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Molecular mechanisms of CD8+ T cell differentiation 

 

Abstract 

CD8+ T cells are a crucial component of the adaptive immune system and are 

required for optimal protection from most pathogens and cancer. They function by secreting 

pro-inflammatory cytokines and by directly eliminating infected and malignant cells. In order 

to be effective, CD8+ T cells must be activated through a complex sequence of steps 

involving engagement of the antigen-specific T cell receptor (TCR) and other receptors, 

which orchestrate transcriptional, epigenetic, and metabolic changes that direct the 

differentiation of the responding cells. Following optimal activation, naive CD8+ T cells rapidly 

undergo clonal expansion and effector differentiation that enables prompt resolution of 

infection. Following pathogen clearance, a fraction of effector CD8+ T cells differentiate into 

long-lived memory CD8+ T cells that provide robust protection from re-challenge with the 

same microbe. However, in the context of persistent abundance of antigen and inflammation, 

such as in chronic infections and in cancer, the T cells instead become gradually more 

dysfunctional – a state known as T cell exhaustion.  

 The overarching goal of this thesis is to identify the cardinal features and molecular 

mechanisms associated with three main states in which CD8+ T cells exist: T cell memory, T 

cell exhaustion, and T cell effector differentiation. I used two complementary approaches to 

examine CD8+ T cells at the different states in vivo. First, I used classical immunology 

techniques including knockout mice and cellular phenotypic analyses to examine the role of 

cell surface molecules PD-1 and CD39 on CD8+ T cells in the context of memory and 

exhaustion, respectively. Secondly, I developed a novel experimental platform that enables 
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gene perturbation in naive CD8+ T cells in vivo during their differentiation. I used this 

approach to systematically interrogate the transcriptional programming of activated CD8+ T 

cells and to identify novel regulators of effector differentiation. In a proof of concept study, I 

used this system to further define how the transcription factor BATF regulates CD8+ T cell 

activation. Additionally, I used this experimental platform to systematically interrogate the 

functional role of a set of ~80 transcription factors in CD8+ T cell differentiation, and identified 

TGIF1 as a novel regulator of this process.  

The role of the co-inhibitory receptor PD-1 on CD8+ T was examined in mice using an 

acute respiratory infection model. PD-1 is a co-inhibitory receptor that is up-regulated on T 

cells following activation and recruits SHP1/2 phosphatases to directly antagonize signals 

through the TCR and this way inhibit the activation of T cells. It is down-regulated following 

the resolution of an acute infection but remains persistently expressed on CD8+ T cells in 

chronic infections and cancer. As such, PD-1 has been exhaustively studied for its 

contribution to the functional exhaustion of T cells. However, its role in acute infections 

remains less defined. We found that this receptor prevents over-activation and over-

expansion of CD8+ T cells following initial differentiation, and is crucial for optimal 

differentiation of effector CD8+ T cells into functional memory cells. 

Exhausted CD8+ T cells express several markers distinctive of the state. Some, like 

PD-1, Tim-3, and Lag-3 are well known. However, genome-wide transcriptional studies 

identified numerous additional genes that are differentially expressed in the exhausted state. 

Thus, we hypothesized that additional markers may provide characteristic features of the 

exhausted cell state and may function in chronic infections. We investigated one such gene – 

ENTPD1 – that encodes for CD39. This cell surface molecule is an ectonucleotidase that 

hydrolyzes extracellular ATP into ADP and AMP, which can be further broken down to 

immunosuppressive adenosine by CD73. In the context of the immune system, CD39 has 

largely been studied on CD4+ regulatory T cells, which use CD39 as a mechanism to 
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suppress immune responses. However, surprisingly, we found that CD8+ T cells can also 

express CD39, but its expression is largely restricted to terminally exhausted CD8+ T cells. 

These cells are most dysfunctional as measured by the most limited proliferative capacity 

and ability to produce pro-inflammatory cytokines. We have observed this biology in both 

human and mouse chronic viral infections. Additional studies further demonstrated the 

importance of CD39 and the purinergic pathway in regulating lethal immunopathology 

associated with chronic LCMV infection in mice. 

In addition to interrogating memory and exhaustion fates of CD8+ T cells, we also 

examined the initial regulatory programs involved in CD8+ T cell differentiation in vivo through 

gene silencing. Gene perturbation in naive T cells without prior cellular stimulation has been 

a continuous challenge in the field. To circumvent this limitation, we engineered a novel 

experimental platform that enables inducible gene knock-down in any immune cell in mice in 

vivo without prior manipulation of these cells. Initially, I validated this system by knocking 

down BATF and confirmed its essential role in CD8+ T cell responses to acute LCMV 

infection. Additionally, leveraging the inducible nature of the platform, I showed that BATF 

functions in the early stages of T cell activation but becomes dispensable once its 

transcriptional program is initiated.  

Several other transcription factors such as T-bet, Eomes, Bcl6, and Blimp-1 have 

been described to regulate CD8+ T cell differentiation. However, numerous additional 

transcription factors may function in this process based on their rapid up-regulation following 

T cell activation. I used the novel platform to systematically test the functional relevance of 

~80 additional transcription factors in a pooled setting. These experiments identified several 

novel candidate regulators of this process. We validated one such gene – Tgif1 – to confirm 

its role in the effector CD8+ T cell differentiation following acute LCMV infection and provide 

clues to the potential mechanism in which it may function. 
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The above projects have benefited significantly from genome-wide transcriptional 

datasets of cells at various states or of different genotypes that we generated or that 

originate from published studies. One particularly powerful approach to examine differences 

between different groups is gene set enrichment analysis (GSEA) that examines coordinate 

up- or down-regulation of sets of genes rather than assessing differential expression of 

specific genes. This is particularly important because changes in biological processes are 

often guided by relative small changes of groups of genes that act in concert rather than by a 

robust expression change of a single gene. This approach, however, is only informative if a 

relevant gene-set collection is used to analyze the data. Existing collections are largely 

centered around cancer biology and general biological processes but no extensive gene-set 

collection existed that contained information describing immune processes. Thus, we created 

ImmuneSigDB – the largest collection of immunology-focused gene sets to date by 

identifying, annotating, and reanalyzing ~400 published immunology studies. To show its 

broad use, we used it to examine the cross-species conservation of transcriptional responses 

in the immune system. We focused on analyzing transcriptional data from systemic 

responses to sepsis using GSEA and a novel approach, called leading edge metagene 

analysis. Using these approaches, we uncovered shared and species-specific biology in 

mouse and human transcriptional responses to sepsis. 

Deciphering CD8+ T cell biology is key for conceptualizing new medical interventions 

that may boost their activation, memory development, and rejuvenation from functional 

exhaustion. We have determined that PD-1 is essential for optimal CD8+ T cell memory 

responses, and that BATF is a key transcription factor initiating effector T cell transcriptional 

programming. We also identified CD39 as a new marker of terminally exhausted CD8+ T cells 

and uncovered a key role for purinergic signaling in regulating lethal immunopathology in 

LCMV Clone 13 infection in mice. Furthermore, we developed a new experimental platform 

that enables systematic interrogation of gene function in any hematopoietic cell type by 
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inducible knock-down of genes and identified TGIF1 as a novel negative regulator of CD8+ T 

cell responses. We have also developed a new computational resource to improve analyses 

of transcriptional profiles in the immune system. Together, the body of work presented in this 

thesis advances our knowledge of major states of CD8+ T cell biology, uncovering both novel 

mechanisms underlying CD8+ T cell function, as well as highlighting potential novel 

therapeutic targets that may be transformative in creating better vaccines, treating infections, 

or fighting cancer.  
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One school is finished, and the time has come for another to begin. 
 

– Richard Bach, Jonathan Livingston Seagull 
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Chapter 1. Introduction 

Optimal protection of an organism from infections relies on the adaptive immune 

system, comprised of T and B lymphocytes. T lymphocytes are divided into two main subsets 

based on their function and expression of surface molecules CD4 and CD8. CD4+ T helper 

cells produce cytokines that can enhance and regulate appropriate immune responses. CD8+ 

T cells, also known as cytotoxic T lymphocytes (CTL) directly kill aberrant cells to eliminate 

danger and can produce cytokines that stimulate other arms of adaptive as well as innate 

immune system (1-3). Both subsets are generated in the thymus where the developing 

thymocytes undergo genetic rearrangement of T cell receptors (TCR) to create a unique TCR 

on each mature naive cell as it enters the periphery. 

T cells are activated by a series of signals that together induce appropriate 

transcriptional reprogramming of naive T cells as well as inducing metabolic and epigenetic 

changes that together differentiate the responding cells into effector T cells (4-7). Binding of 

the TCR to the cognate peptide presented on appropriate major histocompatibility complex 

(MHC) molecules is the key signal that initiates the activation. Simultaneous engagement of 

the co-stimulatory surface receptor CD28 by B7-1/B7-2 (CD80/CD86) is the key checkpoint 

for T cell activation to proceed (8, 9). Concurrently, the T cells can be modulated by signaling 

through additional co-inhibitory and co-stimulating receptors that, together with cytokine 

receptor signaling, further direct the fate of the cell (9-20). 

Most commonly, the life cycle of a T cell is divided into three main stages: clonal 

expansion, contraction of the T cell pool, and the formation of long-lived T cell memory (6, 

21-25). Immediately following stimulation in the secondary lymphoid organs by dendritic 

cells, T cells proliferate, differentiate into functional effector cells, and migrate to the affected 

tissues where they can eliminate the pathogen (1, 2, 26-29). Following pathogen clearance, 

the majority of the responding T cell clones is no longer needed and is thus eliminated. A 

minor subset of the effector cells, however, differentiates into a long-lived self-renewing pool 
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of memory T cells (6, 30-32). Even though a brief encounter with an antigen is sufficient for 

inducing proliferation and even limited memory differentiation (33-35), it is thought that the 

optimal differentiation of T cells into effector and memory CD8+ T cells is much more complex 

and includes signals through co-stimulatory receptors, cytokines, and other factors (6, 25, 

36-38). The responding pool of effector cells, however, is heterogeneous, consisting of at 

least two distinct sub-populations that have been described to have unique characteristics 

and fates (39-42). Both of these are functional effector cells that degranulate to eliminate 

infected cells, but they have distinct developmental outcome (39-44). These subsets are 

referred to as short-lived memory effector cells (SLEC), which proliferate extensively in 

response to a stimulus but largely contract shortly following resolution of infection, and 

memory progenitor effector cells (MPEC) that expand less initially but have the capacity to 

generate the pool of long-lived memory cells (39, 40). These cells can be distinguished by 

their expression of cell surface molecules KLRG1, CD127 (IL-7Rα), and CD25 (IL-2Rα): the 

SLEC cells are KLRG1high and CD25high while the MPECs express high levels of CD127 (39-

42, 45-47). Memory T cells can be maintained in the body for the life span of an organism 

and rapidly respond to clear the same pathogen upon re-challenge.  

The fate of responding cells is altered in the context of persistent antigen exposure 

and inflammation, such as in the case of chronic viral infection and cancer. Persistent 

antigen exposure alters T cell contraction and memory formation, leading cells instead into a 

state of dysfunction known as exhaustion (21). This dysfunction is associated with loss of 

proliferative capacity, ability to produce effector cytokines such as IFN-γ and TNF-α, as well 

as other effector functions. Exhausted T cells are also characterized by persistent expression 

of inhibitory receptors such as PD-1, TIM-3, LAG-3 and others, and it is thought that 

continuous engagement of these receptors largely contributes to the formation and 

maintenance of exhaustion state (21, 48). During the course of chronic infection, T cells 

become progressively more exhausted as they increasingly lose their ability to proliferate and 
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acquire the expression of more co-inhibitory receptors. Two separate subsets of exhausted 

CD8+ T cells have been described and can be distinguished based on their level of 

expression of PD-1 and transcription factors T-bet and Eomesodermin. While T-bethigh PD-1int 

progenitor exhausted T cells maintain some ability to proliferate and produce cytokines, the 

Eomeshigh PD-1high terminally exhausted cells express highest levels of co-inhibitory function 

and while they maintain some cytotoxic effect, they lose the ability to proliferate and produce 

pro-inflammatory cytokines (49, 50). While exhaustion is likely to be a product of evolution to 

protect the infected host from overt immunopathology, the rejuvenation of exhausted T cells 

through PD-1 pathway blockade shows to be effective in combating certain chronic infections 

and cancer (51-54).  

The PD-1:PD-L co-inhibitory pathway regulates dysfunctional T cells during chronic 

viral infection and cancer, but the role of this pathway in effector and memory responses 

following acute infection or vaccination remains less clear (55). PD-1 pathway is described in 

more detail in Chapter 2. We examined the role of the PD-1 pathway in regulating responses 

of CD8+ T cells during a respiratory infection and demonstrated that inhibitory signals from 

the PD-1:PD-L pathway are needed for optimal generation and function of memory CD8+ T 

cells following an acute viral infection (Chapter 2). Mice deficient in the PD-1 pathway (PD-1 

KO or PD-L1/L2 DKO) exhibit impaired CD8+ T cell memory following influenza infection, 

including reduced virus-specific memory CD8+ T cell numbers and compromised recall 

responses. PD-1 deficiency in CD8+ T cells results in cell intrinsic alterations during initial 

CD8+ T cell priming that leads to excessive early CD8+ T cell expansion, but increased CD8+ 

T cell contraction and aberrant effector to memory CD8+ T cell transition. Overall, our studies 

reveal a critical and previously unappreciated role for PD-1 as an integrator of early CD8+ T 

cell activation signals that promote optimal CD8+ T cell memory formation and durability. This 

novel PD-1 function has therapeutic implications for the generation of T cell memory during 

PD-1 cancer immunotherapy and modulation of the PD-1 pathway to enhance immune 
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memory following acute infection or prophylactic vaccination. 

PD-1 has been extensively characterized in T cell exhaustion, but there is an 

increasing number of molecules that are becoming appreciated to function on T cells during 

persistent infections in cancer. While cancer therapies targeting PD-1 have had 

transformative effects on disease management, many patients remain who do not respond or 

respond poorly. Thus, defining novel markers of exhaustion is important both for identifying 

and potentially reversing T cell exhaustion, by targeting other molecules in addition to or in 

lieu of PD-1. Herein, we show a new cell surface molecule, CD39, to be a marker of 

exhausted CD8+ T cells in chronic viral infection (Chapter 3). CD8+ T cells specific for 

hepatitis C virus (HCV) or human immunodeficiency virus (HIV) in infected patients express 

high levels of CD39, but those specific for latent Epstein-Barr Virus (EBV) and 

cytomegalovirus (CMV) do not. CD39 is an ectonucleotidase that hydrolyzes extracellular 

ATP into ADP and AMP. A secondary enzyme, CD73, further breaks down AMP to free 

adenosine that has been shown to suppress the immune system (56-60). As such, CD39 has 

largely been studied on regulatory T cells in the context of the immune system, since 

production of free adenosine is one of the immunoregulatory mechanisms they employ (61, 

62). Thus, it is perhaps surprising that CD39 is also expressed by CD8+ T cells, as previous 

studies have shown that it is not expressed on CD8+ T cells or other subsets of T cells in 

healthy patients such as memory and naive cells (63-66). CD39 expressed by CD8+ T cells in 

chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a 

transcriptional signature of T cell exhaustion and correlates with viral load in both HIV and 

HCV. We also examined this phenomenon in the mouse model of Lymphocytic 

Choriomeningitis Virus (LCMV) using the acute Armstrong strain that is cleared within 8-10 

days, and the chronic Clone 13 strain that can persist for several months (67-69). In chronic 

LCMV infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that 

is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell 
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population is enriched for cells with the phenotypic and functional profile of terminal 

exhaustion in which T cells further lose proliferative capacity, the ability to produce IFN-γ and 

TNF-α and are marked by highest expression of PD-1 and the transcription factor Eomes 

(49, 50). Furthermore, CD39-deficient animals succumb to Clone 13 infection due to overt 

immunopathology, similar to mice lacking other immunosuppressive pathways such as PD-1 

or PD-L1 (48). These findings provide a new marker of T cell exhaustion, and implicate the 

purinergic pathway in the regulation of chronic infections. 

While CD8+ T cells memory and exhaustion are a long-term outcomes to acute or 

chronic infection, respectively, immediately following initial stimulation the CD8+ T cells 

undergo effector CD8+ T cell stimulation accompanied by proliferation with the goal of prompt 

resolution of infection. This differentiation of effector CD8+ T cells is a critical step for the 

development of protective responses to pathogens and for effective vaccines. In the first few 

hours after activation, naive CD8+ T cells initiate a transcriptional program that leads to the 

formation of effector and memory T cells, but the regulation of this process is poorly 

understood. Investigating the role of specific transcription factors (TFs) in determining CD8+ 

effector T cell fate by gene knockdown with RNAi is challenging because T cells are 

refractory to transduction with viral vectors without extensive ex vivo stimulation, obscuring 

the earliest events in effector differentiation. To overcome this obstacle, we developed a 

novel strategy to test the function of genes in naive CD8+ T cells in vivo by creating bone 

marrow chimera from hematopoietic progenitors transduced with an inducible shRNA 

construct (Chapter 4). Following hematopoietic reconstitution, this strategy allowed inducible 

in vivo gene knockdown in any cell type that developed from this transduced progenitor pool. 

We showed that lentivirus-transduced progenitor cells reconstituted normal hematopoiesis 

and allowed the development of naive CD8+ T cells that were indistinguishable from wild-type 

naive T cells. This approach allowed efficient gene knock-down to be induced in vivo without 

subsequent manipulation. We applied this strategy to study the effect of the transcription 



	 6	

factor Basic Leucine Zipper Transcription Factor, ATF-Like	(BATF) in CD8+ T effector T cell 

differentiation. We show that BATF is essential for initial commitment of naive CD8+ T cells to 

effector differentiation but becomes dispensable by 72h. This approach allows the study of 

gene function in vivo in unperturbed cells of hematopoietic origin that are refractory to viral 

transduction. 

Additionally, we used this system to systematically test the functional role of ~80 

transcription factors in CD8+ effector T cell activation and proliferation through a targeted in 

vivo RNAi screen. We identified many known and several potentially novel genes functioning 

in this process. Through validation studies, we focused on a potentially novel negative 

regulator of T cell activation, Tgif1 (Chapter 5). While this gene has not yet been studied in 

immune cells, previous work in other cells suggest it may have a role downstream of TGF-β 

and retinoic acid (70-72). Knock down of TGIF1 in CD8+ T cells responding to LCMV 

infection in vivo results in significantly increased accumulation of these cells and skews the 

effector differentiation toward memory progenitor effector cells (MPEC). Similar results were 

observed in mice that selectively lack TGIF1 in peripheral CD8+ T cells. Our data hint at a 

potential mechanism for this effect, suggesting that TGIF1 may be able to directly regulate 

Blimp-1, a transcription factor well appreciated for driving terminal effector CD8+ T cells 

differentiation (73, 74). Additionally, these TGIF1 deficient mice exhibit enhanced anti-

tumoral immunity, consistent with the hypothesis that TGIF1 dampens CD8+ T cell 

responses.  

Transcription factors included in the targeted in vivo RNAi screen in CD8+ T cells 

were prioritized by analyzing previously published publicly accessible gene expression 

profiling datasets from mouse CD8+ T cells responding to infection (39, 40, 75, 76). Gene 

expression profiling has become a mainstay in immunology, but subtle changes in gene 

networks related to biological processes are hard to discern when comparing various 
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datasets (77, 78). For instance, conservation of the transcriptional response to sepsis in 

mouse models and human disease remains controversial (79, 80). To improve transcriptional 

analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of 

~5,000 gene-sets from diverse cell states, experimental manipulations and genetic 

perturbations in immunology (Chapter 6). Analysis using ImmuneSigDB identified signatures 

induced in activated myeloid cells and differentiating lymphocytes that were highly conserved 

between humans and mice. Sepsis triggered conserved patterns of gene expression in 

humans and mouse models. However, we also identified species-specific biological 

processes in the sepsis transcriptional response: while both species up-regulated 

phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB 

enables granular analysis of transcriptome data to improve biological understanding of 

immune processes in humans and mice. 

Together, the data presented in this thesis provide new insights in the biology of CD8+ 

T cells, establish a novel experimental platform and a new resource for analyzing immune 

transcriptome datasets, and uncover conserved and distinct transcriptional patterns in mouse 

and human inflammatory responses.   
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Chapter 2: PD-1 pathway regulates development and function of memory CD8+ 

T cells following respiratory viral infection 

 

Parts of this chapter are currently under revision publication as: 

Jernej Godec*, Pamela M. Odorizzi*, Keturah E. Brown, Kristen E. Pauken, Kathleen Yates, 

Shannon M. Grande, Loise M. Francisco, Mohammed-Alkhatim Ali, Sabrina Imam, W. 

Nicholas Haining, E. John Wherry, Arlene H. Sharpe. The PD-1 pathway regulates 

development and function of memory CD8+ T cells following respiratory viral infection. 

*Co-first author. 

 

Introduction 

The development of effector and memory CD8+ T cells requires coordinated signals 

from antigen-TCR (signal 1), co-stimulation (signal 2), and inflammation (signal 3) (10, 11). 

The quantity and quality of signals 1, 2, and 3 can impact CD8+ T cell activation, but exactly 

how such signals regulate memory CD8+ T cell differentiation remains poorly understood. 

Signal 2 encompasses a large group of co-stimulatory and co-inhibitory pathways. In 

general, co-stimulatory signals such as CD28 and ICOS can augment survival and function, 

enhance metabolic activity of effector T cells and promote sustained responses (9, 81). 

Conversely, co-inhibitory receptors such as CTLA-4 and PD-1 dampen these positive 

signals. Signal 2 has come under intense focus given the recent application of antibodies 

blocking co-inhibitory receptors for the treatment of cancer and chronic infections (48, 51, 53, 

54). Disrupting the PD-1:PD-L pathway during chronic infections and cancer can enhance T 

cell activity and improve outcomes (48, 53, 54), and has shown 30–50% response rates in 

melanoma and other cancers (82, 83). Given these clinical successes and increasing use of 

PD-1 pathway blockade, a better understanding of how disruption of this pathway affects 
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immune responses is warranted. A major unanswered question is how this pathway 

regulates the formation and/or differentiation of CD8+ memory T cells, particularly important 

considering susceptibility of cancer patients to acute infections.  

There are currently conflicting data about the role of the PD-1 pathway in effector and 

memory CD8+ T cell differentiation during acute infection. Lack of PD-1:PD-L signals during 

primary infection with some strains of LCMV results in more robust effector T cell responses 

(48, 84), and can enhance CD8+ T cell memory and/or skew T cells toward central memory 

(85). In addition, the secondary expansion of unhelped memory CD8+ T cells is increased by 

PD-1 blockade (86). Other studies, in contrast, reported that loss of the PD-1 pathway during 

acute infection can diminish T cell responses (87-90). Consequently, the role of the PD-1 

pathway in the development of effector and memory CD8+ T cells following acute infections 

remains incompletely understood.  

The PD-1:PD-L pathway is particularly important is in the respiratory tract. While 

human anti-PD-1 cancer immunotherapy has been generally well tolerated, several reports of 

pneumonitis have raised concerns about respiratory complications following PD-1 pathway 

blockade (53, 54). During acute infection in the lung, PD-1:PD-L interactions may inhibit 

CD8+ T cell function, which can limit tissue damage but also impair optimal pathogen control 

(91). Indeed, antibody blockade of PD-L1 during HMPV and/or genetic deletion of PD-1 

during influenza infection enhanced CD8+ T cell functionality early in the immune response 

(91). Moreover, blockade of PD-L1 during HMPV re-challenge improved secondary CD8+ T 

cell response and viral clearance (91). However, a better understanding of the consequences 

of PD-1 signals during acute respiratory infections is needed to determine how PD-1 controls 

the balance between immunopathology and generation of long-term CD8+ T cell memory.  

To address these issues we interrogated the role of the PD-1 pathway in effector and 

memory CD8+ T cell differentiation during influenza virus infection in mice lacking PD-1 (PD-1 

KO) or both ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC) (PD-L1/L2 DKO). Lack of PD-1:PD-
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L signals led to compromised CD8+ T cell memory, including reduced memory CD8+ T cell 

numbers and impaired secondary responses. While some effects may be due to altered 

inflammation and/or viral control in the complete absence of PD-1 pathway, there were major 

cell-intrinsic alterations in CD8+ T cell memory, as PD-1 KO CD8+ T cells adoptively 

transferred into WT mice had similar defects. These data demonstrate a crucial and 

previously unappreciated role for PD-1 in tempering the strength of initial activation to 

promote optimal CD8+ T cell memory formation, and have implications for clinical use of PD-

1/PD-L1 blockade.   
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Results 

CD8+ T cell memory is impaired in mice lacking PD-1 signaling 

To investigate the impact of PD-1 pathway deficiency on CD8+ T cell memory 

development following acute respiratory viral infection, WT, PD-1 KO or PD-L1/L2 DKO mice 

were infected with H3N2 influenza virus X31-GP33 (92) and virus-specific CD8+ T cells were 

examined 60-85 days later. The frequency and number of virus-specific memory CD8+ T cells 

were reduced in the lungs of PD-L1/L2 DKO and PD-1 KO mice (Figure 2.1, A – D). While 

true for all responses examined, the magnitude of the difference was greater for 

subdominant CD8+ T cell responses (PA224-233-specific) than for immunodominant (NP366-374-

specific) responses. A similar decrease in CD8+ T cell responses was observed in the spleen, 

mediastinal (lung-draining) lymph node (dLN), and bone marrow (Figure 2.2, A – C). In 

addition, fewer memory CD8+ T cells from the PD-L1/L2 DKO mice produced IFN-γ and TNF-

α (Figure 2.2D). 

We also examined the effects of PD-1 deficiency on a systemic infection using the 

acute lymphocytic choriomeningitis virus (LCMV) Armstrong infection. We observed a similar 

defect in the relative abundance of memory CD8+ T cells in the absence of PD-1 signaling 

suggesting that this effect was not restricted to the respiratory infection with influenza but 

may have broader implications to other infections (Figure 2.3, A and B). 

 

Decreased CD8+ T cell memory in mice lacking PD-1 signaling results in poor 

resolution of secondary infection 

To test whether PD-1:PD-L interactions during primary viral infection affected 

secondary responses, we re-challenged X31-GP33 immune WT, PD-1 KO and PD-L1/L2 

DKO mice with the heterotypic H1N1 strain of influenza virus PR8-GP33 (93). Since 

neutralizing antibodies do not cross-react between these viruses, memory CD8+ T cells play 

a central role in recall responses and protective immunity in this setting (93-95). PD-1 KO 
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Figure 2.1. CD8+ T cell memory is impaired in PD-1 pathway-deficient mice. (A, B) 
Representative plots (left) show the frequency of PA224

+ CD8+ T cells in the lungs of X31-GP33 
infected WT or PD-L1/L2 DKO (A) and WT or PD-1 KO mice (B) on d60+ p.i. Numbers indicate 
percent of PA224 (PA) and NP366 (NP) tetramer+ CD8+ T cells. (C, D) Summary of numbers of 
memory CD8+ T cells in the lung gated as in (A, B). Data are representative of 3-5 independent 
experiments with 4-5 mice per experiment. Significance was assessed using Student’s t-test; *P < 
0.05, **P < 0.01, *** P < 0.001.	
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Figure 2.2. CD8+ T cell memory is impaired in PD-1 pathway-deficient mice. (A-C) Summary of 
frequencies of WT and PD-L1/2 DKO memory CD8+ T cells specific for influenza epitopes in the 
spleen (A), bone marrow (B) and lung draining LN (C) at d35+ p.i. with X31-GP33. (D) Summary of 
frequencies of cytokine-producing CD8+ CD44+ T cells from the lung at d60+ p.i. stimulated ex vivo 
with NP366. All data are representative of 3-5 independent experiments with 4-5 mice per 
experiment. Significance was assessed using Student’s t-test; *P < 0.05, *** P < 0.001. 
Parts of this figure were generated by Keturah Brown. 
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Figure 2.3. PD-L1/L2-DKO mice have decreased relative abundance of virus-specific 
memory CD8+ T cells following systemic LCMV-Armstrong infection. Fraction of GP33-41 
(GP33) or GP276-286 (GP276) tetramer positive CD8+ T cells in the spleen (left) and peripheral blood 
(right) at d53 following primary intraperitoneal LCMV-Armstrong infection. 
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and PD-L1/L2 DKO mice had significantly increased viral titers in the lung compared to WT 

mice 3.5 days (d3.5) following re-challenge (Figure 2.4A) and lost more weight (Figure 2.4B). 

Additionally, lower frequencies and total numbers of tetramer+ as well as cytokine-producing 

CD8+ T cells were observed in the lung at d3.5 post-rechallenge in PD-L1/L2 DKO mice 

(Figure 2.4, C – E). By d7 post re-challenge the frequencies, numbers, and function of virus-

specific CD8+ T cells in the lungs were comparable in WT and PD-L1/L2 DKO mice (Figure 

2.5, A – C). Thus, PD-1 pathway deficiency results in compromised memory CD8+ T cells 

that failed to mount optimal recall responses. This defect in memory CD8+ T cell responses in 

the absence of PD-1 signals manifests as a delay in the kinetics of viral clearance (Figure 

2.5D). Taken together, these data indicate a key role for the PD-1 pathway in regulating the 

development of optimally functional CD8+ T cell memory.  

 

CD8+ memory T cell defect in absence of PD-1 signaling is not due to aberrant mTOR 

signaling 

While PD-1 is largely appreciated for directly antagonizing TCR-proximal signaling, it 

has also been shown to increase the expression of phosphatase PTEN, which can facilitate 

PIP3 degradation to antagonize PI3K/mTOR function (96, 97). Importantly, signaling through 

mTOR complex 1 (mTORC1) has been previously established to antagonize CD8+ T cell 

memory differentiation in a cell-intrinsic way (98). Additionally, mTOR inhibition using the 

small molecule antagonist Rapamycin reduced this antagonism and resulted in increased 

CD8+ T cell memory (98). To examine whether the memory CD8+ T cell defect observed in 

the absence of PD-1 signaling was due to aberrant mTORC1/2 signaling, we analyzed 

whether mTOR inhibition with Rapamycin would rescue the memory defect in PD-L1/L2-DKO 

mice. Consistent with previous reports, daily administration of Rapamycin for 35 days 

resulted in increased relative abundance of virus-specific memory CD8+ T cells in WT mice 

(Figure 2.6). However, Rapamycin did not significantly affect the virus-specific memory CD8+ 
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Figure 2.4. CD8+ T cell memory is impaired in PD-1 pathway-deficient mice. (A) Influenza viral 
titers in the lung at d3.5 p.i. following re-challenge of X31-GP33 immune WT and PD-L1/L2 DKO 
mice with PR8-GP33. (B) Weight loss in WT and PD-L1/L2 DKO immune mice following re-
challenge with PR8-GP33. (C, D) Frequencies (C) and number (D) of tetramer+ CD8+ T cells in 
lungs of X31-GP33 immune WT and PD-L1/L2 DKO mice at d3.5 following re-challenge. (E) 
Representative plots of intracellular cytokine staining for IFN-γ and TNF-α production in cells from 
(C) stimulated ex vivo with NP366 (E, left) and summary of the percentages of responding cells (E, 
right). Data are representative of 3-5 independent experiments with 4-5 mice per experiment. 
Significance was assessed using Student’s t-test; *P < 0.05, **P < 0.01. 
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Figure 2.5. Influenza-specific CD8+ T cell numbers normalize at the height of secondary infection, but 
functionality remains impaired in PD-1 pathway-deficient mice. (A) Representative plots (left) show the 
frequency of GP33

+ (upper), PA224
+ (middle) and NP366

+ (lower) CD8+ T cells in the lungs of X31-GP33 
immune WT and PD-L1/L2 DKO mice on d7 post-rechallenge with PR8-GP33. Summary of frequencies of 
CD8+ T cells specific for influenza epitopes is shown to the right. (B) Summary of numbers of WT and PD-
L1/L2 DKO CD8+ T cells specific for influenza epitopes in the lung on d7 post-rechallenge with PR8-GP33. 
(C) Representative plots of ICS for IFN-γ and TNF-α production in lung CD8+ T cells from (A) stimulated ex 
vivo with NP366. Fraction of responding cells summarized to the right. (D) Kinetics of viral clearance in WT 
and PD-L1/L2 DKO mice following secondary infection with PR8-GP33 at d35 following primary X31-GP33 
infection. (E) Representative plots of intracellular cytokine staining for IFN-γ and TNF-α production in lung 
CD8+ T cells on d10 p.i. following ex vivo stimulation with NP366. Representative plots gated on CD8+ CD44+ 
T cells (left) and summary of percent responding cells (right) from 5 mice per group. Data are representative 
of 2-4 independent experiments with 4-5 mice per experiment. Significance was assessed using Student’s t-
test; *P < 0.05. 
Parts of this figure were generated by Keturah Brown. 
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Figure 2.6. mTOR inhibition with Rapamycin does not rescue memory CD8+ T cell defect 
observed in the absence of PD-1 signaling. Fraction of GP33 (left) or NP366 (right) tetramer 
positive CD8+ T cells in the spleen (A), lung (B), and dLN (C) at d35 following X31-GP33 influenza 
infection. Mice were either treated with Rapamycin daily from d-1 to d35 i.p. or treated with the 
vehicle control. 
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T cell abundance in mice lacking PD-1 signaling like it did in WT mice (Figure 2.6). These 

data suggest that the functional T cell memory defect associated with PD-1 signaling 

deficiency is associated with a mechanism other than aberrant mTORC1/2 signaling. 

 

The PD-1 pathway regulates initial CD8+ T cell expansion and contraction 

Given the ability of PD-1 to modulate T cell activation, we hypothesized that 

alterations in CD8+ T cell memory stem from changes early in T cell priming. To test this, we 

compared influenza-specific CD8+ T cell responses at the height of the primary response, d8-

10 post-infection (p.i.) with X31-GP33. While all mice had similar frequencies of influenza-

specific CD8+ T cells in the lung, there was a significant increase in the total number of CD8+ 

T cells in PD-L1/L2 DKO mice (Figure 2.7A). The enhanced early expansion of CD8+ T cells 

in PD-L1/L2 DKO mice was also associated with a subsequent decrease in the frequency of 

influenza-specific CD8+ T cells during the contraction phase, d15-20 p.i. (Figure 2.7B). While 

there was no significant difference in total numbers at d15-20, the ratio of DKO:WT virus-

specific CD8+ T cells began to dramatically decline after d10 p.i. (Figure 2.7C). Of note, the 

immunodominant (NP366-specific) CD8+ T cell responses displayed slower kinetics in this 

deterioration (Figure 2.7C). Thus, while PD-1 pathway deficiency led to an initial increase in 

virus-specific CD8+ T cells, there was an erosion of virus-specific CD8+ T cell responses in 

PD-L1/L2 DKO mice during the establishment of immunological memory. Analysis of CD8+ T 

cell functionality at d10 p.i. revealed no significant differences in the frequency or quality of 

cytokine-producing cells in the lungs of WT or PD-L1/L2 DKO mice (Figure 2.4E). In addition, 

KLRG1, CD127, and CD122 were not dramatically different between WT, PD-1 KO or PD-

L1/L2 DKO at effector or memory time points (Figure 2.8A). We further examined the 

potential for regulation through the PD-1 pathway and found that PD-L1 and PD-L2 

expression increased substantially on both hematopoietic and non-hematopoietic APCs 

including DCs, macrophages, B cells, epithelial and endothelial cells in the lung during 
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Figure 2.7. Altered effector CD8+ T cell expansion and contraction in the absence of PD-1. 
(A, B) Frequencies (left) and numbers (right) of indicated tetramer+ CD8+ T cells in the lungs of WT 
and PD-L1/L2 DKO mice at d10 (A) and d15-20 (B) after primary X31-GP33 infection. (C) Ratios of 
numbers of influenza-specific CD8+ T cells in PD-L1/L2 DKO and WT mice over time after primary 
X31-GP33 infection. Significance was assessed using Student’s t-test; *P < 0.05, *** P < 0.001.	
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Figure 2.8. Phenotypic analysis of memory markers and PD-1, PD-L1, and PD-L2 expression 
on cell subsets following influenza infection. (A) Longitudinal analysis of KLRG1, CD127, and 
CD122 expression in WT, PD-1 KO, and PD-L1/PD-L2 DKO mice at 8, 20, and 30 days p.i. in the 
lung. Representative plots of KLRG1 and CD127 expression are shown in upper panels. Summary 
of KLRG1 and CD127 frequencies and CD122 MFI at the indicated time points are shown in upper 
panels.	
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influenza infection (Figure 2.9, A – C). Moreover, upon influenza infection PD-1 expression is 

rapidly up-regulated by CD4+ and CD8+ T cells (Figure 2.9, D and E). These findings indicate 

substantial and dynamic interactions between PD-1 and PD-L1/L2 can occur in the 

respiratory tract during influenza infection. Together, these data suggest a key regulatory role 

for the PD-1 pathway in the effector phase that promotes an optimal transition to CD8+ T cell 

memory.  

  

Increased proliferation and death of CD8+ T cells without PD-1 signaling 

To directly investigate the mechanism responsible for the quantitative differences 

between WT and PD-1 pathway deficient effector CD8+ T cell responses, we performed 

transcriptional profiling of influenza-specific CD8+ T cells from the lungs of WT and PD-L1/L2 

DKO mice at d8 p.i. We focused on subdominant epitope (PA244 and GP33) responses that 

exhibited more profound phenotypic and functional differences. Gene set enrichment 

analysis (GSEA) using Gene Ontology (GO) (78, 99) revealed that most of the significantly 

enriched pathways (p<0.001, FDR<0.001) were related to cell division (Figure 2.10A). We 

further analyzed three representative pathways enriched in the WT cells – mitosis, spindle 

assembly, and DNA replication (Figure 2.11A). Among those genes highly over-expressed in 

WT relative to PD-L1/L2 DKO CD8+ T cells, the majority were members of these pathways 

(Figure 2.10B). These data suggest a direct link between PD-1:PD-L signals and control of 

cell cycle during early activation and proliferation of virus-specific CD8+ T cells in the lung 

during influenza infection.  

To assess the relationship between PD-1 signals and cell division, we compared the 

proliferation and cell death of influenza-specific CD8+ T cells on d6-8 p.i. in WT and PD-L1/L2 

DKO mice. At d8 p.i., more influenza-specific CD8+ T cells in the spleens of PD-L1/L2 DKO 

mice expressed the cell cycle protein Ki-67 compared to WT mice (Figure 2.11D), consistent 

with the higher cell numbers observed in the lung of PD-L1/L2 DKO mice at this time point 
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Figure 2.9. Phenotypic analysis of memory markers and PD-1, PD-L1, and PD-L2 expression 
on cell subsets following influenza infection. (A – C) Expression of PD-L1 (black) and PD-L2 
(green) in lung myeloid subsets and B cells (A), endothelial cells (B) and epithelial cells (C) 
following primary X31-GP33 influenza infection. Gating for lung myeloid subsets and B cells shown 
to the left and summarized data to the right. (D, E) Wild type mice were infected with X31-GP33 
influenza and antigen-experienced CD44+ CD8+ and CD4+ T cells were analyzed for their 
expression of PD-1 before (d0) and after (d3-d12) infection in lung (D) and spleen (E). 
Representative flow cytometry histograms and summary of data of 5 mice per group shown for 
each population. Significance was assessed using Student’s t-test; *P < 0.05, **P < 0.01, *** P < 
0.001.	
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Figure 2.10. Altered expression of genes representing cell division pathways in WT versus 
PD-L1/L2 DKO virus-specific CD8+ T cells and reduced cell survival in the absence of PD-1 
signaling. (A) Significantly enriched (FDR<0.01) gene sets in WT CD8+ T cells clustered based on 
the extent of gene member overlap and annotated for the biological states/processes they 
represent. (B) Top and bottom 250 differentially expressed genes in subdominant-epitope (GP33

 

and PA224) specific WT and DKO CD8+ T cells ranked by signal-to-noise values following filtration 
to top 10% of genes with highest mean absolute deviation across samples. Membership of genes 
in the three representative GO terms is shown on the right.	
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Figure 2.11. CD8+ T cells undergo robust proliferation but have reduced survival in 
the absence of PD-1 signaling in influenza-infected mice. (A) Representative GO 
gene sets enriched in whole genome transcriptional profiles from GP33 and PA224 specific 
CD8+ T cells from lungs of WT versus PD-L1/L2 DKO mice d8 p.i. (B) Representative flow 
cytometric analysis of Ki-67 expression by NP366-specific CD8+ T cells from the lung of WT 
and PD-L1/L2 DKO mice at d8 p.i. (C, D) Numbers indicate fraction of Ki-67+ NP366

+ CD8+ 
T cells in lung (C) and spleen (D). (E) Flow cytometric analysis of active caspases by 
FLICA staining of NP366-specific lung CD8+ T cells from WT and PD-L1/L2 DKO mice at d8 
p.i. (F, G) Numbers indicate fraction of FLICA+ NP366

+ CD8+ T cells in lung (F) and spleen 
(G) based on unstained controls. Significance was assessed using Student’s t-test; *P < 
0.05, **P < 0.01. Data are representative of 2 independent experiments with 4-5 mice per 
experiment. Significance was assessed using Student’s t-test; *P < 0.05. 
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 (Figure 2.7A). However, significantly fewer virus-specific CD8+ T cells were Ki-67+ in the 

lungs of PD-L1/L2 DKO mice (Figure 2.11, B and C). These findings suggest that the 

increased number of CD8+ T cells in the lungs of PD-1 KO and PD-L1/L2 DKO mice is largely 

due to robust proliferation in lymphoid organs and homing/trafficking of these CD8+ T cells to 

the lung. Interestingly, PD-L1/L2 DKO mice had a higher frequency of influenza-specific 

CD8+ T cells that were positive for active caspase staining (FLICA) in the lung, but not in the 

spleen, on day 8 p.i. (Figure 2.11, E – G), consistent with the increased contraction of the 

DKO populations. Thus, the PD-1 pathway tempers early CD8+ T cell proliferation in 

lymphoid tissues, which is critical for CD8+ T cell survival at the site of infection and 

subsequent memory formation. 

 

Absence of PD-1 signaling enhances primary influenza infection clearance 

One reason for altered proliferation/survival dynamics of CD8+ T cells in PD-1 

pathway deficient mice could be enhanced clearance of primary influenza infection, resulting 

in truncated exposure to the optimal levels of antigen and inflammation needed for proper 

memory development. Indeed, PD-1 pathway deficient mice cleared influenza virus more 

rapidly than WT mice (Figure 2.12A). Enhanced control of infection was also associated with 

reduced weight loss and faster recovery (Figure 2.12B). We also noted slight yet statistically 

significant differences in initial viral clearance between PD-1 KO and PD-L1/L2 DKO mice 

(Figure 2.12A). We hypothesize that these minor differences may arise from additional 

binding partners for these molecules, such as PD-L1 interacting with B7-1 and PD-L2 with 

RGMb (100, 101). Altered viral control and weight loss were associated with a trend toward 

more severe lymphocytic infiltration and injury in the lungs in the absence of PD-1 pathway 

signals (Figure 2.12, C and D). Thus, in PD-1 KO and PD-L1/L2 DKO mice, control of 

infection was accelerated and altered memory CD8+ T cell development could be due to 

changes in antigen stimulation or inflammation and/or differences in T cell differentiation due 
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Figure 2.12. PD-1 pathway deficient mice clear primary influenza infection faster than WT 
mice and show a modestly enhanced immune infiltration. (A) Influenza viral titers in the lung at 
d7 p.i. and (B) weight loss in WT, PD-1 KO, and PD-L1/L2 DKO mice following primary infection 
with X31-GP33. (C, D) Representative H&E stains (C) and quantification (D) of the 
histopathological clinical score of WT and PD-1 KO mice at d7 p.i. with X31-GP33. Significance 
was assessed using Student’s t-test (A) or Mann Whitney test (D); *P < 0.05, **P < 0.01. 
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to cell-intrinsic PD-1 signals.  

 

Cell-intrinsic regulation of CD8+ T cell memory differentiation by PD-1 

To test whether PD-1 signals had a cell-intrinsic role in regulating CD8+ T cell memory 

differentiation during influenza infection, we used a distinct, but complementary model. We 

co-transferred equal numbers of WT and PD-1 KO P14 TCR transgenic CD8+ T cells 

(recognizing GP33-41 peptide presented by H-2Db) into WT mice followed by infection with 

X31-GP33 virus. This approach allows for direct comparison of WT and PD-1 KO CD8+ T 

cells in the same WT mice and excludes differences in precursor frequency, TCR repertoire, 

viral control, effects of PD-L1 and/or PD-L2 on APCs, and/or influenza pathogenesis. Viral 

clearance was similar in recipient WT mice receiving no P14 cells or the mixture of WT and 

PD-1 KO P14 cells (Figure 2.14A). Consistent with findings in knockout mice, the frequency 

and numbers of PD-1 KO P14 cells were significantly higher than WT P14 cells in the lung 

and spleen at d7 p.i. (Figure 2.13, A and B), with similar trends in the blood and dLN (Figure 

2.14B). Similar trends were observed with PR8-GP33 (Figure 2.13, C and D). The increased 

frequency of PD-1 KO P14 cells was associated with increased BrdU incorporation in the 

spleen and dLN, indicating that PD-1 regulates CD8+ T cell proliferation in a cell-intrinsic 

manner (Figure 2.13C and 2.14E), similar to virus-specific CD8+ T cells in PD-L1/L2 DKO 

mice. However, unlike the global KO mice, when PD-1 deficiency was restricted to P14 cells, 

proliferation in the lungs was not reduced. We attribute these differences to the altered viral 

clearance in the KO animals. Also, PD-1 KO P14 cells had moderately reduced KLRG1 but 

increased CD127 and CD122 at memory time points compared to WT P14 cells, highlighting 

potential cell-intrinsic effects of PD-1 signals not observed in the global KO mice (Figure 

2.15, Figure 2.8). However, similar to CD8+ T cells from the global KO animals, the PD-1 KO 

P14 cells in WT hosts were more prone to cell death in the lung, as demonstrated by 

increased FLICA staining at d10 p.i. (Figure 2.13D). Thus, absence of cell-intrinsic PD-1 
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Figure 2.13. PD-1 controls CD8+ T cell proliferation and cell death in a cell-intrinsic manner. 
(A, B) Representative plots (left) show the frequency of WT and PD-1 KO P14 cells in the lung and 
spleen at d7 after X31-GP33 infection. Numbers indicate frequency of P14 cells as a percent of 
CD8+ T cells. Summaries of frequencies (A) and numbers (B) of P14 cells are shown to the right. 
(C) Flow cytometric analysis of BrdU incorporation by WT and PD-1 KO P14 cells in the spleen at 
d7 p.i. Numbers indicate fraction of BrdU+ P14 cells. Representative plots shown to the left. 
Summary of BrdU+ P14 cells in different organs shown to the right. (D) Flow cytometric analysis of 
active caspase by FLICA staining of lung WT and PD-1 KO P14 T cells on d8 p.i. Numbers indicate 
fraction of P14 cells positive for FLICA staining based on unstained controls. Representative plot 
shown (left) and summary of FLICA+ cells shown (right). Significance was assessed using 
Student’s t-test; *P < 0.05, **P < 0.01, *** P < 0.001.	
The data in this figure were generated by Pamela Odorizzi and Kristen Pauken.	
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Figure 2.14. PD-1 controls CD8+ T cell proliferation in a cell-intrinsic manner. (A) 
Quantification of viral load d8 after X31-GP33 infection in WT mice compared to WT mice that 
received WT/PD-1 KO mixed P14 chimeras. (B) Representative plots (left) show the frequency of 
WT and PD-1 KO P14 cells in indicated organs at d7 after X31-GP33 infection. Numbers indicate 
frequency of P14 cells as a percent of CD8+ T cells. Summary of frequencies (right). (C, D) 
Frequency of WT and PD-1 KO P14 cells in chimeras following primary 0.3 LD50 PR8-GP33 
infection on d10 and d20 in blood (C) and at d30 in the lung and spleen (D). (E) Summary of BrdU+ 
P14 cells in dLN at d7 p.i. Data are representative of 3 independent experiments with 4-5 mice per 
group. Significance was assessed using Student’s t-test; *P < 0.05, **P < 0.01, *** P < 0.001. 
The data in this figure were generated by Pamela Odorizzi and Kristen Pauken.	
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Figure 2.15. Longitudinal analysis of KLRG1, CD127, and CD122 expression on transferred 
PD-1 KO and WT P14 cells 8, 20, and 30 days p.i. in the lung. Representative plots of KLRG1 
and CD127 expression are shown in upper panels. Summary of KLRG1 and CD127 frequencies 
and CD122 MFI at the indicated time points are shown in the lower panels. Significance was 
assessed using Student’s t-test; *P < 0.05, **P < 0.01, *** P < 0.001. 
The data in this figure were generated by Pamela Odorizzi and Kristen Pauken.	
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signals largely, though not completely, phenocopies CD8+ T cells from the global KO mice 

and leads to increased proliferation of virus-specific CD8+ T cells in lymphoid tissues and 

subsequent excessive cell death at the site of infection.  

We next used the P14 co-transfer system to interrogate whether these early cell-

intrinsic alterations in proliferation and cell death also resulted in aberrant memory 

development. While WT P14 cells formed stable memory, PD-1 KO P14 cells underwent 

progressive contraction and were less abundant than WT P14 cells in the lung and spleen 

after 3 months (Figure 2.16, A and B). While the kinetics differed slightly compared to the 

whole animal KO model, these results are consistent with the memory attrition observed in 

the global KO mice described above. Significantly fewer PD-1 KO memory P14 cells from the 

lung or spleen produced IFN-γ and TNF-α, upon re-stimulation compared to WT cells and 

PD-1 KO P14 cell function was diminished on a per cell basis (Figure 2.16C). Most 

importantly, following re-challenge with PR8-GP33, PD-1 KO P14 memory cells displayed 

dramatically impaired secondary expansion compared to WT P14 cells in the same animals 

(Figure 2.16D). These results point to a key function for PD-1 signals in regulating T cell 

proliferation and survival during the acute phase of infection and subsequent CD8+ T cell 

memory.   
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Figure 2.16. Defect in CD8+ T cell memory in the absence of PD-1 is cell-intrinsic. (A) 
Longitudinal analysis of WT and PD-1 KO P14 cell numbers in the lung during primary 
X31-GP33 infection. (B) Longitudinal analysis of WT and PD-1 KO P14 absolute cell 
numbers in the spleen during primary X31-GP33 infection. (C) Representative plots of 
intracellular cytokine staining for IFN-g and TNF-a production (left) in WT and PD-1 KO 
P14 cells from spleen (upper) and lung (lower) at d47+ p.i. and summary quantification 
(right). (D) Representative plots of WT and PD-1 KO P14 cell percentages d35 after 
infection with X31-GP33 (d35) and 7 days post re-challenge with PR8-GP33 (d42 after 
primary infection). Numbers indicate frequency of P14 cells as a percent of CD8+ T cells. 
Summary of fold change of numbers of P14 cells pre- and post-re-challenge shown to the 
right. Data are representative of 3-4 independent experiments with 4-6 mice per group. 
Significance was assessed using Student’s t-test; *P < 0.05, **P < 0.01, *** P < 0.001. 
The data in this figure were generated by Pamela Odorizzi and Kristen Pauken.	
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Discussion  

The PD-1 pathway plays a key role in regulating T cell responses and is an important 

immunotherapeutic target in cancer and chronic infection. With the recent increase in clinical 

administration of long-term PD-1 pathway blockade, patients with sustained blockade of PD-

1 signals are likely to be exposed to subsequent infections and vaccinations. PD-1 is rapidly 

up-regulated during acute infection or vaccination, but the role of PD-1 signals in this context 

remains poorly understood. Here we found that PD-1 KO and PD-L1/L2 DKO mice 

developed sub-optimal memory CD8+ T cells that lack long-term stability and respond poorly 

to re-challenge, key changes also observed with cell-intrinsic PD-1 deficiency. Without PD-1 

signals, virus-specific CD8+ T cells lose or never develop the robust recall capacity that is 

characteristic of memory T cells. This defect was associated with early excessive 

proliferation of effector CD8+ T cells, coupled with increased cell death. The PD-1 pathway 

regulates this process, at least in part, by controlling the expression of key cell cycle genes 

and pathways in virus-specific CD8+ T cells. Taken together, our work suggests a model 

(Figure 2.17) where the PD-1 pathway plays an important role in the optimal development of 

long-lived memory responses by tempering early proliferation of CD8+ T cells. 

PD-1 can inhibit TCR and co-stimulatory signals (101-105), implying a role in 

regulation of T cell differentiation. However, there are conflicting data about how the PD-

1:PD-L pathway impacts effector and memory CD8+ T cell responses (87-91), making the 

precise role of PD-1:PD-L signals in the formation of long-term T cell memory unclear. Here, 

we show that loss of PD-1 pathway signals impairs the development of optimal CD8+ T cell 

memory following influenza infection. Previous work showed that antibody blockade or 

genetic deletion of the PD-1 pathway enhances early virus-specific effector CD8+ T cell 

responses to respiratory infection (91), consistent with our data. Our current study adds to 

these findings by demonstrating that the early benefit of loss of PD-1 signals ultimately 

results in long-term deficiencies in CD8+ T cell memory. PD-1 regulates key cell cycle genes 
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Figure 2.17. Regulation of CD8+ T cell responses to influenza virus infection by the PD-1 
pathway. In wild-type mice (left), PD-1 pathway signals during influenza virus infection restrict 
early activation and proliferation of virus-specific CD8+ T cells in dLNs. These T cells then migrate 
into the infected lung, where inhibition by the PD-1 pathway promotes their survival and continued 
proliferation, allowing for clearance of influenza virus and the development of optimally functional 
memory CD8+ T cells. In settings of PD-1 pathway deficiency (right), virus-specific CD8+ T cells 
undergo excessive proliferation in dLNs and migrate to the lungs in high numbers. While this leads 
to faster clearance of primary influenza infection, virus-specific CD8+ T cells undergo increased 
apoptosis in the lung and ultimately develop into poorly functional and unstable memory cells.  



	 36	

controlling proliferation and survival of virus-specific CD8+ T cells into the memory phase. We 

show that PD-1 signals regulate CD8+ T cell proliferation in a cell-intrinsic manner. Our 

transcriptional profiling studies suggest a broad and pervasive effect on coordinating cell 

cycle progression. Our observations are consistent with in vitro work showing that PD-1 

inhibits cell cycle progression through the G1 phase by modulating key cell-cycle regulators in 

CD4+ T cells (106, 107). PD-1 signaling also can inhibit PI3K/Akt signaling (102, 105). 

Therefore, PD-1 may target multiple key pathways to inhibit cell cycle progression in T cells. 

Our data suggest a model whereby PD-1 serves as a critical integrator of early CD8+ T cell 

activation signals, operating at least partly through control of cell cycle progression and 

thereby promoting optimal CD8+ T cell memory formation.  

Interestingly, there were some notable differences between mice globally deficient in 

PD-1 signaling and the P14 chimera model, including altered viral control, different kinetics of 

changes in proliferation/cell death and KLRG1, CD127, and CD122 expression, suggesting a 

role for CD8+ T cell extrinsic effects. PD-1, PD-L1 and PD-L2 are expressed on non-CD8+ T 

cells, including myeloid cells, B cells, CD4+ T cells, as well as endothelial and epithelial cells, 

and their expression is dynamic during respiratory influenza virus infection. Global loss of 

PD-1:PD-L interactions accelerated viral clearance and may have other systemic effects on 

inflammation and/or pathology that could contribute to differences between cell-intrinsic 

versus systemic PD-1 signaling deficiencies. While the P14 chimera system provides a 

means to control for these potential cell-extrinsic effects and define mechanisms, the 

systemic loss of PD-1 signals may have important implications for humans receiving long-

term treatment with PD-1 pathway blocking reagents. 

The ability of the PD-1 pathway to modulate effector and memory CD8+ T cell 

differentiation makes it an attractive therapeutic target for infectious diseases and cancer. 

However, in order to most effectively target the PD-1 pathway to improve immunity, several 

questions must be addressed. First, it is not yet clear when during the course of infection PD-
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1 pathway blockade is most beneficial. Our data suggest that very early removal of PD-1 

signals during primary infection can prevent optimal memory differentiation, while other data 

demonstrate that blockade of PD-1 just prior to re-challenge improves recall responses (86, 

91). Targeting the PD-1 pathway during different stages of infection may result in distinct 

effects on CD8+ T cell differentiation, recall responses, and/or memory maintenance. Second, 

the PD-1:PD-L pathway seems to have a particularly important role in controlling the balance 

between immunopathology and effective viral immunity, particularly in the respiratory tract 

(48, 84, 91). Therefore, PD-1 signals may help prevent excessive immune-mediated damage 

by restricting T cell responses during acute infection in the lung. Our findings reveal that 

another key function of PD-1 is to temper excessive T cell stimulation and facilitate the 

development of optimal CD8+ T cell memory. How PD-1 integrates signals to balance 

effective pathogen control and memory development, while limiting immunopathology, will be 

an important area for future investigation. The answers to these questions will be critical for 

determining how to best modulate PD-1 to enhance responses to infectious agents and 

cancer.  

In summary, we have identified a key role for the PD-1 pathway in regulating effector 

and memory CD8+ T cell differentiation during influenza virus infection. PD-1 signaling is 

needed to promote optimal formation of long-lived, protective memory CD8+ T cells. We have 

identified control of cell cycle and apoptosis as one mechanism by which PD-1:PD-L signals 

influence CD8+ T cell memory. Future studies are needed to identify additional molecular 

pathways by which the PD-1:PD-L pathway regulates CD8+ T cell differentiation in different 

disease settings.  
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Materials and Methods 

Mouse Strains 

Wild-type C57BL/6 mice were purchased from The Jackson Laboratory. PD-1 KO and 

PD-L1/L2 DKO have been described previously (108, 109). PD-1 KO P14 mice were 

generated by crossing germline PD-1 KO mice to P14 TCR transgenic mice (110). Ly5.2+ or 

Ly5.2+Ly5.1+ PD-1 KO and WT P14 cells were isolated from peripheral blood and transferred 

i.v. into C57BL/6 recipient mice at a 1:1 ratio (500 cells each). All mice were maintained in a 

specific pathogen-free facility and used according to Institutional Animal Care and Use 

Committee and National Institutes of Health guidelines.  

 

Viral Infections 

For primary infection, 6 to 12 week old mice were infected with recombinant influenza 

virus X31-GP33 (1.6x105 TCID50) intranasally (i.n.). For re-challenge, mice were infected with 

PR8-GP33 (10 LD50 i.n.) at least 35 days after primary infection. Recombinant influenza 

strains containing the LCMV GP33-41 epitope inserted into the neuraminidase protein stalk 

region were provided by Dr. Richard Webby (St. Jude Children’s Research Hospital, 

Memphis, TN) (92, 93, 111). Prior to infections, mice were anesthetized by intraperitoneal 

(i.p.) injection of 2.5% Avertin (Sigma-Aldrich). Viral titers in lungs were determined by 

quantitative real-time PCR (qRT-PCR) as described (111). For Rapamycin experiments, the 

drug was administered as a suspension in carboxymethylcellulose (CMC) i.p. at 75 µg/kg 

daily from d-1 to d35 as described previously (98, 112). For LCMV infections, 2 x 105 p.f.u. of 

LCMV Armstrong (gift of E. John Wherry, University of Pennsylvania Perelman School of 

Medicine) was administered i.p. at d0. 

 

Flow cytometry 

Lymphocytes were isolated from spleen, lung and draining lymph node as described 
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(111). Single cell suspensions were stained with antibodies specific to specific to CD8a (53-

6.7), CD44 (IM7), IFN-γ (XMG1.2), TNF-α (MP6-XT22), CD127 (SB/199), CD122 (TM-b1), 

CD62L (MEL-14) CD45.1 (A20), CD45.2 (104), PD-1 (RMP1-30), PD-L1 (10F.9G2), PD-L2 

(TY25), CD11b (M1/70), CD11c (N418), CD19 (6D5), CD4 (GK1.5), Ep-CAM (G8.8), and 

CD31 (390) purchased from BioLegend, Ki-67 from BD Biosciences, and KLRG1 (2F1) from 

Abcam. Poly-caspase analysis was performed with the FLICA Vybrant FAM Assay Kit (Life 

Technologies). Dead cell exclusion was performed by live/dead fluorescent reactive dye (Life 

Technologies) staining. H2Db GP33-41, NP366-374, and PA224-233 tetramers were prepared and 

used as described (36). For intracellular cytokine staining (ICS), single cell suspensions from 

spleens or lungs, which included T cells as well as APCs from the same animal, were 

incubated with 0.5 µg/ml influenza NP366-374 or GP33-41 peptide (Genscript) or no peptide for 5 

hours at 37°C in the presence of GolgiPlug (BD Biosciences), surface stained, 

fixed/permeabilized, and intracellularly stained using the Cytofix/Cytoperm kit (BD 

Biosciences), as directed by the manufacturer. For BrdU detection, animals were treated with 

2mg of BrdU (Sigma-Aldrich) i.p. 12-24 hours prior to analysis. BrdU incorporation was 

assessed by the BrdU Flow Kit per manufacturer’s instructions (BD Biosciences). Single cell 

suspensions were stained using fluorescently labeled antibodies, and data acquired on BD 

LSR II flow cytometer and analyzed using FlowJo software (Tree Star). 

 

Gene Expression 

CD8+ T cells specific for the immunodominant (NP366-374) and subdominant (GP33-41, 

PA224-233) influenza epitopes were sorted from the lungs of wild-type and PD-L1/L2 DKO mice 

on d8 following X31-GP33 infection. For microarray, RNA was extracted using RNAdvance 

tissue isolation kit (Agencourt) and amplified using the WT-Ovation One Direct System 

(NuGEN). Fragmented and labeled cDNA was hybridized to Affymetrix Mouse430_2 

microarray. Microarray data were processed and analyzed as described previously (24, 37, 
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38). For qRT-PCR, WT and PD-1 KO P14 cells were sorted on d8 following infection, lysed, 

and RNA was isolated using RNeasy Mini Kit (Qiagen) followed by reverse transcription 

(Applied Biosystems). qRT-PCR was performed on the resulting cDNA using the Taqman 

Universal PCR Master Mix (Roche) and pre-designed primers and hydrolysis probes (IDT) 

for Pdcd1, Rab4a, Prim2, CD200, Tcf4, and Dsp. Data were normalized against the 

reference gene Hprt1 and expressed as fold change in PD-1 KO P14 compared to WT P14. 

 

Histopathology 

Lungs were fixed in buffered 10% formalin (VWR), sectioned, and stained with 

hematoxylin and eosin (H&E). Sections were scored by a pathologist in a blinded fashion 

based on a standard 0-4 scale (0 = no inflammation, 1 = perivascular/peribronchial infiltration 

without involvement of alveolar space, 2 = focal infiltration of alveolar space with 

organization; 3 = bridging between foci, 4 = confluent inflammation with parenchymal 

destruction).  

 

Statistical Analysis 

Data were analyzed using Student’s t-test for normally distributed data and P values 

<0.05 were considered significant. 
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Chapter 3: CD39 expression identifies terminally exhausted CD8+ T cells and 

limits immunopathology in chronic infection 
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Introduction 

 In acute infections, antigen-specific T cells differentiate into activated effector cells 

and then into memory T cells which rapidly gain effector functions and re-expand on 

subsequent encounter with the same pathogen (6). In contrast, during chronic infections, 

pathogen-specific T cells gradually lose effector functions, fail to expand, and can eventually 

become physically deleted (21). These traits are collectively termed T cell exhaustion, and 

have been described both in animal models of chronic viral infection as well as in human 

infections with hepatitis C virus (HCV) and human immunodeficiency virus (HIV) (21, 51, 

113). Identifying reversible mechanisms of T cell exhaustion is therefore a major goal in 

medicine. 

 Prolonged or high-level expression of multiple inhibitory receptors such as PD-1, 

Lag3, and CD244 (2B4) is a cardinal feature of exhausted T cells in both animal models and 

human disease (23, 48, 114). Expression of PD-1 appears to be a particularly important 

feature of exhausted CD8+ T cells, as the majority of exhausted cells in mouse models of 

chronic infection express this receptor, and blockade of the PD-1:PD-L1 axis can restore the 
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function of exhausted CD8+ T cells in humans and mouse models (21, 48). However, in 

humans, many inhibitory receptors also can be expressed by a large fraction of fully 

functional memory CD8+ T cells. PD-1, for instance, can be expressed by up to 60% of 

memory CD8+ T cells in healthy individuals, making it challenging to use PD-1 to identify 

exhausted CD8+ T cells in humans, particularly when the antigen-specificity of potentially 

exhausted CD8+ T cells is not known (115). 

 Studies in mice and humans suggest that exhausted CD8+ T cells are not a 

homogeneous population, but instead include at least two subpopulations of T cells that 

differentially express the transcription factors T-bet and Eomesodermin (Eomes) (49, 116, 

117). T-bethigh CD8+ T cells represent a progenitor subset with proliferative potential that give 

rise to Eomeshigh CD8+ T cells, which are terminally differentiated and can no longer 

proliferate in response to antigen or be rescued by PD-1 blockade (49, 118). Both 

populations express PD-1, but Eomeshigh exhausted cells express the highest levels of PD-1. 

However, no specific cell-surface markers of this terminally differentiated population of 

exhausted cells have thus far been identified.  

 CD39 (ENTPD1) is an ectonucleotidase originally identified as an activation marker 

on human lymphocytes and as the vascular ecto-ADPase (119), but has subsequently been 

shown to be a hallmark feature of regulatory T cells (61, 63, 120). CD39 hydrolyzes 

extracellular ATP and ADP into adenosine monophosphate, which is then processed into 

adenosine by CD73, an ecto-5'-nucleotidase (121). Adenosine is a potent immunoregulator 

that binds to A2A receptors expressed by lymphocytes causing accumulation of intracellular 

cAMP, preventing T cell activation and NK cytotoxicity (122-124). Loss of CD39 in Tregs 

markedly impairs their ability to suppress T cell activation, suggesting that the juxtacrine 

activity of CD39 serves to negatively regulate T cell function (61). However, blood CD8+ T 

cells have generally been reported to be CD39– (63-66), and the expression of this marker on 

exhausted T cells has not been examined. 
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In this study, we demonstrate that, in contrast to CD8+ T cells from healthy donors, 

antigen-specific CD8+ T cells responding to chronic viral infection in humans and a mouse 

model express high levels of biochemically active CD39. CD39+ CD8+ T cells co-express PD-

1 and are enriched for a gene signature of T cell exhaustion. In the mouse model of chronic 

LCMV infection, high levels of CD39 expression demarcate terminally differentiated virus-

specific CD8+ T cells within the pool of exhausted CD8+ T cells. Thus, CD39 provides a 

specific, pathological marker of exhausted CD8+ T cells in chronic viral infection in humans 

and mouse models of chronic viral infection. 
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Results 

CD39 is expressed by CD8+ T cells responding to chronic infection 

We surveyed the expression of CD39 by CD8+ T cells from healthy adult subjects 

without chronic viral infection. Consistent with previous reports we found that only a small 

fraction (mean 6%) of CD8+ T cells in healthy individuals expressed CD39 (Figure 3.1, A and 

B) (63-66). This small population of CD39+ CD8+ T cells in healthy donors was primarily 

found in the central and effector memory compartments while virtually no naive CD8+ T cells 

expressed CD39 (Figure 3.2). We next focused on CD39 expression by antigen-specific 

CD8+ T cells specific for latent viruses in healthy subjects and found that only a very small 

fraction of CMV- or EBV-specific CD8+ T cells expressed CD39 (Figure 3.1, A and B) (mean 

3% and 7% respectively). 

 We next measured CD39 expression by T cells specific for the chronic viral 

pathogens HCV and HIV. We measured CD39 expression in 57 subjects with acute HCV 

infections (23 with acute resolving infection and 34 with chronically evolving infection), and in 

40 subjects with HIV infection (28 chronic progressors and 12 controllers; clinical 

characteristics of the subjects are summarized in Supplemental Tables 3.1 and 3.2). We 

found a mean of 51% of HCV-specific CD8+ T cells and 31% of HIV-specific CD8+ T cells 

expressed CD39, a number significantly higher than CD8+ T cells specific for EBV or CMV, or 

in total CD8+ T cell populations from healthy individuals (Figure 3.1, A and B). A slightly 

greater fraction of virus-specific CD8+ T cells from HCV-infected subjects expressed CD39 

than did those from HIV-infected subjects.  

In subjects with chronic infection, the frequency of CD39-expressing cells in the virus-

specific (tetramer+) CD8+ T cell population was significantly higher than in the total CD8+ T 

cell population (Figure 3.1, C and D). However the fraction of total CD8+ T cells expressing 

CD39 in the CD8+ T cell compartment of individuals with HCV or HIV infection was slightly 

increased compared to healthy controls (Figure 3.1E), consistent with the presence of other, 
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Figure 3.1. CD39 is highly expressed by virus-specific CD8+ T cells in chronic viral infection. 
(A) Expression of CD39 by virus-specific CD8+ T cells. Plots are gated on CD8+. (B) Fraction of 
total or antigen-specific CD8+ T cells expressing CD39. (C, D) Comparison of CD39 expression by 
total CD8+ T cells with virus-specific CD8+ T cells from patients with HCV (C) and HIV (D) 
infections. (E) Fraction of total CD8+ T cells expressing CD39 in healthy, HIV or HCV infected 
donors. Error bars represent SEM. Statistical significance was assessed by Kruskal-Wallis test (B, 
E), or Wilcoxon test (C, D). *P <0.05, ***P <0.001, ****P <0.0001.  
The data in this figure were generated with the help of Prakash Gupta, David Wolski, and Kathleen 
Yates. 
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Figure 3.2. CD39 is expressed by few CD8+ T cells in health donors. Fraction of CD39+ cells in 
naive CD8+ T and central memory (CM), effector memory (EM) and effector memory RA+ (EMRA) 
subpopulations of CD8+ T cells based on CD45RA and CCR7 staining from 18 healthy human 
donors. Error bars represent SEM. Statistical significance was assessed by Friedman test. **P 
<0.01, ***P <0.001.  
The data in this figure were generated with the help of Prakash Gupta, David Wolski, and Kathleen 
Yates 
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unmeasured virus-specific CD8+ T cells that were also CD39+ in the tetramer– fraction of 

CD8+ T cells. Thus CD39 is expressed infrequently by CD8+ T cells in healthy donors, but 

marks a large fraction of pathogen-specific cells CD8+ T cells in patients with chronic 

infection. 

 

CD39 expressed by CD8+ T cells hydrolyzes ATP 

 CD39 expressed by regulatory T cells catalyzes the hydrolysis of ADP to 5’-AMP (61, 

63, 120) but its enzymatic activity can be regulated by a range of post-transcriptional 

mechanisms [PMID. We therefore tested CD39 expressed by CD8+ T cells from patients 

infected with chronic HCV was functional using ATP hydrolysis as a surrogate marker of 

CD39 activity (125-127). We sorted CD39– and CD39+ CD8+ T cells from six HCV-infected 

individuals (four with chronic infection and two with resolved infection) and incubated equal 

numbers of cells in the presence of extracellular ATP (eATP). Remaining levels of eATP 

were measured in the supernatant by HPLC. As a control, we assessed ATP hydrolysis by 

CD4+ CD25+ CD39+ regulatory T cells (Tregs) sorted from the same individuals (Figure 

3.3A).  

 Within the CD39+ CD8+ T cell population the level of CD39 expression was lower than 

in Tregs (Figure 3.3B). Consistent with reduced CD39 expression relative to Tregs, ATP 

hydrolysis by CD39+ CD8+ T cells was less than that by Tregs (Figure 3.3C). However ATP 

hydrolysis by CD39+ CD8+ T cells was significantly greater than that of CD39– cells (Figure 

3.3C). Thus CD39 expressed by CD8+ T cells in HCV infection is enzymatically active and 

capable of hydrolyzing ATP. 
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Figure 3.3. CD39 expressed by CD8+ T cells in HCV infection is enzymatically active. (A) Flow 
cytometry sorting gates of CD39+ and CD39– CD8+ T cells and CD39+ CD25+ CD4+ Tregs used for 
rpHPLC analysis of CD39 activity. (B) Summary of CD39 expression level relative to Tregs in the 
same subjects. (C) ATP hydrolysis by CD8+ T cell populations relative to Tregs. Data represent 6 
patients with chronic HCV infection. Error bars represent SEM. Statistical significance was 
assessed by paired Student’s t-test (B, C). *P <0.05, **P <0.01.  
The data in this figure were generated by Prakash Gupta and Carola Ledderose. 
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CD39 is co-expressed with PD-1 on virus-specific CD8+ T cells and correlates with viral 

load in both HCV and HIV infection 

 CD8+ T cells specific for chronic viruses such as HCV and HIV express increased 

levels of PD-1 (51, 128). We therefore examined the relationship between CD39 and PD-1 

expression by virus-specific CD8+ T cells in 54 patients with HCV (23 chronically infected and 

31 resolvers) and 40 patients infected with HIV (28 chronic progressors, 7 viraemic 

controllers and 5 elite controllers). In both diseases we found a significant association 

between the level of expression (mean fluorescence intensity, MFI) of CD39 and PD-1 on 

antigen-specific CD8+ T cells in subjects with HCV and with HIV (r=0.70, P <0.0001 and 

r=0.54, P<0.05, respectively) (Figure 3.4, A and B).  

We next examined the relationship between CD39 and PD-1 expression and viral 

load in HCV and HIV infection. We found that in both the HCV and HIV infection there was a 

modest but significant correlation between viral load and the level of CD39 expression on 

virus-specific CD8+ T cells measured by MFI (Figure 3.4C). The fraction of CD39+, virus-

specific CD8+ T cells was significantly higher in HIV progressors compared with those from 

HIV controllers (Figure 3.5). A similar, but non-significant, trend was seen comparing CD39 

expression in HCV-specific CD8+ T cells in patients with chronic versus resolved disease. 

However, in HCV, a significantly higher fraction of virus-specific CD8+ T cells co-expressed 

both CD39 and PD-1 in patients with chronic versus resolved disease (Figure 3.5). 

Consistent with these findings, there was a significant correlation between viral load and the 

fraction of virus-specific CD8+ T cells that were CD39+ PD-1+ double positive in both HCV 

and HIV infection (Figure 3.5). PD-1 expression was also modestly correlated with the viral 

load in HCV and in HIV-infected patients (Figure 3.4D) (51, 128). Thus CD39 expression by 

virus-specific CD8+ T cells is greatest in setting of high antigen burden.  
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Figure 3.4. CD39 expression correlates with PD-1 expression and viral load in chronic viral 
infection. (A) CD39 and PD-1 expression in chronic HCV (left) or HIV infection (right). 
Representative plots demonstrate total (gray) and virus-specific (red) CD8+ T cells. (B) Correlation 
between CD39 and PD-1 expression by HCV- (left) and HIV-specific (right) CD8+ T cells. (C) 
Correlation between CD39 expression by virus-specific CD8+ T cells and viral load count in HCV 
(left) or HIV (right) infection. (D) Correlation between PD-1 expression by virus-specific CD8+ T 
cells and viral load in HCV (left) or HIV (right) infection. Correlation was assessed by Pearson 
correlation coefficient (B, C, D). MFI; mean fluorescence intensity.  
The data in this figure were generated with the help of Prakash Gupta, David Wolski, and Kathleen 
Yates. 
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Figure 3.5. CD39 and PD-1 co-expression in HCV and HIV. (A, B) Fraction of HCV-specific (A) 
and HIV-specific (B) CD8+ T cells expressing PD-1, CD39, or both in patients with persistent high 
viral load (black) or patients controlling the disease (grey). Correlation of the fraction of PD-1 and 
CD39 double positive virus specific CD8+ T cells with the viral load in the blood in HCV (C) and HIV 
(D) infected patients. Statistical significance was assessed by Mann-Whitney test with Bonferroni 
correction (A, B). *P <0.05. Correlation was assessed by Pearson correlation coefficient (C, D). 
MFI; mean fluorescence intensity. 
The data in this figure were generated with the help of Prakash Gupta, David Wolski, and Kathleen 
Yates 
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Transcriptional analysis of CD39+ CD8+ T cells in HCV infection 

 In order to characterize more broadly the phenotype of CD39+ CD8+ T cells from 

individuals with chronic infection, we compared the global gene expression profiles of sorted 

CD39+ and CD39– CD8+ T cells from 8 HCV-infected subjects (3 with acute resolving 

infection and 5 with chronically evolving infection. Limited numbers of cells precluded the 

comparison of CD39+ and CD39– CD8+ T cells within HCV-specific cells, leading us to focus 

on the total CD8+ population of antigen-experienced CD8+ T cells. Because naive CD8+ T 

cells express little CD39 (Figure 3.2), we excluded this population from the sorted cells 

(Figure 3.6) to enable direct comparison of antigen-experienced CD39+ and CD39– CD8+ T 

cells. 

 We first used unbiased clustering approaches to identify whether CD39+ and CD39– 

CD8+ T cells showed distinct patterns of gene expression. Analysis of gene expression 

profiles using consensus hierarchical clustering (Figure 3.7A) showed two distinct clusters of 

samples that corresponded almost exactly to CD39+ and CD39– populations, suggesting that 

that in both acute and chronic infection, CD39 expression demarcates two types of CD8+ T 

cells with markedly different patterns of gene expression. Supervised analysis of differential 

gene expression identified 619 genes differentially expressed (FDR<0.15) between CD39+ 

and CD39– CD8+ T cells. Inspection of the list of differentially expressed genes revealed 

many with known roles in CD8+ T cell biology including increased expression of the inhibitory 

receptors PD-1 and CTLA-4 in CD39+ CD8+ T cells. 

 To identify biological processes that were differentially active in CD39+ vs. CD39– 

cells, we performed gene set enrichment analysis using the Gene Ontology collection of 

gene sets (99). We found no significant enrichment of GO terms in the CD39– CD8+ subset. 

In contrast, 21 gene sets significantly enriched (FDR<0.1) in CD39+ population, almost all of 

which were related to mitosis and cell-cycle associated genes or cytoskeleton organization 
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Figure 3.6. Cell sorting strategy for microarray analysis. Gating strategy for CD39+ and CD39– 
live non-naive CD8+ T cells from HCV-infected patients.  
The data in this figure were generated with the help of Prakash Gupta. 
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Figure 3.7. Transcriptional analysis of CD39+ and CD39– CD8+ T cells in HCV infection. (A) 
Consensus hierarchical clustering of expression profiles from CD39+ (black) and CD39– (grey) 
CD8+ T cells from 8 HCV infected patients. Clustering is based on the top 10% of genes by 
variance across the dataset. Sample similarity (1-Pearson correlation coefficient) is annotated with 
color from low (white) to high (green). (B) Gene set enrichment map displaying Gene Ontology 
gene sets enriched (FDR < 0.1) in CD39+ CD8+ T cells from (A). Nodes (in red) are sized in 
proportion to gene set size; connecting line thickness represents extent of gene member overlap 
between gene sets. (C) Gene set enrichment analysis of a signature of 200 genes up-regulated in 
exhausted CD8+ T cells from the mouse model of chronic viral infection versus acute infection (day 
30 post infection) in the ranked list of genes differentially expressed by CD39+ vs. CD39– CD8+ T 
cells. Leading edge genes are indicated by orange symbols. (D) Volcano plot of all genes (grey) or 
exhausted leading edge genes (orange) from (C).  
The data in this figure were generated with the help of Prakash Gupta, Kathleen Yates, and W. 
Nicholas Haining.  
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  (Figure 3.7B). This suggests that CD39+ CD8+ T cells in chronic viral infection show 

coordinate up-regulation of genes related to proliferation. 

 The expression of CD39 by CD8+ T cells in chronic but not acute/latent infection, 

suggests that it may be a marker of T cell exhaustion. We therefore tested whether the 

profile of CD39+ CD8+ T cells was enriched for genes expressed by exhausted CD8+ cells. 

Previous studies of gene expression in CD8+ T cells in the mouse model of chronic viral 

infection with the Clone 13 strain of LCMV have identified signatures of T cell exhaustion that 

are also enriched in exhausted CD8+ T cells in humans (75, 129, 130). We therefore curated 

a signature of 200 genes up-regulated by exhausted CD8+ T cells responding to chronic 

infection relative to functional memory CD8+ T cells generated by acute infection (LCMV 

Armstrong strain). We found that the exhausted CD8+ T cell signature from LCMV model was 

significantly enriched in CD39+ vs. CD39– CD8+ T cells in subjects with HCV infection (Figure 

3.7C). We focused on the “leading edge” genes contributing most to the enrichment (78), 

which correspond to genes up-regulated both in the mouse exhausted signature and in the 

human CD39+ profile. As expected, the leading edge genes included PD-1 (PDCD1), a 

feature of both human CD39+ CD8+ T cells and of exhausted CD8+ T cells in the mouse 

model (Figure 3.7D). In addition we found that up-regulation of many genes associated with 

proliferation including BUB1, TOP2A and MKI67 was common to mouse exhausted CD8+ T 

cells and human CD39+ CD8+ T cells. Thus CD39+ CD8+ T cells in HCV infection and 

exhausted CD8+ T cells in a mouse model of chronic infection share transcriptional features 

that include genes related to proliferation. 

 

CD39 is increased in exhausted CD8+ T cells in the mouse model of chronic LCMV 

infection. 

Because the mouse signature of CD8+ T cell exhaustion was significantly enriched in 

the transcriptional profile of CD39+ CD8+ T cells in HCV-infected patients, we next asked if 
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CD39 was up-regulated by CD8+ T cells in the mouse model of chronic viral infection. To 

address this question we compared two well-described mouse models of viral infection using 

two strains of LCMV: LCMV Armstrong that causes an acute infection that is resolved in up 

to 8 days; and LCMV Clone 13 that persists in mice for up to 3 months and leads to T cell 

exhaustion (23, 48).  

We measured CD39 expression and compared it to PD-1 expression in CD8+ T cells 

responding to each infection. While naive CD8+ T cells expressed neither CD39 nor PD-1 

(Figure 3.8A), both were rapidly and coordinately up-regulated by antigen-experienced cells 

following either infection at d7 p.i. (Figure 3.8B). However, in acute infection, the fraction of 

CD39 bright PD-1+ population decreased with time. In contrast, high expression of CD39 and 

PD-1 was maintained in Clone 13 infection. The accumulation of CD39 bright PD-1+ cells 

among the total CD8+ population was most apparent in the H-2Db GP276-286 tetramer-specific 

CD8+ T cells (Figure 3.8B). 

Thus after chronic viral infection, antigen-specific CD8+ T cells can be identified by 

high expression of both CD39 and PD-1. This difference in expression of both markers 

between chronic and acute infection is noticeable as early as d7 p.i. but becomes more 

pronounced with time after infection.  

 

CD39 expression correlates with a terminally exhausted phenotype in virus-specific 

CD8+ T cells in chronic infection. 

Having determined that high, persistent expression of CD39 is a feature of LCMV-

specific CD8+ T cells during chronic LCMV infection, we next sought to further characterize 

the phenotype of CD39+ CD8+ T cells during Clone 13 infection. We analyzed CD39 

expression in antigen-experienced, CD44+ CD8+ T cells and found that mice infected with 

Clone 13 developed a population of cells with particularly high expression of CD39 

(CD39high). This population was entirely absent in mice infected with the acute LCMV 
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Figure 3.8. CD39 is highly up-regulated by exhausted CD8+ T cells in a mouse model of 
chronic infection. (A, B) Expression of CD39 and PD-1 by CD44– naive mouse CD8+ T cells (A) 
and in CD8+ T cells at indicated times following LCMV Armstrong (acute) or Clone 13 (chronic) 
infection (B). Representative plots show total (black) and H-2Db GP276-286 tetramer-specific CD8+ T 
cells (red). Summary of results in 5 mice per group is shown in bar graphs on the right. Statistical 
significance was assessed with Mann-Whitney test. *P < 0.5, **P < 0.01.	
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Figure 3.9. CD39 identifies terminally exhausted CD8+ T cells in mice with chronic LCMV 
infection. (A) Expression of CD39 and CD44+ by mouse CD8+ T cells 30-35 days following LCMV 
Armstrong (left) or Clone 13 (right) infection. (B, C) Representative histograms (left) of CD127 (B) 
and PD-1 (C) expression by CD39high and CD39int CD8+ T cells from Clone 13 (red and blue, 
respectively) and CD39int from Armstrong (filled gray) infected mice on d35 p.i. (left). Fraction of 
CD127+ (B) and MFI of PD-1 in PD-1+ cells (C) is shown on the right. Results are from 5 mice. (D) 
Fraction of CD39high and CD39int CD44+ CD8+ T cells expressing different combinations of co-
inhibitory receptors PD-1, 2B4, and Lag3. (E) Average number of co-inhibitory receptors expressed 
by CD39int (left) or CD39high (right) CD8+ T cells at d35 following LCMV Clone 13 infection. (F) 
Representative plots of T-bet and Eomes expression in CD39int (left) and CD39high (right) cells as in 
(A). Summary of results is shown on the right. Data are representative of three experiments of 5 
mice per group. Statistical significance was assessed with Student’s t-test (B, C, F) with Holm-
Sidak multiple comparison correction (D). **P < 0.01, ****P < 0.0001. 
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Armstrong strain at d35 p.i., which only exhibited the presence of intermediate levels of 

CD39 staining (CD39int) (Figure 3.9A). Further characterization of the two sub-populations in 

Clone 13 infected mice revealed that the CD39high cells showed more down-regulation of 

CD127 (Figure 3.9B) and higher expression of PD-1 (Figure 3.9C) than did the CD39int 

population.  

Because the highest levels of PD-1 are characteristic of terminally exhausted CD8+ T 

cells in chronic infection (118, 131), we tested whether CD39high T cells in chronic infection 

showed other phenotypic characteristics of terminal exhaustion. Analysis of expression of 

two additional co-inhibitory receptors, CD244 (2B4) and Lag3, showed that a significantly 

higher fraction of CD39high cells co-expressed multiple receptors, consistent with terminal 

exhaustion. In contrast, CD39int CD8+ T cells were generally negative for all three receptors 

analyzed (Figure 3.9, D and E). We next examined the expression of the transcription factors 

T-bet and Eomes. We found that the CD39high subset of CD8+ T cells was comprised 

primarily of Eomeshigh T-betlow terminally exhausted phenotype, while the CD39int CD8+ T cells 

showed a comparable distribution of both (Figure 3.9F). Similarly, we found that in CD8+ T 

cells from subjects with either HCV or HIV infection, the CD39+ CD8+ T cell compartment 

contained a significantly higher ratio of Eomeshigh T-betlow : Eomeslow T-bethigh relative to 

CD39– CD8+ T cells (Figure 3.10). Thus in both humans and mice with chronic viral infection, 

CD39+ CD8+ T cells show a phenotype consistent with previous descriptions of terminal 

exhaustion (49). 

 

CD39 correlates with reduced functionality in virus-specific CD8+ T cells in chronic 

infection. 

We next examined the functional properties of CD39high and CD39int CD8+ T cells from 

mice with chronic LCMV infection. Co-production of cytokines IFN-γ and TNF-α is a feature 

of virus-specific T cells responding to acute infection and in the early stages of chronic 
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Figure 3.10. Comparison of T-bet and Eomes expression by CD39+ and CD39– CD8+ T cells in 
patients with chronic viral infection. (A, D) Expression of CD39 in CD8+ T cells in patients 
infected with HCV (A) and HIV (D). (B, E) Expression of transcription factors T-bet and Eomes on 
CD39– and CD39+ populations identified in (A) and (D). (C, F) Summary of the ratio of terminally 
exhausted Eomeshigh/T-betlow CD8+ T cells in CD39– and CD39+ subsets in HCV (C) and HIV (F) 
infection. Statistical significance was assessed with paired Student’s t-test. *P < 0.05, ***P < 0.001.  
The data in this figure were generated by Kathleen Yates and Cormac Cosgrove. 
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infection but is progressively lost as exhaustion evolves (21). To compare the functionality of 

CD39high and CD39int virus-specific CD8+ T cells, we isolated CD8+ T cells from mice with 

chronic infection at d35 post-infection and stained for IFN-γ and TNF-α following in vitro 

stimulation with GP33-41 peptide. We found a significantly smaller fraction of antigen-specific 

coproduced IFN-γ and TNF-α in CD39high CD8+ T cells compared to CD39int CD8+ T cells 

(Figure 3.11, A and B).  

To confirm this finding, we analyzed the function of transferred P14 CD8+ T cells in 

chronic infection. The P14 TCR transgene recognizes the GP33-41 peptide of LCMV presented 

on H-2Db. We found that both the frequency of IFN-γ-producing and IFN-γ/TNF-α co-

producing P14 T cells was significantly lower in CD39high CD8+ T cells compared to CD39int 

CD8+ T cells (Figure 3.11, C and D). The defect in cytokine secretion was not only observed 

in terms of the frequency of cytokine-secreting cells, but also in the amount of cytokine 

detected per cell. Even among cells that did secrete IFN-γ, we found the MFI of expression 

to be significantly lower in CD39high CD8+ T cells compared to CD39int CD8+ T cells (Figure 

3.11, E and F). Thus high levels of CD39 expression demarcate a population of exhausted 

cells with the poorest function in chronic infection. 

 

CD39 limits lethal immunopathology associated with Clone 13 infection in mice. 

Our data has shown that CD39 expression on CD8+ T cells tightly correlates with the 

exhausted state of CD8+ T cells in chronic infection in both humans and mice. To examine 

the functional role for CD39 during chronic viral infection we infected CD39 deficient mice 

with LCMV Clone 13 (132). It has been reported previously that in the absence of other 

immunoregulatory mechanisms, such as PD-1:PD-L1 pathway, mice succumb to LCMV 

Clone 13 several days following infection (48, 84). Similarly, in the absence of CD39, the 

majority of animals died within 10 days of infection (Figure 3.12A). This mortality could be 

attributed to enhanced immune infiltration to target organs such as liver and the lung 
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Figure 3.11. Terminally exhausted CD8+ T cells marked by high levels of CD39 are most 
impaired in their effector function. (A) Representative plots showing the production of IFN-γ and 
TNF-α in endogenous CD44+ CD39int or CD39high CD8+ T cells d36 following LCMV Clone 13 
infection. (B) Quantification of cells in (A) that produce both TNF-α and IFN-γ relative to IFN-γ only. 
(C, D) 500 congenic P14 cells were transferred i.v. at d-1 and their ability to produce cytokines at 
d36 p.i. with LCMV Clone 13 is shown in representative flow plots (C) gated as in (A) and the 
percentages of IFN-γ and TNF-α is summarized in (D). (E, F) Mean fluorescence intensity (MFI) of 
IFN-γ in IFN-γ positive endogenous (E) and transferred P14 cells (F). Statistical significance was 
assessed with paired Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  
The data in this figure were generated with the help of Kristen Pauken. 
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Figure 3.12. CD39 deficient mice exhibit increased mortality to LCMV Clone 13 due to 
exacerbated immune response in target organs. (A) Survival of CD39 knockout (CD39-KO) and 
wild-type mice following LCMV Clone 13 infection. (B-D) Histopathological analyses (H&E) of target 
organs at d8 following LCMV Clone 13 infection. (B), representative lung (top) and liver (bottom) 
images with quantification of the severity of leukocyte infiltration in lung (D, top) and liver (D, 
bottom) and the severity of pulmonary edema (C). Statistical analysis was done using Mantel-Cox 
test (A), Chi-square test (C), or Mann Whitney test (D), * P<0.05. Data are representative of two 
independent experiments with 4-6 mice per group.  
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examined at d8 following infection (Figure 3.12, B and C). Additionally, LCMV Clone 13 

infected CD39-KO animals suffered from pulmonary edema (Figure 3.12D), similar to what 

has been described in mice lacking PD-1 (84). Our preliminary data suggest that the viral 

clearance is not altered in absence of CD39 (data not shown). These data highlight the 

essential role of the purinergic pathway in protecting the organism from lethal complications 

following a virulent infection. 

	

CD39 expression on CD8+ T cells is regulated by TGF-β. 

The fate of activated effector CD8+ T cells is tightly regulated by the 

microenvironment in which they are activated, which may include other cells and a variety of 

cytokines (27). We, therefore, examined how cytokines influenced CD39 expression on CD8+ 

T cells. We first noted that activation of the mouse CD8+ T cells through TCR and CD28 

alone was not sufficient to induce expression of CD39 (Figure 3.13). However, if the CD8+ T 

cells were stimulated in the presence of heterogeneous population of splenocytes, there was 

some up-regulation of CD39 on CD8+ T cells, suggesting an additional role for the cytokines 

or intercellular contacts that contribute to CD39 induction (Figure 3.13, A and B). To test 

whether a specific cytokine was inducing CD39 expression, we stimulated purified CD8+ T 

cells with anti-CD3 and anti-CD28 antibodies in the presence of IL-2 and a variety of 

cytokines including IL-1β, IL-6, IL-7, IL-12, IL-15, TGF-β1, and GM-CSF. TGF-β1 turned out 

to strongly induce the expression of CD39 on CD8+ T cells soon after the activation (Figure 

3.13, C and D). While IL-12 also showed a limited capacity to induce CD39 on CD8+ T cells, 

no other cytokine was able to promote CD39 expression (Figure 3.13, C and D). 

Interestingly, Interestingly, TGF-β is critical for the differentiation of exhausted CD8+ T cells 

during chronic viral infection (133), consistent with our results that it may be inducing 

exhaustion-specific high expression of CD39 in CD8+ T cells.  
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Figure 3.13. TGFb1 drives CD39 expression in activated CD8+ T cells. (A) Expression of CD39 
and CellTrace Violet dilution in CD8+ T cells 3 days following activation with plate-bound anti-
CD3/anti-CD28 (left) and with antigen presenting cells with soluble anti-CD3 (right). (B) 
Quantification of CD39 (purple) and PD-1 (green) expression on CD8+ T cells at indicated days 
following stimulation as in (A). (C) Expression of CD39 and CellTrace Violet dilution in CD8+ T cells 
3 day following activation with plate-bound anti-CD3/anti-CD28 incubated with IL-2 and indicated 
cytokines. (D) Summary of the kinetics of CD39 expression in the conditions described in (C).	
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Discussion 

 The state of CD8+ T cell exhaustion is characterized by widespread changes in gene 

expression relative to functional memory CD8+ T cells (23). However, in humans, 

identification of specific T cell exhaustion markers that are not shared by more functional 

CD8+ T cell populations has been challenging (115). We show that high-level expression of 

the ectonucleotidase CD39 is characteristic of CD8+ T cells specific for chronic viral infections 

in humans and mice, but is otherwise rare in the CD8+ T cell compartment of healthy donors. 

Persistent, high-level expression is also seen in the LCMV mouse model of chronic viral 

infection, suggesting that CD39 expression is a phenotypic marker of CD8+ T cell exhaustion. 

Moreover, within the exhausted population in the mouse model, CD39high CD8+ T cells 

express the highest levels of PD-1, co-express multiple inhibitory receptors and have 

profoundly impaired function. We found that in both mice and humans, CD39 is expressed 

preferentially by CD8+ T cells that are T-betlow/Eomeshigh. These data suggest that CD39 

expression by CD8+ T cells is a pathological finding and demarcates the population of CD8+ T 

cells previously identify as being terminally exhausted (49). 

 The fact that peripheral blood CD8+ T cells in humans can express CD39 is 

surprising. Previous data have shown that CD39 expression is restricted to CD4+ regulatory 

T cells, Th17 cells, and small populations of regulatory-like CD8+ T cells (63-66). Indeed, we 

find that in the bulk population of CD8+ T cells in healthy donors only a small minority of CD8+ 

T cells expresses CD39. However, CD39 is abundantly expressed by virus-specific CD8+ T 

cells in two human chronic infections (HIV and HCV). This helps explain why CD39+ CD8+ T 

cells have not been appreciated in earlier studies that have focused on healthy individuals, 

and suggests that, in steady-state conditions, the expression of CD39 by CD8+ T cells is a 

pathological occurrence that is related to the development of T cell exhaustion. Whether the 

small fraction of CD8+ T cells expressing CD39 in healthy donors represents acutely 
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activated CD8+ T cells, or those exhausted by asymptomatic chronic pathogens or 

inflammatory signals is an important question for future studies.  

 Several features of CD39-expressing CD8+ T cells suggest that CD39 is a 

diagnostically valuable marker of T cell exhaustion. First, in both human and mouse CD8+ T 

cells responding to chronic infection, CD39 is co-expressed with PD-1, an inhibitory receptor 

expressed by the majority of exhausted T cells (23, 48). Second, CD39 expression correlates 

with viral load in subjects with HIV and HCV infection suggesting that the conditions of high 

levels of inflammation and antigen load that lead to exhaustion also increase CD39 

expression in the virus-specific pool of CD8+ T cells, as has been observed for PD-1 (51, 

134). Third, gene signatures characteristic of exhausted mouse CD8+ T cells are enriched in 

CD39+ cells relative to CD39– CD8+ T cells in subjects with HCV infection, underscoring the 

association between CD39 expression and T cell exhaustion. Finally, chronic LCMV infection 

in the mouse model increases CD39 expression by exhausted virus-specific CD8+ T cells, 

and elicits a population of CD39high cells that are absent in functional memory cells. Previous 

studies show that CD39, like PD-1, is transiently up-regulated by acute T cell activation (63, 

135). Additional studies will therefore be required to determine the extent to which T cell 

activation (rather than exhaustion per se) contributes to the up-regulation of CD39 and PD-1 

in chronic infection. However, the strong association between CD39 expression and the 

hallmark phenotypic features of T cell exhaustion in humans and a mouse model suggests 

that it can serve as a valuable marker of the exhausted T cells state. 

 The expression of molecules, such as PD-1, that inhibit T cell function has been used 

to identify exhausted CD8+ T cells in several studies of human chronic infection and cancer 

(21). However, there are important distinctions between the pattern of CD39 expression and 

that of inhibitory receptors. Many inhibitory receptors, such as PD-1 (51, 115, 136) and 

CD244 (137, 138) are also expressed by a substantial fraction of CD8+ T cells in healthy 

donors that are not exhausted. In contrast, CD39 expression is found in only a very small 
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minority of CD8+ T cells from healthy donors. This expression pattern suggests that CD39 

expression, particularly in combination with PD-1, may be useful as a more specific 

phenotype of exhausted CD8+ T cells, at least in HCV and HIV infection. In addition, CD39 

may provide a useful marker to isolate exhausted CD8+ T cells in settings such as tumor-

specific responses where very few reagents are available to identify antigen-specific T cells. 

Importantly, while CD39 is rare in the CD8+ compartment in healthy donors, it is expressed 

by CD4+ Tregs – as is PD-1 – making it difficult to distinguish between exhausted CD4+ T 

cells and Tregs by CD39 expression alone.  

  Analysis of global expression profiles of CD39+ versus CD39– CD8+ T cells in HCV-

infected subjects showed that the CD39+ fraction was strongly enriched for genes related to 

proliferation. This may at first seem counterintuitive, given the functional defects that have 

been described in exhausted CD8+ T cells (21, 23). However, data from the mouse model of 

chronic infection suggest that, unlike memory CD8+ T cells, exhausted CD8+ T cells are 

dependent on continuous exposure to viral antigen to ensure their survival and undergo 

extensive cell division at a rate higher than that seen in physiological homeostatic 

proliferation of the memory CD8+ T cell pool (139). Exhausted CD8+ T cells therefore have a 

paradoxical increase in their proliferation in vivo despite reduced proliferative potential in vitro 

(140), explaining the increased expression of proliferation-associated genes in CD39+ CD8+ 

T cells in HCV infection and in mouse exhausted CD8+ T cells (49, 141). 

 Recent studies of exhausted CD8+ T cells have revealed that two distinct states of 

virus-specific CD8+ T cells exist in chronically infected mice and humans (49, 116). 

Differential expression of the T-box transcription factors T-bet and Eomes characterize two 

populations, which form a progenitor-progeny relationship. T-bethigh cells display low intrinsic 

turnover but are capable of proliferation in response to persisting antigen, giving rise to 

Eomeshigh terminal progeny. In contrast, Eomeshigh CD8+ T cells responding to chronic 

infection had reduced capacity to undergo additional proliferation in vivo. The T-betlow 
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/Eomeshigh exhausted subset of CD8+ T cells correspond to the PD-1 bright population that 

has also been shown to be unresponsive to PD-1:PD-L1 blockade. These data suggest that 

the differential expression of these transcription factors identifies subpopulations of 

exhausted CD8+ T cells with fundamentally different fates and functional profiles. Our data 

show that in the LCMV mouse model of chronic infection and in HIV infection, the CD39high 

subset of CD8+ T cells demarcates T-betlow /Eomeshigh cells. Consistent with this, CD39+ 

CD8+ T cells in the mouse model express the highest levels of PD-1, co-express multiple 

inhibitory receptors and show marked functional defects. These findings suggest that CD39 

may be a marker not only of the exhausted state, but specifically of the most terminally 

exhausted cells, at least in the mouse model. Additional studies of the fate of transferred 

CD39+ vs. CD39– exhausted CD8+ T cells in the mouse model, and broader surveys of CD39 

expression in human chronic infections will be required to determine whether this marker can 

be used as a surrogate for terminal exhaustion. However, the strong association between 

CD39 expression and the key features of terminal exhaustion suggests that it may prove a 

useful marker to help distinguish between "reversible" and "irreversible" T cell exhaustion. 

Moreover, the fact that isolating CD39+ cells does not require intracellular staining (as is 

required for T-bet and Eomes) makes this marker useful for studying the function of this 

terminally exhausted cells ex vivo. 

The fact that CD39 is expressed by a slightly larger fraction of HCV-specific CD8+ T 

cells than HIV-specific CD8+ T cells may be related to differences in the timing of blood 

sampling during the course of infection, or may be due to differences in the extent of antigen-

load and inflammation in the two infections. Alternatively, it may be consistent with a model in 

which HCV-specific CD8+ T cells are in a more “terminal” state of exhaustion than CD8+ T 

cells specific for HIV. This possibility is supported by profound loss of HCV-specific CD8+ T 

cells over the course of chronic infection (142) that is not seen in the HIV-specific CD8+ T cell 
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pool, consistent with the clonal deletion seen in mouse models of extreme CD8+ T cell 

exhaustion (143, 144) 

  It is tempting to speculate that expression of CD39 contributes to the dysfunction of 

exhausted T cells (145). For instance, the expression of CD39 might enable CD8+ T cells to 

provide negative regulation in an autocrine or juxtacrine fashion via adenosine (122-124) in 

the same manner as Tregs (61, 135). The fact that CD39 requires both a substrate (ATP) 

and a downstream enzyme (CD73) to generate adenosine could provide a mechanism to 

ensure that this negative signaling occurred only in certain contexts such as in inflamed, 

damaged tissues where the extracellular concentrations of ATP are high and CD73-

expressing cells are present (146). Moreover, CD39-expressing CD8+ T cells may contribute 

to the general inhibitory milieu by contributing to the inhibition of activated T cells that 

express the adenosine receptor but are not yet exhausted. It will therefore be important to 

determine whether inhibition of CD39 activity could provide an additional therapeutic strategy 

to rescue the function of exhausted T cells. 
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Materials and Methods 

Human Subjects 

Healthy human donors were recruited at the Kraft family Blood Donor Center, Dana-

Farber Cancer Institute. All human subjects with HCV infection were recruited at the 

Gastrointestinal Unit and the Department of Surgery of the Massachusetts General Hospital 

(Boston, MA) (Supplemental Table 3.1).  

Individuals with chronic HCV infection (n = 82) were defined by positive anti-HCV 

antibody and detectable viral load. Patients with spontaneous clearance of HCV, termed 

resolvers (n = 30), were defined by positive anti-HCV antibody but an undetectable viral load 

for at least 6 months. The estimated time of infection was calculated either using the 

exposure date or the time of onset of symptoms and peak ALT (which are assumed to be 7 

weeks post infection). All HCV patients were treatment naive and studied at 5.9 and 219.7 

weeks post infection. HCV RNA levels were determined using the VERSANT HCV RNA 3.0 

(bDNA 3.0) assay (Bayer Diagnostics). 

All HIV infected subjects (n = 40) were recruited at the Ragon Institute at the 

Massachusetts General Hospital (Boston, USA) or the Peter Medawar Building for Pathogen 

Research (Oxford, UK) (Supplemental Table 3.2). HIV controllers included elite controllers (n 

= 5) defined as having HIV RNA below the level of detection (<75 viral copies per ml) and 

viraemic controllers (n = 7) with HIV RNA levels < 2,000 viral copies per ml. HIV chronic 

progressors (n = 28) were defined as having > 2,000 viral copies per ml. All subjects were off 

therapy. Viral load during chronic infection was measured using the Roche Amplicor version 

1.5 assay. 

 

Mice and infections 

Wild-type C57BL/6J mice were purchased from The Jackson Laboratory. CD39-KO 

mice have been described previously (132) and were obtained from Dr. Simon Robson (Beth 
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Israel Deaconess Medical Center). Female mice (6-8 weeks old) were infected with 2 x 105 

plaque forming units (p.f.u.) of LCMV-Armstrong intraperitoneally or 4 x 106 p.f.u. of LCMV-

Clone 13 intravenously and analyzed at indicated time points by homogenizing the spleen 

into a single-cell suspension, Ammonium-Chloride-Potassium lysis of red blood cells, 

followed by antibody staining. For experiments involving P14 cell transfers, Ly5.1+ P14s were 

isolated from peripheral blood, and 500 P14 cells were transferred i.v. into 5-6 week old wild-

type female mice one day prior to infection. Viruses were propagated as described previously 

(69, 147, 148). The mouse work was performed under a protocol 01214 approved by the 

HMA Institutional Animal Care and Use Committee (IACUC), in strict accordance with the 

recommendations in the Guide for the care and use of Laboratory Animals of the National 

Institutes of Health. The Harvard Medical School animal management program is accredited 

by the Association for the Assessment and Accreditation of Laboratory Animal Care 

International (AAALAC). 

 

MHC Class I Tetramers 

Major histocompatibility complex (MHC) class I HIV Gag-specific tetramers were 

produced as previously described (149) or obtained from Proimmune. CMV- and EBV-

specific MHC class I dextramers conjugated with FITC and APC were purchased from 

Immudex. Mouse MHC class I tetramers of H-2Db complexed with LCMV GP276-286 were 

produced as previously described (69, 147). Biotinylated complexes were tetramerized using 

allophycocyanin-conjugated streptavidin (Molecular Probes). The complete list of multimers 

can be found in supplemental materials (Supplemental Table 3.3).  

 

Antibodies and flow cytometry 

The following anti-human (hu) and anti-mouse (m) fluorochrome-conjugated 

antibodies were used for flow cytometry: huCD8α (RPA-T8), huCD4 (OKT4), huCD3 (OKT3), 
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huCD39 (A1), huPD-1 (EG12.2H7), huCD25 (BC96), huCCR7 (G043H7), huCD45RA 

(HI100), huT-bet (4B10), mCD8a (53-6.7), mCD4 (GK1.5), mCD3 (145-2C11), mCD244.2 

(m2B4 (B6)458.1), mPD-1 (RMP1-30), mLag3 (C9B7W), mCD44 (IM7), mCD127 (A7R34), 

mTNF-α (MP6XT22) (all from Biolegend), mT-bet (04-46; BD Pharmingen), mCD39 

(24DMS1), mIFN-γ (XMG1.2), huEomes (WD1928) and mEomes (Dan11mag) 

(eBioscience). Intracellular staining was performed following surface staining and fixed and 

permeabilized using the FoxP3/Transcription Factor Staining Buffer Set (eBioscience). Cells 

were sorted by BD FACS ARIA II and all other analyses were performed on BD LSR II and 

BD LSR Fortessa flow cytometers equipped with FACSDiva v6.1. Gates were set using Full 

Minus One (FMO) controls. Data were analyzed using FlowJo software v9.8 (Treestar).  

For intracellular cytokine analysis of mouse T cells, 2x106 splenocytes were cultured 

in the presence of GP33-41 peptide (0.2 mg/ml) (sequence KAVYNFATM), brefeldin A (BD), 

and monensin (BD) for 4.5 hours at 37°C. Following staining for surface antigens, cells were 

permeabilized and stained for intracellular cytokines with the Cytofix/Cytoperm kit according 

to manufacturer's instructions (BD Biosciences). 

 

In vitro T cell stimulations 

Naive CD8+ T cells were extracted from wild-type mouse spleens using magnetic 

negative selection kit (Miltenyi). Cells were labeled with CellTrace Violet (Thermo Fischer 

scientific) according to manufacturer’s instructions and stimulated in two different ways. First 

method was stimulation through incubation of T cells with 30 Gy-irradiated antigen-

presenting cells (splenocytes from TCRα-KO mice) in the presence of 4 µg/ml anti-CD3 

(clone 145-2C11). In the second method, the T cells were plated on tissue culture treated 

plate pre-coated overnight at 4°C with 4 µg/ml anti-CD3 (clone 145-2C11) and anti-CD28 

(clone 37.51) (BioXcell) and incubated with 100 U/ml recombinant human IL-2 (Peprotech) in 

complete RPMI (RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 10 mM 
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HEPES, 100 U/ml penicillin/ streptomycin (all Gibco), and 50 µM 2-mercaptoethanol 

(Sigma)). For some experiments, one of the following was added to the medium: 10 ng/ml 

mIL-1β, 200ng/ml mIL-6, 20 ng/ml mIL-7, 10 ng/ml mIL-12, 100 ng/ml mIL-15, 20 ng/ml 

mGM-CSF, 25 ng/ml mTGF-β1, or both 20 ng/ml mIL-7 and 100 ng/ml mIL-15 (all 

Peprotech). 

 

HPLC analysis of ATP levels 

The concentration of ATP hydrolyzed by CD8+ T cells from subjects with HCV 

infection (n = 6) was assessed by high performance liquid chromatography (HPLC) as 

previously described (150). Briefly, 10,000 CD39+ CD8+ T cells were sorted and placed on 

ice to minimize ATP production by cells. 20 mM of ATP was added and incubated for 1 h at 

37°C in 5% CO2 to allow for cellular activity to increase and CD39-mediated ATP hydrolysis 

to occur. Samples were then placed in an ice bath for 10 min to halt enzymatic activity, 

collected, and centrifuged for 10 min at 380 x g and 0°C. Cells were discarded and 

supernatant centrifuged again to remove remaining cells (2350 x g, 5 min, 0°C). The 

resulting RPMI samples (160 ml) were treated with 10 ml of an 8 M perchloric acid solution 

(Sigma-Aldrich) and centrifuged at 15,900 x g for 10 min at 0°C to precipitate proteins. In 

order to neutralize the pH of the resulting solutions and to remove lipids, supernatants (80 

ml) were treated with 4 M K2HPO4 (8 ml) and tri-N-octylamine (50 ml). These samples were 

mixed with 50 ml of 1,1,2-trichloro-trifluoroethane and centrifuged (15,900 x g, 10 min, 0°C) 

and this last lipid extraction step was repeated once. The resulting supernatants were 

subjected to the following procedure to generate fluorescent etheno-adenine products: 150 

ml supernatant (or nucleotide standard solution) was incubated at 72°C for 30 min with 250 

mM Na2HPO4 (20 ml) and 1 M chloroacetaldehyde (30 ml; Sigma-Aldrich) in a final reaction 

volume of 200 ml, resulting in the formation of 1,N6-etheno derivatives as previously 
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described (150). Samples were placed on ice, alkalinized with 0.5 M NH4HCO3 (50 ml), 

filtered with a 1 ml syringe and 0.45 mM filter and analyzed using a Waters HPLC system 

and Supelcosil 3 µM LC-18T reverse phase column (Sigma), consisting of a gradient system 

described previously, a Waters autosampler, and a Waters 474 fluorescence detector (151). 

Empower2 software was used for the analysis of data and all samples were compared with 

water and ATP standard controls as well as a sample with no cells to determine background 

degradation of ATP. 

 

Histopathology 

Tissues were fixed in 10% formalin, and paraffin-embedded sections were stained 

with hematoxylin and eosin (H&E). Photomicrographs were acquired on an Olympus BH-2 

light microscope at the indicated magnifications using an Olympus DP71 camera and 

software provided by the manufacturer. Horizontal bars on 400x images represent 50 µm.  

 

Microarray data acquisition 

CD8+ T cells from subjects with HCV infection were sorted and pelleted and re-

suspended in TRIzol (Invitrogen). RNA extraction was performed using the RNAdvance 

Tissue Isolation kit (Agencourt). Concentrations of total RNA were determined with a 

Nanodrop spectrophotometer or Ribogreen RNA quantification kits (Molecular 

Probes/Invitrogen). RNA purity was determined by Bioanalyzer 2100 traces (Agilent 

Technologies). Total RNA was amplified with the WT-Ovation Pico RNA Amplification system 

(NuGEN) according to the manufacturer's instructions. After fragmentation and biotinylation, 

cDNA was hybridized to HG-U133A 2.0 microarrays (Affymetrix). Data have been deposited 

in Gene Expression Omnibus with accession code GSE72752. 
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Statistics 

Prior to analysis, microarray data were pre-processed and normalized using robust 

multichip averaging, as previously described (152). Differentially gene expression and 

consensus clustering (153) were performed using Gene-E software 

(www.broadinstitute.org/cancer/software/GENE-E/), and gene set enrichment analysis was 

performed as described previously using gene sets from MSigDB (154) or published 

resources (75, 78).  

Consensus hierarchical clustering was performed using the top 10% of genes that 

varied across the dataset, without reference to sample identity. Consensus cluster assesses 

the “stability” of the clusters discovered using unbiased methods such as hierarchical 

clustering i.e. the robustness of the putative clusters to sampling variability. The basic 

assumption is that if the data represent a sample of items drawn from distinct sub-

populations, a different sample drawn from the same sub-populations, would result in cluster 

composition and number should not be radically different. Therefore, the more the attained 

clusters are robust to sampling variability, the greater the likelihood that the observed 

clusters represent real structure. The result of consensus clustering is a matrix that shows, 

for each pair of samples, the proportion of clustering runs on sub-sampled data in which 

those two items cluster together (shown on a scale of 0 to 1). 

Enrichment Map analysis of GSEA results was performed as described (155). The 

gene signature of exhaustion was generated by identifying the top 200 genes up-regulated in 

CD8+ T cells responding to chronic vs. acute LCMV infection in microarray data from a 

previously published study (75). 

 

	  



	 78	

Acknowledgments 

Prakash K. Gupta (Haining and Klenerman Labs, Dana-Farber Cancer Institute and Oxford 

University, respectively) performed initial work on this project and made the discovery that 

CD39 expression is associated with CD8+ T cell exhaustion in human patients. Kathleen 

Yates (Haining Lab, Dana-Farber Cancer Institute), David Wolski (Lauer Lab, Massachusetts 

General Hospital), Emily Adland (Klenerman Lab, Oxford University), Cormac Cosgrove 

(Alter Lab, Ragon Institute of MGH, MIT and Harvard) assisted with sourcing, curating, and 

analyzing human patient samples. Carola Ledderose (Junger Lab, Beth Israel Deaconess 

Medical Center) assisted with HPLC assays. Kristen Pauken (Wherry Lab, University of 

Pennsylvania Perelman Medical School) assisted with ex vivo stimulation and analysis of 

exhausted mouse CD8+ T cells. The H&E slides were prepared and scored in a blinded 

fashion by pathologist Roderick T. Bronson. I would also like to thank E. John Wherry 

(University of Pennsylvania Perelman Medical School) for providing reagents for mouse 

experiments including LCMV and tetramers.  



	 79	

Chapter 4. Inducible RNAi in vivo reveals that BATF is required to initiate but 

not maintain CD8+ T cell effector differentiation 

 

Parts of this chapter have previously been published in: 

Jernej Godec, Glenn S. Cowley, R. Anthony Barnitz, Ozan Alkan, David E. Root, Arlene H. 

Sharpe, W. Nicholas Haining. Inducible RNAi in vivo reveals that BATF is required to initiate 

but not to maintain CD8+ T cell effector differentiation. Proceedings of the National Academy 

of Sciences USA. 2015 Jan 13;112(2):512-7. (PMID: 25548173) 

 

Introduction 

Optimal effector and memory CD8+ T cell differentiation requires 3 signals: signal 1 

from TCR–MHC/peptide; signal 2 from co-stimulatory pathways; and signal 3 from 

inflammation. Following activation by antigen, co-stimulation and inflammation, naive CD8+ T 

cells initiate a differentiation program resulting in massive changes in gene expression and 

cell function, which leads to the formation of effector and memory T cells (75). This 

differentiation program is critical for the development of effective tumor immunity (156) and 

the control of pathogens (2). However, the developing effector CD8+ T cell population is 

strikingly heterogeneous (157), and several phenotypically distinct subpopulations of CD8+ T 

cells exist within the effector pool that have different lineage potential and function (40, 158). 

Thus CD8+ effector T cells face complex lineage choices during differentiation, which can 

have profound effects on the development of immunity to pathogens (6) and the 

development of effective responses to vaccines (159-162). 

 Although the development of effector CD8+ T cells occurs over a period of days (163), 

early events in the life history of CD8+ T cells are critical in determining their fate (33, 35, 

164-166). For instance, asymmetric segregation of cell contents during the first cell division 
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after encounter with antigen can profoundly influence the ultimate differentiation state of 

effector cells (167), suggesting that investigating the events that occur in the hours following 

initial antigen encounter will be essential to define the mechanisms that regulate the fate of 

effector CD8+ T cells. 

 Effector CD8+ T cell differentiation is regulated by a set of transcription factors (TFs) 

including T-bet (168), Eomes (169), Blimp1 (170, 171), Id2 (172) and Runx3 (173). We have 

recently shown that the AP-1 family TF BATF is absolutely required for effector CD8+ T cell 

differentiation and coordinates the program of gene expression essential for this process 

(174). Thus, many TFs that are expressed immediately after stimulation may play a role in 

specifying the fate of developing effector cells from the earliest point in differentiation. 

The role of specific TFs in regulating CD8+ T cell effector differentiation has been 

investigated using germline or conditional KOs. However, these approaches are limited to 

studying a small number of candidate genes (6). In contrast, perturbing genes with RNAi 

could permit the study of many more candidate regulators in parallel (175). However, 

techniques to deliver shRNAs to T cells are limited by the need to stimulate cells to divide 

using TCR cross-linking (176), infection (158, 177), or cytokine stimulation (178) in order to 

achieve meaningful transduction frequencies with viral vectors encoding shRNA constructs. 

The need to activate T cells for delivery of shRNAs raises concerns about whether this 

activation alters these T cells at a critical phase of time when even subtle perturbations of 

TFs can profoundly influence T cell fate (167). 

To address these limitations, we have developed an experimental system to 

knockdown gene expression in T cells in vivo using shRNA without the need to transduce T 

cells directly. To do this, we generated bone marrow chimera from HSCs transduced with an 

inducible shRNA vector. Following hematopoietic reconstitution, this allows inducible gene 

knockdown in any cell type that developed from this transduced progenitor pool, including 

resting, naive CD8+ T cells in vivo. We have applied this system to show that BATF is 
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essential for initial commitment of naive CD8+ T cells to effector differentiation but becomes 

dispensable after 72h.	  
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Results 

Lentivirus-transduced stem cells reconstitute blood immune lineages and give rise to 

effector CD8+ T cells with unaltered functionality. 

Resting T cells are refractory to lentiviral transduction, but hematopoietic stem cells 

(HSC) are readily transduced. We therefore generated bone marrow chimeric animals using 

lentivirus-transduced hematopoietic progenitor cells in which hematopoietic lineages 

(including T cells) are reconstituted with transduced cells (Figure 1A). We isolated lineage–/c-

kit+/sca-1+ (LSK) cells (which include hematopoietic stem cells and multipotent progenitors, 

hereafter referred to as “HSCs”), from the bone marrow of P14 TCR transgenic mice in which 

most CD8+ T cells express a TCR specific for LCMV GP33-41 peptide presented on H-2Db 

(Figure 4.1A), and transduced them with a lentivirus carrying a GFP expression cassette so 

that the fate of transduced cells could be tracked. We used congenic markers to distinguish 

transplanted cells from recipient cells in bone marrow chimeras.  

In order to test whether lentivirus-transduced LSK cells could be used to generate 

fully functional CD8+ T cells, we first transduced the LSK cells with lentivirus encoding only 

GFP under a PGK promoter (PGK-eGFP) and transplanted them into lethally irradiated 

animals (50,000 cells/animal). Following reconstitution (8 – 12 weeks later) analyses of major 

lineages in the immune system showed that the frequencies of GFP+ B cells (B220+), CD4+ 

and CD8+ T cells, dendritic cells (CD11c+), and monocytes (CD11b+) were similar to that of 

the LSK inoculum (Figure 4.1B), suggesting efficient engraftment of transduced cells. CD4+ 

and CD8+ T, total T, B and myeloid lineages developed from transplanted GFP+ (transduced) 

and GFP– (untransduced) LSK with equal efficiency (Figure 4.1C and Figure 4.2). We next 

compared effector CD8+ T cell differentiation of naive CD8+ T cells derived from transplanted 

PGK-eGFP transduced (GFP+) LSK cells with differentiation of naive CD8+ T cells derived 

from transplanted but untransduced (GFP–) LSK cells. We transferred equal ratios of GFP+ 

and GFP– naive P14 CD8+ T cells to naive wild-type recipients (10,000 cells/animal) and 
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Figure 4.1. Transduced bone marrow progenitor populations efficiently reconstitute myeloid 
and lymphoid compartments and develop normally into functional CD8+ T cells. (A) A 
schematic diagram of transduction strategy. (B) Fraction of LSK cells (left panel) transduced with 
GFP-expressing lentivirus at the time of transplant, and in lymphoid (middle panel) and myeloid 
(right panel) cell populations following engraftment. (C) Quantitation of fractions of transduced 
(GFP+) and untransduced (GFP–), donor-derived cells in immune lineages indicated following 
engraftment as in (B). (D) Fraction of transduced (GFP+) and untransduced (GFP–), donor-derived 
naive P14 CD8+ T cells (left panel) prior to adoptive transfer, and of effector (right panel) P14 CD8+ 
T cells in tissues indicated 10 days following transfer and subsequent host infection with PR8-
GP33 influenza virus. Representative data are shown from 3 experiments with 3-5 mice per group. 
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Figure 4.2. Transduced bone marrow progenitor populations efficiently reconstitute 
myeloid and lymphoid compartments. Fraction of indicated donor-derived immune 
lineages in blood that differentiated from transduced (GFP+) and untransduced (GFP–) 
congenic WT LSK cells.  
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infected them with PR8-GP33 influenza (Figure 4.1D). We found equal expansion and 

persistence of GFP+ and GFP– effector CD8+ T cells at 10 days after infection. 

We next compared the phenotype and function of effector CD8+ T cells arising from 

naive CD8+ T cells that developed from transduced LSKs with effector CD8+ T cells 

differentiating from untransduced naive CD8+ T cells. We analyzed the proliferative capacity, 

expression of cell surface molecules, key transcription factors, and production of cytokines 

upon re-stimulation and found no difference between untransduced and transduced effector 

CD8+ T cells at d8 p.i. (Figure 4.3). Thus, lentiviral transduction of LSK neither impairs the 

development of lymphoid and myeloid lineages following transplantation nor alters effector 

CD8+ T cell generation, proliferative capacity or survival following transfer of naive CD8+ T 

cells. 

To compare the persistence and phenotype of effector CD8+ T cells derived from 

untransduced naive CD8+ T cells, or naive CD8+ T cells generated from bone marrow 

chimeras, we transferred either unmodified naive P14 CD8+ T cells or naive P14 CD8+ T cells 

carrying 1xLacO-shLacZ construct into congenically distinct LCMV-infected wild-type 

recipients. We analyzed the fraction of transferred cells at d28 p.i. and observed no 

difference in the frequency of unmodified CD8+ T cells and those carrying 1xLacO-shLacZ 

construct (Figure 4.4, A and B). Additionally, 1xLacO and WT P14 memory cells were 

indistinguishable in their expression of cell surface molecules and production of cytokines 

upon re-stimulation (Figure 4.4, C and D). This suggests that the persistence of CD8+ T cells 

following effector differentiation is not altered by the presence of the lentiviral vector. 

 

Naive T cells that develop from transduced LSK are indistinguishable from wild-type 

naive T cells. 

We next examined whether naive CD8+ T cells that developed from transduced LSK 

cells show any alterations of surface phenotype, proliferative status or gene expression that 
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Figure 4.3. Development from 1xLacO transduced LSK cells does not alter the functional 
capacity and differentiation of effector CD8+ T cells. (A) The experimental schema used to 
analyze the phenotype of 1xLacO-shRFP-carrying cells relative to unperturbed P14 CD8+ T cells 
responding early to the LCMV infection. (B) The ratio of 1xLacO P14 Thy1.1+ cells and CD8+ T 
cells directly isolated from the Thy1.1– CD45.1+ P14 TCR transgenic mouse at the time of injection 
(d0) and at d8 following transfer into mice that were subsequently infected with LCMV Armstrong. 
Representative plots (left) and summarized data (right). (C – E) Analysis of effector CD8+ T cells 
from (B) for their expression of cell surface markers CD127 and KLRG1 (C), the transcription 
factors T-bet and Eomes, and Granzyme B (D) as well as their ability to produce cytokines 
following re-stimulation with GP33-41 peptide (E). Data are representative from two independent 
experiments with 5-10 mice per group.	
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Figure 4.4. Stable integration of 1xLacO in effector CD8+ T cells does not cause preferential 
rejection or alter the functional capacity, differentiation, or maintenance of memory CD8+ T 
cells. (A) The experimental schema to assess the memory development of 1xLacO-shLacZ-
carrying cells and unmodified P14 CD8+ T cells in response to LCMV infection. (B) Fraction of 
transferred 1xLacO P14 cells and unmodified P14 cells at d28 p.i. Shown are representative plots, 
gated on total CD8+ T cells (left) and summary data from 5 mice (right). Statistical significance was 
assessed using Student’s t-test. (C, D) Analysis of cells from spleen as in (B) at d60 p.i. for their 
expression of cell surface markers (C) and ability to produce cytokines upon re-stimulation with 
GP33-41 peptide (D). 
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might obscure analysis of early differentiation events. We compared naive CD8+ T cells that 

were derived from transduced LSK cells with control wild-type P14 CD8+ T cells. We also 

studied P14 CD8+ T cells cultured in conditions used in previous studies to facilitate direct 

viral transduction of T cells (158, 176-179) to compare CD8+ T cells generated by our 

approach and previously reported methods: 1) activation of CD8+ T cells in vivo by infecting 

P14 mice with 2 x 105 p.f.u. LCMV Armstrong; 2) activation in vitro by stimulation with anti-

CD3 and anti-CD28; or 3) incubation in vitro with a combination of IL-7 and IL-15 cytokines.  

The proportions of naive (CD62L+ CD44–), central memory (CD62L+ CD44+) and 

effector memory (CD62L– CD44+) cells were similar in the GFP+ naive CD8+ T cells from the 

transduced BM chimeras and in naive CD8+ T cells from wild-type mice, but were markedly 

altered by the other stimulation conditions, particularly with cytokine treatment (Figure 4.5A). 

The expression of cytokine receptors including CD25, CD127, CD122 was not different in 

GFP+ naive and wild-type naive CD8+ T cells, but was altered in naive CD8+ T cells treated 

with anti-CD3/CD28 or cytokines (Figure 2B). The GFP+ naive CD8+ T cells also showed a 

low rate of homeostatic turnover that was similar to wild-type naive CD8+ T cells (Figure 

4.5C). In contrast, all of the other stimulation conditions induced varying degrees of cell 

proliferation (Figure 4.5C). 

We measured transcript abundance for TFs and effector molecules that change 

during CD8+ effector T cell differentiation. Important regulators of effector differentiation such 

as T-bet (Tbx21), Eomesodermin (Eomes), and Blimp1 (Prdm1), as well as effector 

molecules including granzymes A and B, perforin 1, as well as IFN-γ and TNF-α were 

unchanged in GFP+ naive CD8+ T cells relative to wild-type naive CD8+ T cells, but were up-

regulated in the other stimulation conditions (Figure 4.5D). Thus, GFP+ naive CD8+ T cells 

that had developed from transduced LSK cells were indistinguishable from untransduced 

naive CD8+ T cells. In contrast, existing protocols used to achieve viral transduction of naive 

CD8+ T cells were associated with marked perturbation of the T-cell state. 
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Figure 4.5. CD8+ T cells derived from transduced LSK cells are indistinguishable from 
untransduced naive CD8+ T cells. (A – C) Expression of (A) naive surface markers, (B) effector 
molecules, and (C) Ki-67 by wild-type naive P14 CD8+ T cells (black); naive P14 CD8+ T cells 
derived from transduced LSKs (red); naive P14 CD8+ T cells stimulated by LCMV infection (green); 
by the cytokines IL-7 and IL-15 (blue); or by anti-CD3 plus anti-CD28 antibodies (orange). (D) 
Comparison of transcript abundance of transcriptional regulators and effector molecules changes 
measured by quantitative RT-PCR in wild-type naive P14 CD8+ T cells; naive P14 CD8+ T cells 
derived from transduced LSKs; naive P14 CD8+ T cells stimulated by anti-CD3 plus anti-CD28 
antibodies, LCMV infection, or by the cytokines IL-7 and IL-15. 	
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Lac operon-regulated shRNA allows inducible, efficient, and transient gene 

knockdown in vivo at low concentrations of IPTG 

Hematopoiesis depends on the expression of appropriate genes at the proper 

developmental stage. Because constitutive gene knockdown in LSK could compromise the 

development of immune lineages, we used an inducible shRNA expression vector that uses 

the Lac operon system to regulate the shRNA promoter following addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) (Figure 4.6A). We confirmed the inducibility of gene 

knockdown by targeting a control gene in a Jurkat cell line. Target gene (GFP) expression 

was only minimally affected in the uninduced state (Figure 4.7A). However, gene knockdown 

following IPTG induction of shRNA expression was as efficient as that achieved by a 

constitutive shRNA expressing vector (Figure 4.7A) even at low concentrations of IPTG 

(Figure 4.6B).  

To test knockdown efficiency in primary CD8+ T cells, we generated bone marrow 

chimeras with an IPTG-inducible vector encoding an shRNA targeting BATF (shBATF) and a 

GFP expression cassette to create GFP+ naive T cells that carried the inducible shRNA 

vector (hereafter “shBATF-naive T cells”). We first tested inducible knockdown in vitro by 

stimulating the cells with anti-CD3/CD28 and assessing the Batf transcript levels 3 days 

following activation. IPTG was administered to the bone marrow chimeras 3 days prior to 

activation (d-3) or 1 day following activation (d+1). Decreased target gene expression was 

apparent in both transcript and protein abundance as early as 2 days following IPTG addition 

in vitro (Figure 4.7, B and C) and was comparable to knockdown with the constitutive vector 

(Mean = 80.4%, SD = 7.8%). To test inducible knockdown in vivo, we transferred shBATF-

naive P14 CD8+ T cells into mice that were at the same time infected with LCMV-infected 

mice treated with IPTG, and measured BATF expression after three days. Initiating IPTG 

induction one day following cell activation resulted in modest (18%) gene knockdown but 

treating bone marrow chimera three days prior to transfer resulted in a significantly greater 
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Figure 4.6. Novel shRNA vector enables inducible gene knockdown at low IPTG 
concentrations in vitro. (A) Schematic diagram of inducible (1xLacO) vector. (B) Fraction of GFP-
expressing Jurkat cells transduced with lentivirus expressing an shRNA targeting GFP under 
constitutive (white symbols) or inducible (black) promoters, cultured with indicated concentrations 
of IPTG for 7 days.  
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Figure 4.7. Novel shRNA vector enables efficient, inducible, and transient gene knockdown 
in vitro and in vivo. (A) Fraction of GFP-expressing Jurkat cells transduced with lentivirus 
expressing an shRNA targeting GFP under constitutive (white symbols) or inducible (black) 
promoters, cultured with 100 mM IPTG (grey box) for times indicated. (B) BATF expression in anti-
CD3/CD28-stimulated shBATF-naive CD8+ T cells cultured in vitro with (grey or black bars) or 
without (white) IPTG starting at the day indicated. Cells were continuously exposed to IPTG by in 
vivo exposure in bone marrow chimeric mice 3 days prior to T cell sort (d–3) or to the medium 1 
day following activation (d+1) and for the remainder of the experiment. (C) BATF protein 
abundance in anti-CD3/CD28-stimulated wild-type and shBATF–naive CD8+ T cells exposed to 
IPTG d −3 or incubated in medium alone. Numbers represent BATF densiometry values 
normalized to β-actin in shBATF relative to the wild-type cells. (D) shBATF-carrying P14 cells were 
transferred in LCMV-infected recipient mice and IPTG exposure was maintained by treating mice 
with 20 mM IPTG in drinking water starting 3 days prior to transfer (in bone marrow chimeras) or 1 
day following transfer until the analysis at 3 days following cell transfer. Batf mRNA level was 
normalized to Hprt and 2-ΔCt values reported. Significance was assessed with one-way ANOVA; **P 
< 0.01, ***P < 0.001, ****P < 0.0001. Representative data are shown from two experiments.	
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degree of gene silencing (68% knockdown) when it was measured three days following 

transfer and infection (Figure 4.7C). Thus efficient, inducible gene knockdown can be 

achieved in following activation of shBATF-naive CD8+ T cells in vivo. 

 

BATF knockdown impairs CD8+ effector T cell activation and differentiation following 

acute viral infection. 

We have recently shown that Batf–/– CD8+ T cells show profoundly impaired effector 

CD8+ T cell differentiation (174). To test whether BATF knockdown in wild-type CD8+ T cells 

also impaired CD8+ effector T cell development, we adoptively transferred naive P14 CD8+ T 

cells from bone marrow chimeras transduced with either an inducible shBATF vector or a 

control shRNA vector targeting LacZ in a 1:1 ratio with naive P14 CD8+ T cells from a bone 

marrow chimera transduced with a second control shRNA (shRFP) into wild-type recipients 

(Figure 4.8A). Endogenous, shBATF- (or control shLacZ-) and shRFP-naive CD8+ T cells 

were distinguished by the use of congenic markers. Comparison of the ratios of numbers 

shBATF- or shLacZ-effector T cells to shRFP-effector T cells was used to determine the 

effect of BATF knockdown while controlling for any effect of shRNA expression on 

differentiation. We found markedly reduced numbers of P14 shBATF-effector CD8+ T cells at 

day 7 – 9 post infection (p.i.) relative to shRFP P14 CD8+ T cells, when the cells were 

exposed to IPTG from d-3 until the end of the experiment. In contrast, the ratio of shLacZ-

effectors to shRFP-effectors remained constant (Figure 4.9, B and C). This reduction in 

shBATF-effector cell numbers was seen with three different BATF shRNAs designed with 

different seed regions, making this unlikely to be due to off-target effects (Figure 4.9C) (180).  

 To identify the reason for the reduced population size of effector CD8+ T cells 

following BATF knockdown, we measured both cell death and proliferation in shBATF-

effector CD8+ T cells at d5 p.i. Analysis of active caspase abundance showed significantly 

higher apoptosis in shBATF-effector CD8+ T cells (Figure 4.9D). In addition, there was a 



	 94	

	
Figure 4.8. BATF knockdown in vivo in primary CD8+ T cells impairs effector differentiation. 
(A) Schematic diagram of the experiment. (B) Relative fraction of P14 shBATF- (solid gates/lines) 
or shRFP- (dotted gates/lines) CD8+ T cells at the time of transfer or at d7 p.i. in IPTG-treated 
animals (from d-3 on). Representative plots (left, middle panels) from a single animal and summary 
data from 5 mice (right panel). (C) Ratio of P14 shBATF- or shLacZ-effector CD8+ T cells to 
shRFP-effector CD8+ T cells at d8 p.i. with IPTG induction. Ratio at d8 p.i. was normalized to ratio 
at d0 and shown for 3 different shRNAs targeting BATF. (D) Apoptosis of shBATF- or shLacZ-
effector CD8+ T cells measured by active Poly-Caspase staining (FLICA) at d5 p.i. (E) Ki-67 
expression in shBATF and shLacZ effector CD8+ P14 cells on d5 following cell transfer and LCMV 
infection. Significance was assessed with Student’s t-test; **P < 0.01, ****P < 0.0001. 
Representative data are shown from three (B, C) or two (D, E) experiments with 3-5 mice per 
group. 
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modest increase in the proliferation of the fraction of remaining shBATF-effector CD8+ T cells 

compared to shLacZ-effector CD8+ T cells (Figure 4.9E). Thus, knockdown of BATF impairs 

the development of an effector CD8+ T cell response primarily by increasing cell death during 

early differentiation. These findings are consistent with previous studies using germline 

deletion of BATF, which have demonstrated that naive Batf–/– T cells undergo massive cell 

death at 72 – 96h after stimulation (174). 

 

BATF is required to initiate but not maintain effector CD8+ T cell differentiation. 

Because previous studies of the role of BATF in effector CD8+ T cell differentiation 

have been carried out using T cells with constitutive germline deletion, it is not known 

whether BATF is required only to initiate the development of CD8+ effector T cells (i.e. at the 

time of initial antigen encounter), or whether BATF is also needed to maintain CD8+ effector 

T cell development once underway. To address this question, we adoptively transferred 1:1 

mixtures of congenically distinguishable P14 shBATF- and shLacZ-CD8+ T cells into recipient 

wild-type animals, which were then infected with LCMV-Armstrong. IPTG was administered 

to induce BATF knockdown either before infection, at the time of infection, or 72h p.i. (Figure 

4.9A). We assessed BATF knockdown at d8 p.i., and found that BATF transcript abundance 

was significantly reduced in shBATF compared to shRFP-effector CD8+ T cells regardless of 

when IPTG was initiated (Figure 4.9B), and was not significantly different between any of the 

shBATF-effector cell conditions.  

We observed profound differences in the ratio of shBATF:shLacZ-CD8+ T cells at d8 

p.i., depending on the time at which BATF knockdown had been initiated. BATF knockdown 

initiated 3 days prior to infection or at the time of infection was associated with a significant 

reduction in the numbers of d8 p.i. effector CD8+ T cells compared to controls with no IPTG 

induction. In contrast, inducing BATF knockdown 72h post infection did not significantly 

change the numbers of effector CD8+ T cells d8 p.i. (Figure 4.9C). These finding show that 
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Figure 4.9. BATF is required to initiate but not maintain effector differentiation. (A) Schematic 
diagram of timing of IPTG administration. (B) BATF transcript abundance in shBATF– and shRFP–
effector CD8+ T cells on d 8 p.i. as described in A. (C) Ratio of shBATF– or shLacZ–effector CD8+ 
T cells to shRFP–effector CD8+ T cells at d 8 p.i. with continuous IPTG exposure initiated at the 
times indicated. Day 8 p.i. ratios were normalized to the d 0 ratio and Log2 transformed. 
Significance was assessed with one-way ANOVA; **P < 0.01, ***P < 0.001, ****P < 0.0001. 
Representative data are shown from three experiments with three to five mice per group. 
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while BATF is required for effector CD8+ T cell development at the time of initial antigen 

encounter, by 72h p.i., BATF becomes largely dispensable, at least through d8 of CD8+ 

effector T cell differentiation. 

 

Transduced LSK cells enable gene perturbation in B cells and highlight the role of 

BATF in humoral responses. 

Bone marrow chimeric mice generated with inducible shRNA-transduced LSK cells 

had 90-95% of the immune system derived from the donor cells (data not shown). On 

average, 10-30% of these cells had stably integrated the lentiviral construct as measured by 

their expression of GFP. Thus, we were able to obtain all major immune cells with the 

integrated construct, providing the potential for their gene perturbation upon exposure to 

IPTG. To test if we could achieve inducible gene silencing in a cell type other than the CD8+ 

T cell, we investigated shBATF-integrated B cells to assess the function of BATF in humoral 

responses, since BATF has previously been shown to play a vital role in B cell differentiation 

(181, 182).  

To examine if we could show the functional role for BATF in B cells, we set up an in 

vivo competitive transfer system in which both control shLacZ- and shBATF-carrying B cells 

can be interrogated in the same microenvironment. This was done by transferring NP-OVA-

induced follicular T helper (Tfh) cells and a 1:1 mixture of shLacZ:shBATF carrying B cells 

into Rag1-KO mice (Figure 4.10A), which lack all endogenous T and B cells. Rag1-KO mice 

were immunized with NP-OVA on the same day as they received the mixture of B and Tfh 

cells. At d10 following immunization, all B cells were thus derived from the transferred cells at 

d0. While naive shBATF-carrying CD45.1/CD45.2 double positive B cells were only slightly 

decreased in their abundance in the draining lymph node relative to the shLacZ-control 

CD45.1 positive naive B cells, there was a stark reduction of GL7+ CD38– germinal center B 

cells with BATF knock-down compared to the control cells (Figure 4.10B). Additionally, there 
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Figure 4.10. Bone marrow chimeras generated with inducible shRNA-transduced LSK 
enables functional gene perturbation in B cells. (A) Experimental schema describing the three-
cell transfer experiment to assess the importance of BATF in B cells in vivo. (B) The subsets of 
CD19+ B cells present in draining (inguinal) lymph node of NP-OVA-immunized Rag1-KO mice at 
d10 following immunization and B cell and Tfh cell transfer (bottom left). The relative abundance of 
CD45.1+/CD45.2+ shBATF B cells (red gate) and CD45.1+ shLacZ B cells (blue gate) in each of the 
subsets shown on the right and top. (C) Gating of plasma blasts in bone marrow at d10 p.i. (left) 
and the relative abundance of shBATF and shLacZ plasma blasts shown on the right.  
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was a complete absence of shBATF cells in the plasma blast compartment in the bone 

marrow as all developing plasma blasts were derived from the shLacZ carrying control cells 

(Figure 4.10C). Thus, this platform also enables gene perturbation in mature naive B cells 

and confirmed the known role for BATF in B cell differentiation. 	  
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Discussion 

We have developed a strategy to inducibly silence gene expression in unperturbed 

hematopoietic cells in vivo using RNAi. We used this system to show that BATF is required 

to initiate effector CD8+ T cell differentiation, but becomes dispensable after 72h. Our findings 

suggest that this experimental approach can accelerate the understanding of how effector 

and memory T cell responses are regulated.  

The ability to manipulate gene expression using RNAi is a powerful tool with which to 

investigate gene function in the immune system. Silencing gene expression in T cells (158, 

177, 178) or dendritic cells (175, 183) has allowed the rapid identification of regulators of cell 

differentiation and activation. Viral vectors expressing shRNA molecules are a frequently 

used delivery method for RNAi. However, this approach is limited by the inability to deliver 

viral vectors to quiescent T cells. As a result, most approaches have used activation in vitro 

(176, 178) or in vivo (158, 177) of T cells to achieve efficient transduction. We show that both 

of these approaches profoundly alter the underlying transcriptional and functional state of 

naive T cells. T cells stimulated in vitro, even in the absence of TCR stimulation show up-

regulation of TFs and cytotoxic molecules including granzymes, suggesting that many 

aspects of effector differentiation are initiated by these manipulations even before viral 

infection and gene knockdown can occur. In contrast, our experimental system permits the 

inducible knockdown of genes in quiescent, unperturbed naive T cells, allowing the events 

that occur during the initial minutes to hours after T cell stimulation to be interrogated. Thus 

our approach now allows functional genomic studies in transduction-refractory hematopoietic 

cells in vivo without ex vivo perturbation to examine numerous clinically relevant immune 

processes reliably modeled in the mouse. 

We used this system to analyze the role of BATF in the differentiation of effector 

CD8+ T cells immediately after antigen encounter in a mouse model of acute viral infection. 

BATF plays a profound role in the differentiation of many immune cell types (184). It is 
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required for the development of TFH (183) and Th17 (185, 186) cells and for class switching in 

B cells (183), suggesting it plays an essential role in cell differentiation in diverse lineages. 

Recent studies in CD8+ T cells show that loss of BATF deregulates a suite of TFs, cytokine 

sensors, and metabolic pathways, leading to a profound defect in effector CD8+ T cell 

differentiation (174). However, while these studies show that BATF is required to initiate 

effector CD8+ differentiation, it remains unclear whether BATF is also needed to maintain the 

differentiation program once underway. We now show that BATF is required at or 

immediately after antigen encounter but rapidly becomes dispensable for subsequent 

development of effector CD8+ T cells until at least d8 p.i. These results suggest that BATF is 

required to initiate, but not maintain, the effector differentiation program. 

Our findings are consistent with several prior observations that support a role for 

BATF in the initial commitment to an effector state. First, the defects in effector CD8+ T cells 

that lack BATF are evident within 72 - 96 hours of antigen encounter (174), suggesting that 

BATF plays a critical function in the earliest hours of effector differentiation. Second, BATF 

associates with its binding sites within 24 hours of T cell activation, which suggests that it 

could play a regulatory role as early as hours after antigen encounter (174). Finally, during 

Th17 differentiation, loss of BATF results in decreased chromatin accessibility at some 

regions normally bound by BATF, which suggests that BATF may play a role as a pioneer TF 

(186). Pioneer TFs can regulate the chromatin structure at critical regulatory regions to 

enable the subsequent binding of other TFs (187). Our findings of a transient role for BATF 

at the initiation of effector differentiation are consistent with its function as pioneer TF. For 

instance, BATF may function at the start of effector CD8+ differentiation to increase chromatin 

accessibility to other effector TFs that cement the differentiation state. Because BATF is no 

longer required for effector differentiation by 72h, other TFs, such as T-bet and STAT 

proteins, may be responsible for maintaining effector differentiation once underway (188). 
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Analysis of the temporal role of candidate effector TFs, either with our inducible RNAi 

system, or with conditional knockout strains will help test this hypothesis.  

Our previous studies of BATF in CD8+ differentiation showed that Batf–/– but not Batf+/– 

T cells displayed a defect in effector differentiation suggesting that the remaining expression 

of BATF in Batf+/– is sufficient for proper T cell activation (174). In this context, it is perhaps 

surprising that 68% knockdown of BATF (Figure 4.7E) was associated with such marked 

impairment of effector differentiation while the BATF heterozygous mouse did not show such 

a defect. Possibly, compensatory mechanisms or adaptation may be in effect when the cells 

are lacking half of genomic BATF throughout their development. Alternatively, there may be 

a critical “dose” of BATF that is required for normal effector CD8+ T cell differentiation: 

knockdown of BATF reduces protein abundance below this threshold while heterozygous 

deletion does not. 

Our findings help provide a mechanism to explain why effector CD8+ T cell 

differentiation can be initiated by brief, transient TCR activation. Studies of temporally-limited 

antigen-exposure have shown that as little as 4h of TCR stimulation can initiate cell division 

and induce cytolytic function in naive CD8+ T cells (33), and only 20h of stimulation can 

initiate a self-sustaining program of effector and memory CD8+ T cell differentiation that is cell 

autonomous (35, 165). Although the ultimate fate of effector cells is strongly modulated by 

antigen persistence, inflammation and the cytokine milieu, these studies indicate that CD8+ T 

cells encounter an irreversible decision point within hours of antigen encounter (35). Our 

findings suggest that transcriptional regulation by BATF may be one component of that 

decision point. BATF may launch differentiation by irreversibly engaging the effector 

transcriptional program within the first 24h of stimulation.  

Although we have demonstrated this experimental approach to investigate the role of 

BATF in the early commitment events in effector CD8+ T cell differentiation, we anticipate that 

this approach can also be extended to discover genes that regulate differentiation and 



	 103	

longevity of memory CD8+ T cells, and the mechanisms that lead to CD8+ T cell exhaustion. 

Moreover, the use of a bone marrow chimeric system results in transduction of all 

hematopoietic-derived lineages with the inducible shRNA vector. This makes analysis of 

gene function in other cell types that are refractory to viral transduction such as naive CD4+ T 

cells or B cells is now equally feasible. As such, this approach can be used to provide 

insights into important clinical questions such as how protective immune responses to 

vaccination are generated, or how T cell dysfunction arises in chronic viral infection or 

cancer. Concerns regarding off-target effects of RNAi need to be considered with this system 

as for any RNAi-based experiment. However, the use of this strategy should provide a 

broadly useful tool for interrogating gene function in unperturbed cells of hematopoietic 

origin.	  
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Materials and Methods 

Mice 

P14 TCR Tg mice were used as described (110). Wildtype C57BL/6J, Ly5.1 

(CD45.1), and Thy1.1 mice were purchased from Jackson Laboratories (Bar Harbor, ME). All 

mice were used according to the Harvard Medical School Standing Committee on Animals 

and National Institutes of Animal Healthcare Guidelines. Animal protocols were approved by 

the Harvard Medical School Standing Committee on Animals. 

 

Generation of bone marrow chimeras 

Bone marrow was isolated and red blood cells lysed using ACK lysis buffer (Gibco). 

LSK cells were enriched using anti-CD117 microbeads (Miltenyi Biotech) and then sorted 

using a BD FACSAria cytometer. Sorted cells were plated overnight in StemSpan SFEM 

medium (StemCell Technologies) with 100 µg/ml recombinant stem cell factor, 

thrombopoietin, IL-7, and Flt3-ligand (PeproTech). Cells were then spin-infected with 

lentiviral supernatants at 650 x g for 90 min at 37°C on non-treated plates that had been 

coated overnight at 4°C with 100 µg/ml RetroNectin (Takara Bio). Fresh medium was added 

after 1h and cells were rested overnight. Viral stocks were titrated to ensure the majority of 

cells were infected with a single virus. The cells were then washed in PBS (Gibco) and 

50,000 cells were injected intravenously in recipient mice that had been irradiated with 2 

doses of 600 cGy, 3 hours apart. 

 

Lentivirus production 

293T cells were seeded in DMEM with 10% FBS. The following day, the cells were 

transfected with shRNA construct pLKO.1-TRC005 or 1xLacO (which is now available from 

Sigma-Aldrich under the name “MISSION 1X LacO Inducible”) with the packaging plasmids 
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Pax2 (gag, pol) and VSV-G using TransIT-LT1 (Mirus Bio) or ExGen 500 (Thermo Scientific 

Fermentas). Viral supernatants were collected 48h – 72h later.  

 

In vitro knockdown of GFP 

A stable GFP-expressing Jurkat cell line was constructed by cloning GFP+ cells, 

following transduction with PGK-eGFP lentivirus. GFP-Jurkat cells were transduced with 

shRNA targeting GFP under a constitutive (pLKO.1-TRC0056, with puromycin resistance) or 

inducible (1xLacO, with Thy1.1 reporter) promoters. Varying doses of dioxane-free IPTG 

(Promega) was added at the indicated concentrations and durations. The fraction of 

remaining GFP was assessed with Accuri C6 flow cytometer (BD Biosciences) as the GFP 

MFI of the transduced relative to the GFP MFI of the untransduced GFP+ Jurkat cells, both 

normalized to the fluorescence of the unmanipulated (non-GFP-expressing) Jurkat cells.  

 

T cell transfers and infections 

CD8+ T cells from bone marrow chimeric animals were isolated using the CD8+ T cell 

isolation kit II for magnetic separation (Miltenyi Biotech) and then GFP+ CD8+ congenic cells 

were sorted using BD FACSAria cytometer. P14 CD8+ T cells (104 – 106 cell/animal) were 

injected in recipient mice i.v., which were subsequently infected intraperitonealy with 2 x 105 

p.f.u. LCMV Armstrong. For influenza infections, the mice were anesthetized with 2.5% 

Avertin and infected with 0.5 LD50 H1N1 Influenza virus (PR8), engineered to express GP33-41 

peptide of LCMV (PR8-GP33)(93), intranasally. Both viruses were a generous gift of Dr. E. 

John Wherry (University of Pennsylvania School of Medicine, Philadelphia, PA). 

 

Flow cytometry and cell sorting 

Single cell suspensions from spleen or bone marrow were stained with combinations 

of anti-CD8α (53-6.7), anti-CD4 (RM4-5), anti-B220 (RA3-6B2), anti-CD11b (M1/70), anti-
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CD11c (N418), anti-CD44 (IM7), anti-CD62L (MEL-14), anti-CD45.1 (A20), anti-CD45.2 

(104), anti-Thy1.1 (OX-7), anti-Thy1.2 (30-H12), anti-CD25 (PC61), anti-CD27 (LG.3A10), 

anti-CD122 (TM-β1), anti-CD127 (A7R34), anti-CXCR3 (CXCR3-173), anti-TNF-α (MP6-

XT22), anti-IFNγ (XMG1.2), anti-Granzyme B (GB11), anti-ICOS (15F9), anti-CD19 (6D5), 

CD69 (H1.2F3), anti-Fas (Jo2), and anti-GL7 (GL7) (all from BioLegend), anti-T-bet (O4-46) 

and anti-Ki-67 (B56) (from BD Biosciences), anti-Eomes (Dan11mag) (from eBioscience), 

and anti-KLRG1 (2F1) (from Abcam). For CXCR5, biotinylated anti-CXCR5 (2G8; BD 

Biosciences) was used, followed by streptavidin-Brilliant Violet 421 (Biolegend). Poly-

Caspase activity was detected using FLICA Vybrant-FAM Assay Kit (Life Technologies). For 

intracellular cytokine staining, splenocytes were first stimulated with 0.5 µg/ml GP33-41 

(Genscript) or no peptide for 5 hours at 37°C in the presence of GolgiPlug (BD Biosciences). 

For intracellular staining of cytokines and Ki-67, the cells were surface stained, 

fixed/permeabilized, and intracellularly stained using the Foxp3/Transcription Factor Staining 

Buffer Set (eBioscience) as directed by the manufacturer. To assess T cell proliferation, mice 

were injected with 2 mg BrdU i.p. 16h prior to analysis and BrdU incorporation was detected 

using the FITC BrdU Flow Kit (BD Pharmingen).  

LSK cells were sorted from CD117-enriched bone marrow cells stained with CD117 

(ACK2), Sca-1 (D7) and a lineage antibody cocktail which included biotin-labeled anti-CD5 

(53-7.3), anti-Gr1 (RB6-8C5), anti-B220 (RA3-6B2), anti-CD3e (145-2C11), anti-CD11b 

(M1/70), anti-Ter-119 (Ter-119) and detected with fluorophore conjugated Streptavidin (all 

from BioLegend). Data were acquired using LSR II or Accuri C6 (BD Biosciences) 

cytometers and analyzed with FlowJo software (v9.7.2, TreeStar). 

 

shRNA construct generation 

Target sequences of the shRNA used are: shBatf 1 

(CCGCAAAGAGATCAAACAGCT), shBatf 2 (CTGGACAAGTATTGAACACAA), shBatf 3 
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(GAGCTCAAGTACTTCACATCA), shLacZ (CCGTCATAGCGATAACGAGTT), shRFP 

(GCTTCAAGTGGGAGCGCGTGA), shGFP (ACAACAGCCACAACGTCTATA). Cloning 

methods can be found at http://www.broadinstitute.org/rnai/public/. Briefly, complementary 

oligos (IDT) were annealed and ligated into AgeI and EcoRI digested pLKO.1-TRC005 and 

1xLacO (both obtained from The RNAi Consortium, Broad Institute). All ligated constructs 

were sequence verified for the presence of the correct shRNA by Sanger sequencing. 

 

Gene expression analysis 

Congenically marked CD8+ T cells were sorted from chimeric mice or following in vitro 

stimulation. Cells were lysed and RNA was extracted using RNeasy Plus Mini Kit (Qiagen). 

cDNA was generated using High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems) and analyzed on an ABI 7500 Fast real-time quantitative PCR instrument using 

gene Taqman probesets from Applied Biosystems. 

 

Immunoblotting 

CD8+ T cells stimulated in vitro with aCD3/aCD28 were lysed in modified Laemmli 

buffer (60 mM Tris-HCl [pH 7.2], 10% glycerol, and 2% sodium dodecyl sulfate [SDS]) 

containing 1 U/ml of DNase (Benzonase nuclease; Novagen) and Complete protease 

inhibitor cocktail (Roche) for 30 min at 4°C. Protein concentration in the lysates was 

estimated with a bicinchoninic acid assay (Thermo Scientific), and 75 mg of each lysate was 

subjected to SDS-polyacrylamide gel electrophoresis and western blotting on nitrocellulose 

membranes as previously described (189). The primary antibodies used were b-actin (1:5000 

dilution, Abcam, ab8227) and BATF (1:500 dilution, Brookwood Biomedical, PAB4003). 

Densitometry was performed using ImageJ software (NIH). 
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Generation of follicular T helper cells and B cell transfer  

To generate follicular T helper (Tfh) cells, C57BL/6J mice were immunized 

subcutaneously in flanks with 100 µg NP18-OVA (Biosearch Technologies) emulsified in an 

emulsion of Mycobacterium tuberculosis strain H37RA complete Freund’s adjuvant (Difco) at 

1:1 ratio. CD4+ CXCR5+ ICOS+ Tfh cells were isolated from the draining (inguinal) lymph 

nodes 7-8 days after immunization. B cells from bone marrow chimeric animals generated as 

described above were first enriched using anti-CD19 microbeads (Miltenyi Biotech) and then 

sorted for GFP+ CD19+ cells. shBATF and shLacZ-integrated B cells were mixed at a 1:1 

ratio. A mixture of 2 x 106 polyclonal B cells and 2.5 x 105 Tfh cells was injected i.v. in Rag1-

deficient mice (Jackson Labs). These mice were subsequently immunized with NP18-OVA 

as described above. Single cell suspensions from inguinal lymph node, spleen, and bone 

marrow were analyzed using flow cytometry 10 days later immunization. 
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Chapter 5. In vivo RNAi screen identifies TGIF1 as a novel negative regulator of 

CD8+ T cell effector function 

 

Introduction 

Several transcription factors have important roles in regulating CD8+ T cell activation, 

proliferation, and differentiation (6, 19, 20, 39, 74, 174, 190, 191). Numerous additional 

genes have been suggested to contribute to this process based on the kinetics of their 

expression (23, 75, 163, 190); yet technical limitations make functional characterization of 

many of these gene products challenging. While generating germline knockouts for putative 

regulatory genes of interest is possible for small numbers of genes, it is not feasible to 

assess the functional role of hundreds of putative regulators in primary T cells in vivo. 

Additionally, potential lethality associated with some gene knockout animals forces 

researchers to pursue the generation of conditional knockouts or fetal liver chimeric animals. 

Furthermore, many genes such as Notch may control both in early T cell development in the 

thymus as well as in effector and memory generation from naive T cells (192-195).  

In an effort to establish functional roles for novel genes in particular biological 

processes, many researchers have used the power of RNAi screens (196). This technology 

relies on the RNA-induced silencing complex (RISC) degrading the targeted gene’s mRNA to 

which a complementary small-interfering RNA (siRNA) is bound (197, 198). The siRNA is 

either delivered directly through electroporation of cells or through a retroviral vector that 

stably integrates in the genome and expresses shRNA, which is then cleaved by Dicer to 

generate siRNA. Due to technical limitations, most screens have been performed in vitro, as 

it is often challenging to introduce siRNA-transfected or retrovirally transduced cells into an 

animal for examining the role of siRNA-targeted genes in vivo. In cancer biology, RNAi 

screens have been successful to identify genes important in malignant cells using in vivo 
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RNAi screens by injecting shRNA-bearing tumor cell lines in mice (199-201). However, 

screens in primary immune cells have been more challenging.  

An RNAi-based screening approach is very appealing for deciphering the functional 

roles of genes in CD8+ T cell effector differentiation and memory development. However, 

there are two main difficulties in approaching T cell memory formation with established 

screening tools: (i) T cells are very difficult to transduce without activation which can itself 

perturb CD8+ T cell differentiation; and (ii) physiological effector differentiation and memory 

development cannot be fully recapitulated physiologically in vitro, requiring screens to be 

performed in vivo. 

Although shRNA have been successfully introduced into mouse T cells, all of these 

methods rely on activation of T cells prior to transduction (19, 98, 174, 178, 179, 202-204). 

There are several potential difficulties with this experimental approach including: (a) the 

delay in knocking down target genes that are up-regulated immediately following activation 

makes assessing their phenotype difficult; (b) excess stimulation with cytokines or through 

TCR potentially leads to use of non-physiological states of T cells in screening experiment; 

(c) viral vectors can activate innate sensors in various splenic cell populations; and (d) 

injection of dead or dying cells, a frequent side effect of viral transduction. 

For these reasons, we have used the novel in vivo RNAi platform described in the 

previous chapter of this thesis to screen pools of shRNAs targeting curated sets of genes of 

interest. This system enables generation of rigorously naive CD8+ T cells with genomically 

integrated inducible shRNA that enable us to systematically interrogate the functional role of 

genes in effector differentiation in vivo.  

We used the inducible shRNA approach in a functional genomic screening approach 

to identify genes that control the effector differentiation of primary naive CD8+ T cells into 

effector CD8+ T cells responding to a viral infection. Due to limitations, such a screening 

approach cannot be done on a genome-wide level, primarily because of the bottlenecks in 
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the progression of shRNA diversity during the development from an LSK cell into a mature 

naive CD8+ T cell (205). These include both technical limitations, such as potential loss of 

certain shRNAs in the process of LSK lentiviral transduction, as well as biological limitations, 

as not all LSK cells will engraft in irradiated recipients, and only a subset of those eventually 

contribute to the seeding of the thymus with thymic progenitors that eventually give rise to 

mature T cells (206, 207). For these reasons, we performed a targeted screen that focused 

on a defined functional class of proteins confirmed to be expressed by CD8+ T cells based on 

transcriptomic data and whose expression is up-regulated following cell activation. 

Specifically, we focused on transcription factors and DNA-binding proteins for several 

reasons: 1) have a profound influence on cellular state and function; 2) they often have a 

more profound effect on cell biology as they regulate numerous target genes; 3) partial loss 

of function induced by RNAi can cause a phenotype which is not always true for other 

classes of proteins, such as enzymes, where a minor amount of remaining protein can 

continue to exhibit significant enzymatic activity; 4) their biology is difficult to perturb with 

conventional methods such as small molecules or monoclonal antibodies; and 5) knockout 

mice exist for many of these proteins, enabling follow-up functional studies. 

The in vivo RNAi screen measured the effects of ~80 genes on effector P14 CD8+ T 

cell proliferation following activation by LCMV Armstrong. We scored the functional relevance 

of genes by the relative enrichment or preferential loss of shRNAs targeting respective genes 

at d8 p.i. compared to their representation at the time of P14 cell transfer and LCMV infection 

(d0). We identified several known and potentially novel regulators of CD8+ T cells activation 

having both agonistic and antagonistic effects on this process.  

Single gene validation experiments led us to focus on a potentially novel regulator of 

T cell function, TGF-β-induced factor homeobox 1 also known as. 5’-TG-3’-interacting factor 

(TGIF1) for several reasons. First, its expression is up-regulated in both CD8+ and CD4+ T 

cells responding to acute and chronic infection in early as well as late stages of infection (75, 
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76). Second, the only characterization of this transcription factor has been performed in 

embryonic neural development, hematopoiesis, and tumorigenesis (208-210), but its function 

in the immune system has not yet been interrogated. Limited work on TGIF1 suggests that it 

may interact with several genes well-appreciated in T cell biology such as, Smad2 

downstream of TGF-β signaling (211), retinoic X receptor alpha (RXRα) in retinoic acid 

signaling pathway (212-214), c-Jun (215), and HDAC1 (211, 216-218). Our data suggest an 

unappreciated role for TGIF1 in CD8+ T cells where in negatively regulating cell activation 

and proliferation, and in skewing the differentiation of effector CD8+ T cells. TGIF1 

knockdown in effector CD8+ T cells decreased the relative abundance of KLRG1+ CD127– 

SLECs and increased KLRG1– CD127+ MPECs. Similar trends were also observed in 

conditional TGIF1-knockout mice in which TGIF1 is selectively absent in peripheral CD8+ T 

cells. Preliminary data additionally suggest that TGIF1 may be directly regulating one of the 

main drivers of SLEC differentiation, Blimp-1 downstream of IL-2 signaling.  

We have thus established the first in vivo RNAi screen in unmanipulated primary 

CD8+ T cells and showed that it can be applied to screen various additional groups of genes 

in CD8+ T cells as well as any hematopoietic cell that are refractory to conventional 

transduction protocols, such as B cells, NK cells, and NKT cells. Additionally, we showed the 

usefulness of the platform and found a previously unappreciated role of transcription factor 

TGIF1 as a negative regulator of CD8+ T cell activation and a regulator of effector CD8+ T cell 

differentiation.	  
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Results 

Existing public data enable prioritization of potential novel regulators of CD8+ T cells 

function  

To select genes for our focused RNAi screen, we analyzed TF transcript abundance 

in previously published publicly accessible genome-wide expression microarray data from 

naive and virus-specific CD8+ and CD4+ T cells responding to either LCMV-Armstrong or 

Clone 13 at early activation and expansion phases (days 6 and 8 p.i.), at memory or 

exhaustion stage, respectively (day 30 p.i.) (75, 76) (GSE41870), as well as studies 

comparing short-lived effector cells (SLEC) and memory progenitor effector cells (MPEC) at 

early stages following LCMV-Armstrong (39, 40) (GSE8678, GSE10230). To select genes, 

we first transformed the mouse microarray datasets in the space of human ortholog genes by 

Affymetrix probe mapping from Mouse 430.2 Array probes into Human U133A Array probes 

and subsequently the corresponding official gene symbols. We then extracted confirmed 

annotated transcription factors (219) and added additional manually-annotated DNA binding 

molecules (Nir Yosef, UC Berkeley, unpublished data) to compile a list of 2671 genes that 

could serve as potential transcriptional regulators. We further filtered for genes that were 

readily detected at the transcript level in T cells at any stage (maximum Log2-transformed 

probe value above 6.0), leaving 1467 genes. From this list, we identified groups of 

differentially expressed genes (fold change ≥ 1.10) in the pairwise comparisons of CD8+ and 

CD4+ T cells at day 6 vs. day 0, day 8 vs. day 0, day 30 vs. day 0 in LCMV-Armstrong and 

LCMV-Clone 13 infection, and in MPEC versus SLEC, resulted in a total 271 genes 

(Supplemental Table 5.1). These genes were then prioritized using lexicographical ordering 

(220) where the weight was placed in the following order: 1.) CD8+ T cells at day 6 and day 8 

in LCMV-Armstrong; 2.) CD8+ at day 6 and day 8 in LCMV-Clone 13; 3.) CD8+ T cells at day 

30 in LCMV-Armstrong; 4.) CD8+ at day 30 LCMV-Clone 13; 5.) genes differentially 

expressed in MPEC and SLEC CD8+ T cells, and 6.) CD4+ T cells in the course of LCMV 
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infections as in CD8+ T cells (Supplemental Table 5.1). We used this prioritization to build a 

pool of shRNA that may be most applicable to interrogate CD8+ T cell differentiation in the 

context of acute viral infection but that may also be subsequently used to screen exhaustion 

state of CD8+ T cells in chronic infections or to interrogate the biology of CD4+ T cells.  

 In this way, we compiled a list of ~80 genes we hypothesized may be most important 

in effector differentiation of CD8+ T cells based on their transcriptional behavior in mouse T 

cells (Supplemental Table 5.2). This list included known T cell fate regulators (Tbx21, Prdm1, 

and Ikzf, Runx, Stat, and Irf family members), genes important for overall effector T cell 

differentiation (Fos, Nfkbib, Batf), genes important for proliferation (E2f family), as well as 

numerous genes with no known function in T cells (Zfp family of genes, Tgif1, Rfx7, etc.). We 

included 3-5 different shRNAs targeting each gene, selecting shRNAs with validated efficient 

knockdown (The RNAi Consortium, Broad Institute of MIT and Harvard, unpublished data) 

and separated the shRNAs into four non-overlapping pools. Each pool contained shRNAs 

targeting 13-21 genes and included 25 control shRNAs targeting irrelevant genes such as 

red fluorescent protein (RFP), luciferase (Luc) and LacZ, to contain in a total of 77-91 

shRNAs per pool (Supplemental Table 5.2). This distribution of experimental and control 

gene enables robust analysis for functional effect beyond stochastic events in T cell 

activation and proliferation 

 

In vivo RNAi system in primary CD8+ T cells identifies novel regulators of effector 

activation 

In vivo RNAi screen was set up to identify regulators of effector CD8+ T cell activation. 

As a readout of this process, we used cell accumulation that is reflective of both proliferation 

and survival of T cells following activation in vivo. To circumvent the effects of the antigen 

specificity of different T cell clones responding to LCMV Armstrong infection, we used P14 

TCR transgenic T cells. These T cells were generated in bone marrow chimeras from P14 
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TCR transgenic LSK cells transduced with a pool of different shRNA-1xLacO-GFP 

integrating lentiviruses described in Chapter 4. This approach enabled reliable acquisition of 

inducible shRNA-integrated P14 CD8+ T cells following reconstitution. These shRNA-

integrated P14 T cells were transferred into mice infected with LCMV-Armstrong. The 

transcription of shRNA in CD8+ T cells was induced by adding IPTG in drinking water of bone 

marrow chimeric mice three days prior to cell transfer and was maintained in LCMV infected 

mice throughout the experiment.  

At the beginning of the experiment, a portion of these shRNA-integrated P14 cells 

were set aside to enumerate representation of all shRNAs in the starting population of cells. 

The rest of the cells were either stimulated in vitro with anti-CD3 and anti-CD28 in the 

presence of IL-2 or were transferred in a separate cohort of CD45.2 wild-type mice that were 

subsequently infected with LCMV-Armstrong. The relative distribution of hairpins was 

assessed at days 3 and 6 for in vitro stimulated cultures and in transferred CD8+ T cells 

extracted from the spleens 8 days following cell transfer and LCMV infection (Figure 5.1).  

 The fate of a single cell is variable even when the TCR is fixed due to external factors 

such as the timing or the microenvironment of T cell activation (221-223). However, previous 

reports suggest that tracking ~50 cells reproduces the behavior of the whole population (221, 

222). To avoid stochastic expansion or loss of particular clones regardless of the function of 

the shRNA knockdown, we transferred 10,000 cells with a maximum of 100 different shRNAs 

resulting in each hairpin being represented on average in 100 cells at the beginning of the 

experiment. Indeed, the distribution of control shRNAs in a pool did not change significantly 

throughout the in vivo or in vitro expansion of cells relative to their distribution in the starting 

population of cells (Figure 5.2A). In contrast, the overall distribution of experimental shRNAs, 

did change from day 0 to days following in vitro and in vivo stimulation (Figure 5.2B). 

Interestingly, the changes induced by shRNAs in vitro were minimal compared to the 

reproducible changes across the different biological replicates in vivo, highlighting the 
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Figure 5.1. A schema describing the experimental setup for the in vivo RNAi screen in CD8+ 
T cells. Bone marrow chimeric mice were generated using congenic P14 LSK cells that were 
transduced with a pool of ~80 different GFP-expressing shRNA lentiviruses. Following complete 
reconstitution, the chimeric mice were treated with IPTG for 3 days and sacrificed to isolate GFP+ 
CD8+ P14 cells. These cells were either 1) sequenced to capture the shRNA representation at d0, 
2) stimulated in vitro for 3 or 6 days, or 3) transferred into congenic mice that were infected with 
LCMV-Armstrong and collected 8 days p.i. for quantification of relative abundance of the different 
shRNAs.  
	



	 118	

	
	
	
	
	
	
	
	

	
 
 
 
 
 
 
 
 
Figure 5.2. In vivo activation and proliferation of CD8+ T cells changes the distribution of 
experimental, but not control, shRNAs. (A) Relative representation of control shRNAs at d3, d6 
(in vitro) or d8 (in vivo), ranked by their abundance at d0. (B) Unsupervised bi-clustering of all 
experimental shRNAs in a representative screening pool. (C) The Log2-transformed fold change of 
the relative abundance of experimental shRNAs (black) at d8 compared to d0 across. Each column 
represents 1 shRNA targeting 1 gene and the error bars represent SD across biological replicates. 
The average and SD of control shRNA are represented in red. The blue and green dotted lines 
represent 1 SD and 2 SD above and below the average of control shRNAs.  
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importance of performing such experiments in a physiologically relevant in vivo setting 

(Figure 5.2B).  

We identified several shRNAs that scored highly as significantly enriched or depleted 

relative to the distribution of control hairpins, and were preferentially lost (corresponding to 

positive regulators of CD8+ T cell activation, Figure 5.2C, bottom left), or were enriched 

(corresponding to negative regulators, Figure 5.2C, top right). The ranked list included 

shRNAs targeting positive regulators that were preferentially lost from the CD8+ T cell 

population at d8 p.i. (Figure 5.2C, bottom left), as well as shRNAs targeting negative 

regulators of CD8+ T cell activation that were enriched at d8 p.i. (Figure 5.2C, top right) 

(Supplemental Table 5.3). Positive regulators included both known genes, such as Fos (224-

226), Irf7 (227), and HnrpII (228, 229), as well as potentially novel agonists of T cell 

activation and/or proliferation following stimulation, such as Hhex, Zik1, and Chaf1b. 

Additionally, the experiment identified known negative regulators of CD8+ T cell responses, 

such as Nfkbib (230, 231) and Spi1 (232) as well as potential novel regulators including 

Tgif1, Wdhd1, and Zfp414. 

 

Regulators identified in the screen can be validated and represent robust biology 

 To validate the functional role of potentially novel regulators of CD8+ T cell activation 

and confirm that the in vivo RNAi screen using inducible shRNA yields biologically 

meaningful data, we performed P14 transfer experiments testing one shRNA at a time. We 

transferred mixtures of P14 CD8+ T cells with integrated shLacZ or an experimental shRNA 

as illustrated in Figure 4.8A. We tested two type 1 interferon inducible genes, Irf1 and Irf7 

(227, 233, 234) with a single shRNA each and three potentially novel negative regulators of 

CD8+ T cell activation – Tgif1, Wdhd1, and Zfp414 – using 3-5 unique shRNAs (Figure 5.3A). 

The data analyzing a single shRNA for a single gene per mouse mostly corroborated the 

results obtained from the in vivo RNAi screen, where Irf1 and Irf7 knock-downs in CD8+ T 
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Figure 5.3. The functional significance of several genes identified in the screen is confirmed 
in validation experiments. (A) Results from in vivo RNAi pooled screen that are validated in B. 
(B) P14 competition experiments using 1:1 injection mixtures of shGene:shLacZ carrying P14 cells. 
The ratio of cells was analyzed at d8 post transfer into mice and LCMV-Armstrong infection and 
normalized to the ratio at d0. 
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cells resulted in a competitive disadvantage relative to control cells. In contrast, Tgif1 and 

Wdhd1 knock-downs both resulted in expansion of CD8+ T cells carrying the shRNA relative 

to the control cells (Figure 5.3). We noted, however, that not all genes completely 

reproduced the results from the screen with Zfp414-targetting shRNAs having more 

distribution between offering advantage or disadvantage to activated CD8+ T cells (Figure 

5.3B). We also observed a drastically increased effect size when studying each hairpin 

individually compared to when it was examined as a part of a larger pool, suggesting a 

potential dilution effect of signal that was occurring in a pooled setting (Figure 5.3, A and B). 

However, we were able to validate the functional effects of many genes identified in the 

screen. 

 

Knock-down of TGIF1 leads to a profound increase in the accumulation of effector 

CD8+ T cells following LCMV Armstrong infection 

Based on the validation data, we focused on TGIF1 due to the strong consistency of 

the effect size observed with multiple shRNAs targeting TGIF1 and the known interaction of 

proteins, such as Smad2 (211), c-Jun (215), RXRα (212), and HDAC1 (211, 217, 218). All of 

those proteins have well appreciated roles in T cell biology, suggesting further that TGIF1 

might regulate CD8+ T cell function. We first confirmed that TGIF1 is up-regulated following 

activation in both transcript (Figure 5.4A) as well as protein abundance (Figure 5.4B). We 

also validated the effective knock-down efficiency of four separate shRNAs targeting TGIF1 

upon addition of IPTG in activated primary CD8+ T cells using the bone-marrow chimeric 

system described above (Figure 5.4C). 

We tested the ability of these TGIF1-targeting shRNAs to affect CD8+ T cell activation 

and effector differentiation. We mixed congenically marked shTGIF1 and shLacZ-carrying 

naive CD8+ T cells at a 1:1 ratio and transferred 10,000 cells in total into wild-type mice that 

were subsequently infected with LCMV Armstrong. We noticed a marked out-competition of 



	 122	

shLacZ-carrying cells by the shTGIF1-carrying CD8+ T cells at d8 p.i. in spleen (Figure 5.4, D 

and F). This effect was also observed in the blood and was noticeable as early as d5 p.i. 

(Figure 5.4, E and F). To investigate if the accumulation in the spleen was due to alteration of 

trafficking, we also analyzed the composition of effector CD8+ T cells in the lung and 

observed a similar increase as in the periphery (Figure 5.4F, middle). These results suggest 

a role for TGIF1 in the negative regulation of CD8+ T cells during LCMV Armstrong infection. 

 

TGIF1 may affect CD8+ effector T cell differentiation to MPEC and SLEC subsets 

through regulation of Blimp-1 

Effector CD8+ T cell responses to viral infections are heterogeneous and there are at 

least two subsets that have been well-characterized in the literature and are known to be 

transcriptionally regulated (39-42, 45-47). These are KLRG1+ CD127– short-lived effector 

cells (SLEC) that expand robustly following activation but rapidly contract following resolution 

of the infection, and KLRG1– CD127+ memory progenitor effector cells (MPEC) that expand 

less initially but are the subset that can persist longer and eventually gives rise to the 

memory compartment of the CD8+ T cells. TGIF1 knock-down in P14 CD8+ T cells in LCMV 

Armstrong infected mice decreased the relative abundance of SLECs and increased the 

MPECs (Figure 5.5A) as compared to control cells, suggesting that this gene may be 

affecting the transcriptional program orchestrating CD8+ T cell effector differentiation. 

To enable deeper analysis of TGIF1 function in CD8+ T cells, we generated a 

conditional knock-out mouse, in which TGIF1 is deleted selectively in peripheral CD8+ T 

cells. This was accomplished by crossing the previously described TGIF1flox/flox strain (208) to 

a mouse strain where Cre recombinase expression is regulated by the CD8a E8I-promoter 

that selectively expressed in peripheral CD8+ T Cells (235). CD8+ T cells in these mice did 

not exhibit any differences such as alteration of the proportion of cells that express CD44 and 

CD62L or other surface receptors at the baseline state. Additionally, the TGIF1-KO virus-
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Figure 5.4. TGIF1 is up-regulated following activation and negatively affects CD8+ T 
cell abundance in viral infection. (A, B) TGIF1 mRNA (A) and protein levels (B) are up-
regulated in CD8+ T cells following 3 day in vitro stimulation. (C) Efficiency of TGIF1 
knock-down in day 3 stimulated 1xLacO shRNA-integrated CD8+ T cells incubated with 
IPTG. (D) Representative FACS plot of shTGIF1 and shLacZ P14 cells at the day of 
injection (do, left) and at d8 following cell transfer in LCMV-Armstrong infected mice. (E) 
Kinetics of the relative expansion of shTGIF1 P14 cells in blood. (F) Relative expansion of 
shTGIF1 P14 CD8+ T cells in the spleen, lung, and blood at d8 p.i. 
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Figure 5.5. TGIF1 influences effector CD8+ T cell differentiation. (A, B) Relative abundance of 
SLEC and MPEC subsets in shTGIF1 or shLacZ P14 cells (A) and E8I-Cre+ (KO) or E8I-Cre– GP33 
tetramer+ CD8+ T cells (B) at d8 post LCMV-Armstrong infection. (C) Principal component analysis 
using top 5000 most variable genes based on mean absolute deviation (MAD). (D) GSEA 
enrichment plots of d3 in vitro activated KO and WT cells using public MPEC/SLEC gene sets. (E) 
Heatmap showing top 20 up- and down-regulated genes in WT vs. KO cells at d3 in vitro activated 
cells. (F) GSEA enrichment plots of d3 in vitro activated KO and WT cells using public gene sets 
related to IL-2 treated immune cells. 
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specific CD8+ T cells did not expand significantly more in response to LCMV-Armstrong 

infection compared to wild-type cells (data not shown). However, following LCMV-Armstrong 

infection, we observed an effect similar to TGIF1 knock-down, where the TGIF1-deficient 

CD8+ T cells produced relatively fewer SLECs and more MPECs in both the spleen and the 

lung (Figure 5.5B). 

To understand the differences between the wild-type and TGIF1-deleted CD8+ T 

cells, we performed RNA-sequencing in naive CD8+ T cells, in vitro activated CD8+ T cells, 

and virus-specific (GP33-41 tetramer+) CD8+ T cells at d8 following LCMV Armstrong infection. 

The differences between the two genotypes were not robust (Figure 5.5C). However, gene-

set enrichment analysis (GSEA) using the ImmuneSigDB collection of immunologic gene 

expression signature that we generated (described in detail in the Chapter 6) (78, 236) 

enabled us to confirm genome-wide level of transcriptional differences between the TGIF1-

KO and wild-type activated CD8+ T cells. The TGIF1-KO cells were enriched for the MPEC 

gene signatures previously reported in the literature (Figure 5.5D) (39, 40, 46, 237). When 

we surveyed the specific differentially expressed genes, we noticed that a key driver of CD8+ 

T cell SLEC differentiation, Blimp-1, failed to be up-regulated in the absence of TGIF1 

(Figure 5.5E). 

Blimp-1, encoded by Prdm1 gene, is one of the key regulators of CD8+ effector T cell 

differentiation toward MPEC or SLEC subsets. Higher Blimp-1 expression leads to 

differentiation of CD8+ T cells toward the more terminally differentiated SLECs (20, 73, 74). 

To examine whether TGIF1 may be directly regulating Blimp-1, we performed TGIF1 

chromatin immunoprecipitation (ChIP-Seq). Our preliminary data suggests the presence of 

TGIF1 binding at the promoter region of the Prdm1 gene (data not shown), providing a 

mechanism whereby TGIF1 directly regulates its function. This is consistent with previous 

reports identifying direct interaction of TGIF1 with the Prdm1 locus in mixed lineage leukemia 

(MLL)-rearranged acute myeloid leukemia (AML) (238). In CD8+ T cells Blimp-1 activity is 
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enhanced by IL-2 signaling to promote SLEC differentiation (20, 73). TGIF1-KO CD8+ T cells 

enriched for sets of genes up-regulated in IL-2Rβ– or IL-2–knockout cells compared to wild-

type cells and sets of genes down-regulated in cells treated with IL-2 compared to untreated 

cells (Figure 5.5F) (239-242), suggesting that TGIF1 may be more generally interfering with 

transcriptional programing induced by IL-2 in T cells. 

While further experimentation is needed to confirm this finding and understand the 

mechanism in detail, these data point to at a potential novel role for TGIF1 in influencing 

CD8+ T cell effector differentiation by affecting IL-2 induced changes and potentially directly 

regulating the transcription factor Blimp-1. 	  
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Discussion 

	 High-throughput perturbation of genes to study the immune system is appealing as it 

has the potential to systematically survey the function of genes in immune cells at scale. 

Substantial strides have been made toward that goal in the recent years, yet most studies 

still predominantly relies on in vitro studies of easily-transducable immune cells, such as 

dendritic cells (183) or by manipulating the cells ex vivo to enable viral integration followed by 

transfer in vivo (19, 98, 178, 179, 243). While these approaches have yielded valuable 

biological insight, they are not able to interrogate the functional of cells that occur early 

following activation. Furthermore, some approaches rely on the non-physiologically 

conditions, such as high concentrations of anti-CD3/anti-CD28 antibodies, or cytokines that 

induced homeostatic proliferation. The approach described herein thus describes a novel 

platform that enables functional screening of genes in vivo using inducible shRNA in 

unperturbed cells of the hematopoietic system. 

The inducible nature of our screening platform additionally offers the opportunity to 

investigate the roles of specific genes at different stages of the immune response. In the 

context of acute viral infections, for example, genes can be transiently suppressed during the 

activation with short exposure to IPTG, but then restored in their expression capacity at the 

contraction or memory stages. Similarly, shRNA expression may be selectively induced by 

IPTG at the memory stage to interrogate the genes important in the maintenance of memory 

T cells. Analogous approach can be used to identify novel genes driving T cell exhaustion in 

the context of persistent infection or in a tumor model. With the recent therapeutic successes 

of approaches to revive T cell exhaustion with checkpoint blockade, our approach may 

accelerate the discovery of novel targets that can be pursued in clinical development.  

 Using the in vivo RNAi screen, we identified TGIF1 as a potential novel 

negative regulator of CD8+ T cell activation. This transcriptional regulator has been 

previously recognized to cause holoprocencephaly type 4 in humans when mutated (244), 
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However its up-regulation in CD8+ T cells following activation and its reported binding 

partners and suggest a potentially interesting additional role for this gene in regulating CD8+ 

T cells. We observed that TGIF1 knockdown results in enhanced proliferation of P14 CD8+ T 

cells in LCMV Armstrong infected mice. Additionally, the effector differentiation of these cells 

is altered with increased skewing toward the MPEC subset and away from the SLEC. Similar 

differentiation effects were observed in mice with selective deletion of TGIF1 in peripheral 

CD8+ T cells. Gene expression analysis of wild-type and TGIF1-deleted activated CD8+ T 

cells also revealed that these cells are enriched for genes up-regulated in MPEC and genes 

that are down-regulated in conditions of increased IL-2 signaling. While further detailed 

examination of this is needed to confirm the mechanism of regulation, our preliminary data 

suggest that TGIF1 may be binding to the promoter region of Blimp-1 gene and directly 

inducing or enhancing its expression. It is encouraging that another study examining MLL-

ALL observed a similar TGIF1 peak in the Blimp-1 promoter region using ChIP-Seq and 

overexpression of TGIF1 in these cells lead to the increase of Blimp-1 expression (238). It is 

not know at this point whether TGIF1 may be binding to this region directly by itself or 

whether it interacts with it through cofactors. Because Blimp-1 has a role in other immune 

cells beyond CD8+ T cells, these findings could have implications for the regulation of CD4+ T 

cell subset differentiation such as Tfh (245) and Th17 cells (246) as well as B cells (247, 

248). Additional research on this transcriptional regulators can thus have a larger impact on 

the immunology field beyond uncovering its role in the biology of CD8+ T cells. 

Our data highlights a much more profound role in CD8+ T cells when TGIF1 is 

knocked-down than when it is knocked-out. Several potential reasons could be responsible 

for this inconsistency. First, some of the effect size may be masked when TGIF1 is lacking 

throughout the life of a mature CD8+ T cell and potentially changing cells and perhaps 

leading them to employ genetic compensatory mechanisms occasionally described in the 

knockout animals (249). For example, TGIF2, which has been shown in the past to work 
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similarly to TGIF1 and arose from gene duplication, may have compensatory function (218, 

250, 251). Additionally, the partial loss of the protein abundance in an inducibly immediately 

prior to activation of cells may reveal a phenotype otherwise masked by other mechanisms. 

Lastly, the nature of the experiment involving P14 competition in LCMV infection could be 

amplifying the effect size because it is measuring the relative abundance of shTGIF1-

integrated P14 CD8+ T cells compared to the control P14 T cells. As such, effects observed 

in the cells with the gene knockdown may be masked in the knockout setting. Such effects 

may therefore be better examined in models with a known role for TGF-β such as chronic 

LCMV Clone 13 infection or using tumor models (133, 252).  

In this study, we leveraged the biology of RNA interference to perturb the expression 

of genes through degradation of their mRNA. Due to the pooled nature of the screen that 

relies on the tracking the shRNA representation after multiple rounds of division from day 0 to 

day 8, only a permanent integration in the genome is a viable option, and thus transient 

transfection would not enable such recovery of data. Additional approaches, however, have 

been recently described to alter the genome of the cells, including the CRISPR/Cas9 system, 

TALENs, and Zinc finger nucleases (ZFNs) (253). Our platform can be readily combined with 

CRISPR/Cas9 technologies to allow rapid, inducible generation of knock-out or knock-in 

unmanipulated immune cells of any type. While this study identified a novel regulator of T cell 

biology, it thus simultaneously opens doors for a systematic interrogation of genes in immune 

cells and identification of important, potentially drugable targets on immune cells to impact 

human health.  
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Materials and Methods 

Mice 

P14 TCR Tg mice were used as described (110). Wildtype C57BL/6J, Ly5.1 

(CD45.1), and Thy1.1 mice were purchased from Jackson Laboratories (Bar Harbor, ME). 

TGIF1fl/fl have been generated previously (208) and were bred to the E8I-Cre mice (254). All 

mice were used according to the Harvard Medical School Standing Committee on Animals 

and National Institutes of Animal Healthcare Guidelines. Animal protocols were approved by 

the Harvard Medical School Standing Committee on Animals. 

 

Generation of bone marrow chimeras 

Bone marrow was isolated and red blood cells lysed using ACK lysis buffer (Gibco). 

LSK cells were enriched using anti-CD117 microbeads (Miltenyi Biotech) and then sorted 

using a BD FACSAria cytometer. Sorted cells were plated overnight in StemSpan SFEM 

medium (StemCell Technologies) with 100 µg/ml recombinant murine stem cell factor (SCF), 

thrombopoietin (TPO), IL-7, and Flt3-ligand (PeproTech). Cells were then spin-infected with 

lentiviral supernatants at 650 x g for 90 min at 37°C on non-treated plates that had been 

coated overnight at 4°C with 100 mg/ml RetroNectin (Takara Bio). Fresh medium was added 

after 1 h and cells were rested overnight. Viral stocks were titrated to ensure the majority of 

cells were infected with a single virus. The cells were then washed in PBS (Gibco) and 

50,000 cells were injected intravenously in recipient mice that had been irradiated with 2 

doses of 600 cGy, 3 hours apart. 

 

Pooled library generation 

The shRNA libraries in 1xLaO vector were constructed in a pooled fashion from 

existing TRC005 vectors containing desired shRNA. Pooled TRC005 plasmids were digested 
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with EcoRI and AgeI, cut shRNA oligonucleotides isolated, and ligated into an EcoRI/AgeI-

cut 1xLacO vector. 

 

Lentivirus production 

293T cells were seeded in DMEM with 10% FBS. The following day, the cells were 

transfected with shRNA construct pLKO.1-TRC005 or 1xLacO (available from Sigma-Aldrich 

under the name “MISSION 1X LacO Inducible”) with the GFP reporter, and with the 

packaging plasmids Pax2 (gag, pol) and VSV-G using TransIT-LT1 (Mirus Bio) or ExGen 500 

(Thermo Scientific Fermentas). Viral supernatants were collected 48h – 72h later.  

 

T cell transfers and infections 

CD8+ T cells from bone marrow chimeric animals were isolated using the CD8+ T cell 

isolation kit II for magnetic separation (Miltenyi Biotech) and then GFP+ CD8+ congenic cells 

were sorted using BD FACSAria cytometer. P14 CD8+ T cells (104 – 106 cells/animal) were 

injected in recipient mice i.v., which were subsequently infected intraperitonealy with 2 x 105 

p.f.u. LCMV Armstrong. For influenza infections, the mice were anesthetized with 2.5% 

Avertin and infected with 0.5 LD50 H1N1 Influenza virus (PR8), engineered to express GP33-41 

peptide of LCMV (PR8-GP33)(93), intranasally. Both viruses were a generous gift of Dr. E. 

John Wherry (University of Pennsylvania School of Medicine, Philadelphia, PA). 

 

Flow cytometry and cell sorting 

Single cell suspensions from spleen or bone marrow were stained with combinations 

of anti-CD8α (53-6.7), anti-CD44 (IM7), anti-CD62L (MEL-14), anti-CD45.1 (A20), anti-

CD45.2 (104), anti-Thy1.1 (OX-7), anti-Thy1.2 (30-H12), anti-CD25 (PC61), anti-CD127 

(A7R34) (all from BioLegend), and anti-KLRG1 (2F1) (from Abcam).  

LSK cells were sorted from CD117-enriched bone marrow cells stained with CD117 
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(ACK2), Sca-1 (D7) and a lineage antibody cocktail which included biotin-labeled anti-CD5 

(53-7.3), anti-Gr1 (RB6-8C5), anti-B220 (RA3-6B2), anti-CD3e (145-2C11), anti-CD11b 

(M1/70), anti-Ter-119 (Ter-119) and detected with fluorophore conjugated Streptavidin (all 

from BioLegend). Data were acquired using LSR II or Accuri C6 (BD Biosciences) 

cytometers and analyzed with FlowJo software (v9.7.2, TreeStar). 

 

shRNA construct generation 

For validation and TGIF1 analysis, single gene-targeting constructs were generated 

in the 1xLacO vector. Target sequences of the shRNA used in validation experiments are:  

shTGIF1 - #1 (CGAATGTTTCTTGGTAGTTTC), 

shTGIF1 - #2 (GATGGCAAGAGATGCATTATT), 

shTGIF1 - #3 (AGTACAGATGTACCGCAAATA), 

shTGIF1 - #4 (ATTTCAGAAGCTAGCTCTATT), 

shTGIF1 - #5 (TAGTGGATGTTGCACTCAAAC), 

shWDHD1 - #1 (TGATTATGAGGAGAGCATTAA), 

shWDHD1 - #2 (TCCTTCGACTGTTCACTATTG), 

shWDHD1 - #3 (GTCTCCCTGTGGGCAGTATTT), 

shWDHD1 - #4 (AGAGCAGCAGGAACTCTTAAT), 

shZFP414 - #1 (GTTCGTGATCTAGCACAGCAT), 

shZFP414 - #2 (CTTCAAGCATCTGCATGTTTG), 

shZFP414 - #3 (CTACTTCAAGTGTGAGAATTG), 

shIRF1 (GGCTAGAGATGCAGATTAATT), 

shIRF7 (CTTCGACTTCAGCACTTTCTT), 

shLacZ (CCGTCATAGCGATAACGAGTT),  

shRFP (GCTTCAAGTGGGAGCGCGTGA).  

Complete list of shRNAs and target sequences is listed in Supplemental Table 5.4. 
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Cloning methods can be found at http://www.broadinstitute.org/rnai/public/. Briefly, 

complementary oligos (IDT) were annealed and ligated into AgeI and EcoRI digested 

1xLacO-GFP vector. All ligated constructs were sequence verified for the presence of the 

correct shRNA by Sanger sequencing. 

 

Immunoblotting 

CD8+ T cells stimulated in vitro with 4 µg/ml of plate-bound anti-CD3 and anti-CD28 

with 100 U/ml of rhIL-2 (Peprotech) were lysed in modified Laemmli buffer (60 mM Tris-HCl 

[pH 7.2], 10% glycerol, and 2% SDS) containing 1 U/ml of DNase (Benzonase nuclease; 

Novagen) and Complete protease inhibitor cocktail (Roche) for 30 min at 4°C. Protein 

concentration in the lysates was estimated with a bicinchoninic acid assay (Thermo 

Scientific), and 75 µg of each lysate was subjected to SDS-polyacrylamide gel 

electrophoresis and western blotting on nitrocellulose membranes as previously described 

(189). The primary antibodies used were anti-β-actin (1:5000 dilution, Abcam, clone ab8227) 

and anti-TGIF1 (1:500 dilution, Santa Cruz Biotechnology, clone H-172). 

 

Gene expression analysis 

Wild-type or congenically marked CD8+ T cells were sorted from chimeric mice or 

following in vitro stimulation with 4 µg/ml plate-bound anti-CD3 (clone 145-2C11) and anti-

CD28 (clone 37.51) (BioXcell) and 100 U/ml recombinant human IL-2 (Peprotech). Cells 

were lysed 12 h – 5 days following activation and RNA was extracted using RNeasy Plus 

Mini Kit (Qiagen). cDNA was generated using High Capacity cDNA Reverse Transcription Kit 

(Applied Biosystems) and analyzed on an ABI 7500 Fast real-time quantitative PCR 

instrument using gene Taqman probesets from Applied Biosystems. 
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For RNA sequencing, wild-type and E8I-Cre TGIF1fl/fl CD8+ T cells were collected at 

day 0 (MACS-enriched for naive CD8+ T cells), or collected at days 1, 2, or 3 following in vitro 

stimulation with 4 µg/ml of plate-bound anti-CD3 and anti-CD28, or were sorted on splenic 

GP33-41-tetramer+ CD44+ CD8+ T cells at d8 following LCMV-Armstrong infection. The cells 

were lysed in RLT Plus lysis buffer (Qiagen) supplemented with 1% β-mercaptoethanol 

(Sigma). RNA was extracted according to manufacturer’s instructions (Qiagen RNeasy Plus 

Micro kit). Next generation sequencing libraries were generated according to manufacturer’s 

instructions using the Next Ultra RNA kit for Illumina (New England Biolabs). Libraries were 

sequenced on Illumina HiSeq 2500 by paired-end 30bp sequencing, to an average depth of 

17 million reads per sample. 

Reads were aligned to the mouse genome (Mm10) transcriptome assembly using 

TopHat2 (255), and aligned bam files were aggregated and reduced to feature counts using 

Rsubread (256). Counts were quantile normalized and genes were filtered using a cutoff of 

>10 counts in >2 samples. We then used limma voom to calculate differential gene 

expression (257). Genes were ranked based on log-transformed p-values with a sign 

correction based on the log fold-change, and these ranked lists were used to perform 

preranked gene set enrichment analysis (78).  

 

Chromatin immunoprecipitation (ChIP) sequencing 

CD8+ T cells were activated in vitro with plate-bound anti-CD3 and anti-CD28 in the 

presence of 100 U/ml recombinant human IL-2 (Peprotech). Three days following activation, 

60 × 106 cells were fixed with 1% formaldehyde for 10 min at 37°C, washed twice in ice-cold 

PBS, pelleted, and ‘flash frozen’ and stored at −80°C for later processing as described 

previously (174). Specifically, the fixed cells were resuspended in 1440 ml of lysis buffer 

(0.5% SDS, 50 mM Tris, pH 8, 10 mM EDTA, 1× Complete protease inhibitor (Roche)). 
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Chromatin was sheared using the E210 Ultrasonicator (Covaris) and microTUBEs (Covaris). 

Each microTUBE (120 ml of lysate) was sonicated with six treatments of 60 seconds each 

with the following settings: intensity, 5; ‘duty cycle’, 10%; 200 cycles per burst. This 

sonication resulted in most DNA fragments being of 200–250 base pairs in length. The 

sonicated lysates were collected and centrifuged for 10 min at 4°C. Supernatants were 

collected and four parts of dilution buffer (1.25% Triton X-100, 12.5 mM Tris, pH 8, 187.5 mM 

NaCl, 1×Complete protease inhibitor) were added. Dynabeads Protein G (Life Technologies) 

pre-bound to 1, 5, and 10 µg of anti-TGIF1 antibody (Santa Cruz Biotechnology, H-172) were 

used for overnight immunoprecipitation. Precipitated immunocomplexes were then washed, 

for 5 min, as follows: first with low-salt buffer (0.1% SDS, 1% Triton X-100, 20 mM Tris, pH 8, 

2 mM EDTA, 150 mM NaCl and 1× Complete protease inhibitor), then with high-salt buffer 

(0.1% SDS, 1% Triton X-100, 20 mM Tris, pH 8, 2 mM EDTA, 500 mM NaCl and 1× 

Complete protease inhibitor), twice with LiCl buffer (0.7% sodium deoxycholate, 1% NP-40, 

20 mM Tris, pH 8, 1 mM EDTA, 500 mM LiCl and 1× Complete protease inhibitor) and lastly 

with Tris-EDTA buffer (with protease inhibitor). The ChIP immunocomplexes were eluted 

from the beads twice in elution buffer (1% SDS and 0.1 M NaHCO3) with continuous 

agitation for 30 min. The eluates were pooled and then were incubated overnight at 65°C for 

reversal of the formaldehyde crosslinks. The eluates were then treated for 2 h at 37°C with 

200 mg RNase A (Qiagen) and 40 mg proteinase K (Life Technologies). ChIP DNA 

fragments were purified with a MinElute Reaction Cleanup kit (Qiagen).  

The DNA fragments were then prepared for high-throughput Illumina sequencing with 

a NEBNext ChIP-Seq Library Master Mix Set for Illumina kit (New England BioLabs) and 

NEBNext Multiplex Oligos for Illumina (Index Primers 1-12) kit (New England BioLabs) 

according to a modified manufacturer’s protocol. For the ChIP or input samples, 10–50 ng of 

DNA was used for the preparation of the sequencing library. The ends of DNA fragments 
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were repaired, given dA tails, and ligated to Illumina adaptors according to the kit 

instructions. DNA fragments of 150–600 base pair length were selected with Pippin Prep 2% 

Agarose Gel Cassettes and the Pippin Prep DNA Size Selection System (Sage Science). 

DNA was purified with a QIAquick PCR Purification Kit (Qiagen). The DNA was then 

amplified by 12 cycles of PCR with NEBNext Multiplex Oligos. Amplified DNA was purified 

with DNA to Agencourt AMPure XP beads (Beckman Coulter) a 1:1 ratio. The ‘multiplexed’ 

DNA libraries were sequenced on the Illumina HiSeq2000. Sequencing reads were aligned to 

the mouse NCBI37/mm9 reference genome (National Center for Biotechnology Information) 

with Bowtie software for the alignment of short DNA sequences (258), and sorted with the 

SAMTools format for storing large nucleotide sequence alignments and utilities for 

manipulating alignments (Sequence Alignment/Map) (259). Identical duplicated reads were 

removed so the analysis examined only unique reads) using Picard utilities for the 

manipulation of SAM files.  

SPP and the MACS2 (v2) method (260, 261) were both used for peak finding. 

Regions from both peak identifiers were combined with mergeBed of the BEDTools utilities 

for comparing genomic features (262). Quality rating for the merged regions was assigned on 

the basis of the maximum significance from either source. We used the library generated 

with 5 µg of anti-TGIF1 antibody, as it was the only one that revealed peaks over the input. 
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Chapter 6. Compendium of immune signatures identifies conserved and 

species-specific biology in response to inflammation 

 

Parts of this chapter have previously been published in: 

Jernej Godec, Yan Tan, Arthur Liberzon, Pablo Tamayo, Atul J. Butte, Jill P. Mesirov, W. 

Nicholas Haining. A novel compendium of immune signatures identifies both conserved and 

species-specific biology in the mouse and human response to inflammation. Immunity. 2016 

Jan 19;44(1):194-206. (PMID: 26795250) 

 

Introduction 

Experiments in both human cells and mouse models have been used to discover 

many of the mechanisms by which the immune system functions. Identifying aspects of 

immunobiology that are evolutionarily conserved between humans and mouse models is 

useful because it can reveal mechanisms of fundamental importance to both species. 

Moreover, it can provide reassurance that information gleaned from mouse models will be 

applicable to the human condition. This is crucial, as much of immunobiology cannot be 

examined physiologically in humans due to inaccessibility of certain tissues or cell types or 

the difficulty in recapitulating complex biological milieu in vitro. However, considerable 

controversy exists as to the degree to which mouse models can recapitulate events occurring 

in immunologic disease states in humans (263-268). These concerns have extended to the 

analysis of genome-wide analysis of mRNA levels where analyses of the same datasets from 

mouse and human sepsis reached opposite conclusions regarding the degree of cross-

species similarity (79, 80). Contradictory findings have also been reported in the comparison 

of gene expression across a range of human and mouse tissues (269, 270). 
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One of the challenges in identifying similarities between gene expression datasets is 

that major changes in the cell state can be associated with relatively small alterations in the 

expression level of a relatively large numbers of genes. Analysis of co-regulated changes in 

sets of functionally related genes, rather than individual genes, has therefore become an 

important strategy to identify subtle, but biologically meaningful, differences in gene 

expression (77, 78, 271). This is a particularly useful approach when analyzing samples in 

which experimental variability (such as those collected from heterogeneous human subjects) 

or evolutionary divergence (such as comparisons between species) add experimental “noise” 

to gene expression profiles. Several approaches for testing for the enrichment of gene sets 

have been developed, including Gene Set Enrichment analysis (GSEA) (78). GSEA has 

been made more powerful by the availability of curated collections of gene expression 

signatures extracted from a variety of sources including published experimental datasets. 

The largest of these collections, the Molecular Signatures Database (MSigDB), contains 

more than 8,000 signatures (272). However, only a small fraction of these gene sets pertain 

to immune processes and cell types. 

We now report the creation of ImmuneSigDB, a compendium of ~5,000 well-

annotated signatures generated by analysis of 389 published studies of cell states and 

perturbations in the mouse and human immune systems. Using this collection of signatures, 

we demonstrated that signatures of cell differentiation in lymphoid cells and endotoxin 

stimulation in myeloid cells are highly conserved between humans and mouse models. 

Moreover, analysis of the transcriptional response to sepsis in human samples and mouse 

models showed that there was highly significant conservation of gene expression between 

the species when measured at the gene set level. However, in addition to the conserved 

transcriptional programs, we also identify species-specific differences in the biological 

processes associated with sepsis. These findings help interpret contradictory observations 

regarding the extent of evolutionary conservation in the transcriptional response to sepsis. 
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ImmuneSigDB will enable the detailed analysis of cross-species gene expression that is 

critical to establishing which biological processes are conserved and which are not, thus 

allowing mouse models to better inform our understanding of human disease. 
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Results 

Generating a compendium of gene signatures curated from immune expression 

profiles. 

We generated a comprehensive compendium of gene sets pertaining to immune 

biology. The term “gene-set” in this study refers to groups of genes identified by selecting 

either up- or down-regulated genes in comparisons of gene expression profiles of interest. 

We identified and uniformly analyzed 389 published studies in the immunology literature that 

included genome-wide expression profiling data (outlined in Figure 6A). We selected studies 

to analyze based on immunological key words in the title or abstract followed by additional 

manual review. We prioritized studies published in immunology journals of broad interest 

(Supplemental Table 6.1). We identified the corresponding publicly available datasets in the 

NCBI Gene Expression Omnibus (GEO) and, for uniformity, focused on studies performed on 

Affymetrix platforms (Supplemental Table 6.2) that included three or more biological 

replicates. Each study was reviewed to identify and annotate the biology represented and to 

define meaningful pairwise comparisons that would create biologically useful gene sets. For 

example, an individual study may include a single comparison, such as stimulated versus 

unstimulated cells, or can have multiple comparisons, as is the case where several cell types 

were subjected to different culture conditions and analyzed at several time points. In such 

cases, only meaningful pairwise comparisons, rather than all possible comparisons, were 

made (Figure 6.2).  

The raw expression data obtained from each GEO study was pre-processed 

uniformly (see Methods). We identified and extracted differentially expressed genes (see 

Methods and Figure 6.1A), which comprised the gene sets for the ImmuneSigDB collection. 

These sets represent genes coordinately up- or down-regulated in many major immune cell 

types (Figure 6.1B) either in their baseline state or following a range of genetic or chemical 

perturbations. ImmuneSigDB included data from healthy human subjects, patients with 
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immune or non-immune diseases, and mouse models. Mapping orthologous genes to a 

common identifier allowed us to include both human (n=135) and mouse (n=254) studies 

(Figure 6.1C). From these studies, we identified 2,436 meaningful comparisons and extracted 

4,872 gene sets of up- or down-regulated genes comprising the ImmuneSigDB (see 

Methods). The number of gene sets identified per published study ranged from one 

comparison, (e.g., representing an activated vs. unperturbed state or knock-out vs. wild-type 

cell) to over 50 (e.g., often representing several cell types cultured in different conditions for 

varying amounts of time) (Figure 6.1D). Particular biological conditions over-represented in 

the literature, such as those related to T cell biology, are correspondingly over-represented in 

ImmuneSigDB, with slightly fewer gene sets from myeloid cells and B cells (Figure 6.1B). 

ImmuneSigDB is publicly available at www.msigdb.org. 

 

ImmuneSigDB expands the biological coverage of the MSigDB 

We compared the gene sets generated from immune cells (ImmuneSigDB) with those 

in gene sets in the MSigDB collection. MSigDB is a curated collection of gene sets generated 

from published gene expression studies that are generally not from the immunology literature 

(272). We measured overlap in constituent genes between each gene set in the 

ImmuneSigDB and all the other MSigDB collections and found that only a small minority of 

gene sets significantly overlapped (Figure 6.1, E and F), suggesting that ImmuneSigDB 

added a large amount of new transcriptional information. A small subset of gene sets in 

ImmuneSigDB and MSigDB were highly similar (0.64% of gene sets with P<10-8) and these 

could be clustered into three groups related to proliferation, inflammation or Type 1 interferon 
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Figure 6.1. ImmuneSigDB collection is derived from re-analysis of published data. (A) A 
schematic of the ImmuneSigDB pipeline. (B) Number of gene sets corresponding to major immune 
lineages or cell lines and (C) species of origin contained in ImmuneSigDB. (D) Number of pairwise 
comparisons made per each study used in ImmuneSigDB. (E) Overlap in gene set membership in 
ImmuneSigDB with MSigDB gene sets. Heatmap indicates False Discovery Rate (FDR) values of 
each pairwise comparison between gene sets. Highlighted are representative biological processes 
in each of the significantly overlapping clusters of gene sets. (F) Distribution of the FDR ranges of 
significance across all pair-wise comparisons of gene set membership. 	
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Figure 6.2. Selection of biologically meaningful comparisons. Schematic of an example of 
comparisons that are biologically meaningful (black arrows) or difficult to interpret (red arrows) in 
one of the studies included in the ImmuneSigDB (GSE17721).  
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response (Figure 6.1E). This suggested that with the exception of these core biological 

processes, gene sets derived from immune cell expression profiles contain genes distinct 

from non-immune-related gene expression profiles that previously predominated the 

MSigDB. 

We performed an analogous analysis of pairwise overlaps in gene membership 

between gene sets within ImmuneSigDB. While most were unique, we found a larger number 

of gene sets with significant overlap (1.46% with P<10-8) within ImmuneSigDB than between 

ImmuneSigDB and MSigDB (Figure 6.3). These gene sets largely related to lineage-specific 

signatures shared between datasets generated from similar types of cells. Therefore, 

ImmuneSigDB has minimal overlap with MSigDB and provides new gene sets describing 

immune biology. 

 

ImmuneSigDB provides a complementary resource to existing immune module 

collections. 

Several groups have previously created collections of gene modules in the immune system. 

In studies by Chaussabel et al. (273) and Li et al. (274), existing studies of gene expression 

profiles in human peripheral blood mononuclear cell (PBMC) or whole blood were analyzed 

to identify modules of co-regulated genes to aid in the analysis of gene expression profiles 

from immune cells. Several features distinguish ImmuneSigDB from either of these 

collections (summarized in Supplemental Table 6.3). First, ImmuneSigDB was generated by 

direct comparison of the genes that were up- or down-regulated in two known sample 

classes from each study. This allowed the published study to serve as a source of 

comprehensive annotation of each gene set, in contrast to either of the module collections 

that were generated by analysis of aggregated pools of samples, limiting the direct 

experimental annotation of each module. Second, ImmuneSigDB was considerably larger 

than either module collection (Supplemental Table 6.3). Third, ImmuneSigDB included data 
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Figure 6.3. ImmuneSigDB provides unique gene sets not represented in previous immune 
signature collections. (A) Overlap in gene set membership between ImmuneSigDB and gene 
signature collection developed by Li et al. Heatmap indicates significance of overlap indicated by 
FDR values (right). Highlighted are representative biological processes or cell lineages in each of 
the significantly overlapping clusters of gene sets/modules. Summary of FDR ranges of all pairwise 
overlaps are shown to the right. (B and C) Analysis as in (A) showing overlapping gene 
memberships between immune gene modules defined by Chaussabel et al. and ImmuneSigDB (B) 
and between the Li et al. and Chaussabel et al. collections (C).  
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Figure 6.4. GSEA using ImmuneSigDB or module collections. Significance of enrichment of 
gene sets contained in ImmuneSigDB or modules in collections by Li et al or Chaussabel et al. 
Each of the three collections was used to analyze four publically available datasets of gene 
expression datasets from: LPS vs. unstimulated DC (top left); Tregs vs conventional CD4+ T cells 
(top right); plasma cells vs. naïve B cells (bottom left); and memory B cells vs. naïve B cells 
(bottom right).  
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from both mouse models and humans, and from 13 cell or tissue types, rather than solely 

from human PBMC and whole blood profiles. 

 To compare directly the gene-sets in ImmuneSigDB with the module collections of 

Chaussabel and Li, we measured overlap in constituent genes between each gene set in the 

ImmuneSigDB and all modules in either the Chaussabel or Li collections (Figure 6.3, B and 

C). We found that only a small fraction of ImmuneSigDB gene sets significantly overlapped 

with either collection (0.06% and 0.18% with FDR of <10-8 for Chaussabel and Li, 

respectively), suggesting that the gene-sets within ImmuneSigDB and the modules in the 

Chaussabel and Li collections were largely distinct. The small number of significantly 

overlapping gene-sets and/or modules contained genes predominantly related to immune 

cell lineages (e.g., T cell or myeloid) or to the response to interferon-α (IFN-α) or Toll-like 

receptor (TLR) ligands. Interestingly, the overlap between modules contained in the 

Chaussabel and Li collections was similarly limited (Figure 6.3C), suggesting analysis of 

immune expression profiles using each of the three collections could provide complementary 

information. 

 Finally, we performed GSEA using four published datasets in human immune cells 

(LPS stimulated DC, Tregs, plasma B cells, and memory B cells) to compare the results 

using ImmuneSigDB with the module collections by Chaussabel and Li (Figure 6.4). A larger 

number of ImmuneSigDB gene sets were significantly enriched (even after correcting for 

multiple hypothesis testing) in each of the four data sets than with either the Chaussabel or Li 

collections. Moreover, inspection of the top 20 most enriched gene sets from ImmuneSigDB 

and modules from the Chaussabel or Li collections illustrates the extensive biological 

annotations (including links to the original studies) available for each ImmuneSigDB gene set 

(Supplemental Tables 6.4 – 6.7). Thus analysis with ImmuneSigDB provides a resource for 

the analysis of gene expression data in the immune system that is complementary to existing 

collections. 
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Enrichment of ImmuneSigDB gene sets recapitulates known lineage-specific 

differences in mouse and human hematopoietic cell lineages. 

We next tested whether enrichment analysis of gene expression using ImmuneSigDB 

could recapitulate known differences in lineage-specific gene expression within the immune 

system. We analyzed a large, publicly available dataset of gene expression profiles from the 

Immunological Genome Project (ImmGen) consisting of immune cell types and cell states in 

mice (275) using a single sample version of GSEA (ssGSEA) (276). In this approach, gene 

sets are tested for enrichment in the list of genes in a single sample ranked by absolute 

expression rather than by comparison with another sample. The resulting ssGSEA scores 

provide an estimate of the degree of enrichment of each ImmuneSigDB gene set in each 

individual sample in the dataset. In this way we generate a dataset containing as rows the 

profiles of enrichment of each ImmuneSigDB gene set and as columns the samples. 

Unsupervised hierarchical clustering of samples from four distinct immune cell types – 

dendritic cells, B cells, ab T cells, and stem cells – in the space of gene set enrichment 

scores revealed near-perfect clusters of the respective cell types (Figure 6.5). Within each 

lineage, subgroups, such as naive T cells or memory T cells also were clustered accurately 

together. Similarly, accurate clustering of different lineages was observed when we analyzed 

human-derived cells in the Differentiation Map (DMAP) (Figure 6.6) (277). Strikingly, 

hematopoietic stem cells were accurately distinguished from other lineages despite the fact 

that very few (1.62%) gene sets derived from stem cells were included in the ImmuneSigDB. 

This suggests that HSCs are characterized by differential expression of gene sets related to 

biological processes shared with immune cells (30).  

We noted that distinct clusters of gene sets showed differential enrichment in specific 

cell lineages (Figure 6.5A, Clusters 1–5). We characterized these gene set clusters by 

determining the relative frequencies of genes shared by the gene sets in these clusters 
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Figure 6.5. Mouse immune lineages are accurately clustered using ImmuneSigDB 
enrichments. (A) Unsupervised bi-clustering of ssGSEA values using ImmuneSigDB in samples of 
four representative mouse immune lineages. Hierarchical clustering of the 10% of gene sets with 
highest mean absolute deviation is shown. Species of origin of gene sets indicated by green 
(human) and purple (mouse) bars on the right. Major branches of the gene set dendrogram clusters 
are indicated by the numbered black bars on the right. (B) Distribution of genes contained in gene 
sets in the same gene set dendrogram clusters as indicated in (A). 
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Figure 6.6. Human hematopoietic lineages are accurately clustered using ImmuneSigDB 
enrichments. (A) Unsupervised bi-clustering of ssGSEA values using ImmuneSigDB in cell 
subsets represented in human differentiation map (DMAP) dataset. Clustering was performed in 
gene sets with the top 10% highest mean absolute deviation.  
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 (Figure 6.5B). For example, gene sets in Cluster 1, which predominantly distinguished 

effector and memory T cells from naive T cells, most commonly included genes encoding 

effector molecules such as granzyme B (GZMB), IFN-γ (IFNG) as well as Blimp1 (PRDM1) 

and integrin beta 1 (ITGB1), and were predominantly derived from expression profiles of 

effector and memory CD8+ T cells in the context of viral infection and anti-tumoral responses 

(data not shown). Cluster 5, which predominantly distinguished T cells from other cell 

lineages, included T cell genes such as transcription factors TCF7 and LEF1 as well as 

components of T cell receptor signaling, CD3z (CD247), CD3d (CD3D), ZAP70, and Lck and 

included most gene sets derived from comparing T cells to other immune cell types (Figure 

6.5B). Stem cells showed strong enrichment of gene sets in Cluster 2 whose predominant 

genes play a dominant role in regulating cell cycle (Figure 6.5B). B cells and dendritic cells 

were distinguished by a separate cluster of gene sets that included known genes 

representing those lineages.  

We noted that each gene set cluster that distinguished different lineages included 

both human and mouse gene sets (Figure 6.5, purple and green bars), suggesting that 

similar patterns of enrichment were observed using gene sets derived from expression 

profiles from tissues of both species. Thus, ImmuneSigDB robustly clusters human and 

mouse immune lineages based on whole transcriptome enrichments of both mouse and 

human-derived gene sets. 

 

Analogous cell types and contexts in mice and humans show common patterns of 

gene expression. 

We, and others, have previously used GSEA to show that the transcriptional profiles 

from memory and exhausted CD8+ T cells are highly concordant between mouse and human 

datasets (129, 130, 152). To test whether this similarity in gene expression between species 

is also observed for other cell states we extended this analysis to other cell types and 
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perturbations included in ImmuneSigDB. We focused on four separate biological 

comparisons (Figure 6.7) where analysis of gene expression had been made in analogous 

cell types or perturbations in both human and mouse immune cells. This allowed us to test 

whether sets of genes differentially expressed in mouse immune cells showed enrichment in 

profiles from the analogous comparisons in humans and vice versa (278).  

We first identified 15 studies (6 mouse; 9 human) in which the transcriptional 

response to lipopolysaccharide (LPS) stimulation had been profiled in myeloid cells; each 

study had been used to generate a gene set in ImmuneSigDB. We selected one human 

dataset and generated a ranked list of genes differentially expressed following LPS 

stimulation. We then performed GSEA using gene sets from the other 14 mouse and human 

data sets. We found that both human- and mouse-derived gene sets showed highly 

significant enrichment (FDR<0.001), suggesting a strong conservation in the transcriptional 

response to LPS between the two species (Figure 6.7A). Gene sets derived from studies on 

human cells tended to show slightly higher enrichment scores than those generated from 

mouse cells.  

We then selected additional cross-species comparisons that were represented by 

multiple datasets within the ImmuneSigDB. We found cross-species similarity in the gene 

expression profiles of comparisons of plasma versus naive B cells, memory B cells versus 

naive B cells, and regulatory T (Treg) versus conventional T cells (Tconv) (FDR<0.001, 

Figure 6.7, B – D and Supplemental Tables 6.8 – 6.11). Furthermore, we observed that the 

biology was not just conserved to the same extent but in some cases mouse-derived gene 

sets were more strongly enriched in human datasets than other human gene sets, as 

depicted by the peak height of the respective graphs of their GSEA enrichment scores. 

These findings indicate that components of the transcriptional signatures of LPS stimulation 

and some T and B cell differentiation programs are similar in humans and mouse models.  
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Figure 6.7. Transcriptional programs are conserved across mouse and human immune 
lineages. (A) GSEA of a randomly selected human study comparing LPS-stimulated and 
unstimulated dendritic cells using ImmuneSigDB gene sets derived from the study itself (grey) or 
gene sets from other mouse (purple) or human (green) datasets of LPS-stimulated myeloid cells. 
Mountain plots show all genes ranked by differential expression in sepsis versus control conditions 
on the X-axis, and the curves indicate cumulative enrichment (measured by enrichment score on 
the Y-axis). The ticks below the line correspond to the position of genes in each gene set. (B-D) 
Analysis as in (A) for three additional cell differentiation states: plasma cells (B), Tregs (C), and 
memory B cells (D). All gene sets shown are significantly enriched (FDR < 0.001). 
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Blood cells from human and mouse sepsis share conserved biology reflected in their 

transcriptomes 

As we observed common patterns of gene expression in these cross-species 

comparisons, we next studied more a complex transcriptional dataset from human sepsis 

and the corresponding mouse models to test whether ImmuneSigDB could resolve 

similarities or differences between human and mouse transcriptional profiles. Recent studies 

have analyzed the transcriptional response to sepsis in multiple datasets of gene expression 

profiles obtained from human PBMC samples or from mouse models (79, 80). However, 

these studies have differed in their conclusions regarding the degree of similarity between 

species. We reasoned that analysis with ImmuneSigDB might allow a more detailed analysis 

of immune signatures elicited by the sepsis response in both species.  

We began by using ImmuneSigDB to compare the similarity in gene expression in 

human and mouse datasets included in the previous studies of the transcriptional responses 

to sepsis. We selected, at random, a pair of human and mouse studies in which peripheral 

blood cell gene expression was measured in sepsis versus control conditions (PBMC 

following sepsis in human (GSE9960) and mouse (GSE19668)) (279, 280). We first identified 

genes up-regulated following sepsis in each study, and tested whether that signature was 

enriched in the corresponding profile of sepsis versus control in the other species.  

We observed strong enrichment of the set of sepsis-induced genes derived from the 

mouse study in the human dataset (FDR<0.001, Figure 6.8A, left). Similarly, we found that a 

gene set comprised of genes up-regulated in human PBMC samples in sepsis versus control 

was strongly enriched in the mouse sepsis gene expression profile (FDR=0.002, Figure 6.8A, 

right). This internal comparison suggests that there is marked similarity between the genes 

up-regulated by sepsis in humans and in a mouse model. 

Next, we identified similarity in gene expression in the sepsis response by testing for 

enrichment of all gene sets in ImmuneSigDB gene sets in the same pair of human and 
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Figure 6.8. The transcriptional response to sepsis is conserved in humans and mouse 
models. (A and B) GSEA of the set of genes up-regulated in mouse sepsis (GSE19668, C57BL/6) 
in the ranked list of genes up-regulated in human sepsis (GSE9960, Gram negative infection) (A, 
left); and of the corresponding human sepsis gene set enriched in rank ordered list of genes up-
regulated in mouse sepsis (A, right). Mountain plots indicate cumulative enrichment, and (B) ticks 
below the line correspond to the position of genes in the 10 most enriched gene sets from 
ImmuneSigDB in the rank order of genes up-regulated in sepsis versus control conditions (X-axis). 
(C) Venn diagram showing overlap in the identity of significantly enriched ImmuneSigDB gene sets 
in mouse (purple) or human (green) sepsis dataset (top) and the number of shared leading edge 
genes in the gene sets enriched in both species (bottom). Statistical significance calculated by the 
hypergeometric test. (D) Frequency of the genes occurring in the leading edge of a gene sets 
enriched in human (green) and mouse (purple) sepsis datasets. Statistical significance of the 
similarity in gene rank is calculated by the Spearman test. 
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Figure 6.9. Human and mouse blood cells in gram positive sepsis undergo similar 
transcriptional response. (A and B) GSEA of gene sets of genes up-regulated in Gram positive 
human (GSE9960) or mouse (GSE19668, C57BL/6) in the opposite species – mouse gene set 
enriched in the human dataset (left) and the human gene set enriched in mouse dataset (right). 
Mountain plots indicate cumulative enrichment, and (B) ticks below the line correspond to the 
position of genes in the 10 most enriched gene sets from ImmuneSigDB in the rank order of genes 
up-regulated in sepsis versus control conditions (X-axis). (C) Number of significantly enriched gene 
sets mouse (purple) or human (green) dataset. Statistical significance was calculated by the 
hypergeometric test. (D) Distribution of the number of gene sets including the shared genes in the 
leading edges of common enriched gene of mouse and human sepsis dataset enrichments. 
Statistical significance is calculated by the Spearman test. 
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Figure 6.10. Human and mouse blood cells in gram positive sepsis undergo similar 
transcriptional response. (A and B) GSEA of gene sets of down-regulated in Gram negative 
bacteria-induced sepsis in human (GSE9960) or gram positive sepsis mouse (GSE19668, 
C57BL/6) in the opposite species – mouse gene set enriched in the human dataset (left) and the 
human gene set enriched in mouse dataset (right). Mountain plots indicate cumulative enrichment, 
and (B) ticks below the line correspond to the position of genes in the 10 most enriched gene sets 
from ImmuneSigDB in the rank order of genes down-regulated in sepsis versus control conditions 
(X-axis). (C) Number of significantly enriched gene sets mouse (purple) or human (green) dataset. 
Statistical significance was calculated by the hypergeometric test. (D) Distribution of the number of 
gene sets including the shared genes in the leading edges of common enriched gene of mouse 
and human sepsis dataset enrichments. Statistical significance is calculated by the Spearman test. 
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mouse studies. We compared the ImmuneSigDB gene sets that were significantly enriched 

in the gene expression profiles of the human and mouse gram negative and/or positive 

sepsis response (Figure 6.8B and Figure 6.9). We observed marked similarity in 

ImmuneSigDB gene sets that were enriched the sepsis-induced signatures in each species 

(P=5.01x10-69, Figure 6.8, B and C, and Supplemental Tables 6.12 and 6.13).  

To identify which genes in the gene sets that were enriched in both species were 

“driving” the enrichment of the shared gene sets, we focused on the “leading edge” of 

enrichment. Leading edge genes in a gene set enrichment analysis are those that contribute 

most to the enrichment of a particular gene set and include the most significantly up-

regulated genes in a given gene set. We found that the leading edges of gene sets that were 

enriched in both species were similar (Spearman r = 0.857, P<0.0001; Figure 6.8D, 6.10D) 

indicating that the strong enrichment of shared gene sets is due to the up-regulation of 

similar genes. We found the same results when we performed the same set of analyses 

using a pair of human and mouse datasets where both were from gram-positive sepsis or 

when we analyzed gene sets enriched in down-regulated genes in sepsis compared to 

control (Figure 6.9 and Figure 6.10, Supplemental Tables 6.14). These data demonstrate a 

high degree of concordance in gene sets that are enriched following sepsis in humans and 

mouse models. 

 

Identifying species-specific components of transcriptional responses induced by 

sepsis in human and mouse. 

We noted that while many gene sets in ImmuneSigDB were enriched in both species, 

there were also many gene sets enriched in one species but not the other (Figure 6.8C and 

6.10). This suggested that in addition to similarities in the sepsis response, there may be 

species-specific differences in the transcriptional signatures of sepsis. In order to identify the 

biological basis for these species-specific differences, we devised an analytic approach, 
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termed Leading Edge Metagene (LEM) analysis, to identify main biological “themes” in 

groups of ImmuneSigDB gene sets enriched in the sepsis datasets. We introduce LEM here 

and describe it in more detail elsewhere (see Methods). LEM analysis is a novel method to 

identify the groups of co-regulated genes – that we term metagenes – that are highly 

enriched in multiple gene sets in a comparison of interest (such as sepsis vs. control).  

For LEM analysis, we first considered all gene sets that were significantly enriched in 

each dataset of sepsis versus control comparison group (FDR<0.001). We then filtered the 

genes in these enriched gene sets to include only leading edge genes (Figure 6.11A, top and 

middle). These leading edge genes represent the subset of genes in the group of enriched 

gene-sets that drive the enrichment score with respect to up-regulation in the sepsis 

phenotype. We then used non-negative matrix factorization (NMF) (281-284) to identify 

groups of genes that are members of multiple gene sets (Figure 6.12). NMF analysis 

therefore identifies groups of genes – which we term metagenes – that are members of the 

leading edge of multiple gene sets that are enriched in the transcriptional response to sepsis 

(Figure 6.11A, bottom).  

LEM analysis of the gene sets enriched in human sepsis (316 gene sets) and mouse 

sepsis (974 gene sets) studied in Figure 6.8 identified three metagenes that were correlated 

with the sepsis response in each study. Individual metagenes were strongly overrepresented 

for genes related to distinctive biological processes as annotated by GO terms and 

Reactome (99, 285) (Figure 6.11B and Figure 6.13). For instance, in the human sepsis 

response, we identified a metagene with an overrepresentation of genes involved in mitosis 

(P=4.9 x 10-22) such as CCNA2, BUB1, and KIF11. A second metagene was enriched for 

genes related to phagocytosis (P=2.02 x 10-13; LAMP2, NCF4, and ATPV0B) and a third 

metagene was enriched for genes related to inflammation (P=3.7 x 10-4; IL1A, NFKB1, and 

CCL20) (Figure 6.11B and Figure 6.12). Overlap between the metagene gene memberships 

and specific GO terms revealed one predominant biological process in each (Figure 6.11B). 
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Figure 6.11. Leading edge clustering using non-negative matrix factorization (NMF) 
identifies metagenes representing distinct biological processes. (A) A schematic of the 
process by which leading edge metagenes are identified. (B) Biological annotation of metagenes 
identified in the studies analyzed in Figure 6.8 generated using GO terms. (C) Violin plots showing 
P values of significance of GO Term overlaps with human (left) and mouse (right) sepsis 
metagenes (LEM), or equivalent-size samples of leading edge genes, or randomly selected genes. 
(D) Circos plot of the relative size and overlap of metagenes in mouse (purple, outer segment) and 
human (green, outer segment) sepsis datasets. Relative number of genes in metagenes is 
indicated by segment length of the inner circle. Thickness of the ribbon corresponds to the relative 
number of genes shared between metagenes in the two species. (E) Heatmap of P-values 
corresponding to significance of overlap in pairwise comparison of metagene gene membership 
(yellow, highly significant; black, not significant). Statistical significance of the overlap calculated by 
hypergeometric test. 
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Figure 6.12. Leading Edge Metagene (LEM) analysis identifies commonly represented and 
co-regulated in immune biological processes. Heatmap representing the sparse matrix of all 
leading edge genes (FDR<0.001) in GSEA analysis of human (A) and mouse sepsis (B) as in 
Figure 6.11. Gene sets were clustered using Pearson correlation and genes ordered based on their 
LEM membership, annotated above. 
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Figure 6.13. LEM analysis identifies metagenes that are unique, yet overlapping with Gene 
Ontology Terms. (A and B) Overlap in the genes contained in LEMs defined for human (A) and 
mouse (B) sepsis described in Figure 6.8 and the predominant GO terms. Numbers of genes are 
indicated in the Venn diagrams, and the statistical significance of each overlap was assessed using 
hypergeometric test in the space of 20606 (A) and 15183 (B) total genes, based on annotated 
unique genes or human orthologs. (C and D) Fraction of LEM genes that are contained in the 
predominant GO term for human (C) and mouse (D) studies. 
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Figure 6.14. Illustration describing metagene overlap representation. (A) Venn diagrams 
representing absolute gene overlap of each human metagene with each mouse metagene. 
Numbers represent the number of unique and overlapping genes in each comparison. Statistical 
significance was assessed using Hypergeometric text in the space of all shared genes from the two 
datasets (n=12,634). The relative overlap of each human metagene with each mouse metagene is 
represented in Circos plot (B) and the significance of each overlap is represented in a heat map 
form (C).  
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However, the while each metagene was significantly enriched for one predominant GO term, 

only 5 – 15% of genes contained in each metagene overlapped with genes in the 

predominant GO term (Figure 6.11B). This suggests that the genes contained in each LEM 

are related to recognizable biological processes, but that the metagenes represent discrete 

modules of genes that overlap with but are distinct from GO term categories. 

We reasoned that metagenes would provide a more “refined” list of functionally 

related genes than their parental gene-sets. We therefore tested whether leading edge 

metagenes were more highly enriched for genes related to biological processes (again as 

annotated by overlap with GO terms) than their parental gene sets (Figure 6.11C). We tested 

the set of 3 leading edge metagenes for overlap with the collection of GO annotated gene 

lists, and determined the significance of each GO term’s overlap. We compared the P values 

generated by GO term overlap with the set of genes comprising each metagene with an 

equivalent number of genes randomly sampled from the original pool of leading edge genes, 

or from all genes in the genome. We found that the significance of GO term overlap was 

much higher in the leading edge metagenes than in the original leading edge genes or in a 

random set of genes. LEM analysis therefore is an effective strategy to both identify major 

biological processes active in a phenotype of interest, and simplify the list of 315 and 974 

enriched gene sets in human and mouse, respectively, to a core set of 3 metagenes in each 

organism that correspond to major biological themes. 

We next compared the similarity between metagenes identified in the sepsis 

response in humans with those in mouse sepsis models. We visualized the pairwise overlap 

in genes in each metagene using a Circos plot (Figure 6.11D), and determined the 

significance of the overlap for each pairwise comparison of mouse and human metagenes 

(Figure 6.11E and 6.15) (286). We found striking cross-species similarities for some but not 

all metagenes. For example, a metagene annotated as “Phagocytic Vesicle” correlated with 

both the human and mouse sepsis response and contained a very similar set of genes 
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(hypergeometric test P=1.09x10-31, dark blue ribbon, Figure 6.11D). Similarly there was a 

highly significant overlap in the metagene annotated as “inflammatory response” in the 

human dataset and “TRIF-mediated TLR signaling” in the mouse model (P=2.79x10-23). 

However, we also identified metagenes that were not conserved between humans 

with sepsis and the mouse model. For example, a metagene enriched for genes pertaining to 

cell cycle (“mitosis” GO term) in humans did not share a corresponding metagene in the 

mouse model. In the mouse, a type 1 interferon signaling metagene overlapped with very few 

human metagenes. This analysis approach using ImmuneSigDB suggests that while some 

biological processes are strongly conserved between these two human and mouse datasets 

(e.g., phagocytosis, TLR mediated inflammatory response), other biological components are 

not (e.g. mitosis).  

 

Global shared and species-specific biological processes can be identified using 

ImmuneSigDB and NMF clustering 

We next extended this approach to six datasets of sepsis versus control conditions 

from three independent studies in humans and from four comparisons in two mouse studies. 

We identified between three or four metagenes in each study providing a total of 35 

metagenes present in the collected group of sepsis studies (Figure 6.15A). We annotated 

each metagene based on enrichment of GO Terms (Figure 6.15A, right) and evaluated the 

significance of pair-wise overlap in the genes present in each metagene.  

We found that in almost every study, there was at least one metagene induced by 

sepsis that showed a highly significant overlap (indicated in yellow in the heatmap, Figure 

6.15A) with metagenes from every other sepsis study, regardless of species of origin. One 

study that proved an exception was the human study GSE9960, which studied a response to 

mixed infection, and showed relatively little overlap with any mouse study. However the 

metagenes identified in that study also showed limited overlap with metagenes from other 
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Figure 6.15. ImmuneSigDB identifies shared and unique biology in mouse and human 
sepsis studies. (A) Pairwise overlaps of all metagenes from mouse (purple bars) and human 
(green bars) sepsis studies. Heatmap indicates P-values corresponding to significance of overlap 
between each metagene (small squares) in each study (larger squares; yellow, highly significant; 
black, not significant). The biological annotation of each metagene is based on the significance of 
enrichment of the GO term indicated (blue, large overlap; black, no overlap) (right). The most 
significantly enriched GO term annotating each metagene is indicated by the key in lower right. (B) 
Jaccard index representing the extent of overlap of metagenes from human (H) and mouse (M) 
studies. Colored are metagenes that are annotated with the respective biological process as in (A). 
(C) Enrichment scores of biological processes that are species-specific (e.g. mitosis, left) or shared 
(e.g. phagocytic vesicle, right) in the human (green bars) and mouse (purple bars) sepsis datasets. 
Significance of the enrichment of the named biological process in each data set is indicated by the 
P-values on the right.  
	



	 168	

human studies, suggesting that that transcriptional response contained in that study may 

represent a different type of biological response to the other human and mouse studies.  

In addition to these strongly conserved metagenes, we also found that there were 

metagenes induced by sepsis that had a striking species-specific distribution. For example, 

the phagocytic vesicle metagene was either present or strongly overlapped with a metagene 

present in every dataset, both mouse and human. In contrast, the Mitosis metagene was 

much more specific to human datasets with no significant overlap in mouse studies (Figure 

6.15B). To confirm these results, we tested the significance of enrichment of two GO terms – 

mitosis and phagocytic vesicle. When looking at the whole genome transcriptional changes, 

we indeed observed that mitosis was represented exclusively in human cells in sepsis while 

phagocytic vesicle process was represented in both species, as we predicted based on the 

LEM analysis (Figure 6.15C). These data reveal context-specific transcriptional modules 

induced by sepsis in humans and mice, and also highlight the distinct transcriptional 

components of the response present in one species but not the other. 
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Discussion 

We analyzed expression profiles from 389 published studies of mouse and human 

immune cells to generate a collection of curated gene signatures corresponding to cell states 

and perturbations in the immune system. This collection of almost 5,000 genes sets contains 

substantial biological information that was not currently contained in existing collections. We 

used this new compendium to show that transcriptional signatures induced by LPS 

stimulation in dendritic cells, and transcriptional programs of T cell and B cell differentiation 

were highly conserved between humans and mouse models. Moreover, we used 

ImmuneSigDB to analyze expression profiles from patients and mouse models of sepsis and 

showed highly significant overlap, suggesting that components of the transcriptional 

response to sepsis were highly conserved between species. However, we also find that there 

are substantial species-specific differences, both in enriched gene sets and their component 

metagenes, in sepsis response signatures, suggesting that not all biological processes 

induced by sepsis evident at the transcriptional level in humans are present in mouse models 

and vice versa. These findings suggest that ImmuneSigDB provides a useful tool for 

detecting subtle patterns of similarity and difference in large-scale datasets of gene 

expression from cells and tissues in the immune system. 

Several studies have directly compared the transcriptional programs in the human 

and mouse immune systems. We, and others, previously identified conserved patterns of 

gene expression that change during the differentiation of memory T and B cells, and in 

exhausted to CD8+ T cells (129, 130, 152). A recent comparison of gene expression in seven 

immune cell groups from humans and mice also found a highly significant degree of similarity 

in global patterns of expression and in the putative transcriptional regulators of these genes 

(287). However, in that study, while the majority of genes showed a pattern of expression 

that was highly correlated between species, 30 – 50% of genes did not show significant 

correlation between species. Two recent studies of the sepsis datasets analyzed in the 



	 170	

present study reached opposite conclusions regarding the degree of similarity between the 

mouse and human response to sepsis (79, 80). Thus, the degree of conservation of 

transcriptional signatures in the mouse and human immune systems remains controversial 

(263-270). 

Our analysis using ImmuneSigDB suggests that there are both conserved and 

species-specific transcriptional programs induced by sepsis in the immune system. Overall, 

the transcriptional program shows highly significant similarity between sepsis in the human 

and mouse. Specifically, analysis of the leading edge metagenes across human (6 

comparisons) and mouse sepsis datasets (4 comparisons) found that in many of the datasets 

from both species there was coordinate up-regulation of metagenes involved in interferon-

response and phagocytic processes. This suggests that features of the sepsis response such 

as interferon release and neutrophilia are shared between species.  

However, we also show that many gene sets are enriched in only one species, and 

metagenes related to mitosis were highly enriched in sepsis-induced profiles in humans but 

were not significantly enriched in the mouse model. Thus, it is likely that while some 

components of the sepsis response are highly conserved between species, there is also 

substantial divergence in the biological processes detected by transcriptional profiling each. 

Detailed analysis of the transcriptional features of the mouse and human immune systems is 

therefore required to substantiate conclusions regarding the conservation of a particular 

biology of interest in two datasets. Whether the differences we observe are due to inherent 

biological differences between the two species remains unclear. For example, it is possible 

that the mitotic signature is present in human, but not mouse, because the exact timing of the 

initiation of activation of immune cells in humans with sepsis is not precisely known and may 

be more variable compared to tightly controlled, narrow window of induction of sepsis in 

mouse models. 
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Our compendium adds to a growing list of collections of transcriptionally co-regulated 

genes in the immune system. In the human immune system, several studies have identified 

groups of co-regulated gene modules from expression profiles derived from blood samples 

representing a range of states of health and disease (273, 274). This modular approach to 

the analysis of gene expression can aid interpretation of gene expression profiles, increase 

robustness, and facilitate analyses that span multiple datasets. However, ImmuneSigDB is 

distinct from those previously described in several respects. Studies by Chaussabel and by 

Li have focused on identifying collections of genes – termed modules – that tend to vary in 

expression in a coordinate fashion across a reference set of expression profiles (273, 274). 

Defining modules based on network reconstruction across hundreds or thousands of 

experimental conditions makes it difficult to associate a particular module with a defined cell 

state or perturbation that usually results in its up- or down-regulation. In contrast, the 

annotations describing each gene set in the ImmuneSigDB include all the experimental 

details from a published manuscript, allowing a more transparent connection between gene 

set and biology. Moreover, ImmuneSigDB was designed for use with GSEA, because each 

gene set contains either up- or down-regulated genes only, rather than a combination of both 

as can appear in Chaussabel or Li modules, which may limit the use of the latter collections 

in analyses such as GSEA. Finally, each collection of previously-published modules was 

defined in a single species (humans), making the generalizability of these compendia to 

other species hard to predict.  

The ImmuneSigDB collection differs in another important respect from previous 

module collections. The studies by Chaussabel et al. and Li et al. were designed to identify 

non-overlapping modules of gene expression. However, ImmuneSigDB contains gene sets 

derived from experimental perturbations that are likely to induce multiple biological 

processes, each of which might be represented by sub-signatures in a given gene set. 

Moreover, several gene sets may contain the transcriptional correlate of the same biological 
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processes. For some analytic purposes, it might be useful to have a single gene set that 

includes the multiple biological processes that are initiated by the complex stimulus such as 

receptor-ligand engagement, or cell differentiation. However, for other applications, such as 

the analysis that we conducted of the sepsis datasets, a more "atomic" approach maybe 

preferred. We have therefore developed an analytic approach to extract non-redundant 

leading edge metagenes, from the experimentally-derived gene expression profiles.  

Analysis with ImmuneSigDB using GSEA or GSEA combined with a leading-edge 

metagene analysis may therefore provide the systems immunologist with a useful resource 

for the analysis of gene expression in the immune system. 
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Materials and Methods 

ImmuneSigDB Generation 

We surveyed the immunology literature and identified published studies that included 

human or mouse microarray Affymetrix gene expression data in NCBI Gene Expression 

Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/). We downloaded the corresponding datasets 

from GEO (288). When available, raw microarray data in the form of the CEL files were 

normalized by the Robust Multichip Average (RMA) (289) using justRMA function from the R 

Bioconductor package affy (version 1.40.0) (290). When CEL files were absent, we 

downloaded processed expression data from GEO by means of R GEO query package 

(version 2.28.0) (291). We mapped Affymetrix probe set identifiers to human gene symbols 

using the Collapse Dataset tool (max probe algorithm) of the GSEA program (292). We used 

ortholog gene assignments from Mouse Genome Informatics. The specific mappings were 

retrieved from the MGI web site on 14 April 2012 and contained 17,827 human - mouse 

ortholog gene pairings. Phenotype classes were assigned manually according to the original 

sample annotations and based on review of meaningful biological comparisons (Figure 6.2). 

We implemented a pipeline in R, which combined processed microarray data with the 

phenotype annotations and produced standard formatted files (.gct and .cls) for each 

comparison as needed.  

For each two-class comparison, the genes were ranked according to an information-

based similarity metric (RNMI) (293) from top up-regulated to bottom down-regulated genes 

in the two groups. Gene sets comprised genes differentially expressed with an FDR < 0.02, 

and a maximum number of genes was set at 200 (i.e. all gene sets had at most 200 

differentially expressed genes). This way we generated two gene sets from each assigned 

biological comparison of two groups – “Group_A_vs_Group_B_UP” and 

“Group_A_vs_Group_B_DN”, for the top up-regulated and bottom down-regulated genes, 
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respectively, identified for the genes most different in the samples in Group A compared to 

the samples in Group B. The resource is accessible as the C7 collection at www.msigdb.org.  

 

Gene set enrichment analysis (GSEA) 

GSEA was performed as described previously (78, 271). To analyze transcriptional 

data from Immunological Genome Project (ImmGen) (275) and Differentiation Map (DMAP) 

(277), we used single sample GSEA (ssGSEA) as described previously (276, 294), to create 

a matrix in which columns represented individual samples and rows corresponded to gene 

sets, and the values represented the single sample ssGSEA score of each gene set in each 

sample. We averaged the biological replicates and filtered this matrix to include only the top 

10% of gene sets based on Mean Absolute Deviation (MAD) across sample types and bi-

clustered using 1-Pearson Correlation.  

 

Leading Edge Metagene (LEM) Analysis  

We developed an approach to identify groups of genes – termed leading edge 

metagenes (LEM) – that are both associated with a phenotype of interest, and shared 

between multiple gene sets enriched in that phenotypic comparison (See Experimental 

Methods). We reasoned that groups of genes that are co-regulated in the phenotype of 

interest and also present in multiple gene sets are likely to represent the core sub-signatures 

of genes related to distinct biological processes or pathways. Our approach leverages the 

notion of the leading edge genes in a GSEA analysis, which are the genes whose expression 

profile is most highly correlated with the phenotype distinction in a comparison of biological 

states and thus drives the GSEA enrichment statistic. LEM analysis identifies groups of 

genes (metagenes) that are common to multiple gene sets returned in a GSEA result, and 

strongly correlated with the phenotype of interest.  
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First we perform GSEA using the ImmuneSigDB in a two-class comparison of interest 

(e.g., sepsis vs. control). GSEA yields an enrichment score to quantify the 

overrepresentation of a gene set (e.g. genes coordinately up- or down-regulated in previous 

experiments) at the top or bottom of a ranked list of genes (e.g. generated by differential 

expression of in a comparison of interest). The leading edge of each enriched gene set is 

defined as the subset of genes with positive contribution to the enrichment score before it 

reaches its peak; i.e. those that are most correlated with the phenotype of interest.  

We then consolidate the leading-edges of the m top-scoring gene sets into a sparse n 

by m matrix M, where the number of rows is the cardinality of the union of genes from all the 

leading-edges in the m top gene sets, and the columns correspond to the genes in the m 

enriched gene sets. The value of each entry in the matrix is the signal to noise ratio of the 

corresponding gene between two conditions in comparison (eq. 1) and 0 if the gene is not in 

the leading edge of that gene set. A large signal to noise ratio indicates a significant 

difference in expressions of the corresponding genes between the two conditions. 

!2! = !! − !!
!! − !!

	 (1)	

To identify clusters in this matrix, we use non-matrix factorization (281-284) to yield two 

matrices, W and H. W matrix is a low-dimensional representation of the M matrix and each 

dimension of W is a linear combination of n genes, called a metagene. The entries in the H 

matrix represent the quantity of each metagene required to reconstruct each of the M gene 

sets. The coefficient in W matrix can be viewed as the contribution of each gene to the 

corresponding metagene. Inspection of the W matrix shows that in each metagene, the 

coefficients of most genes are usually very small, and only a small number of genes have a 

coefficient significantly larger than 0. As each metagene is a positive linear combination of all 

the genes, a small coefficient indicates negligible contribution to the metagene. Thus the next 

step of our algorithm is to filter out genes with small coefficients in each metagene. To do 
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that, we first assume that the background distribution of coefficients fulfills an exponential 

distribution. We set a filtering threshold at the 95% quantile of the fitted exponential 

distribution and set all coefficients below this to zero. 

As each gene can contribute to more than one metagene we next need to assign 

each gene to a single metagene. The assignment of genes to metagenes uses the following 

rules: 1) if one gene has no contribution to any of the metagenes, it will be defined as not in 

any metagene; 2) each gene with a coefficient above the threshold (defined above) will be 

assigned to the metagene where it has the largest coefficient. Each metagene is annotated 

with a biological “theme” based on the Jaccard overlap of its constituent genes with GO 

categories (99). 
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Chapter 7. Conclusions 

Deep understanding of CD8+ T cell biology is key for rational design of novel medical 

interventions such as cellular immunity-inducing vaccines as well as immunotherapies for 

cancer, infectious diseases, and autoimmunity. This thesis investigates the biology involved 

in CD8+ T cell activation, contraction, memory differentiation, and exhaustion. The work 

presented herein advances the understanding of the mechanisms of known molecules – PD-

1 and BATF – in CD8+ T cell memory development and initial steps of T cell activation, 

showcases the development and utility of a new experimental platform that enables 

systematic interrogation of gene function in any hematopoietic cell, and highlights the novel 

functions for molecules without previous appreciation in CD8+ T cells – CD39 and TGIF1. 

T cell activation is a tightly regulated process of signaling events from the surface 

collaboratively inducing transcriptional changes driving T cell differentiation. While the 

stimulatory signals through TCR/CD28 have been long-appreciated in T cell activation, the 

role of co-inhibitory surface receptors in this process is becoming increasingly appreciated. 

PD-1 and other co-inhibitory receptors such as CTLA-4, CD244 (2B4), Tim-3, and Lag-3 are 

often associated with T cell exhaustion, but are also transiently up-regulated following the 

activation of T cells (295). Their expression and engagement of respective ligands can thus 

act as a negative regulation to balance the activation signals that T cells receive. We show 

here that PD-1 engagement on CD8+ T cells is important for the optimal generation of CD8+ 

memory T following viral infection in mice. However, PD-1 is not absolutely essential for 

memory generation considering that virus-specific memory CD8+ T cells are present in 

influenza-immune mice. These mice are also protected from a lethal secondary challenge 

with influenza, albeit with increased morbidity and delayed resolution of infection. These 

findings highlight the complexity of the different factors that affect CD8+ memory T cell 

generation, such as strength and duration of signals through the TCR and co-stimulation, the 

signals from the environment including cytokines and other soluble mediators (6, 27, 36). Our 
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data underscore the importance of negative regulation in addition to positive signals during T 

cell activation for optimal generation of T cell memory. It is possible that additional co-

inhibitory receptors up-regulated following T cell activation may also contribute to the early 

events that shape the formation of memory T cells. Additionally, the resulting T cell clones in 

the memory pool may differ in absence of co-inhibitory signals. For example, without PD-1, 

high affinity TCRs may over-activate T cells and lead to activation-induced cell death (AICD). 

Similarly, lower affinity clones that may normally be below a set threshold of total activation in 

the presence of co-inhibition may be allowed to expand further to contribute to the memory T 

cell pool. Understanding of the long-term effects of engaging or blocking co-inhibitory 

receptors on T cells during different stages of T cell activation is important, as modulation of 

many of these pathways enters the clinic to be evaluated for their immunotherapeutic effects. 

Importantly, PD-1 has already transformed the therapy of many cancers with unprecedented 

effects (53, 54, 296). While some studies suggest lasting effect even when patients are off 

therapy (297), other reports indicate that cancer can reoccur following anti-PD-1 therapy 

(298). While emerging reports highlight the importance of PD-1 axis on memory T cells in 

cancer (299), it is thus important to further elucidate the effects that PD-1 and other co-

inhibitory receptors may have at different stages of T cell differentiation on the generation, 

quality, and maintenance of T cell memory to understand how blockade of these receptors 

may affect the durability of anti-tumor immunity. 

While PD-1 is now a mainstay in treating various cancers, the therapeutic potential of 

PD-1 modulation was observed in the context of chronic viral infection (48, 51, 134, 136, 300, 

301). This is due to the similar biological process of CD8+ T cell exhaustion that occurs in the 

context of persistent antigen exposure during a chronic infection or cancer. Similar parallels 

may hold true for the ectonucleotidase CD39. CD39 has a similar expression pattern as PD-1 

as it is up-regulated following cell activation but becomes differentially expressed at high 

levels on the exhausted CD8+ T cells. Additionally, the purinergic pathway has an important 
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role in suppressing immune responses in the tumor microenvironment (302-306). Preclinical 

studies inhibiting the second enzyme in the break-down process of extracellular ATP to free 

adenosine – CD73 – have enhanced anti-tumoral immunity (302-305). Targeting CD39 may 

provide similar reduction of extracellular adenosine to reduce immune suppression. 

However, targeting CD39 instead of CD73 may potentially provide additional benefits such 

as local accumulation of extracellular ATP. Through binding the P2X purinoreceptors, 

extracellular ATP can additionally activate the immune system and thus serve as an adjuvant 

in the tumor microenvironment. Targeting multiple components of the purinergic pathway or 

adding CD39 antagonism to established checkpoint blockade may further provide additive 

effects. This is particularly important since uncontrolled death of cells is abundant in tumors 

resulting in excessive release of extracellular ATP. This ATP accumulation in absence of 

CD39, together with extracellular adenosine reduction, may synergize to boost anti-tumor T 

cell, NK cell, macrophage, and DC responses, while also antagonizing the proliferation and 

survival of the tumor cells (307-309).  

It is also intriguing that in our preliminary experiments, TGF-β1 acted as the strongest 

inducer of CD39 expression in CD8+ T cells in vitro. TGF-β is well appreciated to play an 

important suppressive role in the setting of chronic viral infection (133) and tumors (310-312) 

where CD8+ T cells become exhausted and may thus up-regulate CD39. Additionally, CD39 

is up-regulated by the hypoxia inducible factor 1 alpha (HIF-1α), which is also appreciated to 

be induced and function in both chronic viral infection (313) as well as in tumors (314-317), 

providing another potential mechanism that may contribute to the high CD39 expression on 

CD8+ T cells associated with exhaustion. Our data further suggest that exhausted CD8+ T 

cells may be able to act on other to suppress other arms of the immune system. 

As discussed previously, CD39 can be expressed on a variety of cell types such as 

endothelial, epithelial, as well as myeloid and lymphoid lineages. Yet its expression on CD8+ 

T cells seems to be restricted to exhausted cells. While germline knockout mice suffer from 
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severe immunopathology following LCMV Clone 13 infection, it is not yet clear what the 

functional effect of lacking CD39 on CD8+ T cells would be. One hypothesis is that CD39 on 

Treg cells may play an important role in protecting mice from immunopathology. However, 

CD4+ T cells are routinely depleted in established models of LCMV Clone 13 infection without 

inducing mortality, suggesting that additional cells are responsible for the fatal 

immunopathology we observed in the CD39-KO mice. Additional experiments using 

conditional knockout mice, in which CD39 is only absent in CD8+ T cells (E8I-Cre x CD39fl/fl), 

or CD8+ T cell transfers, using WT and CD39-KO P14 TCR-transgenic cells, will have to be 

performed to understand the functional contribution of CD39 on CD8+ T cells and its cell-

intrinsic effects on CD8+ T cells. Thus, a further examination of the exact mechanism that 

governs CD39 activity in both chronic viral infection and tumor challenge may lead to novel 

therapies that could combat those devastating diseases. 

In addition to studying the activity of previously-identified molecules, such as PD-1, 

BATF and CD39, we also sought to discover new regulators of CD8+ T cell differentiation. To 

do this, we used RNAi screening to examine many potentially novel genes that function in T 

cells. In developing our screening platform, we considered features that would allow us to 

study differentiation in the most physiological setting. The complex signals that T cells 

receive in the various tissues in the course of activation in vivo are difficult to accurately 

mimic in vitro, leading us to use in vivo models. In addition, established approaches for 

perturbing genes in T cells using retroviruses all relied on a type of prior stimulation and thus 

initiating differentiation of T cells prior to experimentation. To circumvent these limitations we 

established a novel in vivo RNAi screening platform using IPTG-inducible shRNAs delivered 

to HSCs that we used to but reconstitute bone marrow chimeras, which enables us to 

generate un-manipulated, but genetically perturbable immune cells, including naive T cells, 

for in vivo studies.  
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To validate the experimental system we studied the function of BATF in CD8+ T cells. 

While the role for BATF in CD8+ T cells was first established in the context of T cell 

exhaustion, we have subsequently shown that it is also essential for proper effector CD8+ T 

cell differentiation (174). This was shown using BATF-deficient P14 cells, which, when 

transferred together with WT P14 cells into an LCMV infected mouse, are drastically 

outcompeted by the WT cells. We observed a similar defect using the P14 cells with 

inducible shRNA targeting BATF. However, by leveraging the inducible nature of the in vivo 

shRNA experimental platform, we were able to determine that BATF is important in the initial 

programing of T cells but is no longer essential once the differentiation is underway. This is 

consistent with other reports suggesting that BATF may act as a pioneer transcription factor 

required to bind to genomic regions in order for other transcription factors to guide 

differentiation of cells (186, 318). To ensure the maximum efficiency of gene knock-down in 

most experiments, we exposed inducible shRNA-bearing CD8+ T cells to IPTG at least 3 

days prior to experimentation. This enabled accumulation of the shRNA transcripts by the 

time of cell activation to suppress any specific transcription induced by the activation. Using 

this approach, we were able to determine efficient silencing of BATF transcript in vivo. 

However, it is more challenging to assess the exact kinetics of protein down-regulation when 

BATF was knocked down at later time points, due to the insufficient number of cells 

obtainable at different time points for biochemical analyses. Thus, we used data generated in 

vitro to confirm that BATF protein is also down-regulated in addition to the mRNA. 

Importantly, each protein may have a different half-life, which must be taken into account 

when assessing the kinetics of potentially transient contributions of genes in a given 

biological process. 

In an effort to better understand the transcriptional circuitry underlying CD8+ T cell 

differentiation program, we used this experimental platform to systematically interrogate the 

potential functional role of ~80 transcriptional regulators. We identified several new candidate 
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genes and validated a role for TGIF1 in CD8+ effector T cell differentiation. We show that 

TGIF1 may be interfering with the IL-2-mediated induction of Blimp-1 to decrease the 

formation of SLECs and enhance formation of MPECs.  

This experimental platform enables generation of all immune cells with integrated 

shRNAs. We used it to also confirm the role of BATF in B cells where it important for proper 

germinal center B cell and plasma cell differentiation (181, 182). Thus, this experimental 

platform may be suitable for modulating a variety of types of immune cells that are refractory 

to viral transduction and/or are difficult to culture and transfer to study in vivo. This platform 

may thus enable systematic functional interrogation of genes in any hematopoietic–derived 

cell in vivo, such as the natural killer cells and other types of innate lymphoid cells, various 

subsets of dendritic cells, and others. We initially used an inducible shRNA promoter to avoid 

developmental effects of gene knock-down during the course of hematopoiesis. However, 

this approach provides the opportunity to perturb genes selectively at specific stages of a cell 

life cycle. For example, we can selectively perturb genes during the contraction phase of 

CD8+ T cells to examine what genes may be enhancing the transition into memory cells. 

Additionally, we can allow the T cells to become memory or exhausted cells and interrogate 

the function of genes responsible to maintain the CD8+ T cells in these states. While we 

predominantly used this system to examine T cell biology in the context of viral infection, the 

immune cells derived in this way can be used in established models to examine other 

immune processes such as tumor immunity and autoimmunity. 

To improve our ability to extract biologically meaningful information from large 

immune gene expression datasets, we generated ImmuneSigDB – a collection of ~5000 

gene sets corresponding to most differentially expressed genes of immune cells in various 

states, tissues, genotypes or after various perturbations. We used it together with a novel 

approach we developed, leading edge metagene (LEM) analysis, to examine mouse and 

human transcriptional responses to sepsis in blood. We uncovered conserved and species-
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specific aspects of biology that is reflected in altered transcriptional programs triggered by 

sepsis. While this analysis examined transcriptomes of mouse and human cells obtained 

from blood of septic animals, there are additional experimental differences that may be 

responsible any time the biology in human patients is compared to mouse models. These 

include the genetic homogeneity and lack of other immune perturbations throughout the life 

of laboratory mice as well as the much better controlled, yet sometimes artificial, 

experimental systems to model human disease. LEM analysis provides a novel tool to 

highlight core bricks of biology underlying specific biological phenotypes and is being 

successfully applied with ImmuneSigDB to other studies, like examining the immune system 

of laboratory mice compared to pet store mice and humans (319). However, gene set 

collections such as ImmuneSigDB are more widely used in conventional GSEA. While we 

only generated this resource recently, it has already been widely adopted by the scientific 

community and has been successfully used to analyze various datasets and publish results 

(320-329). 

Together, the body of work presented in this thesis advances our knowledge of major 

states of CD8+ T cell biology, uncovering novel mechanisms underlying CD8+ T cell function, 

as well as identifying potential novel therapeutic targets that may be transformative in 

creating better vaccines, treating infections, or fighting cancer.  
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Supplemental Figure 3.1. Clinical characteristics of the subjects with HCV infection. 

  

PatientID Gender Chronic/resolver Viral	load Genotype ALT
00-010 M Resolver 50 undetectable 39
00-023 F Chronic 300 Type 1 18
01-00E F Resolver undetectable
01-021 F Chronic 2500000 Type 1
02-003 F Chronic 18700 Type 1 123
02-00Z M Resolver No test/unknown
05-00Y F Resolver 50 undetectable 14
06-00K F Resolver 600 Type 1 124
06-00L M Resolver 50 Type 3 82
06-042 M Chronic 615 Type 1
07-00S F Resolver 615 No test/unknown 212
07-00Z F Resolver No test/unknown 375
07-032 M Chronic 16300 Type 2 565
07-052 F Chronic 219 Type 1
07-080 F Resolver 21500 No test/unknown 316
07-082 F Chronic 261000 Type 1
08-024 F Chronic 700000 Type 1 411
08-027 M Chronic 3838 No test/unknown 58
09-00B M Chronic 217000 Type 1 354
09-033 F Resolver 700000 Type 1 2299
09-037 M Chronic 600 Type 1 32
10-00H F Chronic 704 Type 1 107
10-00M F Resolver No test/unknown
10-034 M Chronic Type 3 58
10-048 F Chronic 321000 Type 1 179
10-054 F Chronic 1130 Type 1 209
10-062 F Chronic 2587650 Type 3 109
10-078 M Resolver 89200 Type 3 875
10-094 M Chronic 822000 Type 3 146
10-106 F Resolver 19347 No test/unknown 217
11-00M M Chronic 8150000 Type 1 371
11-014 M Resolver 3150 Type 2 129
11-017 F Chronic 25431 Type 1 481
12-043 M Resolver 61602 No test/unknown 692
12-055 M Resolver 2311 Type 1 47
12-088 F Chronic Type 1
12-103 F Chronic 432 Type 3 44
12-108 M Chronic 42000 Type 1 81
12-181 F Chronic 346000 Type 3 657
13-022 M Chronic 2260000 Type 2 587
13-024 M Chronic 241 Type 1 205
13-066 F Chronic 43 No test/unknown 118
99-021 M Resolver No test/unknown

BR-1264 F Resolver 50 Type 1 17
BR-277 F Resolver 50 Type 1 13

BR-3000 M Resolver 47272 Type 1 36
BR-3012 M Resolver 50 Type 1
BR-320 F Resolver 50 Type 1 15

BR-3497 M Chronic Type 1 67
BR-3821 F Resolver 50 Type 1

BR-554 F Chronic (resolves 3 
years into chronic 64497 Type 1 112

BR-599 F Resolver 1000 Type 1 16
BR-84 M Resolver 50 undetectable 12
BR-903 M Chronic 3341 Type 3 45
BR-994 M Chronic Type 1 102

BR-1036 F Resolver 1000 Type 1 4
BR-1144 F Resolver 1000 Type 1 2
BR-949 F Chronic 70047 Type 1 36
BR-54 F Chronic Type 1 237
14-134 M Chronic 258000 No test/unknown 198
14-140 M Chronic Type 1
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Supplemental Table 3.2. Clinical characteristics of the subjects with HIV infection. 

 
 
 
 
  

Patient ID Gender Progressor/Controller ON/OFF Rx Viral Load CD4 Count
254567 M Chronic OFF 1823 606
350103 F Chronic OFF 431 625
350534 M Chronic OFF 24500 154
359260 M Chronic OFF 10322 541
384682 M Chronic ON 147 510
387879 M Chronic OFF 14600 677
403998 F Chronic OFF 2100 877
128019 M Viraemic Controllers OFF unknown unknown
186089 M Viraemic Controllers OFF 82 740
237983 F Viraemic Controllers OFF 189 1232
270245 M Viraemic Controllers OFF 15 unknown
302225 M Viraemic Controllers OFF 65 484
711950 M Viraemic Controllers OFF 300 700
732751 M Viraemic Controllers OFF 1860 1550
255675 M Elite Controllers OFF 103 963
269198 M Elite Controllers OFF unknown unknown
285297 F Elite Controllers OFF 118 1246
321797 M Elite Controllers OFF unknown unknown
831969 F Elite Controllers OFF unknown unknown
R060 M Chronic OFF 117934 480
R086 M Chronic OFF 172886 410
R089 M Chronic OFF 44000 680
R046 M Chronic OFF 28445 910
R050 M Chronic OFF 20210 440
R041 M Chronic OFF 8435 320
R017 M Chronic OFF 172886 410
N034 M Chronic OFF 44000 680
R134 M Chronic OFF 500000 430
N012 M Chronic OFF 36695 ?
N090 F Chronic OFF 3362 490
N104 M Chronic OFF 4533 390

OX019 F Chronic OFF 42912 740
R051 M Chronic OFF 500000 560
R069 M Chronic OFF 63257 450
N004 M Chronic OFF 500000 430
N093 F Chronic OFF 2216 700

OX034 M Chronic OFF 124153 430
H005 M Chronic OFF 747 640
H033 M Chronic OFF 8036 430
R103 F Chronic OFF 8435 320
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Supplemental Table 3.3. The complete list of MHC-peptide multimers used in Chapter 3. 

 
 
 
 
 
  

Virus Multimer	type MHC Peptide	used Antigen	derived	from Supplier
HCV Pentamer A*02:01 GIDPNIRTGV HCV NS3 1273-1082 Proimmune
HCV Pentamer A*02:01 KLVALGINAV HCV NS3 1406-1415 Proimmune
HCV Pentamer A*01:01 ATDALMTGY HCV NS3 1435-1443 Proimmune
HCV Pentamer B*40:01 REISVPAEIL HCV NS5a 2266-2275 Proimmune
HCV Pentamer B*07:02 GPRLGVRAT HCV core 41-49 Proimmune
HCV Pentamer A*02:01 VLSDFKTWL HCV NS5a 1987-1995 Proimmune
HCV Pentamer A*02:01 YPYRLWHYPC HCV E2 610-619 Proimmune
HCV Pentamer B*27:01 ARMILMTHF HCV core 470-478 Proimmune
HCV Pentamer A*02:01 CINGVCWTV HCV NS3 1073-1081 Proimmune
CMV Dextramer A*02:01 NLVPMVATC HCMV pp65 Immudex
EBV Dextramer A*02:01 GLCTLVAML EBV BMLF-1 Immudex
HIV Tetramer A*24:02 RYPLTFGW Nef RW8 Custom made
HIV Tetramer B*57:01 KAFSPEVIPMF Gag KF11 Custom made
HIV Tetramer B*14:02 DRFYKTLRA Gag DA9 Custom made
HIV Tetramer B*35:01 HPVHAGPIA Gag HA9 Custom made
HIV Tetramer B*14:02 DRFYKTLRA Gag DA9 Custom made
HIV Dextramer A*02:01 SLYNTVATL Gag SL9 Immudex
HIV Pentamer B*07:02 TPQDLNTML Gag TL9 Proimmune
HIV Dextramer A*02:01 SLYNTVATL Gag SL9 Immudex
HIV Dextramer B*57:01 KAFSPEVIPMF Gag KF11 Immudex
HIV Tetramer B*08:01  EIYKRWII Gag EI8 Custom made
HIV Tetramer B*35:01 VPLRPMTY Nef VY8 Beckman
HIV Dextramer B*07:02 GPGHKARVL Gag GL9 Immudex
LCMV Tetramer H-2Db SGVENPGGYCL GP276-286 Dr. E. John Wherry
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Supplemental Table 5.1. The list of prioritized genes with potential role in T cells responding 
to a viral infection. 

 
 
 

Total CD8 CD4 d6 d8 d30 d6 d8 d30 d6 d8 d30 d6 d8 d30 CD127hi CD127lo KLRG1int KLRG1hi
BATF 45811 45500 311 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
CSDA 45811 45500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
NFKBIA 45811 45500 311 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
PRDM1 45811 45500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
BHLHE40 44811 44500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0
TBX21 44811 44500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0
EZH2 44800 44500 300 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 1
H2AFX 44300 44000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1
EPAS1 44110 44000 110 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0
E2F2 44100 44000 100 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0
E2F8 43810 43500 310 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0 0
POLE 43801 43500 301 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0
HMGB3 43800 43500 300 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0 0
TCF19 43750 43500 250 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0
TFDP1 43300 43000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0
HMGB2 43100 43000 100 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 0
ATF6 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
HOPX 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
IRF4 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
NFIL3 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
NR4A1 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
NR4A2 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
NR4A3 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
TRPS1 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
RBM47 36810 36500 310 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
TRIM37 36800 36500 300 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0 0
DEPDC1B 36600 36500 100 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1
ZEB2 36500 36500 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
SPIC 36310 36000 310 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0
WHSC1 35811 35500 311 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0
FOXM1 35800 35500 300 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0
HHEX 35700 35500 200 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0
SPI1 35600 35500 100 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0
ZBTB32 35301 35000 301 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0
APITD1 35300 35000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0
IGF2BP3 35300 35000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0
IRF8 35300 35000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0
CHAF1B 35200 35000 200 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0
MYBL2 35200 35000 200 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0
HIF1A 34311 34000 311 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1
HNRPLL 33751 33500 251 1 0 0 1 1 1 1 1 0 1 0 1 0 1 0 0
WDHD1 33300 33000 300 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0
ID2 27311 27000 311 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0
FOSB 26811 26500 311 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
TGIF1 26811 26500 311 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
RNPS1 26600 26500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0
CREM 26561 26500 61 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0
KLF10 25811 25500 311 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0
MBNL3 25750 25500 250 1 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0
MXD1 25550 25500 50 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0
XBP1 25510 25500 10 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
ETV6 25311 25000 311 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0
NFE2 25150 25000 150 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0
IRF7 24801 24500 301 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0
EOMES 19511 19500 11 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1
ATF3 19311 19000 311 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0
NUP43 18600 18500 100 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
JDP2 18250 18000 250 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0
TAF9 18100 18000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
NFYB 18000 18000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
MXD3 17600 17500 100 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
RDBP 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
ZIK1 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
ZNF367 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
CARHSP1 17500 17500 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
MAFB 17500 17500 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
GABPB1 16811 16500 311 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0
ZNF642 16551 16500 51 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0

Relative Score
GSE8678

d4.5 Acute
GSE10239GSE41870

Acute CD8 Chronic CD8 Acute CD4 Chronic CD4 d6/7 Acute
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PBX3 15811 15500 311 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
ZNF414 15600 15500 100 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
STAT3 15551 15500 51 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0
MXI1 15500 15500 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
REL 15311 15000 311 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0
MEF2C 15000 15000 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
MAFF 11811 11500 311 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0
SMAD3 11000 11000 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
WDR5 11000 11000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
BHLHE41 10550 10500 50 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
KLF12 10500 10500 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
SMARCC1 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
TCF7L2 10100 10000 100 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
E2F1 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E2F6 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NFKBIB 9311 9000 311 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0
FOSL2 9111 9000 111 0 0 1 0 1 1 0 0 1 1 1 1 0 0 0 0
EGR1 9010 9000 10 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1
FOS 9001 9000 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
CBFB 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
CREBBP 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
EEF1E1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
EIF3M 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
ELF1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
IFI35 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
JUND 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
KLF2 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
MLL4 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
NMI 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
RBMS1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
RFX7 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
SF3B1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
SP3 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
STAT1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
TCF7 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
TRIM21 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
TRIM28 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
WDR74 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
ZSCAN21 9000 9000 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
KLF11 8500 8500 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
ZNF280B 8500 8500 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
PLEK 45811 45500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1
ITGAL 45311 45000 311 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1
CASP4 44811 44500 311 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
CCNA2 44811 44500 311 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1
CDKN2C 44811 44500 311 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1
RPA2 44811 44500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0
CLIC4 44801 44500 301 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0
LIG1 44801 44500 301 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0
NCAPG2 44801 44500 301 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 1
CDC6 44800 44500 300 1 1 0 1 1 1 1 1 0 1 1 0 0 1 1 0
LGALS3 44800 44500 300 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0
FBXO5 44650 44500 150 1 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1
DBF4 44600 44500 100 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0
LGALS1 44311 44000 311 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0
MCM6 44301 44000 301 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0
MCM5 44300 44000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0
MCM7 44300 44000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0
APAF1 43811 43500 311 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0
CCNB2 43811 43500 311 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0
XDH 43801 43500 301 1 1 0 1 1 1 1 1 0 1 1 1 0 1 0 0
ECT2 43300 43000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0
MCM3 43300 43000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0
MCM4 43300 43000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0
CDC20 43250 43000 250 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0
LITAF 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
MYBL1 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
POLA1 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
RORA 36811 36500 311 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
CD74 36810 36500 310 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
UHRF1 36300 36000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 0



	 219	

 
 

DTL 35811 35500 311 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0
HELLS 35811 35500 311 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0
LPXN 35811 35500 311 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0
IFIH1 35801 35500 301 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 1
ANLN 35800 35500 300 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0
BARD1 35800 35500 300 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0
BRIP1 35800 35500 300 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0
CCNE2 35650 35500 150 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 0
LANCL2 35311 35000 311 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0
LMAN1 35301 35000 301 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 0
ATAD2 35300 35000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0
BRCA1 35300 35000 300 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0
MCM8 35250 35000 250 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0
PSMD13 35250 35000 250 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0
RFC2 35250 35000 250 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0
CCNF 35100 35000 100 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
E2F7 35100 35000 100 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
CRIP1 34310 34000 310 0 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1
LMAN2 34250 34000 250 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0
MCM2 34250 34000 250 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 0
CLIC1 33310 33000 310 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 0
RFC4 33300 33000 300 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0
BLM 33250 33000 250 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0
RPA3 33100 33000 100 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0
HDGF 28600 28500 100 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0
HIST1H1C 27010 27000 10 0 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0
CCNE1 26800 26500 300 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0
SIVA1 26300 26000 300 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0
GSTO1 26000 26000 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
POGK 26000 26000 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0
EIF4H 25810 25500 310 1 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0
BRD9 25600 25500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
TOPBP1 25600 25500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
INTS12 25500 25500 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
PLEKHA2 25311 25000 311 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0
PLEKHB2 25301 25000 301 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0
BRCA2 25300 25000 300 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0
PLD4 25200 25000 200 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0
KPNA3 25100 25000 100 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0
SHC1 25100 25000 100 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0
DDX1 19100 19000 100 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1
RFC5 19100 19000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
TCEB3 18661 18500 161 0 1 1 0 1 0 0 1 1 1 0 1 0 0 0 0
SSRP1 18200 18000 200 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
AAAS 18100 18000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
RANBP1 18100 18000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
CFH 18000 18000 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
CSTF3 18000 18000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
ZYX 18000 18000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
PTBP1 17811 17500 311 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0
RAPGEF5 17811 17500 311 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0
CORO1C 17700 17500 200 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0
TTC9C 17700 17500 200 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0
RPAP3 17650 17500 150 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0
COPS7B 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
CSRP1 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
FANCM 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
LMO2 17600 17500 100 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
MYD88 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
NCBP2 17600 17500 100 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
POLE3 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
THOC6 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
YARS 17600 17500 100 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
CPSF4 17500 17500 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
MEFV 17500 17500 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
RAD18 17500 17500 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
RNF121 17500 17500 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
ISG20 16301 16000 301 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0
UHRF2 16211 16000 211 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0
BIN3 15810 15500 310 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0
GTF2F1 15600 15500 100 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
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NSMCE2 15500 15500 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
MTX1 11100 11000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
BOLA3 10500 10500 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
CORO1B 10200 10000 200 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
RPA1 10200 10000 200 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
BUB3 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
GTF2F2 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
HDLBP 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
NUP133 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
POLR3K 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
PSMD7 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
RBBP4 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
SKP2 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
STIP1 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
TRAIP 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
TTF2 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
USP39 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
UTP6 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
XRCC6 10100 10000 100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
GTF2E2 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KBTBD8 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MTX2 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NEDD1 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PLRG1 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PPARG 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SPAG1 10000 10000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SRBD1 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TAF12 10000 10000 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WIPI2 10000 10000 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DHX40 9500 9500 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0
DDX3X 9111 9000 111 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1
APEX1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
CASP8 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
CCNG2 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
CLTC 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
DEK 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
GPS1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
H2AFY 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
KLHDC3 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
MRPL2 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
PARP14 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
PARP9 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
PFDN2 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
PHB2 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
POLD1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
PSMD14 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
RNF138 9000 9000 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
RPS3 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
RUVBL1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
SAMD9L 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
SAMHD1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
SAT1 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
TRAF7 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
VARS 9000 9000 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
RBL2 8500 8500 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
RNF125 8311 8000 311 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0
CLGN 8101 8000 101 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0
ANAPC5 8100 8000 100 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
ST13 8100 8000 100 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
RNF19A 8051 8000 51 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
PWP1 9100 9000 100 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0
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Supplemental Table 5.2. The list of genes selected for the in vivo RNAi screen in CD8+ T 
cells and their representation in respective pools.  

 

Gene
#	Available	
shRNA

#	shRNA	with	KD	
validation	>70%

No	KD	data	
available

#	shRNA	selected	
for	the	screen

POOL	1
1 Whsc1 9 8 0 3
2 Zfp414 5 5 0 3
3 E2f1 6 5 0 3
4 Pole 5 4 0 3
5 Nr4a2 4 4 0 3
6 Wdhd1 7 4 0 3
7 Tgif1 5 4 0 3
8 Mbnl3 4 4 0 3
9 Mxd1 5 4 0 3
10 Trim28 5 1 4 5
11 Rnps1 3 1 2 3
12 Wdr5 3 1 2 3
13 Xbp1 4 2 0 2
14 Pbx3 2 2 0 2
15 Sfpi1 5 0 5 5
16 Hmgb3 8 0 8 5
17 Irf7 5 0 5 5
18 Epas1 3 0 3 3
19 Igf2bp3 3 0 3 3
20 Hif1a 4 3 0 3

Control: 25 Experimental: 66
POOL	2

1 Jdp2 7 4 1 3
2 Stat3 2 2 0 2
3 E2f6 2 2 0 2
4 Mxd3 4 4 0 3
5 Gabpb1 5 4 0 3
6 Maff 4 4 0 3
7 Klf12 5 4 0 3
8 Nr4a1 5 3 0 3
9 Hhex 5 3 0 3
10 Chaf1b 3 3 0 3
11 Mybl2 4 3 1 3
12 Hnrpll 4 3 0 3
13 Hopx 5 0 5 5
14 Etv6 5 3 0 3
15 Cbfb 2 2 0 2
16 Sp3 5 2 0 2
17 Irf1 5 2 0 2
18 Zscan21 6 0 6 5
19 Zik1 5 0 5 5
20 Zfp367 5 0 5 5
21 Pparg 4 4 0 3

Control: 25 Experimental: 66
POOL	3

1 Nup43 3 3 0 3
2 Carhsp1 4 3 0 3
3 Mafb 3 3 0 3
4 Crebbp 5 3 0 3
5 Klf2 5 3 0 3
6 Nmi 3 3 0 3
7 Rfx7 5 3 0 3
8 Wdr74 4 3 0 3
9 Klf10 13 1 8 5
10 Tcf7l2 8 1 7 5
11 Smad3 5 1 4 5
12 Nfkbib 3 2 0 2
13 Egr1 10 2 0 2
14 Nfyb 5 2 0 2
15 Fos 7 2 0 2
16 Mxi1 5 0 5 5
17 Rel 5 0 5 5
18 Nfe2 4 0 4 4
19 Rdbp 4 0 4 4
20 Atf3 3 3 0 3

Control: 25 Experimental: 68
POOL	4

1 Ifi35 2 1 0 4
2 Stat1 5 1 0 4
3 Tcf7 3 1 0 4
4 Bmi1 1 1 0 4
5 Mef2c 0 0 0 4
6 Runx3 0 0 0 4
7 Ikzf1 4 0 0 4
8 Ikzf3 5 0 0 4
9 Runx2 2 0 2 4
10 Ikzf2 6 0 0 4
11 Eomes 2 0 0 4
12 Irf4 5 0 5 4
13 Tbx21 2 0 2 4

Control: 25 Experimental: 52
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Supplemental Table 5.3. The relative distribution of shRNAs in CD8+ T cells in the in vivo 
RNAi screen at day 8 relative to day 0. 

 

Construct	Barcode Gene	ID Pool	# Input Day	8	in	vivo Fold	change Fold	change	(Log2)
CGTCTCTAGTGCCAACTTTAT Fos Pool	4 8.113333245 5.906050264 0.727943755 -0.458101112
CAGAGCTGAAGACGCAGATAG Jdp2 Pool	3 11.04336138 9.591594781 0.868539429 -0.203336751
CTGCGTTTGCAGCCGATTTAC Etv6 Pool	3 9.798179596 8.524506901 0.870009252 -0.200897352
GATGTTAGCCCGGACACTTTC Irf1 Pool	3 12.3942304 10.91228868 0.880432937 -0.183714977
GAGGATCATTAACGACTATAA Crebbp Pool	4 14.19123317 12.63493957 0.890334154 -0.167581195
GCCTCCCTGATGAATAAAGAT Pparg Pool	3 12.03383539 10.74490919 0.892891488 -0.163443238
TATGCACTTTGTCGCTATTAA Hif1a Pool	2 10.00183683 8.932817868 0.893117737 -0.163077722
TGGACGCTGCTACTGGCAAAT Rdbp Pool	4 12.47463108 11.16987282 0.895407066 -0.159384392
GCCCAGTGAATGTCTAGCAAA E2f6 Pool	3 12.67006986 11.34655069 0.89553971 -0.15917069
GCTCCACACTATGAAGACATT Pparg Pool	3 10.25863233 9.194951841 0.896313617 -0.157924481
TCTAGCAGGATTCGCTGTAAC Zfp367 Pool	3 11.13404555 10.0023003 0.898352738 -0.154646065
TGCCGGTGACGTGCAACAATT Nr4a1 Pool	3 10.07383653 9.112822914 0.904603017 -0.144643287
GTTGCATAGAGAGGGTCTTAT Irf1 Pool	3 12.85981605 11.78193849 0.916182505 -0.12629308
TGGAAGAAGAGAACCACAAAC Xbp1 Pool	2 12.22980596 11.21689871 0.917177161 -0.124727665
CGGTTTGATGTGTCACTGGTA E2f6 Pool	3 11.93210417 11.03913116 0.925162151 -0.11222185
CCAGGAGCAAGACCGTGTTTA Irf7 Pool	2 10.85264033 10.11421757 0.93195916 -0.101661359
CGTACCTCTGTAACTTATGTT Rnps1 Pool	2 13.72597261 12.845693 0.935867597 -0.095623658
GGCTAGAGATGCAGATTAATT Irf1 Pool	3 12.99586852 12.17382372 0.936745682 -0.094270672
CCTTCTACATCGACGACATCT Hhex Pool	3 10.80574818 10.14300342 0.938667387 -0.091314059
GCCTTGGACGAGTTGATTAAA E2f6 Pool	3 11.55997195 10.8538769 0.938918965 -0.090927446
CGTCATGTGTGCTGCATTATT Hnrpll Pool	3 11.75755368 11.07801069 0.94220371 -0.085889082
GCTGTCAATGTTGTACGCTTT Chaf1b Pool	3 14.53238433 13.74247767 0.945645075 -0.080629291
GTTTCTACACGAGCGTCAAAG Zik1 Pool	3 13.62124132 12.89011992 0.946324906 -0.079592499
CTTGTACCAACACGACAATAA Mbnl3 Pool	2 8.595557907 8.135495273 0.946476699 -0.079361106
CTGTGCCTAGAGAAGCTAAAG Mxd1 Pool	2 13.14142877 12.45249324 0.947575295 -0.07768751
CACTCAATGGAGCTGATATAT Hnrpll Pool	3 13.44678021 12.77587129 0.950106352 -0.073839081
GCGTTTCACTGTGGTCTATTG Nup43 Pool	4 14.90368148 14.18372623 0.951692791 -0.071432151
GAATCCTCTTTACCCAATTAC Hnrpll Pool	3 12.71330079 12.10838808 0.95241891 -0.07033183
GCCAACTTCAATCGCATCATT Pole Pool	2 13.64145561 12.99416533 0.952549765 -0.070133628
GCCGGGAATATGTCGACTTAG Cbfb Pool	3 11.05131124 10.53759638 0.953515484 -0.068671729
GACTACACTAAACCTTATTTG Hnrpll Pool	3 13.14949313 12.54454807 0.9539948 -0.067946692
AGTCCAAGGATCGATCTAAAG Rnps1 Pool	2 11.2645334 10.76057461 0.955261459 -0.066032435
CCTGGTGCTCATGATACTAAA Whsc1 Pool	2 10.77789127 10.30662394 0.956274626 -0.0645031
TGGAGAAGAAGTTCGAGACTC Hhex Pool	3 10.7945653 10.33050613 0.957009925 -0.063394208
ATCATCGTCTCCGGATGTAAA Rfx7 Pool	4 11.3550628 10.880171 0.958177968 -0.061634454
TCCGTATGAGCTTCGTCAAAG Smad3 Pool	4 12.17965945 11.67138196 0.958268334 -0.0614984
CATAGTTATTCACAGGTTATT Rfx7 Pool	4 17.51046145 16.78952426 0.958828202 -0.060655752
ATGACCAGTGTGCAATGATTA Zik1 Pool	3 12.91507606 12.39762892 0.959934642 -0.058991913
GCCCTTTACCACAGTTGATTT Pparg Pool	3 13.69855053 13.16401506 0.960978683 -0.057423666
GAGTACCTCCAGTCTGATGAG Zfp367 Pool	3 12.02204764 11.5747391 0.96279265 -0.054702967
CGACAGCATGAAGTCGTTCTT Chaf1b Pool	3 13.70266927 13.19625321 0.963042525 -0.054328591
ACAGAACCGTGAGGTACTTTA Wdr74 Pool	4 12.15643842 11.71299295 0.96352176 -0.053610846
CCAGAAAGAGCTTGGATATTT Whsc1 Pool	2 15.07533689 14.53173879 0.963941231 -0.052982904
TGGAGAGGATGGCCGAATAAA Nup43 Pool	4 10.37653105 10.00301722 0.964003979 -0.052888993
AGCTCCAACTCCTCCCGATAA Rnps1 Pool	2 10.93234862 10.54576039 0.964638135 -0.051940249
CTCACTCCTGGAGCATGTTAA E2f1 Pool	2 13.17640699 12.73906451 0.966808669 -0.048697686
GGCCCTGAGCTGGACTTATAT Maff Pool	3 13.37598152 12.94141633 0.967511529 -0.047649242
TCCTAGGAATCCCAGATTATT Crebbp Pool	4 10.02987755 9.705318984 0.967640825 -0.047456457
ACCTGCATCGTGCGCACAGAT Jdp2 Pool	3 12.63582045 12.23176021 0.968022635 -0.046887312
TTGACTAATTGAGGTGTTAAT Nfyb Pool	4 11.9339361 11.55574937 0.968309975 -0.046459139
TATGCCTCCATGCTGCCATAC Mxd1 Pool	2 11.59389388 11.23683698 0.969203021 -0.045129193
CATGTGCCTTTAAGCCTATAG Nr4a1 Pool	3 12.39295653 12.01539748 0.969534384 -0.044636031
CCATCACCTTCCAGTAGTAAT Hopx Pool	3 12.44126233 12.07368231 0.970454765 -0.043267128
ACAATGACTGCAGGCATTAAT Sp3 Pool	3 11.26692104 10.93621347 0.97064792 -0.042980009
CCCATTCCTCATCCGTCAAAT Hif1a Pool	2 13.07169949 12.69760068 0.971381012 -0.041890809
TAAGCCTCATCCTCATGATTT Rel Pool	4 10.57930444 10.28598108 0.972273853 -0.040565372
CCACATAACTTAAACGCTAAT Pbx3 Pool	2 15.34672191 14.93045367 0.972875755 -0.039672523
CCAGAATCTCTCAAGCGTGAA Mybl2 Pool	3 11.41734751 11.10884784 0.972979742 -0.039518327
GCTAGAAGTTAATGGGAGAAA Mbnl3 Pool	2 15.78292153 15.36019177 0.973216001 -0.039168055
ACTTCAACAAGGTCAACAAGC Hopx Pool	3 13.64915649 13.29029218 0.973707949 -0.038438975
GCATCCTTTGTCTCACCAATT Atf3 Pool	4 13.41745011 13.06511173 0.973740287 -0.038391062
AGGGCTGATCTGGATCAATAA Irf1 Pool	3 10.74277747 10.47173221 0.974769535 -0.036866932
AGAGCAGCAGGAACTCTTAAT Wdhd1 Pool	2 10.38773289 10.13295 0.975472714 -0.035826576
CAGACGCAGAAATGGTTTAAG Hopx Pool	3 11.17747047 10.90351307 0.975490215 -0.035800693
GCCATCTCTTATGTTGTAATT Pbx3 Pool	2 14.6778306 14.32407481 0.975898632 -0.035196793
CTTGCACATGAAGCGACACAT Klf2 Pool	4 7.89875559 7.709423237 0.976030104 -0.03500245
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GTTTCTGCAGAGGGAGTCAGA Jdp2 Pool	3 11.6903222 11.43337556 0.978020569 -0.032063288
GGTTGAGAACCAGGAGTTAAG Xbp1 Pool	2 10.57468747 10.36079976 0.979773614 -0.029479655
GCAGGTATCTTGAGAAGCCAA Stat3 Pool	3 11.12737581 10.90241806 0.979783397 -0.029465251
TCTAATATCCCACGGTCTAAT Rfx7 Pool	4 12.86796814 12.60819651 0.979812537 -0.029422343
GGCTGAAAGTCCGGCTCAAAT Maff Pool	3 12.19348149 11.94749009 0.979825992 -0.029402533
TCGGGAGTGACGAGGGTTATT Mxi1 Pool	4 8.832671601 8.659087027 0.980347444 -0.028634951
CGTCATTCTGTTGTGGAAGAT Chaf1b Pool	3 13.64093607 13.38589744 0.981303436 -0.027228783
ACTATCAGATGACGCAAATAA Rel Pool	4 13.65206244 13.40130989 0.981632625 -0.026744896
TTACCTTTGTACCAATCAATA Sp3 Pool	3 12.84515586 12.61057368 0.981737693 -0.026590487
TCAGCACCAAGACCATAATAG Zik1 Pool	3 11.81003835 11.59509089 0.981799597 -0.026499521
TGATTATGAGGAGAGCATTAA Wdhd1 Pool	2 14.09166698 13.84486426 0.98248591 -0.025491377
TCAGAACCATGACGAAGATAA Etv6 Pool	3 12.22753303 12.01456406 0.982582834 -0.025349059
CCCTTATCACATGTGTGGATT Wdr74 Pool	4 14.55456348 14.31565379 0.983585238 -0.023878012
ATTTCAGAAGCTAGCTCTATT Tgif1 Pool	2 14.78615828 14.55104331 0.984098982 -0.023124664
GCTGGATTGATCTCCACAGAT Cbfb Pool	3 14.29750129 14.07173115 0.98420912 -0.022963211
CACTTTGGTATCCCACACCTA Pole Pool	2 12.95455756 12.76129549 0.985081538 -0.021684949
CTGTCCAATGTCAACCGGAAT Smad3 Pool	4 9.307669626 9.170534194 0.985266405 -0.021414228
GTAAGGTAGTGTTAACTATAT Hmgb3 Pool	2 14.78861009 14.57277378 0.985405234 -0.021210961
AGTACAGATGTACCGCAAATA Tgif1 Pool	2 10.97529127 10.81997344 0.985848409 -0.02056227
ATCAGTTACTGTGCGATATTA Nup43 Pool	4 9.332745584 9.205238892 0.986337708 -0.019846405
AGAAGGAACATTGCAGAGCTA Atf3 Pool	4 12.60170466 12.43330245 0.986636554 -0.019409357
GCAGCGTTAGAGAACGACAAA Wdr5 Pool	2 13.92401266 13.74573724 0.987196548 -0.018590745
CCCAACCAAGTACCCTCAGAA Wdr74 Pool	4 11.9330254 11.78219988 0.987360664 -0.018350925
GTGACCTTAGATAGCGTTAAT Klf12 Pool	3 12.64246284 12.48308953 0.987393809 -0.018302496
GTGGAGATGATACCCAACATA Nr4a2 Pool	2 13.8648281 13.69922977 0.988056229 -0.017334948
CCTGAGTTGAATTATCAGCTT Stat3 Pool	3 14.92392446 14.75423704 0.98862984 -0.016497643
GCTGTTTGGAGACTGGCTATT Irf7 Pool	2 13.7221665 13.57739025 0.989449461 -0.015302075
GCAATTGGTGGCTCATCATTT Sp3 Pool	3 11.78535929 11.66246544 0.989572329 -0.015122936
CAATTAGAAACGACCAATATT Fos Pool	4 14.08680826 13.9475392 0.990113511 -0.014334163
ACTAGAGAATCAGCTTATAAT Klf12 Pool	3 13.96458689 13.82792429 0.990213631 -0.014188285
GTATCCAGGGTCCGAGGAAAT Klf12 Pool	3 13.40763518 13.27662615 0.990228774 -0.014166223
TTCGCCCTGTGCACCATTATT Pole Pool	2 12.09503116 11.9834701 0.99077629 -0.01336875
CGCCCAGTCGTGCAGGTATAA Mafb Pool	4 10.92951839 10.83074021 0.990962257 -0.013097984
AGCGTCTGGCCAAGATGTTAC Hhex Pool	3 9.986854752 9.898832773 0.991186216 -0.01277197
AGCTCCCAAGAACTATGTATG Mybl2 Pool	3 12.9207928 12.82480176 0.992570809 -0.010758069
GCTCGAAGAAGAACTCGAGAA Cbfb Pool	3 11.15714978 11.07565415 0.992695658 -0.010576612
GCTAGTTCAGAAGGCTGATCA Zfp367 Pool	3 10.61033121 10.53425097 0.992829608 -0.010381955
TGTGGCTTTCAACATTTCAAA Chaf1b Pool	3 14.42690724 14.33043117 0.993312768 -0.009680039
GCAGAATATGAACATCGACAT Nr4a2 Pool	2 14.39685967 14.30399956 0.993549974 -0.00933556
AGTCGACACAGCCTCGATATG Hif1a Pool	2 9.35744376 9.300130101 0.993875073 -0.008863574
CTATTGTGGACAAGATCTTTA Nr4a1 Pool	3 11.07345626 11.01455002 0.994680411 -0.00769503
TGGATAGCGATATGGTCAATG Hif1a Pool	2 13.724144 13.65228542 0.994764076 -0.007573687
TTCGGAATGCAGATCTGTTAC Hopx Pool	3 9.899519147 9.849401069 0.994937322 -0.007322452
GCCAAGAAGTCCAAGAATCAT E2f1 Pool	2 11.38163692 11.33502132 0.995904315 -0.005920959
TGCAATTCAGCAAGTAGTTAG Gabpb1 Pool	3 15.95454502 15.90818533 0.997094264 -0.004198193
CACTCGGTTTGCTCAACAAAG Mxi1 Pool	4 13.49130572 13.45547039 0.997343821 -0.003837155
CAATAGATAGTACAGGTATAT Sp3 Pool	3 15.64810182 15.61885951 0.998131255 -0.002698551
CCCGATGGACAGCAAGTATTG Gabpb1 Pool	3 11.56038466 11.53878781 0.998131822 -0.002697731
GTTGCTGACTATAAGTCTAAA Hmgb3 Pool	2 14.79028892 14.76672698 0.998406931 -0.002300145
TTATCTTGCGCCAAGACAATT Irf7 Pool	2 11.15543187 11.14170466 0.998769459 -0.001776388
TATTGCCGGAAAGCCTATAAG Pole Pool	2 12.89949276 12.88922694 0.999204169 -0.001148599
CTCTGCAGCAAGTTGCCTATC Zfp414 Pool	2 8.040316714 8.03696461 0.999583088 -0.000601602
CTGCAGAACAGATGGTCATAG E2f1 Pool	2 14.00678824 14.00870448 1.000136807 0.000197358
GAGACAACAGATGTAAGGTTA Mybl2 Pool	3 14.1291085 14.1356342 1.000461862 0.000666172
GCGGAGACAGATCAACTTGAA Fos Pool	4 11.8384367 11.84747491 1.000763463 0.001101024
ATCAAGCCTGTAAGGACTATT Carhsp1 Pool	4 14.85718092 14.87439707 1.001158777 0.001670793
TGTGTTTAGAACGCTTGAAAG Mxi1 Pool	4 11.07614088 11.08904753 1.001165266 0.001680145
CCAACCTCAGACGACAATTTC Crebbp Pool	4 11.59792018 11.61390016 1.001377831 0.001986421
ACAGTGCTTCTGACCGGATTA Nmi Pool	4 11.94865502 11.96722144 1.00155385 0.002239992
TTGCCCTATATGCCGTATTTC Pole Pool	2 12.07267203 12.09210801 1.001609915 0.002320749
AGACATCGTGGAGAATTATTT Trim28 Pool	2 14.6634751 14.68789023 1.00166503 0.002400133
CGCCTGGCATACCGATCTAAA Nr4a1 Pool	3 10.73255931 10.75636133 1.00221774 0.00319598
GCTATGCCATTGGGAAATAAA Rel Pool	4 13.1863032 13.21626914 1.002272505 0.003274813
TATTGCCCTTGTTAGGTTTAA Hmgb3 Pool	2 13.60646607 13.64800418 1.003052822 0.004397582
ACTTCGAAGGGTGCAACAAAG Klf12 Pool	3 10.20156683 10.23284261 1.003065782 0.004416223
GACTCTTCCACACTCTTATTT Maff Pool	3 12.31903105 12.35712725 1.003092468 0.004454604
GCGTATGTAACCTATCAGGAT E2f6 Pool	3 13.05043407 13.09146887 1.003144325 0.004529185
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GATGTGCTTCCCTTATCAAAC Sfpi1 Pool	2 11.98815873 12.03221358 1.003674863 0.00529199
TTGCACGAATCTAAGTTATTC Maff Pool	3 11.53204788 11.57587337 1.003800322 0.005472314
AGTAGGTCAAACGTGCTATTT Carhsp1 Pool	4 11.16995597 11.21482223 1.004016691 0.005783253
TAGCGATCACTACTGGGATTT Sfpi1 Pool	2 11.66149655 11.71318166 1.004432116 0.006380064
CCTAACTTTGTGGTTCCAGAT Stat3 Pool	3 13.06526831 13.12585184 1.004636991 0.006674302
CCCACTCCTTCACAATCATAC Whsc1 Pool	2 13.20007052 13.26177609 1.00467464 0.006728365
CCGTCTACAAAGGAGTCTGTA Carhsp1 Pool	4 11.82254277 11.87844518 1.00472846 0.006805648
CATTGGGCAACAGAACATAAT Gabpb1 Pool	3 10.11936348 10.16837917 1.004843752 0.006971188
CCTAAACAACGTGTTGGACTT Klf2 Pool	4 14.83863913 14.92415197 1.005762849 0.008290169
CATCTACTGGCCACTTCAAAT Klf10 Pool	4 11.38633836 11.45574139 1.00609529 0.008766953
CGATTTCTTAACTCCAGAGTT Nr4a2 Pool	2 14.51100314 14.60650114 1.006581075 0.009463378
CACCAAGAGCTCGCACCTAAA Klf2 Pool	4 13.54385152 13.63357766 1.006624861 0.009526135
CTACTTCAAGTGTGAGAATTG Zfp414 Pool	2 10.16169567 10.22955181 1.006677639 0.009601774
CCACATGTTGAAGAGACTAAA Mxd3 Pool	3 15.22109987 15.32336383 1.006718566 0.009660426
GCTAGAGCATAAGGTTTATCT Wdr74 Pool	4 14.34566871 14.44394417 1.006850532 0.00984953
GGACTACAATCTGATTGTTAT Trim28 Pool	2 13.92979974 14.03046557 1.007226653 0.010388365
TGAACTTACAGTCTAACAAAC Klf12 Pool	3 12.66892208 12.76558362 1.007629815 0.010965716
CCCACGCATCAGACTTCTGTA Carhsp1 Pool	4 12.93625352 13.04215712 1.008186574 0.011762647
GTTCAAAGTGGACAGCTCAAA Zfp367 Pool	3 13.34517545 13.45512849 1.00823916 0.011837895
GATGATCTCAAACTTCGTTAA Cbfb Pool	3 11.23237341 11.34173449 1.009736239 0.013978485
GATTGCTATGCAGAACCAAAT Gabpb1 Pool	3 14.45656029 14.59764629 1.009759306 0.014011442
ACGGAGGAACAAGCCCAAGAA Mxd1 Pool	2 10.51163292 10.6169017 1.010014503 0.014376009
CAAGTTCATCTGCTGATAAAC Wdr5 Pool	2 12.68808669 12.82038552 1.010427012 0.014965112
AGAGAGGCAGAGCACGGTTAT Mxd3 Pool	3 12.16635457 12.29596753 1.010653393 0.015288304
TTGGGTCAGATGATCCCTATT Trim28 Pool	2 12.83710815 12.98780134 1.011738874 0.016836983
CGTGAATTTCAGCGTGGAAAT Mbnl3 Pool	2 9.1020766 9.209872763 1.01184303 0.016985498
CTGTTACAGTTACTCATATTA Hnrpll Pool	3 13.4727193 13.642211 1.012580363 0.018036412
ACGCTGACATCCGCAACATTG Jdp2 Pool	3 11.85967482 12.0150837 1.013103975 0.018782246
CGTGTGAAGCAGTTATGATTT Pbx3 Pool	2 9.452396338 9.582109415 1.013722772 0.019663164
TCCTTCGACTGTTCACTATTG Wdhd1 Pool	2 14.7317192 14.93621981 1.013881653 0.019889261
GCCCTGGCAAAGCATTTGTAT Pparg Pool	3 12.75653512 12.93431562 1.013936426 0.019967197
GCGGAAACATGCGGCAAATTT Wdr74 Pool	4 12.47588225 12.65539885 1.01438909 0.020611135
AGTTACCAGCTGGCTTAATAA Nfyb Pool	4 12.58600287 12.76798929 1.01445943 0.02071117
GACAGTCATCGGCCATGTTTA Hhex Pool	3 12.75698529 12.94868824 1.015027293 0.02151852
TACATCGGAGGAAGTCATTAT Nfyb Pool	4 13.53779891 13.74387739 1.015222451 0.021795879
CAGAGATGAGGGCGATGAATA Nfkbib Pool	4 12.83361124 13.03108939 1.015387575 0.022030511
ACGTGAACACCAAGTGCATTA Smad3 Pool	4 10.51928549 10.69911579 1.017095296 0.024454858
AGCACTGGTGTGGTAGCTAAA Trim28 Pool	2 14.29721398 14.54840021 1.017568893 0.025126473
CCATACCCTCTGTCCCAATAG E2f1 Pool	2 13.52007218 13.76180954 1.017879886 0.025567328
TCGACATTAAAGCGACATTAA Etv6 Pool	3 12.39434615 12.62472932 1.018587763 0.02657029
CAGTGTCTCCTGTCGAGAATA Etv6 Pool	3 11.132381 11.34279534 1.018901109 0.027014035
TCAGACTCAGACCAAGAGGAT Mxd3 Pool	3 13.28301792 13.53524108 1.018988393 0.027137618
CCAAAGAATGTGTTCAGGAAT Nfyb Pool	4 13.75832217 14.01984065 1.019008021 0.027165408
AGGATGGAATGTTGAGTATTT Nup43 Pool	4 12.55925066 12.80341563 1.019441046 0.027778348
ACACCAGTCTCCGGACAACAA Zfp367 Pool	3 12.49320019 12.73772046 1.019572269 0.027964039
CTGAATGATCACCGTAGAATA Zik1 Pool	3 13.64458997 13.91822092 1.020054172 0.028645771
GCATCCAAACCTCTTCCTGAT Nfkbib Pool	4 14.38507612 14.67469409 1.020133225 0.028757574
GTGGCCACCTAGTGGAGTTAA Irf7 Pool	2 12.00993584 12.25303942 1.020241872 0.028911218
CGGATGCCAGAGAATTCCAAA Nmi Pool	4 11.24415714 11.47344324 1.020391578 0.029122897
CATCGCTCTGAATAATGAGAA Egr1 Pool	4 10.58916561 10.81158586 1.021004511 0.029989241
CTGTCAGAACTATAGATAATG Nup43 Pool	4 13.20453101 13.48221107 1.02102915 0.030024055
GCACTCGGATACCTCTAACTA Pbx3 Pool	2 12.62786323 12.89697901 1.021311268 0.030422627
GCAGTTGAGATATCTCCTCTA Rnps1 Pool	2 14.06885186 14.37577383 1.021815709 0.03113502
CTGTGAGAGAAGAGGATATTC Whsc1 Pool	2 12.79466463 13.0830052 1.022536001 0.032151637
CGGTTTACTACAAGCCCTCTT Nr4a2 Pool	2 13.60860857 13.91646354 1.022622075 0.032273075
TTGATAGCCACTGTGATATTT Wdr5 Pool	2 12.80480497 13.09799723 1.022897049 0.032660951
GAATGTGACCAAGGATCATAT Rnps1 Pool	2 11.3790361 11.64709287 1.023557072 0.033591547
GGGCTTTCCCGCCTTTGTTTA Wdhd1 Pool	2 11.30541629 11.58289939 1.024544263 0.034982313
GCTGAGTCTTTGTTTGGGTTT Mafb Pool	4 12.15780329 12.45860465 1.024741423 0.035259915
CGACTTTGATTTCAACTACAA Stat3 Pool	3 12.80322687 13.12313401 1.024986446 0.035604832
GATCCAGTTGATCCGCATAAG Irf7 Pool	2 11.47853566 11.7745359 1.025787282 0.03673159
GTCTCCCTGTGGGCAGTATTT Wdhd1 Pool	2 13.15647691 13.49599261 1.025805974 0.036757878
GCATTAAGCAGGAACGAATTT Etv6 Pool	3 12.90584942 13.23889875 1.025806076 0.036758021
CTTTCAAGTGAGCTCACAAAT Nmi Pool	4 11.88744665 12.19557994 1.025920898 0.036919499
CAGAATAAACACCTCTGCCAT Atf3 Pool	4 13.64526695 14.01621156 1.027184856 0.038695837
CTACAGTAGAGAAGTTGTATG Nfkbib Pool	4 12.88337205 13.24177416 1.027818967 0.039586181
CCGTGGATGTAGCTAAGTATA Klf10 Pool	4 13.22103991 13.59209642 1.028065607 0.039932334
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TGGATTCCTTGTGCCTCATAT Rdbp Pool	4 10.71051759 11.01376782 1.028313313 0.0402799
ATGGAAGTTAGCAAGTTAAAT Klf10 Pool	4 13.86040646 14.25334346 1.028349602 0.040330812
TTAGAGACACTAGGAGTAAAG Smad3 Pool	4 13.20500263 13.5829706 1.028623089 0.040714443
CACTCCACTATCCACTATTAA Egr1 Pool	4 13.09286651 13.46888737 1.028719522 0.040849688
ACCTCAATAAACCGGAGCCTA Nfkbib Pool	4 13.32571086 13.70926854 1.028783282 0.040939103
GACCCTGGAAGGGAAGTTAAA Rdbp Pool	4 12.13382863 12.49171955 1.0294953 0.041937244
GCCGTTCATTTCAACCGTGAT Wdr5 Pool	2 12.81720945 13.20050314 1.029904612 0.042510724
GACTTGATTTGCATGGTATTG Egr1 Pool	4 14.33359897 14.76311646 1.029965781 0.042596407
TACTCCGGGCTGCACTACTTA Fos Pool	4 12.24091905 12.61019864 1.030167635 0.042879121
TGGATATGGAAAGGGACATAA Irf1 Pool	3 14.31659166 14.74992419 1.030267856 0.043019468
CTACTCCCAACACTGACATTT Egr1 Pool	4 12.29720804 12.67034283 1.030343049 0.043124757
ATGAGAAACTGTTGGTATTTA Sp3 Pool	3 11.99436612 12.37588319 1.031808023 0.04517457
CCCAGCTTCAGTCCGACTGAA Mafb Pool	4 10.87175853 11.22212681 1.032227378 0.045760801
GACCGATTGTATTTCTATAAG Klf2 Pool	4 13.18007977 13.61333315 1.032871833 0.046661244
TCTGCTAAAGAACTCGGACAT Mybl2 Pool	3 12.59963424 13.02317306 1.033615168 0.047699146
CACCGATTCCACTCAACTAAG Smad3 Pool	4 14.30379018 14.79147564 1.034094842 0.048368508
GTAGCTATTCCCTCGACTTTA Hhex Pool	3 12.54197535 12.9704916 1.034166567 0.048468571
GCCAAACTATGCCCTGAAGTT Wdr5 Pool	2 13.12222854 13.57589282 1.034572198 0.049034328
CGAATGTTTCTTGGTAGTTTC Tgif1 Pool	2 11.78535865 12.19684724 1.034915236 0.04951261
AGCGACTTGAGTGCATCTAAT Rel Pool	4 9.38695703 9.719179247 1.035391897 0.050176933
TCTGGTTCCCTGGACGTTATC Nr4a1 Pool	3 12.20421744 12.63695061 1.035457675 0.050268584
AGTCTTTGGAACGGATCAATG Maff Pool	3 12.22258708 12.65747574 1.035580738 0.050440036
CGGAGAAGAACCCACGGAAAT Klf10 Pool	4 7.883751608 8.173332979 1.036731417 0.052042188
TTCCGCAGGTCAGACTCATTC Rdbp Pool	4 8.366353102 8.689640317 1.038641354 0.054697574
GATGGCAAGAGATGCATTATT Tgif1 Pool	2 12.1866901 12.66213159 1.039013176 0.05521395
TCTACCCAGAAGGACCTAGTT Xbp1 Pool	2 12.86870385 13.37366727 1.039239649 0.055528378
TAGTCAAAGTGCCATTCTTAA Zik1 Pool	3 11.72313198 12.18366557 1.039284177 0.055590192
TCGGATGACTTGGTTACTTAC Sfpi1 Pool	2 10.87179527 11.3037321 1.039730037 0.056208985
GAGATGGAGCGGATACGAATG Mxi1 Pool	4 11.27071198 11.72097462 1.039949796 0.056513883
AGGCAGATAAAGTCCGATATG Hmgb3 Pool	2 12.00150598 12.48449751 1.040244243 0.056922305
CTACAAGGTCAAGTGCGAGAA Mafb Pool	4 12.33561877 12.83366211 1.040374411 0.05710282
TAGTGGATGTTGCACTCAAAC Tgif1 Pool	2 10.0352571 10.45279525 1.041607121 0.058811216
GGAGATCCTGGAGTACAACTT Hopx Pool	3 11.85126681 12.3598876 1.042916998 0.060624343
CTTCAAGCATCTGCATGTTTG Zfp414 Pool	2 12.84035307 13.40097825 1.043661197 0.061653446
CTTCACTGCACGGGCCATATT Hif1a Pool	2 12.15294235 12.68762151 1.043995861 0.062115992
GACCTTACCTGTTCGTGAAAC Fos Pool	4 12.21586558 12.75467013 1.044106948 0.062269495
AGAAGATGGAGACGCAGAATA Klf10 Pool	4 12.79691525 13.36267317 1.044210492 0.06241256
GAGCTATACCAACGTCCAATG Sfpi1 Pool	2 11.49544396 12.01380885 1.045093072 0.06363143
GCACCAGTAGCAGATCAACTC Mxd1 Pool	2 11.61394067 12.1436803 1.045612393 0.064348146
GAAGTGAAAGAAGCTATTATT Rel Pool	4 12.47337883 13.0520101 1.046389297 0.065419689
ACAGATGCACGTCCTCGATAC Sfpi1 Pool	2 10.62760811 11.12064504 1.046392088 0.065423537
TCTTGGCTACCATCCATTAAG Rfx7 Pool	4 7.749494668 8.119914149 1.047799179 0.067362236
AGAGCTGACTTTCAACTATAA Whsc1 Pool	2 13.89075163 14.56138305 1.048278987 0.068022724
TCCGCAGCACTCAGACTATGT Xbp1 Pool	2 10.48768957 11.00306614 1.049141096 0.069208715
GACCCTTTCAGTGCCACTTGT Klf2 Pool	4 13.02086893 13.67190043 1.049999083 0.070388067
GCAGGATAATCAGGCATTAAT Mxi1 Pool	4 12.27168123 12.88537636 1.050009051 0.070401764
GCGATGGTGGAGACGAGTTAT Egr1 Pool	4 10.90974959 11.47594541 1.05189815 0.072995023
CAACGTCTTACCAACAGATTT Nfyb Pool	4 13.09856339 13.78002306 1.052025528 0.073169712
AGGCCTGTCTCTTTCGTTAAA Xbp1 Pool	2 6.992335016 7.361602196 1.052810281 0.074245483
GCAAACCTCATGTACCACCTT Mxd1 Pool	2 12.03540581 12.67240844 1.052927391 0.074405953
AGCAGCTCTGCCACTTCATAT Nfkbib Pool	4 9.422431048 9.946078957 1.055574608 0.078028552
GCAGTGAGGAACCAACGTAAA Trim28 Pool	2 11.40957665 12.08194374 1.058930065 0.082607312
CCTTGTAAAGAGTCACTATAT Rfx7 Pool	4 10.68098746 11.35982529 1.063555718 0.088895615
CTCAGCAGAGATGGACGATAT Nmi Pool	4 10.63132236 11.31023424 1.063859589 0.089307753
TGCTGCCAAGTGTCGAAACAA Atf3 Pool	4 10.06438699 10.71732931 1.064876512 0.090686139
CTGGACAAGAAGTGACTGAAG Jdp2 Pool	3 8.391186163 8.954903056 1.067179643 0.093803052
TAACTCTGGCCATAGCTTAAT Crebbp Pool	4 10.02817286 10.72016078 1.069004387 0.096267773
ACTTGAACCCTGCACCCTTTG Zfp414 Pool	2 11.43054087 12.24885897 1.071590496 0.099753692
ACCCAGAGGTTCCCGTCAATT Hmgb3 Pool	2 11.25159237 12.12376393 1.077515389 0.107708474
CTGAGCTGCACTGAGAGTTTC Zfp414 Pool	2 10.11601629 10.92735838 1.080203716 0.111303416
AGGCCCTTGACTATCACTTTG E2f1 Pool	2 10.06329949 10.94878203 1.087991274 0.121666985
CGACGAAGTCACCTATAAGAT Carhsp1 Pool	4 10.40308096 11.42410024 1.098145855 0.135069684
GCAAGTCATCACGATAGTTAC Gabpb1 Pool	3 11.01473504 12.47421247 1.132502273 0.179513946
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Gene	ID Gene	Symbol Broad	Clone	ID Target	Sequence Type
-10 GFP TRCN0000231753 ACAACAGCCACAACGTCTATA Control
-10 GFP TRCN0000231762 CCACATGAAGCAGCACGACTT Control
-10 GFP TRCN0000231765 CCTACGGCGTGCAGTGCTTCA Control
-10 GFP TRCN0000231746 TGCCCGACAACCACTACCTGA Control
-10 GFP TRCN0000231745 TGACCCTGAAGTTCATCTGCA Control
-15 lacZ TRCN0000231738 CCGTCATAGCGATAACGAGTT Control
-15 lacZ TRCN0000231702 TCGTATTACAACGTCGTGACT Control
-15 lacZ TRCN0000072236 CCAACGTGACCTATCCCATTA Control
-15 lacZ TRCN0000231708 GCGCTAATCACGACGCGCTGT Control
-15 lacZ TRCN0000231710 CGCTAAATACTGGCAGGCGTT Control
-15 lacZ TRCN0000231706 GTCGGCTTACGGCGGTGATTT Control
-15 lacZ TRCN0000231722 CGCGATCGTAATCACCCGAGT Control
-15 lacZ TRCN0000231704 GCGTTGGCAATTTAACCGCCA Control
-14 Luciferase TRCN0000231730 AGAATCGTCGTATGCAGTGAA Control
-14 Luciferase TRCN0000231737 ATGTTTACTACACTCGGATAT Control
-14 Luciferase TRCN0000231707 CACTCGGATATTTGATATGTG Control
-14 Luciferase TRCN0000231739 AGTACTTCGAAATGTCCGTTC Control
-14 Luciferase TRCN0000231733 ACTTACGCTGAGTACTTCGAA Control
-14 Luciferase TRCN0000231742 ACGCTGAGTACTTCGAAATGT Control

nullT Control
-12 RFP TRCN0000231682 GCTTCAAGTGGGAGCGCGTGA Control
-12 RFP TRCN0000231725 ACTACACCATCGTGGAACAGT Control
-12 RFP TRCN0000231724 CCGTAATGCAGAAGAAGACCA Control
-12 RFP TRCN0000231687 TGCAGAAGAAGACCATGGGCT Control
-12 RFP TRCN0000231691 GAACGGCCACGAGTTCGAGAT Control

223921 Aaas TRCN0000241729 GAATTTGCCCAAGTAACTAAC Experimental
223921 Aaas TRCN0000241727 ATGCTCAGTTTCCACGCTTTA Experimental
223921 Aaas TRCN0000241728 CTGCTTCCCTGTGGTATTATT Experimental
226641 Atf6 TRCN0000321327 GGCAAAGCAGCAGTCGATTAT Experimental
226641 Atf6 TRCN0000374112 GTCCAATGACAAAGCTTTAAT Experimental
226641 Atf6 TRCN0000350564 GCTGTCTGTGTGATGATAGTA Experimental
53314 Batf TRCN0000084768 CTGGACAAGTATTGAACACAA Experimental
53314 Batf TRCN0000084769 GCTCTCCGCAAAGAGATCAAA Experimental
53314 Batf TRCN0000084770 TCATCTGATGATGTGAGGAAA Experimental
53314 Batf TRCN0000084771 GAGGTGGTATACAGTGCCCAT Experimental
53314 Batf TRCN0000084772 CCGCAAAGAGATCAAACAGCT Experimental
53314 Batf TRCN0000235888 GTAGTGGTCAGAGGGACTTAA Experimental
53314 Batf TRCN0000235887 CTCTCCGCAAAGAGATCAAAC Experimental
53314 Batf TRCN0000235886 CTGGCAAACAGGACTCATCTG Experimental
53314 Batf TRCN0000235884 GAGCTCAAGTACTTCACATCA Experimental
53314 Batf TRCN0000235885 CCCTGACCTTCTGGACAAGAA Experimental
12053 Bcl6 TRCN0000350566 CAACCTGAGGGAAGGCAATAT Experimental
12053 Bcl6 TRCN0000321437 TGTCAAAGAGAAGGCTTTAAT Experimental
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12053 Bcl6 TRCN0000321365 GATGTTCTTCTCAACCTTAAT Experimental
12053 Bcl6 TRCN0000084653 GCTGTCAAAGAGAAGGCTTTA Experimental
12053 Bcl6 TRCN0000350566 CAACCTGAGGGAAGGCAATAT Experimental
12053 Bcl6 TRCN0000321437 TGTCAAAGAGAAGGCTTTAAT Experimental
12053 Bcl6 TRCN0000084657 TGAGCAGTTTAGAGCCCATAA Experimental
12053 Bcl6 TRCN0000321365 GATGTTCTTCTCAACCTTAAT Experimental
12053 Bcl6 TRCN0000084656 GAGAAGTGTAACCTGCACTTT Experimental
12053 Bcl6 TRCN0000084654 CCGGCTCAATAATCTCGTGAA Experimental
12053 Bcl6 TRCN0000321439 GGCAAGTCCCTAATGAGTATA Experimental
12053 Bcl6 TRCN0000084655 CGGCCTGTTCTACAGTATCTT Experimental
12053 Bcl6 TRCN0000321438 CAAGCCAGCCGGCTCAATAAT Experimental
20893 Bhlhe40 TRCN0000226078 GTAGTGGTTTGGGCAAATTTC Experimental
20893 Bhlhe40 TRCN0000218239 AGAACGTGTCAGCACAATTAA Experimental
20893 Bhlhe40 TRCN0000226075 CATCTCAAACTTACTACTTTG Experimental
20893 Bhlhe40 TRCN0000226076 TTACGTTGAAGCACGTGAAAG Experimental
20893 Bhlhe40 TRCN0000081854 GCGGTTTACAAGCTGGTGATT Experimental
20893 Bhlhe40 TRCN0000226078 GTAGTGGTTTGGGCAAATTTC Experimental
20893 Bhlhe40 TRCN0000081853 GCGAGGTTACAGTGTTTATAT Experimental
20893 Bhlhe40 TRCN0000218239 AGAACGTGTCAGCACAATTAA Experimental
78653 Bola3 TRCN0000265294 GATGGTCAATCAGGCACTAAA Experimental
78653 Bola3 TRCN0000250005 GACTGACTGCTCACGCTTAAA Experimental
78653 Bola3 TRCN0000250006 ATCGAATCGGAAGAATTTAAA Experimental
105246 Brd9 TRCN0000225739 CACCGAATGGTGTCCAATAAG Experimental
105246 Brd9 TRCN0000225737 TGGACTTTGGCACGATGAAAG Experimental
105246 Brd9 TRCN0000225738 ATAATGCGATGACGTACAATA Experimental
105246 Brd9 TRCN0000225736 GCTCGTCCTACGAAGATTATA Experimental
52502 Carhsp1 TRCN0000331494 CCCACGCATCAGACTTCTGTA Experimental
52502 Carhsp1 TRCN0000301438 CCGTCTACAAAGGAGTCTGTA Experimental
52502 Carhsp1 TRCN0000310872 ATCAAGCCTGTAAGGACTATT Experimental
12448 Ccne2 TRCN0000313801 TCAGCCCTTGCATTATCATTG Experimental
12448 Ccne2 TRCN0000313873 CCTCACCTCTGCCAGATTTAA Experimental
12448 Ccne2 TRCN0000317391 CCACAGATGAGGTCAATACTT Experimental
107995 Cdc20 TRCN0000280230 GCAGCAGAAACGACTTCGAAA Experimental
107995 Cdc20 TRCN0000297357 CGGAATGACTACTACCTGAAT Experimental
107995 Cdc20 TRCN0000280170 GCCGAACTCCTGGCAAATCTA Experimental
12580 Cdkn2c TRCN0000321369 GGAGTTCCAGGCTGATGTTAA Experimental
12580 Cdkn2c TRCN0000350567 GTCCGTTTCACTATCACTTAT Experimental
12580 Cdkn2c TRCN0000321440 TGGAAGAAATGAGGTCATTAG Experimental
29876 Clic4 TRCN0000366442 CAGCGAAGTCAAGACGGATGT Experimental
29876 Clic4 TRCN0000375065 ACTGGATGAGTACCTCAACTC Experimental
29876 Clic4 TRCN0000375120 GAAGTGATGGTGAAAGCATTG Experimental
26895 Cops7b TRCN0000336386 TCCGGAAGAAAGATATCAATA Experimental
26895 Cops7b TRCN0000374705 ACCTCTTGGAGCAGTTCATTT Experimental
26895 Cops7b TRCN0000374706 AGGGAACTAGAAGACCTTATC Experimental
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54188 Cpsf4 TRCN0000317504 GCCATGTCTGTCCTTTCATTT Experimental
54188 Cpsf4 TRCN0000317503 GTGTGAGTTCTTGCATGAATA Experimental
54188 Cpsf4 TRCN0000313916 TGAGAGGACTGTGCAAGAAAG Experimental
54188 Cpsf4 TRCN0000313917 GCTACAAGTGTGGTGAGAAAG Experimental
228410 Cstf3 TRCN0000337863 GTCAGAGAAACCAAGGGTAAA Experimental
228410 Cstf3 TRCN0000337867 ATACGATGAGTCGGCTTAAAC Experimental
228410 Cstf3 TRCN0000337864 GCCAAGTTATTTAGTGACGAA Experimental
27214 Dbf4 TRCN0000334054 CGCAGTCATGTGGACAAGTTT Experimental
27214 Dbf4 TRCN0000334124 CTGCCGTGTATAAACTACTTT Experimental
27214 Dbf4 TRCN0000334126 GACAGCTATATTCCTGAAGTT Experimental
104721 Ddx1 TRCN0000309156 CAGAGGAGCATTGGAGTCATA Experimental
104721 Ddx1 TRCN0000305216 GATGTGGTCTGAAGCTATTAA Experimental
104721 Ddx1 TRCN0000305217 ACAACCAGATTCCGCAGATTA Experimental
76843 Dtl TRCN0000243406 GAACGGGTGGTCTTCACATTA Experimental
76843 Dtl TRCN0000243405 TGATGAAGCTGCCTACATTTG Experimental
76843 Dtl TRCN0000243404 GCACCAGCTGTCTAGTATATT Experimental
13555 E2f1 TRCN0000374127 CTCACTCCTGGAGCATGTTAA Experimental
13555 E2f1 TRCN0000312761 CCATACCCTCTGTCCCAATAG Experimental
13555 E2f1 TRCN0000374126 CTGCAGAACAGATGGTCATAG Experimental
13605 Ect2 TRCN0000336496 TGAGCAAGGAAATGATCATTA Experimental
13605 Ect2 TRCN0000336437 GCAGTTGATGACTTTAGAAAT Experimental
13605 Ect2 TRCN0000336440 TCGATTGTTTGATGTACTTAA Experimental
14011 Etv6 TRCN0000231236 CAGTGTCTCCTGTCGAGAATA Experimental
14011 Etv6 TRCN0000231235 TCAGAACCATGACGAAGATAA Experimental
14011 Etv6 TRCN0000257202 CTGCGTTTGCAGCCGATTTAC Experimental
14056 Ezh2 TRCN0000304506 GCACAAGTCATCCCGTTAAAG Experimental
14056 Ezh2 TRCN0000301834 CGGCTCCTCTAACCATGTTTA Experimental
14056 Ezh2 TRCN0000304505 ACTTGCCCACCTCGGAAATTT Experimental
14235 Foxm1 TRCN0000349136 CGCTACTTGACATTGGACCAA Experimental
14235 Foxm1 TRCN0000304362 ACTTAGAGAGGCCTATCAAAG Experimental
14235 Foxm1 TRCN0000310953 GCGTATTTCCTTAGCTCATTA Experimental
14390 Gabpa TRCN0000304421 GCTACACCGACTACGATTAAA Experimental
14390 Gabpa TRCN0000304469 AGCTTAGTGTACAGGTAATTT Experimental
14390 Gabpa TRCN0000304508 ATGAACCAATAGGCAATTTAA Experimental
14391 Gabpb1 TRCN0000233974 GCAAGTCATCACGATAGTTAC Experimental
14391 Gabpb1 TRCN0000218841 GATTGCTATGCAGAACCAAAT Experimental
14391 Gabpb1 TRCN0000218214 CATTGGGCAACAGAACATAAT Experimental
14391 Gabpb1 TRCN0000233973 TGCAATTCAGCAAGTAGTTAG Experimental
14873 Gsto1 TRCN0000366490 TACCCAGAGAAGAAGTTATTT Experimental
14873 Gsto1 TRCN0000366550 AGACCTACCGCGAGTACTTAA Experimental
14873 Gsto1 TRCN0000374877 AGAGGAGGGCATGGATAATTA Experimental
68705 Gtf2f2 TRCN0000312862 GAACGAGGATCTTGCAAATAT Experimental
68705 Gtf2f2 TRCN0000311880 GCTCCTAGAGAACACCCATTT Experimental
68705 Gtf2f2 TRCN0000312860 GAGAAGCATCAGTACTATAAT Experimental
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68705 Gtf2f2 TRCN0000312908 TGCTAACCATCAGTACAATAT Experimental
15270 H2afx TRCN0000335511 CGAGTACCTCACTGCCGAGAT Experimental
15270 H2afx TRCN0000348628 TGCTGGCCTCATACCAGTTGA Experimental
15270 H2afx TRCN0000348629 GCGTCTTTGCTTCAGCTTGGT Experimental
15242 Hhex TRCN0000244318 AGCGTCTGGCCAAGATGTTAC Experimental
15242 Hhex TRCN0000235790 TGGAGAAGAAGTTCGAGACTC Experimental
15242 Hhex TRCN0000244318 AGCGTCTGGCCAAGATGTTAC Experimental
15251 Hif1a TRCN0000232222 TGGATAGCGATATGGTCAATG Experimental
15251 Hif1a TRCN0000232220 CCCATTCCTCATCCGTCAAAT Experimental
15251 Hif1a TRCN0000232223 TATGCACTTTGTCGCTATTAA Experimental
50708 Hist1h1c TRCN0000374722 TATTGGACTGCAAGGTGATTT Experimental
50708 Hist1h1c TRCN0000305598 ACGAACTGCCTTCCTTAATAT Experimental
50708 Hist1h1c TRCN0000305599 CAAAGAAGGCGAAGGTCACCA Experimental
97165 Hmgb2 TRCN0000301407 GCTCAACATTAGCTTCAGTAT Experimental
97165 Hmgb2 TRCN0000304269 AGAGCGACAAAGCTCGTTATG Experimental
97165 Hmgb2 TRCN0000304268 TTGGAGATACTGCGAAGAAAC Experimental
72692 Hnrpll TRCN0000295035 GACTACACTAAACCTTATTTG Experimental
72692 Hnrpll TRCN0000295036 GAATCCTCTTTACCCAATTAC Experimental
72692 Hnrpll TRCN0000295034 CACTCAATGGAGCTGATATAT Experimental
15902 Id2 TRCN0000229536 TGGACTGTGATACCGTTATTT Experimental
15902 Id2 TRCN0000218289 TGAGCTTATGTCGAATGATAG Experimental
15902 Id2 TRCN0000229534 GAAGGTGACCAAGATGGAAAT Experimental
15902 Id2 TRCN0000229535 AGTACTCTGTGGCTAAATAAA Experimental
15902 Id2 TRCN0000054388 CCTTCTGAGCTTATGTCGAAT Experimental
15902 Id2 TRCN0000054390 GCTTATGTCGAATGATAGCAA Experimental
15902 Id2 TRCN0000054391 CCCACTATCGTCAGCCTGCAT Experimental
15902 Id2 TRCN0000229536 TGGACTGTGATACCGTTATTT Experimental
15903 Id3 TRCN0000071438 GCAGCGTGTCATAGACTACAT Experimental
15903 Id3 TRCN0000071439 TCTTAGCCTCTTGGACGACAT Experimental
15903 Id3 TRCN0000071440 GCTGAGCTCACTCCGGAACTT Experimental
71793 Ints12 TRCN0000241273 GCGTTGCTTGATGAGTCTTTG Experimental
71793 Ints12 TRCN0000241274 TCGCTCAGTGAGTTGTGATAA Experimental
71793 Ints12 TRCN0000241272 TTAAGCCATCCACGGTTATTT Experimental
15900 Irf8 TRCN0000235797 GGACATTTCTGAGCCATATAA Experimental
15900 Irf8 TRCN0000235799 ATCAACAGATCACCGTCTAAG Experimental
15900 Irf8 TRCN0000235800 ATCCGAGAGCTGCAGCAATTC Experimental
81703 Jdp2 TRCN0000374340 GTTTCTGCAGAGGGAGTCAGA Experimental
81703 Jdp2 TRCN0000379069 CTGGACAAGAAGTGACTGAAG Experimental
81703 Jdp2 TRCN0000366046 CAGAGCTGAAGACGCAGATAG Experimental
81703 Jdp2 TRCN0000374274 ACCTGCATCGTGCGCACAGAT Experimental
81703 Jdp2 TRCN0000376757 TGCACTTCCTGGAGGTGAAAC Experimental
16597 Klf12 TRCN0000218857 TGAACTTACAGTCTAACAAAC Experimental
16597 Klf12 TRCN0000218857 TGAACTTACAGTCTAACAAAC Experimental
16597 Klf12 TRCN0000226309 ACTAGAGAATCAGCTTATAAT Experimental
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16646 Kpna1 TRCN0000324440 CCCAGCTCTTATTAGTATATT Experimental
16646 Kpna1 TRCN0000324439 GCAACACAGAAGTTTAGGAAA Experimental
16646 Kpna1 TRCN0000305813 CGAAACGGCTCAGGCATTAAT Experimental
16648 Kpna3 TRCN0000366474 TGTAACACTAGAAGCTATATT Experimental
16648 Kpna3 TRCN0000375209 GGAACGTCACATGGGTCATTG Experimental
16648 Kpna3 TRCN0000366407 GAGCAAATACAGATGGTTATT Experimental
71835 Lancl2 TRCN0000313109 TGTTGGTGAGACAGCTATTAA Experimental
71835 Lancl2 TRCN0000312072 GCAGGATAAGAAGTATCTCTA Experimental
71835 Lancl2 TRCN0000312071 GCTTCCTGATGAACTGCTGTA Experimental
16842 Lef1 TRCN0000225787 TTGGTTAACGAGTCCGAAATC Experimental
16842 Lef1 TRCN0000225788 GTAGCTGAGTGCACGCTAAAG Experimental
56722 Litaf TRCN0000234441 AGCAGCCTGTCTCCTTCTATG Experimental
56722 Litaf TRCN0000234443 CACTGTTTGGCTTGATCTATT Experimental
56722 Litaf TRCN0000234442 TGACCCAGCTGTCCTACAATG Experimental
66890 Lman2 TRCN0000334067 CCTTCCTAGCTGTACGCTATT Experimental
66890 Lman2 TRCN0000334068 CCTGTCTGACAACCACGACAT Experimental
66890 Lman2 TRCN0000334135 GCTTCCTTAAGGACTGGGAAA Experimental
17133 Maff TRCN0000225792 AGTCTTTGGAACGGATCAATG Experimental
17133 Maff TRCN0000225793 TTGCACGAATCTAAGTTATTC Experimental
17133 Maff TRCN0000225791 GGCTGAAAGTCCGGCTCAAAT Experimental
17191 Mbd2 TRCN0000039064 CGGCAAGATGATGCCTAGTAA Experimental
17191 Mbd2 TRCN0000039066 CCTGAACACAACATTGCCAAT Experimental
17191 Mbd2 TRCN0000039067 CGGATGAATGAACAACCACGT Experimental
17191 Mbd2 TRCN0000039068 GAAGAGCGAGTCCAACAAGTA Experimental
171170 Mbnl3 TRCN0000348500 CTTGTACCAACACGACAATAA Experimental
171170 Mbnl3 TRCN0000348500 CTTGTACCAACACGACAATAA Experimental
171170 Mbnl3 TRCN0000335179 GCTAGAAGTTAATGGGAGAAA Experimental
17216 Mcm2 TRCN0000329158 TGTTGGCCATGTACCCTAAAT Experimental
17216 Mcm2 TRCN0000329157 TCCAGTCTTTGCCACTATTAT Experimental
17216 Mcm2 TRCN0000329229 TTTAGACAAAGAGCAACTTAG Experimental
17216 Mcm2 TRCN0000375307 TTCAGCGTCATGCGGAGTATG Experimental
17215 Mcm3 TRCN0000240613 GACTCACTGCTGTCTAGATTT Experimental
17215 Mcm3 TRCN0000240616 GCATTCTCTGCGGACGATATA Experimental
17215 Mcm3 TRCN0000240614 TGTCTCCCATCCTCCAGTAAC Experimental
17217 Mcm4 TRCN0000305014 GGCAGTATTCCACTATATAAA Experimental
17217 Mcm4 TRCN0000311212 GTGAACGTCACAGGCATATAT Experimental
17217 Mcm4 TRCN0000315492 GCCGTGCTGAAAGACTACATT Experimental
17218 Mcm5 TRCN0000312259 CCGCATTGAGAAGCAACTCAA Experimental
17218 Mcm5 TRCN0000349880 TTGTATGTACAGAGGTAATAA Experimental
17218 Mcm5 TRCN0000313276 ACTCACTCGCCGAGGTGATAT Experimental
17220 Mcm7 TRCN0000339972 TAAATGTCTGGCAGGTTAATA Experimental
17220 Mcm7 TRCN0000339971 GCGAAGATTTGAGTTGTATTT Experimental
17220 Mcm7 TRCN0000339901 CCAGTATCCTTCTGAACTCAT Experimental
17827 Mtx1 TRCN0000288205 CGTGCTGACCTATACCAGATT Experimental
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17827 Mtx1 TRCN0000295558 CCAGTGATGGGAAAGTCATTA Experimental
17827 Mtx1 TRCN0000288270 CGCCAAGAACTATGTGGAAGT Experimental
17119 Mxd1 TRCN0000348069 GCACCAGTAGCAGATCAACTC Experimental
17119 Mxd1 TRCN0000347991 ACGGAGGAACAAGCCCAAGAA Experimental
17119 Mxd1 TRCN0000333905 GCAAACCTCATGTACCACCTT Experimental
17874 Myd88 TRCN0000301332 GCCAGCGAGCTAATTGAGAAA Experimental
17874 Myd88 TRCN0000301404 CCTTGTTAGACCGTGAGGATA Experimental
17874 Myd88 TRCN0000301406 CCTTTCACGTTCTCTACCATA Experimental
59287 Ncstn TRCN0000293129 CTCCTTCCACAATCGGTATTA Experimental
59287 Ncstn TRCN0000293130 CCTGAACCCTTAGGGAAGAAA Experimental
59287 Ncstn TRCN0000293074 CCCAAATGATGGGTTTGGTAT Experimental
17988 Ndrg1 TRCN0000238071 ACCCGAGCAACCTACACTTAT Experimental
17988 Ndrg1 TRCN0000257341 CTGGAGTCCTTCACCAGTTTG Experimental
17988 Ndrg1 TRCN0000257343 AGGGTCTCGTGCTCATGAATG Experimental
17997 Nedd1 TRCN0000248316 AGCAGACATGTGTCGATTTAA Experimental
17997 Nedd1 TRCN0000248319 TTGGGCAGCGTTTCGGATAAT Experimental
17997 Nedd1 TRCN0000248317 TCGGTCTCTTAAGGATCATAA Experimental
18036 Nfkbib TRCN0000304902 CAGAGATGAGGGCGATGAATA Experimental
18036 Nfkbib TRCN0000304842 CTACAGTAGAGAAGTTGTATG Experimental
18036 Nfkbib TRCN0000316391 GCATCCAAACCTCTTCCTGAT Experimental
15370 Nr4a1 TRCN0000218931 CTATTGTGGACAAGATCTTTA Experimental
15370 Nr4a1 TRCN0000234021 CATGTGCCTTTAAGCCTATAG Experimental
15370 Nr4a1 TRCN0000234019 TCTGGTTCCCTGGACGTTATC Experimental
15370 Nr4a1 TRCN0000218931 CTATTGTGGACAAGATCTTTA Experimental
68501 Nsmce2 TRCN0000248754 CAGGTTCTACCCGTTACATAT Experimental
68501 Nsmce2 TRCN0000248756 GTGAGTAGTGAGTACAGTATG Experimental
68501 Nsmce2 TRCN0000248752 GAACTCTGATGCCGACTTTAA Experimental
234865 Nup133 TRCN0000246817 GAGCAGCTTGTGGCACTAATT Experimental
234865 Nup133 TRCN0000246815 GGAACGCCTACTCGGATATTC Experimental
234865 Nup133 TRCN0000246814 GCAACACCTCACTGATCATTT Experimental
69912 Nup43 TRCN0000247916 GCGTTTCACTGTGGTCTATTG Experimental
69912 Nup43 TRCN0000247915 CTGTCAGAACTATAGATAATG Experimental
69912 Nup43 TRCN0000247914 AGGATGGAATGTTGAGTATTT Experimental
55982 Paxip1 TRCN0000248338 ATCCACGCCTGATCATCTATG Experimental
55982 Paxip1 TRCN0000248335 TCCCGAGCAGATGTCGGATAA Experimental
55982 Paxip1 TRCN0000248336 GACATCGACCCGCAGGTTATT Experimental
83436 Plekha2 TRCN0000277296 CGCCTAACTCCATCTTGTCAA Experimental
83436 Plekha2 TRCN0000285928 ACACCATTCTGCTTCGTTATC Experimental
83436 Plekha2 TRCN0000277253 ACAACCTGTTTGAAATCATAA Experimental
53317 Plrg1 TRCN0000332100 GCCCACAGCAATGAATTCTAT Experimental
53317 Plrg1 TRCN0000332099 CCAGAGTTGATGCAAATCGTA Experimental
53317 Plrg1 TRCN0000332032 CCTGGAAATCAGTGGTTCGTT Experimental
18968 Pola1 TRCN0000287378 GCCAATCAGTTGGTGTAAATT Experimental
18968 Pola1 TRCN0000287380 CCTGGATTTCAACAGTTTATA Experimental
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18968 Pola1 TRCN0000287379 CCAGTTTGTATCGTTGCAGTA Experimental
18973 Pole TRCN0000353501 TATTGCCGGAAAGCCTATAAG Experimental
18973 Pole TRCN0000328840 TTCGCCCTGTGCACCATTATT Experimental
18973 Pole TRCN0000328838 CACTTTGGTATCCCACACCTA Experimental
12142 Prdm1 TRCN0000235772 GGACATGGAGGACGCTGATAT Experimental
12142 Prdm1 TRCN0000235768 GGTTCGACATCAGCGACAATG Experimental
12142 Prdm1 TRCN0000235772 GGACATGGAGGACGCTGATAT Experimental
12142 Prdm1 TRCN0000235772 GGACATGGAGGACGCTGATAT Experimental
12142 Prdm1 TRCN0000235768 GGTTCGACATCAGCGACAATG Experimental
12142 Prdm1 TRCN0000235770 ACTATTGCCTAGCCATAATTA Experimental
12142 Prdm1 TRCN0000235771 CATCTACTTCTACACTATTAA Experimental
12142 Prdm1 TRCN0000084716 CGGAGCCATGAATCTCATTAA Experimental
12142 Prdm1 TRCN0000084714 CCCTGCCAAGTTTACGCAATT Experimental
12142 Prdm1 TRCN0000235769 TGTTGCCACCGTACGGCATTA Experimental
12142 Prdm1 TRCN0000084715 CGTGGTAAGTAAGGAGTACAT Experimental
12142 Prdm1 TRCN0000084717 CCGTCTACAGTAACCTCCTTA Experimental
12142 Prdm1 TRCN0000084713 GCAACCTTTCTCTATGATAAT Experimental
23997 Psmd13 TRCN0000314108 GACGGCAATCGGAGCTCTAAA Experimental
23997 Psmd13 TRCN0000350044 TGGGAACTGTTCTTGCTATAA Experimental
23997 Psmd13 TRCN0000317979 GCTGGATTTGCAGCAGATCAA Experimental
19205 Ptbp1 TRCN0000295168 CACTATGGTTAACTACTATAC Experimental
19205 Ptbp1 TRCN0000287704 CCAAAGCCTCTTTATTCTCTT Experimental
19205 Ptbp1 TRCN0000287703 CTCAATGTCAAGTACAACAAT Experimental
19385 Ranbp1 TRCN0000305639 GCCATCCGCTTCCTAAATGCT Experimental
19385 Ranbp1 TRCN0000305693 CAAAGCTGTTCCGGTTTGCTT Experimental
19385 Ranbp1 TRCN0000375879 GAGAATGCAGATGAGTCCAAC Experimental
19646 Rbbp4 TRCN0000313825 ATTTGGGACACTCGTTCAAAC Experimental
19646 Rbbp4 TRCN0000317347 GCGGAGAACATTTACAATGAT Experimental
19646 Rbbp4 TRCN0000313850 GTTAGTCTTTGACCACTATAG Experimental
72151 Rfc5 TRCN0000225749 ACGCCTTGAGACGAGTGATTG Experimental
72151 Rfc5 TRCN0000218845 CTTCAGTTCGGATACACTTAT Experimental
72151 Rfc5 TRCN0000225748 GACGACCGAGGGATCGATATT Experimental
75212 Rnf121 TRCN0000366929 GTTTACCCTCTTTGGTCTTAA Experimental
75212 Rnf121 TRCN0000375815 ATGCAATGGACTTTGGCATTT Experimental
75212 Rnf121 TRCN0000375752 AGAAATGTGTGCAGACTATAT Experimental
75212 Rnf121 TRCN0000376818 GGAGCTAGATGAGGTTGATAT Experimental
19826 Rnps1 TRCN0000315607 CGTACCTCTGTAACTTATGTT Experimental
19826 Rnps1 TRCN0000305274 AGTCCAAGGATCGATCTAAAG Experimental
19826 Rnps1 TRCN0000309161 GCAGTTGAGATATCTCCTCTA Experimental
68275 Rpa1 TRCN0000304604 AGCTATGAAGATTCGATTAAA Experimental
68275 Rpa1 TRCN0000302173 GCCCTGAAGATCGCTAACAAA Experimental
68275 Rpa1 TRCN0000302172 CGCATGATCTTATCGGCAAAT Experimental
68240 Rpa3 TRCN0000317098 GCGACTCCTATAATTTCTAAT Experimental
68240 Rpa3 TRCN0000313677 GAAGATACTAATCGCTTTGAT Experimental
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68240 Rpa3 TRCN0000317097 CCCTGTTTAAGGAAGATACTA Experimental
71919 Rpap3 TRCN0000250034 ATTTACCTCCTATTCGAAATG Experimental
71919 Rpap3 TRCN0000250035 GCCGCCTCTGTGTACATTATT Experimental
71919 Rpap3 TRCN0000250037 TCCAGATGTATTCAATCAAAT Experimental
218544 Sgtb TRCN0000248790 CGACGACGACGATGACTATTT Experimental
218544 Sgtb TRCN0000248789 TCCTGAGAATGATTCGTATAA Experimental
218544 Sgtb TRCN0000248789 TCCTGAGAATGATTCGTATAA Experimental
30954 Siva1 TRCN0000327611 CTTGTTCATCGTGCATGAGAT Experimental
30954 Siva1 TRCN0000327529 GAGCGAAGATTGTTCCGTGAA Experimental
30954 Siva1 TRCN0000340795 TCACATATCGAGCGAAGATTG Experimental
26942 Spag1 TRCN0000336086 GCTAGATCCCGGAAACGTAAA Experimental
26942 Spag1 TRCN0000353302 CAATCGAGCTCAGGCCGAAAT Experimental
26942 Spag1 TRCN0000336087 GACGTCTCCAAGCCTACTAAT Experimental
20833 Ssrp1 TRCN0000301240 CCGTCAGGGTATCATCTTTAA Experimental
20833 Ssrp1 TRCN0000301162 CCTACCTTTCTACACCTGCAT Experimental
20833 Ssrp1 TRCN0000301237 GCGTACATGCTGTGGCTTAAT Experimental
20848 Stat3 TRCN0000071453 CCTAACTTTGTGGTTCCAGAT Experimental
20848 Stat3 TRCN0000071454 CGACTTTGATTTCAACTACAA Experimental
20848 Stat3 TRCN0000071456 CCTGAGTTGAATTATCAGCTT Experimental
20848 Stat3 TRCN0000071457 GCAGGTATCTTGAGAAGCCAA Experimental
66464 Taf12 TRCN0000287465 GCTACAGATCGCTGATGATTT Experimental
66464 Taf12 TRCN0000294957 GCTTTACAGAGAAGCATATAT Experimental
66464 Taf12 TRCN0000294918 CTCCAGTTTCTCATCTGTAAA Experimental
66464 Taf12 TRCN0000294920 CACAAGGCTCCATGGCCAATA Experimental
108143 Taf9 TRCN0000244259 ATCAGGCCTGAAGTACGTTAA Experimental
108143 Taf9 TRCN0000244260 GGATTGAGCAGTGGGTCAAAG Experimental
108143 Taf9 TRCN0000244387 ATAGGGTTGTCGATGAGTTAG Experimental
57765 Tbx21 TRCN0000082043 CCCTGTCCAGTCAGTAACTTT Experimental
57765 Tbx21 TRCN0000082044 GCTTCTAACACACACGTCTTT Experimental
57765 Tbx21 TRCN0000082045 CCTCTTCTATCCAACCAGTAT Experimental
57765 Tbx21 TRCN0000082046 CACAAGCCATTACAGGATGTT Experimental
57765 Tbx21 TRCN0000082047 GCCCAAGGATATGATCTCACA Experimental
57765 Tbx21 TRCN0000412904 ATGCCAGGGAACCGCTTATAT Experimental
57765 Tbx21 TRCN0000415776 TTGGTCTGACACCTGTGTTAA Experimental
21414 Tcf7 TRCN0000262741 AGAAATGCATTCGGTACTTAC Experimental
21414 Tcf7 TRCN0000262742 AGAAGCCAGTCATCAAGAAAC Experimental
21414 Tcf7 TRCN0000360414 TTCTCCACTCTACGAACATTT Experimental
21414 Tcf7 TRCN0000360415 CCTCAATGCGTTCATGCTTTA Experimental
21781 Tfdp1 TRCN0000304311 CCACATTCTACCAAACGAATC Experimental
21781 Tfdp1 TRCN0000374166 AGGAGAAGAAGGAGATCAAAT Experimental
21781 Tfdp1 TRCN0000301409 CCTGCAGCAAATTGCCTTCAA Experimental
21815 Tgif1 TRCN0000233981 TAGTGGATGTTGCACTCAAAC Experimental
21815 Tgif1 TRCN0000233980 AGTACAGATGTACCGCAAATA Experimental
21815 Tgif1 TRCN0000218560 GATGGCAAGAGATGCATTATT Experimental
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21815 Tgif1 TRCN0000233979 ATTTCAGAAGCTAGCTCTATT Experimental
386612 Thoc6 TRCN0000347107 AGCTAGAGTGATGCTTGTGTT Experimental
386612 Thoc6 TRCN0000347104 TTGACATCATGACCCTGTATT Experimental
386612 Thoc6 TRCN0000347105 TTCTGGCAGCTGGCAACAATT Experimental
386612 Thoc6 TRCN0000347029 AGTCTGGAAGTACCCGAAATC Experimental
22036 Traip TRCN0000304883 ATGTGGTAAGAATAGGCTTTG Experimental
22036 Traip TRCN0000304882 TTATAGAACAGGGTCACATTG Experimental
22036 Traip TRCN0000316540 CGTGTCCCTCAAGAAAGAGTA Experimental
68729 Trim37 TRCN0000349177 GCTTAGTTCAAGAAGTGGAAA Experimental
68729 Trim37 TRCN0000304884 ACAGTGTAGTGCTCAATTAAT Experimental
68729 Trim37 TRCN0000349178 GCACTGGTATATTACTCAGTT Experimental
18140 Uhrf1 TRCN0000311096 CTGTAGCTCCAGTGCCGTTAA Experimental
18140 Uhrf1 TRCN0000311100 AGGTGGTCATGGCCAACTATA Experimental
18140 Uhrf1 TRCN0000302343 CACACACTCTTCGATTATGAT Experimental
216987 Utp6 TRCN0000302654 CGCGGAGATTAAGGCTATCAT Experimental
216987 Utp6 TRCN0000375691 GGCAGAAGAACGGATTGATTT Experimental
216987 Utp6 TRCN0000302655 CCAAAGATCTACAGAAGGAAA Experimental
218973 Wdhd1 TRCN0000366054 TCCTTCGACTGTTCACTATTG Experimental
218973 Wdhd1 TRCN0000366051 GGGCTTTCCCGCCTTTGTTTA Experimental
218973 Wdhd1 TRCN0000366052 AGAGCAGCAGGAACTCTTAAT Experimental
218973 Wdhd1 TRCN0000365978 GTCTCCCTGTGGGCAGTATTT Experimental
107823 Whsc1 TRCN0000218710 CCAGAAAGAGCTTGGATATTT Experimental
107823 Whsc1 TRCN0000253040 CTGTGAGAGAAGAGGATATTC Experimental
107823 Whsc1 TRCN0000226297 AGAGCTGACTTTCAACTATAA Experimental
22433 Xbp1 TRCN0000232018 GGTTGAGAACCAGGAGTTAAG Experimental
22433 Xbp1 TRCN0000232018 GGTTGAGAACCAGGAGTTAAG Experimental
22433 Xbp1 TRCN0000232021 AGGCCTGTCTCTTTCGTTAAA Experimental
22433 Xbp1 TRCN0000008421 CCAGGAGTTAAGAACACGCTT Experimental
22433 Xbp1 TRCN0000232019 TCCGCAGCACTCAGACTATGT Experimental
22433 Xbp1 TRCN0000232018 GGTTGAGAACCAGGAGTTAAG Experimental
22433 Xbp1 TRCN0000232021 AGGCCTGTCTCTTTCGTTAAA Experimental
22436 Xdh TRCN0000319595 CACAATCCAGGATGCTATAAA Experimental
22436 Xdh TRCN0000319662 TTGAGTAATTCTGGGTAATTC Experimental
22436 Xdh TRCN0000317847 CGCCTTCAGAACAAGATCGTT Experimental
14375 Xrcc6 TRCN0000321228 TGCTAGAGCTCGACCAGTTTA Experimental
14375 Xrcc6 TRCN0000350563 AGCTCAGAAGCCCAGCCACTT Experimental
14375 Xrcc6 TRCN0000321226 GCTCACTGTACCTACACTGAA Experimental
328801 Zfp414 TRCN0000242169 CTACTTCAAGTGTGAGAATTG Experimental
328801 Zfp414 TRCN0000242168 ACTTGAACCCTGCACCCTTTG Experimental
328801 Zfp414 TRCN0000242170 CTTCAAGCATCTGCATGTTTG Experimental
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Supplemental Table 6.1. List of journals prioritized for the selection of studies used in 
ImmuneSigDB. 
 

 
 
 
 
 
 
 
 
 

Table&S1

Journal
Nature
Science
Cell
Nature-Immunology
Immunity
Journal-of-Experimental-Medicine
Journal-of-Clinical-Investigation
Cell-Host-and-Microbe
Blood
Proc-Natl-Acad-Sci-USA
Current-Opinion-in-Immunology
Trends-in-Immunology
Journal-of-Allergy-and-Clinical-Immunology
Plos-Pathogens
Plos-One
Mucosal-Immunology
Arthritis-and-Rheumatism
Seminars-in-Immunology
Autoimmunity
Journal-of-Immunology
European-Journal-of-Immunology
Genes-and-Immunity
Infection-and-Immunity
Immunology-and-Cell-Biology
Vaccine
Cytokine
Journal-of-Clinical-Immunology
Immunology
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Supplemental Table 6.2. Affymetrix gene expression microarray platforms used to generate 
the public datasets used in ImmuneSigDB. 
 

 
 
 
 
 
 
 
  

Table S2

Platform)ID Name Organism
GPL1261 Mouse430_2 Mus0musculus
GPL339 MOE430A Mus0musculus
GPL8321 Mouse430A_2 Mus0musculus
GPL6246 MoGene:1_0:st Mus0musculus
GPL81 MG_U74Av2 Mus0musculus
GPL570 HG:U133_Plus_2 Homo0sapiens
GPL96 HG:U133A Homo0sapiens
GPL571 HG:U133A_2 Homo0sapiens
GPL6244 HuGene:1_0:st Homo0sapiens
GPL8300 HG_U95Av2 Homo0sapiens
GPL97 HG:U133B Homo0sapiens
GPL91 HG_U95A Homo0sapiens
GPL3921 HT_HG:U133A Homo0sapiens
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Supplemental Table 6.3. Characteristics of ImmunSigDB and the collections generated by Li 
et al. and Chaussabel et al.  
 

 
 
 
 
  

Table&S3

Parameter ImmuneSigDB Li Chaussabel
Number'of'gene'sets 4872 346 260
Fraction'of'gene'sets'annotated 100% 75% 15%
Number'of'Studies 389 540 9
Number'of'Samples 6283 32766 410
Species 2 1 1
Cells/tissue'types 13 2 1
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Supplemental Table 6.4. Top gene sets from ImmuneSigDB, Li et al. and Chaussabel et al. 
collections enriched in LPS-stimulated compared on unstimulated dendritic cells. 
 

 
 
  

Table&S4

GSE14000 GSEA(of(human(dendritic(cells(from(peripheral(blood(stimulated(with(LPS(compared(with(unstimulated(cells.(

ImmuneSigDB Name Description #/Genes FDR Tissue Organism PMID

1
GSE2706_UNSTIM_VS_8H_LPS_AND_R848_DC_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

R848/and/LPS/in/vitro/for/8/hours/compared/to/unstimulated/cells.
200 </1EJ06 Peripheral/Blood Human 15995707

2
GSE2706_UNSTIM_VS_2H_LPS_AND_R848_DC_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

R848/and/LPS/in/vitro/for/2/hours/compared/to/unstimulated/cells.
198 </1EJ06 Peripheral/Blood Human 15995707

3
GSE18791_UNSTIM_VS_NEWCATSLE_VIRUS_DC_10H_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

Newcastle/virus/in/vitro/for/10/hours/compared/to/unstimulated/cells.
199 </1EJ06 Peripheral/Blood Human 20164420

4
GSE2706_UNSTIM_VS_8H_R848_DC_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

R848/for/8/hours/compared/to/unstimulated/cells.
200 </1EJ06 Peripheral/Blood Human 15995707

5
GSE2706_UNSTIM_VS_2H_LPS_DC_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

LPS/for/2/hours/compared/to/unstimulated/cells.
199 </1EJ06 Peripheral/Blood Human 15995707

6
GSE18791_CTRL_VS_NEWCASTLE_VIRUS_DC_6H_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

Newcastle/virus/in/vitro/for/6/hours/compared/to/control/cells.
200 </1EJ06 Peripheral/Blood Human 15995707

7
GSE2706_UNSTIM_VS_8H_LPS_DC_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

LPS/for/8/hours/compared/to/unstimulated/cells.
199 </1EJ06 Peripheral/Blood Human 15995707

8
GSE2706_UNSTIM_VS_2H_R848_DC_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

R848/for/2/hours/compared/to/unstimulated/cells.
199 </1EJ06 Peripheral/Blood Human 15995707

9
GSE4748_CTRL_VS_LPS_STIM_DC_3H_DN Genes/upJregulated/in/LPS/stimulated/monocyteJderived/dendritic/cells/in/

vitro/for/3/hours/compared/to/unstimulated/cells.
200 </1EJ06 Peripheral/Blood Human 16717116

10
GSE18791_CTRL_VS_NEWCASTLE_VIRUS_DC_10H_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

Newcastle/virus/in/vitro/for/10/hours/compared/to/control/cells.
200 </1EJ06 Peripheral/Blood Human 20164420

11
GSE18791_CTRL_VS_NEWCASTLE_VIRUS_DC_8H_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

Newcastle/virus/in/vitro/for/8/hours/compared/to/control/cells.
199 </1EJ06 Peripheral/Blood Human 20164420

12
GSE9988_LOW_LPS_VS_CTRL_TREATED_MONOCYTE_UP Genes/upJregulated/in/monocyte/stimulated/in/vitro/with/low/LPS/

compared/to/unstimulated/cells.
198 </1EJ06 Peripheral/Blood Human 18292579

13
GSE16755_CTRL_VS_IFNA_TREATED_MAC_DN Genes/upJregulated/in/monocyteJderived/macrophages/stimulated/in/

vitro/with/interferon/alpha/compared/to/unstimulated/cells.
198 </1EJ06 Peripheral/Blood Human 19556424

14
GSE7509_UNSTIM_VS_IFNA_STIM_IMMATURE_DC_DN Genes/upJregulated/in/monocyteJderived/immature/dendritic/cells/

stimulated/in/vitro/with/interferon/alpha/compared/to/unstimulated/cells.
200 </1EJ06 Peripheral/Blood Human 17502666

15
GSE18791_CTRL_VS_NEWCASTLE_VIRUS_DC_16H_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

Newcastle/virus/in/vitro/for/16/hours/compared/to/unstimulated/cells.
199 </1EJ06 Peripheral/Blood Human 20164420

16
GSE18791_CTRL_VS_NEWCASTLE_VIRUS_DC_12H_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

Newcastle/virus/in/vitro/for/12/hours/compared/to/unstimulated/cells.
200 </1EJ06 Peripheral/Blood Human 20164420

17
GSE9988_ANTI_TREM1_VS_LOW_LPS_MONOCYTE_DN Genes/upJregulated/in/monocyte/stimulated/in/vitro/with/low/LPS/

compared/to/antiJTREM1/antibodies/incubation.
198 </1EJ06 Peripheral/Blood Human 15995707

18
GSE2706_R848_VS_R848_AND_LPS_2H_STIM_DC_DN Genes/upJregulated/in/monocyteJderived/dendritic/cells/stimulated/with/

R848/for/2/hours/compared/to/R848/and/LPS/in/vitro/stimulated/cells.
197 </1EJ06 Peripheral/Blood Human 15995707

19
GSE9988_ANTI_TREM1_VS_ANTI_TREM1_AND_LPS_MONOCYTE_DN Genes/upJregulated/in/monocyte/stimulated/in/vitro/with/LPS/and/antiJ

TREM1/antibodies/compared/to/antiJTREM1/antibodies/alone.
196 </1EJ06 Peripheral/Blood Human 18292579

20
GSE9988_LPS_VS_VEHICLE_TREATED_MONOCYTE_UP Genes/upJregulated/in/monocyte/stimulated/in/vitro/with/LPS/compared/

to/unstimulated/cells.
198 </1EJ06 Peripheral/Blood Human 18292579

Li Name Description #/Genes FDR Tissue Organism PMID

1 ACTIVATED_(LPS)_DENDRITIC_CELL_SURFACE_SIGNATURE_(S11) 37 </1EJ06 Peripheral/Blood Human 24336226
2 ENRICHED_IN_ACTIVATED_DENDRITIC_CELLS_(II)_(M165) 35 </1EJ06 Peripheral/Blood Human 24336226
3 CHEMOKINE_CLUSTER_(I)_(M27.0) 26 </1EJ06 Peripheral/Blood Human 24336226
4 ANTIVIRAL_IFN_SIGNATURE_(M75) 22 </1EJ06 Peripheral/Blood Human 24336226
5 CHEMOKINES_AND_INFLAMMATORY_MOLECULES_IN_MYELOID_CELLS_(M86.0) 18 </1EJ06 Peripheral/Blood Human 24336226
6 MYELOID,_DENDRITIC_CELL_ACTIVATION_VIA_NFKB_(I)_(M43.0) 15 </1EJ06 Peripheral/Blood Human 24336226
7 ENRICHED_IN_ACTIVATED_DENDRITIC_CELLS/MONOCYTES_(M64) 17 </1EJ06 Peripheral/Blood Human 24336226
8 CHEMOKINE_CLUSTER_(II)_(M27.1) 15 2.16EJ04 Peripheral/Blood Human 24336226
9 T_CELL_ACTIVATION_(II)_(M7.3) 31 7.70EJ04 Peripheral/Blood Human 24336226
10 ENRICHED_IN_NK_CELLS_(I)_(M7.2) 47 0.0016381 Peripheral/Blood Human 24336226
11 PUTATIVE_TARGETS_OF_PAX3_(M89.0) 16 0.00166705 Peripheral/Blood Human 24336226
12 T_CELL_ACTIVATION_(I)_(M7.1) 50 0.00165744 Peripheral/Blood Human 24336226
13 VIRAL_SENSING_&_IMMUNITY;_IRF2_TARGETS_NETWORK_(I)_(M111.0) 17 0.0030623 Peripheral/Blood Human 24336226
14 CELL_ADHESION_(M51) 38 0.00490505 Peripheral/Blood Human 24336226
15 APJ1_TRANSCRIPTION_FACTOR_NETWORK_(M20) 15 0.00491378 Peripheral/Blood Human 24336226
16 ENRICHED_IN_T_CELLS_(I)_(M7.0) 59 0.00775815 Peripheral/Blood Human 24336226
17 DC_SURFACE_SIGNATURE_(S5) 82 0.02313339 Peripheral/Blood Human 24336226
18 LEUKOCYTE_DIFFERENTIATION_(M160) 16 0.02258546 Peripheral/Blood Human 24336226
19 TBA_(M66) 17 0.03778308 Peripheral/Blood Human 24336226
20 ENRICHED_IN_ANTIGEN_PRESENTATION_(I)_(M71) 18 0.03734423 Peripheral/Blood Human 24336226

Chaussabel Name Description #/Genes FDR Tissue Organism PMID

1 M3.4_Interferon 44 </1EJ06 Peripheral/Blood Human 18631455
2 M1.2_Interferon 24 </1EJ06 Peripheral/Blood Human 18631455
3 M5.12_Interferon 45 </1EJ06 Peripheral/Blood Human 18631455
4 M7.16_Not_Determined 48 </1EJ06 Peripheral/Blood Human 18631455
5 M7.35_Undetermined 21 0.00296325 Peripheral/Blood Human 18631455
6 M9.35_Undetermined 24 0.01223695 Peripheral/Blood Human 18631455
7 M9.24_Undetermined 41 0.01429375 Peripheral/Blood Human 18631455
8 M4.2_Inflammation 37 0.01591893 Peripheral/Blood Human 18631455
9 M9.41_Undetermined 15 0.04131159 Peripheral/Blood Human 18631455
10 M6.13_Cell_Death 40 0.07234576 Peripheral/Blood Human 18631455
11 M9.39_Undetermined 18 0.0752909 Peripheral/Blood Human 18631455
12 M3.6_Cytotoxic/NK_Cell 41 0.0724536 Peripheral/Blood Human 18631455
13 M8.18_Undetermined 19 0.06779851 Peripheral/Blood Human 18631455
14 M7.9_Undetermined 133 0.06402618 Peripheral/Blood Human 18631455
15 M8.51_Undetermined 16 0.16875912 Peripheral/Blood Human 18631455
16 M8.39_Undetermined 16 0.24413404 Peripheral/Blood Human 18631455
17 M3.2_Inflammation 108 0.2527887 Peripheral/Blood Human 18631455
18 M5.15_Neutrophils 19 0.2618582 Peripheral/Blood Human 18631455
19 M4.13_Inflammation 67 0.26964584 Peripheral/Blood Human 18631455
20 M7.29_Not_Determined 47 0.32821018 Peripheral/Blood Human 18631455
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Supplemental Table 6.5. Top gene sets from ImmuneSigDB, Li et al. and Chaussabel et al. 
collections enriched in Treg compared to Tconv CD4+ cells. 
 

 
 
 

Table&S5

GSE25087 GSEA(of(human(regulatory(T(cells((Treg)(compared(to(conventional(CD4+(T(cells((Tconv)(from(peripheral(blood.(

ImmuneSigDB Name Description #/Genes FDR Tissue Organism PMID

1
GSE11057_NAIVE_VS_MEMORY_CD4_TCELL_DN Genes/upJregulated/in/memory/CD4+/T/cells/compared/to/

naive/CD4+/T/cells.
198 </1EJ06 Peripheral/Blood Human 19568420

2
GSE11057_NAIVE_VS_EFF_MEMORY_CD4_TCELL_DN Genes/upJregulated/in/effector/memory/CD4+/T/cells/

compared/to/naive/CD4+/T/cells.
197 </1EJ06 Peripheral/Blood Human 19568420

3
GSE11057_NAIVE_VS_CENT_MEMORY_CD4_TCELL_DN Genes/upJregulated/in/central/memory/CD4+/T/cells/

compared/to/naive/CD4+/T/cells.
199 </1EJ06 Peripheral/Blood Human 19568420

4

GSE13738_RESTING_VS_BYSTANDER_ACTIVATED_CD4_TCELL_DN Genes/upJregulated/in/bystander/activated/CD4+/T/cells/
(incubated/in/the/presence/of/antigenJstimulated/T/cells)/
compared/to/resting/CD4+/T/cells.

199 </1EJ06 Peripheral/Blood Human 19201849

5
GSE26495_NAIVE_VS_PD1HIGH_CD8_TCELL_DN Genes/upJregulated/in/PDJ1high/CD8+/T/cells/compared/to/

naive/CD8+/T/cells/from/healthy/donors.
199 </1EJ06 Peripheral/Blood Human 21383243

6
GSE23321_CENTRAL_MEMORY_VS_NAIVE_CD8_TCELL_UP Genes/upJregulated/in/central/memory/CD8+/T/cells/

compared/to/naive/CD8+/T/cells.
193 </1EJ06 Peripheral/Blood Human 21926977

7
GSE23321_EFFECTOR_MEMORY_VS_NAIVE_CD8_TCELL_UP Genes/upJregulated/in/effector/memory/CD8+/T/cells/

compared/to/naive/CD8+/T/cells.
195 </1EJ06 Peripheral/Blood Human 21926977

8
GSE26495_NAIVE_VS_PD1LOW_CD8_TCELL_DN Genes/upJregulated/in/PDJ1low/CD8+/T/cells/compared/to/

naive/CD8+/T/cells/from/healthy/donors.
199 </1EJ06 Peripheral/Blood Human 21383243

9

GSE41978_KLRG1_HIGH_VS_LOW_EFFECTOR_CD8_TCELL_UP Genes/upJregulated/in/KLRG1/high/CD8+/OTJ1/T/cells/
compared/to/KLRG1/low/CD8+/OTJ1/T/cells/6/days/following/
ListeriaJOVA/infection/.

169 </1EJ06 Spleen Mouse 23325888

10
GSE23321_CD8_STEM_CELL_MEMORY_VS_CENTRAL_MEMORY_CD8_TCELL_DN Genes/upJregulated/in/central/memory/CD8+/T/cells/

compared/to/stem/cell/memory/CD8+/T/cells.
193 </1EJ06 Peripheral/Blood Human 21926977

11
GSE23321_CD8_STEM_CELL_MEMORY_VS_NAIVE_CD8_TCELL_UP Genes/upJregulated/in/stem/cell/memory/CD8+/T/cells/

compared/to/naive/CD8+/T/cells.
185 </1EJ06 Peripheral/Blood Human 21926977

12
GSE23321_CD8_STEM_CELL_MEMORY_VS_EFFECTOR_MEMORY_CD8_TCELL_DN Genes/upJregulated/in/effector/memory/CD8+/T/cells/

compared/to/stem/cell/memory/CD8+/T/cells.
194 </1EJ06 Peripheral/Blood Human 21926977

13
GSE32901_NAIVE_VS_TH17_ENRICHED_CD4_TCELL_DN Genes/upJregulated/in/in/vitro/expanded/Th17Jenriched/

effector/CD4+/T/cells/compared/to/naive/CD4+/T/cells.
195 </1EJ06 Peripheral/Blood Human 22715389

14
GOLDRATH_NAIVE_VS_EFF_CD8_TCELL_DN Genes/upJregulated/in/effector/CD8+/OTJ1/T/cells/responding/

in/vivo/to/VVJova/virus/compared/to/naive/CD8+/T/cells.
199 </1EJ06 Spleen Mouse 15548615

15
GSE32901_NAIVE_VS_TH17_NEG_CD4_TCELL_DN Genes/upJregulated/in/in/vitro/expanded/Th17Jnegative/

effector/CD4+/T/cells/compared/to/naive/CD4+/T/cells.
197 </1EJ06 Peripheral/Blood Human 22715389

16

GSE24634_TEFF_VS_TCONV_DAY7_IN_CULTURE_UP Genes/upJregulated/in/CD25+/effector/CD4+/T/cells/activated/
but/not/incubated/in/Treg/differentiating/conditions/
compared/to/CD25J/T/cells/incubated/with/ILJ4/for/7/days.

198 </1EJ06 Peripheral/Blood Human 21347372

17
KAECH_NAIVE_VS_DAY8_EFF_CD8_TCELL_DN Genes/upJregulated/in/effector/CD8+/T/cells/8/days/following/

LCMV/infection/compared/to/naive/CD8+/T/cells.
196 </1EJ06 Spleen Mouse 12526810

18
GSE21360_NAIVE_VS_QUATERNARY_MEMORY_CD8_TCELL_DN Genes/upJregulated/in/quarternary/(fourth/time/infection/

responders)/CD8+/T/cells/compared/to/naive/CD8+/T/cells.
159 </1EJ06 Spleen Mouse 20619696

19
GSE40685_NAIVE_CD4_TCELL_VS_FOXP3_KO_TREG_PRECURSOR__DN Genes/upJregulated/in/Treg/precursos/(FoxP3JKO/GFP+)/

compared/to/naive/CD4+/T/cells.
199 </1EJ06 Spleen/and/

Lymph/Node
Mouse 23021222

20
GSE41867_NAIVE_VS_DAY8_LCMV_EFFECTOR_CD8_TCELL_DN Genes/upJregulated/in/effector/CD8+/T/cells/8/days/following/

LCMV/infection/compared/to/naive/CD8+/T/cells.
173 </1EJ06 Spleen Mouse 23159438

Li Name Description #/Genes FDR Tissue Organism PMID

1 CELL_CYCLE_(I)_(M4.1) 145 </1EJ06 Peripheral/Blood Human 24336226
2 CELL_CYCLE_AND_TRANSCRIPTION_(M4.0) 328 </1EJ06 Peripheral/Blood Human 24336226
3 MITOTIC_CELL_CYCLE_IN_STIMULATED_CD4_T_CELLS_(M4.5) 35 </1EJ06 Peripheral/Blood Human 24336226
4 PLK1_SIGNALING_EVENTS_(M4.2) 34 </1EJ06 Peripheral/Blood Human 24336226
5 MITOTIC_CELL_DIVISION_(M6) 32 </1EJ06 Peripheral/Blood Human 24336226
6 NK_CELL_SURFACE_SIGNATURE_(S1) 48 </1EJ06 Peripheral/Blood Human 24336226
7 TRANSCRIPTION_REGULATION_IN_CELL_DEVELOPMENT_(M49) 47 </1EJ06 Peripheral/Blood Human 24336226
8 CELL_DIVISION_IN_STIMULATED_CD4_T_CELLS_(M4.6) 19 1.80EJ04 Peripheral/Blood Human 24336226
9 MHCJTLR7JTLR8_CLUSTER_(M146) 17 3.03EJ04 Peripheral/Blood Human 24336226
10 RECEPTORS,_CELL_MIGRATION_(M109) 15 2.73EJ04 Peripheral/Blood Human 24336226
11 CELL_CYCLE_(III)_(M103) 51 2.48EJ04 Peripheral/Blood Human 24336226
12 ENRICHED_IN_ANTIGEN_PRESENTATION_(I)_(M71) 18 2.27EJ04 Peripheral/Blood Human 24336226
13 DC_SURFACE_SIGNATURE_(S5) 82 4.48EJ04 Peripheral/Blood Human 24336226
14 CELL_DIVISION_(STIMULATED_CD4+_T_CELLS)_(M46) 28 4.16EJ04 Peripheral/Blood Human 24336226
15 MITOTIC_CELL_CYCLE_IN_STIMULATED_CD4_T_CELLS_(M4.9) 16 9.95EJ04 Peripheral/Blood Human 24336226
16 RESTING_DENDRITIC_CELL_SURFACE_SIGNATURE_(S10) 75 0.0027663 Peripheral/Blood Human 24336226
17 ENRICHED_IN_NK_CELLS_(I)_(M7.2) 47 0.00269882 Peripheral/Blood Human 24336226
18 REGULATION_OF_ANTIGEN_PRESENTATION_AND_IMMUNE_RESPONSE_(M5.0) 81 0.00254888 Peripheral/Blood Human 24336226
19 ACTIVATED_(LPS)_DENDRITIC_CELL_SURFACE_SIGNATURE_(S11) 37 0.0037057 Peripheral/Blood Human 24336226
20 MYELOID,_DENDRITIC_CELL_ACTIVATION_VIA_NFKB_(I)_(M43.0) 15 0.00497282 Peripheral/Blood Human 24336226

Chaussabel Name Description #/Genes FDR Tissue Organism PMID

1 M3.3_Cell_Cycle 44 </1EJ06 Peripheral/Blood Human 18631455
2 M4.9_Not_Determined 79 0.0024239 Peripheral/Blood Human 18631455
3 M5.1_Inflammation 207 0.0087603 Peripheral/Blood Human 18631455
4 M3.2_Inflammation 109 0.00753987 Peripheral/Blood Human 18631455
5 M6.16_Cell_Cycle 26 0.00603189 Peripheral/Blood Human 18631455
6 M9.12_Undetermined 57 0.00891114 Peripheral/Blood Human 18631455
7 M5.7_Inflammation 117 0.00763812 Peripheral/Blood Human 18631455
8 M9.35_Undetermined 24 0.01574711 Peripheral/Blood Human 18631455
9 M5.2_Not_Determined 50 0.0358064 Peripheral/Blood Human 18631455
10 M3.4_Interferon 44 0.0367342 Peripheral/Blood Human 18631455
11 M4.1_T_cell 26 0.03388736 Peripheral/Blood Human 18631455
12 M4.2_Inflammation 37 0.03660791 Peripheral/Blood Human 18631455
13 M9.32_Undetermined 25 0.04676838 Peripheral/Blood Human 18631455
14 M4.6_Inflammation 97 0.05164539 Peripheral/Blood Human 18631455
15 M8.32_Undetermined 18 0.05411964 Peripheral/Blood Human 18631455
16 M2.3_Erythrocytes 58 0.05826901 Peripheral/Blood Human 18631455
17 M7.7_Undetermined 95 0.07566726 Peripheral/Blood Human 18631455
18 M8.37_Undetermined 18 0.07938689 Peripheral/Blood Human 18631455
19 M4.13_Inflammation 67 0.08084902 Peripheral/Blood Human 18631455
20 M5.12_Interferon 46 0.11432808 Peripheral/Blood Human 18631455
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Supplemental Table 6.6. Top gene sets from ImmuneSigDB, Li et al. and Chaussabel et al. 
collections enriched in plasma cells compared to B cells. 
 

 
 
 

Table&S6

GSE22886 GSEA(of(human(plasma(cells(compared(to(naive(B(cells(from(peripheral(blood.(

ImmuneSigDB Name Description #/Genes FDR Tissue Organism PMID

1 GSE12845_IGD_POS_VS_NEG_BLOOD_BCELL_DN Genes/upJregulated/in/blood/IgDJ/B/cells/compared/to/IgD+/B/
cells.

199 </1EJ06 Peripheral/Blood Human 19023113

2 GSE29614_DAY3_VS_DAY7_TIV_FLU_VACCINE_PBMC_DN Genes/upJregulated/in/blood/PBMCs/7/days/following/
trivalent/inactivated/influenza/vaccine/(TIV)/compared/to/
PBMCs/3/days/following/vaccination,/2007/08/flu/season.

158 </1EJ06 Peripheral/Blood Human 21743478

3 GSE13411_PLASMA_CELL_VS_MEMORY_BCELL_UP Genes/upJregulated/in/plasma/cells/compared/to/memory/B/
cells/from/the/spleen.

199 </1EJ06 Spleen Human 19124732

4 GSE30153_LUPUS_VS_HEALTHY_DONOR_BCELL_UP Genes/upJregulated/in/B/cells/from/the/blood/of/patients/
with/systemic/lupus/erythematosus/compared/to/B/cells/
from/the/blood/of/healthy/donors.

150 </1EJ06 Peripheral/Blood Human 21886837

5 GSE29614_CTRL_VS_DAY7_TIV_FLU_VACCINE_PBMC_DN Genes/upJregulated/in/blood/PBMCs/7/days/following/
trivalent/inactivated/influenza/vaccine/(TIV)/compared/to/
PBMCs/prior/to/vaccination,/2007/08/flu/season.

163 </1EJ06 Peripheral/Blood Human 21743478

6 GSE12845_IGD_NEG_BLOOD_VS_NAIVE_TONSIL_BCELL_UP Genes/upJregulated/in/blood/IgDJ/B/cells/compared/to/naive/
B/cells/from/the/tonsil.

200 </1EJ06 Peripheral/blood/
and/tonsil

Human 19023113

7 GSE12366_PLASMA_CELL_VS_MEMORY_BCELL_UP Genes/upJregulated/in/plasma/cells/compared/to/memory/B/
cells/from/the/tonsil.

147 </1EJ06 Tonsil Human 19023113

8 GSE12366_PLASMA_CELL_VS_NAIVE_BCELL_UP Genes/upJregulated/in/plasma/cells/compared/to/naive/B/
cells/from/the/tonsil.

142 </1EJ06 Tonsil Human 19023113

9 GSE10325_BCELL_VS_LUPUS_BCELL_DN Genes/upJregulated/in/B/cells/from/the/blood/of/patients/
with/systemic/lupus/erythematosus/compared/to/B/cells/
from/the/blood/of/healthy/donors.

200 </1EJ06 Peripheral/Blood Human 18275831

10 GSE29617_CTRL_VS_DAY7_TIV_FLU_VACCINE_PBMC_2008_DN Genes/upJregulated/in/blood/PBMCs/7/days/following/
trivalent/inactivated/influenza/vaccine/(TIV)/compared/to/
PBMCs/prior/to/vaccination,/2008/09/flu/season.

166 </1EJ06 Peripheral/Blood Human 21743478

11 GSE12366_GC_BCELL_VS_PLASMA_CELL_DN Genes/upJregulated/in/plasma/cells/compared/to/germinal/
center/B/cells/from/the/tonsil.

153 </1EJ06 Tonsil Human 19023113

12 GSE4142_PLASMA_CELL_VS_GC_BCELL_UP Genes/upJregulated/in/plasma/cells/compared/to/germinal/
center/B/cells/from/the/spleen.

164 </1EJ06 Spleen Mouse 16492737

13 GSE42724_B1_BCELL_VS_PLASMABLAST_DN Genes/upJregulated/in/plasmablast/compared/to/B1/B/cells/
from/the/blood.

160 </1EJ06 Peripheral/Blood Human 23613519

14 GSE12845_IGD_NEG_BLOOD_VS_PRE_GC_TONSIL_BCELL_UP Genes/upJregulated/in/blood/IgDJ/B/cells/compared/to/preJ
germinal/center/B/cells/from/the/tonsil.

198 </1EJ06 Peripheral/blood/
and/tonsil

Human 19023113

15 GSE13411_NAIVE_BCELL_VS_PLASMA_CELL_DN Genes/upJregulated/in/plasma/cells/compared/to/naive/B/
cells/from/the/spleen.

199 </1EJ06 Spleen Human 19124732

16 GSE4142_NAIVE_BCELL_VS_PLASMA_CELL_DN Genes/upJregulated/in/plasma/cells/compared/to/naive/B/
cells/from/the/spleen.

166 </1EJ06 Spleen Mouse 16492737

17 GSE9601_NFKB_INHIBITOR_VS_PI3K_INHIBITOR_TREATED_HCMV_INF_MONOCYTE_UPGenes/upJregulated/in/HCMVJinfected/monocytes/treated/
with/NFJkB/inhibitor/Bay11/compared/to/HCMVJinfected/
cells/treated/with/PI3K/inhibitor/LY294002.

199 </1EJ06 Peripheral/Blood Human 18003728

18 GSE13411_IGM_MEMORY_BCELL_VS_PLASMA_CELL_DN Genes/upJregulated/in/plasma/cells/compared/to/IgM+/
memory/B/cells/from/the/spleen.

199 </1EJ06 Spleen Human 19124732

19 GSE29617_DAY3_VS_DAY7_TIV_FLU_VACCINE_PBMC_2008_DN Genes/upJregulated/in/blood/PBMCs/7/days/following/
trivalent/inactivated/influenza/vaccine/(TIV)/compared/to/
PBMCs/3/days/following/vaccination,/2008/09/flu/season.

144 </1EJ06 Peripheral/Blood Human 21743478

20 GSE12845_IGD_NEG_BLOOD_VS_DARKZONE_GC_TONSIL_BCELL_UP Genes/upJregulated/in/blood/IgDJ/B/cells/compared/to/B/cells/
from/the/dark/zone/of/the/tonsil.

199 </1EJ06 Peripheral/blood/
and/tonsil

Human 19023113

Li Name Description #/Genes FDR Tissue Organism PMID
1 PLASMA_CELLS,_IMMUNOGLOBULINS_(M156.1) 25 </1EJ06 Peripheral/Blood Human 24336226
2 RESPIRATORY_ELECTRON_TRANSPORT_CHAIN_(MITOCHONDRION)_(M238) 16 </1EJ06 Peripheral/Blood Human 24336226
3 PLASMA_CELL_SURFACE_SIGNATURE_(S3) 17 </1EJ06 Peripheral/Blood Human 24336226
4 RESPIRATORY_ELECTRON_TRANSPORT_CHAIN_(MITOCHONDRION)_(M219) 18 1.45EJ04 Peripheral/Blood Human 24336226
5 PLASMA_CELLS_&_B_CELLS,_IMMUNOGLOBULINS_(M156.0) 34 1.16EJ04 Peripheral/Blood Human 24336226
6 TBA_(M184.0) 15 0.001479268 Peripheral/Blood Human 24336226
7 TBA_(M70.0) 17 0.09481692 Peripheral/Blood Human 24336226
8 TBA_(M136) 17 0.12377888 Peripheral/Blood Human 24336226
9 ACTIVATED_(LPS)_DENDRITIC_CELL_SURFACE_SIGNATURE_(S11) 27 0.6037416 Peripheral/Blood Human 24336226
10 ENRICHED_IN_NK_CELLS_(I)_(M7.2) 42 0.76805484 Peripheral/Blood Human 24336226
11 LEUKOCYTE_DIFFERENTIATION_(M160) 16 0.74690443 Peripheral/Blood Human 24336226
12 CHEMOKINES_AND_INFLAMMATORY_MOLECULES_IN_MYELOID_CELLS_(M86.0) 18 0.70106184 Peripheral/Blood Human 24336226
13 CORO1AJDEF6_NETWORK_(I)_(M32.2) 20 0.8959738 Peripheral/Blood Human 24336226
14 ENRICHED_IN_MONOCYTES_(IV)_(M118.0) 47 0.885626 Peripheral/Blood Human 24336226
15 VIRAL_SENSING_&_IMMUNITY;_IRF2_TARGETS_NETWORK_(I)_(M111.0) 15 0.83604485 Peripheral/Blood Human 24336226
16 EXTRACELLULAR_MATRIX_(II)_(M2.1) 44 0.86151814 Peripheral/Blood Human 24336226
17 ENRICHED_IN_MONOCYTES_(II)_(M11.0) 176 0.82706755 Peripheral/Blood Human 24336226
18 CELL_CYCLE,_ATP_BINDING_(M144) 16 1 Peripheral/Blood Human 24336226
19 RESTING_DENDRITIC_CELL_SURFACE_SIGNATURE_(S10) 64 0.94787514 Peripheral/Blood Human 24336226
20 CELL_MOVEMENT,_ADHESION_&_PLATELET_ACTIVATION_(M30) 17 0.91048986 Peripheral/Blood Human 24336226

Chaussabel Name Description #/Genes FDR Tissue Organism PMID
1 M7.7_Undetermined 78 </1EJ06 Peripheral/Blood Human 18631455
2 M7.11_Undetermined 89 </1EJ06 Peripheral/Blood Human 18631455
3 M3.1_Erythrocytes 50 </1EJ06 Peripheral/Blood Human 18631455
4 M6.2_Mitochondrial_Respiration 111 </1EJ06 Peripheral/Blood Human 18631455
5 M5.1_Inflammation 160 3.86EJ04 Peripheral/Blood Human 18631455
6 M7.4_Not_Determined 91 6.30EJ04 Peripheral/Blood Human 18631455
7 M3.5_Cell_Cycle 104 6.83EJ04 Peripheral/Blood Human 18631455
8 M5.6_Mitochondrial_Stress_Proteasome 95 0.010274475 Peripheral/Blood Human 18631455
9 M4.4_Not_Determined 50 0.022653263 Peripheral/Blood Human 18631455
10 M6.14_Not_Determined 28 0.0243098 Peripheral/Blood Human 18631455
11 M5.13_Not_Determined 125 0.0224363 Peripheral/Blood Human 18631455
12 M6.8_Not_Determined 26 0.02130558 Peripheral/Blood Human 18631455
13 M6.13_Cell_Death 32 0.031561315 Peripheral/Blood Human 18631455
14 M6.17_Not_Determined 44 0.03791923 Peripheral/Blood Human 18631455
15 M7.8_Undetermined 66 0.039329473 Peripheral/Blood Human 18631455
16 M5.3_Not_Determined 66 0.046752 Peripheral/Blood Human 18631455
17 M7.21_Undetermined 69 0.051384736 Peripheral/Blood Human 18631455
18 M7.19_Undetermined 69 0.0705958 Peripheral/Blood Human 18631455
19 M5.1_Inflammation 184 0.08181434 Peripheral/Blood Human 18631455
20 M3.2_Inflammation 94 0.10395143 Peripheral/Blood Human 18631455
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Supplemental Table 6.7. Top gene sets from ImmuneSigDB, Li et al and Chaussabel et al. 
collections enriched in memory compared to naive B cells. 

 

Table&S7

GSE42724 GSEA(of(human(memory(and(naive(B(cells(from(peripheral(blood.(

ImmuneSigDB Name Description #/Genes FDR Tissue Organism PMID

1
GSE22886_NAIVE_VS_IGG_IGA_MEMORY_BCELL_DN Genes/upJregulated/in/IgG+/IgA+/memory/B/cells/

compared/to/naive/B/cells.
185 </1EJ06 Peripheral/Blood Human 15789058

2
GSE22886_NAIVE_VS_IGM_MEMORY_BCELL_DN Genes/upJregulated/in/IgM+/memory/B/cells/

compared/to/naive/B/cells.
184 </1EJ06 Peripheral/Blood Human 15789058

3
GSE12366_NAIVE_VS_MEMORY_BCELL_DN Genes/upJregulated/in/memory/B/cells/compared/

to/naive/B/cells.
176 </1EJ06 Tonsil Human 19023113

4
GSE11057_NAIVE_VS_MEMORY_CD4_TCELL_DN Genes/upJregulated/in/memory/(CD45RO+)/CD4+/

T/cells/compared/to/naive/(CD45RA+)/CD4+/T/cells.
186 </1EJ06 Peripheral/Blood Human 19568420

5

GSE17186_MEMORY_VS_CD21HIGH_TRANSITIONAL_BCELL_UP Genes/upJregulated/in/memory/B/
cells(CD20+CD10JCD27+)/compared/to/CD21high/
transitional/B/cells/(CD20+CD10+CD27JCD21hi).

170 </1EJ06 Peripheral/and/
cord/blood

Human 19965666

6

GSE17186_MEMORY_VS_NAIVE_BCELL_UP Genes/upJregulated/in/memory/B/cell/
(CD20+CD10JCD27+)/compared/to/naive/B/cell/
(CD20+CD10JCD27J).

184 </1EJ06 Peripheral/Blood Human 19965666

7

GSE11057_NAIVE_VS_EFF_MEMORY_CD4_TCELL_DN Genes/upJregulated/in/effector/memory/
(CD45RO+/CCR7J/CD62L+/J)/CD4+/T/cells/
compared/to/naive/(CD45RA+)/CD4+/T/cells.

183 </1EJ06 Peripheral/Blood Human 19568420

8
GSE12845_IGD_POS_VS_NEG_BLOOD_BCELL_DN Genes/upJregulated/in/IgD+/B/cells/compared/to/

IgDJ/B/cells.
175 </1EJ06 Peripheral/Blood Human 19023113

9

GSE17186_MEMORY_VS_CD21LOW_TRANSITIONAL_BCELL_UP Genes/upJregulated/in/memory/B/
cells(CD20+CD10JCD27+)/compared/to/CD21low/
transitional/B/cells/(CD20+CD10+CD27JCD21lo).

176 </1EJ06 Peripheral/Blood Human 19965666

10

GSE32901_NAIVE_VS_TH17_ENRICHED_CD4_TCELL_DN Genes/upJregulated/in/in/vitro/expanded/Th17J
enriched/effector/CD4+/T/cells/compared/to/naive/
CD4+/T/cells.

200 </1EJ06 Peripheral/Blood Human 22715389

11

GSE11057_NAIVE_VS_CENT_MEMORY_CD4_TCELL_DN Genes/upJregulated/in/central/memory/(CD45RO+/
CCR7+/CD62L+)/CD4+/T/cells/compared/to/naive/
(CD45RA+)/CD4+/T/cells.

190 </1EJ06 Peripheral/Blood Human 19568420

12
GSE13411_NAIVE_VS_IGM_MEMORY_BCELL_DN Genes/upJregulated/in/IgM+/memory/B/cells/

compared/to/naive/B/cells.
187 </1EJ06 Spleen Human 19124732

13

GSE21360_NAIVE_VS_QUATERNARY_MEMORY_CD8_TCELL_DN Genes/upJregulated/in/quarternary/(fourth/time/
infection/responders)/CD8+/T/cells/compared/to/
naive/CD8+/T/cells.

154 </1EJ06 Spleen Mouse 20619696

14
GSE22886_IGA_VS_IGM_MEMORY_BCELL_UP Genes/upJregulated/in/IgG+/IgA+/memory/B/cells/

compared/to/IgM+/memory/B/cells.
182 </1EJ06 Peripheral/Blood Human 15789058

15

GSE41867_NAIVE_VS_EFFECTOR_CD8_TCELL_DN Genes/upJregulated/in/effector/CD8+/T/cells/
responding/to/LCMV/compared/to/naive/CD8+/T/
cells.

168 </1EJ06 Peripheral/Blood Mouse 23159438

16
GSE11386_NAIVE_VS_MEMORY_BCELL_DN Genes/upJregulated/in/memory/B/cells/compared/

to/naive/B/cells.
185 </1EJ06 Spleen Mouse 18566367

17

GSE40493_BCL6_KO_VS_WT_TREG_UP Genes/upJregulated/in/Bcl6/knockout/Tregs/
compared/to/wildtypoe/Tregs/following/16h/antiJ
CD3/antiJCD28/stimulation.

168 </1EJ06 Spleen/and/lymph/
nodes

Mouse 23053511

18
GSE13411_NAIVE_VS_MEMORY_BCELL_DN Genes/upJregulated/in/memory/B/cells/compared/

to/naive/B/cells.
188 </1EJ06 Spleen Human 19124732

19

GSE21360_NAIVE_VS_TERTIARY_MEMORY_CD8_TCELL_DN Genes/upJregulated/in/tertiary/(third/time/
infection/responders)/CD8+/T/cells/compared/to/
naive/CD8+/T/cells.

166 </1EJ06 Spleen Mouse 20619696

20

GSE32901_NAIVE_VS_TH17_NEG_CD4_TCELL_DN Genes/upJregulated/in/in/vitro/expanded/Th17J
negative/effector/CD4+/T/cells/compared/to/naive/
CD4+/T/cells.

200 </1EJ06 Peripheral/Blood Human 22715389

Li Name Description #/Genes FDR Tissue Organism PMID
1 NK_CELL_SURFACE_SIGNATURE_(S1) 35 0.004304194 Peripheral/Blood Human 24336226
2 ENRICHED_IN_MONOCYTES_(II)_(M11.0) 174 0.016894067 Peripheral/Blood Human 24336226
3 ENRICHED_IN_ANTIGEN_PRESENTATION_(II)_(M95.0) 18 0.020241437 Peripheral/Blood Human 24336226
4 PUTATIVE_TARGETS_OF_PAX3_(M89.0) 16 0.097893655 Peripheral/Blood Human 24336226
5 CELL_CYCLE_AND_TRANSCRIPTION_(M4.0) 301 0.10261368 Peripheral/Blood Human 24336226
6 ENRICHED_IN_ACTIVATED_DENDRITIC_CELLS/MONOCYTES_(M64) 16 0.116604 Peripheral/Blood Human 24336226
7 ENRICHED_IN_NK_CELLS_(I)_(M7.2) 46 0.12543195 Peripheral/Blood Human 24336226
8 ENRICHED_IN_ANTIGEN_PRESENTATION_(I)_(M71) 16 0.12386507 Peripheral/Blood Human 24336226
9 TBA_(M66) 16 0.12103282 Peripheral/Blood Human 24336226
10 CYTOSKELETON/ACTIN_(SRF_TRANSCRIPTION_TARGETS)_(M145.0) 15 0.1196479 Peripheral/Blood Human 24336226
11 LEUKOCYTE_DIFFERENTIATION_(M160) 15 0.15270436 Peripheral/Blood Human 24336226
12 EXTRACELLULAR_MATRIX_(II)_(M2.1) 43 0.17023705 Peripheral/Blood Human 24336226
13 MEMORY_B_CELL_SURFACE_SIGNATURE_(S9) 34 0.1759184 Peripheral/Blood Human 24336226
14 ENRICHED_IN_MEMBRANE_PROTEINS_(M124) 16 0.19762957 Peripheral/Blood Human 24336226
15 PLATELET_ACTIVATION_(II)_(M32.1) 18 0.1958992 Peripheral/Blood Human 24336226
16 ENRICHED_IN_T_CELLS_(I)_(M7.0) 55 0.22823855 Peripheral/Blood Human 24336226
17 T_CELL_ACTIVATION_(I)_(M7.1) 46 0.27058327 Peripheral/Blood Human 24336226
18 TBA_(M184.0) 17 0.2766716 Peripheral/Blood Human 24336226
19 T_CELL_ACTIVATION_(II)_(M7.3) 30 0.28000584 Peripheral/Blood Human 24336226
20 ACTIVATED_(LPS)_DENDRITIC_CELL_SURFACE_SIGNATURE_(S11) 35 0.30645204 Peripheral/Blood Human 24336226

Chaussabel Name Description #/Genes FDR Tissue Organism PMID
1 M9.32_Undetermined 23 0.03650531 Peripheral/Blood Human 18631455
2 M7.21_Undetermined 73 0.34071872 Peripheral/Blood Human 18631455
3 M6.13_Cell_Death 38 0.43733603 Peripheral/Blood Human 18631455
4 M7.15_Undetermined 71 0.38143057 Peripheral/Blood Human 18631455
5 M8.18_Undetermined 18 0.3548228 Peripheral/Blood Human 18631455
6 M8.41_Undetermined 15 0.33282864 Peripheral/Blood Human 18631455
7 M4.6_Inflammation 93 0.33361447 Peripheral/Blood Human 18631455
8 M3.1_Erythrocytes 62 0.44778514 Peripheral/Blood Human 18631455
9 M7.16_Not_Determined 48 0.42654887 Peripheral/Blood Human 18631455
10 M8.8_Undetermined 26 0.3929025 Peripheral/Blood Human 18631455
11 M9.31_Undetermined 22 0.40187752 Peripheral/Blood Human 18631455
12 M6.14_Not_Determined 30 0.38957456 Peripheral/Blood Human 18631455
13 M3.6_Cytotoxic/NK_Cell 41 0.3637774 Peripheral/Blood Human 18631455
14 M9.6_Undetermined 70 0.36457974 Peripheral/Blood Human 18631455
15 M3.2_Inflammation 106 0.524135 Peripheral/Blood Human 18631455
16 M7.22_Undetermined 42 0.50671184 Peripheral/Blood Human 18631455
17 M8.26_Undetermined 17 0.47988358 Peripheral/Blood Human 18631455
18 M7.13_Not_Determined 46 0.46933657 Peripheral/Blood Human 18631455
19 M5.4_Not_Determined 81 0.45617348 Peripheral/Blood Human 18631455
20 M7.1_Inflammation 141 0.4750514 Peripheral/Blood Human 18631455
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Supplemental Table 6.8. List of ImmuneSigDB gene sets listed in Figure 6.7A. 
 

 
 
 
 
  

Table&S10

Rank Gene'Set'Name SIZE ES NES NOM'p2val FDR'q2val FWER'p2val RANK'AT'MAX LEADING'EDGE
1 GSE14000_UNSTIM_VS_4H_LPS_DC_DN_HOMO_SAPIENS 200 0.94 3.56 0 0 0 1150 tags=92%,Blist=6%,Bsignal=96%
2 GSE2706_UNSTIM_VS_2H_LPS_DC_DN_HOMO_SAPIENS 200 0.92 3.54 0 0 0 1207 tags=81%,Blist=6%,Bsignal=85%
3 GSE2706_UNSTIM_VS_8H_LPS_DC_DN_HOMO_SAPIENS 200 0.91 3.5 0 0 0 1325 tags=80%,Blist=6%,Bsignal=85%
4 GSE4748_CTRL_VS_LPS_STIM_DC_3H_DN_HOMO_SAPIENS 200 0.9 3.49 0 0 0 1311 tags=71%,Blist=6%,Bsignal=75%
5 GSE14000_UNSTIM_VS_16H_LPS_DC_DN_HOMO_SAPIENS 200 0.89 3.39 0 0 0 1793 tags=78%,Blist=9%,Bsignal=84%
6 GSE22886_CTRL_VS_LPS_24H_DC_DN_HOMO_SAPIENS 200 0.87 3.34 0 0 0 1244 tags=63%,Blist=6%,Bsignal=66%
7 GSE4984_UNTREATED_VS_LPS_TREATED_DC_DN_HOMO_SAPIENS 200 0.85 3.26 0 0 0 1375 tags=58%,Blist=7%,Bsignal=61%
8 GSE3982_CTRL_VS_LPS_4H_MAC_DN_HOMO_SAPIENS 199 0.83 3.18 0 0 0 1683 tags=59%,Blist=8%,Bsignal=64%
9 GSE3982_CTRL_VS_LPS_48H_DC_DN_HOMO_SAPIENS 200 0.79 3.04 0 0 0 1343 tags=49%,Blist=6%,Bsignal=51%
10 GSE14769_UNSTIM_VS_80MIN_LPS_BMDM_DN_MUS_MUSCULUS 194 0.78 2.97 0 0 0 1326 tags=50%,Blist=6%,Bsignal=53%
11 GSE30971_CTRL_VS_LPS_STIM_MACROPHAGE_WBP7_HET_2H_DN_MUS_MUSCULUS 165 0.78 2.94 0 0 0 1461 tags=51%,Blist=7%,Bsignal=54%
12 GSE14769_UNSTIM_VS_40MIN_LPS_BMDM_DN_MUS_MUSCULUS 196 0.71 2.74 0 0 0 1344 tags=46%,Blist=6%,Bsignal=49%
13 GSE14769_UNSTIM_VS_60MIN_LPS_BMDM_DN_MUS_MUSCULUS 194 0.71 2.71 0 0 0 1405 tags=46%,Blist=7%,Bsignal=49%
14 GSE30971_CTRL_VS_LPS_STIM_MACROPHAGE_WBP7_HET_4H_DN_MUS_MUSCULUS 158 0.7 2.63 0 0 0 1633 tags=42%,Blist=8%,Bsignal=46%
15 GSE32255_UNSTIM_VS_4H_LPS_STIM_DC_DN_MUS_MUSCULUS 159 0.68 2.6 0 0 0 2104 tags=42%,Blist=10%,Bsignal=47%
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Supplemental Table 6.9. List of ImmuneSigDB gene sets listed in Figure 6.7B. 
 

 
 
  

Table&S11

Rank Gene'Set'Name SIZE ES NES NOM'p2val FDR'q2val FWER'p2val RANK'AT'MAX LEADING'EDGE
1 GSE22886_NAIVE_BCELL_VS_BM_PLASMA_CELL_DN_HOMO_SAPIENS 200 0.78 3.79 0 0 0 1241 tags=66%,Blist=10%,Bsignal=72%
2 GSE13411_NAIVE_BCELL_VS_PLASMA_CELL_DN_HOMO_SAPIENS 200 0.74 3.62 0 0 0 2254 tags=75%,Blist=18%,Bsignal=89%
3 GSE22886_NAIVE_BCELL_VS_BLOOD_PLASMA_CELL_DN_HOMO_SAPIENS 200 0.69 3.35 0 0 0 894 tags=43%,Blist=7%,Bsignal=45%
4 GSE12366_PLASMA_CELL_VS_NAIVE_BCELL_UP_HOMO_SAPIENS 143 0.62 2.9 0 0 0 2881 tags=60%,Blist=22%,Bsignal=77%
5 GSE4142_NAIVE_BCELL_VS_PLASMA_CELL_DN_MUS_MUSCULUS 166 0.55 2.58 0 0 0 2558 tags=43%,Blist=20%,Bsignal=53%
6 GSE42724_NAIVE_BCELL_VS_PLASMABLAST_DN_HOMO_SAPIENS 167 0.52 2.44 0 0 0 2583 tags=41%,Blist=20%,Bsignal=50%
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Supplemental Table 6.10. List of ImmuneSigDB gene sets listed in Figure 6.7C. 
 

 
 
  

Table&S12

Rank Gene'Set'Name SIZE ES NES NOM'p2val FDR'q2val FWER'p2val RANK'AT'MAX LEADING'EDGE
1 GSE25087_TREG_VS_TCONV_ADULT_UP_HOMO_SAPIENS 200 0.88 3.47 0 0 0 1625 tags=79%,Blist=8%,Bsignal=85%
2 GSE25087_TREG_VS_TCONV_FETUS_UP_HOMO_SAPIENS 200 0.82 3.22 0 0 0 2368 tags=67%,Blist=12%,Bsignal=75%
3 GSE23321_CENTRAL_MEMORY_VS_NAIVE_CD8_TCELL_UP_HOMO_SAPIENS 193 0.81 3.17 0 0 0 2061 tags=58%,Blist=10%,Bsignal=63%
4 GSE23321_EFFECTOR_MEMORY_VS_NAIVE_CD8_TCELL_UP_HOMO_SAPIENS 195 0.79 3.09 0 0 0 1666 tags=52%,Blist=8%,Bsignal=56%
5 GSE7460_TCONV_VS_TREG_THYMUS_DN_MUS_MUSCULUS 200 0.7 2.77 0 0 0 1705 tags=36%,Blist=8%,Bsignal=38%
6 GSE7852_TREG_VS_TCONV_LN_UP_MUS_MUSCULUS 197 0.7 2.76 0 0 0 1690 tags=37%,Blist=8%,Bsignal=40%
7 GSE22045_TREG_VS_TCONV_UP_HOMO_SAPIENS 200 0.68 2.7 0 0 0 2021 tags=40%,Blist=10%,Bsignal=44%
8 GSE7460_TCONV_VS_TREG_LN_DN_MUS_MUSCULUS 198 0.67 2.67 0 0 0 1889 tags=35%,Blist=9%,Bsignal=38%
9 GSE7852_TREG_VS_TCONV_THYMUS_UP_MUS_MUSCULUS 199 0.68 2.66 0 0 0 1755 tags=35%,Blist=9%,Bsignal=38%
10 GSE22886_NAIVE_VS_IGG_IGA_MEMORY_BCELL_DN_HOMO_SAPIENS 200 0.61 2.42 0 0 0 2885 tags=35%,Blist=14%,Bsignal=40%
11 KAECH_NAIVE_VS_MEMORY_CD8_TCELL_DN_MUS_MUSCULUS 198 0.61 2.4 0 0 0 1755 tags=32%,Blist=9%,Bsignal=35%
12 GSE13738_RESTING_VS_TCR_ACTIVATED_CD4_TCELL_DN_HOMO_SAPIENS 200 0.6 2.35 0 0 0 1893 tags=32%,Blist=9%,Bsignal=35%
13 GSE12366_NAIVE_VS_MEMORY_BCELL_DN_HOMO_SAPIENS 200 0.6 2.34 0 0 0 1192 tags=26%,Blist=6%,Bsignal=27%
14 GSE37532_TREG_VS_TCONV_CD4_TCELL_FROM_LN_UP_MUS_MUSCULUS 178 0.61 2.33 0 0 0 2343 tags=37%,Blist=12%,Bsignal=41%
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Supplemental Table 6.11. List of ImmuneSigDB gene sets listed in Figure 6.7D. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table&S13

Rank Gene'Set'Name SIZE ES NES NOM'p2val FDR'q2val FWER'p2val RANK'AT'MAX LEADING'EDGE
1 GSE42724_NAIVE_VS_MEMORY_BCELL_DN_HOMO_SAPIENS 200 0.87 3.6 0 0 0 1704 tags=84%,Blist=9%,Bsignal=92%
2 GSE22886_NAIVE_VS_IGG_IGA_MEMORY_BCELL_DN_HOMO_SAPIENS 184 0.81 3.32 0 0 0 1372 tags=62%,Blist=7%,Bsignal=66%
3 GSE22886_NAIVE_VS_IGM_MEMORY_BCELL_DN_HOMO_SAPIENS 183 0.8 3.26 0 0 0 1330 tags=57%,Blist=7%,Bsignal=61%
4 GSE12366_NAIVE_VS_MEMORY_BCELL_DN_HOMO_SAPIENS 175 0.8 3.19 0 0 0 1787 tags=59%,Blist=10%,Bsignal=65%
5 GSE17186_MEMORY_VS_NAIVE_BCELL_UP_HOMO_SAPIENS 184 0.67 2.76 0 0 0 1894 tags=38%,Blist=10%,Bsignal=42%
6 GSE13411_NAIVE_VS_IGM_MEMORY_BCELL_DN_HOMO_SAPIENS 185 0.6 2.42 0 0 0 1650 tags=30%,Blist=9%,Bsignal=33%
7 GSE13411_NAIVE_VS_MEMORY_BCELL_DN_HOMO_SAPIENS 186 0.56 2.26 0 0 0 2126 tags=28%,Blist=11%,Bsignal=31%
8 GSE11386_NAIVE_VS_MEMORY_BCELL_DN_MUS_MUSCULUS 185 0.55 2.26 0 0 0 2652 tags=33%,Blist=14%,Bsignal=38%
9 GSE4142_NAIVE_VS_MEMORY_BCELL_DN_MUS_MUSCULUS 183 0.53 2.15 0 0 0 1831 tags=26%,Blist=10%,Bsignal=29%
10 GSE13411_NAIVE_VS_SWITCHED_MEMORY_BCELL_DN_HOMO_SAPIENS 191 0.46 1.86 0 0 0.001 2200 tags=21%,Blist=12%,Bsignal=24%
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Supplemental Table 6.12. List of ImmuneSigDB gene sets listed in Figure 6.8B. 
 

 
 
 
 
 
 
  

Table&S14

Rank Gene'set
1 GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_DN
2 GSE29618_MONOCYTE_VS_PDC_UP
3 GSE6269_E_COLI_VS_STREP_PNEUMO_INF_PBMC_DN
4 GSE22886_NAIVE_CD4_TCELL_VS_MONOCYTE_DN
5 GSE34156_UNTREATED_VS_24H_NOD2_AND_TLR1_TLR2_LIGAND_TREATED_MONOCYTE_DN
6 GSE34156_UNTREATED_VS_24H_TLR1_TLR2_LIGAND_TREATED_MONOCYTE_DN
7 GSE6269_E_COLI_VS_STREP_AUREUS_INF_PBMC_DN
8 GSE22886_NAIVE_TCELL_VS_MONOCYTE_DN
9 GSE29618_MONOCYTE_VS_MDC_UP
10 GSE22886_NAIVE_CD8_TCELL_VS_MONOCYTE_DN
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Supplemental Table 6.13. List of ImmuneSigDB gene sets listed in Figure 6.9B. 
 

 
 
  

Table&S15

Rank Gene'set
1 GSE6269_E_COLI_VS_STREP_PNEUMO_INF_PBMC_DN
2 GSE22886_NAIVE_BCELL_VS_NEUTROPHIL_DN
3 GSE3982_NEUTROPHIL_VS_NKCELL_UP
4 GSE6269_HEALTHY_VS_STREP_PNEUMO_INF_PBMC_DN
5 GSE34156_NOD2_LIGAND_VS_NOD2_AND_TLR1_TLR2_LIGAND_24H_TREATED_MONOCYTE_DN
6 GSE34156_UNTREATED_VS_24H_NOD2_AND_TLR1_TLR2_LIGAND_TREATED_MONOCYTE_DN
7 GSE6269_E_COLI_VS_STREP_AUREUS_INF_PBMC_DN
8 GSE29618_MONOCYTE_VS_MDC_UP
9 GSE6269_HEALTHY_VS_STREP_AUREUS_INF_PBMC_DN
10 GSE34156_UNTREATED_VS_24H_TLR1_TLR2_LIGAND_TREATED_MONOCYTE_DN
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Supplemental Table 6.14. List of ImmuneSigDB gene sets listed in Figure 6.10B. 
 

 
 
 
 
 
 
	  

Table&S18

Rank Gene'set
1 GSE22886_NAIVE_TCELL_VS_MONOCYTE_UP
2 GSE10325_LUPUS_CD4_TCELL_VS_LUPUS_MYELOID_UP
3 GSE22886_NAIVE_CD4_TCELL_VS_MONOCYTE_UP
4 GSE10325_LUPUS_BCELL_VS_LUPUS_MYELOID_UP
5 GSE22886_NAIVE_CD8_TCELL_VS_MONOCYTE_UP
6 GSE22229_RENAL_TRANSPLANT_IMMUNOSUPP_THERAPY_VS_HEALTHY_PBMC_DN
7 GSE10325_BCELL_VS_MYELOID_UP
8 GSE11057_PBMC_VS_MEM_CD4_TCELL_DN
9 GSE22886_NAIVE_TCELL_VS_DC_UP
10 GSE6269_HEALTHY_VS_STAPH_AUREUS_INF_PBMC_UP
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Appendix A: Godec et al. Immunity 2016 

	
This is a reprint of: 
 
Jernej Godec, Yan Tan, Arthur Liberzon, Pablo Tamayo, Atul J. Butte, Jill P. Mesirov, W. 
Nicholas Haining. A novel compendium of immune signatures identifies both conserved and 
species-specific biology in the mouse and human response to inflammation. Immunity. 2016 
Jan 19;44(1):194-206. (PMID: 26795250) 
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SUMMARY

Gene-expression profiling has become a mainstay in
immunology, but subtle changes in gene networks
related to biological processes are hard to discern
when comparing various datasets. For instance,
conservation of the transcriptional response to
sepsis in mouse models and human disease remains
controversial. To improve transcriptional analysis in
immunology, we created ImmuneSigDB: a manually
annotated compendium of !5,000 gene-sets from
diverse cell states, experimental manipulations, and
genetic perturbations in immunology. Analysis using
ImmuneSigDB identified signatures induced in acti-
vated myeloid cells and differentiating lymphocytes
that were highly conserved between humans and
mice. Sepsis triggered conserved patterns of gene
expression in humans and mouse models. However,
we also identified species-specific biological pro-
cesses in the sepsis transcriptional response:
although both species upregulated phagocytosis-
related genes, a mitosis signature was specific to hu-
mans. ImmuneSigDB enables granular analysis of
transcriptomic data to improve biological under-
standing of immune processes of the human and
mouse immune systems.

INTRODUCTION

Experiments in both human cells and mouse models have
been used to discover many of the mechanisms by which
the immune system functions. Identifying aspects of immu-
nobiology that are evolutionarily conserved between humans
and mouse models is useful because it can reveal mechanisms
of fundamental importance to both species. Moreover, it can
provide reassurance that information gleaned from mouse
models will be applicable to the human condition. This is

crucial, because much of immunobiology cannot be examined
physiologically in humans due to inaccessibility of certain tis-
sues or cell types or the difficulty in recapitulating complex
biological milieu in vitro. However, considerable controversy
exists as to the degree to which mouse models can recapitu-
late events occurring in immunologic disease states in humans
(Davis, 2008; Hackam and Redelmeier, 2006; Rice, 2012; Shay
et al., 2014; van der Worp et al., 2010; Warren et al., 2014).
These concerns have extended to the analysis of genome-
wide analysis of mRNA levels where analyses of the same
datasets from mouse and human sepsis reached opposite
conclusions regarding the degree of cross-species similarity
(Seok et al., 2013; Takao and Miyakawa, 2014). Contradictory
findings have also been reported in the comparison of
gene expression across a range of human and mouse tissues
(Gilad Y, 2015; Lin et al., 2014).
One of the challenges in identifying similarities between

gene-expression datasets is that major changes in the cell
state can be associated with relatively small alterations in the
expression level of a relatively large numbers of genes. Anal-
ysis of co-regulated changes in sets of functionally related
genes, rather than individual genes, has therefore become an
important strategy to identify subtle, but biologically meaning-
ful, differences in gene expression (Haining and Wherry, 2010;
Mootha et al., 2003; Subramanian et al., 2005). This is a
particularly useful approach when analyzing samples in which
experimental variability (such as those collected from hetero-
geneous human subjects) or evolutionary divergence (such
as comparisons between species) add experimental ‘‘noise’’
to gene-expression profiles. Several approaches for testing
for the enrichment of gene sets have been developed,
including gene set enrichment analysis (GSEA) (Subramanian
et al., 2005). GSEA has been made more powerful by the
availability of curated collections of gene-expression signa-
tures extracted from a variety of sources including published
experimental datasets. The largest of these collections, the
Molecular Signatures Database (MSigDB), contains more
than 8,000 signatures (Liberzon et al., 2011). However, only a
small fraction of these gene sets pertain to immune processes
and cell types.

194 Immunity 44, 194–206, January 19, 2016 ª2016 Elsevier Inc.
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We now report the creation of ImmuneSigDB (http://software.
broadinstitute.org/gsea/msigdb/collections.jsp#C7), a compen-
dium of!5,000 well-annotated signatures generated by analysis
of 389 published studies of cell states and perturbations in the
mouse and human immune systems. Using this collection of sig-
natures, we demonstrated that signatures of cell differentiation in
lymphoid cells and endotoxin stimulation in myeloid cells are
highly conserved between humans and mouse models. More-
over, analysis of the transcriptional response to sepsis in human
samples andmousemodels showed that there was highly signif-
icant conservation of gene expression between the species
when measured at the gene set level. However, in addition to
the conserved transcriptional programs, we also identify spe-
cies-specific differences in the biological processes associated
with sepsis. These findings help interpret contradictory observa-
tions regarding the extent of evolutionary conservation in the
transcriptional response to sepsis. ImmuneSigDB will enable
the detailed analysis of cross-species gene expression that is
critical to establishing which biological processes are conserved
and which are not, thus allowing mouse models to better inform
our understanding of human disease.

Figure 1. ImmuneSigDB Collection Is
Derived from Re-Analysis of Published Data
(A) A schematic of the ImmuneSigDB pipeline.

(B) Number gene sets corresponding to major

immune lineages or cell lines and (C) species of

origin contained in ImmuneSigDB.

(D) Number of pairwise comparisons made per

each study used in ImmuneSigDB.

(E) Overlap in gene set membership in Im-

muneSigDB with MSigDB gene sets. Heatmap

indicates False Discovery Rate (FDR) values of

each pairwise comparison between gene sets.

Highlighted are representative biological pro-

cesses in each of the significantly overlapping

clusters of gene sets.

(F) Distribution of the FDR ranges of significance

across all pair-wise comparisons of gene set

membership. See also Figures S1 and S2.

RESULTS

Generating a Compendium of Gene
Signatures Curated from Immune-
Expression Profiles
Wegenerated a comprehensive compen-
dium of gene sets pertaining to immune
biology. The term ‘‘gene-set’’ in this study
refers to groups of genes identified
by selecting either up- or downregulated
genes in comparisons of gene-expres-
sion profiles of interest. We identified
and uniformly analyzed 389 published
studies in the immunology literature
that included genome-wide expression
profiling data (outlined in Figure 1A). We
selected studies to analyze based on
immunological key words in the title or
abstract followed by additional manual

review. We prioritized studies published in immunology journals
of broad interest (Table S1). We identified the corresponding
publicly available datasets in the NCBI Gene Expression
Omnibus (GEO) and, for uniformity, focused on studies per-
formed on Affymetrix platforms (Table S1) that included three
or more biological replicates. Each study was reviewed to iden-
tify and annotate the biology represented and to definemeaning-
ful pairwise comparisons that would create biologically useful
gene sets. For example, an individual study might include a sin-
gle comparison, such as stimulated versus unstimulated cells, or
might have multiple comparisons, as is the case where several
cell types were subjected to different culture conditions and
analyzed at several time points. In such cases, only meaningful
pairwise comparisons, rather than all possible comparisons,
were made (Figure S1).
The raw expression data obtained from each GEO study was

pre-processed uniformly (see Experimental Procedures). We
identified and extracted differentially expressed genes (see
Experimental Procedures and Figure 1A), which comprised the
gene sets for the ImmuneSigDB collection. These sets repre-
sented genes coordinately up- or downregulated in many major

Immunity 44, 194–206, January 19, 2016 ª2016 Elsevier Inc. 195
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immune cell types (Figure 1B) either in their baseline state or
following a range of genetic or chemical perturbations. Immune-
SigDB included data from healthy human subjects, patients with
immune or non-immune diseases, and mouse models. Mapping
orthologous genes to a common identifier allowed us to include
both human (n = 135) and mouse (n = 254) studies (Figure 1C).
From these studies, we identified 2,436meaningful comparisons
and extracted 4,872 gene sets of up- or downregulated genes
comprising the ImmuneSigDB (see Experimental Procedures).
The number of gene sets identified per published study ranged
from one comparison, (e.g., representing an activated versus
unperturbed state or knockout versus wild-type cell) to over 50
(e.g., often representing several cell types cultured in different
conditions for varying amounts of time) (Figure 1D). Particular
biological conditions over-represented in the literature, such as
those related to T cell biology, are correspondingly over-repre-
sented in ImmuneSigDB, with slightly fewer gene sets from
myeloid cells and B cells (Figure 1B). ImmuneSigDB is publicly
available at http://www.msigdb.org.

ImmuneSigDB Expands the Biological Coverage of the
MSigDB
We compared the gene sets generated from immune cells
(ImmuneSigDB) with those in gene sets in theMSigDB collection.
MSigDB is a curated collection of gene sets generated from pub-
lished gene-expression studies that are generally not from the
immunology literature (Liberzon et al., 2011). Wemeasured over-
lap in constituent genes between each gene set in the Immune-
SigDB and all the other MSigDB collections and found that only a
small minority of gene sets significantly overlapped (Figures 1E
and 1F), suggesting that ImmunSigDB added a large amount
of new transcriptional information. A small subset of gene sets
in ImmuneSigDB and MSigDB were highly similar (0.64% of
gene sets with p < 10-8) and these could be clustered into three
groups related to proliferation, inflammation, or type 1 interferon
response (Figure 1E). This suggested that with the exception of
these core biological processes, gene sets derived from immune
cell expression profiles contained genes distinct from non-
immune-related gene-expression profiles that previously predo-
minated the MSigDB.

We performed an analogous analysis of pairwise overlaps in
gene membership between gene sets within ImmuneSigDB.
While most were unique, we found a larger number of gene
sets with significant overlap (1.46% with p < 10-8) within Immu-
neSigDB than between ImmuneSigDB andMSigDB (Figure S2A).
These gene sets largely related to lineage-specific signatures
shared between datasets generated from similar types of cells.
Therefore, ImmuneSigDB has minimal overlap with MSigDB
and provides new gene sets describing immune biology.

ImmuneSigDB Provides a Complementary Resource to
Existing Immune Module Collections
Several groups have previously created collections of gene
modules in the immune system. In studies by Chaussabel et al.
(2008) and Li et al. (2014), existing studies of gene-expression
profiles in human peripheral blood mononuclear cell (PBMC) or
whole blood were analyzed to identify modules of co-regulated
genes to aid in the analysis of gene-expression profiles from im-
mune cells. Several features distinguish ImmuneSigDB from

either of these collections (summarized in Table S2). First, Immu-
neSigDB was generated by direct comparison of the genes that
were up- or downregulated in two known sample classes from
each study. This allowed the published study to serve as a
source of comprehensive annotation of each gene set, in
contrast to either of the module collections that were generated
by analysis of aggregated pools of samples, limiting the direct
experimental annotation of each module. Second, Immune-
SigDB was considerably larger than either module collection
(Table S2). Third, ImmuneSigDB included data from both mouse
models and humans, and from 13 cell or tissue types, rather than
solely from human PBMC and whole blood profiles.
To compare directly the gene-sets in ImmuneSigDB with the

module collections of Chaussabel and Li, we measured overlap
in constituent genes between each gene set in the ImmuneSigDB
and all modules in either theChaussabel or Li collections (Figures
S2B and S2C). We found that only a small fraction of Immune-
SigDB gene sets significantly overlapped with either collection
(0.06% and 0.18% with FDR of < 10-8 for Chaussabel and Li,
respectively), suggesting that the gene-setswithin ImmuneSigDB
and themodules in theChaussabel andLi collectionswere largely
distinct. The small number of significantly overlapping gene-sets
and/or modules contained genes predominantly related to im-
mune cell lineages (e.g., T cell or myeloid) or to the response to
interferon-a (IFN-a) or Toll-like receptor (TLR) ligands. Interest-
ingly, the overlap between modules contained in the Chaussabel
and Li collections was similarly limited (Figure S2D), suggesting
analysis of immune-expression profiles using each of the three
collections could provide complementary information.
Finally, we performed GSEA using four published datasets in

human immune cells (LPS stimulated DC, Tregs, plasma B cells,
andmemory B cells) to compare the results using ImmuneSigDB
with the module collections by Chaussabel and Li (Figure S2E).
A larger number of ImmuneSigDB gene sets were significantly
enriched (even after correcting for multiple hypothesis testing)
in each of the four datasets than with either the Chaussabel
or Li collections. Moreover, inspection of the top 20 most en-
riched gene sets from ImmuneSigDB and modules from the
Chaussabel or Li collections illustrates the extensive biological
annotations (including links to the original studies) available for
each ImmuneSigDB gene set (Table S3). Thus analysis with
ImmuneSigDB provides a resource for the analysis of gene-
expression data in the immune system that is complementary
to existing collections.

Enrichment of ImmuneSigDB Gene Sets Recapitulates
Known Lineage-Specific Differences in Mouse and
Human Hematopoietic Cell Lineages
We next tested whether enrichment analysis of gene expression
using ImmuneSigDB could recapitulate known differences in
lineage-specific gene expression within the immune system.
We analyzed a large, publicly available dataset of gene-expres-
sion profiles from the Immunological Genome Project (ImmGen)
consisting of immune cell types and cell states in mice (Heng
et al., 2008) using a single sample version of GSEA (ssGSEA)
(Barbie et al., 2009). In this approach, gene sets are tested for
enrichment in the list of genes in a single sample ranked by ab-
solute expression rather than by comparison with another sam-
ple. The resulting ssGSEA scores provided an estimate of the
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degree of enrichment of each ImmuneSigDB gene set in each in-
dividual sample in the dataset. In this way, we generated a data-
set containing as rows the profiles of enrichment of each
ImmuneSigDB gene set and as columns the samples. Unsuper-

vised hierarchical clustering of samples from four distinct im-
mune cell types—dendritic cells, B cells, ab T cells, and stem
cells—in the space of gene set enrichment scores revealed
near-perfect clusters of the respective cell types (Figure 2A).

Figure 2. Mouse Immune Lineages Are Accurately Clustered using ImmuneSigDB Enrichments
(A) Unsupervised bi-clustering of ssGSEA values using ImmuneSigDB in samples of four representative mouse immune lineages. Hierarchical clustering of the

10% of gene sets with highest mean absolute deviation is shown. Species of origin of gene sets indicated by green (human) and purple (mouse) bars on the right.

Major branches of the gene set dendrogram clusters are indicated by the numbered black bars on the right.

(B) Distribution of genes contained in gene sets in the same gene set dendrogram clusters as indicated in (A). See also Figure S3.
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Within each lineage, subgroups, such as naive T cells or memory
T cells also were clustered accurately together. Similarly, accu-
rate clustering of different lineages was observed when we
analyzed human-derived cells in the Differentiation Map
(DMAP) (Figure S3) (Novershtern et al., 2011). Hematopoietic
stem cells (HSCs) were accurately distinguished from other line-
ages despite the fact that very few (1.62%) gene sets derived
from stem cells were included in the ImmuneSigDB. This sug-
gests that HSCs are characterized by differential expression of
gene sets related to biological processes shared with immune
cells (Luckey et al., 2006).

We noted that distinct clusters of gene sets showed differen-
tial enrichment in specific cell lineages (Figure 2A, clusters
1–5). We characterized these gene set clusters by determining
the relative frequencies of genes shared by the gene sets in these
clusters (Figure 2B). For example, gene sets in cluster 1, which
predominantly distinguished effector and memory T cells from
naive T cells, most commonly included genes encoding effector
molecules such as granzyme B (GZMB), IFN-g (IFNG), as well as
Blimp1 (PRDM1) and integrin beta 1 (ITGB1), and were predom-
inantly derived from expression profiles of effector and memory
CD8+ T cells in the context of viral infection and anti-tumoral re-
sponses (Table S4, top). Cluster 5, which predominantly distin-
guished T cells from other cell lineages, included T cell genes
such as transcription factors TCF7 and LEF1 as well as compo-
nents of T cell receptor signaling, CD3z (CD247), CD3d (CD3D),
ZAP70, and Lck and included most gene sets derived from
comparing T cells to other immune cell types (Figure 2B and
Table S4, bottom). Stem cells showed strong enrichment of
gene sets in cluster 2 whose predominant genes play a dominant
role in regulating cell cycle (Figure 2B and Table S4, bottom). B
cells and dendritic cells were distinguished by a separate cluster
of gene sets that included known genes representing those
lineages.

Figure 3. Transcriptional Programs Are
Conserved across Mouse and Human
Immune Lineages
(A) GSEA of a randomly selected human study

comparing LPS-stimulated and unstimulated

dendritic cells using ImmuneSigDB gene sets

derived from the study itself (gray) or gene sets

from other mouse (purple) or human (green) da-

tasets of LPS-stimulated myeloid cells. Mountain

plots show all genes ranked by differential

expression in sepsis versus control conditions on

the x axis, and the curves indicate cumulative

enrichment (measured by enrichment score on the

y axis). The ticks below the line correspond to the

position of genes in each gene set.

(B-D) Analysis as in (A) for three additional cell

differentiation states: plasma cells (B), Tregs (C),

and memory B cells (D). All gene sets shown are

significantly enriched (FDR < 0.001).

We noted that each gene set cluster
that distinguished different lineages
included both human and mouse gene
sets (Figure 2, purple and green bars),
suggesting that similar patterns of enrich-

ment were observed using gene sets derived from expression
profiles from tissues of both species. Thus, ImmuneSigDB
robustly clustered human and mouse immune lineages based
on whole transcriptome enrichments of both mouse and hu-
man-derived gene sets.

Analogous Cell Types and Contexts in Mice and Humans
Show Common Patterns of Gene Expression
We, and others, have previously used GSEA to show that the
transcriptional profiles from memory and exhausted CD8+

T cells are highly concordant between mouse and human
datasets (Baitsch et al., 2011; Haining et al., 2008; Quigley
et al., 2010). To test whether this similarity in gene expression
between species is also observed for other cell states we
extended this analysis to other cell types and perturbations
included in ImmuneSigDB. We focused on four separate bio-
logical comparisons (Figure 3) where analysis of gene expres-
sion had been made in analogous cell types or perturbations
in both human and mouse immune cells. This allowed us to
test whether sets of genes differentially expressed in mouse
immune cells showed enrichment in profiles from the analo-
gous comparisons in humans and vice versa (Sweet-Cordero
et al., 2005).
We first identified 15 studies (6 mouse; 9 human) in which the

transcriptional response to lipopolysaccharide (LPS) stimulation
had been profiled in myeloid cells; each study had been used to
generate a gene set in ImmuneSigDB. We selected one human
dataset and generated a ranked list of genes differentially ex-
pressed following LPS stimulation.We then performedGSEA us-
ing gene sets from the other 14 mouse and human datasets. We
found that both human- and mouse-derived gene sets showed
highly significant enrichment (FDR < 0.001), suggesting a strong
conservation in the transcriptional response to LPS between
the two species (Figure 3A). Gene sets derived from studies on
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human cells tended to show slightly higher enrichment scores
than those generated from mouse cells.
We then selected additional cross-species comparisons that

were represented by multiple datasets within the ImmuneSigDB.
We found cross-species similarity in the gene-expression pro-
files of comparisons of plasma versus naive B cells, memory B
cells versus naive B cells, and regulatory T (Treg) versus conven-
tional T cells (Tconv) (FDR < 0.001, Figure 3B–3D and Table S5).
Furthermore, we observed that the biology was not just
conserved to the same extent but in some cases mouse-derived
gene sets were more strongly enriched in human datasets than
other human gene sets, as depicted by the peak height of the
respective graphs of their GSEA enrichment scores. These find-
ings indicate that components of the transcriptional signatures of
LPS stimulation and some T and B cell differentiation programs
are similar in humans and mouse models.

Blood Cells from Human and Mouse Sepsis Share
Conserved Biology Reflected in Their Transcriptomes
As we observed common patterns of gene expression in these
cross-species comparisons, we next studied more a complex
transcriptional dataset from human sepsis and the correspond-
ing mouse models to test whether ImmuneSigDB could resolve
similarities or differences between human and mouse transcrip-

Figure 4. The Transcriptional Response to
Sepsis Is Conserved in Humans and Mouse
Models
(A and B) GSEA of the set of genes upregulated

in mouse sepsis (GSE19668, C57BL/6) in the

ranked list of genes upregulated in human sepsis

(GSE9960, Gram negative infection) (A, left); and

of the corresponding human sepsis gene set en-

riched in rank ordered list of genes upregulated in

mouse sepsis (A, right). Mountain plots indicate

cumulative enrichment, and (B) ticks below the line

correspond to the position of genes in the tenmost

enriched gene sets from ImmuneSigDB in the

rank order of genes upregulated in sepsis versus

control conditions (x axis).

(C) Venn diagram showing overlap in the identity of

significantly enriched ImmuneSigDB gene sets in

mouse (purple) or human (green) sepsis dataset

(top) and the number of shared leading edge

genes in the gene sets enriched in both species

(bottom). Statistical significance calculated by the

hypergeometric test.

(D) Frequency of the genes occurring in the leading

edge of a gene sets enriched in human (green) and

mouse (purple) sepsis datasets. Statistical signif-

icance of the similarity in gene rank is calculated

by the Spearman test. See also Figure S4.

tional profiles. Recent studies have
analyzed the transcriptional response to
sepsis in multiple datasets of gene-
expression profiles obtained from human
PBMC samples or from mouse models
(Seok et al., 2013; Takao and Miyakawa,
2014). However, these studies have
differed in their conclusions regarding

the degree of similarity between species. We reasoned that anal-
ysis with ImmuneSigDB might allow a more detailed analysis
of immune signatures elicited by the sepsis response in both
species.
We began by using ImmuneSigDB to compare the similarity in

gene expression in human and mouse datasets included in the
previous studies of the transcriptional responses to sepsis. We
selected, at random, a pair of human andmouse studies in which
peripheral blood cell gene expression was measured in sepsis
versus control conditions (PBMC following sepsis in human
[GSE9960] and mouse [GSE19668]) (Ahn et al., 2010; Tang
et al., 2009). We first identified genes upregulated following
sepsis in each study and tested whether that signature was en-
riched in the corresponding profile of sepsis versus control in the
other species.
We observed strong enrichment of the set of sepsis-induced

genes derived from the mouse study in the human dataset
(FDR < 0.001, Figure 4A, left). Similarly, we found that a gene
set comprising genes upregulated in human PBMC samples in
sepsis versus control was strongly enriched in the mouse sepsis
gene-expression profile (FDR = 0.002, Figure 4A, right). This
internal comparison suggests that there was marked similarity
between the genes upregulated by sepsis in humans and in a
mouse model.
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Next, we identified similarity in gene expression in the sepsis
response by testing for enrichment of all gene sets in Immune-
SigDB gene sets in the same pair of human and mouse studies.
We compared the ImmuneSigDB gene sets that were signifi-
cantly enriched in the gene-expression profiles of the human
and mouse gram negative and/or positive sepsis response (Fig-
ure 4B and Figures S4A–S4D). We observed marked similarity in
ImmuneSigDB gene sets that were enriched the sepsis-induced
signatures in each species (p = 5.013 10-69, Figures 4B and 4C,
and Table S6).

To identify which genes in the gene sets that were enriched in
both species were ‘‘driving’’ the enrichment of the shared gene
sets, we focused on the ‘‘leading edge’’ of enrichment. Leading
edge genes in a gene set enrichment analysis are those that
contribute most to the enrichment of a particular gene set and
include the most significantly upregulated genes in a given
gene set. We found that the leading edges of gene sets that
were enriched in both species were similar (Spearman r =
0.857, p < 0.0001; Figure 4D, S4D, and Table S7) indicating
that the strong enrichment of shared gene sets is due to the up-
regulation of similar genes. We found the same results when we
performed the same set of analyses using a pair of human and
mouse datasets where both were from gram-positive sepsis or
when we analyzed gene sets enriched in downregulated genes
in sepsis compared to control (Figure S4, Table S7). These
data demonstrate a high degree of concordance in gene sets
that are enriched following sepsis in humans andmousemodels.

Identifying Species-Specific Components of
Transcriptional Responses Induced by Sepsis in Human
and Mouse
We noted that while many gene sets in ImmuneSigDB were en-
riched in both species, there were also many gene sets enriched
in one species but not the other (Figures 4C and S6). This sug-
gested that in addition to similarities in the sepsis response,
there might be species-specific differences in the transcriptional
signatures of sepsis. In order to identify the biological basis for
these species-specific differences, we devised an analytic
approach, termed Leading Edge Metagene (LEM) analysis, to
identify main biological ‘‘themes’’ in groups of ImmuneSigDB
gene sets enriched in the sepsis datasets. We introduce LEM
here and describe it in more detail elsewhere (see Experimental
Procedures). LEM analysis is a novel method to identify the
groups of co-regulated genes—which we term metagenes—
that are highly enriched in multiple gene sets in a comparison
of interest (such as sepsis versus control).

For LEM analysis, we first considered all gene sets that were
significantly enriched in each dataset of sepsis versus control
comparison group (FDR < 0.001). We then filtered the genes in
these enriched gene sets to include only leading edge genes
(Figure 5A, top and middle). These leading edge genes repre-
sented the subset of genes in the group of enriched gene-sets
that drive the enrichment score with respect to upregulation in
the sepsis phenotype. We then used non-negative matrix factor-
ization (NMF) (Brunet et al., 2004; Lee and Seung, 1999; Lee,
2000; Tamayo et al., 2007) to identify groups of genes that are
members of multiple gene sets (Figures S5A and S5B). NMF
analysis therefore identifies groups of genes—which we term
metagenes—that are members of the leading edge of multiple

gene sets that are enriched in the transcriptional response to
sepsis (Figure 5A, bottom).
LEM analysis of the gene sets enriched in human sepsis (316

gene sets) and mouse sepsis (974 gene sets) studied in Figure 4
identified three metagenes that were correlated with the sepsis
response in each study. Individual metagenes were strongly
overrepresented for genes related to distinctive biological pro-
cesses as annotated by GO terms and Reactome (Ashburner
et al., 2000; Croft et al., 2011) (Figure 5B). For instance, in the hu-
man sepsis response, we identified ametagene with an overrep-
resentation of genes involved in mitosis (p = 4.93 10-22) such as
CCNA2,BUB1, and KIF11. A secondmetagene was enriched for
genes related to phagocytosis (p = 2.023 10-13; LAMP2, NCF4,
and ATPV0B) and a third metagene was enriched for genes
related to inflammation (p = 3.7 3 10-4; IL1A, NFKB1, and
CCL20) (Figure 5B). Overlap between the metagene gene
memberships and specific GO terms revealed one predominant
biological process in each (Figure 5B). However, the while each
metagene was significantly enriched for one predominant GO
term, only 5%–15% of genes contained in each metagene over-
lapped with genes in the predominant GO term (Figures S5C–
S5F). This suggests that the genes contained in each LEM are
related to recognizable biological processes, but that the meta-
genes represent discrete modules of genes that overlap with but
are distinct from GO term categories.
We reasoned that metagenes would provide a more ‘‘refined’’

list of functionally related genes than their parental gene-sets.
We therefore tested whether leading edge metagenes were
more highly enriched for genes related to biological processes
(again as annotated by overlapwith GO terms) than their parental
gene sets (Figure 5C). We tested the set of three leading edge
metagenes for overlap with the collection of GO annotated
gene lists, and determined the significance of each GO term’s
overlap. We compared the p values generated by GO term over-
lap with the set of genes comprising each metagene with an
equivalent number of genes randomly sampled from the original
pool of leading edge genes, or from all genes in the genome. We
found that the significance of GO term overlap was much higher
in the leading edge metagenes than in the original leading edge
genes or in a random set of genes. LEM analysis therefore is an
effective strategy to both identify major biological processes
active in a phenotype of interest and simplify the list of 315 and
974 enriched gene sets in human and mouse, respectively, to
a core set of 3 metagenes in each organism that correspond to
major biological themes.
We next compared the similarity between metagenes identified

in the sepsis response in humans with those in mouse sepsis
models.We visualized the pairwise overlap in genes in eachmeta-
gene using a Circos plot (Figure 5D) and determined the signifi-
cance of the overlap for each pairwise comparison of mouse and
human metagenes (Figures 5E and S6) (Krzywinski et al., 2009).
We found striking cross-species similarities for some but not all
metagenes. For example, a metagene annotated as ‘‘Phagocytic
Vesicle’’ correlated with both the human and mouse sepsis
response and contained a very similar set of genes (hypergeomet-
ric testp=1.09310-31,darkblue ribbon,Figure5D).Similarly there
was a highly significant overlap in the metagene annotated as ‘‘in-
flammatory response’’ in the human dataset and ‘‘TRIF-mediated
TLR signaling’’ in the mouse model (p = 2.793 10-23).

200 Immunity 44, 194–206, January 19, 2016 ª2016 Elsevier Inc.



	 258	

	
	
	
	
	

However, we also identified metagenes that were not
conserved between humans with sepsis and the mouse model.
For example, a metagene enriched for genes pertaining to cell
cycle (‘‘mitosis’’ GO term) in humans did not share a correspond-
ing metagene in the mouse model. In the mouse, a type 1 inter-
feron signalingmetagene overlappedwith very few humanmeta-
genes. This analysis approach using ImmuneSigDB suggests
that while some biological processes are strongly conserved be-
tween these two human and mouse datasets (e.g., phagocy-

tosis, TLR mediated inflammatory response), other biological
components are not (e.g., mitosis).

Global Shared and Species-Specific Biological
Processes Can Be Identified using ImmuneSigDB and
NMF Clustering
We next extended this approach to six datasets of sepsis versus
control conditions from three independent studies in humans
and from four comparisons in two mouse studies. We identified

Figure 5. Leading Edge Clustering using Non-Negative Matrix Factorization Identifies Metagenes Representing Distinct Biological
Processes
(A) A schematic of the process by which leading edge metagenes are identified.

(B) Biological annotation of metagenes identified in the studies analyzed in Figure 4 generated using GO terms.

(C) Violin plots showing p values of significance of GO Term overlaps with human (left) and mouse (right) sepsis metagenes (LEM), or equivalent-size samples of

leading edge genes, or randomly selected genes.

(D) Circos plot of the relative size and overlap ofmetagenes inmouse (purple, outer segment) and human (green, outer segment) sepsis datasets. Relative number

of genes in metagenes is indicated by segment length of the inner circle. Thickness of the ribbon corresponds to the relative number of genes shared between

metagenes in the two species.

(E) Heatmap of p values corresponding to significance of overlap in pairwise comparison of metagene gene membership (yellow, highly significant; black, not

significant). Statistical significance of the overlap was calculated by hypergeometric test. See also Figures S5 and S6.
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between three or four metagenes in each study providing a total
of 35 metagenes present in the collected group of sepsis studies
(Figure 6A). We annotated each metagene based on enrichment
of GO Terms (Figure 6A, right) and evaluated the significance of
pair-wise overlap in the genes present in each metagene.

We found that in almost every study, there was at least one
metagene induced by sepsis that showed a highly significant
overlap (indicated in yellow in the heatmap, Figure 6A) withmeta-
genes from every other sepsis study, regardless of species of
origin. One study that proved an exception was the human study
GSE9960, which studied a response to mixed infection, and
showed relatively little overlap with any mouse study. However
the metagenes identified in that study also showed limited over-
lap with metagenes from other human studies, suggesting that

Figure 6. ImmuneSigDB Identifies Shared
and Unique Biology in Mouse and Human
Sepsis Studies
(A) Pairwise overlaps of all metagenes from mouse

(purple bars) and human (green bars) sepsis

studies. Heatmap indicates p values correspond-

ing to significance of overlap between each meta-

gene (small squares) in each study (larger squares;

yellow, highly significant; black, not significant).

The biological annotation of each metagene is

based on the significance of enrichment of the

GO term indicated (blue, large overlap; black, no

overlap) (right). The most significantly enriched GO

term annotating each metagene is indicated by the

key in lower right.

(B) Jaccard index representing the extent of over-

lap of metagenes from human (H) and mouse (M)

studies. Colored are metagenes that are annotated

with the respective biological process as in (A).

(C) Enrichment scores of biological processes that

are species-specific (e.g., mitosis, left) or shared

(e.g., phagocytic vesicle, right) in the human (green

bars) and mouse (purple bars) sepsis datasets.

Significance of the enrichment of the named bio-

logical process in each dataset is indicated by the p

values on the right.

that transcriptional response contained
in that study may represent a different
type of biological response to the other
human and mouse studies.
In addition to these strongly conserved

metagenes, we also found that there
were metagenes induced by sepsis that
had a striking species-specific distribu-
tion. For example, the phagocytic vesicle
metagene was either present or strongly
overlapped with a metagene present in
every dataset, both mouse and human.
In contrast, the mitosis metagene was
much more specific to human datasets
with no significant overlap in mouse
studies (Figure 6B). To confirm these
results, we tested the significance of
enrichment of two GO terms—mitosis
and phagocytic vesicle. When looking at

the whole-genome transcriptional changes, we indeed observed
that mitosis was represented exclusively in human cells in sepsis
while phagocytic vesicle process was represented in both spe-
cies, as we predicted based on the LEM analysis (Figure 6C).
These data reveal context-specific transcriptional modules
induced by sepsis in humans and mice and also highlight the
distinct transcriptional components of the response present in
one species but not the other.

DISCUSSION

We analyzed expression profiles from 389 published studies
of mouse and human immune cells to generate a collection
of curated gene signatures corresponding to cell states and
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perturbations in the immune system. This collection of almost
5,000 genes sets contains substantial biological information
that was not currently contained in existing collections. We
used this new compendium to show that transcriptional signa-
tures induced by LPS stimulation in dendritic cells, and transcrip-
tional programs of T cell and B cell differentiation were highly
conserved between humans and mouse models. Moreover, we
used ImmuneSigDB to analyze expression profiles from patients
andmousemodels of sepsis and showed highly significant over-
lap, suggesting that components of the transcriptional response
to sepsis were highly conserved between species. However, we
also find that there are substantial species-specific differences,
both in enriched gene sets and their component metagenes, in
sepsis response signatures, suggesting that not all biological
processes induced by sepsis evident at the transcriptional level
in humans are present in mouse models and vice versa. These
findings suggest that ImmuneSigDB provides a useful tool for
detecting subtle patterns of similarity and difference in large-
scale datasets of gene expression from cells and tissues in the
immune system.
Several studies have directly compared the transcriptional

programs in the human and mouse immune systems. We, and
others, previously identified conserved patterns of gene expres-
sion that change during the differentiation of memory T and B
cells, and in exhausted to CD8+ T cells (Baitsch et al., 2011; Hain-
ing et al., 2008; Quigley et al., 2010). A recent comparison of
gene expression in seven immune cell groups from humans
and mice also found a highly significant degree of similarity in
global patterns of expression and in the putative transcriptional
regulators of these genes (Shay et al., 2013). However, in that
study, although the majority of genes showed a pattern of
expression that was highly correlated between species, 30%–
50% of genes did not show significant correlation between
species. Two recent studies of the sepsis datasets analyzed in
the present study reached opposite conclusions regarding the
degree of similarity between the mouse and human response
to sepsis (Seok et al., 2013; Takao and Miyakawa, 2014). Thus,
the degree of conservation of transcriptional signatures in
the mouse and human immune systems remains controversial
(Davis, 2008; Gilad and Mizrahi-Man, 2015; Hackam and Redel-
meier, 2006; Lin et al., 2014; Rice, 2012; Shay et al., 2014; van
der Worp et al., 2010; Warren et al., 2014).
Our analysis using ImmuneSigDB suggests that there are

both conserved and species-specific transcriptional programs
induced by sepsis in the immune system. Overall, the transcrip-
tional program shows highly significant similarity between sepsis
in the human and mouse. Specifically, analysis of the leading
edge metagenes across human (six comparisons) and mouse
sepsis datasets (four comparisons) found that in many of the
datasets from both species there was coordinate upregulation
of metagenes involved in interferon-response and phagocytic
processes. This suggests that features of the sepsis response
such as interferon release and neutrophilia are shared between
species.
However, we also show that many gene sets are enriched in

only one species, and metagenes related to mitosis were highly
enriched in sepsis-induced profiles in humans but were not
significantly enriched in the mouse model. Thus, it is likely that
although some components of the sepsis response are highly

conserved between species, there is also substantial divergence
in the biological processes detected by transcriptional profiling
each. Detailed analysis of the transcriptional features of the
mouse and human immune systems is therefore required to sub-
stantiate conclusions regarding the conservation of a particular
biology of interest in two datasets. Whether the differences we
observe are due to inherent biological differences between the
two species remains unclear. For example, it is possible that
the mitotic signature is present in human, but not mouse,
because the exact timing of the initiation of activation of immune
cells in humans with sepsis is not precisely known and might be
more variable compared to tightly controlled, narrow window of
induction of sepsis in mouse models.
Our compendium adds to a growing list of collections of tran-

scriptionally co-regulated genes in the immune system. In the
human immune system, several studies have identified groups
of co-regulated gene modules from expression profiles derived
from blood samples representing a range of states of health
and disease (Chaussabel et al., 2008; Li et al., 2014). This
modular approach to the analysis of gene expression can aid
interpretation of gene-expression profiles, increase robustness,
and facilitate analyses that span multiple datasets. However,
ImmuneSigDB is distinct from those previously described in
several respects. Studies by Chaussabel and by Li have focused
on identifying collections of genes—termed modules—that tend
to vary in expression in a coordinate fashion across a reference
set of expression profiles (Chaussabel et al., 2008; Li et al.,
2014). Defining modules based on network reconstruction
across hundreds or thousands of experimental conditions
makes it difficult to associate a particular module with a defined
cell state or perturbation that usually results in its up- or downre-
gulation. In contrast, the annotations describing each gene set in
the ImmuneSigDB include all the experimental details from a
published manuscript, allowing a more transparent connection
between gene set and biology. Moreover, ImmuneSigDB was
designed for use with GSEA, because each gene set contains
either up- or downregulated genes only, rather than a combina-
tion of both as can appear in Chaussabel or Li modules, which
might limit the use of the latter collections in analyses such as
GSEA (Figure S2D, Table S3). Finally, each collection of previ-
ously-published modules was defined in a single species (hu-
mans), making the generalizability of these compendia to other
species hard to predict.
The ImmuneSigDB collection differs in another important

respect from previous module collections. The studies by
Chaussabel et al. and Li et al. were designed to identify non-
overlapping modules of gene expression. However, Immune-
SigDB contains gene sets derived from experimental perturba-
tions that are likely to induce multiple biological processes,
each of which might be represented by sub-signatures in a given
gene set. Moreover, several gene sets might contain the tran-
scriptional correlate of the same biological processes. For
some analytic purposes, it might be useful to have a single
gene set that includes the multiple biological processes that
are initiated by the complex stimulus such as receptor-ligand
engagement or cell differentiation. However, for other applica-
tions, such as the analysis which we conducted of the sepsis
datasets, a more ‘‘atomic’’ approach might be preferred.
We have therefore developed an analytic approach to extract
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non-redundant leading edgemetagenes from the experimentally
derived gene-expression profiles.

Analysis with ImmuneSigDB using GSEA or GSEA combined
with a leading-edge metagene analysis might therefore provide
the systems immunologist with a useful resource for the analysis
of gene expression in the immune system.

EXPERIMENTAL PROCEDURES

ImmuneSigDB Generation
We surveyed the immunology literature and identified published studies that

included human or mouse microarray Affymetrix gene expression data in

NCBI Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).

We downloaded the corresponding datasets from GEO (Barrett et al., 2007).

When available, raw microarray data in the form of the CEL files were normal-

ized by the Robust Multichip Average (RMA) (Bolstad et al., 2003) using

justRMA function from the RBioconductor package affy (version 1.40.0) (Gaut-

ier et al., 2004). When CEL files were absent, we downloaded processed

expression data from GEO by means of R GEO query package (version

2.28.0) (Davis and Meltzer, 2007). We mapped Affymetrix probe set identifiers

to human gene symbols using the Collapse Dataset tool (max probe algorithm)

of the GSEA program (Subramanian et al., 2007). We used ortholog gene

assignments from Mouse Genome Informatics. The specific mappings were

retrieved from the MGI web site on 14 April 2012 and contained 17,827 hu-

man-mouse ortholog gene pairings. Phenotype classes were assigned manu-

ally according to the original sample annotations and based on review of

meaningful biological comparisons (Figure S1). We implemented a pipeline

in R, which combined processed microarray data with the phenotype annota-

tions and produced standard formatted files (.gct and .cls) for each compari-

son as needed.

For each two-class comparison, the genes were ranked according to

an information-based similarity metric (RNMI) (Abazeed et al., 2013) from top

upregulated to bottom downregulated genes in the two groups. Gene sets

comprised genes differentially expressed with an FDR < 0.02, and a maximum

number of genes was set at 200 (i.e., all gene sets had at most 200 differentially

expressed genes). This way we generated two gene sets from each assigned

biological comparison of two groups—‘‘Group_A_vs_Group_B_UP’’ and

‘‘Group_A_vs_Group_B_DN,’’ for the top upregulated and bottom downregu-

lated genes, respectively, identified for the genesmost different in the samples

in group A compared to the samples in group B. The resource is accessible as

the C7 collection at http://www.msigdb.org.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was performed as described previously

(Mootha et al., 2003; Subramanian et al., 2005). To analyze transcriptional data

from Immunological Genome Project (ImmGen) (Heng et al., 2008) and Differ-

entiation Map (DMAP) (Novershtern et al., 2011), we used single sample GSEA

(ssGSEA) as described previously (Barbie et al., 2009; Reich et al., 2006), to

create a matrix in which columns represented individual samples and rows

corresponded to gene sets, and the values represented the single sample

ssGSEA score of each gene set in each sample. We averaged the biological

replicates and filtered this matrix to include only the top 10% of gene sets

based on mean absolute deviation (MAD) across sample types and bi-

clustered using 1-Pearson Correlation.

Leading Edge Metagene Analysis
We developed an approach to identify groups of genes—termed leading edge

metagenes (LEM)—that are both associated with a phenotype of interest and

shared between multiple gene sets enriched in that phenotypic comparison

(Y.T., unpublished data). We reasoned that groups of genes that are co-regu-

lated in the phenotype of interest and also present in multiple gene sets are

likely to represent the core sub-signatures of genes related to distinct biolog-

ical processes or pathways. Our approach leverages the notion of the leading

edge genes in a GSEA analysis, which are the genes whose expression profile

is most highly correlated with the phenotype distinction in a comparison of

biological states and thus drives the GSEA enrichment statistic. LEM analysis

identifies groups of genes (metagenes) that are common to multiple gene sets

returned in a GSEA result, and strongly correlated with the phenotype of

interest.

First we perform GSEA using the ImmuneSigDB in a two-class comparison

of interest (e.g., sepsis versus control). GSEA yields an enrichment score to

quantify the overrepresentation of a gene set (e.g., genes coordinately up-

or downregulated in previous experiments) at the top or bottom of a ranked

list of genes (e.g., generated by differential expression of in a comparison of

interest). The leading edge of each enriched gene set is defined as the subset

of geneswith positive contribution to the enrichment score before it reaches its

peak; i.e., those that are most correlated with the phenotype of interest.

We then consolidate the leading-edges of them top-scoring gene sets into a

sparse n by m matrix M, where the number of rows is the cardinality of the

union of genes from all the leading-edges in the m top gene sets, and the col-

umns correspond to the genes in them enriched gene sets. The value of each

entry in the matrix is the signal to noise ratio of the corresponding gene be-

tween two conditions in comparison (Equation 1) and 0 if the gene is not in the

leading edge of that gene set. A large signal to noise ratio indicates a signifi-

cant difference in expressions of the corresponding genes between the two

conditions.

s2n=
mA ! mB

sA ! sB
(1)

To identify clusters in this matrix, we use non-matrix factorization (Brunet

et al., 2004; Lee and Seung, 1999; Lee and Seung, 2000; Tamayo et al.,

2007) to yield two matrices,W and H.Wmatrix is a low-dimensional represen-

tation of the M matrix and each dimension of W is a linear combination of n

genes, called a metagene. The entries in the H matrix represent the quantity

of each metagene required to reconstruct each of the M gene sets. The coef-

ficient in W matrix can be viewed as the contribution of each gene to the cor-

responding metagene. Inspection of the W matrix shows that in each meta-

gene, the coefficients of most genes are usually very small, and only a small

number of genes have a coefficient significantly larger than 0. As each meta-

gene is a positive linear combination of all the genes, a small coefficient indi-

cates negligible contribution to the metagene. Thus the next step of our algo-

rithm is to filter out genes with small coefficients in each metagene. To do that,

we first assume that the background distribution of coefficients fulfills an expo-

nential distribution. We set a filtering threshold at the 95% quantile of the fitted

exponential distribution and set all coefficients below this to zero.

Because each gene can contribute to more than one metagene we next

need to assign each gene to a single metagene. The assignment of genes to

metagenes uses the following rules: (1) if one gene has no contribution to

any of the metagenes, then it will be defined as not in any metagene, and

(2) each gene with a coefficient above the threshold (defined above) will

be assigned to the metagene where it has the largest coefficient. Each meta-

gene is annotated with a biological ‘‘theme’’ based on the Jaccard overlap of

its constituent genes with GO categories (Ashburner et al., 2000).
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Abstract
Exhausted T cells express multiple co-inhibitory molecules that impair their function and
limit immunity to chronic viral infection. Defining novel markers of exhaustion is important
both for identifying and potentially reversing T cell exhaustion. Herein, we show that the
ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV
or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39
expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with
PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with
viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis
Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells
that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T
cell population is enriched for cells with the phenotypic and functional profile of terminal
exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the
purinergic pathway in the regulation of T cell exhaustion.

Author Summary
Chronic viral infection induces an acquired state of T cell dysfunction known as exhaus-
tion. Discovering surface markers of exhausted T cells is important for both to identify
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exhausted T cells as well as to develop potential therapies. We report that the ectonucleoti-
dase CD39 is expressed by T cells specific for chronic viral infections in humans and a
mouse model, but is rare in T cells following clearance of acute infections. In the mouse
model of chronic viral infection, CD39 demarcates a subpopulation of dysfunctional,
exhausted CD8+ T cells with the phenotype of irreversible exhaustion. CD39 expression
therefore identifies terminal CD8+ T cell exhaustion in mice and humans, and implicates
the purinergic pathway in the regulation of exhaustion.

Introduction
In acute infections, antigen-specific T cells differentiate into activated effector cells and then
into memory T cells which rapidly gain effector functions and re-expand on subsequent
encounter with the same pathogen [1]. In contrast, during chronic infections, pathogen-spe-
cific T cells gradually lose effector functions, fail to expand, and can eventually become physi-
cally deleted [2]. These traits are collectively termed T cell exhaustion, and have been described
both in animal models of chronic viral infection as well as in human infections with hepatitis C
virus (HCV) and human immunodeficiency virus (HIV) [2–4]. Identifying reversible mecha-
nisms of T cell exhaustion is therefore a major goal in medicine.

Prolonged or high-level expression of multiple inhibitory receptors such as PD-1, Lag3, and
CD244 (2B4) is a cardinal feature of exhausted T cells in both animal models and human dis-
ease [5–7]. Expression of PD-1 appears to be a particularly important feature of exhausted
CD8+ T cells, as the majority of exhausted cells in mouse models of chronic infection express
this receptor, and blockade of the PD-1:PD-L1 axis can restore the function of exhausted CD8+

T cells in humans and mouse models [2,6]. However, in humans, many inhibitory receptors
also can be expressed by a large fraction of fully functional memory CD8+ T cells. PD-1, for
instance, can be expressed by up to 60% of memory CD8+ T cells in healthy individuals, mak-
ing it challenging to use PD-1 to identify exhausted CD8+ T cells in humans, particularly when
the antigen-specificity of potentially exhausted CD8+ T cells is not known [8].

Studies in mice and humans suggest that exhausted CD8+ T cells are not a homogeneous
population, but instead include at least two subpopulations of T cells that differentially express
the transcription factors T-bet and Eomesodermin (Eomes) [9–11]. T-bethigh CD8+ T cells rep-
resent a progenitor subset with proliferative potential that give rise to Eomeshigh CD8+ T cells,
which are terminally differentiated and can no longer proliferate in response to antigen or be
rescued by PD-1 blockade [9,12]. Both populations express PD-1, but Eomeshigh exhausted
cells express the highest levels of PD-1. However, no specific cell-surface markers of this termi-
nally differentiated population of exhausted cells have thus far been identified.

CD39 (ENTPD1) is an ectonucleotidase originally identified as an activation marker on
human lymphocytes and as the vascular ecto-ADPase [13], but has subsequently been shown
to be a hallmark feature of regulatory T cells [14–16]. CD39 hydrolyzes extracellular ATP and
ADP into adenosine monophosphate, which is then processed into adenosine by CD73, an
ecto-5'-nucleotidase [17]. Adenosine is a potent immunoregulator that binds to A2A receptors
expressed by lymphocytes causing accumulation of intracellular cAMP, preventing T cell acti-
vation and NK cytotoxicity [18–20]. Loss of CD39 in Tregs markedly impairs their ability to
suppress T cell activation, suggesting that the juxtacrine activity of CD39 serves to negatively
regulate T cell function [15]. However, blood CD8+ T cells have generally been reported to be
CD39– [14,21–23], and the expression of this marker on exhausted T cells has not been
examined.
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In this study, we demonstrate that, in contrast to CD8+ T cells from healthy donors, anti-
gen-specific CD8+ T cells responding to chronic viral infection in humans and a mouse model
express high levels of biochemically active CD39. CD39+ CD8+ T cells co-express PD-1 and are
enriched for a gene signature of T cell exhaustion. In the mouse model of chronic LCMV infec-
tion, high levels of CD39 expression demarcate terminally differentiated virus-specific CD8+ T
cells within the pool of exhausted CD8+ T cells. Thus, CD39 provides a specific, pathological
marker of exhausted CD8+ T cells in chronic viral infection in humans and mouse models of
chronic viral infection.

Results
CD39 is expressed by CD8+ T cells responding to chronic infection
We surveyed the expression of CD39 by CD8+ T cells from healthy adult subjects without
chronic viral infection. Consistent with previous reports we found that only a small fraction
(mean 6%) of CD8+ T cells in healthy individuals expressed CD39 (Fig 1A and 1B) [14,21–23].
This small population of CD39+ CD8+ T cells in healthy donors was primarily found in the
central and effector memory compartments while virtually no naive CD8+ T cells expressed
CD39 (S1 Fig). We next focused on CD39 expression by antigen-specific CD8+ T cells specific
for latent viruses in healthy subjects and found that only a very small fraction of CMV- or
EBV-specific CD8+ T cells expressed CD39 (Fig 1A and 1B) (mean 3% and 7% respectively).

We next measured CD39 expression by T cells specific for the chronic viral pathogens HCV
and HIV. We measured CD39 expression in 57 subjects with acute HCV infections (23 with
acute resolving infection and 34 with chronically evolving infection), and in 40 subjects with
HIV infection (28 chronic progressors and 12 controllers; clinical characteristics of the subjects
are summarized in S1 Table). We found a mean of 51% of HCV-specific CD8+ T cells and 31%
of HIV-specific CD8+ T cells expressed CD39, a number significantly higher than CD8+ T cells
specific for EBV or CMV, or in total CD8+ T cell populations from healthy individuals (Fig 1A
and 1B). A slightly greater fraction of virus-specific CD8+ T cells from HCV-infected subjects
expressed CD39 than did those from HIV-infected subjects.

In subjects with chronic infection, the frequency of CD39-expressing cells in the virus-spe-
cific (tetramer+) CD8+ T cell population was significantly higher than in the total CD8+ T cell
population (Fig 1C and 1D). However the fraction of total CD8+ T cells expressing CD39 in
the CD8+ T cell compartment of individuals with HCV or HIV infection was slightly increased
compared to healthy controls (Fig 1E), consistent with the presence of other, unmeasured
virus-specific CD8+ T cells that were also CD39+ in the tetramer−fraction of CD8+ T cells.
Thus CD39 is expressed infrequently by CD8+ T cells in healthy donors, but marks a large frac-
tion of pathogen-specific cells CD8+ T cells in patients with chronic infection.

CD39 expressed by CD8+ T cells hydrolyzes ATP
CD39 expressed by regulatory T cells catalyzes the hydrolysis of ADP to 5’-AMP [14–16] but
its enzymatic activity can be regulated by a range of post-transcriptional mechanisms [PMID.
We therefore tested CD39 expressed by CD8+ T cells from patients infected with chronic HCV
was functional using ATP hydrolysis as a surrogate marker of CD39 activity [24–26]. We
sorted CD39– and CD39+ CD8+ T cells from six HCV-infected individuals (four with chronic
infection and two with resolved infection) and incubated equal numbers of cells in the presence
of extracellular ATP (eATP). Remaining levels of eATP were measured in the supernatant by
HPLC. As a control, we assessed ATP hydrolysis by CD4+ CD25+ CD39+ regulatory T cells
(Tregs) sorted from the same individuals (Fig 2A).
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Within the CD39+ CD8+ T cell population the level of CD39 expression was lower than in
Tregs (Fig 2B). Consistent with reduced CD39 expression relative to Tregs, ATP hydrolysis by
CD39+ CD8+ T cells was less than that by Tregs (Fig 2C). However ATP hydrolysis by CD39+

CD8+ T cells was significantly greater than that of CD39– cells (Fig 2C). Thus CD39 expressed
by CD8+ T cells in HCV infection is enzymatically active and capable of hydrolyzing ATP.

Fig 1. CD39 is highly expressed by virus-specific CD8+ T cells in chronic viral infection. (A) Expression of CD39 by virus-specific CD8+ T cells. Plots
are gated on CD8+. (B) Fraction of total or antigen-specific CD8+ T cells expressing CD39. (C, D) Comparison of CD39 expression by total CD8+ T cells with
virus-specific CD8+ T cells from patients with HCV (C) and HIV (D) infections. (E) Fraction of total CD8+ T cells expressing CD39 in healthy, HIV or HCV
infected donors. Error bars represent SEM. Statistical significance was assessed by Kruskal-Wallis test (B, E), or Wilcoxon test (C, D). *P <0.05, ***P
<0.001, ****P <0.0001.

doi:10.1371/journal.ppat.1005177.g001
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CD39 is co-expressed with PD-1 on virus-specific CD8+ T cells and
correlates with viral load in both HCV and HIV infection
CD8+ T cells specific for chronic viruses such as HCV and HIV express increased levels of PD-
1 [3,27]. We therefore examined the relationship between CD39 and PD-1 expression by virus-
specific CD8+ T cells in 54 patients with HCV (23 chronically infected and 31 resolvers) and 40
patients infected with HIV (28 chronic progressors, 7 viremic controllers and 5 elite control-
lers). In both diseases we found a significant association between the level of expression (mean
fluorescence intensity, MFI) of CD39 and PD-1 on antigen-specific CD8+ T cells in subjects
with HCV and with HIV (r = 0.70, P<0.0001 and r = 0.54, P<0.05, respectively) (Fig 3A and
3B).

We next examined the relationship between CD39 and PD-1 expression and viral load in
HCV and HIV infection. We found that in both the HCV and HIV infection there was a mod-
est but significant correlation between viral load and the level of CD39 expression on virus-spe-
cific CD8+ T cells measured by MFI (Fig 3C). The fraction of CD39+, virus-specific CD8+ T
cells was significantly higher in HIV progressors compared with those from HIV controllers
(S2 Fig). A similar, but non-significant, trend was seen comparing CD39 expression in HCV-
specific CD8+ T cells in patients with chronic versus resolved disease. However, in HCV, a sig-
nificantly higher fraction of virus-specific CD8+ T cells co-expressed both CD39 and PD-1 in
patients with chronic versus resolved disease (S2 Fig). Consistent with these findings, there was
a significant correlation between viral load and the fraction of virus-specific CD8+ T cells that
were CD39+ PD-1+ double positive in both HCV and HIV infection (S2 Fig). PD-1 expression
was also modestly correlated with the viral load in HCV and in HIV-infected patients (Fig 3D)
[3,27]. Thus CD39 expression by virus-specific CD8+ T cells is greatest in setting of high anti-
gen burden.

Transcriptional analysis of CD39+ CD8+ T cells in HCV infection
In order to characterize more broadly the phenotype of CD39+ CD8+ T cells from individuals
with chronic infection, we compared the global gene expression profiles of sorted CD39+ and
CD39– CD8+ T cells from 8 HCV-infected subjects (3 with acute resolving infection and 5 with
chronically evolving infection; S4 Table). Limited numbers of cells precluded the comparison
of CD39+ and CD39– CD8+ T cells within HCV-specific cells, leading us to focus on the total

Fig 2. CD39 expressed by CD8+ T cells in HCV infection is enzymatically active. (A) Flow cytometry sorting gates of CD39+ and CD39– CD8+ T cells and
CD39+ CD25+ CD4+ Tregs used for rpHPLC analysis of CD39 activity. (B) Summary of CD39 expression level relative to Tregs in the same subjects. (C) ATP
hydrolysis by CD8+ T cell populations relative to Tregs. Data represent 6 patients with chronic HCV infection. Error bars represent SEM. Statistical
significance was assessed by paired Student’s t-test (B, C). *P <0.05, **P <0.01.

doi:10.1371/journal.ppat.1005177.g002

CD39 Expression Identifies Terminally Exhausted CD8+ T Cells

PLOS Pathogens | DOI:10.1371/journal.ppat.1005177 October 20, 2015 5 / 21



	 270	

	
	
	
	
	

Fig 3. CD39 expression correlates with PD-1 expression and viral load in chronic viral infection. (A)
CD39 and PD-1 expression in chronic HCV (left) or HIV infection (right). Representative plots demonstrate
total (gray) and virus-specific (red) CD8+ T cells. (B) Correlation between CD39 and PD-1 expression by
HCV- (left) and HIV-specific (right) CD8+ T cells. (C) Correlation between CD39 expression by virus-specific
CD8+ T cells and viral load count in HCV (left) or HIV (right) infection. (D) Correlation between PD-1
expression by virus-specific CD8+ T cells and viral load in HCV (left) or HIV (right) infection. Correlation was
assessed by Pearson correlation coefficient (B, C, D). MFI; mean fluorescence intensity.

doi:10.1371/journal.ppat.1005177.g003
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CD8+ population of antigen-experienced CD8+ T cells (S4 Table). Because naive CD8+ T cells
express little CD39 (S1 Fig), we excluded this population from the sorted cells (S3 Fig) to enable
direct comparison of antigen-experienced CD39+ and CD39– CD8+ T cells.

We first used unbiased clustering approaches to identify whether CD39+ and CD39– CD8+

T cells showed distinct patterns of gene expression. Analysis of gene expression profiles using
consensus hierarchical clustering (Fig 4A) showed two distinct clusters of samples that

Fig 4. Transcriptional analysis of CD39+ and CD39– CD8+ T cells in HCV infection. (A) Consensus hierarchical clustering of expression profiles from
CD39+ (black) and CD39– (grey) CD8+ T cells from 8 HCV infected patients. Clustering is based on the top 10% of genes by variance across the dataset.
Sample similarity (1-Pearson correlation coefficient) is annotated with color from low (white) to high (green). (B)Gene set enrichment map displaying Gene
Ontology gene sets enriched (FDR < 0.1) in CD39+ CD8+ T cells from (A). Nodes (in red) are sized in proportion to gene set size; connecting line thickness
represents extent of gene member overlap between gene sets. (C)Gene set enrichment analysis of a signature of 200 genes up-regulated in exhausted
CD8+ T cells from the mouse model of chronic viral infection versus acute infection (day 30 post infection) in the ranked list of genes differentially expressed
by CD39+ vs. CD39– CD8+ T cells. Leading edge genes are indicated by orange symbols. (D) Volcano plot of all genes (grey) or exhausted leading edge
genes (orange) from (C).

doi:10.1371/journal.ppat.1005177.g004
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corresponded almost exactly to CD39+ and CD39– populations, suggesting that that in both
acute and chronic infection, CD39 expression demarcates two types of CD8+ T cells with
markedly different patterns of gene expression. Supervised analysis of differential gene expres-
sion identified 619 genes differentially expressed (FDR<0.15) between CD39+ and CD39–

CD8+ T cells (S4 Table). Inspection of the list of differentially expressed genes revealed many
with known roles in CD8+ T cell biology including increased expression of the inhibitory
receptors PD-1 and CTLA-4 in CD39+ CD8+ T cells.

To identify biological processes that were differentially active in CD39+ vs. CD39– cells, we
performed gene set enrichment analysis using the Gene Ontology collection of gene sets [28].
We found no significant enrichment of GO terms in the CD39– CD8+ subset. In contrast, 21
gene sets significantly enriched (FDR<0.1) in CD39+ population, almost all of which were
related to mitosis and cell-cycle associated genes or cytoskeleton organization (Fig 4B). This
suggests that CD39+ CD8+ T cells in chronic viral infection show coordinate up-regulation of
genes related to proliferation.

The expression of CD39 by CD8+ T cells in chronic but not acute/latent infection, suggests
that it may be a marker of T cell exhaustion. We therefore tested whether the profile of CD39+

CD8+ T cells was enriched for genes expressed by exhausted CD8+ cells. Previous studies of
gene expression in CD8+ T cells in the mouse model of chronic viral infection with the Clone
13 strain of LCMV have identified signatures of T cell exhaustion that are also enriched in
exhausted CD8+ T cells in humans [29–31]. We therefore curated a signature of 200 genes up-
regulated by exhausted CD8+ T cells responding to chronic infection relative to functional
memory CD8+ T cells generated by acute infection (LCMV Armstrong strain). We found that
the exhausted CD8+ T cell signature from LCMVmodel was significantly enriched in CD39+

vs. CD39– CD8+ T cells in subjects with HCV infection (Fig 4C). We focused on the “leading
edge” genes contributing most to the enrichment [32], which correspond to genes up-regulated
both in the mouse exhausted signature and in the human CD39+ profile. As expected, the lead-
ing edge genes included PD-1 (PDCD1), a feature of both human CD39+ CD8+ T cells and of
exhausted CD8+ T cells in the mouse model (Fig 4D). In addition we found that up-regulation
of many genes associated with proliferation including BUB1, TOP2A andMKI67 was common
to mouse exhausted CD8+ T cells and human CD39+ CD8+ T cells. Thus CD39+ CD8+ T cells
in HCV infection and exhausted CD8+ T cells in a mouse model of chronic infection share
transcriptional features that include genes related to proliferation.

CD39 is increased in exhausted CD8+ T cells in the mouse model of
chronic LCMV infection
Because the mouse signature of CD8+ T cell exhaustion was significantly enriched in the tran-
scriptional profile of CD39+ CD8+ T cells in HCV-infected patients, we next asked if CD39 was
up-regulated by CD8+ T cells in the mouse model of chronic viral infection. To address this
question we compared two well-described mouse models of viral infection using two strains of
LCMV: LCMV Armstrong that causes an acute infection that is resolved in up to 8 days; and
LCMV Clone 13 that persists in mice for up to 3 months and leads to T cell exhaustion [5,6].

We measured CD39 expression and compared it to PD-1 expression in CD8+ T cells
responding to each infection. While naive CD8+ T cells expressed neither CD39 nor PD-1 (Fig
5A), both were rapidly and coordinately up-regulated by antigen-experienced cells following
either infection (day 7 post infection [d7 p.i.], Fig 5B). However, in acute infection, the fraction
of CD39 bright PD-1+ population decreased with time. In contrast, high expression of CD39
and PD-1 was maintained in Clone 13 infection. The accumulation of CD39 bright PD-1+ cells
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Fig 5. CD39 is highly up-regulated by exhausted CD8+ T cells in a mousemodel of chronic infection. (A, B) Expression of CD39 and PD-1 by CD44–

naive mouse CD8+ T cells (A) and in CD8+ T cells at indicated times following LCMV Armstrong (acute) or Clone 13 (chronic) infection (B). Representative
plots show total (black) and H-2Db GP276-286 tetramer-specific CD8+ T cells (red). Summary of results in 5 mice per group is shown in bar-graphs on the right.
Statistical significance was assessed with Mann-Whitney test. *P < 0.5, **P < 0.01.

doi:10.1371/journal.ppat.1005177.g005
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among the total CD8+ population was most apparent in the H-2Db GP276-286 tetramer-specific
CD8+ T cells (Fig 5B).

Thus after chronic viral infection, antigen-specific CD8+ T cells can be identified by high
expression of both CD39 and PD-1. This difference in expression of both markers between
chronic and acute infection is noticeable as early as d7 p.i. but becomes more pronounced with
time after infection.

CD39 expression correlates with a terminally exhausted phenotype in
virus-specific CD8+ T cells in chronic infection
Having determined that high, persistent expression of CD39 is a feature of LCMV-specific
CD8+ T cells during chronic LCMV infection, we next sought to further characterize the phe-
notype of CD39+ CD8+ T cells during Clone 13 infection. We analyzed CD39 expression in
antigen-experienced, CD44+ CD8+ T cells and found that mice infected with Clone 13 devel-
oped a population of cells with particularly high expression of CD39 (CD39high). This popula-
tion was entirely absent in mice infected with the acute LCMV Armstrong strain at d35 p.i.,
which only exhibited the presence of intermediate levels of CD39 staining (CD39int) (Fig 6A).
Further characterization of the two sub-populations in Clone 13 infected mice revealed that
the CD39high cells showed more down-regulation of CD127 (Fig 6B) and higher expression of
PD-1 (Fig 6C) than did the CD39int population.

Because the highest levels of PD-1 are characteristic of terminally exhausted CD8+ T cells in
chronic infection [12,33], we tested whether CD39high T cells in chronic infection showed
other phenotypic characteristics of terminal exhaustion. Analysis of expression of two addi-
tional co-inhibitory receptors, CD244 (2B4) and Lag3, showed that a significantly higher frac-
tion of CD39high cells co-expressed multiple receptors, consistent with terminal exhaustion. In
contrast, CD39int CD8+ T cells were generally negative for all three receptors analyzed (Fig 6D
and 6E). We next examined the expression of the transcription factors T-bet and Eomes. We
found that the CD39high subset of CD8+ T cells was comprised primarily of Eomeshigh T-betlow

terminally exhausted phenotype, while the CD39int CD8+ T cells showed a comparable distri-
bution of both (Fig 6F). Similarly, we found that in CD8+ T cells from subjects with either
HCV or HIV infection, the CD39+ CD8+ T cell compartment contained a significantly higher
ratio of Eomeshigh T-betlow: Eomeslow T-bethigh relative to CD39– CD8+ T cells (S4 Fig). Thus
in both humans and mice with chronic viral infection, CD39+ CD8+ T cells show a phenotype
consistent with previous descriptions of terminal exhaustion [9].

CD39 correlates with reduced functionality in virus-specific CD8+ T cells
in chronic infection
We next examined the functional properties of CD39high and CD39int CD8+ T cells from mice
with chronic LCMV infection. Co-production of cytokines IFN-γ and TNFα is a feature
of virus-specific T cells responding to acute infection and in the early stages of chronic infec-
tion but is progressively lost as exhaustion evolves [2]. To compare the functionality of
CD39high and CD39int virus-specific CD8+ T cells, we isolated CD8+ T cells from mice with
chronic infection at d35 post-infection and stained for IFN-γ and TNFα following in vitro
stimulation with GP33-41 peptide. We found a significantly smaller fraction of antigen-specific
coproduced IFN-γ and TNFα in CD39high CD8+ T cells compared to CD39int CD8+ T cells
(Fig 7A and 7B).

To confirm this finding, we analyzed the function of transferred P14 CD8+ T cells in chronic
infection. The P14 TCR transgene recognizes the GP33-41 peptide of LCMV presented on H-
2Db. We found that both the frequency of IFN-γ-producing and IFN-γ/TNFα co-producing
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P14 T cells was significantly lower in CD39high CD8+ T cells compared to CD39int CD8+ T cells
(Fig 7C and 7D). The defect in cytokine secretion was not only observed in terms of the fre-
quency of cytokine-secreting cells, but also in the amount of cytokine detected per cell. Even
among cells that did secrete IFN-γ, we found the MFI of expression to be significantly lower in
CD39high CD8+ T cells compared to CD39int CD8+ T cells (Fig 7E and 7F). Thus high levels of
CD39 expression demarcate a population of exhausted cells with the poorest function in
chronic infection.

Fig 6. CD39 identifies terminally exhausted CD8+ T cells in mice with chronic LCMV infection. (A) Expression of CD39 and CD44+ by mouse CD8+ T
cells 30–35 days following LCMV Armstrong (left) or Clone 13 (right) infection. (B, C) Representative histograms (left) of CD127 (B) and PD-1 (C) expression
by CD39high and CD39int CD8+ T cells from Clone 13 (red and blue, respectively) and CD39int from Armstrong (filled gray) infected mice on d35 p.i. (left).
Fraction of CD127+ (B) and MFI of PD-1 in PD-1+ cells (C) is shown on the right. Results are from 5 mice. (D) Fraction of CD39high and CD39int CD44+ CD8+ T
cells expressing different combinations of co-inhibitory receptors PD-1, 2B4, and Lag3. (E) Average number of co-inhibitory receptors expressed by CD39int

(left) or CD39high (right) CD8+ T cells at d35 p.i. following LCMVClone 13 infection. (F) Representative plots of T-bet and Eomes expression in CD39int (left)
and CD39high (right) cells as in (A). Summary of results is shown on the right. Data are representative of three experiments of 5 mice per group. Statistical
significance was assessed with Student’s t-test (B, C, F) with Holm-Sidak multiple comparison correction (D). **P < 0.01, ****P < 0.0001.

doi:10.1371/journal.ppat.1005177.g006
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Discussion
The state of CD8+ T cell exhaustion is characterized by widespread changes in gene expression
relative to functional memory CD8+ T cells [5]. However, in humans, identification of specific
T cell exhaustion markers that are not shared by more functional CD8+ T cell populations has
been challenging [8]. We show that high-level expression of the ectonucleotidase CD39 is char-
acteristic of CD8+ T cells specific for chronic viral infections in humans and mice, but is other-
wise rare in the CD8+ T cell compartment of healthy donors. Persistent, high-level expression
is also seen in the LCMVmouse model of chronic viral infection, suggesting that CD39 expres-
sion is a phenotypic marker of CD8+ T cell exhaustion. Moreover, within the exhausted popu-
lation in the mouse model, CD39high CD8+ T cells express the highest levels of PD-1, co-
express multiple inhibitory receptors and have profoundly impaired function. We found that
in both mice and humans, CD39 is expressed preferentially by CD8+ T cells that are T-betlow/
Eomeshigh. These data suggest that CD39 expression by CD8+ T cells is a pathological finding
and demarcates the population of CD8+ T cells previously identify as being terminally
exhausted [9].

The fact that peripheral blood CD8+ T cells in humans can express CD39 is surprising. Pre-
vious data have shown that CD39 expression is restricted to CD4+ regulatory T cells, Th17
cells, and small populations of regulatory-like CD8+ T cells [14,21–23]. Indeed, we find that in
the bulk population of CD8+ T cells in healthy donors only a small minority of CD8+ T cells
expresses CD39. However, CD39 is abundantly expressed by virus-specific CD8+ T cells in two
human chronic infections (HIV and HCV). This helps explain why CD39+ CD8+ T cells have
not been appreciated in earlier studies that have focused on healthy individuals, and suggests
that, in steady-state conditions, the expression of CD39 by CD8+ T cells is a pathological occur-
rence that is related to the development of T cell exhaustion. Whether the small fraction of

Fig 7. Terminally exhausted CD8+ T cells marked by high levels of CD39 are most impaired in their effector function. (A) Representative plots
showing the production of IFN-γ and TNFα in CD39int or CD39high CD8+ T cells 36 days following LCMVClone 13 infection. (B) Quantification of cells in (A)
that produce both TNFα and IFN-γ relative to IFN-γ only. (C, D) Cytokine production by P14 cells (C) gated from an infection as in (A) and summary of IFN-γ
and TNFα producing cells. (E, F) Mean fluorescence intensity (MFI) of IFN-γ in IFN-γ positive endogenous (E) and transferred P14 cells (F). Statistical
significance was assessed with paired Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

doi:10.1371/journal.ppat.1005177.g007
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CD8+ T cells expressing CD39 in healthy donors represents acutely activated CD8+ T cells, or
those exhausted by asymptomatic chronic pathogens or inflammatory signals is an important
question for future studies.

Several features of CD39-expressing CD8+ T cells suggest that CD39 is a diagnostically valu-
able marker of T cell exhaustion. First, in both human and mouse CD8+ T cells responding to
chronic infection, CD39 is co-expressed with PD-1, an inhibitory receptor expressed by the
majority of exhausted T cells [5,6]. Second, CD39 expression correlates with viral load in sub-
jects with HIV and HCV infection suggesting that the conditions of high levels of inflammation
and antigen load that lead to exhaustion also increase CD39 expression in the virus-specific
pool of CD8+ T cells, as has been observed for PD-1 [3,34]. Third, gene signatures characteris-
tic of exhausted mouse CD8+ T cells are enriched in CD39+ cells relative to CD39– CD8+ T
cells in subjects with HCV infection, underscoring the association between CD39 expression
and T cell exhaustion. Finally, chronic LCMV infection in the mouse model increases CD39
expression by exhausted virus-specific CD8+ T cells, and elicits a population of CD39high cells
that are absent in functional memory cells. Previous studies show that CD39, like PD-1, is tran-
siently up-regulated by acute T cell activation [14,35]. Additional studies will therefore be
required to determine the extent to which T cell activation (rather than exhaustion per se) con-
tributes to the up-regulation of CD39 and PD-1 in chronic infection. However, the strong asso-
ciation between CD39 expression and the hallmark phenotypic features of T cell exhaustion in
humans and a mouse model suggests that it can serve as a valuable marker of the exhausted T
cells state.

The expression of molecules, such as PD-1, that inhibit T cell function has been used to
identify exhausted CD8+ T cells in several studies of human chronic infection and cancer [2].
However, there are important distinctions between the pattern of CD39 expression and that
of inhibitory receptors. Many inhibitory receptors, such as PD-1 [3,8,36] and CD244 [37,38]
are also expressed by a substantial fraction of CD8+ T cells in healthy donors that are not
exhausted. In contrast, CD39 expression is found in only a very small minority of CD8+ T cells
from healthy donors. This expression pattern suggests that CD39 expression, particularly in
combination with PD-1, may be useful as a more specific phenotype of exhausted CD8+ T cells,
at least in HCV and HIV infection. In addition, CD39 may provide a useful marker to isolate
exhausted CD8+ T cells in settings such as tumor-specific responses where very few reagents
are available to identify antigen-specific T cells. Importantly, while CD39 is rare in the CD8+

compartment in healthy donors, it is expressed by CD4+ Tregs–as is PD-1 –making it difficult
to distinguish between exhausted CD4+ T cells and Tregs by CD39 expression alone.

Analysis of global expression profiles of CD39+ versus CD39– CD8+ T cells in HCV-infected
subjects showed that the CD39+ fraction was strongly enriched for genes related to prolifera-
tion. This may at first seem counterintuitive, given the functional defects that have been
described in exhausted CD8+ T cells [2,5]. However, data from the mouse model of chronic
infection suggest that, unlike memory CD8+ T cells, exhausted CD8+ T cells are dependent on
continuous exposure to viral antigen to ensure their survival and undergo extensive cell divi-
sion at a rate higher than that seen in physiological homeostatic proliferation of the memory
CD8+ T cell pool [39]. Exhausted CD8+ T cells therefore have a paradoxical increase in their
proliferation in vivo despite reduced proliferative potential in vitro [40], explaining the
increased expression of proliferation-associated genes in CD39+ CD8+ T cells in HCV infection
and in mouse exhausted CD8+ T cells [9,41].

Recent studies of exhausted CD8+ T cells have revealed that two distinct states of virus-spe-
cific CD8+ T cells exist in chronically infected mice and humans [9,10]. Differential expression
of the T-box transcription factors T-bet and Eomes characterize two populations, which form a
progenitor-progeny relationship. T-bethigh cells display low intrinsic turnover but are capable
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of proliferation in response to persisting antigen, giving rise to Eomeshigh terminal progeny. In
contrast, Eomeshigh CD8+ T cells responding to chronic infection had reduced capacity to
undergo additional proliferation in vivo. The T-betlow /Eomeshigh exhausted subset of CD8+ T
cells correspond to the PD-1 bright population that has also been shown to be unresponsive to
PD-1:PD-L1 blockade. These data suggest that the differential expression of these transcription
factors identifies subpopulations of exhausted CD8+ T cells with fundamentally different fates
and functional profiles. Our data show that in the LCMVmouse model of chronic infection
and in HIV infection, the CD39high subset of CD8+ T cells demarcates T-betlow /Eomeshigh

cells. Consistent with this, CD39+ CD8+ T cells in the mouse model express the highest levels
of PD-1, co-express multiple inhibitory receptors and show marked functional defects. These
findings suggest that CD39 may be a marker not only of the exhausted state, but specifically of
the most terminally exhausted cells, at least in the mouse model. Additional studies of the fate
of transferred CD39+ vs. CD39– exhausted CD8+ T cells in the mouse model, and broader sur-
veys of CD39 expression in human chronic infections will be required to determine whether
this marker can be used as a surrogate for terminal exhaustion. However, the strong association
between CD39 expression and the key features of terminal exhaustion suggests that it may
prove a useful marker to help distinguish between "reversible" and "irreversible" T cell exhaus-
tion. Moroever, the fact that isolating CD39+ cells does not require intracellular staining (as is
required for T-bet and Eomes) makes this marker useful for studying the function of this termi-
nally exhausted cells ex vivo.

The fact that CD39 is expressed by a slightly larger fraction of HCV-specific CD8+ T cells
than HIV-specific CD8+ T cells may be related to differences in the timing of blood sampling
during the course of infection, or may be due to differences in the extent of antigen-load and
inflammation in the two infections. Alternatively, it may be consistent with a model in which
HCV-specific CD8+ T cells are in a more “terminal” state of exhaustion than CD8+ T cells spe-
cific for HIV. This possibility is supported by profound loss of HCV-specific CD8+ T cells over
the course of chronic infection [42] that is not seen in the HIV-specific CD8+ T cell pool, con-
sistent with the clonal deletion seen in mouse models of extreme CD8+ T cell exhaustion
[43,44]

It is tempting to speculate that expression of CD39 contributes to the dysfunction of
exhausted T cells [45]. For instance, the expression of CD39 might enable CD8+ T cells to pro-
vide negative regulation in an autocrine or juxtacrine fashion via adenosine [18–20] in the
same manner as Tregs [15,35]. The fact that CD39 requires both a substrate (ATP) and a
downstream enzyme (CD73) to generate adenosine could provide a mechanism to ensure that
this negative signaling occurred only in certain contexts such as in inflamed, damaged tissues
where the extracellular concentrations of ATP are high and CD73-expressing cells are present
[46]. Moreover, CD39-expressing CD8+ T cells may contribute to the general inhibitory milieu
by contributing to the inhibition of activated T cells that express the adenosine receptor but are
not yet exhausted. It will therefore be important to determine whether inhibition of CD39
activity could provide an additional therapeutic strategy to rescue the function of exhausted T
cells.

Materials and Methods
Human Subjects
Healthy human donors were recruited at the Kraft family Blood Donor Center, Dana-Farber
Cancer Institute. All human subjects with HCV infection were recruited at the Gastrointestinal
Unit and the Department of Surgery of the Massachusetts General Hospital (Boston, MA) (S1
Table).
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Individuals with chronic HCV infection (n = 82) were defined by positive anti-HCV anti-
body and detectable viral load. Patients with spontaneous clearance of HCV, termed resolvers
(n = 30), were defined by positive anti-HCV antibody but an undetectable viral load for at least
6 months. The estimated time of infection was calculated either using the exposure date or the
time of onset of symptoms and peak ALT (which are assumed to be 7 weeks post infection). All
HCV patients were treatment naive and studied at 5.9 and 219.7 weeks post infection. HCV
RNA levels were determined using the VERSANT HCV RNA 3.0 (bDNA 3.0) assay (Bayer
Diagnostics).

All HIV infected subjects (n = 40) were recruited at the Ragon Institute at the Massachusetts
General Hospital (Boston, USA) or the Peter Medawar Building for Pathogen Research
(Oxford, UK) (S2 Table). HIV controllers included elite controllers (n = 5) defined as having
HIV RNA below the level of detection (<75 viral copies per ml) and viremic controllers (n = 7)
with HIV RNA levels< 2,000 viral copies per ml. HIV chronic progressors (n = 28) were
defined as having> 2,000 viral copies per ml. All subjects were off therapy. Viral load during
chronic infection was measured using the Roche Amplicor version 1.5 assay.

MHCClass I Tetramers
Major histocompatibility complex (MHC) class I HIV Gag-specific tetramers were produced
as previously described [47] or obtained from Proimmune. CMV- and EBV-specific MHC
class I dextramers conjugated with FITC and APC were purchased from Immudex. Mouse
MHC class I tetramers of H-2Db complexed with LCMV GP276-286 were produced as previ-
ously described [48,49]. Biotinylated complexes were tetramerized using allophycocyanin-con-
jugated streptavidin (Molecular Probes). The complete list of multimers can be found in
supplemental materials (S3 Table).

Antibodies and flow cytometry
The following anti-human (hu) and anti-mouse (m) fluorochrome-conjugated antibodies were
used for flow cytometry: huCD8α (RPA-T8), huCD4 (OKT4), huCD3 (OKT3), huCD39 (A1),
huPD-1 (EG12.2H7), huCD25 (BC96), huCCR7 (G043H7), huCD45RA (HI100), huT-bet
(4B10), mCD8α (53–6.7), mCD4 (GK1.5), mCD3 (145-2C11), mCD244.2 (m2B4 (B6)458.1),
mPD-1 (RMP1-30), mLag3 (C9B7W), mCD44 (IM7), mCD127 (A7R34), mTNFα (MP6X
T22) (all from Biolegend), mT-bet (04–46; BD Pharmingen), mCD39 (24DMS1), mIFN-γ
(XMG1.2), huEomes (WD1928) and mEomes (Dan11mag) (eBioscience). Intracellular stain-
ing was performed following surface staining and fixed and permeabilized using the FoxP3/
Transcription Factor Staining Buffer Set (eBioscience). Cells were sorted by BD FACS ARIA II
and all other analyses were performed on BD LSR II and BD LSR Fortessa flow cytometers
equipped with FACSDiva v6.1. Gates were set using Full Minus One (FMO) controls. Data
were analyzed using FlowJo software v9.8 (Treestar).

For intracellular cytokine analysis of mouse T cells, 2x106 splenocytes were cultured in the
presence of GP33-41 peptide (0.2 μg/ml) (sequence KAVYNFATM), brefeldin A (BD), and
monensin (BD) for 4.5 hours at 37°C. Following staining for surface antigens, cells were per-
meabilized and stained for intracellular cytokines with the Cytofix/Cytoperm kit according to
manufacturer's instructions (BD Biosciences).

Mice and infections
Wild-type C57BL/6J mice were purchased from The Jackson Laboratory. Female mice (6–8
weeks old) were infected with 2 x 105 plaque forming units (p.f.u.) of LCMV-Armstrong intra-
peritoneally or 4 x 106 p.f.u. of LCMV-Clone 13 intravenously and analyzed at indicated time
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points by homogenizing the spleen into a single-cell suspension, Ammonium-Chloride-Potas-
sium lysis of red blood cells, followed by antibody staining. For experiments involving P14 cell
transfers, Ly5.1+ P14s were isolated from peripheral blood, and 500 P14 cells were transferred
i.v. into 5–6 week old wild-type female mice one day prior to infection. Viruses were propa-
gated as described previously [48–50].

HPLC analysis of ATP levels
The concentration of ATP hydrolyzed by CD8+ T cells from subjects with HCV infection
(n = 6) was assessed by high performance liquid chromatography (HPLC) as previously
described [51]. Briefly, 10,000 CD39+ CD8+ T cells were sorted and placed on ice to minimize
ATP production by cells. 20 μM of ATP was added and incubated for 1 h at 37°C in 5% CO2

to allow for cellular activity to increase and CD39-mediated ATP hydrolysis to occur.
Samples were then placed in an ice bath for 10 min to halt enzymatic activity, collected, and
centrifuged for 10 min at 380 x g and 0°C. Cells were discarded and supernatant centrifuged
again to remove remaining cells (2350 x g, 5 min, 0°C). The resulting RPMI samples (160 μl)
were treated with 10 μl of an 8 M perchloric acid solution (Sigma-Aldrich) and centrifuged at
15,900 x g for 10 min at 0°C to precipitate proteins. In order to neutralize the pH of the result-
ing solutions and to remove lipids, supernatants (80 μl) were treated with 4 M K2HPO4 (8 μl)
and tri-N-octylamine (50 μl). These samples were mixed with 50 μl of 1,1,2-trichloro-trifluor-
oethane and centrifuged (15,900 x g, 10 min, 0°C) and this last lipid extraction step was
repeated once. The resulting supernatants were subjected to the following procedure to gener-
ate fluorescent etheno-adenine products: 150 μl supernatant (or nucleotide standard solution)
was incubated at 72°C for 30 min with 250 mMNa2HPO4 (20 μl) and 1 M chloroacetaldehyde
(30 μl; Sigma-Aldrich) in a final reaction volume of 200 μl, resulting in the formation of 1,
N6-etheno derivatives as previously described [51]. Samples were placed on ice, alkalinized
with 0.5 M NH4HCO3 (50 μl), filtered with a 1 ml syringe and 0.45 μM filter and analyzed
using a Waters HPLC system and Supelcosil 3 μM LC-18T reverse phase column (Sigma), con-
sisting of a gradient system described previously, a Waters autosampler, and a Waters 474 fluo-
rescence detector [52]. Empower2 software was used for the analysis of data and all samples
were compared with water and ATP standard controls as well as a sample with no cells to
determine background degradation of ATP.

Microarray data acquisition
CD8+ T cells from subjects with HCV infection were sorted and pelleted and re-suspended in TRI-
zol (Invitrogen). RNA extraction was performed using the RNAdvance Tissue Isolation kit (Agen-
court). Concentrations of total RNA were determined with a Nanodrop spectrophotometer or
Ribogreen RNA quantification kits (Molecular Probes/Invitrogen). RNA purity was determined by
Bioanalyzer 2100 traces (Agilent Technologies). Total RNA was amplified with theWT-Ovation
Pico RNA Amplification system (NuGEN) according to the manufacturer's instructions. After
fragmentation and biotinylation, cDNA was hybridized to HG-U133A 2.0 microarrays (Affyme-
trix). Data have been deposited in Gene Expression Omnibus with accession code GSE72752.

Statistics
Prior to analysis, microarray data were pre-processed and normalized using robust multichip
averaging, as previously described [53]. Differentially gene expression and consensus clustering
[54] were performed using Gene-E software (www.broadinstitute.org/cancer/software/
GENE-E/), and gene set enrichment analysis was performed as described previously using gene
sets from MSigDB [55] or published resources [29,32].
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Consensus hierarchical clustering was performed using the top 10% of genes that varied
across the dataset, without reference to sample identity. Consensus cluster assesses the “stabil-
ity” of the clusters discovered using unbiased methods such as hierarchical clustering i.e. the
robustness of the putative clusters to sampling variability. The basic assumption is that if the
data represent a sample of items drawn from distinct sub-populations, a different sample
drawn from the same sub-populations, would result in cluster composition and number should
not be radically different. Therefore, the more the attained clusters are robust to sampling vari-
ability, the greater the likelihood that the observed clusters represent real structure. The result
of consensus clustering is a matrix that shows, for each pair of samples, the proportion of clus-
tering runs on sub-sampled data in which those two items cluster together (shown on a scale of
0 to 1).

Enrichment Map analysis of GSEA results was performed as described [56]. The gene signa-
ture of exhaustion was generated by identifying the top 200 genes upregulated in CD8+ T cells
responding to chronic vs. acute LCMV infection in microarray data from a previously pub-
lished study [29].

Ethics statement
All human subjects were recruited with recruited with written informed consent in accordance
with Dana-Farber Cancer Institute IRB approval DFCI 00–159, Partners IRB approvals
2010P002121, 2010P002463, 1999P004983, and Oxford Research Ethics Committee approval
06/Q1604/12. The mouse work was performed under a protocol 01214 approved by the HMA
Institutional Animal Care and Use Committee (IACUC), in strict accordance with the recom-
mendations in the Guide for the care and use of Laboratory Animals of the National Institutes
of Health. The Harvard Medical School animal management program is accredited by the
Association for the Assessment and Accreditation of Laboratory Animal Care International
(AAALAC).

Supporting Information
S1 Fig. CD39 is expressed by few CD8+ T cells in health donors. Fraction of CD39+ cells in
naïve CD8+ T and central memory (CM), effector memory (EM) and effector memory RA+

(EMRA) subpopulations of CD8+ T cells based on CD45RA and CCR7 staining from 18
healthy human donors. Error bars represent SEM. Statistical significance was assessed by Fried-
man test. !!P<0.01, !!!P<0.001.
(TIF)

S2 Fig. CD39 and PD-1 co-expression in HCV and HIV. (A, B) Fraction of HCV-specific (A)
and HIV-specific (B) CD8+ T cells expressing PD-1, CD39, or both in patients with persistent
high viral load (black) or patients controlling the disease (grey). Correlation of the fraction of
PD-1 and CD39 double positive virus specific CD8+ T cells with the viral load in the blood in
HCV (C) and HIV (D) infected patients. Statistical significance was assessed by Mann-Whit-
ney test with Bonferroni correction (A, B). !P<0.05. Correlation was assessed by Pearson cor-
relation coefficient (C, D). MFI; mean fluorescence intensity.
(TIF)

S3 Fig. Cell sorting strategy for microarray analysis. Gating strategy for CD39+ and CD39–

live non-naive CD8+ T cells from HCV-infected patients.
(TIF)

S4 Fig. Comparison of T-bet and Eomes expression by CD39+ and CD39– CD8+ T cells in
patients with chronic viral infection. (A, D) Expression of CD39 in CD8+ T cells in patients
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infected with HCV (A) and HIV (D). (B, E) Expression of transcription factors T-bet and
Eomes on CD39– and CD39+ populations identified in (A) and (D). (C, F) Summary of the
ratio of terminally exhausted Eomeshigh/T-betlow CD8+ T cells in CD39– and CD39+ subsets in
HCV (C) and HIV (F) infection. Statistical significance was assessed with paired Student’s t-
test. !P< 0.05, !!!P< 0.001.
(TIF)

S1 Table. Clinical characteristics of the subjects with HCV infection.
(XLSX)

S2 Table. Clinical characteristics of the subjects with HIV infection.
(XLSX)

S3 Table. The complete list of MHC-peptide multimers used in the study.
(XLSX)

S4 Table. List of genes differentially expressed in CD39+ vs CD39– CD8+ T cells in HCV
infected subjects (FDR<0.15).
(XLSX)
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The differentiation of effector CD8+ T cells is critical for the devel-
opment of protective responses to pathogens and for effective vac-
cines. In the first few hours after activation, naive CD8+ T cells
initiate a transcriptional program that leads to the formation of
effector and memory T cells, but the regulation of this process is
poorly understood. Investigating the role of specific transcription
factors (TFs) in determining CD8+ effector T-cell fate by gene knock-
down with RNAi is challenging because naive T cells are refractory
to transduction with viral vectors without extensive ex vivo stimu-
lation, which obscures the earliest events in effector differentiation.
To overcome this obstacle, we developed a novel strategy to test
the function of genes in naive CD8+ T cells in vivo by creating bone
marrow chimera from hematopoietic progenitors transduced with
an inducible shRNA construct. Following hematopoietic reconstitu-
tion, this approach allowed inducible in vivo gene knockdown in
any cell type that developed from this transduced progenitor pool.
We demonstrated that lentivirus-transduced progenitor cells could
reconstitute normal hematopoiesis and develop into naive CD8+ T
cells that were indistinguishable from wild-type naive T cells. This
experimental system enabled induction of efficient gene knock-
down in vivo without subsequent manipulation. We applied this
strategy to show that the TF BATF is essential for initial commit-
ment of naive CD8+ T cells to effector development but becomes
dispensable by 72h. This approach makes possible the study of
gene function in vivo in unperturbed cells of hematopoietic origin
that are refractory to viral transduction.

CD8 T cell | RNAi | transcription factor | BATF

Following activation by antigen, costimulation, and inflamma-
tion, naive CD8+ T cells initiate a differentiation program

resulting in massive changes in gene expression and cell function,
which leads to the formation of effector and memory T cells (1).
This differentiation program is critical for the development of
effective tumor immunity (2) and the control of pathogens (3).
Although the development of effector CD8+ T cells occurs over
a period of days (4), early events in the life history of CD8+ T cells
are critical in determining their fate (5–10), suggesting that in-
vestigating the events that occur in the hours following initial
antigen encounter will be essential for defining the mechanisms
that regulate the fate of effector CD8+ T cells.
The AP-1 family transcription factor (TF) BATF is absolutely

required for effector CD8+ T-cell differentiation and coordinates
the program of gene expression essential for this process (11).
The role of specific TFs in regulating CD8+ T-cell effector dif-
ferentiation has generally been investigated using germ-line or
conditional KOs. However, these approaches are restricted to
studying a small number of candidate genes (12). In contrast,
perturbing genes with RNAi could permit the study of many
more candidate regulators in parallel (13), but techniques to
deliver shRNAs to T cells are limited by the need to stimulate

cells to divide using T-cell receptor (TCR) cross-linking (14),
infection (15, 16), or cytokine stimulation (17) to achieve
meaningful transduction frequencies with viral vectors encoding
shRNA constructs. The need to activate T cells for delivery of
shRNAs raises concerns about whether this activation alters
these T cells at a critical phase of time when even subtle per-
turbations of TFs can profoundly influence T-cell fate (10).
To address these limitations, we have developed an experi-

mental system to knock down gene expression in T cells in vivo
using shRNA without the need to transduce T cells directly. We
generated bone marrow (BM) chimera from hematopoietic stem
cells (HSCs) transduced with an inducible shRNA vector. Fol-
lowing hematopoietic reconstitution, this strategy allows in-
ducible gene knockdown in any cell type that developed from
this transduced progenitor pool, including resting naive CD8+ T
cells in vivo. We have applied this system to show that BATF is
essential for initial commitment of naive CD8+ T cells to effector
cell development, but becomes dispensable after 72 h.

Results
Lentivirus-Transduced Stem Cells Reconstitute Blood Immune
Lineages and Give Rise to Effector CD8+ T Cells with Unaltered
Functionality. Resting T cells are refractory to lentiviral trans-
duction, but HSCs are more readily transduced. We therefore gen-
erated bone marrow chimeric animals using lentivirus-transduced
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hematopoietic progenitor cells in which hematopoietic lineages (in-
cluding T cells) are reconstituted with transduced cells (Fig. 1A).
We isolated lineage–/sca-1+/c-kit+ (LSK) cells (which include HSCs
and multipotent progenitors), from the bone marrow of P14 TCR
transgenic (Tg) mice in which most CD8+ T cells express a TCR
specific for lymphocytic choriomeningitis virus (LCMV) glycopro-
tein (GP)33–41 peptide presented on H-2Db (Fig. 1A), and trans-
duced them with a lentivirus carrying a GFP expression cassette so
that the fate of transduced cells could be tracked. We used
congenic markers to distinguish transplanted cells from recipient
cells in bone marrow chimeras.
To test whether lentivirus-transduced LSK cells could be used

to generate fully functional CD8+ T cells, we first transduced the
LSK cells with lentivirus encoding only GFP under a human
phosphoglycerate kinase (PGK) promoter (PGK-eGFP) and trans-
planted them into lethally irradiated animals (50,000 cells per
animal). Following reconstitution (8–12 wk later), analyses of
major lineages in the immune system showed that the frequen-
cies of GFP+ B cells (B220+), CD4+ and CD8+ T cells, dendritic
cells (CD11c+), and monocytes (CD11b+) were similar to that of the
LSK inoculum (Fig. 1B), suggesting efficient engraftment of trans-
duced cells. CD4+ and CD8+ T, total T, B, and myeloid lineages
developed from transplanted GFP+ (transduced) and GFP–

(untransduced) LSK with equal efficiency (Fig. 1C and Fig. S1). We
next compared effector CD8+ T-cell differentiation of naive CD8+ T
cells derived from transplanted PGK-eGFP transduced (GFP+) LSK
cells with differentiation of naive CD8+ T cells derived from trans-
planted but untransduced (GFP–) LSK cells. We transferred equal
ratios of GFP+ and GFP– naive P14 CD8+ T cells to naive wild-
type recipients (10,000 cells per animal) and infected them with
H1N1 influenza PR8 engineered to express GP33 (PR8-GP33)
(Fig. 1D). We found equal expansion and persistence of GFP+

and GFP– effector CD8+ T cells at 10 d postinfection (p.i.).
We next compared the phenotype and function of effector

CD8+ T cells arising from naive CD8+ T cells that developed

from transduced LSKs with effector CD8+ T cells differentiating
from untransduced naive CD8+ T cells. We analyzed the pro-
liferative capacity, expression of cell surface molecules, key
transcription factors, and production of cytokines upon restim-
ulation and found no difference between untransduced and
transduced effector CD8+ T cells at d 8 postinfection (p.i.) (Fig.
S2). Thus, lentiviral transduction of LSK neither impairs the
development of lymphoid and myeloid lineages following trans-
plantation nor alters effector CD8+ T-cell generation, pro-
liferative capacity, or survival following transfer of naive CD8+
T cells.
To compare the persistence and phenotype of effector CD8+

T cells derived from untransduced naive CD8+ T cells, or naive
CD8+ T cells generated from bone marrow chimeras, we trans-
ferred either unmodified naive P14 CD8+ T cells or naive P14
CD8+ T cells carrying the 1xLacO–shLacZ construct into con-
genically distinct LCMV-infected wild-type recipients. We ana-
lyzed the fraction of transferred cells at d28 p.i. and observed no
difference in the frequency of unmodified CD8+ T cells and
those carrying the 1xLacO–shLacZ construct (Fig. S3 A and B).
Additionally, 1xLacO and WT P14 memory cells were in-
distinguishable in their expression of cell surface molecules and
production of cytokines upon restimulation (Fig. S3 C and D).
This finding suggests that the persistence of CD8+ T cells fol-
lowing effector differentiation is not altered by the presence of
the lentiviral vector.

Naive T Cells That Develop from Transduced LSK Are Indistinguishable
from Wild-Type Naive T Cells. We next examined whether naive
CD8+ T cells that developed from transduced LSK cells show any
alterations of surface phenotype, proliferative status, or gene
expression that might obscure analysis of early differentiation
events. We compared naive CD8+ T cells that were derived from
transduced LSK cells with control wild-type P14 CD8+ T cells.
We also studied P14 CD8+ T cells cultured in conditions used in
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previous studies to facilitate direct viral transduction of T cells
(14–18) to compare CD8+ T cells generated by our approach and
previously reported methods: (i) activation of CD8+ T cells in
vivo by infecting P14 mice with 2 × 105 p.f.u. LCMV Armstrong,
(ii) activation in vitro by stimulation with anti-CD3 and anti-
CD28, or (iii) incubation in vitro with a combination of IL-7 and
IL-15 cytokines.
The proportions of naive (CD62L+ CD44–), central memory

(CD62L+ CD44+), and effector memory (CD62L– CD44+) cells
were similar in the GFP+ naive CD8+ T cells from the trans-
duced BM chimeras and in naive CD8+ T cells from wild-type
mice, but were markedly altered by the other stimulation con-
ditions, particularly with cytokine treatment (Fig. 2A). The ex-
pression of cytokine receptors including CD25, CD127, and
CD122 was not different in GFP+ naive and wild-type naive
CD8+ T cells, but was altered in naive CD8+ T cells treated with
anti-CD3/CD28 or cytokines (Fig. 2B). The GFP+ naive CD8+ T
cells also showed a low rate of homeostatic turnover that was
similar to wild-type naive CD8+ T cells (Fig. 2C). In contrast, all
of the other stimulation conditions induced varying degrees of
cell proliferation (Fig. 2C).
We measured transcript abundance for TFs and effector

molecules that change during CD8+ effector T-cell differentia-
tion. Important regulators of effector differentiation such as
T-bet (Tbx21), Eomesodermin (Eomes), and Blimp1 (Prdm1), as
well as effector molecules including granzyme A and B, per-
forin1, and IFNγ and TNFα were unchanged in GFP+ naive
CD8+ T cells relative to wild-type naive CD8+ T cells, but were
up-regulated in the other stimulation conditions (Fig. 2D). Thus,
GFP+ naive CD8+ T cells that had developed from transduced
LSK cells were indistinguishable from untransduced naive CD8+
T cells. In contrast, existing protocols used to achieve viral
transduction of naive CD8+ T cells were associated with marked
perturbation of the T-cell state.

Lac Operon-Regulated shRNA Allows Inducible, Efficient, and Transient
Gene Knockdown in Vivo at Low Concentrations of Isopropyl β-D-1-
Thiogalactopyranoside. Because constitutive gene knockdown in
LSK could compromise the development of immune lineages, we
used an inducible shRNA expression vector that uses the Lac
operon system to regulate the shRNA promoter following ad-
dition of isopropyl β-D-1-thiogalactopyranoside (IPTG) (Fig.
S4A). We confirmed the inducibility of gene knockdown by
targeting a control gene in a Jurkat cell line. Target gene (GFP)
expression was only minimally affected in the uninduced state
(Fig. 3A). However, gene knockdown following IPTG induction
of shRNA expression was as efficient as that achieved by a con-
stitutive shRNA expressing vector (Fig. 3A) even at low con-
centrations of IPTG (Fig. S4B).
To test knockdown efficiency in primary CD8+ T cells, we

generated bone marrow chimeras with an IPTG-inducible vector
encoding an shRNA targeting BATF (shBATF) and a GFP ex-
pression cassette to create GFP+ naive T cells that carried the
inducible shRNA vector (hereafter “shBATF–naive T cells”).
We first tested inducible knockdown in vitro by stimulating the
cells with anti-CD3/CD28 and assessing the Batf transcript levels
3 d following activation. IPTG was administered to the bone
marrow chimeras 3 d before activation (d −3) or 1 d following
activation (d +1). Decreased target gene expression was appar-
ent in both transcript and protein abundance as early as 2 d fol-
lowing IPTG addition in vitro (Fig. 3 B and C) and was com-
parable to knockdown with the constitutive vector (mean = 80.4%,
SD = 7.8%). To test inducible knockdown in vivo, we trans-
ferred shBATF–naive P14 CD8+ T cells into mice that were at
the same time infected with LCMV-infected mice treated with
IPTG, and measured BATF expression after 3 d. Initiating IPTG
induction 1 d following cell activation resulted in modest (18%)
gene knockdown but treating bone marrow chimera 3 d before

transfer resulted in a significantly greater degree of gene silencing
(68% knockdown) when it was measured 3 d following transfer and
infection (Fig. 3C). Thus, efficient, inducible gene knockdown can
be achieved in following activation of shBATF–naive CD8+ T cells
in vivo.

BATF Knockdown Impairs the Development of CD8+ Effector T Cells
Following Acute Viral Infection.We have recently shown that Batf−/−

CD8+ T cells show profoundly impaired effector CD8+ T-cell dif-
ferentiation (11). To test whether BATF knockdown in wild-type
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CD8+ T cells also impaired CD8+ effector T-cell development, we
adoptively transferred naive P14 CD8+ T cells from bone marrow
chimeras transduced with either an inducible shBATF vector or a
control shRNA vector targeting LacZ in a 1:1 ratio with naive P14
CD8+ T cells from a bone marrow chimera transduced with a sec-
ond control shRNA (shRFP) into wild-type recipients (Fig. S5A).
Endogenous, shBATF– (or control shLacZ–) and shRFP–naive
CD8+ T cells were distinguished by the use of congenic markers.
Comparison of the ratios of numbers shBATF– or shLacZ–effector
T cells to shRFP–effector T cells was used to determine the effect
of BATF knockdown, while controlling for any effect of shRNA
expression on differentiation. We found markedly reduced numbers
of P14 shBATF–effector CD8+ T cells at days 7–9 p.i. relative to
shRFP P14 CD8+ T cells, when the cells were exposed to IPTG
from d −3 until the end of the experiment. In contrast, the ratio of
shLacZ–effectors to shRFP–effectors remained constant (Fig.
4 A and B). This reduction in shBATF–effector cell numbers was
seen with three different BATF shRNAs designed with different
seed regions, making this unlikely to be due to off-target effects
(Fig. 4B) (19).

To identify the reason for the reduced population size of ef-
fector CD8+ T cells following BATF knockdown, we measured
both cell death and proliferation in shBATF–effector CD8+ T
cells at d 5 p.i. Analysis of active caspase abundance showed
significantly higher apoptosis in shBATF–effector CD8+ T cells
(Fig. 4C). In addition, there was a modest increase in the pro-
liferation of the fraction of remaining shBATF–effector CD8+ T
cells compared with shLacZ–effector CD8+ T cells (Fig. S5B).
Thus, knockdown of BATF impairs the development of an ef-
fector CD8+ T-cell response primarily by increasing cell death
during early differentiation. These findings are consistent with
previous studies using germ-line deletion of BATF, which have
demonstrated that naive Batf−/− T cells undergo massive cell
death at 72–96 h after stimulation (11).

BATF Is Required to Initiate but Not Maintain Effector CD8+ T-Cell
Development. Because previous studies of the role of BATF in
effector CD8+ T-cell differentiation have been carried out using
T cells with constitutive germ-line deletion, it is not known
whether BATF is required only to initiate the development of
CD8+ effector T cells (i.e., at the time of initial antigen en-
counter) or whether BATF is also needed to maintain CD8+
effector T-cell development once underway. To address this
question, we adoptively transferred 1:1 mixtures of congenically
distinguishable P14 shBATF– and shLacZ–CD8+ T cells into
recipient wild-type animals, which were then infected with LCMV
Armstrong. IPTG was administered to induce BATF knockdown
either before infection, at the time of infection, or 72 h p.i. (Fig.
5A). We assessed BATF knockdown at d 8 p.i. and found that
BATF transcript abundance was significantly reduced in shBATF
compared with shRFP–effector CD8+ T cells, regardless of when
IPTG was initiated (Fig. 5B), and was not significantly different
between any of the shBATF–effector cell conditions.
We observed profound differences in the ratio of shBATF:

shLacZ–CD8+ T cells at d 8 p.i., depending on the time at which
BATF knockdown had been initiated. BATF knockdown initi-
ated 3 d before infection or at the time of infection was associ-
ated with a significant reduction in the numbers of d 8 p.i.
effector CD8+ T cells compared with controls with no IPTG
induction. In contrast, inducing BATF knockdown 72 h post-
infection did not significantly change the numbers of effector
CD8+ T cells d 8 p.i. (Fig. 5C). These finding show that, whereas
BATF is required for effector CD8+ T-cell development at the
time of initial antigen encounter, by 72 h p.i., BATF becomes
largely dispensable, at least through d 8 of CD8+ effector
T-cell differentiation.

Discussion
We have developed a strategy to inducibly silence gene expres-
sion in unperturbed hematopoietic cells in vivo using RNAi. We
used this system to show that BATF is initially required for the
development of effector CD8+ T cells, but becomes dispensable
after 72 h. Our findings suggest that this experimental approach
can be used to accelerate the understanding of how effector and
memory T-cell responses are regulated.
Viral vectors expressing shRNA molecules have been used to

investigate gene function in the immune system (13, 15–17, 20).
However, this approach is limited by the inability to deliver viral
vectors to quiescent cells. To study gene function in T cells, most
approaches have used T-cell activation in vitro (14, 17) or in vivo
(15, 16) to achieve efficient transduction. We show that both of
these approaches profoundly alter the underlying transcriptional
and functional state of naive T cells, suggesting that many as-
pects of effector differentiation are initiated by these manipu-
lations before gene knockdown can occur. Our experimental
system permits the inducible knockdown of genes in quiescent,
unperturbed naive T cells, allowing the events that occur during
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Fig. 3. Novel shRNA vector enables efficient, inducible, and transient gene
knockdown in vitro and in vivo. (A) Fraction of GFP-expressing Jurkat cells
transduced with lentivirus expressing an shRNA targeting GFP under con-
stitutive (white symbols) or inducible (black) promoters, cultured with 100
μM IPTG (gray box) for times indicated. BATF transcript levels (B) in anti-CD3/
CD28-stimulated shBATF-naive CD8+ T cells cultured in vitro with (dark gray
or black bars) or without (light gray) IPTG starting at the day indicated. Cells
were continuously exposed to IPTG by in vivo exposure in bone marrow
chimeric mice 3 d before T-cell sort (d −3) or 1 d following activation (d +1)
and for the remainder of the experiment. (C) BATF protein abundance in
anti-CD3/CD28-stimulated wild-type and shBATF–naive CD8+ T cells exposed
to IPTG d −3 or incubated in medium alone. Numbers represent BATF den-
siometry values normalized to β-actin in shBATF relative to the wild-type
cells. (D) Cells treated as in B were transferred into recipient mice that were
also infected with LCMV and IPTG exposure was maintained by treating mice
with 20 mM IPTG in drinking water starting 3 d prior to transfer (in bone
marrow chimeras) or 1 d following transfer until 3 d following transfer. Batf
mRNA level was normalized to Hprt and 2-ΔCt values reported. Significance
was assessed with one-way ANOVA; *P < 0.05, ***P < 0.001, ****P < 0.0001.
Representative data are shown from two experiments.
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cytolytic function in naive CD8+ T cells (5, 7, 8). These studies in-
dicate that CD8+ T cells encounter an irreversible decision point
within hours of antigen encounter (5). Our findings suggest that
transcriptional regulation by BATF may be one component of that
decision point. BATF may launch differentiation by irreversibly
engaging the effector transcriptional program within the first 24 h
of stimulation.
Although we have used this experimental approach to in-

vestigate the role of BATF in the early commitment events in
effector CD8+ T-cell differentiation, this strategy also could be
used to discover genes that regulate differentiation and longevity
of memory CD8+ T cells and the mechanisms leading to CD8+
T-cell exhaustion. We also anticipate that pooled in vivo screens
of gene function will be possible using this approach. Moreover,
the use of a bone marrow chimeric system results in transduction
of all hematopoietic-derived lineages with the inducible shRNA
vector. This system, therefore, provides a feasible strategy for
analyzing gene function in other cell types that are refractory to
viral transduction, such as naive CD4+ T cells or B cells.

Methods
Mice. Wild-type C57BL/6J, Ly5.1 (CD45.1), and Thy1.1 mice were purchased
from The Jackson Laboratory. The P14 TCR Tg mice were previously de-
scribed (22). All mice were used according to the Harvard Medical School
Standing Committee on Animals and National Institutes of Animal Healthcare
Guidelines.

Generation of Bone Marrow Chimeras. LSK cells from bone marrow were
enriched using anti-CD117 microbeads (Miltenyi Biotech) and then sorted
using a BD FACSAria cytometer. Sorted cells were plated overnight in
StemSpan SFEM (Stemcell Technologies) with 100 μg/mL recombinant stem
cell factor, thrombopoietin, IL-7, and Flt3-ligand (PeproTech). Cells were
then spin infected with lentiviral supernatants at 650 × g for 90 min at 37 °C
on 100 μg/mL RetroNectin (Takara Bio)-coated plates. Fresh medium was
added after 1 h. The following day, the cells were washed in PBS (Gibco) and
50,000 cells were injected i.v. into recipient mice that had been irradiated
with two doses of 600 cGy, 3 h apart.

Lentivirus Production. The 293T cells were seeded in DMEMwith 10% (vol/vol)
FBS. The following day, the cells were transfected with shRNA construct
pLKO.1 or 1xLacO (now available from Sigma-Aldrich under the name
“MISSION 1X LacO Inducible”) and the packaging plasmids Pax2 (gag, pol)

and VSV-G using TransIT-LT1 (Mirus Bio) or ExGen 500 transfection reagents
(Thermo Scientific Fermentas). Viral supernatants were collected 48–72 h later.

In Vitro Knockdown of GFP. A stable GFP-expressing Jurkat cell line was
constructed using PGK-eGFP lentivirus. GFP-Jurkat cells were lentivirus-
transduced with shRNA targeting GFP under constitutive (pLKO.1, with pu-
romycin resistance) or inducible (1xLacO, with Thy1.1 reporter) promoters.
Varying doses of dioxane-free IPTG (Promega) were added at the indicated
concentrations and durations. GFP expression was assessed with Accuri C6
flow cytometer (BD Biosciences).

T-Cell Transfers and Infections. CD8+ T cells were magnetically separated us-
ing the CD8a+ T Cell Isolation Kit II (Miltenyi Biotech) and then GFP+ CD8+

congenic cells were sorted using a BD FACSAria cytometer. P14 CD8+ T cells
(104 to 106 cells per animal) were injected into recipient mice i.v. Mice were
subsequently infected intraperitoneally with 2 × 105 p.f.u. LCMV Armstrong
or with influenza intranasally. For influenza virus infection, the mice were
anesthetized with 2.5% avertin and infected with 0.5 LD50 H1N1 influenza
virus (PR8), engineered to express GP33–41 peptide of LCMV (PR8-GP33) (23).
Both viruses were a generous gift from E. John Wherry (University of
Pennsylvania School of Medicine, Philadelphia).

Flow Cytometry and Cell Sorting. Spleen or bone marrow tissue was ho-
mogenized into single cell suspension and resuspended in staining buffer
(2 mM EDTA and 1% FBS in PBS; Gibco) together with combinations of the
indicated antibodies. Data were acquired using LSR II or Accuri C6 (BD Bio-
sciences) cytometers and analyzed with FlowJo software (v9.7.2; TreeStar).

shRNA Construct Generation. Target sequences of the shRNA used are: shBatf
1 (CCGCAAAGAGATCAAACAGCT), shBatf 2 (CTGGACAAGTATTGAACACAA),
shBatf 3 (GAGCTCAAGTACTTCACATCA), shLacZ (CCGTCATAGCGATAACGAG-
TT), shRFP (GCTTCAAGTGGGAGCGCGTGA), and shGFP (ACAACAGCCAC-
AACGTCTATA). Cloning methods can be found at www.broadinstitute.org/
rnai/public/.

Additional Methods. Additional descriptions for all methods are available
in SI Methods, including antibodies used, infections, immunoblotting, and
RT-QPCR.
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