��

× exp

�
i

��
∂S

∂q0

�

qt

+ (q − qt) ·
�

∂2S

∂q0∂qt

�
− q0 ·

�
∂2S

∂q2
0

�

qt

+ ξ − 2qβ ·Σ
�
· q�

+iq� ·
�
Σ+

1

2

�
∂2S

∂q2
0

�

qt

�
· q�
�

= (2πi)−
N
2

��
2

π

�N

detΣ

�1/4�

paths

�
det

∂2S

∂qt∂q0

�1/2

(5.8)

× exp

�
i

�
S(qt, q0) +

�
∂S

∂qt

�

q0

· (q − qt)−
�
∂S

∂q0

�

qt

· q0

+
1

2
(q − qt) ·

�
∂2S

∂q2
t

�

q0

· (q − qt) +
1

2
q0 ·

�
∂2S

∂q2
0

�

qt

· q0

−q0 ·
�

∂2S

∂q0∂qt

�
· (q − qt)− ξ · qβ + qβ ·Σ · qβ + γ

��

×
�

πN

detA

� 1
2

exp

�
− 1

4
b ·A−1 · b

�
,
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where

A = i

�
Σ+

1

2

�
∂2S

∂q2
0

�

qt

�
, (5.9)

and

b = i

��
∂S

∂q0

�

qt

+ (q − qt) ·
�

∂2S

∂q0∂qt

�
− q0 ·

�
∂2S

∂q2
0

�

qt

+ ξ − 2qβ ·Σ
�
. (5.10)

This can be reexpressed as a Gaussian in terms of (q − qt):

Ψβ(q, t)

= (2πi)−
N
2

��
2

π

�N

detΣ

�1/4 �

paths

�
det

∂2S

∂qt∂q0

�1/2




πN

iN det

�
Σ+ 1

2

�
∂2S
∂q2

0

�

qt

�




1
2

(5.11)

× exp




(q − qt) ·


− i

4

�
∂2S

∂q0∂qt

�
·
�
Σ+

1

2

�
∂2S

∂q2
0

�

qt

�−1

·
�

∂2S

∂q0∂qt

�
 · (q − qt)

+i

�
pt − q0 ·

�
∂2S

∂q0∂qt

�
− 1

2

�
−p0 − q0 ·

�
∂2S

∂q2
0

�

qt

+ ξ − 2qβ ·Σ
�

·
�
Σ+

1

2

�
∂2S

∂q2
0

�

qt

�−1

·
�

∂2S

∂q0∂qt

� �
· (q − qt)

+i

�
S(qt, q0) + p0 · q0 +

1

2
q0 ·

�
∂2S

∂q2
0

�

qt

· q0 − ξ · qβ + qβ ·Σ · qβ + γ

�

− i

4

�
−p0 − q0 ·

�
∂2S

∂q2
0

�

qt

+ ξ − 2qβ ·Σ
� �

Σ+
1

2

�
∂2S

∂q2
0

�

qt

�−1 �
−p0 − q0 ·

�
∂2S

∂q2
0

�

qt

+ ξ − 2qβ ·Σ
�




.

M (t) =



M (t)11 M(t)12

M (t)21 M(t)22


 =




�
∂pt

∂p0

�
q0

�
∂pt

∂q0

�
p0�

∂qt

∂p0

�
q0

�
∂qt

∂q0

�
p0


 . (5.12)

In terms ofM ,

�
∂2S

∂q2
0

�

qt

= M22 ·M−1
21 ,

∂2S

∂q0∂qt

= −M−1
21 ,

�
∂2S

∂q2
t

�

q0

= M11 ·M−1
21 , (5.13)

where we dropped the t argument for brevity’s sake andM(0) = I2N×2N .
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Determining the second order derivatives of the action can be accomplished symplectically by

solving for the stability matrixM (t) of the guiding trajectory (q0, qt) with the equation of motion

Ṁ(t) = K(t) ·M (t), (5.14)

where

K(t) =


− ∂2H

∂q∂p −∂2H
∂q2

∂2H
∂p2

∂2H
∂p∂q


 . (5.15)

5.2.2 Derivation #2

Since the semiclassical propagator is exact for harmonic potentials, the off-centered thawed

Gaussian approximation can be equivalently derived straight from the full Schrödinger equation

wit its potential quadratically expanded around a guiding trajectory. This is how the formalism was

actually first derived in the 70s.

Recalling the time-dependent Schrödinger equation:

i
∂Ψβ(q, t)

∂t
= −1

2

∂2Ψβ(q, t)

∂q2
+ V (q)Ψβ(q, t). (5.16)

Let us consider the potential only up to second order, such that,

V (q) = V (qt) +
∂V (q)

∂q

����
q=qt

· (q − qt) +
1

2
(q − qt) ·

∂2V (q)

∂q2

����
q=qt

· (q − qt) (5.17)

and let

Ψβ(q, t) = A exp {i [ξt · (q − qt) + (q − qt) ·At · (q − qt) + γt]} . (5.18)
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Substituting Eqs. 5.17 and 6.2 into Eq. 5.16 and equating like powers of (q − qt) yields the

ordinary differential equations

Ȧt = −2At ·At −
1

2

∂2V (q)

∂q2

����
q=qt

(5.19)

ξ̇t = 2q̇t ·At − 2ξt ·At −
∂V (q)

∂q

����
q=qt

(5.20)

γ̇t = iTrAt −
1

2
ξ · ξ − V (qt) + ξt · q̇t (5.21)

In this derivation, for the sake of diversity, we will solve these equations of motion without

direct appeal to stability matrices, though all the expressions we find can be reexpressed in terms

of them.

LetAt =
1
2
PZ t ·Z−1

t .

Substituting this into Eq. 5.19

=⇒ ṖZ t = −∂2V (q)

∂q2

����
q=qt

·Zt (5.22)

=⇒ Żt = PZ t. (5.23)

Let ξt = pt + ζt.

Substituting this into Eq. 5.20 produces

ζ̇t = −2At · ζt (5.24)

and it also simplifies Eq. 5.21,

γ̇t = L+ iTrAt −
1

2
ζt · ζt. (5.25)

To find the solution γt from Eq. 5.25, the integral with time of the last two terms must be found.
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The integral of TrAt is fairly easy to do:

� t

0

TrAt�dt
� =

1

2

� t

0

dt� Tr
�
Żt� ·Z−1

t�

�

=
1

2
log (detZt) (5.26)

It is dealing with the next term where things get a little hairy. Before we integrate ζt · ζt, we

must figure out what ζt is. DiagonalizingAt in Eq. 5.24 simplifies the process:

U−1
t · ζ̇t = −2U−1

t ·At ·U t ·U−1
t · ζt (5.27)

U−1
t · ζ̇t = −2

�
U−1

t ·At ·U t

�
·
�
U−1

t · ζt

�
(5.28)

ζ̇
∗
t = −2A∗

t · ζ∗
t (5.29)

whereA∗
t is the diagonal matrix U−1

t ·At ·U t and ζ∗t is U−1
t · ζt.

Solving Eq. 5.29 leads to the solution of Eq. 5.24:

ζt = c1 exp

�� t

0

λ1(t
�)dt�

�
u1 + c2 exp

�� t

0

λ2(t
�)dt�

�
u2 + . . .+ cN exp

�� t

0

λN(t
�)dt�

�
uN

(5.30)

where {λi(t)}i=1..N are the (time-dependent) eigenvalues of At with eigenvectors {ui}i=1..N at

t = 0, and {ci}i=1..N are coefficients such that

ζ0 = c1u1 + c2u2 + . . .+ cNuN . (5.31)

What we’ve really done here is rederive matrix exponentiation. The solution can be more

concisely written as:

ζt = exp

�
−2

� t

0

dt�At�

�
ζ0. (5.32)
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We are now in a position to write the solution of Eq. 5.25:

γt = S +
i

2
log (detZt)−

1

2

� t

0

dt�ζt� · ζt� (5.33)

where ζt is given in Eq. 5.32.

In the original center-led thawed Gaussian approximation (TGA), ξt = pt =⇒ ζt = ζ0 = 0

and so this last term is not present.

Note that ξt is also dependent on Eq. 5.32 since ξt = pt + ζt.

At t = 0, let’s set our initial Gaussian to be centred at (pβ, qβ) with a dispersion of σβ:

Ψβ(q, 0) =
�
πN detσ2

β

�−1/4
exp

�
ipβ · (q − qβ)−

1

2
(q − qβ) · σ−2

β · (q − qβ)

�
. (5.34)

Equating this to the initial state written in terms of the ξ0,A0, and γ0 variables in Eq. 6.2 sets

A0 =
i

2
σ−2

β (5.35)

ξ0 = pβ + 2A0 · (q0 − qβ) (5.36)

γ0 = (q0 − qβ) ·
�
A0 · (q0 − qβ) + pβ

�
(5.37)

A =
�
πN detσ2

β

�−1/4
(5.38)

where I is an N ×N identity matrix.

This means that

ζ0 = ξ0 − p0 = pβ + 2A0 · (q0 − qβ)− p0. (5.39)

Taking the inner product of the initial Gaussian wavepacket Ψβ(q, 0) and the propagated
wavepacket Ψβ(q, t), both given by Eq. 6.2, we find that an individual term of the autocorrelation
is

�β |β(t) �j = 2n/2

�
detA0

det(A0 +At)
exp [i(γt − γ∗

0 ) + i(ξ∗0 · q0 − ξt · qt) + i(q0 ·A0 · q0 + qt ·At · qt)] (5.40)

× exp

�
− i

4
(ξ∗0 − ξt + 2A0 · q0 + 2At · qt) · (A0 +At)

−1 · (ξ∗0 − ξt + 2A0 · q0 + 2At · qt)

�
.
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In one dimension, Eq. 5.41 reduces to

�β |β(t) �j =

��
2A0

At + A0
exp

�
i(γt − γ∗

0 ) − i

4

(ξ0 − ξt)
2

At + A0
+ i

(Atξ
∗
0 + A0ξt)(q0 − qt) + iAtA0(q0 − qt)

2

At + A0

��

j

(5.41)

The subscript j denotes a contribution from a particular trajectory. In one dimension, Eq. 5.41

reduces to Eq. 20 in Ref. [15].
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Figure 5.1: (Color onlline) The phase space 3.5 σ-confidence intervals of the initial (green) and
final (blue) distributions with a one-dimensional manifold of trajectories (cyan) lying along the
optimal off-center guiding points at the 3700th timestep. The (red) dot designates the off-center
point chosen at that timestep. Inset: Real part of the twelfth recurrence of a Morse oscillator
exhibiting multiple contributions from separate overlaps in phase space that differ in phase.
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5.3 Sensitivity to “Off-Center” Guiding Trajectory

We consider the potential

V (q) = D [1− exp(−α(q − qe))]
2 (5.42)

where D = 500 is the Morse oscillator potential depth, α = 0.1 is the bond rigidity, and qe is the

equilibrium bond length set to 3.0.
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Figure 5.2: (Color online) Magnitude of the (a) real and (b) imaginary parts of the difference
between the OCTGA-calculated autocorrelation and the analytical value at a particular timestep
for different off-center guiding trajectories selected from within the classical distribution’s 3.5
σ-interval.[16]

31



Finding the optimal off-center guiding trajectory for each overlap at a particular timestep can

be considered to be a “soft” root search. By this it is meant that a rather wide region of points

in phase space, generally grouped around the center of the overlap, can be used to produce an

accurate second order potential. This is apparent in Figure 5.2 for the case of one Morse oscillator

and makes the calculation much less sensitive to errors in selecting optimal guiding trajectories.

In this invesigation, this process was simplified as in Ref. [12] by only following a smaller

one-dimensional manifold of trajectories in time (see Figure 5.1). These well-selected trajectories

were monitored for intersection with the 3.5 σ-interval of the initial state. For all dimensions, this

optimal manifold was found by examining each recurrence of the Gaussian with its initial state and

searching for the phase space point at the center of its overlap during a series of timesteps through

Monte Carlo sampling of trajectories. These phase space points were strung together in a list that

was filled in through linear interpolation to form a manifold of trajectories.

5.4 Real-Trajectory Equivalence to vV.M.G

The cross- or auto-correlation fromOCTGA can be described as the real-trajectory equivalent to the

time-dependent W.K.B. approximation in coherent state representation, also known as generalized

Gaussian wavepacket methods. This is discussed in more detail in [17]. Briefly, applying the

method of steepest descents to the two integrals in:

�Ψβ(q) |Ψβ(q, t)�W.K.B. =

� ∞

−∞
dq��
� ∞

−∞
dq�Ψα(q

��)GvVMG(q��, q�, t)Ψβ(q
�), (5.43)
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results in

Ψβ(q, t) =
1√
πi�σ

�

saddle points

exp

�
i

�
S(q, q0, t)

�
(5.44)

×
��

1

σ2
− i

2�

�
∂2S

∂q2

�

q�

��
1

σ2
− i

2�

�
∂2S

∂q�2

�

q

�
+

1

4�2

�
∂2S

∂q�∂q

�2�− 1
2

× exp

�
i

2�2σ2
�p0�p0 −

1

4�2σ2
(�p0)2 − σ2 (�q0)2 −

1

�
�p0�q0

�

× exp

�
i

2�2σ2
�pt�pt −

1

4�2σ2
(�pt)2 − σ2 (�qt)2 +

1

�
�pt�qt

�
,

where now the sum is over all saddle points that satisfy

0 =
2

σ2
(q0 − qβ) +

i

�
(p0 − pβ), (5.45)

and

0 =
2

σ2
(qt − qβ)−

i

�
(pt − pβ). (5.46)

These saddle points are generally complex and can be considered to be the “best” guiding

trajectories within such a quadratic (semiclassical) approximation.

Similarly, the position representation of OCTGA can be described as the real-trajectory

equivalent to the time-dependent W.K.B. approximation in position state representation where the

saddle points satisfy

0 =
2

σ2
(q0 − qβ) +

i

�
(p0 − pβ), (5.47)

and

0 = qt − qβ, (5.48)
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for p0, and q0 ∈ C and

Ψβ(q, t)

=
4

�
2

πσ2

�

saddle points

1��
∂2S
∂q20

�
qt
+ 2i�

σ2

exp

�
i

�
S(q, q0, t)

�
(5.49)

× exp

�
i

2�2σ2
�p0�p0 −

1

4�2σ2
(�p0)2 − σ2 (�q0)2 −

1

�
�p0�q0

�
.

Again, the guiding trajectories we discussed in OCTGA can be formally considered to be the

“best” or closest “real” ones to the generally complex classical saddle point trajectories in proper

time-dependent W.K.B. Though no longer lying on the real axis, the latter are still often “nearly

real” as a consequence.

5.5 Conclusion

In conclusion, we find that OCTGA can be a very fast, viable semiclassical propagation method

for many-dimensional systems, at least as long as phase space areas of interest to approximation

do not involve strongly curved regions. (We note that, as � → 0, the curvature problems vanish

so OCTGA is already in the class of full semiclassical approximation.) This includes non-trivial

many-body systems such as the coupled Morse oscillator chain model explored, and greatly opens

up the field of feasible higher-dimensional systems, especially those that are integrable or mixed

and are not amenable to Filinov filtering. In the approach taken in this chapter, the OCTGA

relied on a well-chosen one-dimensional manifold of trajectories for selecting optimal “off-center”

guiding trajectories and for its superior scaling with dimension. The development of methods for

finding such manifolds, be they reliant on stability analysis or earlier recurrence analysis as in this

Letter, is an important component necessary for the success of this semiclassical method in other

systems of interest.
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6 A Third Order Thawed Gaussian

Approximation

The Feynman path integral provides a clear prescription for finding the quantum dynamics

of states[18, 19]. Unfortunately, it is exactly solvable in only a few simple cases and

so its semiclassical treatment is often considered instead. A variational expansion up to

second order in � produces the time-dependent Wentzel-Kramers-Brillouin (W.K.B.) - the van

Vleck-Morette-Gutzwiller (vV.M.G.) propagator[20, 21, 22] - which reduces the number of

trajectories that are considered to the set of only the (real or complex) classical trajectories between

two manifolds, along with their action S and stability ∂2S/∂q�∂q:

GvVMG(q, q�, t) =
1√
2πi�

�

paths

�
∂2S(q, q�, t)

∂q∂q�

�1/2

exp

�
i

�
S(q, q�, t)

�
, (6.1)

where q� and q are the initial and final positions respectively for time t.

When considering the propagation of states in time whose representative classical densities are

localized in phase space, such as coherent states (Gaussian wavepackets in position and momentum

space), it is often useful to expand their semiclassical propagator around guiding time-dependent

trajectories[4] that approximate the local parts of the state well that are of interest. When this

expansion is done to quadratic order the dynamics near the guiding trajectory are linearized and the

neighboring part of the wavepacket remains well approximated for all time for sufficiently small

�, or equivalently, for all � for a sufficiently short time. Even when the dynamics of the classical

35



density are globally highly non-linear in phase space, local pieces on the order of � can often still

be linear and well captured, as has been shown for the Coulombic potential[23] and the stadium

billiard[24].

However, for larger �, non-linearities become important even at the local scale, and an

expansion to higher than second order around the guiding trajectories becomes necessary. This

was found in both prior studies where hairpins - highly curved manifolds - in phase space had

to be avoided[23, 24] and is a general feature of almost any physically relevant system away

from the classical regime. Therefore, there is a great need for a treatment that handles such

pervasive non-linearity. Related efforts have relied on complex root-finding[25] or Monte Carlo

uniformization[26] to address this issue.

Unfortunately, many expansions of this nature behave badly when taken to higher than second

order and fewer still have closed-form simple solutions. Will including the dynamics up to third

order be a non-asymptotic expansion and therefore actually produce less accurate results? Is it

still possible, as in earlier work, to calculate correlations of wavepackets by summing periodic or

heteroclinic orbit contributions based on their phase space intersections?

6.1 Derivation of the Cubic Approximation

To examine these questions we will work in one dimension and examine the time propagation of

initial Gaussian wavepackets

Ψβ(q, 0) =
4

�
2

πσ2
exp

�
i

�

�
ξ (q − qβ) +

i�
σ2

(q − qβ)
2 + γ

��
. (6.2)

σ ∈ R and is proportional to the spread of the Gaussian, �ξ is equal to the central momentum while

�ξ describes p-q correlation, and γ ∈ I is an initial phase of the state.
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Instead of the full semiclassical propagator, we apply the cubically approximated semiclassical

(c.s.c.) propagator, Gcsc(q, q�, t) =
�

paths exp
�
iScub(q, q�, t)

�
, to the initial state Ψβ , giving

Ψcsc
β (q, t) =

�
dq�Gcsc(q, q�, t)Ψβ(q

�, 0). (6.3)

Here we have expanded the action S(q, q�) up to third order around an initial position q0 and its

time evolute qt:

Scub(q, q�, t) = S(qt, q0) +

�
∂S

∂qt

�

q0

Q+

�
∂S

∂q0

�

qt

Q�

+
1

2

�
∂2S

∂q2t

�

q0

Q2 +
1

2

�
∂2S

∂q20

�

qt

Q�2

+

�
∂2S

∂q0∂qt

�
Q�Q+

1

6

�
∂3S

∂q30

�

qt

Q�3 (6.4)

+
1

6

�
∂3S

∂q3t

�

q0

Q3 +
1

2

�
∂3S

∂q20∂qt

�
Q�2Q

+
1

2

�
∂3S

∂q0∂q2t

�
Q�Q2,

whereQ = q−qt andQ� = q�−q0. This is the main extension over the harmonically approximated

semiclassical (h.s.c.) propagator, and as we shall see in the following, the resulting formalism

builds upon it.

Substituting the expanded action into Eq. 6.3 yields,

Ψcsc
β (q, t) =

4

�
2

πσ2

1√
2πi�

�

paths

� ∞

−∞
dQ�




��
∂2S

∂Q�∂Q

�

Q�=Q=0

(6.5)

+




∂3S
∂Q�2∂Q�

∂2S
∂Q�∂Q




Q�=Q=0

Q� +




∂3S
∂Q�∂Q2�

∂2S
∂Q�∂Q




Q�=Q=0

Q




× exp

�
i

�
�
ΞQ�3 +ΥQ�2 + ΩQ� + Λ

��

37



where

Ξ =
1

6

�
∂3S

∂q30

�

qt

, (6.6)

Υ =
1

2

��
∂2S

∂q20

�

qt

+

�
∂3S

∂q20∂qt

�
Q

�
+

i�
σ2

, (6.7)

Ω =

�
∂S

∂q0

�

qt

+

�
∂2S

∂q0∂qt

�
Q+

�
∂3S

∂q0∂q2t

�
Q2 (6.8)

+
2i�
σ2

(q0 − qβ) + ξ,

and

Λ = S(qt, q0) +

�
∂S

∂qt

�

q0

Q+
1

2

�
∂2S

∂q2t

�

q0

Q2 (6.9)

+
1

6

�
∂3S

∂q3t

�

q0

Q3 +
i�
σ2

(q0 − qβ)
2 + ξ(q0 − qβ) + γ.

Above we have also expanded the prefactor to the next higher order around q� = q0 and q = qt

compared to the h.s.c. propagator; the h.s.c. propagator only contains the first term in this prefactor.

We let the phase in Eq. 6.5 be f(Q�, t) and the prefactor g(Q�, t) and then rewrite the former to

fit the Airy function’s cubic integral identity such that

Ψcsc
β (q, t) =

�

paths

�
dQ�g(Q�, t) exp

�
1

�
f(Q�, t)

�
, (6.10)
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where

f(Q�, t) (6.11)

= ΞQ�3 +ΥQ�2 + ΩQ� + Λ (6.12)

= Ξ

�
Q�3 +

Υ

Ξ
Q�2 +

Ω

Ξ
Q� +

Λ

Ξ

�
(6.13)

= Ξ

��
Q� +

1

3

Υ

Ξ

�3

− 1

3

�
Υ

Ξ

�2

Q� − 1

27

�
Υ

Ξ

�3

+
Ω

Ξ
Q� +

Λ

Ξ

�
(6.14)

= Ξ

��
Q� +

1

3

Υ

Ξ

�3

− 1

27

�
Υ

Ξ

�3

+
Λ

Ξ
(6.15)

+

�
Ω

Ξ
− 1

3

�
Υ

Ξ

�2
��

Q� +
1

3

Υ

Ξ

�
− 1

3

Υ

Ξ

�
Ω

Ξ
− 1

3

�
Υ

Ξ

�2
��

,

and

g(Q�, t) = 4

�
2

πσ2

1√
2πi�




��
∂2S

∂Q�∂Q

�

Q�=Q=0

(6.16)

+




∂3S
∂Q�2∂Q�

∂2S
∂Q�∂Q




Q�=Q=0

Q� +




∂3S
∂Q�∂Q2�

∂2S
∂Q�∂Q




Q�=Q=0

Q


.

Thus, setting z = −i 3

�
3
Ξ2

�
ΞQ� + 1

3
Υ
�
simplifies the phase such that

f =
z3

3
− ζz + A, (6.17)

where

ζ =
3

�
Ξ2

3

�
Ω

Ξ
− 1

3

�
Υ

Ξ

�2
�
, (6.18)

and

A = i

�
−1

3
Υ

�
Ω

Ξ
− 1

3

�
Υ

Ξ

�2
�
− 1

27

Υ3

Ξ2
+ Λ

�
. (6.19)

39



Substituting in z changes the contour integral:

Ψcsc
β (q, t) =

�

paths

−i 3
�

3
Ξ2 (Ξ∞+ 1

3
Υ)�

−i 3
�

3
Ξ2 (−Ξ∞+ 1

3
Υ)

dz (6.20)

×g (Q�(z), t)
dQ�

dz
exp

�
1

�

�
z3

3
− ζz + A

��
.

This is a convergent integral when π
6
< arg(z) < π

2
, 5π

6
< arg(z) < 7π

6
, or 3π

2
< arg(z) < 11π

6

as |z| → ±∞. These conditions are satisfied since Ξ ∈ R and �Υ = 1
σ2 > 0. Depending on the

root of Ξ− 2
3 , the possible contours of integration are equivalent to C1 from ∞e−

1
3
πi to ∞e

1
3
πi, C2

from∞e
1
3
πi to∞eπi, and C3 from∞eπi to∞e−

1
3
πi.

It remains to evaluate the integrals

F (ζ, �, Cj) =
1

2πi

�

Cj

dz exp

�
1

�

�
z3

3
− ζz

��
, (6.21)

G(ζ, �, Cj) =
1

2πi

�

Cj

dz z exp
�
1

�

�
z3

3
− ζz

��
. (6.22)

The contours of integration ensure that each F (Cj) and G(Cj) is linearly dependent on the

other two[2] such that

F (ζ, �, C1) + F (ζ, �, C2) + F (ζ, �, C3) = 0, (6.23)

and the same with G.

Furthermore,

F (ζ, �, C2) = exp

�
2

3
πi

�
F (ζe

2
3
πi, �, C1), (6.24)

G(ζ, �, C2) = exp

�
4

3
πi

�
G(ζe

2
3
πi, �, C1), (6.25)
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and

F (ζ, �, C3) = exp

�
2

3
πi

�
F (ζe

2
3
πi, �, C2), (6.26)

G(ζ, �, C3) = exp

�
4

3
πi

�
G(ζe

2
3
πi, �, C2). (6.27)

With these identities, the contour integrals in Eqs 6.21 and 6.22 can be evaluated, and their

results are shown in Table 6.1.

j F (ζ, �, Cj) G(ζ, �, Cj)
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e
2πi
3 ζ
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Table 6.1:

41



In summary,

Ψcsc
β (q, t) (6.28)

=
�

paths

�

C

dz g(Q�(z), t)
dQ�

dz
exp

�
1

�

�
z3

3
− ζz + A

��
(6.29)

=
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+
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Q�=Q=0

G(ζ, �, Cj)





exp

�
A

�

�

where Cj runs from −i 3

�
3
Ξ2

�
Ξ∞+ 1

3
Υ
�
to −i 3

�
3
Ξ2

�
−Ξ∞+ 1

3
Υ
�
.

F (ζ, �, C1) exp
�
A
�

�
can be written in a form that makes its Q-dependence explicit:

Ai (αQ2 + βQ+ γ) exp
�
i
�
δQ3 + �Q2 + ζQ+ η

��
, (6.32)

where β, γ, �, ζ , η ∈ C and α, δ ∈ I (see the Appendix for their explicit form.)
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In this way, it can be seen that the final solution in Eq. 6.31 is linear combination of an Airy

function and its derivative, with complex quadratic arguments in Q, multiplied by a Gaussian with

a cubic imaginary term.

In this paper, all examples are found to maintain normalization except when the wavepacket is

at turning points. At these instances, the prefactor diverges due to the branch cut of the prefactor’s

square root function (which is not an entire function) overlapping with the center of the initial

wavepacket around which its expansion in Q� is made. The quadratic approximation does not

suffer from this effect; it only expands the prefactor to its zeroth order, and so is not dependent

on which side of the branch cut the expansion is made. Remedying this inconvenience, while still

relying on only real trajectories, is clearly of future interest to this study.

Due to the variable transformation necessary to produce the Airy function form, it is

numerically necessary that Ξ2 �� (Ω − ΞΥ2) or, more loosely, that the triple derivatives of the

trajectories’ action cannot be much smaller than the second order derivatives with respect to the

Gaussian’s dispersion σ, in order for the Airy functions’ arguments not to be very large. This is

never the case early in a wavepacket’s propagation when its dynamics are exactly linearizable. As

a consequence, in practice, early on in the dynamics the argument for the Airy function is a very

large number and only later in the dynamics does this form become usable, as numerical evaluation

readily shows.

As a final point on practical implementation, in numerics it is important to watch the sign of the

argument ∂2S/∂q0∂qt in the square roots of the prefactor so that the roots propagate continuously

on their Riemannian surface across branch cuts. This is equivalent to adding the correct Maslov or

Morse index into the formulation.
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6.2 Stability Matrices and Their Derivatives

The double action derivatives are often most easily found in terms of the elements of the stability

matrix,

M(t) =



M(t)11 M(t)12

M(t)21 M(t)22


 =




�
∂pt
∂p0

�
q0

�
∂pt
∂q0

�
p0�

∂qt
∂p0

�
q0

�
∂qt
∂q0

�
p0


 . (6.33)

These are more convenient since they are dependent on the initial position and momentum instead

of the initial and final positions. In terms ofM , the double action derivative are:

�
∂2S

∂q20

�

qt

=
M22

M21

,
∂2S

∂q0∂qt
= − 1

M21

, and
�
∂2S

∂q2t

�

q0

=
M11

M21

, (6.34)

where we dropped the stability matrix’s t argument for brevity’s sake andM(t = 0) = I2×2.

The stability matrix of the guiding trajectory (q0, qt) = (pt, qt) obeys the symplectic equation

of motion

Ṁ(t) = K(t) ·M(t), (6.35)

where

K(t) =



− ∂2H

∂q∂p
−∂2H

∂q2

∂2H
∂p2

∂2H
∂p∂q


 . (6.36)

Similarly, the triple derivatives of the action can often most easily be found in terms of the

elements of the stability matrix and its first derivative Γ(t) ≡ ∂M
∂(p0,q0)

, a 2 × 2 × 2 tensor. The

equation of motion for Γ(t) can be shown to be:

Γ̇(t)ilm =
�

j,k

∂K(t)

∂(p, q) ijk
M(t)klM(t)jm +

�

j

K(t)ijΓ(t)jlm, (6.37)

where

∂K(t)

∂p
=



− ∂3H

∂q∂p2
− ∂3H

∂q2∂p

∂3H
∂p3

∂3H
∂q∂p2


 and

∂K(t)

∂q
=



− ∂3H

∂q2∂p
−∂3H

∂q3

∂3H
∂p2∂q

∂3H
∂q2∂p


 . (6.38)
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In terms of the Γ tensor, the triple action derivatives are:

∂3S

∂q30
=

1

M21

Γ222 − 2
M22

(M21)2
Γ221 +

(M22)
2

(M21)3
Γ211, (6.39)

∂3S

∂q20∂qt
=

1

(M21)2

�
Γ212 −

M22

M21

Γ211

�
, (6.40)

∂3S

∂q3t
=

1

(M21)2

�
Γ111 −

M11

M21

Γ211

�
, (6.41)

∂3S

∂q0∂q2t
=

Γ211

(M21)3
, (6.42)

and Γ(0) = 0× I2×2×2.

In many applications there is often no need to maintain strict symplecticity or conservation of

the area of phase space when calculating Γ(t). Instead, it can be found by numerical approximation

to an acceptable accuracy, such as perhaps by a finite difference evaluation from two stability

matrices for two trajectories, with initial conditions slightly displaced from each other. This is

especially important for applications in “on-the-fly” calculations, where the stability matrix is

computed by ab-initio methods and generally relies on an expensive calculation of the system’s

Hessian matrix to find K(t). Thus, for instance, using a finite difference computational approach

would be expected to double the amount of Hessians that must be computed. This is still a far cry

from the many more that are necessary, one for each trajectory’s stability matrix, in contemporary

“initial-value methods” such as the Herman-Kluk propagator.

6.3 Performance of the Cubic Approximation

To begin evaluating the performance of the cubic approximation just derived, we examine the first

return of an initially displaced and kicked coherent state with σ = 0.5, qβ = 1 and pβ = −300,

under the Hamiltonian H = p2

2m
+ ω|q3| with m = 1, ω = 10000. Notice that although trajectories

under this system’s evolution have higher than triple action derivatives, the triple derivatives

dominate in a regime of � and σ. For the results shown, the guiding trajectory (pt, qt) was chosen

to be the center of mass of the initial state at t = 0 since, in the early timescale examined, the states
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do not appreciably stretch so as to necessarily warrant “off-centered” trajectories to approximate

them adequately. Furthermore, the initial spread σ was set such that the state’s manifold exhibited

significant cubic curvature after its first orbit. Decreasing σ allows the quadratic approximation to

perform better in the time period shown as less of the density in phase space develops curvature,

whereas increasing σ leads both the quadratic and cubic approximations to perform badly as higher

than cubic curvature dominates the state’s dynamics.

As it completes an orbit, the wavepacket nearly reforms to a Gaussian state as it collides off

the near wall and, as Figure 6.1 shows, it then develops highly oscillatory anharmonic features as it

travels again to the far wall. While the quadratic approximation captures its center of mass motion

well, it is clearly unable to reproduce the non-linear oscillations. The cubic approximation is able

to capture these features far more successfully.

The real part of the numerically evaluated autocorrelation during this time period is shown in

Figure 6.2a and similarly shows that the quadratic expansion is able to capture the overall general

envelope well, but unlike the cubic approximation, is unable to reproduce the chirp in the frequency

during the recurrence, as well as the variations in its envelope.

Immediately before the first recurrence shown in Figure 6.2a, the cubic approximation diverges

as the wavepacket hits the near wall. This is apparent in its divergent normalization around t = 330

shown in the second lowest panel of Figure 6.2a as well as in the divergent peak at the same time

point in its autocorrelation one panel above. This occurs for the reasons already described, namely

that at turning points the cubic approximation’s prefactor diverges.

As indicated in the earlier derivation, the second and third order calculations both rely on a

guiding trajectory at each time step. Figure 6.2b shows the 3.5-σ confidence interval of the initial

classical Gaussian distribution and its final time evolute at the time t = 375 in the middle of the

recurrence. Also shown are the equivalent confidence intervals generated from quadratically and

cubically expanding the potential around the guiding trajectory (indicated by ‘x’) at every timestep

at the center of mass of the wavepacket. The deviation of the cubically approximated density

from the exact density is due to the triple derivative discontinuity of the potential around q = 0.
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The tails of the Gaussian off the central guiding trajectory increasingly deviate from their exact

evolution with time because the third order expansion around the guiding trajectory gets the sign

of the potential wrong on the other side of q=0 at every timestep.

The cubic approximation is expected to be superior to the quadratic one only for intermediate

value of � when the cubic curvature of the state’s manifold in phase space becomes significant.

For larger values of � when higher orders for curvature become important, it is expected to only

be nominally better. On the other hand, as � → 0, the quadratic expansion should become exact.

This can be seen in the inset of Fig 6.2b where the error of the two methods using the same guiding

trajectory is plotted. Notice also that as � → 0 the error in the cubic approximation eventually

diverges as the magnitude of the double action derivatives in the Airy function’s argument become

comparatively too large for the function to be properly numerically evaluated.

6.4 Method of Steepest Descents

An alternative quadratic approximation to

Ψβ(q, t) =

�
dq�GvVMG(q, q�, t)Ψβ(q

�, 0), (6.43)

is by the method of steepest descents[27, 28, 29, 30]. This is equivalent to the quadratic expansion

already presented, except that the guiding centers are the saddle points of the integrand - where

the first derivative of the phase is equal to zero - and is thus on a far more formally solid

footing. In other words, the expansion of the action in Eq. 6.5 is made around the saddle

phase space points of the integrand, which are generally complex trajectories (pt, qt), obeying

double-ended boundary conditions. Generally, these must be found by root finding. The result,

the mixed coherent state/position representation of the time-dependent W.K.B. approximation,

also the position representation of what is called generalized Gaussian wavepacket dynamics

47



(G.G.W.P.D.)[31, 32], is

Ψβ(q, t)

=
4

�
2

πσ2

�

saddle points

1��
∂2S
∂q20

�
qt
+ 2i�

σ2

exp

�
i

�
S(q, q0, t)

�
(6.44)

× exp

�
i

2�2σ2
�p0�p0 −

1

4�2σ2
(�p0)2 − σ2 (�q0)2 −

1

�
�p0�q0

�

where the sum is over all saddle points that satisfy

0 =
2

σ2
(q0 − qβ) +

i

�
(p0 − pβ), (6.45)

and

0 = qt − qβ, (6.46)

for p0, and q0 ∈ C.

The result of the steepest descents integration applied to the prior absolute cubic potential is

shown in the third column of Figure 6.1. There it is clear that the G.G.W.P.D. wavepacket hews

closely to the exact evolution but exhibits a spurious peak to the right at the caustic. We included

the two expected saddle point contributions in this calculation. It is possible that the spurious

peak is due to one of the saddle points crossing a Stokes line and becoming divergent, but we

find that unlikely. We believe that these saddle points become too close together (with respect to

�) at the right of the wavefunction, such that G.G.W.P.D. needs to be “uniformized” to capture the

interference effect they add without behaving badly. The cubic approximation, on the other hand, is

able to capture both of the contributions caused by the curvature automatically with one trajectory.

The quadratic approximation has been recently argued to be an approximation to W.K.B.,

where the latter’s complex trajectories are approximated by the closest real trajectory[17]. In other

words, the guiding trajectories can be considered to be real-trajectory approximations to the original

integrand’s saddle point trajectories that are used to obtain G.G.W.P.D.
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Figure 6.1: The first recurrence of the wavepacket with its initial coherent state in the absolute
value cubic potential described inline. At t = 340 the wavepacket has just reflected off of the right
wall and is fairly Gaussian in appearance. As it proceeds back across the potential at t = 360 to
t = 400, the absolute value of its wavefunction becomes far more assymetric and oscillatory. The
cubic approximation to this evolution, expanded around the classical guiding trajectory at the center
of the wavepacket, appears to be able to capture this latter behavior far better than the quadratic
approximation and G.G.W.P.D.
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Figure 6.2: For the cubic potential described in text with timestep Δt = 8 × 10−5. a) The
first recurrence in the autocorrelation of this state is compared between the full quantum result
and the semiclassical quadratic (first panel) and cubic (second panel) approximations. The cubic
autocorrelation diverges from unit normalization immediately before the recurrence when the
wavepacket bounces against the near wall, as can be seen in the third panel. In the last panel,
the G.G.W.P.D. simulation of this recurrence is shown and exhibits excellent agreement with the
exact autocorrelation except for a slight underestimation of the amplitude. b) The 3.5-σ confidence
intervals of the initial and final states in classical phase space are shown around the time of the
middle of the recurrence. Along with the full time evolution, also shown is the quadratically and
cubically approximated evolution of the state around the guiding trajectory marked by ‘x’. (Inset:
The error |Cc.s.c./h.s.c

β (t) − Cβ(t)|/|Cβ(t)| averaged over the t = 350 to t = 400 for different values
of � plotted on a logarithmic scale with σ/� kept fixed.)
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As an aside, it is likely possible to formulate a superior steepest descents equivalent to the

cubic approximation presented herein, in the same way that G.G.W.P.D. is the superior steepest

descents equivalent of the quadratic approximation (also known as the off-center “thawed Gaussian

approximation”). Such a formulation would be a uniformization, in that it would properly handle

two (or more) coalescing saddle phase space points, which are the marker of phase space curvature,

in a uniform manner. Again, the cubic approximation presented herein could be interpreted

as a real-trajectory approximation to such a uniform steepest descents treatment, the latter of

which would instead generally involve complex trajectory root finding of what would now be two

stationary phase points.

We choose to examine G.G.W.P.D.’s approximation of the autocorrelation during the first

recurrence by taking advantage of the analytically known steepest descents integral of Eq. 6.45

with a coherent state. This is because the numerical evaluation of the integral, which is what we

examined for the quadratic and cubic approximations to the autocorrelation examined so far, is

comparably difficult to perform due of the necessity of finding the correct roots for each q-point

at every timestep. In any case, such a steepest descents evaluation produces the coherent state

representation of time-dependent W.K.B. or G.G.W.P.D. and is:

Ψβ(q, t) =
1√
πi�σ

�

saddle points

exp

�
i

�
S(q, q0, t)

�
(6.47)
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1

�
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�
,

where now the sum is over all saddle points that satisfy

0 =
2

σ2
(q0 − qβ) +

i

�
(p0 − pβ), (6.48)
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and

0 =
2

σ2
(qt − qβ)−

i

�
(pt − pβ). (6.49)

The last panel of Figure 6.2a shows that G.G.W.P.D. is able to capture the third recurrence

very well. Its only apparent deviation from the exact autocorrelation can be found in its amplitude,

which is slightly too low. We attribute this underestimation of the amplitude the fact that we only

included one saddle point in the sum of Eq. 6.47 at every timestep in Figure 6.2a, unlike before

when we examined G.G.W.P.D. in its position representation. Investigation of nearby complex

trajectory space reveals the other expected saddle point but it was found contribute badly to the

middle of the recurrence in the autocorrelation. For this reason, it was not included. Again, we

believe its bad behavior is due to its coalescence together with the saddle point we use between

t = 370 and t = 380, leading to a badly behaved contribution in the steepest descents integration

that produces G.G.W.P.D.

6.5 Guiding Trajectories

The quadratic approximation’s accuracy has often been found to be rather insensitive to the

selection of an appropriate real guiding trajectory. In fact, many results[33, 34] have been obtained

only using the central trajectory of the initial coherent state as the guiding trajectory, as we also did

for the results shown in Figs. 6.1 and 6.2. However, when the dynamics of the state become more

anharmonic, the selection of an “off-center” guiding trajectory becomes more important.
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Figure 6.3: Error,
|Chsc/csc

β (t)−Cβ(t)|
|Cβ(t)| , for guiding trajectories (pt, qt) ending at the phase space point

indicated for the timestep shown in Figure 6.2. Darker regions correspond to guiding trajectories
that lead to the most accurate approximation of the overlap while lighter regions correspond to
poorer trajectories. As can be seen in this side-by-side comparison between the quadratic and cubic
approximations, while the area in phase space acceptable from which the quadratic approximation’s
guiding center can be placed is quite consistent and appears almost Gaussian-shaped itself, it is
significantly more variable for the cubic case. In particular, the cubic approximation’s valid guiding
center area is smallest when it is least applicable immediately after a turning point and is largest
when the third order action derivatives dominate over all others.
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The overlap in phase space of the classical density corresponding to the wavepacket with its

initial self during the four times indicated in Figure 6.1 are shown in Figure 6.3. Their 3.5-σ

confidence intervals are draw in red in both columns over underlying contour plots of the error

in approximating the first recurrence from using different guiding trajectories. They show that at

t = 340 only the far-flung tails of the classical density has passed through its initial self, while

at t = 380 the wavepacket has rotated and its central highest density is now sweeping through.

Finally, at t = 400, the central density is seen exiting the initial 3.5-σ confidence interval.

The shading of Figure 6.3’s contour plots corresponds to the error in the first recurrence of the

wavepacket propagated by a guiding trajectory that ends at the phase space point (pt, qt) indicated

by the abscissas and ordinates. The lighter the shading, the greater the error, or equivalently, the

poorer the corresponding guiding trajectory (pt, qt) fares at capturing the overlap at the timestep

shown. The left column shows the error from the quadratic expansion at the guiding trajectories

while the right column shows the cubic expansion’s error.

As expected, the region of good candidate guiding trajectories (pt, qt) is quite consistently broad

for the quadratic approximation and seems to itself be fairly Gaussian in shape. Selecting a better

guiding trajectory than the center of the wavepacket from these darker phase space regions does

greatly improve the quadratic approximation’s autocorrelation for the first half of the recurrence

shown in Figure 6.2, a procedure that is unecessary for the cubic approximation, which fares just

fine with the central guiding trajectory.

On the other hand, the cubic approximation’s region of good candidate trajectories (pt, qt)

indicated by the growing black area appears to be highly variable in shape and size. At t = 340

the cubic approximation is still suffering the late effects of its divergence at the preceding caustic

and has only a very thin black region around q = 1.3. This region grows dramatically with time,

dwarfing the corresponding quadratic approximation’s area during the time period when the cubic

approximation is seen to most closely approach the exact propagation in Figure 6.1. This suggests

that when the cubic approximation is performing best, it is more insensitive to “incorrect” guiding

trajectories compared to the quadratic approximation, and vice-versa.
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6.6 Sum Over Individual Contributions

As time increases, growing numbers of periodic or heteroclinic orbits usually intersect with an area

in phase space. Adding all of them with appropriate phases, from a manifold of guiding trajectories,

is necessary to approximate the full wavepacket. This sum is the real-trajectory equivalent to the

saddle point sum formally present in G.G.W.P.D. in Eq. 6.45 and Eq. 6.47. The quadratically

expanded propagator has been shown to handle this properly, as mentioned before in the cases

of the Coulombic potential and the stadium billiard. However, as stated, when these individual

contribution are highly curved themselves (appearing as hairpins in phase space), the quadratic

approximation struggles. This is clear in Figure 6.4, which shows the autocorrelation at some time

interval for an initial coherent state evolving under a Morse potential - often used to realistically

model the anharmonicity in molecular vibrational bonds. Figure 6.4a shows the absolute value of

the autocorrelation while Figure 6.4b shows the real part. The inset shows the confidence intervals

of the classical density of the initial wavepacket and its time evolute during the autocorrelation

examined. Apparent in this inset are the trajectories contributing to the autocorrelation at that

timestep, of which representative ones are indicated by the black ’x’s. Using these as the guiding

trajectories for the quadratic approximation produces a rather poor fit to the exact curves. On the

other hand, the cubic approximation is able to reproduce the autocorrelation far better as is clear

in this Figure. Each contribution is added with the correct relative phase with respect to the others

along with its amplitude.
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2m
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the local non-linearity in the autocorrelation. (Inset: The collection of periodic orbits shown in
phase space which additively contribute to the semiclassical wavepacket (the sums over paths in
Eqs. 6.31 and 6.32) at t = 750).
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6.7 Conclusion

In conclusion, in this paper we presented and examined a closed-form extension to the quadratically

expanded real-trajectory time-dependent W.K.B. formalism. We accomplished this by expanding

the action S(q, q�, t) to third order so as to treat curvature in the underlying semiclassical

dynamics in phase space. The resultant expression was found to perform better than the quadratic

approximation when � is finite but not so large so as to necessitate higher powers of the action to

characterize the curvature in areas of its magnitude. In practice, very short time dynamics were

found to be numerically difficult to evaluate because then the triple action derivatives are too small

compared to the double derivatives, rendering the argument to the Airy function to be numerically

too large to handle. The expression was also found to diverge at caustics, unlike the the lower order

treatment, and also to be comparatively more sensitive to the selection of an appropriate guiding

trajectory (pt, qt) at these times when the quadratic approximation captures the dynamics well.

However, when the quadratic treatment begins to fail to be sufficient at capturing the dynamics

well, the cubic approximation is found to be less sensitive to the correct (pt, qt).

Thus, overall, unlike the lower order approximation, the cubic approximation proves to

effectively handle non-linearities in phase space and it is able to accomplish this without appealing

to complex classical trajectory root-finding or initial-value sampling of trajectories as prior methods

have done. The derivation presented can be easily extended to higher dimensions, and we hope that

it can be used as easily as the “thawed Gaussian” approximation in many-dimensional systems.

Finally, the cubic treatment we presented further solidifies the concept that underlying classical

trajectories make up localized quantum wavepackets, even in the non-linear regime, which is

ubiquitous in physical systems far from the classical regime.
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6.8 Appendix

In Eq. 6.32, the coefficients are:

α = −
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, (6.50)
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6.8.1 Crosscorrelation

A simple closed-form solution for the crosscorrelation treated to third-order does not seem possible.

The integrals involved are in the family of those familiar to the field of “catastrophe theory”. They

do not appear to be well-described by numerical libraries like the Airy function is. Therefore,

though an analytic solution may be possible to derive, it’s practical implementation would be

difficult on a computer today.
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7 Directed Herman Kluk

A simplification of the Heller-Herman-Kluk-Kay (HK) propagator is presented that does not suffer

from the need for an increasing number of trajectories with dimensions of the system under

study. This is accomplished by replacing HK’s uniformizing integral over all of phase space by

a one-dimensional curve that is appropriately selected to lie along the fastest growing manifold of

a defining trajectory. It is shown that this modification leads to eigenspectra of quantum states in

weakly anharmonic systems that can outperform the comparatively computationally cheap thawed

Gaussian approximation method and frequently approach the accuracy of spectra obtained with the

full HK propagator.

7.0.1 Introduction

Semiclassical quantum wave packet evolution is a powerful method to evolve quantum states using

classical trajectories. Many efficient methods exist.

Perhaps the most widely used semiclassical method of quantum propagation is the

Heller-Herman-Kluck-Kay (HK) propagator[35, 26, 7, 36, 37]. In brief, this method is a stationary

phase approximation of the quantum coherent state propagator evaluated in an uniformized initial

value representation. When applied to finding autocorrelations and from the perspective of phase

space, every timestep requires the calculation of the overlap of a swarm of “frozen” Gaussians,

often selected by Monte Carlo-based sampling dependent on the initial state. The propagation of

every such Gaussian is governed by its central classical trajectory and each Gaussian’s contribution

to the propagator’s value at a timestep is dependent on the classical action of its central trajectory
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as well as elements of its stability matrix. In practice, computation of these elements, first order

differentials of final position and momenta with respect to initial position and momenta, is the most

intensive part of the procedure.

Unfortunately, HK suffers from the necessity of calculating an increasing number of trajectories

as the number of degrees of freedom increases. The calculation of every trajectory’s associated

stability matrix elements is doubly confounded; Not only do the number of matrix elements

scale unfavorably with degrees of freedom (4d2 for d degrees of freedom), the number of times

these elements must be calculated also proliferates (frequently exponentially) with the number of

trajectories. Efforts have been made to address this issue, the most notable of which is cellular

dephasing[11] or Filinov filtering[38]. However, these methods have proven ineffective in many

systems and only reduce the growth of trajectories necessary to a point[39].

One way around this unfavorable growth in the number of trajectories is to take a more targeted

approach in selecting only the most important trajectories. In the first half of this chapter, a

simplification to the HK formulation is heuristically presented referred to as “directed” HK (DHK)

and is numerically compared to the full HK method. In the second half, DHK is examined in a

more formal perspective.

DHK is simpler than HK in that it performs the uniformizing integration of the latter along a

one-dimensional manifold instead of all of phase space, regardless of the dimension of the system

under study. This curve is chosen to lie along the eigenvector with the largest eigenvalue of the

stability matrix associated with a defining trajectory. In a test set of chemically relevant anharmonic

systems, it is shown that this approach eliminates the scaling in the number of trajectories with

dimension and produces results that are frequently more accurate than the computationally cheaper

method of the thawed Gaussian approximation (TGA)[3].

7.0.2 Method

The uniformization present in the HK propagator involves an integration over all the degrees

of phase space where the quantum state of interest resides (see Figure 7.1a). In the case that
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a dominant eigenvector of the stability matrix governing the dynamics of the state exists, such

isotropic sampling is redundant from the perspective that all the trajectories tend towards this

one-dimensional manifold. Sampling solely along this manifold reduces the integration over

initial states dramatically while still accomplishing a good sampling of the time-evolved state

(Figure 7.1c).

a) b)

t t

c)

t

Figure 7.1: Cartoon of the effect of the uniformization integral in HK as it appears in phase
space. a) Sampling the initial state based on its absolute density in all dimensions, as frequently
performed with the Metropolis-Hastings algorithm for integration. Though initially isotropic, such
a distribution of “frozen” Gaussians propagates to become a distribution that stretches out along
a dominant stability matrix eigenvector. b) Replacing this isotropic distribution which is slow to
converge with one along an ill-chosen one-dimensional manifold will lead to a poor representation
of later distributions. c) However, if the proper axis is used, a similar distribution to the one obtained
with the full HK propagater can be formed (especially at later times) without initially sampling the
full dimensional space since all trajectories tend to that dominant manifold.

As an exposition of the accuracy and efficiency of such one-dimensional sampling, we calculate

the autocorrelation of a coherent state Ψβ centered at (pβ, qβ) with width γβ in position space. The

DHK method is based on the full HK propagator and is presented below:

�Ψβ(0) | Ψβ(t)�DHK

= N−1

�

L
dlA(l, t)g(l, 0)g∗(l, t)e

i
�S(p0(l),q0(l),t) (7.1)

where

g(l, 0) = exp

�
−1

2

γγβ

γ + γβ
(qβ − q0(l))

2 − 1

2�2(γ + γβ)
(pβ − p0(l))

2 +
i

�(γ + γβ)
(q0(l)− qβ)(γpβ + γβp0(l))

�
, (7.2)
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and

N =

�
dlg(l, 0)g∗(l, 0). (7.5)

The differences between this simpler relation and the full HK propagator are the contour integral

over the curve L and the addition of the global normalizationN so that the expression is 1 at t = 0.

No effort is made to formally justify these simplifications aside from pointing out the following

observations. Grossman et al. have shown that the uniformization integral in HK can be formulated

as the result of inserting a coherent state identity operator into a primitive semiclassical propagator

to be evaluated fully[40] (as opposed to by stationary phase). Herein this identity operator is the

one-dimensional manifold of coherent states which is not a complete basis set (in any dimension

except with proper modification in one dimension) and so, at the very least, requires an overall

normalization with N . The amplitudes and phases from the coherent states that are neglected by

this one-dimensional manifold seem to be proportionally accounted for by the central manifold’s

values.

It is important to notice that when applied to dimensions greater than one, the fluctuations in the

magnitude of theA(l, t) can cause the magnitude of DHK’s autocorrelation to exceed 1, especially

for ill-chosen manifolds L. In practice this was found to be uncommon in the systems studied here

though a ceiling of 1 was forced in all numerical simulations.
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7.0.3 Numerical Examples

A series of test runs were conducted on progressively larger molecular systems obeying the coupled

Morse vibrational Hamiltonian:

H =
N�

i=1

�
1

2µ
p2i +D[1− exp(−αqi)]

2

�
(7.6)

+gqq�
N�

i<j

pipj + fqq�
N�

i<j

qiqj

Numerical tests were performed for a parametrization of HCl (N = 1)[41, 42], SO2 (N =

2)[43], GeH4 (N = 4)[44] and 184WF6 (N = 6)[45]. Initial states were chosen to be displaced

coherent states in one vibrational degree of freedom and ground states in all the others. DHK’s

one-dimensional manifold L was chosen to lie along the dominant stability matrix eigenvector for

the coherent state’s central trajectory during either its first or second quasi-periodic return to the

region near its initial state. For a list of parameters used see the Appendix.

64



a)

b)

c)

d)

Energy

In
te

ns
it

y 
(a

rb
it

ra
ry

)

190 210 230

250 270 290

160 180 200

320 340 360 380

Figure 7.2: HK (black), TGA (dashed black) and DHK (red) results are presented for a) HCl, b)
SO2, c) GeH4 and d) 184WF6. Energy units are 5 THz.
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Figure 7.2 shows the eigenspectra of these states - the Fourier transforms of their

autocorrelations. Comparison with TGA confirms that they quickly explore anharmonic regions

of phase space and limit its accuracy. In contrast, the DHK method along the one dimensional

manifold is able to maintain very good accuracy with the eigenspectra of the full HK method.

Furthermore, it is able to accomplish this without the full HK method’s unfortunate scaling with

dimension (see figure 7.3). Tests with initial states involving more than a single excited degree of

freedom produced similar agreement. If the excited states were brought down lower on the Morse

potential, agreement with TGA improved, as expected for such a method that is exact for harmonic

potentials.
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Figure 7.3: Number of trajectories necessary for convergence of HK (black) and DHK (red) spectra
in Figure 7.2 with respect to the dimension of the system.
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It should be noted that all the trial runs reported here involved strong recurrences in the

autocorrelations of the respective systems. In some cases where recurrences were observed to be

far smaller, the sensitivity to the selection of the initial manifold seemed to increase (not shown).

Indeed, it was found that separate recurrences often required different one-dimensional manifolds

to be well brought out in this simplification to HK. This is expected considering that their separate

dynamical origins are made more apparent when they only produce “glancing” blows with the

initial state, leading to weak recurrences.

7.0.4 Conclusion

It is perhaps fulfilling to discover that when the underlying classical dynamics of a state in an

anharmonic system exhibit a dominant stability matrix eigenvector, the proliferation of trajectories

necessary to compute a semiclassical autocorrelation can be severely reduced. It remains to be seen

whether this method can be formalized or if it can be generalized to any submanifold of smaller

dimension. The latter is especially important in systems which exhibit more than one dominant

eigenvector.

Finally, it is also necessary to examine the robustness of this simplification with regards to

weaker autocorrelations and in cases of more anharmonic, mixed or chaotic dynamics. Future

directions also include examining the marriage of this method with Filinov filtering and its

usefulness in on-the-fly calculation.

Though many possibilities for speeding up semiclassical evaluation have been examined over

the years, few have focused on using the actual dynamics of underlying trajectories to simplify

computation with “frozen” Gaussian basis sets. Our findings offer encouraging evidence about the

promise of this direction.
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7.1 A More Formal Analysis

We now proceed through a more formal justification for the successes of the DHK time

propagator by examining its performance in one-dimensional bound systems which exhibit at

least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral - a

vast simplification over the usual 2N -dimensional integral in full HK (for an N -dimensional

system). We find that DHK accurately captures particular coherent state autocorrelations when

its single integral is chosen to lie along these states’ fastest growing manifold, as long as it is not

perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will

perform. We numerically examine DHK’s accuracy in a one-dimensional quartic oscillator and

illustrate that these conditions are frequently satisfied such that the method performs well. This

lends some explanation for why DHK frequently seems to work so well, and suggests that it may

be applicable to systems exhibiting quite strong anharmonicity.

7.1.1 Motivation

In hyperbolic systems there exist stable and unstable manifolds which characterize all trajectories.

Those on the unstable manifold will exponentially depart from a fixed point while trajectories

on the stable manifold will exponentially approach a fixed point. Though most bound systems

cannot be characterized in this way, they frequently still exhibit at least quasi-periodic points

around which growing and compressing manifolds can be found (as long as the potential has some

anharmonicity). An example is shown in the inset of Figure 7.4 where the phase space of a quartic

oscillator is shown and the trajectories making up the density of an initial coherent state stretch out

along the manifold delineated by the green curve after it has undergone one period.

Again, we consider the dynamics of quantum states that are initially coherent states.

The diagonal term for the HK propagator in a coherent state representation (equivalently the
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over which DHK’s integral was evaluated. Inset, bottom-right: The Fourier transform of the
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autocorrelation of a coherent state) is:
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and the preexponential is
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This term contains elements of the stability matrix

M (t) =
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Vectors are denoted by lowercase bold letters while matrices are denoted by uppercase bold

letters (e.g. a and A respectively). The coherent state Ψβ has dispersion γβ whereas γ are

those of the “frozen” coherent states centered at (p0, q0) whose overlaps with Ψβ(0) and Ψβ(t),

gβ(p0, q0)g
∗
β(pt, qt), are integrated over. Each frozen state is governed by its central classical

trajectory with associated actions St and stability matrices M(t) that are both accounted for

through the phase and preexponential terms respectively.

As can be seen in Eqs. 8.8 to 7.9, HK has several ingredients: a) the actual overlap between

the initial and propagated coherent states as sampled by “frozen” coherent states, b) the phase

due to their action, and the c) phase and d) magnitude of their preexponential involving stability

matrix elements. Figure 7.5 shows how all of these vary along the green manifold in a quartic

oscillator system for states labeled A, B, C andD. Forecasting the effectiveness of DHK, it can be

seen that this manifold cuts through and samples a good average of all the ingredients in the area

of highest overlap for every state except C. Furthermore, the phase space densities of the states

asymptotically approach the manifold with time. In this way, it can be seen that integrating along

it may proportionally represent all adjacent phase space points appropriately and so render their

explicit inclusion through a larger dimensional integral such as HK’s unnecessary. DHK exploits

this idea, and as the right column of Figure 7.5 (as well as Figure 7.4) shows, its autocorrelations

can be in very good agreement with HK’s.

7.1.2 Formulation of DHK

As shown previously, DHK replaces HK’s full 2N -dimensional integral with one along a selected

one-dimensional manifold L, which can differ from any of the 2N integral domains of the full HK

expression:

�Ψβ(0) |Ψβ(t)�HK =

� ∞

−∞
d2Nx0ξ(x0, t) ≈ N−1

�

L
dlξ(x0(l), t) ≡ �Ψβ(0) |Ψβ(t)�DHK (7.11)
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where ξ is the integrand in the full HK formula. Naturally, we desire such a method to still be

normalized such that it is 1 at t = 0. This means that

N =

�

L
dlξ(x0(l), 0). (7.12)

It is therefore necessary in any application of Eq. 7.11 to show that there exists such a manifold

L, which is a good representation of the full HK integral’s domain. To accomplish this it is

important to examine the “ingredients” of HK’s integrand ξ where it is most significant, namely,

for the autocorrelation examined here, in the phase space region of the initial coherent state.
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A cursory examination of recurrences in phase space (such as in Figure 7.5) reveals that the

phase due to the evolved state’s action is often the most significantly varying component of ξ on

the scale of the area of overlap with the initial state when compared with the magnitude and phase

of the associated preexponential. This is reasonable since the preexponential is a function of the

stability matrices of the underlying trajectories and is responsible for preserving HK’s norm; it will

only vary between areas in phase space that are experiencing different environments of compression

and stretching and this generally occurs at scales that are larger than that of the area of the initial

coherent state. The phase change from the action along a manifold with endpoints l1 and l2,

S(p0(l2), q0(l2), t)− S(p0(l1), q0(l1), t) =

� qt(l2)

qt(l1)

p · dq, (7.13)

can vary far more quickly.

Therefore, when examining the largest contributions to the characteristics of ξ, it is often

sufficient to only consider the density of the overlap and the phase from the action at the point

of largest overlap. In particular, we proceed to approximate the overlap of the time propagated

coherent state Ψβ(t) with its initial self Ψβ(0), by representing both by Gaussians Ψβ(q, t) ≈
��γt

π

� 1
4 exp

�
−γt

2
(q − q2β) +

i
�pβ(q − qβ)

�
(though the propagated state will no longer be a Gaussian

in anharmonic systems) and consider their respective Wigner functions:

ρW (p, q, θ, γ) =
1

π�
exp



[(p− pβ , q − qβ) ·R(θ)]


 − 1

γ�2 0

0 −γ


 [(p− pβ , q − qβ) ·R(θ)]

T



 , (7.14)

where θ denotes their rotation with respect to the origin, γ are their dispersions along their major

and minor axes (γ = sin θ+iγt� cos θ
γt�2 sin θ+i� cos θ ∈ R, not to be confused with the γ of HK’s frozen sampling

Gaussians, gβ , discussed in the Motivation) and R(θ) is the standard 2× 2 rotation matrix. See the

Appendix for a derivation. These Gaussian fits of Ψβ(t) are equivalent to its propagation under a

harmonic expansion of the potential at its center in phase space (such as in the thawed Gaussian

approximation[3]). We further approximate the contribution of the phase from the action via a

plane wave

exp
�
ik(cos(φ)p̂− sin(φ)q̂) · (p, q)T/�

�
, (7.15)
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which is rotated by φ with respect to the p̂ axis and has momentum k. The top-right of Figure 7.6

illustrates how these approximate the overlap and phase of a particular recurrence.

Under these approximations, the full HK autocorrelation at a point in time during a recurrence

corresponds to taking the full integral of the two ρW s, with one rotated by θ compared to the other,

all modulated by the plane wave:

OHK(t) ≈
� ∞

−∞
dp
� ∞

−∞
dqρW (p, q; 0, γ0)ρW (p, q; θ, γ) exp

�
ik(cos(φ)p̂− sin(φ)q̂) · (p, q)T/�

�
.

(7.16)

We let the fastest growing manifold lie along the p-coordinate cutting through the center of the

coherent state so that its stretching in this direction is proportional to γ. It follows that θ ≈ 0 in

the limit that the dynamics are wholly linearizable. Therefore, if we set DHK’s L manifold to lie

along the state’s fastest growing manifold - which seems sensible since such an L will contribute

non-zero overlaps for the appropriate times as the state passes through a recurrence - DHK will

correspond to a simplified version of Eq. 7.16:

ODHK(t) ≈
�∞
−∞ dlρW (l, 0; 0, γ0)ρW (l, 0; 0, γ) exp

�
ik(cos(φ)p̂− sin(φ)q̂) · (p, q)T/�

�
�∞
−∞ dlρW (l, 0; 0, γ0)ρW (l, 0; 0, γ0)

. (7.17)

We are interested in the absolute value of the difference of ODHK(t) and OHK, a measure of the

expected error in DHK, where θ ≈ 0:

|ODHK(t)−OHK(t)| =
����
�

2γ

γ + γ0
e
− γγ0k

2 cos2(φ)
4(γ+γ0) − 2

√
γγ0

γ + γ0
e
− k2((γγ0−1) cos(2φ)+γγ0+1)

8(γ+γ0)

���� . (7.18)

An examination of this error shown in Figure 7.6 reveals that, under the aforementioned

approximations of the modeled overlap, DHK always approaches HK’s value for all k and φ when

γ
γ0

� 1 where γ0 is the dispersion of the initial coherent state and γ is its dispersion during the

recurrence along the (fastest growing) manifold sampled. The greater the manifold’s growth, the

larger γ is. This may seem troubling, since it means that accuracy of DHK is only ensured when

its one-dimensional integral is performed along the direction that has shrunk, not grown, and such
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a manifold would only capture the middle of recurrences well when the center of the state has

returned near its initial point. However, all is saved by non-zero phase variation from action; in

particular, Figure 7.6 shows that when DHK’s integral lies along the fastest growing manifold

(γ > γ0), its agreement with HK improves the larger the wavevector k of the plane wave is and as

long as φ, its angle, isn’t perpendicular to this manifold. This last requirement is likely due to the

fact that sampling along L when it lies perpendicular to the gradient of action would only include

one value of this variation and thus hardly serve as its representative average.
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Figure 7.6: The contour plots for various values of k and φ of |ODHK(t) − OHK(t)| defined by
Eqs. 7.16 and 7.17. These indicate that when L lies along the fastest growing manifold, DHK fares
best at reproducing autocorrelations when γ

γ0
� 1 but also will agree with HK better the larger

k is as long as φ �= π/2. In other words, DHK will be more accurate the greater the gradient of
the action as long as it does not face perpendicularly to L. This means that the first recurrence of
system A, B and D (shown in white markers) should be well treated by DHK. C’s first recurrence
should be less accurately captured. This qualitatively agrees with the results shown in Figure 7.5e.
Note that representing A’s phase of action by a plane wave is a rather poor approximation as can
be seen in Figure 7.5, however its wavevector in the vicinity of the overlap is k > 0 and φ ≈ 0.
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Substituting in the appropriate angles φ of the momentum k found at the moment of the first

recurrence of states A−D into Eqs. 7.16 and 7.17 reveals that they all satisfy this last requirement

of φ �= π/2 and so lie in areas where DHK is close to HK’s value, except for C, as indicated by the

markers in Figure 7.6. For stateC, the gradient of action varies perpendicular to the major axis of its

initial and final states. C’s initial dispersion γ0 is too small for DHK to handle this perpendicular

angle of action variation φ = π/2. This agrees well with the relatively poorer autocorrelation

calculated from DHK for system C seen in Figure 7.5e.

We have so far illustrated that it is often quite reasonable to assume, in bound anharmonic

systems exhibiting at least quasi-periodicity, that recurrences which can be well described by our

simple Gaussian-plane wave model, can frequently be well approximated by only the single integral

in Eq. 7.11 when L is chosen to lie along the fastest growing manifold of the coherent state.

Linearizing around such a chosen manifold L (by Taylor expanding) is an approach that may

appear to be closely related, at least at first glance. Its derivation is presented in the Appendix. The

autocorrelations of the resultant method, which we refer to herein as “linearized HK” (LHK), are

compared to DHK in Figure 7.5e and are shown to often be inferior to DHK in the quartic system

examined. This can be explained by noting that DHK’s manifold L is explicitly chosen to be

representative of all of the features of the integrand. Linearization around the same L further takes

into account the behavior of the integrand perpendicular and close by to this manifold, which can be

quite different from the representative whole, and frequently this can lead to a worse approximation.

For completeness, we substitute in ξ and expand Eq. 7.11, revealing the full DHK formula as:

�Ψβ(0) | Ψβ(t)�DHK

= N−1

�

L
dlA(l, t)gβ(l, 0)g

∗
β(l, t)e

i
�S(p0(l),q0(l),t) (7.19)

where

gβ(l, 0) = exp

�
−1

2

γγβ

γ + γβ
(qβ − q0(l))

2 − 1

2�2(γ + γβ)
(pβ − p0(l))

2 +
i

�(γ + γβ)
(q0(l)− qβ)(γpβ + γβp0(l))

�
, (7.20)
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gβ(l, t) = exp

�
−1

2

γγβ

γ + γβ
(qβ − qt(l))

2 − 1

2�2(γ + γβ)
(pβ − pt(l))

2 +
i

�(γ + γβ)
(qt(l)− qβ)(γpβ + γβpt(l))

�
, (7.21)

A(l, t) =

�
det

�
1

2

�
∂pt(l)

∂p0(l)
+

∂qt(l)

∂q0(l)
− iγ�

∂qt(l)

∂p0(l)
+

i

�γ
∂pt(l)

∂q0(l)

��
, (7.22)

and

N =

�

L
dlg(l, 0)g∗(l, 0). (7.23)

γβ is the dispersion of the initial Gaussian wavepacket and γ are those of the “frozen” sampling

Gaussians over which the integration is performed.

7.1.3 Further Discussion

It is possible to gain further appreciation of the conditions necessary for DHK to achieve good

accuracy by examining how DHK handles autocorrelations in a simpler hyperbolic system. As

Figure 7.7 shows, if a coherent state is placed on the saddle point of this system, DHK actually

fails miserably (LHK becomes nearly exact, as expected in a system that can be exactly linearized).

On the other hand, if the coherent state is started displaced off of the saddle point, DHK fares far

better (see Figure 7.7). This can be explained by noting that the former produces no appreciable

action gradient in the overlap region between the initial and final state, and thus falls in the region

of poor performance marked by � in Figure 7.6, whereas the latter’s gradient is angled almost

perpendicular to its major axis (as seen in the insets of Figure 7.7).

Unlike a “linearized” propagator, DHK relies on a one-dimensional integral that can best

capture all the information of a higher dimensional phase space. When there is no modulating phase

from the action, DHK’s single integral will likely only perform well when the dynamics of the state

are all captured by one parameter. A state in a hyperbolic system perched on top of the saddle-point

sits there indefinitely while exhibiting both compression and stretching dynamics. On the other

hand, a state displaced from the saddle point is instead mostly seen as translating away from the

perspecitive of its initial state. The former dynamics would likely require at least two integrals to

accurately capture if one of them is selected along the unstable manifold; the other would have to
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Figure 7.7: The real part of the autocorrelation for a coherent state obeying hyperbolic dynamics
initially situated a) on the saddle point and b) off the saddle point. When L is selected to be along
the unstable manifold, DHK performs better in the latter case. If L is angled to lie equally along
stable and unstable manifolds, DHK’s performance improves in the former case (producing the
“corrected DHK” curve).

be chosen to take into account the compression dynamics. If we wish to have only one integral

as in Eq. 7.11, both the compression and stretching dynamics need to be captured by the single

manifold we choose. Therefore, we can perhaps imagine fixing DHK’s inferior autocorrelation in

this case by choosing L such that it lies equally along the stable and unstable manifold, thereby

equally capturing the dynamics of both stretching and compressing. Such a change produces the

“corrected DHK” curve in Figure 7.7. Though most systems would be difficult to treat in this way,

this suggests that DHK’s results may be improved for some states if a manifold not corresponding

to the fastest growing one is chosen as its integral’s domain.

7.1.4 Conclusions

Through a simple model of the dominant contributions to HK’s integral during recurrences in

one-dimensional systems, we showed what conditions are necessary for DHK’s single integral

to perform comparably when it is chosen to lie along the state’s fastest growing manifold. In

particular, we found that it generally works well as long as the action gradient during recurrences

is not perpendicular to this manifold.
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These conditions may also hold in more dimensions and may suggest why DHK often seems

applicable in systems with greater than one dimension, though it remains to be verified that

the trends discussed here remain true. It would be interesting to see if DHK’s performance

in many-dimensions, when L is chosen to be the fastest growing manifold of a state, are still

contingent on the gradient of its action not lying perpendicular to L. As we showed in our earlier

Communication, DHK frequently works well in many-dimensional systems, so perhaps this is

a limitation that is often sufficiently satisfied. For attempts at implementing DHK for coherent

state autocorrelations in general systems that are at least quasi-periodic, we recommend the same

method as the one used herein to find the best manifold L for DHK’s integral domain; all the

one-dimensional manifolds in Figure 7.5 (over which the integration was performed in DHK) were

chosen by examining the stability matrix of the state’s central classical trajectory, determining when

its eigenvalues became real and their magnitudes maximal near either the trajectory’s first or second

quasi-return to its initial point, and choosing the associated eigenvector. This is the approach we

found most success with and corresponds to approximately choosing the state’s “fastest growing”

manifold.

The formalism for DHK presented herein also suggests that the method can work quite well

for anharmonic systems. In fact, the quartic potential examined in Figure 7.4 illustrates how well

DHK performs for a system with a potential containing no global quadratic terms at all. However,

in general the fastest growing manifold of such systems will not be linear and will exhibit some

curvature since dynamics in higher than second order potentials are not completely described by

linearizing their dynamics. This suggests that DHK may see improvement from selecting L to

be a curved manifold. It would also be interesting to see how well DHK performs in chaotic or

unbounded systems, where previous efforts in this direction have seen most improvement over HK

(such as Filinov filtering).
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7.2 Appendix

7.2.1 Parameters #1

HCl: D = 37032 cm−1, α = 1.63219 Å
−1
, γβ = 75.7 Å

−2
, and qβ = 1.87 Å in excited degree of

freedom. SO2: D = 57116 cm−1, α = 2.120 Å
−1
, γβ = 403.3 Å

−2
, gqq� = −0.01041 a.m.u.−1,

fqq� = 0.0 and qβ = 1.01 Å in excited degree of freedom. GeH4: D = 34716 cm−1, α =

1.41920 Å
−1
, γβ = 64.2 Å

−2
, gqq� = −0.00463465 a.m.u.−1, fqq� = 581.793 cm−1Å

−2
, and qβ =

1.51 Å in excited degree of freedom. 184WF6: D = 61270 cm−1, α = 1.465 Å
−1
, γβ = 366.6 Å

−2
,

gqq� = −0.0014 a.m.u.−1, fqq� = 12890 cm−1 for adjacent bonds,fqq� = 10810 cm−1 for opposite

bonds, and qβ = 2.27 Å in excited degree of freedom.

qβ = pβ = 0.0 in all other degrees of freedom. One-dimensional manifolds

were chosen to be straight lines centered on (pβ, qβ) with vector (−1.0,−1.25 × 10−4),

(7.02× 10−1,7.12× 10−1,1.61× 10−5,6.53× 10−6), (0.1,−1.06× 10−2,−1.05× 10−2,−1.05× 10−2,

1.19× 10−4, 9.75× 10−7, 9.75× 10−7, 9.75× 10−7), and (−9.97× 10−1, 3.67× 10−2, 3.67× 10−2,

3.30× 10−2, 3.67× 10−2, 3.70× 10−2, −2.03× 10−3, 7.42× 10−5, 7.42× 10−5, 6.67× 10−5,

7.42× 10−5, 7.39× 10−5) for HCl, SO2, GeH4 and 184WF6 respectively (arbitrary units).

γ = γβ for all runs. To obtain spectra, Fourier transforms were performed on 1000 timesteps of

0.2 fs.

7.2.2 Derivation of LHK

We change the integration over phase space variables in HK to a new set (l0(q0,p0),n0(q0,p0)),

where l0 lies along our chosen manifold andn0 are the remaining perpendicular degrees of freedom.

The Jacobian of this transformation is equal to 1 since it is equivalent to just a rotation and

translation of the (p0, q0) variables.

We make an approximation by linearizing our action around n0 = nβ where (lβ,nβ) ≡

(pβ, qβ), and we define ζ to be the argument of the exponentials in Eq. 8.8 such that gβ = exp(ζ),
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u(t) =

��
∂ζ(pt(lt,nt), qt(lt,nt))

∂n0

�

l0

�

n0=nβ

, (7.24)

and

U (t) =

��
∂2ζ(pt(lt,nt), qt(lt,nt))

∂n2
0

�

l0

�

n0=nβ

, (7.25)

so that we can express gβ(p(lt,nt), q(lt,nt)) more easily in terms of the new coordinates:

gβ(l0,n0) = exp

�
1

2
(n0 − nβ) ·U(0) · (n0 − nβ)T + u(0) · (n0 − nβ)T + ζ (p(l0,nβ), q(l0,nβ))

�
,(7.26)

and

g∗β(lt,n0) = exp

�
1

2
(n0 − nβ) ·U∗(t) · (n0 − nβ)

T + u∗(t) · (n0 − nβ)
T + ζ∗ (p(lt,nt), q(lt,nt)) |n0=nβ

�
. (7.27)

We also linearize the action:

S lin
t (p0, q0) = S lin

t (l0,n0) ≡ St(l0,n0 = nβ) +

�
∂St

∂n0

�

l0

����
n0=nβ

· (n0 − nβ)
T (7.28)

+
1

2
(n0 − nβ) ·

�
∂2St

∂n2
0

�

l0

����
n0=nβ

· (n0 − nβ)
T . (7.29)

We neglect all derivatives that are higher order than the stability matrix elements.

Hence the integral becomes,

�Ψβ(0) |Ψβ(t) �HK ≈
� √

γγβ

π� (γ + γβ)

�N �
dl0

�
dn0Ct(l0,n0)gβ(l0,n0)g

∗
β(lt,n0) exp

�
iS lin

t (l0,n0)/�
�
. (7.30)

We perform the Gaussian integral over n0 linearized around nβ to obtain the LHK:

�
Ψβ(0)

��Ψβ(t)
�
LHK =

� ∞

−∞
dl0

� ∞

−∞
dn0N (l0) exp

�
−1

2
(n0 − nβ) ·A(l0, t) · (n0 − nβ)

T + b(l0) · (n0 − nβ)
T

�
(7.31)

=

� ∞

−∞
dl0N (l0)

�
(2π)2N−1

detA(l0, t)

�1/2

exp

�
1

2
b(l0, t) ·A(l0, t)

−1 · b(l0, t)T
�
, (7.32)

where

A(l0, t) = −
�
U (0) +U ∗(t) +

i

�

�
∂2St

∂n2
0

�

l0

����
n0=nβ

�
, (7.33)

82



b(l0, t) =

�
u(0) + u∗(t) +

i

�

�
∂St

∂n0

�

l0

����
n0=nβ

�
, (7.34)

and

N (l0,n0) =

� √
γγβ

π� (γ + γβ)

�N

Ct(p0(l0), q0(l0))e
iSt(l0,n0=nβ)/� (7.35)

× exp
�
ζ(p(l0,nβ), q(l0,nβ)) + ζ∗(p(lt,nt), q(lt,nt)) |n0=nβ

�
.

Combining all of this together in one expression we find:

�
Ψβ(0)

��Ψβ(t)
�
LHK =

� ∞

−∞
dl0

� √
γγβ

π�(γ + γβ)

�N

Ct(p0(l0,n0 = nβ), q0(l0,n0 = nβ))

�
(2π)2N−1

detA(l0, t)

�1/2

eiSt(l0,n0=nβ)/�

× exp
�
ζ(p(l0,nβ), q(l0,nβ)) + ζ∗(p(lt,nt), q(lt,nt)) |n0=nβ

�
(7.36)

× exp

�
1

2
b(l0, t) ·A(l0, t)

−1 · b(l0, t)T
�
.

7.2.3 Derivation of Eq. 7.14

Suppose we start with a Gaussian Ψβ(q, 0) =
��γ0

π

� 1
4 exp

�
−γ0

2
(q − q2β) +

i
�pβ(q − qβ)

�
where

γ0 ∈ R (a coherent state) and we are interested in its return to overlap itself at (pβ, qβ) at some time

t. We consider the case that the state has remained a Gaussian but has acquired a new dispersion

γt ∈ C (i.e. the state may now be rotated and squeezed with respect to its initial state). If this

Gaussian’s major axis is rotated with respect to the p- or q-axis then ΔqΔp = �
2

�
1 +

�γ2
t

�γ2
t
> �

2
.

This corresponds to a Gaussian aligned with somemajor and minor axes rotated by θ to the p, q-axes

in whose frame �γ = 0. It can be shown[3] that

�γt =
γ

d(θ)
, (7.37)

�γt =
(1− γ2�2) sin θ cos θ

�d(θ)
, (7.38)

where

d(θ) = cos2 θ + γ2�2 sin2 θ. (7.39)
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If γ = 1
� then the Gaussian appears to be a circle in phase space. For γ > 1

� (γ < 1
� ) its major axis

corresponds to the p-axis (q-axis) in the rotated frame.

The Wigner transform of these Gaussians is

ρW (p, q) =
1

2

� ∞

−∞
dsΨβ

�
q − s

2
, t
�
Ψ∗

β

�
q +

s

2
, t
�

exp

�
i

�
sp

�
(7.40)

= exp

�
−γt

�
2 − γt

�γt

�
(q − qβ)2 − (p− pβ)2

�2�γt
+

2i

�

�
γt
�γt

− 1

�
(q − qβ)(p− pβ)

�
. (7.41)

Using Eqs. 7.37 and 7.38, this can be reexpressed in a more intuitive form as Eq. 7.14.

7.2.4 Parameters #2

All results were obtained with � = 1. We express all quantities below as defined in Eqs. 7.19-7.23.

For the quartic oscillator results, the mass was m = 0.979573, the potential was V = ωq4

with ω = 2012640.0. The states A-D all had dispersions γβ = γ = 1.0
0.04256152

. In particular, for

A, (pβ, qβ) = (0.0, 0.4), L = (−0.999997388, 0.00228581084) and the timestep δt = 0.00002;

for B, (pβ, qβ) = (240.0, 0.0), L = (0.999999993, 0.000114148579), and δt = 0.00002; for

C, (pβ, qβ) = (0.0, 0.1), L = (0.999832662,−0.0182933862), and δt = 0.00004; and for D,

(pβ, qβ) = (80.0, 0.0), L = (0.999999997, 0.0000743170501), and δt = 0.00004.

For the inverted oscillator results, the mass was m = 1, and the potential was V = −mω2q2

with ω = 1.0. The dispersion was γβ = γ = 1.0. The timestep was δt = 0.0005. The state

displaced off the saddle point began at (pβ, qβ) = (0.0, 10.0).
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8 Generalized Dephasing Relation for

Fidelity and Application as an Efficient

Propagator

In this chapter we introduce the dephasing relation (DR), a linearization of semiclassical fidelity,

and then generalize it to include the overlap of “off-diagonal” elements. The accuracy of the

formulation is tested in integrable and chaotic systems and its scaling with dimensionality is studied

in a Caldeira-Leggett model with many degrees of freedom. It is shown that the DR is often in

very good agreement with numerically analytic quantum results and frequently outperforms an

alternative semiclassical treatment. Most importantly, since there is no computationally expensive

prefactor, and facilitated by Monte Carlo Metropolis sampling, calculation of the DR is found

to scale remarkably well with increasing dimension. We further demonstrate that a propagator

based on the DR can include more quantum coherence and outperform other popular linearized

semiclassical methods, such as FBSD and LSC-IVR.

8.1 Introduction

We define a general notion of fidelity as,

F (t) = |O(t)|2 = | �ΨB| eiH
�t/�e−iH0t/� |ΨA� |2 (8.1)
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whereH� = H0+�V . This can be described from the Loschmidt echo perspective as an initial state

ΨA that is propagated forward for some time t obeying the Hamiltonian H0 and then propagated

back for the same time obeying the perturbed Hamiltonian H�. After this forward-backward

propagation, the inner product with a state ΨB is considered. An equivalent description is as the

overlap between states ΨA and ΨB both of which have been forward-propagated for time t but

obeying different Hamiltonians, H0 and H�, respectively. In either case, fidelity will range from

being equal to 1 when the time-propagated ΨA and ΨB wavefunctions are the same, to 0 when they

are fully orthogonal.

Over the years, a linearized Wigner transform of this expression has been defined in one

form or another[46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Most recently, Vanicek and coworkers

derived a prefactorless form that they have called the “dephasing” relation (DR)[56, 57]. They

have shown that the DR possesses many promising features, the most notable that the expression

scales independently of dimension when sampled appropriately[58]. Furthermore, they report that

in general, the more complex H0 and H� are, the better the DR works[59].

Many efforts have been made to develop an accurate semiclassical propagator that does not

contain a prefactor dependant on the computationally costly propagation of stability (monodromy)

matrices. Much of this work has been focused on the linearization of existing semiclassical

methods. Perhaps the most successful are those pioneered by Makri and coworkers[60, 61]

and Miller and coworkers[62, 63]. In their work, an additional stationary phase approximation

(SPA) is made to combine the forward and backward propagators that are present in many

correlation functions. This produces the prefactorless simplified expressions called the FBSD and

the LSC-IVR respectively. Unfortunately, the SPA takes away quantum dynamical effects (quantum

correlations) which leaves these methods with short applicable timescales in many systems[60].

There have been many suggestions made to improve these expressions[64, 65] but this is often

found to be difficult without the inclusion of stability matrix elements.

Here, we propose a very different approach for linearization based around fidelity and its

efficient calculation by the DR. The main result we present is a semiclassical propagator that
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contains quantum dynamical effects, unlike its predecessors, and is computationally cheap because

it remains free of any dependance on stability matrices.

This chapter is organized as follows: The expression that results from extending the DR to

include “off-diagonal” elements (where ΨA �= ΨB) is presented in Section 8.2 along with an

alternate semiclassical result to be used as a comparison. Section 8.3.1 compares the performance

of these two expressions when applied to two-dimensional test systems that are integrable and

chaotic. Section 8.3.2 further compares their performance with a Caldeira-Leggett model involving

many more degrees of freedom. Section 8.4 shows how the DR can be used as a semiclassical

propagator and demonstrates its promising ability to include quantum coherence for longer times.

Section 8.5 concludes the discussion and offers some potential applications for the DR-based

propagator.

8.2 Generalized dephasing relation

Fidelity has traditionally been defined and explored in Eq. 8.1 withΨA = ΨB ≡ Ψ. This “diagonal”

version has been found to be well approximated by a clever first-order perturbative expansion of its

semiclassical Wigner transform[66, 59]. Neglecting a prefactor, the resultant simplified expression

consists of an integral over the Wigner function of Ψ(t = 0) multiplied by a time-dependent phase

term. The form of this compact expression led Vanicek and coworkers to call it the “dephasing

relation”.

Extending the DR to handle cases where ΨA �= ΨB produces a generalized form of fidelity

capable of handling the “off-diagonal” elements that are necessary in any applications as a

meaningful propagator. A thorough derivation for “diagonal” elements has been presented in the

literature[66, 59] and can be extended to “off-diagonal” elements simply by setting ΨA �= ΨB. The

main results are reprinted here.

Consider the Hamiltonians H0 and H� ≡ H0 + �V . Taking the primitive semiclassical

expression for Eq. 8.1 up to zeroth order in � for the prefactor (ie. neglecting it) and up to first
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order in � for the phase, where the perturbation is taken around the trajectory obeying the mean

Hamiltonian ((H� +H0)/2),

O(t) = OAB
DR (t)

≡ h−d

�
dq0dp0ρAB

W (q0,p0)eiSDR(q0,p0;t)/� (8.2)

in a d dimensional system where

ρAB
W (q0,p0) ≡

�
ds
�
q0 − s/2 |ΨA

� �
ΨB

��q0 + s/2
�
eis·p

0/� (8.3)

is the Wigner transform of |ΨA� �ΨB| and

SDR(q
0,p0; t) ≡ −�

� t

0

dτV (qτ ,pτ , τ), (8.4)

with (qτ ,pτ ) following the classical trajectory of the average Hamiltonian (H0 +H�)/2.

TheWigner transform differs from that presented in the traditional DR solely in that ρW consists

of the operator |ΨA� �ΨB| instead of |Ψ� �Ψ|.

Position States

If we consider position states in Eq. 8.1 such that ΨA(q) = δ(q − qA) and ΨB(q) = δ(q − qB)

then the expression in Eq. 8.2 simpilifies to:

OAB
DR (t) =

1

(2π�)d
(8.5)

×
�

dp exp

�
i

�
(qA − qB) · p+

i

�
SDR

�
qA + qB

2
, p; t

��
.
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Momentum States

Similarly, for ΨA(p) = δ(p− pA) and ΨB(p) = δ(p− pB),

OAB
DR (t) =

1

(2π�)d
(8.6)

×
�

dq exp

�
i

�
(pA − pB) · q +

i

�
SDR

�
q,

pA + pB

2
; t

��
.

Gaussian States

ForΨA(q) = (πσ2)
− d

4 exp
�
− (q−qA)2

2σ2 + ipA·(q−qA)
�

�
andΨB(q) = (πσ2)

− d
4 exp

�
− (q−qB)2

2σ2 + ipB ·(q−qB)
�

�
,

OAB
DR (t) =

1

(π�)d

�
dq

�
dp

× exp

�
−
�
(qA + qB − 2q)2

4σ2
+

(pA + pB − 2p)2σ2

4�2

−i(
(pA − pB) · (qA + qB − 2q)

2�
(8.7)

+
p · (qA − qB)

�
)

�
+

i

�
SDR (q, p; t)

�
.

These three examples illustrate how calculating “off-diagonal” elements of the DR introduces

an additional phase into the traditional formula for “diagonal” elements as well as a slightly

different phase integral in Eqs. 8.5 and 8.6 but does not make evaluation any more difficult.

Forward-Backward Semiclassical Expression

Substituting the Heller-Herman-Kluk-Kay coherent state version of the semiclassical propagator

for the quantum propagators in Eq. 8.1 yields,

O(t)HK =
1

(2π�)2d

�
dq0

0

�
dp0

0

�
dq�

0

�
dp�

0

×Ct(q
0
0,p

0
0)Ct(q

�
0,p

�
0)

∗ �q0
0, p

0
0 |ΨA

�
(8.8)

× �ΨB |q�
0, p

�
0 � ei(S

0
t −S�

t )�
�
q�
t, p

�
t

��q0
t , p

0
t

�
,
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where Ct(q0,p0) =

�
det
�
1
2

�
∂qt

∂q0
+ ∂pt

∂p0
− iγ� ∂qt

∂p0
+ i

γ�
∂pt

∂q0

��
.

This integral is difficult to evaluate numerically due to the oscillating double phase.

Taking a SPA of the final term in Eq. 8.8 simplifies matters. The details are presented in

Appendix 8.6.1 wherein taking the SPA is shown to be equivalent to assuming �q�
t, p

�
t |q0

t , p
0
t � =

δ (q�
t − q0

t ) δ (p
�
t − p0

t ). This allows the double-phase space integral to be replaced by a single one

over a new set of coordinates (q,p) that are defined to start out at (q0
0,p

0
0), forward-propagate under

H0 to (q0
t ,p

0
t ) = (q�

t,p
�
t), and finally return via back-propagation under H� to (q�

0,p
�
0). The final

result is,

O(t)FB-HKR =
1

(2π�)2d

�
dq0

�
dp0 (8.9)

×Ct(q0,p0) �q0, p0 |ΨA � �ΨB |q�
0, p

�
0 � ei(S

0
t −S�

t )�.

This expression will be referred to as the “Forward-Backward Heller-Herman-Kluk-Kay

relation” (FB-HKR). It is quite different from the DR; FB-HKR is accurate up to the assumption

�q�
t, p

�
t |q0

t , p
0
t � = δ (q�

t − q0
t ) δ (p

�
t − p0

t ) while the DR is accurate up to first order in � in

phase and zeroth order in the prefactor. Also, due to the prefactor containing monodromy matrix

elements, the FB-HKR is more computationally expensive than the generalized DR. Nevertheless,

the FB-HKR is introduced to serve, at the very least, as a qualitative semiclassical benchmark

against which the accuracy of the DR can be compared, especially in higher dimensional systems

where a full numerically analytic solution proves too costly.

8.3 Numerical Tests

Perhaps the most attractive feature of the DR is its excellent scaling with dimension while the most

important limitation is its dependence on small perturbations � for accurate performance. This

suggests that it has a natural application in the time-propagation of many-dimensional systems

that are weakly coupled to each other. To study the DR’s performance in such applications, a
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Figure 8.1: The initial states for the system and bath harmonic oscillators are Gaussian wave
packets propagating under a bilinear coupling (�qsysqbath) with parameters � = 10, � = 1,Δt = 0.01,
t = 700Δt, msys = 10, mbath = 2, ωsys = 5, ωbath = 3, σsys = 0.3 and σbath = 0.7 where a) shows
“diagonal fidelity” (qinitsys = pinitsys = 0.5, qinitbath = −1 and pinitbath = 0.5) and b) shows “off-diagonal
fidelity” (qinitsys ‘B’ = 0.4 and pinitsys ‘B’ = −1.5). Inset: A cartoon of initial system and bath states.

number of numerical tests were performed on weakly coupled systems with two degrees of freedom

(Figures 8.1-8.3) as well as many more degrees of freedom (Figure 8.5) which propagated freely

of each other forward in time but were coupled when returning backward in time. What follows is

a short summary of their behavior according to the DR.

8.3.1 Two Dimensional Systems

Figure 8.1 compares the fidelity of two rather different harmonic oscillators that are coupled

bilinearly together. The DR agrees with the numerically analytic results very well. It is important to
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differentiate the set-up that produced this result from those in prior studies where the DR was found

to break down in harmonic oscillators with significantly different force constants [67]. Whereas

Figure 8.1 shows two harmonic oscillators with different force constants which were propagated

independently of each other forward in time but were coupled together backward in time, these

previous studies dealt with cases where each harmonic oscillator had a different force constant

going forward in time compared to backward in time. The situation presented here seems to be

much more accurately reproduced by the DR, even for harmonic oscillators with very different

force constants.

Figure 8.2 and the inset of figure 8.5 also show good agreement between the DR and

numerically analytic results for the fidelity of a Morse oscillator coupled bilinearly to a significantly

different harmonic oscillator.

A very similar expression to the DR has been derived somewhat heuristically using the

Shadowing Theorem[57] which relies on the accuracy of trajectories that “shadow” exact

trajectories. Only hyperbolic Hamiltonians have been shown to be capable of such shadowing

for infinite time. It is perhaps for this reason that, in Figure 8.3, the DR shows great accuracy at

reproducing the analytic fidelity of two bilinearly coupled hyperbolic systems.

Figure 8.4 shows good short-time agreement but poor long-time agreement with the numerically

analytic results for the fidelity of two different quartic oscillators that are coupled together

biquadratically. This is an interesting example because this system is integrable going forward

in time, when the oscillators are uncoupled, but chaotic backward in time when they are coupled.

The FB-HKR results diverge after a short-time due to monodromy matrix divergence, a common

occurence in chaotic systems. There are methods to deal with this, some as simple as throwing

away divergent trajectories[68].

In general it is found that the DR results for “diagonal” and “off-diagonal” cases of fidelity

agree with analytic results for the same amount of time in any system studied. In each case,

calculations were shown for only a single value of � that produced interesting fidelity decay. Larger

values of � and DR calculations at longer times generally produce poorer agreement with analytic

92



0.4

0.6

0.8

1

Analytic
FB-HKR
DR

0 100 200 300 400 500 600 700
Time

0.3

0.4

0.5

0.6

Fi
de
lit
y

System: Bath:a)

b) System: Bath:

Figure 8.2: Initial state for the system Morse oscillator (D(1 − e−α(qbath−qe))2) and bath harmonic
oscillator are Gaussians coupled bilinearly (�qsysqbath) with parameters � = 10, � = 1, Δt = 0.001,
t = 700Δt, msys = 10, mbath = 8, D = 10000, α = 0.1, qe = 3, ωbath = 3, σsys = 0.1 and
σbath = 0.3 where a) shows “diagonal fidelity” (qinitsys = 2.3 and pinitsys = qinitbath = pinitbath = 0) and b)
shows “off-diagonal fidelity” (qinitsys ‘B’ = 2.4 and pinitsys ‘B’ = 0.0). Inset: A cartoon of initial system
and bath states.
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Figure 8.3: Initial state for the system and bath obeying the hyperbolic Hamiltonian are Gaussians
coupled bilinearly (�qsysqbath) with parameters � = 3, � = 1, Δt = 0.001, t = 700Δt, msys = 2,
mbath = 0.1, ωsys = 3, ωbath = 0.6, σsys = 0.8 and σbath = 0.2 where a) shows “diagonal fidelity
(qinitsys = pinitsys = qinitbath = pinitbath = 0) and b) shows “off-diagonal fidelity” (qinitsys ‘B’ = −1 and pinitsys ‘B’ = 5).
Inset: A cartoon of initial system and bath states.
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Figure 8.4: Initial state for the system and bath quartic oscillators are Gaussians coupled
biquadratically (�q2sysq

2
bath) with parameters � = 2, � = 1, Δt = 0.01, t = 700Δt, msys = 3,

mbath = 1, ωsys = 4.5, ωbath = 1.4, σsys = 0.2 and σbath = 0.5 where a) shows “diagonal
fidelity” (qinitsys = 0.5, pinitsys = 0.1, qinitbath = −1 and pinitbath = 0.5) and b) shows “off-diagonal fidelity”
(qinitsys ‘B’ = 0.2 and pinitsys ‘B’ = 0.6). Inset: A cartoon of initial system and bath states.
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calculations if the fidelity decay is slow or rephases. In particular, similar to the findings reported

in many studies of the FBSD[69] and LSC-IVR[64], the DR performs well when the overall decay

in fidelity is faster than its ability to include effects such as quantum coherence, and poor when this

overall decay is slower. This is especially true in systems with many degrees of freedom where the

prevalence and importance of rephasing is small.

8.3.2 Many Dimensional System: Caldeira-Leggett

To study the DRs scaling with dimensionality, the fidelity of a Caldeira-Leggett Hamiltonian[70]

for I2[71, 72, 73] was studied. This involved modelling one degree of freedom of the molecule,

anharmonic stretching, through a Morse potential coupled to a harmonic oscillator (HO) bath. The

Hamiltonian was,

H =
p2

2µ
+D

�
1− e−α(q−qe)

�2
(8.10)

+

f−1�

j=1

�
P 2
j

2
+

ω2
j

2

�
Qj +

cj
ω2
j

(q − qe)

�2
�

withD = 1.2547× 104 cm−1, qe = 2.6663 Å, α = 1.8576 Å
−1

and µ equal to the reduced mass of

I2. The sum runs over the (f − 1) HOs in the bath.

Coupling to the bath was chosen to be dictated by the Ohmic spectrum (hereafter � = 1),

J(ω) = ηsbωe
− ω

ωc , (8.11)

where

ωj = −ωc ln

�
1− j

f − 1

�
1− e−5

��
(8.12)

are the individual HO frequencies and,

cj = ωj

�
2ηsbωc

π(f − 1)
(1− e−5) (8.13)
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are their corresponding coupling constants (otherwise equal to zero during forward time evolution).

ηsb = 0.25 × 213.7µ cm−1 is the system-bath coupling coefficient and ωc = 20 cm−1 is the

characteristic bath frequency. Expressed in terms of the coherent state basis used in the FB-HKR,

�q |qi, pi � =
�γ
π

� 1
4
exp

�
−γ

2
(q − qi)

2 + ipi(q − qi)
�
, (8.14)

(where γ is the width of the coherent state basis), the initial state of the Morse oscillator was

selected to be in its ground state,

Ψsys(q, p) = exp

�
− γ

4
(q − qi)

2 − 1

4γ
(p− pi)

2

+
i

2
(p+ pi)(q − qi)

�
(8.15)

with qi = 2.4 Å (just to the left of the potential minimum), pi = 0.0, and γ =
�
2Dµa2 ≡ µΩs,

where Ωs = 213.7 cm−1 is the harmonic frequency of the Morse oscillator. The HO bath began as

a thermalized state e−βĤB

QB
at 300 K[72],

Ψbath(Qj, Pj, Q
�
j, P

�
j)

= (1− e−βωj)

× exp

�
− Γj

4
(Q2

j +Q�2
j )−

1

4Γj

(P 2
j + P �2

j )

+
i

2
(PjQj − P �

jQ
�
j) +

1

2
e−βωj

�
ΓjQjQ

�
j (8.16)

+
1

Γj

PjP
�
j + i(P �

jQj − PjQ
�
j)
��

.

with γ = Γj = ωj (where j is the HO bath index).

Figure 8.5 shows how the DR fares compared to FB-HKR with one to fifty HOs in the bath,

though the latter method was only calculated with up to ten HOs. It has been shown that a

minimum of twenty HOs are necessary to reproduce the Ohmic spectrum[72]. The DR-calculated
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Figure 8.5: Calculation of the fidelity of a Morse oscillator (parametrized to fit a diiodide bond)
coupled to a thermalized bath of various numbers of harmonic oscillators at 300 K via Ohmic
coupling performed using the DR and FB-HKR. Inset: The same set-up but with only 1 HO in the
bath in an excited pure state allowing for the calculation of an analytical numerical solution. It is
likely the analytical solution is similar in the case of the thermalized bath and so is in comparable
agreement with the DR and FB-HKR.

fidelity shows convergence at a similar number of HOs. Impressively, the DR exhibited superior

computational scaling compared to the prefactor-laden FB-HKR.
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8.4 Dephasing relation propagator

The DR can be implemented in the semiclassical propagation of any quantum state Ψ under the

Hamiltonian H in the following general manner:

�q |Ψ(t)� = �q| e−iHt/� |Ψ(0)� (8.17)

=

�
dq� �q| e−iHt/�eiH

0t/� |q�� (8.18)

× �q�| e−iH0t/� |Ψ(0)�

≈
�

dq�
�
OH0,H

DR (q, q�, t)
�∗

�q�| e−iH0t/� |Ψ(0)� . (8.19)

The quantum propagator is split into two terms by the introduction of another Hamiltonian,

H0: a fidelity term and another term governed by free evolution under H0. In Eq. 8.17 an

identity operator is inserted producing a fidelity term in Eq. 8.18 that is subsequently simplified by

substituting in the generalized DR. In particular, the left term in Eq. 8.19 is the complex conjugate

of the position state representation of the DR for the forward Hamiltonian H and the backward

Hamiltonian H0. Without loss of generality, it is helpful as before to let

H ≡ H0 + �V. (8.20)

Expressed this way, it is clear that H0 must be chosen wisely so that the DR term can be accurate.

Furthermore, it is preferable to choose anH0 such that the free evolution term can be calculated as

easily as the DR-containing term. This can often be accomplished in weakly interacting many-body

systems by letting H0 be the Hamiltonian including only free-particle terms while � governs the

strength of V , the interparticle interactions. In such applications, the splitting introduced in Eq. 8.18

is similar, though not the same, as that introduced by the “interaction” representation.

This idea can be illustrated by considering the Hamiltonian,

H =
1

2
p2 +

1

2
ω2q2 − aq3 + bq4 (8.21)
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with ω =
√
2 and a = b = 0.1. This is a strongly anharmonic oscillator system that has often been

used before to test the limitations of other Wigner-type linearized approximations[74, 75, 69, 64,

65, 60].

Figure 8.6 shows the average position of an initially shifted ground state with time. Most

Wigner-type linearized approximations and FBSD decay to small oscillations by the 300 timestep

mark[60]. Setting H0 from Eq. 8.19 to be equal to 1
2
p2 + 1

2
ω�2q2 simplifies the free-evolution

term to the analytically solvable Feynman propagator for an HO. When ω� = ω the DR-calculated

average position is relatively poor in Figure 8.6a compared to the analytic result. This is because

the anharmonic terms in the potential produce an initial effective frequency of oscillation that

is faster than the harmonic frequency ω for the initial state. In other words, the free evolution

term of Eq. 8.19 produces a curve with frequency ω that the DR term of the equation is unable

to “dephase” effectively enough into the proper frequency. Increasing ω� to 1.05 ω and 1.1 ω

reduces the work that the DR must do to “dephase” the free evolution term and produces better

results, as demonstrated in Figs. 8.6b and c. Notice that even in the worst example of the

DRs performance shown in Figure 8.6a, the DR propagator far outperforms other prefactorless

semiclassical propagators since it is still oscillating after 300 timesteps (although the frequency of

this oscillation is incorrect).

Using Eq. 8.20 as a building block, it is possible to generate DR-based propagation schemes

for many general expressions of interest. For instance, the expression for the purity of a system, a
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Figure 8.6: Average position plotted versus time of a displaced wavepacket oscillating under the
highly anharmonic Hamiltonian H = 1

2
p2 + 1

2
ω2q2 − 0.1q3 + 0.1q4 with ω =

√
2. The DR

curves where calculated from the expression
�
dx�

�
OH0,H

DR (q, q�, t)
�∗

�q�| e−iH0t/� |Ψ(0)� where
H0 = 1

2
p2 + 1

2
ω�2q2 with a) ω� = ω, b) ω� = 1.05 ω and c) ω� = 1.1 ω.
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measure of decoherence from system-bath interaction, can be expressed as,

Tr(ρ2s)

=

�
dqs

�
dq�

s

�
dqb

�
dq�

b

�
dqos

�
dq�

os

�
dqob

�
dq�

ob

�
dq��

os

�
dq���

os

�
dq��

ob

�
dq���

ob

× �qsqb| e−iHt/�eiH
0t/� |qosqob� (8.22)

× �q�
osq

�
ob| e−iH0t/�eiHt/� |q�

sqb�

× �q�
sq

�
b| e−iHt/�eiH

0t/� |q��
osq

��
ob�

× �q���
osq

���
ob| e−iH0t/�eiHt/� |qsq

�
b�

×ρ0(qos, qob, q
�
os, q

�
ob, t)

×ρ0(q��
os, q

��
ob, q

���
os, q

���
ob, t)

where qs, q�
s, qos, q�

os, q
��
os and q���

os are system phase space coordinates, qb, q�
b, qob, q�

ob, q
��
ob and

q���
ob are bath phase space coordinates, H is the full Hamiltonian, H0 is the same Hamiltonian

with the system-bath interactions turned off, and ρ0 is the full time-dependant density matrix with

interactions turned off (usually this is simple to calculate).

Applying such a splitting scheme using an ancillary Hamiltonian H0 will always result in an

integral with a “kernel”, such as the terms with ρ0 above, alongside expressions of fidelity that

can be approximated with the DR. Again, this means that it is prudent to choose H0 such that

this procedure produces an easily computed and accurate kernel while allowing for the smallest

effective perturbation for the DR to deal with.
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8.5 Conclusion

In this chapter we extended the DR for fidelity to treat “off-diagonal” elements. Its performance

was examined with integrable and chaotic systems that were perturbatively coupled to a bath with

few to many degrees of freedom. In general, the DR was found to be surprisingly accurate and

efficient.

Subsequently, a particular approach to using the DR as a semiclassical propagator for quantum

states was introduced. By exploiting the DRs unique efficiency and accuracy, this methodology

demonstrated the potential to be superior to many previous linearization methods, such as FBSD

and LSC-IVR, granted that perturbative splitting with an ancillary Hamiltonian is possible.

Particularly attractive is the DR propagator’s ability to include quantum correlation effects. A

simple calculation of the evolution of the average position of a wavepacket in a heavily anharmonic

potential using the DR-based propagator was shown to produce better results.

The DR-based propagator has many promising applications, including serving as a more

physically intuitive approach for calculating the purity of many-dimensional system-baths

compared to the traditional master equation approach. Its derivation is vastly different from other

linearized methods and its effectiveness as a quick and cheap tool for semiclassical propagation

deserves evaluation.

8.6 Appendix

8.6.1 Forward-Backward Fidelity

Consider the two exponential operators in Eq. 8.1 as the single unitary operator Û ≡ e
iH�t
� e−

iH0t
�

which is the time evolution via the time-dependent Hamiltonian,

Ĥ(t) =





Ĥ0 0 → t

Ĥ� t → 0.
(8.23)
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A position basis representation for Û(q, q�),

�q�| Û |q�

=

�
dq�� �q�| eiĤ�t/� |q��� �q��| e−iĤ0t/� |q� (8.24)

≈
�

dq��eiS(q
�,q��;0→t)/�eiS(q

��,q;t→0)/� (8.25)

where the integral over q�� was evaluated by the SPA in the second line and preexponential factors

in this “primitive” semiclassical propagator were disregarded. The SPA condition for this integral

is,

∂S(q�, q��; 0 → t)

∂q�� =
∂S(q��, q; t → 0)

∂q�� (8.26)

pt(q
�, q��) = pt(q

��, q) (8.27)

where the left hand side of the final expression is the momentum at time t after going forward in

time and the right hand side is the momentum at time t before going backward in time. The same

is manifestly true in this representation for the position at time t after going forward in time and

before going backward in time since qt ≡ q��.

Moreover, the overall phase is provided in this stationary phase approximated propagator and

is equal to eiS(q�,q)/� where

S(q�, q) = S(qt, q; 0 → t) + S(q�, qt; 0 → t). (8.28)

Time-dependent Hamiltonians have the same HHKK propagator as their time-independent

brethren and so Eq. 8.8 can be rewritten without one of its double phase space integrals as Eq. 8.9.
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9 Graphene’s Raman Spectrum

9.1 Introduction to Graphene

Graphene is a material that has proved to be a boon for study in the condensed matter community.

Herein, we will focus on its unique electronic and vibrational properties that explain its novel

Raman spectrum.

9.2 Graphene Lattice

Following Misra’s Physics of Condensed Matter[76], graphene is a lattice of carbon atoms

arranged in a hexagonal lattice such that every carbon has three nearest neighbors a distance

a = 1.42 Å apart. The unit cell of graphene can be described as made up of two atoms, A and

B, with the two lattice vectors a1 = 3a
2

�
1, 1√

3

�
and a2 =

3a
2

�
1,− 1√

3

�
. These have corresponding

reciprocal lattice vectors b1 = 2π a2
a1·a2 = 2π

3a

�
1,
√
3
�
and b2 = 2π a1

a2·a1 = 2π
3a

�
1,−

√
3
�
.

The three nearest neighbors are δ1 = a
2

�
1,
√
3
�
, δ2 = a

2

�
1,−

√
3
�
, and −a (1, 0) and the next

nearest neighbors are at δ±1 = a1, δ±2 = ±a2 and δ±3 = ±(a2 − a1).

9.2.1 Graphene’s Electronic Dispersion

Graphene’s electronic dispersion is shown in Figure 9.2.
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Figure 9.1:

This can be described by a tight-binding Hamiltonian[77] (using an orthonormalized π-orbital

basis set):

H�k =




g(�k) f(�k)

f ∗(�k) g(�k)


 , (9.1)

where

f(�k) = t1
�

i=1,3

ei
�k· �C1

i + t3
�

i=1,3

ei
�k· �C3

i + t4
�

i=1,6

ei
�k· �C4

i , (9.2)

and

g(�k) = t2
�

i=1,6

ei
�k· �C2

i + t5
�

i=1,6

ei
�k· �C5

i = g∗(�k). (9.3)

C i corresponds to the ith nearest neighbors and ti is the corresponding hopping parameter.

The eigenvectors of this matrix can be shown to be:

eπ
∗

�k
= g(�k) + |f(�k)| , aπ

∗
�k

=
1√
2




1

φ(�k)


 , (9.4)

eπ�k = g(�k)− |f(�k)| , aπ�k =
1√
2




1

−φ(�k)


 , (9.5)
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Figure 9.2: From [78].

where φ(�k) = f∗(�k)
|f(�k)| .

9.2.2 Graphene’s Phonon Dispersion

Graphene’s phonon dispersion is shown in Figure 9.3. It can also be calculated by tight-binding, as

many have done. We will rely on the method by [79]. Its most important modes are the zig-zag (G)

modes and breathing (D) modes, which are shown in Figure 9.3b.
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a) b)

Figure 9.3: a) From [80]. b) From an unknown source.
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9.3 Introduction to Raman Spectroscopy

Raman spectroscopy is a very useful and important two-photon spectroscopy. Normal absorption

spectroscopy occurs in the I.R. region and corresponds to a one-photon process. Absorption occurs

when the incident laser energy approaches that of a vibrational excitation. Raman spectroscopy,

on the other hand, involves both incident light that excites electrons to intermediate virtual states

(in non-resonant Raman) or excited electronic states (in resonant Raman) as well as emitted light

when the electron relaxes back to its initial electronic state. If the final state is vibrationally excited

compared to its initial state, the spectrum exhibits a Raman peak. If not, a Rayleigh peak is seen.

Since it is always more common for this two-photon process to excite no vibrational degrees of

freedom (as they do not depend on vibrational or phonon density of states), the latter Rayleigh

peak is always far more intense than any Raman peak.

Raman peaks are usually symmetrically produced around the Rayleigh peak. One side

corresponds to two-photon processes that relax vibrational modes, while the other corresponds

to those that excite vibrational modes. The former is known as a Stokes process while the latter is

anti-Stokes. Figure 9.4 sketches these different processes.

IR absorption peaks correspond to the excitation of modes whose dipole moment changes, while

Raman peaks correspond to vibrational modes whose polarization changes. The reason for this can

be seen in their scattering cross-sections: the former depends on the dipole moment between the

initial and final state while the latter depends on the dipole moment between initial and intermediate

states, and intermediate states and the final state. This will be shown presently.

9.4 Absorption and Emission Cross-Sections

The absorption and stimulated emission cross-sections can be shown[1] to be linearly dependent on

ωI and cubically dependent on ωS respectively. The latter is due to the fact that stimulated emission
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Figure 9.4: From [81].

depends on the free photon density. The absorption cross-section is:

Σρ
i→n =

2πeωI

3hc

�

n

|αρ
i,n|2, (9.6)

where

ασ
i,n = �i|D†,σ |n� . (9.7)

The emission cross-section is:

Σσ
n→f =

2πe3ω3
S

hc3

�

n

|ασ
n,f |2, (9.8)

where

ασ
n,f = �f |D†,σ |n� . (9.9)
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Figure 9.5: First figure from [82]. Second panel taken from [83]. Third from [84]

9.5 Graphene’s Absorption Spectrum

Before we get to the Raman spectrum of graphene, let us briefly discuss its simpler absorption

spectrum. Due to its periodicity and the Dirac cone crossing its Fermi energy, graphene differs

from finite molecule samples’ absorption spectra in that every laser energy is on scale with

electronic transitions; every process is resonant. The experimentally observed spectrum is shown

in Figure 9.6.
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Figure 9.6: From [85].

The amplitude of graphene’s absorption can be simplified by using the Hellman-Feynman

identity to:

σ ∝
�

d�k

������

e�P ·
�
(aπ∗�k )†�∇H(�k)(aπ�k)

�

�L

������

2

ρ, (9.10)

9.5.1 Absorbance without Phonon Production

Within tight-binding, phononless absorption can be approximated by[77]:

σ ∝ |
�
�k, π∗

��� �D
����kπ
�
|2ρ (9.11)

=

�
d�k

������

e�P ·
�
(aπ∗�k )†�∇H(�k)(aπ�k)

�

�L

������

2

ρ, (9.12)

where aπ/π
∗

�k
are the eigenvectors of the electronic T.B. HamiltonianH(�k) and �P is the polarization

of the incident laser with energy �L.

The absorption spectrum from this formula is shown in Figure 9.7 and agrees qualitatively with

the experimentally observed spectrum in Figure 9.6.
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Figure 9.7: Rough tight-binding calculation of graphene absorption spectrum. The black curve
corresponds to the unit universal optical conductivity due to the linear dispersion of the cone.
The blue line actually takes into account the electronic dispersion of graphene to determine all
phononless transitions using Eq. 9.12. We attribute the deviation from the black line from a constant
line, especially at low energies, to insufficient k-space points close to the Dirac cone.

9.5.2 Absorbance with Phonon Production

Similarly, within tight-binding phonon-assisted absorption can be approximated by[77]:

∂µ

∂ξ
≈

�
�k + �q, π∗

��� ∂
�D

∂�ξ�q

����kπ
�

(9.13)

=

�
�

2Mω�q,ν

e�P ·
��

s,c

�s,c�q,ν

�
aπ

∗
�k+�q

�†
�
∂ΔHs,c

�k+�q,�k

∂�k

�
�
aπ�k
�
�

(9.14)

where
∂ΔH1,c

�k+�q,�k

∂�k
=

√
3η1




0 ḣc(�k)

ḣc(�k + �q) 0


 , (9.15)

∂ΔH2,c
�k+�q,�k

∂�k
= −

√
3η1




0 ḣc(�k + �q)

ḣc(�k) 0


 , (9.16)
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and

ḣc(�k) =




�3
i=1 iC

1
i,xe

i�k·�C1
i

Ci,c

a0�3
i=1 iC

1
i,ye

i�k·�C1
i

Ci,c

a0�3
i=1 iC

1
i,ze

i�k·�C1
i

Ci,c

a0


 . (9.17)

9.6 Raman Cross-Section: KHD

The K.H.D. formalism is simply second-order perturbation theory on the Born-Oppenheimer states

with respect to light-matter interaction. The total Raman cross-section for incident light with energy

ωI , stimulated emission with energy ωS is:

Σρ,σ
i→f =

8πe4ω3
SωI

9c4
|αρ,σ

i,f |2. (9.18)

Notice that it is rather close to an amalgamation of the cross-sections for absorption and stimulated

emission, which is what Raman spectroscopy is.

The differential amplitude

αρ,σ
i,f =

1

�
�

n

��f |D†,σ |n� �n|Dρ |i�
Ei − En + �ωI − iΓn

+
�f |D†,σ |n� �n|Dρ |i�
Ei + En + �ωI + iΓn

�
. (9.19)

Ei is the energy of the initial state i with decay Γn, En is the energy of the intermediate state n with

decay Γn. Dσ is the dipole moment ∝ Erσ.

Making this more explicit in terms of phonons and electrons, we let the phonon coordinates be

ξ and electron coordinates be r and define:

|i� =
��ψB.O

mi
(ξ, r)

�
= |χ(r; ξ)� |φmi

(ξ)� , (9.20)

|n� =
��ψB.O

qv ,qc,m(r, ξ)
�
= |χqv ,qc(r; ξ)� |φmvc(ξ)� , and (9.21)

|f� =
���ψB.O

mf
(ξ, r)

�
= |χ(r; ξ)�

��φmf
(ξ)
�
. (9.22)

The initial state |i� consists of a sea of electrons, but we focus on the momentum mi of one in

particular. The intermediate state |n� is characterized by an electron with momentum qv − qc and

114



(for simplicity, considering only a one-phonon-per-transition process) an excited or relaxed phonon

with momentum mvc. Finally, the final state consists of the Fermi sea of electrons and excited (or

relaxed) phonons with momentamf .

For a review of the Born-Oppenheimer approximation, see the Appendix.

9.6.1 The Transition Moment Operator

We rewrite

�n|Dρ |i� = �φmvc(ξ)| �χqv ,qc(r; ξ)|Dρ |χ(r; ξ)� |φm(ξ)� (9.23)

as

�n|Dρ |i� = �φmvc(ξ)|µρ
qc,qv(ξ) |φm(ξ)� (9.24)

with

µρ
qc,qv(ξ) = �χqc(r; ξ)|Dρ(r) |χqv(r; ξ)�r . (9.25)

The subscript r denotes an expectation value taken over electronic space (equivalently, an

integral over all r-space). µρ
qc,qv is the ρth component of the transition moment between a valence

electron with momentum qv and a conduction electron with momentum qc.

In terms of the transition moments, and using B.O. energies, the Raman amplitude reads

αρ,σ
mv ,mf

=
1

�
�

v,c,m

��
φmf

(ξ)
��µσ

qv ,qc(ξ)
† ��φmv,c(ξ)

� �
φmv,c(ξ)

��µρ
qc,qv(ξ) |ξmi

(ξ)�
Emi

− Ev,c,m + �ωI − iΓv,c,m

�
(9.26)

=
1

�
�

v,c,m

��
ξqv ,qc,mf

(ξ)
��φmv,c(ξ)

� �
φmv,c(ξ) |ξqc,qv ,mi

(ξ)
�

Emi
− Ev,c,m + �ωI − iΓv,c,m

�
. (9.27)
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9.6.2 Transition Moment Coordinate Dependence

The transition moment is dependent on nuclear coordinates (equivalently, phonons) ξ. This can be

made explicit by expanding the transition moment around ξ = 0:

|ξqc,qv ,mi
(ξ)� ≡ µρ

qc,qv(ξ) |φmi
(ξ)� (9.28)

=


µρ

qc,qv(ξ0) +
�

j,k

∂µρ
qc,qv(ξ)

∂ξj,k

�����
ξ0

· ξj,k + . . .


 |φmi

(ξ)� (9.29)

The first term is called the Albrecht A term while the second is the B term. The A term is

responsible for phononless transitions while the the B term affects one-phonon transitions (as can

be seen by reexpressing ξ in terms of phonon annihilation and creation operators). Higher order

expansion is unecessary for Raman. Note that this is not a perturbative expansion.

Inclusion of only the A term corresponds to the Condon approximation, which is generally

sufficient for off-resonant Raman spectroscopy. Such an approximation is behind Placzek

polarizability which is the go-to formalism to describe molecular Raman spectroscopy in chemistry.

However, since in extended large systems the vibrational states of excited electronic surfaces are all

equivalent, it is necessary to include the B term to describe Raman processes in condensed matter.

Without the B term, electronic transitions could not be accompanied by vibrational excitation since

the state’s initial vibrational wavefunction would be orthogonal to any other intermediate and final

vibrational state (see Figure 9.8).

a) b) c)

Figure 9.8:
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9.7 KHD with the Albrecht Term

Including the transition moment to first order in ξ,

αρ,σ
mv ,mf

≈ 1

�
�

v,c,m

��ξmi
(ξ)|


µρ

qc,qv(ξ0) +
∂µρ

qc,qv (ξ)

∂ξ

�����
ξ0

· ξ


 |χm(ξ)�

Emi
− Ev,c,m + �ωI − iΓqc,m

(9.30)

×

�χm(ξ)|


µρ

qc,qv(ξ0) +
∂µρ

qc,qv (ξ)

∂ξ

�����
ξ0

· ξ


 |ξmi

(ξ)�

Emi
− Ev,c,m + �ωI − iΓqc,m

�
.

9.8 Graphene’s Raman Spectrum

We now proceed to apply K.H.D. to graphene. Its Raman spectrum, as well as the corresponding

phonon modes, are shown in Figure 9.9. Note that in Raman spectra, the frequency shift

corresponds to the difference between the incident and emitted energies of light. Hence, they can

be considered to directly correspond to the energies of the phonons that are excited in the process.
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a)

b)

Figure 9.9: a) from [87] b) from [88]
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9.8.1 G Peak

In terms of electronic transitions excited by light, the long wavelength of light compared to the

(infinitely, relatively so,) periodic sample means that the only allowed electronic transitions are

vertical and have the same k before and after excitation. This means that electrons with a particular

k from a particular valence band jump to a free conduction band with the same k, leaving being

a hole with momentum k. This is a momentum-conserving process and, in the simplest case,

means that the electron must vertically relax back and recombine with its hole releasing light in the

process. Indeed, these processes are what make up Rayleigh scattering in solid-state materials.

If we move on to the Raman spectrum of materials, we must now consider processes that are

“phonon-assisted” at excitation and/or relaxation. Upon excitation with light, electrons jump from

a valence state to a conduction state which no longer has the same vibrational quantum numbers.

Again, this must be accomplished in such a way that conserves quasi-momentum, since that is a

good quantum number in periodic systems. Since phonons have their own momentum q, this must

be considered in the full process. Every step in the process must be momentum-conserving.

Therefore, upon excitation of an electron with momentum k, if the vibrational quantum numbers

of the new conduction state correspond to a phonon with momentum q also being excited, this

“phonon-assisted” step necessitates that the excited electron have momentum k − q in order for

it overall step to be momentum-conserving. It is of course important that such a conduction state

exists in the material’s spectrum. That is, the conduction state must have the correct total energy

of electron and phonon to be matched with the incident light and the total momentum of the state

((k − q) + q) must be equal to the initial state’s momentum (= 0). Otherwise, this is a “virtual”

state and is not on-shell. A similar calculus must be considered if more than one phonon is excited

or, inversely, if phonons are relaxed. Two-phonon assisted transitions produce Raman peaks that

are “overtones” of their one-phonon “fundamental”s.

In practice, it is often easiest to make the Born-Oppenheimer approximation to deal with such

problems. One benefit of this approach is that the notions of electronic energies can be formalized
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as the eigenenergies of

He(r,R)φ(r;R) = Eeφ(r;R). (9.31)

“Phonon energies” can then be found by mean-field or better correlated methods. We can then

again appeal to the fact that the periodic structure can be considered to be infinitely long in the

periodic directions. This means that the reorganization energy, also called the Huang-Reese factor,

is zero in the related degrees of freedom. In other words, after an electron is excited from one

electronic-vibrational state to another, it is unable to relax to a lower vibrational state because

its new electronic character (delocalized over all space) has negligible impact on the nuclei (or

equivalently, phonons, whose vibrations are delocalized over all space), as you might imagine to

be the case when there are infinitely many such nuclei. In yet another way, this means that all the

electronic Born-Oppenheimer surfaces are the same and so excitation of a vibrational eigenstate

from one to another produces another steady-state (see Figure 9.10 for experimentally determined

reorganization energies with respect to the length of a particular molecule.).

9.9 Internal Reorganization Energy

What this means for us is that we can deal with “electronic energies” and “phonon energies” as

two separate things that don’t affect each other. Electronic state A has the same phonon energies as

electronic state B and so there is no need to ascribe a separate index on the vibrational eigenstates

χ from the Born-Oppenheimer to indicate which electronic state they correspond to:

ele. st.�

i

vib. st.�

j

[φi(r;χ)χi,j(χ)] →
�
ele. st.�

i

φi(r;χ)

��
vib. st.�

j

χj(χ)

�
. (9.32)

In the condensed matter community, a starting assumption to treating this problem (which leads to

the D.R. formulation for Raman scattering), is that the state is a direct product of electronic and

vibrational states. As we can see, the two are thus equivalent starting points thanks to the zero

reorganization energy in (large) periodic systems.
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Figure 9.10: From [86].

Having thus established the validity of the separate treatment of electronic and vibrational

energies, a given periodic system can be fully characterized by its electronic energy dispersion

and its phonon energy dispersion. The electronic dispersion remains the same no matter what the

state’s current population is in terms of its phonon dispersion.

As an aside, note that the electronic dispersion is a fermionic energy spectrum while the phonon

dispersion is for bosons. That means that the former’s occupation is characterized by a Fermi

energy (in the thermalized or zero temperature case) while the latter’s states are always all occupied

and are at least in their ground state.

With the electron and phonon energy dispersion of our material in hand, we now set out with

the objective to find all possible on-shell pathways for, to begin with, one-phonon steps. Given

an incident laser energy �ω, an electron with some momentum k and energy Ek,ν must make a
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transition from an occupied valence band ν, assisted by a phonon with momentum q and energy

Eq,µ from some phonon band µ, to an unoccupied conduction band ρ with energy Ek�,ρ. Hence, the

following two conditions must be satisfied:

Ek,ν + �ω = Ek�,ν + Eq,µ, (9.33)

k = k� + q. (9.34)

We will now detail how these are satisfied to produce the dominant peaks in Raman.

For a one-phonon process where the phonon has momentum k, the electron must be assisted

either on the way up or on the way down. In either case, it must recombine with its hole. If it is

phonon-assisted on the way up from the valence to the conduction band, it can only relax back to

its hole via a vertical phonon emission process. Similarly, if it is phonon-assisted on the way down

from the conduction band to the valence band, it must be initially vertically excited leaving behind

a hole. In order to satisfy momentum conservation (Eq. 9.34) and make it back to its hole, this

means that only q = 0 phonons can be excited - phonons with no quasimomentum modulation. In

the two-atom case, this corresponds to the zig-zag mode, also called the G mode in reference to its

Raman signature: the G peak. In the six-atom unit cell, this corresponds to the breathing mode.

The former is Raman visible while the latter is symmetry-forbidden as we will discuss.

The G peak is produced in two ways. The first involves a phonon-assisted transition of an

electron with momentum q from the valence band to the conduction band. In the excited state, it

still has momentum q since the phonon it produced on the way up “cost” no momentum. On the

other hand, the energy cost of exciting the phonon is finite and is partially paid for by the energy

of the incident laser. The rest of the laser energy goes into the excited electron energy’s difference

with the valence state. This is clear in Figure 9.11 where the blue vertical line denotes the full laser

energy while the red vertical line shows how much is left over after accounting for one G phonon

excitation. Notice that if we consider energies on the scale of the linear Dirac cone, the red line
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is necessarily displaced closer to the conical intersection in momentum space so that the transition

remains on-shell.

The second way to produce the G peak is the reverse of the pathway already described: the

phonon is excited from the valence band to the conduction band via the blue arrow, since it doesn’t

produce a phonon, and then relaxes by producing a phonon on the way down and emitting light

with energy that corresponds to the rest of the electronic energy left to get to its original valence

state.
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Figure 9.11:

There are two equivalent zig-zag G modes. This is clear in the two-atom unit cell phonon

dispersion that is annotated in Figure 9.12. Therefore, the G peak is actually doubly-degenerate.

The polarization of the light will generally favor excitation of one of the degenerate modes over the

other, because of their different transition moments. However, there are few polarization-sensitive

experimental studies out there that look at this so we won’t either.

Like the zig-zag mode in the two-atom unit cell, the breathing mode is the k = 0 phonon mode

in the six atom unit cell. Figure 9.13 shows the two-fold degeneracy of the breathing mode present

in the six-atom unit cell phonon dispersion. These results were obtained by simply extending the

nearest-neighbor tight-binding results of Sahoo et. al.[79] and so the plotted energies shouldn’t be
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taken seriously. The figure is meant to pedagogically show the possible modes in the six-atom unit

cell only. As can be seen, the highest energy k = 0 phonon modes are still the doubly-degenerate

zig-zag modes. Immediately below them, and absent in the two-atom phonon dispersion, are the

breathing modes. They are also doubly-degenerate.
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Figure 9.12: Phonon from formalism in [79] and electronic from formalism in [77].
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Figure 9.13: Phonon from formalism in [79] and electronic from formalism in [77].
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One might expect a corresponding Raman peak to be present in experimental spectra. However,

it is symmetry-forbidden. The atoms all moving away from each other mean that there is no net

change in polarization. Indeed, calculations also show that it has a vanishing transition moment.

Similarly, all other one-phonon processes, corresponding to k = 0 phonons in larger unit cells,

must have transition moments that are too small to produce Raman peaks.

9.9.1 Other Peaks (k �= 0)

Now that we’ve discussed all possible one-phonon processes when momentum is a good quantum

number, we move on to describe two-phonon processes where the k = 0 limitation is no longer

necessary. This is because any displacement in the k-axis of the electron during its transition from

the valence to conduction band from phonon production can now be reversed by exciting or relaxing

a phonon with the opposite momentum on the electron’s way back down to the valence band. This

allows it to return and recombine with its hole.

The most prominant example of such a two-phonon process is an overtone to a finite-momentum

breathing mode, often called the 2D process after its Raman peak. As explained earlier,

zero-momentum breathing modes, be they fundamentals or overtones, are symmetry-forbidden

and have zero transition moments. The symmetry of these transition moments is broken for

finite-momentum breathing modes and so they are allowed. The reason we’re focusing on this

mode’s finite-k overtone is that its transition moment is the greatest of all others. Indeed, in finite

molecules where it is symmetry-allowed because its edges allow it to be polarizable, the breathing

mode - which is sometimes referred to simply by its group symmetry A1g - always produces the

brightest peak.

9.9.2 Sliding

There is another reason that the 2D peak is so bright in graphene’s Raman spectrum. This has to

do with a pathway that we colloquially refer to as the “sliding transition”. Since the energy scale

of the incident laser used in Raman spectroscopy is in the regime of the Dirac cone, the linear
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Figure 9.14: a) From [90, 91]

character of the electronic spectrum is dominant. This means that it is now possible to undergo

the same vertical excitation and same horizontal k-displacement in a continuous interval of starting

momenta, as sketched in Figure 9.14. The left panel of Figure 9.14c shows a reference transition

with some energy δE across the cone δk. The right panel shows how the same transition is possible

“above” or “below” this reference transition with the same δE and δk, hence the term “sliding

transition”.

Aside from the multitude of these transitions, the high peak intensity is also bolstered by the

fact that such transitions add up coherently in the K.H.D. formalism:
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αρ,σ
mv ,mf

=
1

�
�

v,c,m

��φqv ,qc,m(ξ) |χm(ξ)� �χm(ξ) |φqc,qv ,mi
(ξ)�

Emi
− Ev,c,m + �ωI − iΓqc,m

�
. (9.35)

The χm in the sum correspond to the same phonon for a sliding transition. They are summed

up and then squared, allowing their coherence to (generally) increase their magnitude.

9.9.3 D Peak
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Figure 9.15:

We finally consider the case in graphene when the sample is dirty, or small, such that

quasimomentum formally ceases to be a good quantum number. In this case, as insinuated

earlier, a new bright peak appears in the Raman spectrum, the D peak corresponding to the

“finite-momentum” breathing mode that is the brightest peak in related molecules, such as benzene

and its derivatives. Since it is a one-phonon process, it cannot benefit from sliding transitions.

Therefore, its brightness can only come from the strength of its transition moment, which as we

have indicated, is substantial.

D Dispersion

The D peak exhibits a dispersion with respect to incident laser energy. This is shown in Figure 9.16.
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Figure 9.16: From [92]

The reason for this dispersion has to do with the fact that, for instance, at larger laser

frequencies, the resultant electronic momentum must increase with respect to the Dirac cone center

and so a correspondingly larger momentum phonon is excited or destroyed. Since the phonons have

a dispersion of their own, phonons with a different energy from before are excited. In particular for

the D phonon, larger momentum modes cost more energy and so the resultant Raman shift of the

D peak increases with increasing laser energy.

9.9.4 Stokes/Anti-Stokes Anomalies

The asymmetry in the Stokes versus anti-Stokes frequencies of the D and 2D bands are graphene

Raman anomalies. In a small molecule, the Stokes and anti-Stokes bands measure the same

vibrational state, and there cannot be any difference between the two: they are symmetrically
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spaced across the Rayleigh line. For the graphene D band, the asymmetry is instead about 8 or

9 cm−1 .
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The D mode Stokes band is an average of emission and absorption phonon production, with

emission production unshifted. Production in absorption is shifted down 8 cm−1 , by the dispersion

of D and the diminishment cause by energy conservation. The average of the two is 4 cm−1 closer

to the Rayleigh line than the undiminished emission production alone would be (see Figure 9.17).

Similarly, the D mode anti-Stokes production in absorption also consists of two bands, overall

4 cm−1 higher in energy and farther from the Rayleigh band. At 3.5 eV and 1350 cm−1 , the Stokes

vs the anti-Stokes D phonons (reflected about the Rayleigh line for comparison) will differ by

about 8.4 cm−1 . This is an anomalous Stokes, anti-Stokes asymmetry of about 8.4 wave numbers,

in excellent agreement with experiment. Thus, the anomaly has a simple explanation in terms of

phonon production in absorption vs emission.

9.10 DR “Theory”

Martin and Falicov[94] introduced a framework for resonant Raman scattering that was taken up by

the condensed matter community in an attempt to describe the Raman spectrum of graphene. Unlike

the second-order perturbation in K.H.D., their formulation relies on a fourth-order perturbation:

two orders from light-matter interaction and two orders from electron-phonon scattering. The

argument for why such a high-order treatment captures the dominant Raman processes lies in the

fact that two out of the four are “on-shell” or resonant, so that their corresponding denominators

have zero real part, hence the name of this formalism: double-resonance (D.R.). We will now use

this acronym for the rest of this chapter and it is not to be confused with the dephasing relation

discussed earlier in this thesis.

Mathematically, the differential amplitude in D.R. is:

�

f

�����
�

a,b,c

MfcMcbMbaMai

(Ei − Ec − iγc
2
)(Ei − Eb − iγb

2
)(Ei − EA − iγa

2
)

�����

2

δ(Ei − Ef ). (9.36)

The two outer matrix elements in the numerator Mfc and Mai denote light-matter interaction,

corresponding to excitation of an electron from an initial valence state i to a conduction band and
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from the conduction band to a final valence state f respectively, while the inner two, Mcb and

Mba, correpsond to electron-phonon scattering. The corresponding energies of all these states

with respect to the starting energy is given in the denominator, as can be shown in perturbation

theory. Since this is a differential amplitude, the energy that the derivative is taken with respect to

is missing in the denominator.

More precisely, for the two electron-phonon scattering that contributes to the 2D peak in

graphene, the intensity of the Raman spectrum is[77]:

I(ω) =
1

Nq

�

q,ν,µ

Ippq,ν,µδ(ωL − ω − ων
−q − ωµ

q )[n(ω
ν
−q) + 1][n(ωµ

q + 1], (9.37)

where

Ippq,ν,µ =

�����
1

Nk

�

k,β

Kpp
β (k, q, ν, µ)

�����

2

, (9.38)

for

Kpp
ee1(k, q, ν, µ) =

�kπ|Dout |kπ∗� �kπ∗|ΔH−q,µ |k + q,π∗� �k + q,π∗|ΔHq,ν |k,π∗�k,π∗Din |kπ�
(�L − �π

∗
k + �πk − �ων

−q − �ωµ
q − i

γC
k
2

)(�L − �π
∗

k+q + �πk − �ων
−q − i

γB
k
2

)(�L − �π
∗

k + �πk − i
γA
k
2

)
. (9.39)

The decision of the community to use this formalism seems to, at least partly, stem

from the fact that some studies have shown that graphene’s electronic properties are poorly

captured within the Born-Oppenheimer approximation. This has to do with the Dirac cones

where the Born-Oppenheimer surface cross each other signalling a breakdown of that adiabatic

approximation. The added two orders of perturbation theory in electron-phonon scattering can be

described as a diabatic correction to the Born-Oppenheimer K.H.D. formalism.

9.11 DR and the D Peak

Reich and coworkers[93] began with the expression from Falicov et al.[94] that is the transition

amplitude from fourth order perturbation theory, and applied it around the region of graphene’s

133



electronic linear Dirac cone:

K2f,10 = MfMbaMcbM0

�

a,b,c

1

(E1 − Ee
ai − i�γ)(E1 − �ωph − Ee

bi − i�γ)(E1 − �ωph − Ee
ci − i�γ)

.

(9.40)

E1 is the starting energy of a valence electron, Ee
ai = |k|(v2 − v1) is the energy difference between

the electron state in the conduction band at point a and the valence band energy directly below

it, Ee
bi = ∓qv1/2 is the electron energy at point b in the conduction band after “colliding” with

a phonon with energy �ωph and with momentum q, and Ee
ci is the energy of the electron at point

c after “elastically” backscattering. As Figure 9.18 illustrates, Ee
ci is shown to be off-shell or a

“virtual” state with respect to the (unperturbed) electron energy-momentum dispersion of graphite

(or graphene) which appears to serve as the zeroth-order eigenstate basis upon which the authors

perform their perturbation expansion. Their perturbation is electron-phonon scattering. Their

unperturbed system, according to the energies they use and this graph, is the Born-Oppenheimer

Hamiltonian from which Figure 9.18’s energies are obtained. Even if one uses tight-binding

to obtain this spectrum, such treatments result in energy dispersions that agree exactly with

Born-Oppenheimer since the Yang relaxation energy of graphene is almost zero, i.e. the electronic

states of the system lie directly on top of one another (possessing unit Franck-Condon overlap).

Figure 9.18: From [93]
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The authors proceed to set Ee
ci = |k|(v2−v1).With this last step, they are able to reexpress their

sum over a, b, and c as the integral:

K2f,10 =
MfMbaMcbM0(2κ2 − q)

(v2 − v1)3
�
κ2 − q v2

v2−v1

��
κ2 + q v1

v2−v1

�

×
� ∞

0

dk

(κ1 − k)(κ2 − k)
(9.41)

where κ1 = (E1 − i�γ)/(v2 − v1) and κ2 = (E1 − �ωph − i�ω)/(v2 − v1).

The evaluation of this integral leads to their main result:

K2f,10 =
aMfMbaMcbM0�

κ2 − q v2
v2−v1

��
κ2 + q v1

v2−v1

� , (9.42)

where a = ln(κ2/κ1)(2κ2 − q)/[(v2 − v1)
2�ωph].

This means that during this whole path there exists a double resonance and that there exists a

term in this fourth-order perturbation sum that diverges (goes to infinity) when

q =
E1 − �ωph

v2
or

E1 − �ωph

−v1
. (9.43)

There is at least one other work considered seminal on theD peak under the DR treatment[95].

9.12 Numerical Agreement of DR with Graphene’s Raman

Spectrum

The numerical agreement between a particular (approximate) implementation of DR and the

experimentally-obtained spectrum was performed by Venezuela et al. The agreement can be seen

in Figure 9.19.
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Figure 9.19: From [77].

9.13 Appendix

9.13.1 The Born-Oppenheimer Approximation

Consider

H = He + Tn (9.44)

where in atomic units

He = −
�

i

1

2

∂2

∂r2
i

−
�

i,A

ZA

ri,A
+
�

i<j

1

ri,j
+
�

A>B

ZAZB

RA,B

(9.45)

and

Tn = −
�

A

1

2MA

∂2

∂R2
A

, (9.46)

where ri are the positions of the electrons,RA are the positions of the nucleons, ri,A = |ri −RA|,

RA,B = |RA −RB|, ri,j = |ri − rj|, andMA is the mass of nucleon A.

Let us write the eigenfunctions of this Hamiltonian

Ψ(R, r) =
K�

k=1

χk(r;R)φk(R), (9.47)
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such that

Heχk(r;R) = Ek(R)χk(r;R) (9.48)

and

�χk� |χk �r = δkk� (9.49)

for K electronic (eigen)states.

Note that χkφk are a complete basis and we have made no approximation so far except, as we

will show, it is necessary that χk is C2.

The semicolon in χk(r;R) is meant to denote that these electronic wavefunctions are

“parametrized” by the nuclear coordinates R, i.e. we only ever consider χk(r) at a particular

(or “fixed”) value ofR, but this is merely semantics and we can equally correctly write χk(r,R).

�χk� |He |χk�r ≡ Hk�,k(R) = δkk�Ek(R), (9.50)

and is thus diagonal in k.

�χk� |Tn |χk�r ≡ Tn(R)k�,k, (9.51)

is not generally diagonal.
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Tn(R)k,k� =

�
Ψk�

�����
�

A,α

−1

2MA

∂

∂RA,α

∂

∂RA,α

�����χk

�

r

(9.52)

=
�

A,α

−1

2MA

�χk� |χk �r
∂2

∂RA,α

+
�

A,α

−1

MA

�
χk�

����
∂

∂RA,α

χk

�

r

∂

∂RA,α

(9.53)

+

�
χk�

�����
�

A,α

−1

2MA

∂2

∂R2
A,α

χk

�

r

=
�

A,α

−1

2MA

∂2

∂RA,α

δkk� +
�

A,α

−1

MA

�
χk�

����
∂

∂RA,α

χk

�

r

∂

∂RA,α

� �� �
“B.O. off-diagonal correction”

(9.54)

+

�
χk�

�����
�

A,α

−1

2MA

∂2

∂R2
A,α

χk

�

r� �� �
B.O. diagonal correction

.

(9.55)

The last two terms denote the vibronic coupling and can be separated into the

Born-Oppenheimer “off-diagonal” and “diagonal” corrections as indicated.

If we have time-reversal symmetry, i.e. there is no external magnetic field, then �χk(r,R)�r ∈

Rn and so the B.O. off-diagonal term ∝
�
χk�

��� ∂
∂RA,α

χk

�
r
= 0, if k = k�.

We can rewrite this term as:

�
χk�

����
∂

∂RA,α

χk

�

r

=

�
χk�

���
�

∂
∂RA,α

, He

����χk

�
r

Ek(R)− Ek�(R)
. (9.56)

This makes it clear that this term is small when Ek − Ek� � 0 and big when Ek − Ek� �
�
χk�

���
�

∂
∂RA,α

, He

����χk

�
r
which corresponds to the cases when the B.O. states are far apart or

crossing respectively.

Similarly, the B.O. “diagonal” term

∝
�
χk�

�����
∂2

∂R2
A,α

�����χk

�

r

=

�
χk�

���
�

∂2

∂R2
A,α

, He

����χk

�
r

Ek(R)− Ek�(R)
, (9.57)
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exhibits similar behavior (but is also non-zero for k = k�).

If we neglect these two terms then we can solve the diagonal, uncoupled, set of nuclear motion

equations,

[Tn + Ek(R)]φk(R) = Eφk(R), (9.58)

to get {φk,l(R)}l=1,2,.... Hence, the full wavefunction Ψ (r,R) =
�

k,l χk(r;R)φk,l(R).
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10 Asymptotic Equations for Zeros

of Orthogonal Polynomials

I include here some short work on the asymptotic zeros of orthogonal polynomials from the W.K.B.

quantization of finite systems. Most of the ideas here are a variant of W.K.B. results that are already

well-known, though perhaps presented in a new way through the persepective of systems with

finite-dimensional Hilbert spaces.

10.1 Hermite Polynomials from the Holstein-Primakoff Representation

Here we use the Holstein-Primakoff representation for spin systems to derive expressions with

solutions that are conjectured to be the zeros of Hermite polynomials Hn(x) as n → ∞. This

establishes a correspondence between the zeros of the Hermite polynomials and the boundaries of

the position basis of finite-dimensional Hilbert spaces.

The Hermite polynomials are prevalent in many fields. They can be defined as

Hn(x) = (−1)nex
n dn

dxn

�
e−x2

�
. (10.1)

In the physics community, they are perhaps best recognized as the Gaussian-weighted

eigenfunctions (in position representation) of the quantum harmonic oscillator (with � = m =
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ω = 1, a convention that will be used for the rest of the paper):

1

2

�
x2 − d2

dx2

�
e−

x2

2 Hn(x) =

�
n+

1

2

�
e−

x2

2 Hn(x), (10.2)

As such, they are orthogonal over the Gaussian-weighted whole domain,
�∞
−∞ Hm(x)Hn(x)e

−x2
dx =

√
π2nn!δnm. This last property allows their use in Gaussian quadrature, a useful and popular

numerical integration technique where
�∞
−∞ f(x)dx is approximated as

�n
j=1 e

−x2
jf(xj) where xj

are the zeros of Hn(x) and f(x) is a well-behaved function. For this and many other reasons, an

analytic formula for the asymptotic zeros of Hermite and other orthogonal polynomials has been

a subject of much interest[96, 97, 98, 99, 100, 101, 102], especially in the applied mathematics

community and the field of approximation theory.

In this chapter, we examine the position state representation of the eigenstates of finite

dimensional S-spin systems, as expressed in the Holstein-Primakoff transformation. As S → ∞,

the system becomes the infinite dimensional harmonic oscillator. This association allows me to

derive the simple main results presented in eqs 10.6 and 10.7, with solutions that we conjecture

become the asymptotic zeros of the Hermite polynomials (as n → ∞). Furthermore, we

numerically show that this convergence is rather quick and so the expressions can frequently be

used, in many instances of finite-precision application, as the effective zeros of Hn(x) with finite

n, such as in applications of Gaussian quadrature. In a more aesthetic sense, these results also

establish a beautiful correspondence between the boundaries of equal area partitions of circles with

radii that are increasing in a certain manner and the Hermite polynomial zeros.

Spin systems are defined by the fundamental commutation relations between operators Ŝz, Ŝ+

and Ŝ− :

�
Ŝz, Ŝ+

�
= Ŝ+,

�
Ŝz, Ŝ−

�
= Ŝ−,

�
Ŝ+, Ŝ−

�
= 2Ŝz. (10.3)

Associating a spin with a boson c†, Holstein and Primakoff showed that to satisfy these

commutation relations, the operators can be expressed as[103]
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Ŝz = ĉ†ĉ− S, (10.4)

Ŝ+ = ĉ†
�

2S − ĉ†ĉ, and Ŝ− =
�
2S − ĉ†ĉ ĉ. (10.5)

This is a very useful association and has found many applications in the condensed matter field’s

study of many-body spin systems. Each boson excitation represents the “ladder up” finitesimal

excitation away from the spin’s extremal S state. The Hilbert space is finite-dimensional and

possesses 2S + 1 states {−S,−S + 1, . . . , S}. In fact, considering eq. 10.5 it is clear that the

Hilbert space outside this defined space is not even Hermitian.

Transforming from the Holstein-Primakoff bosonic representation to position (and its conjugate

momentum) space (using the relations c† = 1√
2
(q̂ − ip̂) and c = 1√

2
(q̂ + ip̂)) reveals that the

trivial Hamiltonian is the harmonic oscillator: Ĥ = Ŝz = 1
2
(q̂2 + p̂2) −

�
S + 1

2

�
. Moreover,

transformation of the Ŝ+ and Ŝ− in eq. 10.5 reveals that the Hilbert space spans the domain

r2 ≡ p2 + q2 ≤
√
4S + 1. Just as in the Sz representation, 2S states all with the same area

must exist within this domain. Figure 10.1 sketches out what they look like for the {S = 1
2
, S =

1, S = 3
2
}-spin systems.

Figure 10.1: The q-basis representation of a) S = 1
2
, b) S = 1 and c) S = 3

2
systems is shown. The

radius of the Hilbert space’s domain is equal to
√
4S + 1 and so grows along with the number of

allowed basis elements.

For a particular S-spin system, the lowest eigenstate must have the same sign at all q-basis

elements since it must be nodeless. On the other hand, the highest eigenstate must have n − 1

nodes and so the q-basis elements must alternate in sign such that the eigenfunction passes through

zero between them. This latter behavior is sketched in fig. 10.1 in red by the Hermite polynomial

Hn(x) denoting the value of the overlying q-basis element for the highest eigenstate.

For S → ∞, the Hilbert space becomes infinite-dimensional and the Hamiltonian becomes that

of the harmonic oscillator defined over (p, q) ∈ R2 with the associated eigenfunctions proportional

to e−
x2

2 Hn(x). It therefore follows that as S → ∞, the boundaries of the q-basis elements become
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the zeros of the Hermite polynomial Hn(x) where n = 2S since the highest eigenstate must still

have alternating sign with each q-basis element.

Hermite polynomial zeros xj are real and symmetric around x = 0. To determine these

boundary points, the 2S-dimensional Hilbert space’s circular shape in position space can be

exploited. For even 2S, the area of the all the q-basis elements up until the jth boundary (measuring

from the origin) is πr2 2j−1
n+1

. For odd 2S, the area is πr2 2j
n+1

. This is illustrated in fig. 10.2.

a)

x

b)

x

A= r2
2j-1
n+1

A= r2
2j
n+1

Figure 10.2: The area of the central a) 2j−1 or b) 2j q-basis elements that approximately determine
the jth zero of the Hermite polynomial Hn(x) for n even and odd respectively is shaded in blue.
The approximate jth zero is at the right boundary of these regions.

Using simple relations for the area of circle sectors and rectangles, it is possible to relate these

q-basis element areas to xj; The equation involving the approximate zeros of Hermite polynomials

Hn with n even is:

(2j − 1)π

n+ 1
= sin θ + θ, (10.6)

while for odd n it is:

2jπ

n+ 1
= sin θ + θ, (10.7)

where θ = 2 sin−1 xj

r
and r =

√
2n+ 1.

Solving these equations for xj yields the approximate jth zero for the nth Hermite polynomial.

The results for the zeros of the first 50 Hermite polynomials are compared to the exact zeros in
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fig. 10.3. In both cases, eqs. 10.6 and 10.7 converge to the zeros of the Hermite functions quite

quickly1.
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Figure 10.3: Exact jth zeros of the Hermite polynomialsHn(x) for n a) even and b) odd compared
to those obtained from solving eqs. 10.6 and 10.7.

The finding that the boundaries of equal area partitions of growing circles correspond to the

asymptotic zeros of the Hermite functions appears to be a novel one from a search of the literature.

It is all the more surprising that the origin of this one-to-one correspondance stems from the

Holstein-Primakoff representations for finite-dimensional spin systems. Furthermore, on a practical

level, the apparently rapid convergence of these solutions suggests that they may be useful for

more efficient determination of Hermite polynomial zeros for large-dimensional implementations

of Gaussian quadrature.

1J. Katriel, through correspondence, showed that eqns 10.6 and 10.7 agree with the first asymptotic term from
Dominici[101] for n → ∞ for low j (not for maximal j). The latter result makes sense from the point of view that
the maximal xj is always close to the edge of the Hilbert space where the wavefunction goes to zero for any finite n
whereas that of the harmonic oscillator decays forever. Eqs. 10.6 and 10.7 do not agree with higher order terms (w.r.t.
1
n ) in Dominici’s asymptotic expansion.
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10.2 Laguerre Polynomials

Associated Laguerre polynomials can be defined by the Rodrigues formula

L(α)
n (x) =

x−αex

n!

dn

dxn

�
e−xxn+α

�
, (10.8)

and are solutions of the differential equation

xy�� + (α + 1− x)y� + ny = 0. (10.9)

The Laguerre polynomials are proportional to the (appropriately scaled) eigenfunctions of

the radial Hydrogen Hamiltonian as well as the 3d isotropic harmonic oscillator in position

representation. They are also proportional to the eigenstates e−
x
2x

α+1
2 Lα

(E−2−2α)/4(x) of:

x

�
−4

d2

dx2
+

�
1 +

(α− 1)(α + 1)

x2

��
, (10.10)

with energies E−2−2α
4

defined over x ∈ (0,∞) where � = m = 1 (as adopted for the rest of the

paper). This can be rewritten as the Hamiltonian

H = q

�
4p2 +

�
1 +

(α− 1)(α + 1)

q2

��
, (10.11)

where E = 4N + 2 + 2α for N ∈ Z+ in the quantum version.

We consider the simplest case, α = 1, whose eigenfunctions in position space should be the

associated Laguerre polynomials L(1)
E/4−1(q). The phase space picture of this Hamiltonian is shown

in Figure 10.4.

We proceed in the same spirit as we did with the harmonic oscillator finite-dimensional Hilbert

space in my recent communication[104]. The Hilbert space is symmetrical about p = 0 and energy

is less than or equal to E when

(1 + 4p2)q ≤ E. (10.12)
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Figure 10.4: The phase space of the Hamiltonian in eq. 10.11 with α = 1. The contour lines
correspond to isoenergy curves.

Moreover, at p = 0, the point in phase space with corresponding energy E is at q = E. It is

thus simple to determine a system with dimension N = E
4
− 1 has area Eπ

2
= 2(N +1)π. The area

within this region from q = 0 up to q = x is

2

� x

0

√
E − q

2
√
q

dq =

�
Ex
�
1 − x

E

�
+ E sin−1

��
x

E

�
. (10.13)

Hence, for the jth root xj ,

2πj =
√
N + 1

√
xj

�
4− xj

N + 1
+ 4(N + 1) sin−1

� √
xj√

4N + 4

�
, (10.14)
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which in the limit N → ∞ is:

xj =

�
πj

2

�2
1

N
. (10.15)

It is unclear if this agrees with any literature asymptotic value result.

The plot of eq 10.13 compared to the numerically calculated zeros is shown in Figure 10.5 and

seems to converge near q = 0 as expected.

Figure 10.5: Eq. 10.13 compared to exact zeros of Laguerre polynomial L(1)
E/4−1(q).
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