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Molecular Patterns and Signatures of Longevity 

Abstract 

Since their divergence from a common ancestor some 200 million years ago, mammals have 

undergone significant diversification in physiology, morphology, habitat, size, and longevity. The 

maximum lifespan of mammalian species ranges from under 3 to over 200 years, but the molecular 

basis of such variation is poorly understood. While many genes, pathways, dietary interventions, and 

pharmacological compounds have been shown to influence the lifespan of model organisms, it is not 

known whether the same mechanisms are responsible for the longevity variation across different 

species. This thesis presents the analyses of gene expression and the levels of metabolites, chemical 

elements, and/or proteins, across multiple organs and tissues of up to 42 species of mammals, as well 

as the analyses of 5 long-lived mouse models, 22 natural isolates of yeast, and 16 species of fruit flies, 

to identify the molecular patterns and signatures associated with species longevity. The results show 

that longer-lived mammals up-regulate ribosomal proteins and genes involved in DNA repair, and 

down-regulate ubiquitin-mediated proteolysis and apoptotic functions. Some of the metabolic changes 

in long-lived mammals, such as higher levels of sphingomyelins and glycerophospholipids but lower 

levels of polyunsaturated triacylglycerols, were also observed in long-lived mouse models. Yeast 

strains of varying replicative lifespan differed in their aerobic respiration capacity, attributable to 

different protein composition in mitochondria. Long-lived fruit flies overexpressed the genes involved 

in lipid metabolism but suppressed the genes involved in neuronal development. Many genes 

previously implicated in lifespan control in model organisms also showed the expected correlation 

with the longevity traits across species. This thesis presents the snapshots of the complex changes 

associated with species natural lifespan variation and offers new insights into the mechanisms of 

longevity control and potential lifespan extension strategies. 
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The great ships full of boys and girls sent in search of the immortal medicine by the Chinese 

Emperor Shih Huang Ti. By Utagawa Kuniyoshi (1797-1861). Source: 

http://www.kuniyoshiproject.com/Warrior%20triptychs%201839-1841,%20Part%20I%20%28T47-

T62%29.htm 
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According to Benjamin Franklin, “The only things certain in life are death and taxes.” 

Although the deadline for filing IRS tax returns comes every April, most of us are more concerned 

about the one that comes once a lifetime. Legend has it that more than 2000 years ago the First 

Emperor of China sent hundreds of young men and women out to the sea in search of the elixir of 

immortality. The First Emperor expired before the return of this expedition, but the quest for eternal 

youth has never ceased. Today, there is an active research enterprise focused on the biology of aging 

and are many health and supplement products claiming anti-aging effects; yet the secrets of longevity 

remain unsolved. 

AGING WITHIN SINGLE SPECIES 

The research aging and longevity can be largely divided into two areas. One is the aging 

process within a single species (Figure 1.1). As an organism grows old, a large number of changes 

occur on the cellular level; Lopez-Otin and colleagues summarize 9 typical hallmarks of aging: 

increased genome instability, telomere attrition, changes in epigenetic markers, loss of proteostasis, 

deregulated nutrient sensing, mitochondrial dysfunction, induction of cellular senescence, exhaustion 

of stem cell population, and altered intercellular communication (Lopez-Otin et al., 2013). On the 

physiological level, the aging phenotypes include reduction in hair re-growth, dermal thickness and 

subcutaneous adipose in mice (Tyner et al., 2002); decreases in pharyngeal pumping, body movement 

and chemotaxis in C. elegans (Collins et al., 2008); and reduction in locomotion, reproduction and 

climbing activities in flies (Iliadi and Boulianne, 2010). In addition, in the absence of extrinsic causes 

of death, the mortality rate (i.e. number of deaths per unit population per unit time) of most species 

increases with age (Jones et al., 2014), producing a concave, downward sloping survival curve. Much 

effort has been directed to identify the genes, pathways, and treatments that can either delay these 

age-related changes, or increase the lifespan of the species (i.e. shifting the survival curve to the 

right), or both (Figure 1.1B).  
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Figure 1.1. Aging within a single species.  

(A) Physiological changes with age. Photo credit: JenkoAtaman, Adobe Stock. 

(B) A typical survival curve. A successful lifespan extension strategy shifts or scales the black 

curve to the red. 

(C) Major pathways implicated in lifespan extension. Only selected components of the pathways 

are shown. Cross-talks among the pathways are omitted. 
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Research across various model organisms has identified several pathways involved in lifespan 

control (Fontana et al., 2010; Haigis and Sinclair, 2010; Kenyon, 2010) (Figure 1.1C). One is the 

GH/IGF-1/PI3K/AKT/FOXO axis (GH: growth hormone; IGF-1: insulin-like growth factor 1; PI3K: 

phosphoinositide 3-kinase; AKT: protein kinase B; FOXO: forkhead box O). FOXO proteins are a 

group of transcription factors controlling a number of downstream processes to promote antioxidant 

enzymes synthesis, cell-cycle arrest, and energy homeostasis, with the overall effects of increasing 

stress resistance and enhancing survival (Carter and Brunet, 2007). In the presence of growth signal 

IGF-1, AKT phosphorylates FOXO to keep them in the cytoplasm, and the cell favors a program of 

growth and proliferation. Ablation of IGF-1 signaling pathway has been found to extend lifespan, first 

reported in the nematode C. elegans (Friedman and Johnson, 1988; Kenyon et al., 1993), and later 

confirmed in flies and mammals (Fontana et al., 2010; Taguchi and White, 2008). Modulation of GH 

signaling, which in turn affects IGF-1 secretion, can also affect longevity (Swindell, 2007). Mutant 

strains such as Snell dwarf (defective in anterior pituitary development) (Flurkey et al., 2001) and GH 

receptor knockout (GHRKO) (Coschigano et al., 2003) are long-lived, due to altered signaling in GH 

itself or through GH-stimulated production of IGF-1. Human individuals with mutation in the gene 

coding for GH receptor (“Laron syndrome”) exhibit dwarfism but also have strikingly low rates of 

cancer and diabetes (Wade, 2011). 

Three other pathways, TOR/S6K (TOR: target of Rapamycin; S6K: ribosomal S6 kinase), 

sirtuins, and AMPK (AMP-activated protein kinase), are often termed “nutrient sensing”, given their 

abilities to monitor and respond to the metabolic and energy status of the cells (Figure 1.1C). TOR 

becomes activated by abundance of amino acids; it in turns actives S6K to promote growth and 

proliferation (Jewell et al., 2013). On the other hand, during amino acid deprivation, TOR activities 

decrease and a transcription program of stress resistance is initiated (Gallinetti et al., 2013). 

Rapamycin, an inhibitor of mTORC1, produces similar effects and leads to 23-26% increase in 

median lifespan of mice (Harrison et al., 2009; Miller et al., 2014). Sirtuins are a family of enzymes 

with deacetylase activities that require the splitting of NAD+ (nicotinamide adenine dinucleotide) into 

nicotinamide and Ac-ADP-ribose during the deacetylation process (Michan and Sinclair, 2007). 

SIRT1 interacts with and deacetylates a number of proteins to promote cell survival and DNA repair 
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and reduce inflammation (Haigis and Sinclair, 2010). During aging, the NAD+/NADH ratio in the cell 

decreases and there is a loss of mitochondrial oxidative phosphorylation system components, but 

supplement with NAD+ precursor can reverse these aging effects in a SIRT1-dependent manner  

(Gomes et al., 2013). The anti-aging effects of sirtuins activation have been shown in yeast, flies, 

worms, and mammals (Kaeberlein et al., 1999; Michan and Sinclair, 2007; Rogina and Helfand, 2004; 

Tissenbaum and Guarente, 2001). Resveratrol and other sirtuins activators are promising candidates to 

pharmacologically induce these beneficiary effects (Baur et al., 2006; Hubbard et al., 2013; Wood et 

al., 2004). AMPK is also an important sensor of energy level: it remains inactive when cellular ATP is 

abundant, but becomes activated as ATP is consumed and turned into AMP (Burkewitz et al., 2014; 

Hardie et al., 2012). Activated AMPK up-regulates a number of downstream processes, including 

mitochondrial biogenesis, beta oxidation, glucose uptake, and autophagy, while inhibiting protein 

synthesis (Burkewitz et al., 2014). Metformin is a chemical activator of AMPK and has been shown to 

extend lifespan in C. elegans (Onken and Driscoll, 2010).  

Signaling through these nutrient sensing pathways likely explains the lifespan extension by 

dietary restriction (DR), in which an animal’s dietary calorie intake is reduced while maintaining 

normal balance of nutrients. DR is the first method proven effective in extending mammalian 

longevity, and it has been validated in yeast, worms, flies, and mice (Fontana et al., 2010; McCay et 

al., 1935; Sinclair, 2005). Animals under DR experience substantial metabolic remodeling, with 

significant changes in endocrine levels, fat oxidation, reactive oxygen species production and protein 

turnover, mimicking the responses to mild biological stress (Sinclair, 2005). However, the exact 

mechanisms of DR are not fully clear: in Drosophila it seems the reduction of nutrients, rather than 

calories, is responsible for the lifespan extension (Mair et al., 2005); reduction of methionine alone is 

sufficient to produce the longevity effect (Lee et al., 2014); and the benefit of DR can be achieved 

even when initiated late in life (Mair et al., 2003). The effectiveness of DR in primates is still debated 

(Colman et al., 2014; Mattison et al., 2012). Nevertheless, numerous lines of evidence have linked DR 

to each of these nutrient sensing pathways, and there are also cross-talks among the signaling cascade 

components. It is possible that DR may produce the condition of low amino acids, high NAD+/NADH 

ratio and high AMP/ATP ratio, thereby impacting all of these pathways (Figure 1.1C). It was recently 
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demonstrated that mice with only one copy of Myc exhibited increased lifespan, reduced serum IGF-

1, increased AMPK activity and reduced AKT, TOR and S6K activities (Hofmann et al., 2015), 

suggesting yet another potential intervention point for lifespan extension.  

While many of the lifespan experiments were conducted in metazoa, particualrly fruit flies, 

worms, and mice, the unicellular budding yeast Saccharomyces cerevisiae was particularly useful for 

early steps in our understanding of aging and longevity. The lifespan of yeast can be defined as either 

“replicative” (RLS; the number of daughter cells produced by a mother cell before senescence) or 

“chronological” (CLS; the length of time a yeast cell can survive in a non-dividing state) (Kaeberlein 

et al., 2007), and several known regulators of aging were discovered using these assays. It was found 

that reducing glucose or amino acids in culture media can extend both RLS and CLS (Jiang et al., 

2000; Reverter-Branchat et al., 2004). Genome-wide screens of single-gene deletion strains for 

extended lifespan have identified mutations that decrease TOR activity (Kaeberlein et al., 2005; 

Powers et al., 2006). The role of sirtuins in lifespan regulation was also first demonstrated in yeast, as 

overexpression of SIR2 increased RLS by suppressing homologous recombination at rDNA repeats 

and preventing accumulation of extrachromosomal rDNA circles, whereas the deletion of SIR2 

produced the opposite effects (Kaeberlein et al., 1999; Kennedy et al., 1995; Sinclair and Guarente, 

1997). Sir2 orthologs were subsequently found to mediate lifespan extension in both worms and flies 

(Longo and Kennedy, 2006; Rogina and Helfand, 2004; Tissenbaum and Guarente, 2001). 

  



 

 7  

LONGEVITY ACROSS DIFFERENT SPECIES 

The other area of aging research looks at the lifespan differences across species, which is the 

subject of this dissertation. Let’s consider a simple example: a boy, a cat, and a mouse, all living 

under the same roof, can be considered under the influence of a similar set of environmental factors. 

In the absence of diseases and accidents, the boy will almost certainly be around to celebrate his 60th 

birthday. If he (or the cat) is lucky, he may keep the cat as a pet for 10-15 years. However, it is almost 

impossible for the mouse to survive beyond 4 years of age. What causes such dramatic difference in 

lifespan? 

If we focus on mammals only, the differences in longevity are already remarkable (Figure 

1.2A). All modern mammals descend from a common ancestor that lived ∼210 million years ago, yet 

they exhibit more than 100-fold differences in lifespan and 50 million-fold variation in body weight 

(Tacutu et al., 2013) (Figure 1.2B). On the one extreme are small and short-lived species: Etruscan 

shrews (Suncus etruscus) weigh ~ 2g and live up to 3.2 years. The other extreme are the large and 

long-lived beasts: African elephants is the largest land mammal, weighing up to 6 tons and living to 

70 years; in the ocean, bowhead whales (Balaena mysticetus) can weigh > 100 tons and are estimated 

to live > 200 years (Tacutu et al., 2013). In general, the longer-lived species also tend to be bigger, 

produce fewer offspring, grow more slowly, and have lower mass-specific metabolic rates (Peters, 

1986; Sacher, 1959; Western, 1979), suggesting these life history traits may be modulated by the 

same underlying evolutionary forces. In addition, certain lineages have evolved to live longer as a 

whole: despite their small body sizes (~10-20 g; similar to shrews and small rodents), most bats can 

live for 10-20 years (compared to < 4 years in shrews and small rodents) (Seim et al., 2013) (Figure 

1.2B). In other instances,  exceptionally long-lived species have emerged sporadically among short-

lived taxonomic relatives: the naked mole rat (Heterocephalus glaber) lives ten times longer than 

other rodents of comparable size (Buffenstein, 2008; Fang et al., 2014; Kim et al., 2011). Humans 

(Homo sapiens) are also exceptionally long-lived: Jeanne Calment of France held the longevity record 

of 122 years and 164 days (Whitney, 1997), while gorillas, chimpanzees and orangutans can live to ~ 

60 years (Tacutu et al., 2013).  
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Figure 1.2. Longevity across different species.  

(A) Variation in maximum lifespan. Reprinted by permission from Macmillan Publishers Ltd 

(Deweerdt, 2012). 

(B) Maximum lifespan correlates positively with adult weight. The points are colored by 

taxonomic orders. Selected species were labeled. 

(C) Female Time to Maturity correlates positively with maximum lifespan. Colored as in panel 

B. 

 

  



 

 9  

Life expectancy can be impacted by unnatural causes of death, such as diseases, accidents, 

homicide, and suicide. Over the last century, the life expectancy at birth in developed countries has 

increased by 27 years, largely achieved by the improvement in public health care (Hayflick, 2007). 

Nevertheless, heathcare alone cannot change the biological limit of longevity: even with the best 

provision of nutrients and care in a laboratory, no mice can survive beyond 5 years. Therefore, when 

talking about longevity of a species here, we refer to its maximum lifespan or maximum lifespan 

potential, i.e. the longest time a member of the species has been observed to live, or the longest time it 

has the potential to live (assuming free from predation and other external causes of death). For most 

animals this refers to their lifespans in captivity (Holliday, 2006); but for the exceptionally long-lived 

species, one has to rely on unconventional methods. For example, a male Brandt’s bat (Myotis 

brandtii) was recaptured in the wild in Siberia of Russia, 41 years after it was originally banded 

(Podlutsky et al., 2005). Harpoon points made of ivory and stone were found in three bowhead whales 

captured in 2007; such weapons were last manufactured in New England in about 1880 (Gardner, 

2007). Since maximum lifespan may suffer from reporting bias, as an alternative one can track female 

time to maturity (i.e. time taken to reach puberty), which may be measured more easily and correlate 

significantly with maximum lifespan (Pearson correlation 0.83; Figure 1.2C). 

One useful framework to view the variation in longevity is the r/K selection theory, which 

highlights the links among lifespan, reproduction, and selection pressure (Austad, 1997; MacArthur 

and Wilson, 1967; Pianka, 1970). Briefly, the r-selected species tend to be small in size, have short 

generation time, and produce many offspring, although each of the offspring has relatively low 

probability of reaching adulthood. Examples include small rodents, which often occupy the bottom of 

the food chain and compete by their sheer numbers. On the other hand, K-selected species are large in 

size, mature slowly, produce fewer offspring, but each has high chance of survival and relatively long 

lifespan. Large animals like humans and whales are K-selected species and are usually on the top of 

the food chain; they win by quality, not quantity. Although the K-selected species have high chance of 

survival, over-reproduction and over-population may cause them to quickly run out of food. 

Therefore, the optimal strategy choice depends on the evolutionary force and selection pressure, and 

some experiments suggest that changes in these factors can indeed influence species lifespan. A study 
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of two Virginia opossum populations separated for ~5000 years reveals that the population on an 

island with less exposure to predators had greater survivorship, reduced litter sizes, slower 

acceleration of age-specific mortality, and fewer signs of physiological aging, when compared to the 

control population living on mainland (Austad, 1993). Experiments on Drosophila also showed that in 

populations selected for late reproduction, the lifespan of flies increased significantly, together with 

delayed senescence and reduced early fecundity (Luckinbill et al., 1984). 

Yet, on the molecular level, the mechanism of lifespan variation across species is still poorly 

understood. For example, are those pathways involved in the aging regulation within a single species 

also applicable across different species? Do the naturally long-lived species have a transcriptomic and 

metabolic state similar to those laboratory animals under DR? Although telomeres tend to shorten 

with age and stress (Epel et al., 2004) and there have been reports linking telomere length with 

longevity in human individuals and birds (Cawthon et al., 2003; Heidinger et al., 2012), the lengths of 

telomere across different species in fact show negative correlation with maximum lifespan (Gomes et 

al., 2011), e.g. humans have the shortest telomeres, but the longest lifespan among primates (Kakuo et 

al., 1999). Other authors have quantified a number of biochemical and enzymatic parameters using 

samples across various species and revealed that the longer-lived ones probably have greater 

maintenance capacity, suffer less damage, and are more efficient at repair than the shorter-lived ones 

(Holliday, 1997, 2006) (Table 1.1). However, until recently there have been only very few cross-

species comparative studies analyzing the entire mammalian transcriptome or metabolome (Brawand 

et al., 2011; Fushan et al., 2015; Merkin et al., 2012). Besides the difficulty in obtaining reliable 

samples, the large-scale quantification of gene expression and metabolites only recently became cost 

effective, due to advance in high-throughput sequencing and mass spectrometry. In contrast to the 

studies comparing treatment and control samples of a single species, cross-species analyses bring 

about special statistical considerations due to the phylogenetic relationship and statistical non-

independence. Furthermore, to date there are only < 50 mammalian species with publicly available 

complete genomes, posing significant challenges on the read alignment of RNA sequencing data 

without reference genomes. 



 

 11  

Another valuable approach has been to compare exceptionally long-lived species with closely 

related species characterized by more common lifespan, identifying features associated with 

exceptional longevity. Examples include amino acid changes in Uncoupling Protein 1 (UCP1) and 

production of high-molecular-mass hyaluronan in the naked mole rat (Kim et al., 2011; Tian et al., 

2013); unique sequence changes in IGF1 and GH receptors in Brandt’s bat (Seim et al., 2013); gene 

gain and loss associated with DNA repair, cell-cycle regulation, and cancer, as well as alteration in 

insulin signaling in the bowhead whale (Keane et al., 2015; Seim et al., 2014); and duplication of the 

p53 gene in elephants (Abegglen et al., 2015). Again, it is important to ascertain whether these 

mechanisms are unique characteristics of certain exceptionally long-lived species, or they can also be 

extended to account for the general lifespan variation (Partridge and Gems, 2002). 
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Table 1.1. Comparison of maintenance and repair efficiencies across different mammalian 

species. Table is based on (Holliday, 1997). 

 

  

Parameters measured 
Longevity 

Correl. 
Species Reference 

Longevity of fibroblasts in vitro positive 
Mouse, rat, kangaroo rat, mink, 

rabbit, bat horse, human 
(Rohme, 1981) 

Longevity of erythrocytes in vitro positive 

Poly (ADP-ribose) polymerase 

activity 
positive 

Elephant, pig, rabbit, horse, rat, 

guinea pig, marmoset, sheep, 

chimpanzee, gorilla, donkey, cattle 

(Grube and 

Bürkle, 1992) 

Rate of DNA repair Positive 

Mouse, rat, shrew, hamster, rabbit, 

dog, cat, cow, horse, elephant, 

corolla, human 

(Cortopassi and 

Wang, 1996) 

Cross-linking of collagen negative Human, bovine, rat 
(Yamauchi et 

al., 1988) 

Mitochondrial membrane 

peroxidizability index 
negative 

Mouse, rat, guinea pig, sheep, dog, 

pig, cow, horse 

(Pamplona et 

al., 1998) 

Liver fatty acid peroxidizability index negative 
Mouse, rat, guinea pig, dog, pig, 

cow, horse 

(Pamplona et 

al., 2000) 

Rate of telomere shortening negative 
Finch, tree swallow, penguin, tern, 

Leach’s storm-petrel 

(Haussmann et 

al., 2003) 

Mitochondrial free radicals production negative 

Combining data from a number of 

studies 

(Perez-Campo 

et al., 1998) 

Lung glutathione reductase activity negative 

Brain glutathione peroxidase activity negative 

Liver catalase activity negative 

Oxidative damage to DNA negative Mouse, rat, monkey, human 
(Adelman et al., 

1988) 

Oxidative damage to mitochondrial 

DNA 
negative 

Mouse, rat, guinea pigs, rabbit, 

sheep, pig, cow, horse 

(Barja and 

Herrero, 2000) 

Susceptibility to protein oxidation negative Mouse, rat, rabbit, pig, pigeon 
(Agarwal and 

Sohal, 1996) 

Capacity to convert benzo(a)pyrene to 

water-soluble metabolites 
negative 

Hamster, mouse, rat, guinea pig, 

rabbit, cow, elephant, human 

(Moore and 

Schwartz, 1978) 
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SCOPE OF DISSERTATION 

This dissertation presents the analyses of transcriptomes, metabolomes, proteomes and/or 

ionomes, across different species of mammals and Drosophila, and natural isolates of budding yeast 

Saccharomyces cerevisiae, to identify the molecular patterns and signatures associated with species 

longevity. 

Chapter 2 focuses on the key methods employed in the analyses. It explains the rationale and 

implementation of phylogenetic regression to account for the phylogenetic relationship of the cross-

species data, and the two-step verification procedure to assess data robustness. It also presents the 

method for identifying ortholog sets and aligning RNA sequencing reads, especially for the species 

without publicly available genomes. Finally, given that the samples were collected from different 

species with potentially significant variation in diet, gender, and other parameters, it addresses the 

issue of data variability. 

Chapter 3 presents the metabolome analysis of brain, heart, kidney, and liver across 26 

mammalian species. The metabolites significantly enriched or depleted in a particular organ (e.g. low 

glutamine in kidney) or among a particular phylogenetic lineage of species (e.g. low methionine 

sulfoxide in liver of bats; the bile acid conjugation strategies among carnivores, herbivores and 

omnivores) are discussed, in light of the known organ- and species-specific physiologies. Using 

phylogenetic regression, the metabolites with significant positive or negative correlation to species 

longevity were identified (e.g. long-lived species had high urate:allantoin ratio but low tryptophan 

degradation products). The results are compared to the metabolic changes in 5 long-lived mouse 

models, and certain overlapping metabolic changes (e.g. up-regulation of sphingomyelin and down-

regulation of polyunsatureated triacylglycerols) are discussed. 

Chapter 4 presents the analysis of 18 metal and non-metal elements among the mammalian 

species and organs discussed in Chapter 3. Here, the groups of elements with similar distribution 

patterns (e.g. copper and zinc) were identified. The kidney and liver levels of selenium were also 

found to correlate with the number of selenocysteine residuals of selenoprotein P sequences of the 

species. In terms of longevity, liver selenium levels negatively correlated with species lifespan, 
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whereas kidney and liver cadmium levels showed strong positive correlation, but it raised the 

interesting question of correlation and causality. 

Chapter 5 presents the analysis of transcriptome, proteome, and metabolome of 22 strains of 

S. cerevisiae. The natural isolates with high replicative lifespan up-regulated oxidative 

phosphorylation and mitochondrial respiratory chains and down-regulated protein targeting and 

nitrogen compound biosynthesis. Interestingly, the strains differed not by mitochondrial numbers, but 

by the composition of mitochondria, with the longer-lived strains having higher levels of proteins of 

the pyruvate dehydrogenase complex, Complex III, and Complex IV, and the shorter-lived strains 

with higher expression of outer membrane translocases and mitochondrial chaperones. 

Chapter 6 examines the gene expression variation across 14 species of Drosophila, with mean 

lifespan ranging from 8 days to ~60 days. It was observed that the longer-lived flies up-regulate the 

genes in lipid metabolism and down-regulated those in neuronal development. Many genes previously 

shown to affect lifespan in model organisms also showed similar directions of change with respect to 

species lifespan. 

Chapter 7 presents the analysis of gene expression and metabolites in primary skin fibroblasts 

of 16 species of mammals (most of which were rodents). Regression against the longevity traits 

revealed positive correlation with the genes involved in DNA repair and negative correlation with the 

genes involved in proteolysis.  

Similar conclusions were reached in Chapter 8, which profiled the gene expression in brain, 

kidney, and liver across 42 mammalian species. Chapter 8 also reports up-regulation of ribosomal 

proteins and down-regulation of tricarboxylic acid cycle; such patterns were also observed in 

hibernating animals. 

Chapter 9 summarizes the main findings across these datasets and discusses a number of 

lessons learned from these analyses. 
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PHYLOGENETIC REGRESSION 

Given two sets of variables, x and y, their statistical relationship can be estimated using 

regression analysis. With respect to longevity and aging research, one can perform regression between 

any molecular measurement (e.g., gene expression or metabolite level) and longevity trait (e.g., 

maximum lifespan or time to maturity), to identity the genes or metabolites showing statistically 

significant correlations. 

Simple linear regression by ordinary least squares approach is perhaps the simplest and most 

commonly encountered form of regression in biology research (e.g. in the form of two-sample t-test). 

For the analysis to be valid, it requires the input data to meet a number of statistical assumptions, 

some of which concern the regression residual (the difference between the predicted value based on 

the regression model, and the actual observed value). Specifically, the variances of the residuals are 

assumed to be equal (“homoscedasticity”) and uncorrelated (“independence”) (Logan, 2010). While 

these assumptions are likely true for the random samples from a single species, the picture becomes 

much more complicated for the samples collected across many different species.  

Take as an example a study comparing brain glucose levels among different species of 

rodents and carnivores. It is likely that the readings from all the rodent species will be similar to one 

another, and the readings among the carnivores will be also similar. To determine whether there is 

significant difference between the rodents and carnivores, one needs to consider not only the 

difference in mean values, but also the variance (or standard deviation). Since all the rodent species 

are phylogenetically related due to their shared evolutionary history (the same is also true for the 

carnivores), the data variance is likely to be smaller than if these species were completely unrelated. If 

one then applies simple t-test (which assumes the data points are independent) without regards to the 

phylogenetic relationship, the variance will be underestimated and the significance will be overstated. 

The solution to this problem has been provided by a number of authors in comparative and 

evolutionary biology (Butler and King, 2004; Felsenstein, 1985; Freckleton et al., 2002; Garland et 

al., 1993; Grafen, 1989; Martins and Hansen, 1997; Pagel, 1999). Known as “phylogenetic 

regression”, “phylogenetically independent contrast”, or “phylogenetic generalized least squares”, this 
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approach basically incorporates the phylogenetic relationship of the species, modifies the assumption 

of independence and homoscedasticity, and performs regression analysis using generalized least 

squares approach. The overall effect is to increase the stringency for statistical significance (i.e. the p 

values under phylogenetic regression are usually much larger (less significant) than those under 

simple linear regression), such that many of the candidates considered significant under simple linear 

regression will no longer meet the cut-off. In other words, the approach requires that a relationship 

across the species must persist, above and beyond what can be expected based on phylogeny. 

The following sections will elaborate on: ordinary least squares (OLS) approach and its 

assumptions; generalized least squares (GLS) approach and relaxation of OLS assumptions; 

maximum likelihood (ML) approach and its relation to GLS; different trait evolution models (i.e. 

different ways to describe the phylogenetic relationship); and a two-step verification procedure to test 

robustness of results. The methods will be illustrated using the following numerical example of 

longevity trait and metabolite level across 12 different species (Table 2.1 and Figure 2.1): 
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Table 2.1. Hypothetical dataset showing metabolite and trait variations across different species. 

Species Metabolite Trait 

Guinea Pig 7.525 -0.682 

Porcupine 8.946 0.293 

Chinchilla 8.139 -0.121 

Chipmunk 8.191 -0.044 

Red Squirrel 8.744 -0.024 

Fox Squirrel 9.322 0.025 

Beaver 8.803 -0.022 

African Grass Rat 7.863 -0.682 

Gerbil 7.294 -0.652 

Meadow Vole 8.368 -0.625 

Cotton Rat 7.160 -0.783 

White-footed Mouse 8.357 -0.322 

 

 

 

Figure 2.1. An example for phylogenetic regression.  

(A) Plot of metabolite against trait. The data are based on Table 2.1. The species are colored by 

taxonomic grouping. The green line indicates the OLS solution. The vertical dotted lines indicate 

the regression residuals. 

 (B) Phylogenetic tree of the species. The root, tip, and internal node of the tree are indicated. 
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Ordinary Least Squares approach 

For the dependent variable 𝒚 and independent variable 𝑿, the general form of the regression 

model is: 

𝒚 = 𝑿𝜷 + 𝜺 

 y is an n×1 matrix (for n species) 

 X is an n×2 matrix, containing 1s in the 1st column and the predictor in the 2nd column 

 𝜷 is an 2×1 matrix containing the vertical intercept and slope 

 𝜺 is an n×1 matrix containing the regression residuals, with the assumptions that: 

o 𝜺 follows multivariate normal distribution; 

o 𝐸(𝜺) = 0 (i.e. mean value is 0), and 

o 𝑉𝑎𝑟(𝜺) = 𝜎2𝑰, where I is an identity matrix (i.e. independence and homoscedasticity) 

For an estimator �̂�, the regression residual becomes: 

𝜺 = 𝒚 − 𝑿�̂� 

And the Residual Sum of Squares (RSS) is: 

𝜺𝑻𝜺 = (𝒚 − 𝑿�̂�)
𝑇
(𝒚 − 𝑿�̂�) 

The OLS solution �̂� is one that minimizes RSS: 

𝜕(𝜺𝑻𝜺)

𝜕�̂�
= 0 

𝜕

𝜕�̂�
(𝒚𝑻𝒚 − �̂�𝑻𝑿𝑻𝒚 − 𝒚𝑻𝑿�̂� + �̂�𝑻𝑿𝑻𝑿�̂�) = 0 

−2𝑿𝑻𝒚 + 2𝑿𝑻𝑿 �̂� = 0 

�̂� = (𝑿𝑻𝑿)
−𝟏

𝑿𝑻𝒚 

Hence �̂� = (𝑿𝑻𝑿)
−𝟏

𝑿𝑻𝒚 is the OLS solution. The statistics of �̂� is given in Table 2.2. 
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Table 2.2. Regression by ordinary least squares (OLS) approach. 

General form: 

𝒚 = 𝑿𝜷 + 𝜺 

 

𝜺 is an n×1 matrix 

containing residuals in the 

model and assuming: 

 

𝜺 follows multivariate 

normal distribution; 

 

𝐸(𝜺) = 0, and 

 

𝑉𝑎𝑟(𝜺) = 𝜎2𝑰, where I is 

an identity matrix 

 

Numerical example: y is metabolite level; X is trait 

𝒚 =

[
 
 
 
 
 
 
 
 
 
 
 
7.525
8.946
8.139
8.191
8.744
9.322
8.803
7.863
7.294
8.368
7.160
8.357]

 
 
 
 
 
 
 
 
 
 
 

,    𝑿 =

[
 
 
 
 
 
 
 
 
 
 
 
1 −0.682
1 0.293
1 −0.121
1 −0.044
1 −0.024
1 0.025
1 −0.022
1 −0.682
1 −0.652
1 −0.625
1 −0.783
1 −0.322]

 
 
 
 
 
 
 
 
 
 
 

,   𝑉𝑎𝑟(𝜺) = 𝜎2

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
… … … … …
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 

 

Formula to find predictor: 

�̂� = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 
(𝑿𝑻𝑿)−𝟏 = [

0.146 0.207
0.207 0.683

] 

�̂� = [
8.695
1.546

] 

 

Variance: 

𝑉𝑎𝑟(�̂�) 

= 𝜎2(𝑿𝑻𝑿)−𝟏 

=
𝑅𝑆𝑆

𝑑. 𝑓.
(𝑿𝑻𝑿)−𝟏 

=
𝜺𝑻𝜺

𝑛 − 2
(𝑿𝑻𝑿)−𝟏 

where  

 RSS: residual sum of 

squares 

 d.f.: degree of freedom 

 𝜎2 is estimated by 

RSS/d.f. 

 

Standard error (S.E.): 

𝑆. 𝐸. (�̂�) = √𝑉𝑎𝑟(�̂�) 

 

Statistics: 

 𝑡 𝑣𝑎𝑙𝑢𝑒 =
�̂�

𝑆.𝐸.(�̂�)
 

𝜺 = 𝒚 − 𝑿�̂� =

[
 
 
 
 
 
 
 
 
 
 
 
7.525
8.946
8.139
8.191
8.744
9.322
8.803
7.863
7.294
8.368
7.160
8.357]

 
 
 
 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
 
 
 
 
1 −0.682
1 0.293
1 −0.121
1 −0.044
1 −0.024
1 0.025
1 −0.022
1 −0.682
1 −0.652
1 −0.625
1 −0.783
1 −0.322]

 
 
 
 
 
 
 
 
 
 
 

[
8.695
1.546

] =

[
 
 
 
 
 
 
 
 
 
 
 
−0.115
−0.202
−0.369
−0.436
0.086
0.589
0.142
0.223

−0.393
0.639

−0.324
0.160 ]

 
 
 
 
 
 
 
 
 
 
 

 

 

𝑉𝑎𝑟(�̂�) =
1.497

12 − 2
[
0.146 0.207
0.207 0.683

] = [
0.0219 0.0310
0.0310 0.1023

] 

 

S.E. of intercept: √0.0219 = 0.148 

S.E. of slope: √0.1023 = 0.320 

 

Intercept: t value = 8.695/0.148 = 58.75, p value = 4.9×10-14 

Slope: t value = 1.546/0.320 = 4.831, p value = 6.9×10-4 
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Generalized Least Squares approach 

Let’s still consider the regression model 𝒚 = 𝑿𝜷 + 𝜺 and keep the assumptions that 𝜺 follows 

multivariate normal distribution and 𝐸(𝜺) = 0, but now let 𝑉𝑎𝑟(𝜺) = 𝜎2𝜮, such that: 

 The diagonal elements of 𝜮 may be different (heteroscedasticity) 

 The off-diagonal elements of 𝜮 may be non-zero (autocorrelation) 

If we can find a matrix 𝑾, such that: 

𝑾𝑻𝑾 = 𝜮−𝟏 

Then, the regression model can be transformed to: 

(𝑾𝒚) = (𝑾𝑿)𝜷 + (𝑾𝜺) 

Making use of the results 𝑉𝑎𝑟(𝑿) = 𝐸 [(𝑿 − 𝐸(𝑿))(𝑿 − 𝐸(𝑿))
𝑇
]; 𝐸(𝜺) = 0; and 𝑉𝑎𝑟(𝜺) = 𝜎2𝜮: 

𝑉𝑎𝑟(𝑾𝜺) 

=  𝐸 [(𝑾𝜺 − 𝐸(𝑾𝜺))(𝑾𝜺 − 𝐸(𝑾𝜺))
𝑇
] 

= 𝐸[(𝑾𝜺)(𝑾𝜺)𝑇] 

= 𝐸[𝑾𝜺𝜺𝑻𝑾𝑻 ] 

= 𝑾𝐸[𝜺𝜺𝑻]𝑾𝑻 

= 𝑾𝑉𝑎𝑟(𝜺)𝑾𝑻 

=  𝑾𝜎2𝜮𝑾𝑻 

= 𝜎2𝑰 

In other words, (𝑾𝒚) = (𝑾𝑿)𝜷 + (𝑾𝜺) satisfies the assumption of OLS and can be solved using the 

formula: 

�̂� 

= ((𝑾𝑿)𝑇(𝑾𝑿))
−1

(𝑾𝑿)𝑇(𝑾𝒚) 

= (𝑿𝑻𝑾𝑻𝑾𝑿)
−1

𝑿𝑻𝑾𝑻𝑾𝒚 

= (𝑿𝑻(𝑾𝑻𝑾)𝑿)
−1

𝑿𝑇(𝑾𝑇𝑾)𝒚 

= (𝑿𝑇𝜮−1𝑿)−1𝑿𝑇𝜮−1𝒚 

By analogy, the RSS is given by: 

(𝑾𝜺)𝑇(𝑾𝜺) = 𝜺𝑇𝑾𝑇𝑾𝜺 = 𝜺𝑇𝜮−1𝜺 

The GLS solution is presented in Table 2.3, assuming the matrix 𝜮 is already known (based on 

Brownian Motion model, Figure 2.1B).  
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Table 2.3. Regression by generalized least squares (GLS) approach. 

General form: 

𝒚 = 𝑿𝜷 + 𝜺 

 

𝜺 is an n×1 matrix 

containing residuals in 

the model and assuming: 

 

𝜺 follows multivariate 

normal distribution; 

 

𝐸(𝜺) = 0, and 

 

𝑉𝑎𝑟(𝜺) = 𝜎2𝜮, 

Numerical example: Y is metabolite level; X is trait 

 𝒚 =

[
 
 
 
 
 
 
 
 
 
 
 
7.525
8.946
8.139
8.191
8.744
9.322
8.803
7.863
7.294
8.368
7.160
8.357]

 
 
 
 
 
 
 
 
 
 
 

,    𝑿 =

[
 
 
 
 
 
 
 
 
 
 
 
1 −0.682
1 0.293
1 −0.121
1 −0.044
1 −0.024
1 0.025
1 −0.022
1 −0.682
1 −0.652
1 −0.625
1 −0.783
1 −0.322]

 
 
 
 
 
 
 
 
 
 
 

,  

𝜮 

=

[
 
 
 
 
 
 
 
 
 
 
 

1 0.43 0.43 0 0 0 0 0 0 0 0 0
0.43 1 0.49 0 0 0 0 0 0 0 0 0
0.43 0.49 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0.5 0.5 0.02 0.02 0.02 0.02 0.02 0.02
0 0 0 0.5 1 0.74 0.02 0.02 0.02 0.02 0.02 0.02
0 0 0 0.5 0.74 1 0.02 0.02 0.02 0.02 0.02 0.02
0 0 0 0.02 0.02 0.02 1 0.05 0.05 0.05 0.05 0.05
0 0 0 0.02 0.02 0.02 0.05 1 0.49 0.47 0.47 0.47
0 0 0 0.02 0.02 0.02 0.05 0.49 1 0.47 0.47 0.47
0 0 0 0.02 0.02 0.02 0.05 0.47 0.47 1 0.56 0.56
0 0 0 0.02 0.02 0.02 0.05 0.47 0.47 0.56 1 0.56
0 0 0 0.02 0.02 0.02 0.05 0.47 0.47 0.56 0.56 1 ]

 
 
 
 
 
 
 
 
 
 
 

  

 

Formula to find predictor: 

�̂�
= (𝑿𝑇𝜮−1𝑿)−1𝑿𝑇𝜮−1𝒚 

(𝑿𝑇𝜮−1𝑿)−1 = [
0.225 0.163
0.163 0.670

] 

�̂� = [
8.700
1.676

] 

 

Variance: 

𝑉𝑎𝑟(�̂�) 

= 𝜎2(𝑿𝑻𝜮−1𝑿)−𝟏 

=
𝑅𝑆𝑆

𝑑. 𝑓.
(𝑿𝑻𝜮−1𝑿)−𝟏 

=
𝜺𝑻𝜮−1𝜺

𝑛 − 2
(𝑿𝑻𝜮−1𝑿)−𝟏 

where  

 RSS: residual sum of 

squares 

 d.f.: degree of 

freedom 

 𝜎2 is estimated by 

RSS/d.f. 

 

Standard error (S.E.): 

𝑆. 𝐸. (�̂�) = √𝑉𝑎𝑟(�̂�) 

 

Statistics: 

 𝑡 𝑣𝑎𝑙𝑢𝑒 =
�̂�

𝑆.𝐸.(�̂�)
 

𝜺 =

[
 
 
 
 
 
 
 
 
 
 
 
7.525
8.946
8.139
8.191
8.744
9.322
8.803
7.863
7.294
8.368
7.160
8.357]

 
 
 
 
 
 
 
 
 
 
 

−

[
 
 
 
 
 
 
 
 
 
 
 
1 −0.682
1 0.293
1 −0.121
1 −0.044
1 −0.024
1 0.025
1 −0.022
1 −0.682
1 −0.652
1 −0.625
1 −0.783
1 −0.322]

 
 
 
 
 
 
 
 
 
 
 

[
8.700
1.676

] =

[
 
 
 
 
 
 
 
 
 
 
 
−0.032
−0.245
−0.358
−0.435
0.084
0.580
0.140
0.306

−0.313
0.716

−0.227
0.197 ]

 
 
 
 
 
 
 
 
 
 
 

 

 

𝑉𝑎𝑟(�̂�) =
2.852

12 − 2
[
0.225 0.163
0.163 0.670

] = [
0.0642 0.0464
0.0464 0.1911

] 

 

S.E. of intercept: √0.0642 = 0.253 

S.E. of slope: √0.1911 = 0.437 

 

Intercept: t value = 8.700/0.253 = 34.35, p value = 1.0×10-11 

Slope: t value = 1.676/0.437 = 3.83, p value = 3.3×10-3 

  



 

 29  

Maximum Likelihood approach 

In addition to the OLS and GLS approaches, the regression parameter can also be estimated 

using Maximum Likelihood (ML). For example, suppose x is a univariate normal distribution with 

known mean 𝜇 and variance 𝜎2, i.e. 𝑥~𝑁(𝜇, 𝜎2), so the probability density function is given by: 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  

In other words, if we take n random samples from the distribution x with known mean and variance, 

then the frequency distribution of these n values is described by the above equation. The ML approach 

can be considered the reverse process: given n values taken randomly from the distribution x, we can 

estimate the mean and variance of such distribution. Mathematically, the likelihood function for 

samples (x1, x2, x3, …, xn) is defined as: 

𝐿(𝜇, 𝜎2|𝑥) = ∏𝑓(𝑥𝑟|𝜇, 𝜎2)

𝑛

𝑟=1

= (2𝜋)−
𝑛
2  (𝜎2)−

𝑛
2𝑒

−
1

2𝜎2 ∑ (𝑥𝑟−𝜇)2𝑛
𝑟=1   

 

which is often presented in the log form: 

ln(𝐿) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) − 

1

2𝜎2
 ∑(𝑥𝑟 − 𝜇)2

𝑛

𝑟=1

 

The parameters 𝜇 and 𝜎2 can be found iteratively, such that the likelihood L (or log-likelihood ln(L)) 

is at maximum. 

When this result is extended to k-dimensional, multivariate normal distribution 𝒙 with mean 

𝝁 and variance 𝜎2𝜮, i.e. 𝒙~𝑁𝑘(𝝁, 𝜎2𝜮), the probability density function is given by: 

𝑓(𝒙) =
1

√(2𝜋)𝑘𝜎2𝜮
𝑒

−
(𝒙−𝝁)𝑇(𝒙−𝝁)

2𝜎2𝜮 = (2𝜋)−
𝑘
2  |𝜎2𝜮|−

1
2 𝑒

−
1

2𝜎2 (𝒙−𝝁)𝑇𝜮−𝟏(𝒙−𝝁)
 

For n random samples, the likelihood function and log-likelihood function are: 

𝐿(𝝁, 𝜎2𝜮|𝒙) = ∏𝑓(𝒙𝒓|𝝁, 𝜎2𝜮)

𝑛

𝑟=1

= (2𝜋)−
𝑛𝑘
2  |𝜎2𝜮|−

𝑛
2𝑒

−
1

2𝜎2 ∑ (𝒙𝒓−𝝁)𝑇𝜮−𝟏(𝒙𝒓−𝝁)𝑛
𝑟=1   

 

ln(𝐿) = −
𝑛𝑘

2
ln(2𝜋) −

𝑛

2
ln(|𝜎2𝜮|) − 

1

2𝜎2
 ∑(𝒙𝒓 − 𝝁)𝑇𝜮−𝟏(𝒙𝒓 − 𝝁)

𝑛

𝑟=1
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Recall that for the regression model 𝒚 = 𝑿𝜷 + 𝜺, the residual 𝜺 is assumed to follow 

multivariate normal distribution with mean 𝐸(𝜺) = 0 and variance 𝑉𝑎𝑟(𝜺) = 𝜎2𝜮. Given 𝜺 is an n×1 

matrix, the log-likelihood is: 

ln(𝐿) 

= −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(|𝜎2𝜮|) − 

1

2𝜎2
 𝜺𝑇𝜮−𝟏𝜺 

= −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(|𝜎2𝜮|) − 

1

2
(𝑅𝑆𝑆) 

When �̂� = (𝑿𝑇𝜮−1𝑿)−1𝑿𝑇𝜮−1𝒚 (the GLS solution), RSS is at minimum, i.e. ln(L) is at maximum. In 

other words, the GLS (or OLS, in case of homoscedasticity and independence) approach and the ML 

approach is equivalent. 
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Different trait evolution models 

So far, we have assumed that the matrix 𝜮 in the variance 𝑉𝑎𝑟(𝜺) = 𝜎2𝜮 is already known. 

The matrix 𝜮 is sometimes called the variance-covariance (VCV) matrix, in which the diagonal 

elements describe the variance of each sample, and the off-diagonal elements describe the covariance 

between two selected samples. In the case of OLS, the matrix 𝜮 is an identity matrix, such that the 

diagonal elements are all 1s (and scaled by 𝜎2 to give equal variance for the residuals, i.e. 

homoscedasticity) and the off-diagonal elements are all 0s (i.e. independence among the residuals). In 

the case of GLS, the diagonal elements can be unequal and the off-diagonal elements can be non-

zeros. This section will focus first on the situation of non-zero off-diagonals. 

The evolutionary relationship of any given number of species can be represented using a 

phylogenetic tree (Figure 2.1B). The tips of the tree showing the species names denote the present 

states of the species, whereas the root of the tree denotes the state of the common ancestor of all the 

species in the distant past. The internal nodes represent speciation events when two branches start to 

diverge, and the branch lengths are proportional the amount of changes (Baum, 2008). Commonly, the 

tree can be constructed based on nucleotide or protein sequence variations across the species, and 

calibrated using fossils to represent the estimated time of divergence. 

 

The Basics: Brownian Motion model 

The evolution of a trait among species can be modeled by a Brownian Motion (BM) process 

(Felsenstein, 1985; Revell, 2010; Revell et al., 2008). Consider a simple example of 4 species A, B, C, 

and D (Figure 2.2). Setting the relative time as 0.0 at the root and 1.0 at the tip, the phylogenetic tree 

illustrates three speciation events: at relative time 0.0, the ancestor of Species A and B splits from the 

ancestor of Species C and D; at relative time 0.4, Species C and D split apart; and at relative time 0.7, 

Species A and B split apart (Figure 2.2A). In other words, between relative time 0.0 and 0.4 Species C 

and D evolve along the identical path, and between relative time 0.0 and 0.7 Species A and B evolve 

along the identical path (Figure 2.2B, the black line). Only after the respective speciation events then 

they start to evolve independently.  
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Under the BM model, the amount of changes in a trait is proportional to time. If the rate of 

change (per unit time) in the trait is 𝜎2 and is constant over the entire tree, then the variance between 

Species A and the root of the tree (i.e. the common ancestor of all 3 species) is 𝑉𝑎𝑟(𝐴) = 𝜎2 × 1.0, 

where 1.0 is the relative time between the root and tip. Similarly, 𝑉𝑎𝑟(𝐵) = 𝜎2 × 1.0, 𝑉𝑎𝑟(𝐶) =

𝜎2 × 1.0 and 𝑉𝑎𝑟(𝐷) = 𝜎2 × 1.0 for Species B, C and D, respectively. In addition, since Species A 

and B evolve together between relative time 0.0 and 0.7, their covariance is 𝐶𝑜𝑣(𝐴, 𝐵) = 𝜎2 × 0.7. 

Similarly, the covariance between Species C and D is 𝐶𝑜𝑣(𝐶, 𝐷) = 𝜎2 × 0.4. All the information can 

be summarized using a VCV matrix 𝜮, where the diagonal is the relative time between the root and tip 

of the tree, and the off-diagonal is the relative time between the root and the last common ancestor of 

the two species (Figure 2.2C). Hence, variance in trait 𝜺 is 𝑉𝑎𝑟(𝜺) = 𝜎2𝜮 and can be solved by GLS. 

 

Figure 2.2. Brownian Motion (BM) model of trait evolution.  

(A) Phylogenetic tree showing the relative time of evolution. 

(B) Simulation of trait evolution. The common ancestor of all 4 species is assumed to have a trait 

value 0 (at relative time 0.0). The variance 𝝈𝟐 is assumed to be 0.02. The trait was simulated over 

1000 time points. 

(C) The variance-covariance (VCV) matrix for the species. 
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Variation: Null model and Lambda model 

In BM model, we assume that the phylogenetic tree fully and accurately reflects the evolution 

of trait. To relax this assumption, a number of ways have been proposed to transform the phylogenetic 

tree and VCV, one of the most common being “Pagel’s lambda” (Pagel, 1999). In the Lambda model, 

the off-diagonal elements of the VCV are scaled by a factor lambda that ranges between 0 and 1 

(Figure 2.3). There are two interesting situations. When lambda = 1, it is the same as BM model 

(Figure 2.2C). When lambda = 0, all the off-diagonals are 0 and the diagonals are 1, i.e. it becomes an 

identity matrix and variance in trait 𝜺 is 𝑉𝑎𝑟(𝜺) = 𝜎2𝑰, satisfying the OLS assumptions; this is also 

called the Null model. In other words, the Null model assumes that the species are effectively 

independent of one another. 

 

Figure 2.3. Lambda model of trait evolution.  

(A) Lambda transformation of variance-covariance (VCV) matrix. The original VCV is 

based on Brownian Motion model in Figure 2.2. 

(B) The effects of different values of lambda. From left to right: the lambda value is 0, 

0.3, 0.6 and 1, and the corresponding phylogenetic trees and trait simulation are shown 

below. When lambda=0, it becomes the “Null” model. 
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Variation: Ornstein-Uhlenbeck model 

Under the BM model, the differences in a trait among the species simply increase with 

divergence time. On the other hand, for certain traits (e.g. body temperature) there may be physical 

limits and boundaries, or there may be an optimal value. The Ornstein-Uhlenbeck (OU) model (Butler 

and King, 2004; Martins and Hansen, 1997) builds on the BM model, by adding the selection strength 

parameter α and the optimal trait value θ, such that the trait values of the species will be pulled 

towards θ. The effects of OU transformation on the VCV and trait evolution are illustrated in Figure 

2.4. Note that when α=0, it becomes the BM model. 

 

Figure 2.4. Ornstein-Uhlenbeck (OU) model of trait evolution.  

(A) OU transformation of variance-covariance (VCV) matrix. The original VCV is based on 

Brownian Motion model in Figure 2.2. 

(B) The effects of different values of alpha. The optimal trait value (theta) is set as 0 in all cases. 

When alpha=0, it becomes the BM model. 
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Selecting the best model  

Recall that for the hypothetical dataset (Figure 2.1), the regression of metabolite level against 

longevity trait across 12 different species can be solved using GLS (Table 2.3), or if the species are 

assumed to be independent of one another, using OLS (Table 2.2). In addition, the maximum 

likelihood (ML) approach can also obtain the same results. 

Both GLS and ML require 3 inputs: the independent variable (e.g. longevity trait), the 

dependent variable (e.g. metabolite level), and the VCV. The form of the VCV depends on the 

assumed model of trait evolution, and here four models (Null, BM, Lambda, and OU) are presented. 

Different VCV can be generated by changing the model parameters (e.g. lambda or alpha), and then 

be used as input for GLS or ML to obtain the regression slope and p value. The ML approach has an 

additional advantage, that it calculates explicitly the likelihood under each set of parameters (i.e. the 

goodness of fit of data), and the parameters are estimated at the same time as the regression statistics. 

The best model will then be the one with the largest likelihood (Lavin et al., 2008). This approach also 

means that one needs not make any a priori assumption on the mode of trait evolution: if the data do 

suggest that the input data are independent and no phylogenetic correction is needed, then the ML 

approach should simply return the Null model as the best model. 

Table 2.4 illustrates the model selection using the hypothetical dataset. Since the OU model 

produces the largest likelihood (i.e. least negative log likelihood), it is considered the best model and 

its regression slope and p value will be reported. Note that in this case, the BM model is considered 

inferior to the Null model based on maximum likelihood, and the Lambda model returns an estimated 

lambda = 0 (i.e. effectively the Null model).  

Table 2.4. The best model for the hypothetical dataset. See Table 2.1 for the values of the 

longevity trait and metabolite level. See Table 2.3 for the variance-covariance (VCV) matrix of the 

phylogenetic tree. 

Model Log likelihood Slope coefficient Slope p value 
Estimated 

Parameter(s) 

Null -4.540 1.546 6.887×10-4 -- 

BM -6.697 1.676 3.299×10-3 -- 

Lambda -4.540 1.546 6.887×10-4 Lambda = 0 

OU -4.534 1.543 7.110×10-4 Alpha = 11.2 
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Two-step verification procedure for robustness 

Since the regression may be influenced by outlier values, a two-step verification procedure is 

developed to assess the robustness of the results. In the first step, the point with the largest residual is 

identified and removed, and regression is performed using the remaining points (Figure 2.5A). This 

ensures the regression line will not be skewed by a single outlier, and the resulting p value is reported 

as “p value.robust”. In the second step, regression is repeated by removing each of the remaining 

points (already excluding the outlier point in the first step), one at a time, and the largest (i.e. least 

significant) p value is reported as “p value.max” (Figure 2.5B). This ensures the relationship is 

generalizable and does not depend on any single species. 

 

 

Figure 2.5. Two-step verification procedure.  

(A) First step: remove the point with largest residual. Meadow vole has the largest residual 

(0.64) and is removed. Regression using the remaining species gives p value = 2.33×10-4 (i.e. p 

value.robust). 

(B) Second step: remove each species, one at a time. Removal of cotton rat gives the largest 

(least significant) p value = 1.41×10-3 (i.e. p value.max). Meadow vole is already removed after the 

first step. 
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SPECIES WITHOUT REFERENCE GENOMES 

RNA sequencing, read alignment and read counting 

The general workflow for quantifying gene expression by RNA sequencing is illustrated in 

Figure 2.6. RNA molecules are isolated from biological samples and fragmented into short sequences. 

Using reverse transcription, these fragments are converted into a sequence library and the nucleotide 

sequences can be read by a sequencing machine. If the reference genome for the species is publicly 

available, the short reads can be aligned to the reference genome (e.g. using alignment software 

STAR (Dobin et al., 2013)) and the number of aligned reads can then be counted (e.g. using 

featureCounts function of Subread (Liao et al., 2014)) to represent the gene expression values. 

If the species has no complete genome, then the transcriptome may be de novo assembled 

from the short reads (e.g. using software Trinity (Grabherr et al., 2011)). By relying on the 

overlapping sequences among the short reads, these reads may be “stitched” back together to derive 

the original RNA sequences. These assembled sequences can then be used for read alignment and 

read counting. However, for those genes with low expression, there may not be sufficient reads to 

regenerate the complete sequences. 
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Figure 2.6. Schematic workflow of gene expression analysis by RNA sequencing. When the 

reference genome is available, the reads can be aligned to the reference genome directly. When the 

reference is not available, the transcriptomes can be assembled de novo and then used for read 

alignment. The assembly of transcriptomes replies on “stitching” together the short reads with 

overlapping sequences. For modestly expressed genes, a part of or the entire transcript sequences 

may fail to be assembled. 
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Identification of gene orthologs across species 

For studies involving samples from the same species, it is relatively straightforward to 

identify the differentially expressed genes. On the other hand, for gene expression comparison across 

different species, several complications can arise. First is the adjustment for the phylogenetic 

relationship of the species, as discussed above. Second is the identification of gene orthologs (i.e. 

genes in different species that evolved from a common ancestral gene by speciation). In order to make 

meaningful comparison of the read counts of a particular gene, one needs to decide on the sequence of 

this gene in each species to be used for read alignment and read counting. For the commonly studied 

species, the ortholog sets can be downloaded from a number of online databases (e.g. HomoloGene of 

NCBI; BioMart of Ensembl; and Multiz Alignment of UCSC Genome Browser). However, for the 

less common species (especially those without complete genomes), there is little information on gene 

orthology relationship. Aligning reads to the genome of a related species is often far from ideal: for 

example, only 13% of the reads of African grass rat fibroblasts could be uniquely mapped to the 

mouse genome (even though both belong to the same Family Muridae), and the alignment rate was 

even lower for red squirrel (about 5%). Given that a few of the studies presented here involved 

multiple species without complete genomes, a pipeline was developed to identify ortholog sequences 

across the species (Figure 2.7). 

 

Step 1: generate mouse reference 

Based on the Mus musculus Ensembl genome and annotation (release 78), the longest 

transcript was extracted for each protein-coding gene locus, after confirming the presence of start 

codon and stop codon and the proper reading frame. Those transcripts containing highly repetitive or 

highly similar sequences (e.g. genes coding for histones and olfactory receptors) were identified and 

removed using BLAST (at e value cut-off 10-6) (Camacho et al., 2009), ensuring that the read 

alignment would be unique and unambiguous. This generated the Mouse Reference, representing the 

coding sequences of 16,816 unique protein-coding genes. 
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Step 2: identify species-specific ortholog sets 

For each species, the transcriptome was assembled de novo using Trinity (Grabherr et al., 

2011). BLAST (with “dc-megablast” option) was performed between Mouse Reference and the 

assembled transcriptome (and the published genome, if available) to identify the reciprocal best hits 

(Tatusov et al., 1997). The sequences were trimmed down to open reading frame (i.e. flanked by start 

and stop codons) using Exonerate (Slater and Birney, 2005). Within each ortholog sets, multiple 

sequence alignment was performed using MUSCLE (Edgar, 2004) and the percentage of sequence 

identity was assessed by MView (Brown et al., 1998).The sequence fragments or missing sequences 

due to poor coverage were filled up using the consensus of related species.  

 

Step 3: read mapping, counting, filtering and normalization 

The RNA sequencing reads were aligned to the species-specific ortholog sets using STAR 

(Dobin et al., 2013) and read counting was performed by featureCounts (Liao et al., 2014). Those 

ortholog sets with too high counts (i.e. read counts contributing to >5% of the total counts) or too low 

counts (i.e. less than 10 counts in > 30% of the samples) were discarded. The library sizes were scaled 

by trimmed mean of M-values (TMM) method, log10-transformed, and quantile-normalized 

(Robinson and Oshlack, 2010). 
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Figure 2.7. The pipeline to obtain the species-specific ortholog sets and expression values. 
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Ortholog quality assessment 

Before proceeding with data analysis, we assessed the quality of the orthologs in terms of the 

following areas (Figure 2.8; illustrated using data from Chapter 8): 

Filling up with consensus 

The sequence fragments and missing sequences were filled up using the consensus of related 

species, for two main purposes. First, the ortholog sequences would be of similar lengths, so that read 

count variations across the species would not be influenced by length differences. Second, if a gene 

was expressed at low level in one species (and its sequence failed to be assembled de novo), the 

consensus sequence of the related species could be used for read alignment and counting.  

In the mammalian transcriptome dataset (Chapter 8), 80% of the orthologs did not require 

filling up or were filled up <10% of sequence length, whereas only 4% were filled up 90~100% of 

sequence length (Figure 2.8A). In terms of standardized expression values, there was no significant 

bias against those filled up using consensus (Figure 2.8A), perhaps except for a slight decline in the 

90-100% category. Therefore, the filling up procedure did not negatively impact the overall results. 

Aligned to genomes vs. aligned to ortholog sets 

Unlike a complete genome, the de novo assembled ortholog sequences did not contain introns 

and non-coding regions. The 5’ and 3’ untranslated regions were also removed to facilitate sequence 

alignment. For those species with publically available genomes, ~82% of the reads could be aligned to 

the complete genomes and ~46% of the reads could be aligned to the ortholog sets. For those without 

genomes, ~42% of the reads could be aligned to the ortholog sets (Table 2.5, Figure 2.8B). The 

Spearman correlation coefficients between the read counts based on ortholog set alignment and those 

based on genome alignment were > 0.95 for most species (Table 2.5, Figure 2.8B). 

Our orthology definition vs. Ensembl orthology definition 

For those species with annotated genomes in Ensembl, we compared our orthology definition 

with the orthology definition in Ensembl. Orthology information for ~10,000 to ~15,000 of our 

orthologs could be found in Ensembl, and 90-99% of them matched our orthology definition (Table 

2.5), suggesting the results of our pipeline were consistent with other databases. 
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Figure 2.8. Assessment of ortholog sets quality. 

(A) The effect of filling up with consensus. The ortholog sets were categorized by their lengths 

that required filling up (top) and the corresponding relative expression values were shown (bottom).  

(B) Comparing reads alignment to ortholog sets and to genome. The percentages of reads in 

each species aligned to the ortholog sets were shown (top). For those species with complete 

genomes, the reads were also aligned to the genomes (middle), and the average Spearman 

correlation coefficient between the read counts of ortholog set alignment and the read counts of 

genome alignment was calculated for these species (bottom). See Table 2.5 for more details. 
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Table 2.5. Assessment of ortholog sets quality. For each species, the reads were aligned to de novo 

assembled ortholog sets, and if available, to the complete genome. The average Spearman correlation 

coefficient between the read counts of ortholog set alignment and of genome alignment was 

calculated (see Figure 2.8B). For those species with Ensembl annotations, the ortholog definition from 

Ensembl were compared with our ortholog definition.  

Species 

Alignment Rates and Counts Ortholog definition 

Aligned to 

ortholog sets 

Source of 

genome 

Aligned to 

complete 

genome 

Read counts 

correlation 

(mean) 

No. with 

Ensembl 

definition 

No. of 

matching 

definition 

% of 

matching 

definition 

Chicken 41.0% Ensembl 81.6% 0.958 11,249 11,182 99.4% 

Platypus 47.2% Ensembl 66.2% 0.918 11,363 10,667 93.9% 

Opossum 41.2% Ensembl 72.0% 0.958 13,569 13,454 99.2% 

Sugar glider 32.4% N/A      

Shrew 45.9% N/A      

Hedgehog 37.4% Ensembl 50.1% 0.942 11,510 11,440 99.4% 

Pig 47.0% Ensembl 81.8% 0.907 13,880 13,598 98.0% 

Bowhead whale 43.9% N/A      

Minke whale 45.8% NCBI 92.3% 0.974    

Goat 43.9% NCBI 86.8% 0.971    

Cattle 43.3% Ensembl 81.4% 0.973 15,095 15,005 99.4% 

Yak 44.9% NCBI 89.9% 0.974    

Brazilian bat 53.0% N/A      

Tube-nosed bat 33.1% N/A      

Brandt's bat 48.5% NCBI 68.9% 0.964    

Horse 45.4% Ensembl 90.6% 0.977 14,866 14,808 99.6% 

Cat 47.0% Ensembl 91.3% 0.981 14,827 14,743 99.4% 

Dog 49.4% Ensembl 90.7% 0.966 14,900 14,819 99.5% 

Bear 41.1% N/A      

Badger 41.8% N/A      

Rabbit 48.5% Ensembl 82.4% 0.951 14,039 13,942 99.3% 

Tree shrew 54.0% Ensembl 53.4% 0.935 11,841 11,776 99.5% 

Vervet 33.3% N/A      

Baboon 56.2% NCBI 92.4% 0.965    

Rhesus monkey 46.1% NCBI 92.9% 0.977    

Macaque 44.8% Ensembl 76.3% 0.947 14,771 14,615 98.9% 

Orangutan 44.9% NCBI 79.0% 0.962    

Gorilla 45.8% Ensembl 79.6% 0.961 14,760 14,657 99.3% 

Human 45.6% Ensembl 79.4% 0.966 15,409 14,934 96.9% 

Bonobo 44.4% NCBI 77.3% 0.970    

Chimpanzee 41.0% Ensembl 78.4% 0.963 14,576 14,527 99.7% 

Guinea pig 44.2% Ensembl 84.1% 0.979 14,592 14,521 99.5% 

Damaraland mole Rat 44.4% NCBI 92.2% 0.976    

Naked mole rat 56.0% NCBI 96.2% 0.974    

Chipmunk 42.1% N/A      

Beaver 34.8% N/A      

White-footed mouse 38.0% N/A      

Hamster 46.6% NCBI 90.4% 0.976    

Gerbil 45.5% N/A      

Spiny mouse 54.7% N/A      

Rat 48.3% Ensembl 89.2% 0.947 15,791 14,493 91.8% 

Mouse 46.5% Ensembl 80.8% 0.961 16,817 16,817 100.0% 



 

 45  

DATA VARIABILITY 

Each of the studies presented in this dissertation involves biological samples from different 

species or strains, often obtained from different sources. While care has been taken to match the 

samples by biological age and sex (e.g. for the mammalian species in Chapter 3, Chapter 4, and 

Chapter 8, the samples were obtained from young, male adults (except for female for vervet and 

horse)), other factors such as diet, circadian cycle, and even measurement inaccuracy, will introduce 

additional data variation. Furthermore, we rely on the public database for the longevity trait 

information; such data will not be entirely accurate either. Here the issue of data variability will be 

discussed in more detail. 
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Within-species variation vs. between-species variation 

Chapter 3 presents the metabolite data of brain, heart, kidney, and liver of 26 mammalian 

species. Chapter 8 presents the gene expression data of brain, kidney, and liver of chicken and 41 

mammalian species. Analysis of Variance (ANOVA) revealed that organs, species and their 

interaction together accounted for 91% of the total variation in the metabolite dataset, and 87% of the 

total variation in the gene expression dataset, whereas the differences between replicates accounted 

for only 9% and 13%, respectively (Figure 2.9). This suggests the within-species variation is likely to 

be much smaller than the between-species variation. 

 

 

Figure 2.9. Sources of data variation. The box plots showed the distribution of the ANOVA 

results for individual metabolites (left) or genes (right). 
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Samples from different datasets 

In Chapter 8, besides the samples collected and sequenced by our laboratory (Fushan et al., 

2015), other published RNA sequencing samples were also incorporated (Brawand et al., 2011; 

Merkin et al., 2012). For the species that were common across different datasets, we analyzed their 

variations by hierarchical clustering. For example, Fushan et al. (Fushan et al., 2015) reported 

expression data in brain, kidney, and liver for 3 mice and 2 cattle; Brawand et al. (Brawand et al., 

2011) reported data in brain, cerebellum, heart, kidney, and liver for 3 mice (as well as testis for 2 of 

the mice); and Merkin et al. (Merkin et al., 2012) reported data in brain, heart, kidney, and liver for 2 

cattle (Figure 2.10). The result showed that the samples segregated first by organ, then by species, and 

there was no obvious segregation by the sources of sample. The variations between the replicates 

were smaller than the variations between species and between organs. 

 

 

Figure 2.10. Clustering of the samples from different sources. The symbols in the parenthesis 

indicate the source of sample. Hierarchical clustering was performed on a distance matrix of 1 

minus Pearson correlation coefficient of expression values, using complete linkage.  
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Metabolic effects of drug treatment and gene knockout 

In Chapter 3, metabolite profiling was performed on brain, heart, kidney and liver of 26 

mammalian species, as well as on brain and liver of 5 long-lived mouse models (i.e. caloric restriction 

(CR), rapamycin treatment (RAP), acarbose treatment (ACA), growth hormone receptor knock-out 

(GHRKO), and Snell dwarf mutant mice). Compared to wild-type, these long-lived mice exhibited 

certain metabolic changes (e.g. lower level of polyunsaturated triacylglycerols and higher levels of 

sphingomyelin) that were also found to correlate with longevity across various mammalian species 

(Chapter 3). To visualize the extent of metabolic changes, we performed Principal Component 

Analysis (PCA) on brain and liver data of the long-lived mice, wild-type mice, and the other 

mammalian species (Figure 2.11). The result showed that while these treatments and gene 

manipulation changed the metabolite levels in these mice, the long-lived mouse samples still clustered 

more closely to the wild-type mice than to the other species, suggesting that the inherent metabolic 

signatures of the species are relatively robust, and the variations across biological replicates are minor 

compared to the variations across different species and organs. 

 
Figure 2.11. Sources of data variation. The box plots showed the distribution of the ANOVA 

results for individual metabolites (left) or genes (right). 
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ABSTRACT 

Biological diversity among mammals is remarkable. Mammalian body weights range seven 

orders of magnitude and lifespans differ more than 100-fold among species. While genetic, dietary, 

and pharmacological interventions can be used to modulate these traits in model organisms, it is 

unknown how they are determined by natural selection. By profiling metabolites in brain, heart, 

kidney, and liver tissues of 26 mammalian species representing ten taxonomical orders, we report 

metabolite patterns characteristic of organs, lineages, and species longevity. Our data suggest different 

rates of metabolite divergence across organs and reveal patterns representing organ-specific functions 

and lineage-specific physiologies. We identified metabolites that correlated with species lifespan, 

some of which were previously implicated in longevity control. We also compared the results with 

metabolite changes in five long-lived mouse models and observed some similar patterns. Overall, this 

study describes adjustments of the mammalian metabolome according to lifespan, phylogeny, and 

organ and lineage specialization. 
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INTRODUCTION 

All modern mammals descend from a common ancestor that lived ∼210 million years ago 

and have since undergone remarkable diversification in morphology, life history, and other 

characteristics. Their body parts, such as tongues, ears, fingers, and feet, have been modified for 

numerous functions including nectar-feeding, echolocating, swimming, flying, and digging; their 

body weights range from under 2 g (Etruscan shrew, Suncus etruscus) to over 150 tons (blue whale, 

Balaenoptera musculus); and their maximum lifespans differ by more than 100-fold (Tacutu et al., 

2013). Many of the traits affecting development, body weight, and lifespan (i.e., the life history traits) 

are often correlated. Longer-lived species tend to be bigger, produce fewer offspring, grow more 

slowly, and have lower mass-specific metabolic rates (Peters, 1986; Sacher, 1959; Western, 1979), 

indicative of modulation by the same underlying evolutionary forces. Certain lineages (e.g., bats 

(Seim et al., 2013) and primates) have evolved to live longer as a whole, whereas other instances of 

exceptional longevity have emerged sporadically among short-lived taxonomic relatives (e.g. the 

naked mole rat (Heterocephalus glaber) lives ten times longer than other rodents of comparable size 

(Buffenstein, 2008; Fang et al., 2014; Kim et al., 2011)). 

Longevity is elastic and can vary along a continuum, but the underlying factors are only 

starting to be characterized. Research in model organisms revealed several important molecular 

players, such as insulin-like growth factor 1 (IGF-1) (Friedman and Johnson, 1988; Holzenberger et 

al., 2003; Tatar et al., 2001), mechanistic target of rapamycin (mTOR) (Kenyon, 2010; Vellai et al., 

2003), and sirtuins (Lin et al., 2000; Tissenbaum and Guarente, 2001). Dietary and pharmacological 

interventions can also extend lifespan in diverse organisms (Harrison et al., 2009; McCay et al., 1935; 

Weindruch et al., 1986). In particular, lifespan of laboratory mice can be increased by restriction of 

food or methionine (Flurkey et al., 2010; Sun et al., 2009), administration of rapamycin (Harrison et 

al., 2009; Miller et al., 2014) or acarbose (Harrison et al., 2014), or certain genetic mutations (Ladiges 

et al., 2009). Rapamycin, an inhibitor of mTORC1, leads to 23-26% increase in median lifespan of 

mice (Miller et al., 2014). Acarbose inhibits glycoside hydrolases (the enzymes that digest complex 

carbohydrates to absorbable sugars in the gastrointestinal tract) and is used clinically to blunt post-
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prandial glucose surges in diabetic patients; it seems plausible that limiting peak glucose 

concentrations may explain its longevity benefits. Mutant strains such as Snell dwarf (defective in 

anterior pituitary development) (Flurkey et al., 2001) and growth hormone receptor knockout 

(GHRKO) (Coschigano et al., 2003) are also long-lived, due to altered signaling in growth hormone 

(GH) itself or through GH-stimulated production of IGF-1.  

How longevity is modulated during evolution to produce both long-lived and fit animals, 

however, is still unclear. Lifespan is an inherent characteristic of a species and remains relatively 

stable through generations, but it can also change in either direction over time. In order to vary 

lifespan on an evolutionary time scale, a number of biological pathways may need to be altered, 

rewired or reprogrammed. Omics-scale comparative studies across multiple species are instrumental 

in understanding the evolution of mammalian genomes and gene expression (Brawand et al., 2011; 

Lindblad-Toh et al., 2011). To gain insights into the metabolic basis of mammalian diversity and 

longevity, we quantified metabolite levels in brain, heart, kidney, and liver tissues of 26 species of 

mammals and identified metabolites with organ-, lineage-, and trait-specific patterns. We described 

the metabolite divergence and distribution in different organs; linked the lineage-specific metabolic 

patterns to lineage-specific physiologies; and identified metabolites with positive or negative 

correlation to longevity traits. In addition, we profiled the metabolites in brain and liver of five long-

lived mouse models (caloric restriction, rapamycin treatment, acarbose treatment, GHRKO, and Snell 

dwarf) and compared the observed changes with the mammalian longevity signatures. Our study 

provides the first glimpse into how metabolism may have been altered to modulate mammalian 

lifespan.  
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RESULTS 

Metabolite conservation and divergence among organs 

We applied targeted metabolite profiling to quantify the metabolite levels in brain, heart, 

kidney, and liver of 26 species of mammals, representing 10 taxonomical orders and covering a wide 

range of longevity-associated traits (Figure 3.1, Table 3.1). The species were matched by biological 

age (all young adults) and sex (all were males, except for horse and vervet). Biological replicates (i.e. 

samples from multiple individuals of a species) were collected for most of the species (Table 3.1). 

Those metabolites with more than 20% missing values in a particular organ were excluded from 

analysis in that organ (Figure 3.2A). In total, 162 water soluble metabolites and 100 lipids were 

reliably detected across 235 samples. Across the biological replicates, over 90% of the measurements 

had coefficient of variation (i.e. standard deviation divided by mean) < 0.06 (Figure 3.2B). 
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Figure 3.1. Diversification of mammals. 

(A) Maximum lifespan correlates positively with body mass. Maximum lifespan (years) was 

plotted against adult weight (grams) on log10-scale for 995 mammalian species from AnAge 

database (Tacutu et al., 2013), color coded by taxonomical orders. To simplify the color scheme, 

Artiodactyla and Perissodactyla were grouped together, and Ericomorpha and Soriceomorpha were 

grouped together.  

(B) Phylogeny of the mammals examined in the current study. Branches and tips are colored 

according to taxonomical orders (same color scheme as in (A)). Divergence times were based on 

previous estimates (Fushan et al., 2015; Meredith et al., 2011). Animal silhouettes are for 

illustration only.  
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Figure 3.2. Mammalian species dataset quality assessment.  

(A) Number of metabolites with missing values in each organ. Those metabolites with more 

than 20% missing values were excluded from analysis.  

(B) Coefficient of variation among biological replicates. Coefficient of variation was computed 

as standard deviation divided by mean, using only those samples with biological replicates. The 

90th percentile was 0.06 and 95th percentile was 0.08.  

(C) Percentage of total variation in metabolite levels attributed to organ, species, and 

biological replicates. The plot indicates the percentage of total sum of squares in analysis of 

variance (ANOVA) attributed to the respective factors. The model “Metabolite Level ~ Organ + 

Species + Organ:Species” was fitted to each metabolite across the four organs (“Organ:Species” 

denotes the interaction term).  

(D) Percentage of total variation in metabolite levels in each organ attributed to species and 

biological replicates. The model “Metabolite Level ~ Species” was fitted to each metabolite within 

the indicated organ. 
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Principal Component Analysis revealed the samples segregated predominantly by organ 

origin, with most of the replicates clustering together and the first three Principal Components 

accounting for about 50% of the total variance (Figure 3.3A). Variations due to organ, species, and 

biological replicates were assessed by analysis of variance (ANOVA). In terms of the overall data, 

organ and species origins accounted for over 80% of total variation (Figure 3.2C). In terms of the data 

within each organ, species origins accounted for over 80% of variation (Figures 3.2D). This indicated 

the between-species and between-organ variations were much greater than the within-species 

variations. The clustering pattern also agreed with those based on mammalian gene expression 

profiles (Brawand et al., 2011; Fushan et al., 2015), suggesting that metabolite levels and organ-

specific metabolism were generally well conserved across the mammals. 

The phylogenetic relationship of many mammals has been established based on fossil and 

molecular evidence (Brawand et al., 2011; Fushan et al., 2015; Meredith et al., 2011). To determine if 

their metabolite levels recapitulate this relationship, we constructed phylograms using the metabolite 

levels in each organ and found them largely consistent with the reference phylogeny (Figure 3.4A). 

The brain phylogram had the shortest tip-to-root branch lengths (Figures 3.4B and 3.4C), and we 

found by data simulation that increasing branch lengths might be due to deviation from phylogeny and 

presence of random noise (Figure 3.4D). The brain samples also showed highest Spearman correlation 

coefficients (Figure 3.3B) and had the largest proportion of metabolites with high phylogenetic 

signals (i.e. Pagel’s lambda > 0.9 (Pagel, 1999) and Blomberg’s K > 1 (Blomberg et al., 2003); 

Figures 3.3C and 3.3D), suggesting that brain metabolites are most conserved among the four organs 

and have evolved largely according to the phylogeny (Brawand et al., 2011). In contrast, the 

metabolites in the other examined organs diverge to much greater extent, possibly due to stronger 

environmental influence or other selection pressures.  
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Figure 3.3. Metabolite divergence and correlation. 

(A) Samples segregate predominantly according to organ origin. Values in parenthesis indicate 

the percentage of variance explained by each of the first three Principal Components (PCs). 

Biological replicates were treated as individual points.  

(B) Brain samples show highest Spearman correlation coefficients. The box plot shows the pair-

wise correlation among the samples in each organ. Wilcoxon rank sum test p value < 2×10-16 for 

brain against each of the other organs.  

(C) and (D) Brain has the largest percentage of metabolites with high phylogenetic signals. In 

(C), only Pagel’s lambda > 0.6 are shown. In (D), the dotted line indicates Blomberg’s K=1.0. 
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Figure 3.4. Metabolite divergence in mammalian organs. 

(A) Phylograms based on metabolite levels in each organ. The trees were constructed by neighbor 

joining method using a distance matrix of 1 minus Spearman correlation coefficients. Biological 

replicates were treated as individual tips and the branches were colored according to taxonomical 

orders. Colors of nodes indicate 1000-time bootstrap values. 

(B) and (C) Metabolites diverge least in brain. The average tip-to-root branch lengths excluded the 

branch leading to sugar glider (the out-group). The box plot represents the results of 1000 trees 

generated by bootstrap in each organ, using (B) all the species available or (C) only those species 

common to all the four organs. The central bands indicate median values and the whiskers indicate 5th 

and 95th percentiles. Wilcoxon rank sum test p values < 2×10-16 (Bonferroni-adjusted) for brain 

versus each of the other organs. 

(D) Simulation of tip-to-root branch lengths. The box plot represents the results of 1000 

phylograms based on simulated data. For “Brownian motion”, the reference phylogenetic tree was 

used directly (i.e. trait evolution follows phylogeny). For “OU model”, the tree was transformed with 

a restraining force (α=1) to mimic the Ornstein-Uhlenbeck (OU) process. For “Pagel model”, the tree 

was transformed by Pagel’s lambda (λ=0.5). For “Random noise”, random normal variables with 

mean 0 and standard deviation 1 were added to the simulated data from “Brownian motion” to mimic 

the effect of non-phylogenetic variation. 
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Figure 3.4 (Continued) 
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Metabolite profiles reflect organ functions 

The metabolite profile of an organ is expected to reflect its biological functions. We 

visualized the distribution of metabolites on a heat map (Figure 3.5A) and used the Wilcoxon rank 

sum test to identify metabolites selectively enriched or depleted in a particular organ (in comparison 

with at least two other organs).  

18 out of the 19 proteinogenic amino acids measured (cysteine was not quantified) were 

found at moderate to high levels in kidney relative to the other organs, likely due to reabsorption at 

the renal proximal tubule. One exception was glutamine (Figure 3.5B), which is routinely metabolized 

by kidney for nitrogen disposal and acid-base balance. Glutamine is broken down to ammonia and 

glutamate, helping to remove excessive protons and generate bicarbonate ions (van de Poll et al., 

2004). 

The metabolite profile of the heart largely reflected its energy demand. Heart tissue was 

depleted of amino acids and many other metabolites, but enriched with acylcarnitines (especially 

short-chain acylcarnitines, Figure 3.5C) and triacylglycerols (TAGs). Acylcarnitines help transport 

fatty acids across mitochondrial inner membranes (Vaz and Wanders, 2002), whereas carnitine acts as 

an acetyl group acceptor, buffering the cellular pool of coenzyme A (CoA) and preventing inhibition 

of pyruvate dehydrogenase, especially in tissues dependent on beta-oxidation (Hoppel, 2003).  

In contrast, the brain normally relies on glucose for fuel and contains relatively few TAGs. 

However, it had high concentrations of glycerophospholipids and a number of sphinogmyelins (SMs) 

(Figure 3.5D), which are both key constituents of animal cell membranes. In particular, SMs are 

mainly found in the myelin sheaths surrounding nerve cell axons. Neurotransmitters gamma-

aminobutyric acid (GABA) and glutamate were also present at high levels.  

Liver was enriched with a wide range of metabolites including amino acids, 

glycerophospholipids, carbohydrates, and steroids. Some of them were significantly higher than in the 

other organs, likely indicative of liver-specific pathways. For example, sucrose and lactose were 

found at very high concentrations in liver (Figure 3.5E), as these sugars are not routinely utilized by 

the other organs. Bile acid components such as glycocholate, taurocholate, taurodeoxycholate and 
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taurochenodeoxycholate were restricted mostly to liver (Figure 3.5E), since primary bile acids are 

synthesized by liver cells from cholesterol.  

For the lipids, we grouped them according to LIPID MAPS Classification System 

(Experimental Procedures) (Fahy et al., 2007). Within each category, we compared the relative 

percentage abundance of individual lipids in our study with those previously reported in human 

plasma (Quehenberger et al., 2010). Significant correlations were observed for TAG, 

lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and cholesteryl ester (CE) (Table 3.2), 

suggesting the overall lipid composition was conserved across mammals. 

 

Table 3.2. Correlation between the abundance of lipids measured in our study and previously 

reported lipids in human plasma. Human plasma data are based on (Quehenberger et al., 2010). For 

each class of lipid molecules, the relative percentage abundance of individual lipid molecules in a 

mammalian species in brain (Br), heart (Ht), kidney (Kd), or liver (Lv) was computed and compared 

with that reported in human plasma. Pearson (r) and Spearman (ρ) correlation coefficients between 

the observed and the reported abundance were calculated. The 25th, 50th and 75th percentiles of the 

correlation coefficients (across all the mammalian species) are shown below. Coefficients > 0.60 are 

highlighted in bold. TAG: triacylglycerol; LPC: lysophosphatidylcholine; PC: phosphatidylcholine; 

LPE: lysophosphatidylethanolamine; SM: sphingomyelin; CE: cholesteryl ester. 

Lipid class TAG LPC PC LPE SM CE 

Correlation 
r ρ r ρ r ρ r ρ r ρ r ρ 

Percentile 

Br 

25th   0.30 0.36 0.86 0.64 0.36 0.65 0.19 0.15 -0.03 0.36 0.63 0.50 

50th 0.50 0.53 0.87 0.71 0.39 0.68 0.23 0.50 0.04 0.48 0.80 0.80 

75th 0.61 0.69 0.88 0.71 0.43 0.70 0.36 0.50 0.10 0.64 0.95 0.80 

Ht 

25th 0.74 0.72 0.76 0.66 0.48 0.66 0.11 -0.17 0.06 0.39 0.93 0.71 

50th 0.80 0.82 0.82 0.83 0.56 0.75 0.25 -0.03 0.09 0.43 0.98 0.82 

75th 0.85 0.86 0.86 0.94 0.74 0.79 0.37 0.09 0.23 0.50 0.99 0.89 

Kd 

25th 0.58 0.65 0.81 0.82 0.60 0.75 -0.24 -0.33 0.21 0.36 0.84 0.70 

50th 0.68 0.73 0.86 0.86 0.66 0.77 -0.09 -0.23 0.35 0.43 0.94 0.75 

75th 0.83 0.82 0.88 0.93 0.72 0.83 0.16 -0.07 0.54 0.48 0.98 0.83 

Lv 

25th 0.69 0.74 0.69 0.71 0.69 0.77 -0.27 -0.36 -0.06 0.29 0.69 0.61 

50th 0.79 0.81 0.77 0.86 0.80 0.81 -0.11 -0.23 -0.02 0.35 0.91 0.68 

75th 0.86 0.85 0.86 0.92 0.84 0.85 0.08 -0.03 0.06 0.38 0.97 0.81 
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Figure 3.5. Distribution of metabolites across the organs. 

(A) The overall pattern visualized on a heat map. Hierarchical clustering was performed on 

standardized concentrations using average linkage. Each row represents one metabolite and each 

column represents one biological sample. Selected classes of metabolites are highlighted.  

(B) Kidney is depleted of glutamine. Each box represents the range of standardized concentrations 

for a particular amino acid in kidney across the mammals.  

(C) Heart is enriched with carnitine and short-chain acylcarnitines. The alternative names are 

acetylcarnitine (C2 carnitine), propionylcarnitine (C3 carnitine), and malonylcarnitine (C3-DC 

carnitine).  

(D) Brain is enriched with sphingomyelins (SM) and the neurotransmitter gamma-

aminobutyric acid (GABA).  

(E) Liver has high levels of sucrose, lactose, and bile acid components. 
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Metabolites with lineage-specific changes 

Since a particular lineage of mammals often exhibits biological and physiological features 

distinctive from the others, we grouped the species by taxonomic orders or families and applied 

phylogenetic ANOVA (Garland et al., 1993) to determine if the concentration of a metabolite in one 

group was significantly different from the other groups.  

Bats (Order Chiroptera) showed significantly reduced levels of methionine sulfoxide in both 

kidney and liver (phylogenetic ANOVA p value = 0.003 in kidney and 0.002 in liver), while their 

methionine levels were typical of other mammals (Figure 3.6A). Methionine sulfoxide is produced by 

oxidation of methionine by reactive oxygen species (ROS) and in most species its level increases 

during aging or oxidative stress (Berlett and Stadtman, 1997). Bats are the longest-lived mammalian 

order after controlling for the effect of body size and there is evidence that they produce less ROS and 

are more resistant to oxidative stress. For example, cave Myotis bats and Mexican free-tailed bats 

(both with maximum lifespan potential of 12 years) show lower protein carbonylation and 

ubiquitination in liver than mice and their cells are more resistant to protein oxidation (Salmon et al., 

2009; Shi et al., 2010). Bat mitochondria from heart also produce less hydrogen peroxide than those 

from shrew and white-footed mouse (Brunet-Rossinni, 2004), although the differences are less than 

divergence in their maximum lifespans (Buffenstein et al., 2008). Hence, low methionine sulfoxide 

levels are consistent with reduced oxidative stress generally observed in bats.  

Several genetic and physiological features of African mole rats (Order Bathyergidae) are 

distinct from those of other rodents (Fang et al., 2014; Kim et al., 2011), so we compared 

Bathyergidae against the other examined species, as well as against the other rodents. Several 

metabolites were detected in both comparisons across multiple organs, including enrichment of 

acetylglycine (in heart and liver), enrichment of trimethylamine N-oxide (in brain and heart), and 

depletion of allantoin (in brain, heart, kidney, and liver) (Figure 3.6B). This depletion of allantoin in 

the Bathyergidae is particularly striking, since other African rodents (in particular the Cricetidae) 

excrete high levels of allantoin (Buffenstein et al., 1985). Using the gene expression data for some of 

these species (Fushan et al., 2015), we confirmed the positive correlation between uricase expression 



 

 67  

and allantoin level in liver (Figure 3.6C), with particularly low expression in the naked mole rat. In 

mammals, degradation of purine produces urate, which is then converted to allantoin by the enzyme 

uricase and excreted in urine (Buffenstein et al., 1985; Ngo and Assimos, 2007). In humans and other 

higher primates, the gene coding for uricase is a pseudogene and urate is excreted instead. However, 

these genetic changes were not found in the African mole rat enzymes, so the low uricase expression 

appears to be achieved by a different mechanism.  

Since the mammalian species used in this study include carnivores, insectivores, omnivores, 

and herbivores, we wondered if the dietary preferences would also be reflected in the metabolic 

profiles, especially in terms of different bile acid conjugates. Bile acids can be conjugated with either 

taurine or glycine, depending on their concentrations in liver and affinities for the enzyme bile acid 

CoA:amino acid N-acyltransferase. Most animals conjugate exclusively with taurine, whereas glycine 

conjugation is limited to certain placental mammals and herbivores (Huxtable, 2002; Vessey, 1978). 

Indeed, in liver the taurocholate:glycocholate ratio correlated positively with taurine:glycine ratio 

(Pearson correlation coefficient = 0.74; Figure 3.6D). Rabbit and guinea pig are known to employ 

glycine-conjugation only and had low values for both ratios, while cat, being an obligate carnivore, 

was high in both (Figure 3.6D). Based on the clustering pattern, hedgehog and shrew (predominantly 

insectivores), as well as animals belonging to Order Carnivora probably use taurine-conjugation only, 

whereas most rodents of the Family Muridae and animals of Orders Artiodactyla and Perissodactyla 

use both taurine- and glycine-conjugation (Figure 3.6D).   
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Figure 3.6. Metabolite patterns reflect species physiology. 

(A) Bats have low levels of methionine sulfoxide in liver. The error bars indicate standard errors 

(only for those with biological replicates). The species are colored according to taxonomical orders 

(same color scheme as in Figure 3.1A). The bars representing the bats are shaded.  

(B) African mole rats have low levels of allantoin in kidney and liver. The bars representing the 

naked mole rat and Damaraland mole rat are shaded.  

(C) Liver allantoin levels correlate positively with uricase expression. The error bars indicate 

standard errors in gene expression measurements (horizontal direction) or in metabolite 

measurements (vertical direction). The correlation relationship is robust (correlation coefficients 

using all points: Pearson = 0.86, Spearman = 0.78; excluding naked mole rat: Pearson = 0.76, 

Spearman = 0.74). Gene expression data were not available for Damaraland mole rat.  

(D) Use of taurine and glycine for bile acid conjugation among the mammals. The species with 

known conjugated strategy are highlighted. Square (■): taurine-conjugation only; triangle (▲): 

glycine-conjugation only; circle (●): both taurine- and glycine-conjugation. Cross (×): conjugation 

strategy unknown.  
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Figure 3.6 (Continued) 
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Metabolome remodeling and longevity variation 

Next we examined the general trend in longevity and body mass across these species. We 

obtained the traits data from public databases (Carey and Judge, 2000; Tacutu et al., 2013) and 

focused primarily on Adult Weight (AW) and the longevity metrics Average Lifespan (AL), 

Maximum Lifespan (ML), Female Time to Maturity (FTM), as well as their body mass adjusted 

residuals (i.e. ALres, MLres, and FTMres, respectively) (Table 3.1). While AL and ML are most 

closely related to the concept of longevity, FTM can be measured more easily and may be less prone 

to reporting bias. They also correlated strongly with one another (Pearson correlation coefficient = 

0.91 between AL and ML; 0.87 between AL and FTM; 0.84 between ML and FTM). Since adult 

weight correlates positively with lifespan, the longevity residuals were computed to remove the body 

mass influence. To account for the evolutionary relationship of the species, we performed regression 

by phylogenetic generalized least squares (Chapter 2, “Phylogenetic Regression”) (Table 3.3). 

Different models of trait evolution were tested and within-species variations were incorporated in the 

calculation and we applied a two-step verification procedure to assess the robustness of the results 

(Chapter 2, “Phylogenetic Regression”). The results were also adjusted for False Discovery Rate. p 

value.robust < 0.01 was chosen as the cut-off and the top hits were tabulated across the organs and 

traits. (Table 3.3). 

When the results were visualized on a heat map (Figure 3.7A), a few observations became 

apparent. Within each organ the correlations with the longevity metrics were largely consistent. 

Although the reported lifespan data were obtained from different databases and might not be entirely 

accurate, they did not significantly affect the calculated correlation, suggesting the results were robust 

to sample variation or measurement inaccuracy. On the other hand, the patterns were rather distinct 

across the four organs, suggesting the metabolites in different organs may follow different trajectories 

during evolution. By pooling the top hits (p value.robust < 0.01) of the two sets of longevity metrics 

(i.e. combining AL, ML, and FTM as one set; ALres, MLres, and FTMres as the other set), a number 

of positively and negatively correlating pathways were found to be enriched in each organ (Figure 

3.7B).   
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Body mass and longevity signatures 

With respect to adult weight, creatinine (Crn) showed significant positive correlation in all 

four organs (p value.robust < 10-8; Figure 3.7C, Table 3.3). A related metabolite, creatine (Cr), also 

emerged as a top hit in heart and liver. It is well known that urinary and serum Crn levels increase 

with body mass (especially lean body mass) (Forbes and Bruining, 1976), as most Crn is derived from 

Cr in skeletal muscles and larger animals tend to have greater muscle mass. On the other hand, several 

glycerophospholipids (e.g. C16:0 LPE, C22:6 LPE, C18:0 LPC, C22:6 LPC) negatively correlated 

with body mass, especially in brain and heart (Figure 3.7B). A number of triacylglycerols showed 

significant but opposite trends in heart (positive correlation) and kidney (negative correlation) (Figure 

3.7B).  

In terms of the longevity traits, negative correlation was observed for amino acids, LPC, LPE, 

and metabolites involved in thiamine metabolism, whereas positive correlation was observed mainly 

for SM (Figure 3.7B, Table 3.3). LPC and LPE are generated by phospholipase-dependent hydrolysis 

of PC and PE, respectively. Phospholipase A2 (PLA2) activity releases fatty acids such as arachidonic 

acid from sn-2 position of glycerol backbone of phospholipids and is commonly associated with 

inflammatory signaling in mammalian tissues. For example, elevated circulating lipoprotein-

associated PLA2 activity is linked to coronary artery disease in humans (Rosenson and Stafforini, 

2012), supporting a potential inverse relationship between phospholipase activities (and hence LPC 

and LPE levels) and longevity.  

Similar to the situation with body mass, TAG as a whole showed opposing trends to longevity 

in heart (positive) and kidney (negative). Closer examination revealed that the negative correlations in 

kidney were largely attributed to TAG with polyunsaturated fatty acid (PUFA) side chains (i.e. 

multiple double bonds, Figure 3.7D), whereas the positive correlations in heart were due to TAG with 

saturated or monounsaturated fatty acid (MUFA) side chains. A recent study on human plasma 

lipidomes of middle-aged offspring of nonagenarians revealed a signature of 19 lipid species 

associating with female familial longevity, including high levels of SM and low levels of PUFA TAG 

(Gonzalez-Covarrubias et al., 2013). Analysis of phospholipids in heart of a number of mammals also 
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revealed a negative correlation between double bond content and maximum lifespan (Pamplona et al., 

2000). Naked mole rat tissues contain much lower levels of docosahexaenoic acid -containing (with 6 

double bonds) phospholipids compared to mouse (Mitchell et al., 2007). Since PUFA are particularly 

sensitive to peroxidation damage, reduced level of polyunsaturated TAG in long-lived species may 

reflect their enhanced resistance to oxidative stress. 

Allantoin correlated negatively with longevity in brain, kidney and liver, whereas urate 

showed some moderate positive correlation (Table 3.3). Furthermore, urate:allantoin ratio showed 

significant positive correlation with ML, ALres and MLres in kidney (p value.robust < 10-3; Figure 

3.7E), indicating that long-lived mammals had higher urate and lower allantoin levels. The ranges of p 

values in kidney remain significant even when each species was left out one at a time (p value.max = 

1.21×10-2 for ML, 1.89×10-3 for ALres, and 1.60×10-4 for MLres), so the observation is generally 

applicable across the examined mammals and does not depend on any particular species. A previous 

study in primate and non-primate mammals also found significant positive correlation between 

maximum lifespan potential and urate concentration in serum and brain per specific metabolic rate 

(Cutler, 1984). Interestingly, humans have the highest serum urate level and are the longest-lived 

primates (Cutler, 1984). The naked mole rat, the longest-living rodent, also had very low levels of 

uricase expression in liver (Figure 3.6C). Allantoin can also be produced from urate by free radical 

oxidation (Kaur and Halliwell, 1990), and studies on human samples suggest high allantoin level may 

be a marker of oxidative stress (Kand'ar and Zakova, 2008; Yardim-Akaydin et al., 2006).  

The liver concentrations of two tryptophan degradation products, anthranilic acid and 

kynurenine, showed robust negative correlation with longevity (Table 3.3). Over 95% of free 

tryptophan is degraded via the kynurenine pathway, with the first rate-limiting step catalyzed by 

indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO). Anthranilic acid is 

produced from enzymatic hydrolysis of kynurenine. Several studies have linked tryptophan 

metabolism to aging and longevity. Knockdown of tdo-2 gene in C. elegans can suppress the toxicity 

of aggregation-prone proteins and extend lifespan (van der Goot et al., 2012). Fruit flies with TDO 

deficiency live significantly longer than wild-type controls (Oxenkrug, 2010). In mammals, reducing 

dietary tryptophan can extend lifespan and delay age-related changes in rats and mice (De Marte and 
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Enesco, 1986; Segall and Timiras, 1976), and the kynurenine:tryptophan ratio in humans increases 

with aging (Capuron et al., 2011; Frick et al., 2004). In agreement, we also observed significant 

negative correlation with longevity for kynurenine:tryptophan ratio and anthranilic acid:tryptophan 

ratio in liver (Figure 3.7F, Table 3.3). 

Reducing dietary amino acids levels has proved effective in lifespan extension (Grandison et 

al., 2009; Lee et al., 2014; Min and Tatar, 2006). Here the amino acids in brain showed negative 

correlation predominantly with FTM and FTMres (Figure 3.7B, Table 3.3), implying that mammals 

that mature more slowly (which are usually also longer-lived) tend to have lower levels of brain 

amino acids. The levels of branched chain amino acids such as leucine and isoleucine are also low in 

long-lived Ames dwarf mice (Wijeyesekera et al., 2012), which are defective in adenohypophyseal 

development and have stunted growth. 4-pyridoxate (catabolite of vitamin B6) in brain and thiamine 

(vitamin B1) in kidney and liver also negatively correlated with lifespan. They are required, 

respectively, for the synthesis of pyridoxal phosphate (PLP) and thiamine pyrophosphate (TPP), 

which are the essential cofactors for many enzymes involved in amino acid metabolism (Eliot and 

Kirsch, 2004; Lonsdale, 2006). Overall, the result is consistent with reduced rate of mass-specific 

metabolism in longer-lived mammals. 

 

Table 3.3. (see attached Excel file) Metabolites with significant correlation to body mass and 

longevity traits. Phylogenetic regression was performed on each metabolite in each organ against 

Adult Weight (AW); Average Lifespan (AL); Maximum Lifespan (ML); Female Time to Maturity 

(FTM); Average Lifespan Residual (ALres); Maximum Lifespan Residual (MLres); and Female 

Time to Maturity Residual (FTMres). The values are “p value.robust”: the regression slope p value 

after the point with the largest residual error was removed. Only those metabolites with p 

value.robust < 0.01 are shown. For those with positive correlation, the p values are rendered 

positive. For those with negative correlation, the p values are rendered negative. 
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Figure 3.7. Metabolites correlating with body mass and longevity. 

(A) Overview of correlation with body mass and longevity. The grids represent the robust 

regression p value (“p value.robust”) between metabolite levels in each organ and the indicated 

traits (“AW”: Adult Weight; “AL”: Average Lifespan; “ML”: Maximum Lifespan; “FTM”: Female 

Time to Maturity; “ALres”: Average Lifespan Residual; “MLres”: Maximum Lifespan Residual; 

“FTMres”: Female Time to Maturity Residual). Only p value.robust < 0.01 are shown in color, with 

positive correlation in red and negative correlation in blue. Selected classes of metabolites are 

highlighted by rows (same color scheme as in Figure 3.5A). See Table 3.3 for more details.  

(B) Top pathways correlating with body mass and longevity. The grids represent the pathway 

enrichment analysis p values (only p values < 0.01 are shown in color), with positive correlation in 

red and negative correlation in blue. For the purpose of enrichment analysis, the top hits (p 

value.robust < 0.01) in AL, ML, and FTM were pooled together, and the top hits in ALres, MLres 

and FTMres were also pooled together. “Monounsaturated TAG” refers to TAG with at most 2 

double bonds in total. “Polyunsaturated TAG” refers to TAG with 3 or more double bonds.  

(C) Liver creatinine level correlates positively with Adult Weight. The vertical error bars 

indicate standard error. The points are colored according to taxonomical orders (same color scheme 

as in Figure 3.1A). Regression p value.robust = 1.01×10-10; p value.max = 4.20×10-10. 

(D) Kidney C56:4 TAG level correlates negatively with Average Lifespan. Regression p 

value.robust = 9.75×10-3; p value.max = 3.70×10-2. 

(E) Kidney urate:allantoin ratio correlates positively with Maximum Lifespan Residual. The 

points representing the naked mole rat and the Damaraland mole rat are indicated. Regression p 

value.robust = 8.41×10-6; p value.max = 1.60×10-4. 

(F) Liver kynurenine:tryptophan ratio correlates negatively with Maximum Lifespan. 

Regression p value.robust = 7.23×10-3; p value.max = 1.89×10-2. 
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Figure 3.7 (Continued) 
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Insights from the analysis of long-lived mouse models 

To compare our results with established long-lived animal models, we performed metabolite 

profiling on brain and liver tissues of mice under caloric restriction (CR), rapamycin treatment (RAP), 

acarbose treatment (ACA), as well as GHRKO and Snell dwarf mice (Snell), against their respective 

wild type controls under control diets (Table 3.4). Five age-matched (approximately one-year old 

when sacrificed) biological replicates were collected for each condition, with both males and females 

for CR, RAP and ACA, and males only for GHRKO and Snell (Table 3.4). In total, 358 metabolites 

were reliably quantified across the 120 samples, and 241 of these metabolites overlapped with the 

mammalian dataset (Figure 3.8). Across the biological replicates, over 90% of the measurements had 

coefficient of variation < 0.06 (Figure 3.8A). Segregation of the samples in each organ was examined 

by hierarchical clustering (Figures 3.8D and 3.8E). 

 

Table 3.4. Five long-lived mouse models. Sex, age of sacrifice and weight are indicated. 

Treatment Sex 
Age 

(days) 

Weight 

(gram) 

Sample labels 

Brain Liver 

Control F 367 43.6 Brain.Control.F.1 Liver.Control.F.1 

Control F 367 49.8 Brain.Control.F.2 Liver.Control.F.2 

Control F 374 28.3 Brain.Control.F.3 Liver.Control.F.3 

Control F 374 39.9 Brain.Control.F.4 Liver.Control.F.4 

Control F 392 30.1 Brain.Control.F.5 Liver.Control.F.5 

Caloric restriction F 369 26.5 Brain.CR.F.1 Liver.CR.F.1 

Caloric restriction F 369 21.5 Brain.CR.F.2 Liver.CR.F.2 

Caloric restriction F 376 22.9 Brain.CR.F.3 Liver.CR.F.3 

Caloric restriction F 376 25.5 Brain.CR.F.4 Liver.CR.F.4 

Caloric restriction F 373 26.7 Brain.CR.F.5 Liver.CR.F.5 

Rapamycin F 369 29.5 Brain.Rapamycin.F.1 Liver.Rapamycin.F.1 

Rapamycin F 369 26.3 Brain.Rapamycin.F.2 Liver.Rapamycin.F.2 

Rapamycin F 376 35.6 Brain.Rapamycin.F.3 Liver.Rapamycin.F.3 

Rapamycin F 376 30.6 Brain.Rapamycin.F.4 Liver.Rapamycin.F.4 

Rapamycin F 378 33.9 Brain.Rapamycin.F.5 Liver.Rapamycin.F.5 

Acarbose F 375 29.5 Brain.Acarbose.F.1 Liver.Acarbose.F.1 

Acarbose F 376 29.3 Brain.Acarbose.F.2 Liver.Acarbose.F.2 

Acarbose F 376 30.4 Brain.Acarbose.F.3 Liver.Acarbose.F.3 

Acarbose F 376 28.4 Brain.Acarbose.F.4 Liver.Acarbose.F.4 

Acarbose F 376 28.7 Brain.Acarbose.F.5 Liver.Acarbose.F.5 
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Table 3.4 (Continued) 

Treatment Sex 
Age 

(days) 

Weight 

(gram) 

Sample labels 

Brain Liver 

Control M 364 40.6 Brain.Control.M.1 Liver.Control.M.1 

Control M 362 30.7 Brain.Control.M.2 Liver.Control.M.2 

Control M 362 40.7 Brain.Control.M.3 Liver.Control.M.3 

Control M 381 45.8 -- Liver.Control.M.4 

Control M 376 43.2 Brain.Control.M.5 Liver.Control.M.5 

Control M 371 47.1 Brain.Control.M.6 -- 

Caloric restriction M 371 37.1 Brain.CR.M.1 Liver.CR.M.1 

Caloric restriction M 371 31.7 Brain.CR.M.2 Liver.CR.M.2 

Caloric restriction M 373 33.3 Brain.CR.M.3 Liver.CR.M.3 

Caloric restriction M 372 32.5 Brain.CR.M.4 Liver.CR.M.4 

Caloric restriction M 377 36.1 Brain.CR.M.5 Liver.CR.M.5 

Rapamycin M 364 37.9 Brain.Rapamycin.M.1 Liver.Rapamycin.M.1 

Rapamycin M 362 33 Brain.Rapamycin.M.2 Liver.Rapamycin.M.2 

Rapamycin M 362 40.5 Brain.Rapamycin.M.3 Liver.Rapamycin.M.3 

Rapamycin M 372 41.5 Brain.Rapamycin.M.4 Liver.Rapamycin.M.4 

Rapamycin M 377 28.5 Brain.Rapamycin.M.5 Liver.Rapamycin.M.5 

Acarbose M 369 36.3 Brain.Acarbose.M.1 Liver.Acarbose.M.1 

Acarbose M 369 41.7 Brain.Acarbose.M.2 Liver.Acarbose.M.2 

Acarbose M 381 34.2 Brain.Acarbose.M.3 Liver.Acarbose.M.3 

Acarbose M 376 34.1 Brain.Acarbose.M.4 Liver.Acarbose.M.4 

Acarbose M 376 27.8 Brain.Acarbose.M.5 Liver.Acarbose.M.5 

Control M -- -- Brain.GHRWT.1 Liver.GHRWT.1 

Control M -- -- Brain.GHRWT.2 Liver.GHRWT.2 

Control M -- -- Brain.GHRWT.3 Liver.GHRWT.3 

Control M -- -- Brain.GHRWT.4 Liver.GHRWT.4 

Control M -- -- Brain.GHRWT.5 Liver.GHRWT.5 

GHR knockout M -- -- Brain.GHRKO.1 Liver.GHRKO.1 

GHR knockout M -- -- Brain.GHRKO.2 Liver.GHRKO.2 

GHR knockout M -- -- Brain.GHRKO.3 Liver.GHRKO.3 

GHR knockout M -- -- Brain.GHRKO.4 Liver.GHRKO.4 

GHR knockout M -- -- Brain.GHRKO.5 Liver.GHRKO.5 

Control M -- -- Brain.SnellWT.1 Liver.SnellWT.1 

Control M -- -- Brain.SnellWT.2 Liver.SnellWT.2 

Control M -- -- Brain.SnellWT.3 Liver.SnellWT.3 

Control M -- -- Brain.SnellWT.4 Liver.SnellWT.4 

Control M -- -- Brain.SnellWT.5 Liver.SnellWT.5 

Snell mutant M -- -- Brain.SnellMut.1 Liver.SnellMut.1 

Snell mutant M -- -- Brain.SnellMut.2 Liver.SnellMut.2 

Snell mutant M -- -- Brain.SnellMut.3 Liver.SnellMut.3 

Snell mutant M -- -- Brain.SnellMut.4 Liver.SnellMut.4 

Snell mutant M -- -- Brain.SnellMut.5 Liver.SnellMut.5 
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Figure 3.8. Long-lived mouse model dataset quality assessment.  

(A) Coefficient of variation among biological replicates. 90th percentile: 0.05; 95th percentile: 

0.07.  

(B) Spearman correlation coefficients among brain samples and among liver samples.  

(C) Weights of the animals of the long-lived models. In both male and female, there is no 

significant difference in weights among mice under caloric restriction (CR), rapamycin treatment 

(RAP) and acarbose treatment (ACA) (pairwise t-test p value > 0.05).  

Clustering of the samples in (D) brain and (E) liver. The samples are colored by treatment types. 

The hierarchical clustering was based on 1 minus Spearman correlation coefficient and used 

complete linkage. 
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Figure 3.8 (Continued) 
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We identified the metabolites differentially distributed between the long-lived mouse models 

and the corresponding controls and performed pathway enrichment analysis (Table 3.5, Figure 3.9 ). 

The long-lived mouse model dataset clustered with the mouse data in mammalian dataset (Figure 

3.9C), indicating the overall metabolic signatures inherent in the species were well preserved. 

Interestingly, while a significant number of top hits were found in liver, the brain metabolite levels 

did not change much between the treatment and control (Figure 3.9A) and they were more conserved 

than those in liver (Figure 3.8B). The blood-brain barrier may help keep the brain metabolism in tight 

homeostasis and refractory to external modulations. The only exception was the Snell mice, which are 

defective in anterior pituitary development. Compared to control, the Snell mice brain likely exhibits 

a shift from oxidative phosphorylation towards glycolysis (Figure 3.9B). 

In liver, CR, ACA and Snell mice produced very similar metabolic shifts, and these patterns 

were observed in both males and females (Figures 3.9A and 3.9B). Remarkably, there was extensive 

reduction in PUFA TAG levels across all these three models (Figures 3.9B and 3.9D, Table 3.5), 

which was consistent with the longevity signature we identified across the mammalian species and 

may indicate reduced susceptibility to peroxidation damage and oxidative stress in the long-lived 

mice. While the low PUFA TAG levels might be partly explained by the lower weights of these long-

lived mice, this signature was not observed in GHRKO dwarf mice or in RAP mice. There were no 

significant differences in body weight among CR, RAP, and ACA in either gender (Figure 3.8C). In 

addition, the long-lived mouse models exhibited elevated levels of SM (in particular C14:0 SM, 

C16:0 SM, C18:0 SM and C18:1 SM), which also showed positive correlation in longevity in the 

mammalian species dataset. Previously, SM levels were reported to be low in old mice but at normal 

level in those under chronic CR (De Guzman et al., 2013), and were found to be high in the serum of 

centenarians (Montoliu et al., 2014). High SM levels are also associated with human female familial 

longevity (Gonzalez-Covarrubias et al., 2013). Sphingosine-linked fatty acids like ceramides are often 

regarded as “damage-associated molecular patterns” and may cause inflammatory damage by 

activating Nlrp3 inflammasome (De Guzman et al., 2013; Vandanmagsar et al., 2011). Elevated SM 

levels may also reflect reduced turnover to ceramides. 
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Other similarities as well as differences exist between our two datasets and those in the 

literature. For example, methionine is found at high levels in long-lived Ames dwarf mice, which may 

represent an increased methionine flux to transsulfuration and improved oxidative stress resistance 

(Wijeyesekera et al., 2012). Methionine level is also high in brain of male CR mice and liver of 

female ACA mice (Table 3.5). LPC levels were previously found to decrease with age but maintained 

in CR mice (De Guzman et al., 2013); in both our datasets they were low in long-lived animals. 

Furthermore, the mammalian dataset signatures of high urate:allantoin ratio and low 

kynurenine:tryptophan ratio were either insignificant or showed the opposite trends in the mouse 

models (Table 3.5). 

To quantify the similarity between the longevity signatures from our two datasets, we counted 

the number of top hits in both datasets that had the same direction of correlation to longevity and 

compared that with the probability of getting similar results by chance (Experimental Procedures). 

The liver signatures of Snell, CR, and ACA mice matched very well to those based on AL, ML, and 

FTM in kidney of the mammalian dataset (Figure 3.9E). In addition, these liver signatures also 

clustered together (Figure 3.9F), suggesting lifespan extension by CR, acarbose treatment and in Snell 

mutants may affect certain common pathways, where rapamycin treatment and growth hormone 

receptor knockout may achieve lifespan extension via different mechanisms.  

 

 

Table 3.5. (see attached Excel file) Metabolites differentially distributed in long-lived mouse 

models. Metabolites differentially distributed in brain samples and liver samples were identified 

with respect to the matching controls. Only those metabolites with p value < 0.01 are shown. For 

those with positive correlation, the p values are rendered positive. For those with negative 

correlation, the p values are rendered negative. CR: caloric restriction; RAP: rapamycin treatment; 

ACA: acarbose treatment; GHRKO: growth hormone receptor knockout; Snell: Snell dwarf mouse; 

F: female; M: male. 
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Figure 3.9. Metabolites differentially distributed in long-lived mouse models. 

(A) Overview of metabolite differential distribution. The grids represent the linear model p 

values for differential distribution in the indicated long-lived mouse models with respect to their 

corresponding controls in brain and liver (CR: caloric restriction; RAP: rapamycin treatment; ACA: 

acarbose treatment; GHRKO: growth hormone receptor knockout; Snell: Snell dwarf mouse; F: 

female; M: male). Only p value < 0.01 are shown in color, with positive correlation in red and 

negative correlation in blue. Selected classes of metabolites are highlighted by rows (same color 

scheme as in Figure 3.5A). See Table 3.5 for more details.  

(B) Top enriched pathways. The grids represent the pathway enrichment analysis p values (only p 

values < 0.01 are shown in color), with positive correlation in red and negative correlation in blue. 

For brain, only Snell is shown.  

 (C) Long-lived mouse models data cluster well with mammalian species data. Values in 

parenthesis indicate the percentage of variance explained by each Principal Component (PC). 

Biological replicates were treated as individual points.  

(D) Liver C56:4 TAG level across the long-lived mouse models. C56:4 TAG levels were 

significant lower in CR(F) (p value = 2.21×10-5), CR(M) (p value = 8.17×10-3), ACA(F) (p value = 

7.22×10-3), and Snell (p value = 9.07×10-5), compared to their respective controls.  

(E) Overlap among longevity signatures. Between each pair of comparison, the numbers of 

metabolites with matching and opposite direction of correlation to longevity were calculated. The p 

value was based on binomial statistics, assuming equal probability of getting a match or a mismatch 

by chance. Only p value < 0.01 are shown in color.  

(F) Hierarchical clustering of the long-lived mouse models. The distance matrix is based on the 

similarity among the longevity signatures (i.e. pairwise binomial p values). Only the liver data are 

shown. The mouse models are as shown above.  
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Figure 3.9 (Continued) 
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DISCUSSION 

Mammals have diversified dramatically over the tens of millions of years of evolution with 

remarkably different longevity profiles. How are their lifespans modulated by evolution while 

preserving competitiveness within their ecological niches? Which metabolites are involved and, more 

generally, how is metabolism adjusted in order to increase lifespan? While most of research on the 

control of lifespan was performed on single model organisms, our study addressed these questions by 

analyzing metabolite levels in several organs across the class of Mammalia. We found that 

metabolites in brain diverged less than in the other examined organs and the organ-differential 

distribution of metabolites represented their respective biological functions. The lineage-specific 

metabolite features we identified reflect known physiology of animals (e.g., low oxidative stress in 

bats) and also offer some new insights (e.g., bile acid conjugation strategies among mammals and 

diminished conversion of urate to allantoin in African mole rats). With regard to the longevity traits, 

we identified metabolites previously implicated in lifespan control as well as several new candidates. 

In particular, long-lived mammals were associated with low polyunsaturated triacylglycerols, low 

tryptophan degradation products, and low brain amino acids; as well as high sphingomyelin levels and 

high urate:allantoin ratio. Comparison of our signatures with the metabolite changes in long-lived 

mouse models indicated some overlap with mice under CR, mice treated with acarbose and Snell 

dwarf mice, especially for decrease in polyunsaturated triacylglycerols and increase in sphingomyelin. 

Similar changes were also previously reported in studies on human centenarians and other long-lived 

animal models. Furthermore, these three mouse models produced metabolite signatures distinct from 

those observed in rapamycin treatment and growth hormone receptor knockout mice, so the lifespan 

extension effects may have been achieved via different mechanisms.  

Our study also reveals some unexpected complexities in analyzing metabolites and longevity. 

While some metabolites show consistent correlation with longevity traits across multiple organs, 

many patterns seem to be organ-specific. In the long-lived mouse models, many liver metabolites 

change significantly compared to the controls, but the brain exhibits very little perturbation. 

Furthermore, the longevity signatures in liver of the long-lived mouse models matched with the 
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kidney (but not liver) signature across the mammalian species, suggesting certain aspects of the 

mammalian longevity signatures may be distinct from the long-lived mouse models. In addition, the 

molecular mechanisms underlying the lifespan extension in these mouse models are not yet well-

delineated, and differences among various long-lived mouse models have been previously reported. 

For example, in heart, kidney, and liver tissues, Snell and GHRKO mice showed different levels of 

chaperone mRNAs (Swindell et al., 2009). A low calorie diet is beneficial to Ames dwarf mice 

(Bartke et al., 2001) but not to GHRKO mice (Bonkowski et al., 2009). Expression of genes related to 

xenobiotic detoxification in liver are distinctly different among rapamycin-treated mice, CR mice 

(Miller et al., 2014), and GHR deletion mice (Li et al., 2013). CR mice also differ from rapamycin-

treated mice in terms of leptin, FGF-21, and glucose tolerance (Lamming et al., 2013; Miller et al., 

2014).  

Compared with research that focuses on a single species, the current study benefited from the 

large effects of trait differences. While various factors such as feeding status, circadian cycle, gender, 

and body weight differences can introduce additional noise, ANOVA suggests that the variation 

between different species is generally much greater than variation among replicates of the same 

species. Even with the ablation of GHR or anterior pituitary, the brain and liver profiles of the long-

lived mice still clustered well with the mouse data in the mammalian dataset and very similar 

longevity signatures were also obtained from both males and females of the same long-lived model. 

However, our study also suffers from a number of limitations. The current study does not prove 

causality between the metabolites and longevity traits, as the metabolite levels may influence and also 

be influenced by longevity. The number of metabolites quantified here only represents a fraction of 

the entire metabolome space and potentially important candidates may have been missed by our 

targeted approach. Many metabolites correlated strongly among one another and can inflate the 

signals observed. The metabolic fluxes through pathways and the metabolic changes during aging 

would not be reflected in our data either. While the biological implications of many metabolites 

identified here are far from fully understood, our study provides the first report of metabolite 

signatures of longevity across the mammalian spectrum, from which future studies should benefit. 
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EXPERIMENTAL PROCEDURES 

Animal samples 

Descriptions of the 26 mammalian species are provided in Table 3.1. The mammalian organ 

samples were obtained from various sources (Fushan et al., 2015). The animals were young adults and 

all were males, except for horse and vervet. Immediately after sacrificing, whole liver, kidney, heart, 

or frontal parts of brain were frozen in liquid nitrogen and stored at -80ºC until further use. To ensure 

comparability of data derived from homologous organs between species, each organ was ground in 

liquid nitrogen-cooled mortar and used for metabolite extraction. Most tissue samples were prepared 

in biological duplicates or triplicates (i.e. samples from different animals). Tissue samples were 

homogenized in water and normalized to protein concentration prior to metabolite analyses.  

Descriptions of the five long-lived mouse models are provided in Table 3.4. All these models 

as well as genotype and diet matched controls were from the colonies at University of Michigan 

Medical School. Liver and brain cortex samples were taken at 12 months of age from male and female 

mice treated from 4 months of age with rapamycin (14.7 ppm, as in (Miller et al., 2014)), or acarbose 

(1000 ppm, as in (Harrison et al., 2014)), or from mice subjected to 40% dietary restriction, or from 

untreated littermate control mice of the genetically heterogeneous stock UM-HET3, in which each 

mouse was genetically unique but shared the same set of inbred grandparents (C57BL/6J, 

BALB/cByJ , C3H/HeJ, and DBA/2J).  Liver and brain cortex samples from Snell dwarf (Flurkey et 

al., 2001) and GHRKO (Coschigano et al., 2003) males, and their corresponding littermate controls, 

were taken from young adults aged 4 to 6 months.   

Mass spectrometry quantification and normalization 

To measure polar metabolites and lipids in tissue homogenates, we used three LC-MS 

methods as previously described (Townsend et al., 2013). Briefly, two targeted polar metabolite 

profiling methods were developed using reference standards of each metabolite to determine 

chromatographic retention times and mass-spec multiple reaction monitoring transitions, declustering 

potentials and collision energies. Negative ionization mode data were acquired using an ACQUITY 

UPLC (Waters) coupled to a 5500 QTRAP triple quadrupole mass spectrometer (AB SCIEX). Tissue 
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homogenates (30 µL) were extracted using 120 µL of 80% methanol (VWR) containing 0.05 ng/µL 

inosine-15N4, 0.05 ng/µL thymine-d4, and 0.1 ng/µL glycocholate-d4 as internal standards (Cambridge 

Isotope Laboratories). Positive ionization mode data were acquired using a 4000 QTRAP triple 

quadrupole mass spectrometer (AB SCIEX) coupled to an 1100 Series pump (Agilent) and an HTS 

PAL autosampler (Leap Technologies). Tissue homogenates (10 µL) were extracted using nine 

volumes of 74.9:24.9:0.2 (v/v/v) acetonitrile/methanol/formic acid containing stable isotope-labeled 

internal standards (0.2 ng/µL valine-d8, Isotec; and 0.2 ng/µL phenylalanine-d8 (Cambridge Isotope 

Laboratories)). Tissue homogenates (10 µL) were extracted for lipid analyses with 190 µL of 

isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphocholine (Avanti Polar 

Lipids). MS analyses were carried out using electrospray ionization and Q1 scans in the positive ion 

mode. For each method, internal standard peak areas were monitored for quality control and 

MultiQuant 1.2 software (AB SCIEX) was used for automated peak integration. Metabolite peaks 

were manually reviewed for quality of integration and compared against a known standard to confirm 

identity. 

Data processing and quality assessment 

For the 26 mammalian species dataset, raw data were log10-transformed to conform to 

normal distribution; Shapiro–Wilk test confirmed assumption of normalcy was valid for over 75% of 

the measurements. Mean and standard error were computed across the biological replicates. 

Standardized concentrations (i.e. scaled to mean = 0 and standard deviation = 1) were used in cross-

metabolite analysis. For the 5 long-lived mouse models dataset, raw data were log10-transformed and 

those metabolites missing in any one of the models in a particular organ were excluded from analysis 

in that organ. To render the two datasets comparable, the mean metabolite values in house mouse 

brain and liver of the mammalian species dataset were used as baselines to scale the long-lived mouse 

model dataset and R package “sva” was used to removed potential batch effects (Leek et al., 2014).  

Organ-specific phylograms 

The phylograms were constructed using the neighbor-joining (NJ) method (Saitou and Nei, 

1987; Studier and Keppler, 1988) using sugar glider as the out-group. The distance matrix was based 

on 1 minus Spearman correlation coefficient. Reproducibility of the bifurcation pattern was assessed 
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using a 1000-time bootstrap procedure, by random sampling of a subset of the metabolite to build 

phylogram and repeating the procedure 1000 times. The degree of metabolite divergence was 

estimated using the average tip-to-root branch length of organ-specific phylogram. For the bootstrap 

procedure, one replicate per organ per species was randomly selected to assemble a pseudo-dataset for 

building phylogram. The procedure was repeated 1000 times to calculate the average tip-to-root 

branch length (excluding the branch leading to the out-group sugar glider). Similar results were 

produced by using only those species for which data were available for all four organs.  

Tip-to-root branch length simulation 

To investigate how various parameters might affect the tip-to-root branch length of NJ-

phylogram, we simulated four scenarios (“Brownian motion”, “Random noise”, “OU model”, and 

“Pagel’s model) using R packages “phytools” (Revell, 2012) and “geiger” (Harmon et al., 2008) 

(Figure 3.4D). In each scenario, 300 simulations were run according to its parameter settings to 

generate a (300×26) dataset, mimicking the number of metabolites and species in the current study. A 

phylogram was constructed from each dataset using NJ method and the average tip-to-root branch 

length was calculated. The procedure was repeated 1000 times for each scenario. 

Phylogenetic signals 

More closely related species tend to resemble each other more than if they were drawn 

randomly from a phylogenetic tree, so their traits may be statistically non-independent. This 

phylogenetic relatedness, or “phylogenetic signal”, can be detected using a number of metrics 

(Munkemuller et al., 2012). Pagel’s lambda and Blomberg’s K were computed using R package 

“phytools” (Revell, 2012). Those metabolites with Pagel’s lambda > 0.9 and Blomberg’s K > 1 were 

considered to have high phylogenetic signal. 

Pathway enrichment analysis 

Pathway information was obtained from ConsensusPathDB (Kamburov et al., 2009) and 

Human Metabolome Database (HMDB) (Wishart et al., 2013). For ConsensusPathDB, only pathways 

with known KEGG IDs were incorporated. For the lipids, customised pathways were created for 

sphingomyelin (SM); cholesterol ester (CE); monoacyl glycerophosphocholines (i.e. 

lysophosphatidylcholine (LPC)); diacyl glycerophosphocholines (i.e. phosphatidylcholine (PC)); 
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monoacyl glycerophosphoenthanoamines (i.e. lysophosphatidylethanolamine (LPE)); diacyl 

glycerophosphoenthanoamines (i.e. phosphatidylethanolamine (PE)); monoacyl glycerols (MAG); 

diacyl glycerol (DAG); and triacyl glycerol (TAG). Acylcarnitines were further grouped into “short-

chain” (up to 8 carbons), “medium-chain” (9 to 12 carbons), and “long-chain” (more than 12 

carbons). Triacylglycerols were further grouped into monounsaturated TAG (MUFA-TAG, those with 

2 or less double bounds in total) and polyunsaturated TAG (PUFA-TAG, those with more than 2 

double bonds in total). Analysis was performed on pathways with at least 5 but less than 100 

metabolites. Enrichment statistics was based on a hypergeometric distribution (Tavazoie et al., 1999). 

Odd ratios and expected counts were calculated as previously described (Gentleman et al., 2013).  

Organ-differential distribution of metabolites and lipid composition 

Paired Wilcoxon rank sum test was used to identify metabolites with organ-differential 

distribution for all combinations of organ pairs. To qualify as a top hit, a metabolite must show 

differential distribution (Bonferroni adjusted p value < 0.05) in at least 2 organ pairs. For lipid 

composition, the relative percentage abundance of individual lipid molecules within their own 

categories (i.e. TAG, LPC, LPE, PC, SM, or CE) were computed and compared with those previously 

reported in human plasma. Those lipid molecules with more than 10% relative abundance were 

considered the major species. 

Phylogenetic ANOVA 

To determine lineage-specific changes in metabolite levels, the species were grouped by 

taxonomical orders or families, and phylogenetic ANOVA was applied to determine if the 

concentration of a metabolite in one group was significantly different from that in other groups. A 

standard ANOVA assumes independence of observations, but this was not true in the current study as 

the animals were related phylogenetically. In phylogenetic ANOVA, the F-value of standard ANOVA 

is compared to a null distribution generated by stimulating trait evolution on a reference phylogeny, 

thus accounting for the non-independence of species. Phylogenetic ANOVA was performed using R 

package “phytools” (Revell, 2012).  

Regression by generalized least square and test for robustness 

See Chapter 2. The cut-off for top hits was p value.robust < 0.01. 
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Differentially distributed metabolites in long-lived mouse models 

R package “limma” (Smyth, 2005) was used to identify differentially distributed metabolites 

between treatment and control groups in the long-lived mouse models. Pathway enrichment analysis 

was performed on the top hits (p value < 0.01). 

Longevity signature similarities 

Binomial statistics and 5000-time bootstrap procedure were used to assess the degree of 

similarity among the longevity signatures. Given any two signatures, the number of metabolites with 

matching directions of correlation to longevity and the number of metabolites with opposite directions 

of correlation to longevity were calculated. For binomial statistics, p values were computed by 

assuming equal probability of obtaining a match or a mismatch by chance. For the bootstrap 

procedure, metabolites were assigned matching or opposite directions randomly. P values were 

computed as the percentage of trials yielding greater number of matches (by chance) than the 

observed results. 
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ABSTRACT 

Trace elements are essential to all mammals, but their distribution and utilization across 

species and organs remains unclear. Here, we examined 18 elements in the brain, heart, kidney, and 

liver of 26 mammalian species and report the elemental composition of these organs, the patterns of 

utilization across the species, and their correlation with body mass and longevity. Across the organs, 

we observed distinct distribution patterns for abundant elements, transition metals, and toxic elements. 

Some elements showed lineage-specific patterns, including reduced selenium utilization in African 

mole rats, and positive correlation between the number of selenocysteine residues in selenoprotein P 

and the selenium levels in liver and kidney across mammals. Body mass was linked positively to zinc 

levels, whereas species lifespan correlated positively with cadmium and negatively with selenium. 

This study provides insights into the variation of mammalian ionome by organ physiology, lineage 

specialization, body mass, and longevity. 
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INTRODUCTION 

The full set of elements used by organisms, or the ionome, supports diverse cellular functions 

(Eide et al., 2005; Salt et al., 2008). Transition metals alone are estimated to be required by more than 

one third of enzymes (Holm et al., 1996; Waldron and Robinson, 2009). Selenium (Se) and iodine (I) 

are used as components of proteins or hormones. Together with manganese (Mn), iron (Fe), cobalt 

(Co), nickel (Ni), copper (Cu), zinc (Zn), and molybdenum (Mo), these trace elements are needed 

only in minute quantities, but often act as important protein cofactors and active site components. 

Their deficiency or overload can result in severe pathological conditions (Fraga, 2005; Goldhaber, 

2003). 

In contrast, the metals sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), as well 

as nonmetals phosphorus (P) and sulfur (S), are required in much larger quantities and are often called 

macronutrients. Some exist as free ions for establishing the electrochemical gradient across biological 

membranes (e.g. Na+ and K+); others reside in specific subcellular compartments as signaling 

molecules (e.g. Ca2+). Many are constituents of macromolecules like proteins (e.g. sulfur) and nucleic 

acids (e.g. phosphate groups), or key structural components in bones, shells and exoskeletons (e.g. 

calcium phosphate minerals).  Yet another group of elements, including lithium (Li), arsenic (As), 

and cadmium (Cd), are present in the environment and can be readily taken up by plants and animals, 

but have no apparent biological functions. Depending on the quantity, these elements elicit different 

biological responses, features that underlie both their use in medical treatments when applied in 

moderate concentrations, and their toxicity when absorbed in excess. 

While a number of large-scale cross-species ionomics studies have been performed in plants 

(Ozaki et al., 2000; Watanabe et al., 2007; White et al., 2012), similar studies are lacking in mammals. 

In particular, the variation of element levels across organs, species, and lineages is not well 

understood. Since the use of these elements is likely shaped by evolution and environmental 

constraints, one may also be able to identify the links between the ionome and life-history traits (e.g., 

body mass, time to maturity, and longevity). Crucially, the nature of these questions means that one 

may need to look across a spectrum of organisms and organs to identify the common trends. 
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Recent advances in sequencing technology have enabled comparative genomics analyses to 

reveal the evolution of element utilization (Zhang and Gladyshev, 2009). In this study, we 

characterized the mammalian ionome by directly quantifying 18 elements in brain, heart, kidney and 

liver of 26 mammalian species, providing insights into the organization, distribution, and evolution of 

utilization of elements in mammals.  

 

RESULTS 

Conservation of the ionomes of mammalian organs 

We analyzed 233 freshly frozen samples from the brain, heart, kidney, and liver of 26 

mammalian species representing 10 taxonomic orders (Figure 4.1A and Table 4.1). All animals were 

young adults, and at least two biological replicates (i.e. different individual animals) were obtained for 

most species. The tissue concentrations of Li, B, Na, Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, 

Mo, and Cd were quantified by four independent runs of inductively-coupled plasma mass 

spectrometry (ICP-MS) (Malinouski et al., 2014). After filtering and normalization, the final data 

quality was assessed graphically (Figure 4.2). The batch effect was removed using R package “sva” 

(Leek et al.) (Figures 4.2A and 4.2B). Over 90% of the measurements had coefficient of variation < 

0.14 (Figure 4.2C). 

Both principal component analysis (PCA) and heat map showed the samples generally 

clustered according to their organ origin (Figures 4.1B and 4.1C). The first three principal 

components (PCs) accounted for ~ 65% of the total variance (Figure 4.1B), suggesting the elemental 

composition of each organ was generally conserved. The heat map also revealed a few clusters of 

elements with similar distribution patterns (Figure 4.1C), such as the transition metals Mo, Mn, Co, 

and Fe; the various isotopes of Cu and Zn; as well as the macronutrients P, K, S and Mg.  
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Figure 4.1. Basic features of the mammalian ionome.  

(A) Mammals examined in this study. The species and their common names are indicated and the 

branches are colored according to taxonomical orders.  

(B) Principal Component Analysis reveals segregation of samples by organ origin. Biological 

replicates are presented as individual points and colored by organ. The percentage variation 

explained by each principal component (PC) is indicated in parentheses. 

(C) Overview of the mammalian ionome using heat map. Each row represents one element or 

isotope. Each column represents one biological sample (same color scheme as in (B)). Hierarchical 

clustering was performed using 1 minus Pearson correlation coefficient with average linkage.  
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Figure 4.2. Processing and normalization of data.  

(A) Removal of batch effect.  

(B) Results from all runs followed similar distribution after batch effect removal.  

(C) Most samples had small coefficients of variation. Coefficient of variation was calculated as 

standard deviation divided by absolute mean across the biological replicates (90th percentile = 

0.14). 
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Interactions among elements are indicative of biological functions 

To explore the relationship among the elements, we computed Spearman correlation 

coefficients for all possible element pairs, using the full data (Figure 4.3A) and individually within 

each organ (Figure 4.4). As expected, the isotopes of the same element showed very strong 

correlations (all coefficients > 0.99), suggesting that mammals lack the ability to distinguish different 

isotopic forms. In addition, there were several clusters of elements with high correlations (Figures 

4.3A and 4.3B), suggesting potential commonality in uptake mechanism or biological functions.  

One such cluster consisting of Fe, Mo, Mn, Co and Ni was consistently observed in brain, 

heart, and kidney (all pair-wise correlation coefficients > 0.4; Figure 4.4). These transition metals 

often exist as divalent ions, some of which are known to interact. Divalent metal transporter 1 

(DMT1) is a key metal transporter with a very broad substrate range that includes Fe2+, Mn2+, Co2+, 

Ni2+, and Cd2+ ions (Gunshin et al., 1997; Mackenzie et al., 2007). Mn2+ uptake can be coupled with 

Fe2+ uptake via both transferrin-dependent and transferrin-independent pathways (Roth, 2006). Fe-S 

clusters and heme groups are required for biosynthesis of the prosthetic group Moco (molybdenum 

cofactor) and for functioning of most Mo enzymes (Hamza et al., 1998; Mendel and Bittner, 2006). A 

trace element study of 96 fern and fern ally species also reported correlation coefficient of 0.62 

between Fe and Co concentrations (Ozaki et al., 2000). Although in vertebrates Ni has no known 

biological function, in bacteria and archaea Ni and Co utilize similar or common transport systems 

(Zhang et al., 2009). 

Cu and Zn, two of the most abundant trace metals in the body, also correlated positively in 

multiple organs (Figure 4.4). Interaction between Cu and Zn at the physiological level is well 

documented, as Zn administration is used to antagonize Cu overload in patients with Wilson’s disease 

(Hill and Link, 2009). Cellular transport of Cu and Zn depends on their respective transporters: ZnT 

and Zip transporter families for Zn; high affinity transporter CTR1, chaperone COX17, CSS, ATOX1, 

and P-type ATPase ATP7A, ATP7B for Cu (Amaravadi et al., 1997; Eide, 2006; Hamza et al., 1999; 

Liuzzi and Cousins, 2004). Zn is required for the catalytic activities of more than 200 enzymes and 

also serves a structural role in transcription factors, whereas Cu is found in several metabolic 
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enzymes, as well as cytochrome c oxidase (Complex IV) of the electron transport chain. Some 

enzymes (e.g. Cu/Zn superoxide dismutase) contain both elements in the active sites. Therefore, the 

observed correlation may reflect the physiological requirement for proper balance of Cu and Zn.  

Interestingly, both Se and Cd were high in kidney and liver, and low in brain and heart 

(Figure 4.3C). While Se is mainly found in the form of selenocysteine (Sec) in selenoproteins, Cd has 

no known biological functions in higher organisms. Both elements are toxic at high concentrations 

and their levels in plants and animals often depend on the environmental concentrations in soil, water, 

or food (Clemens et al., 2013; Hurst et al., 2013). Another toxic element, As, also clustered very 

closely with Cd and Se (Figure 4.3B), suggesting that all three elements are treated by mammals as 

toxic species and are handled in a similar manner, although Se is primarily recognized as an essential 

element. 
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Ionomes of mammalian organs 

Next we analyzed the elemental distribution across the four organs (Figures 4.3C and 4.5A). 

Liver had the highest or the second highest levels of 15 out of the 21 elements and/or isotopes (Figure 

4.3C), likely reflecting its central role in catabolism, anabolism, and detoxification. As electrolytes 

become concentrated during renal ultrafiltration and reabsorption, kidney had relatively high levels of 

Li, Na, and Ca. Brain and heart are less diverse in their metabolic functions and contained low levels 

of many elements. Nevertheless, P and K were found at the highest concentrations in brain, with Na 

and Ca also present at high levels. Our data also agreed well with a previous report of metal levels in 

humans (Katoh et al., 2002) (Figure 4.5B). 

We also examined the gene expression patterns of some enzymes known to utilize trace 

elements (Figure 4.3D) (Fushan et al., 2015). Sulfite oxidase (SUOX), xanthine oxidase/ 

dehydrogenase (XDH), and aldehyde oxidase (AOX1) require the molybdenum cofactor (Moco) for 

their activities, whereas molybdenum cofactor biosynthesis protein 1 (MOCS1) catalyzes the 

biosynthesis of Moco. They were all highly expressed in liver and showed significant correlation with 

Mo concentration (Spearman correlation coefficient SUOX: 0.58; XDH: 0.49; AOX1: 0.58; MOCS1: 

0.68). Arginase 1 (ARG1) binds Mn at the active site and showed strong correlation with Mn 

concentration (Spearman correlation coefficient 0.58). The selenoproteins glutathione peroxidase 1 

(GPX1), thioredoxin reductases TXNRD1 and TXNRD2, and selenoprotein P (SEPP1) also showed 

significant correlation to Se levels (Spearman correlation coefficient GPX1: 0.64; TXNRD1: 0.27; 

TXNRD2: 0.40; SEPP1: 0.61).  
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Figure 4.3. Correlation and distribution of elements.  

(A) Elements form clusters of significant correlation. Pairwise correlation coefficients among the 

elements are shown. Coefficients > 0.4 or < -0.4 (approximately equal to p value < 0.05) are 

highlighted in color. The correlations shown are based on data for all four organs.  

(B) Principal Component Analysis reveals distinct clusters of elements. The elements and isotopes 

are projected on the first two principal components (PCs).  

(C) Distribution of elements across organs. The box plots represent standardized concentrations in 

the brain, heart, kidney, and liver, with the central bands indicating median values and the whiskers 

indicating 5th and 95th percentiles.  

(D) Gene expression patterns of enzymes that utilize Mo, Mn and Se are consistent with the 

organ distribution of these elements. Gene expression data are based on a previous study (Fushan et 

al., 2015); data for heart are not available. SUOX: sulfite oxide; XDH: xanthine 

oxidase/dehydrogenase; AOX1: aldehyde oxidase; MOCS1: Molybdenum cofactor biosynthesis 

protein 1; ARG1: arginase 1; GPX1: glutathione peroxidase 1; TXNRD1: thioredoxin reductase 1; 

TXNRD2: thioredoxin reductase 2; SEPP1: selenoprotein P. 
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Figure 4.3 (Continued) 
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Figure 4.4. Correlations among elements in (A) brain; (B) heart; (C) kidney; and (D) liver. 

Only Spearman correlation coefficients > 0.4 or < -0.4 are highlighted in color. The correlations are 

based on the data in the respective organs. 
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Figure 4.5. Organ differential distribution of elements.  

(A) Trajectories of element distribution across the four organs. “Br”, “Ht”, “Kd”, and “Lv” 

refer to brain, heart, kidney, and liver, respectively. Each line represents one species and is 

colored according to taxonomical order.  

 (B) The distribution patterns of elements across different organs. For each element, the box plot 

on the left represents the log10 concentrations measured in our studies, and the box plot on the right 

represents the log10 concentrations (converted to the appropriate molar concentrations) reported in 

(Katoh et al., 2002) (“reference”). For our data, the central band represents the median value and the 

box represents first and third quartiles. For the reference data, the central band represents the mean 

value and the box represents ±0.5 standard deviation. The insert at the bottom shows a plot of the 

median values (across the elements and organs) in our study versus those in the reference (Spearman 

correlation coefficient = 0.81). Cd levels are the main outliers. The differences in absolute values are 

likely due to different amounts of tissues used.  
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Figure 4.5 (Continued) 
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Lineage-specific distribution of elements 

To identify lineage-specific patterns, i.e. whether some elements were significantly higher or 

lower in a particular group of related species, we quantified the phylogenetic signal using Pagel’s 

lambda and Blomberg’s K (Revell, 2012), and performed phylogenetic ANOVA (Harmon et al., 

2008) to explicitly test for differential distribution in a particular taxonomical order or family.  

Mg, S, P, and K in brain exhibited significant phylogenetic signals (Figure 4.6A). They were 

also enriched in the brain of rodents compared to non-rodents (phylogenetic ANOVA p value < 0.05 

for Mg, S, K and 0.07 for P). The distribution patterns were very similar between Mg and S as well as 

between K and P, supporting our observation above that these elements clustered with strong 

correlation (Figure 4.3).  

Among the animals examined were two species of desert-dwelling African mole rats (the 

naked mole rat and the Damaraland mole rat), whose genetic and physiological features are quite 

distinct from other rodents (Fang et al., 2014; Kim et al., 2011; LaVinka and Park, 2012; Maina et al., 

2001). In particular, naked mole rats face significant oxidative stress, even though they are the longest 

lived rodents (Andziak et al., 2006; Buffenstein, 2005). In terms of element distribution, both had 

significantly lower levels of Se in kidney and liver than all other species (Figure 4.6B; phylogenetic 

ANOVA p value=0.007 for kidney and 0.005 for liver), and to a lesser extent, than other rodents (p 

value=0.13 for kidney and 0.16 for liver). Se levels and glutathione peroxidase activity (Andziak et 

al., 2005; Malinouski et al., 2012) are lower in the naked mole rat liver and kidney than in mouse 

tissues, in part due to an early stop codon in the sequence coding for GPX1 (Kasaikina et al., 2011). 

The same early stop codon is also found in Damaraland mole rat (Fang et al., 2014). 

Mammalian selenoproteomes consist of 24-25 selenoproteins (Kryukov et al., 2003). 

Selenoprotein mRNAs have a structure called SECIS element that supports co-translational insertion 

of Sec at UGA codon. While most selenoproteins contain only single Sec residue, the number of Sec 

residues in plasma selenoprotein P (SelP, coded by SEPP1) vary greatly across different organisms 

(Lobanov et al., 2008). All but one of these Sec residues are found in the C-terminal region and SelP 

is involved in the transport of Se throughout the body. We observed the number of Sec residues in 
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SelP correlated remarkably with the measured Se levels in kidney and liver (Figures 4.6C; Pearson 

correlation coefficient = 0.62 for kidney and 0.42 for liver). For example, both naked mole rat and 

Damaraland mole rat had only 7 Sec residues and contained very little Se in kidney and liver, whereas 

pig, the carnivores (dog, bear, and badger), and the bats had 14-16 Sec residues in SelP and relatively 

high Se levels in both organs (Figure 4.7). Thus, the use of Se in mammals is tuned by altering the 

number of Sec residues in the C-terminal region of SelP. 

  



 

 114  

 

Figure 4.6. Lineage specific distribution of elements. 

(A) Elements with significant phylogenetic signals. The grids are colored based on the 

standardized concentration and the columns are arranged by phylogenetic relationship. Only those 

elements with p values < 0.05 for both Pagel’s λ and Blomberg’s K are shown.  

(B) Low kidney and liver Se in African mole rats. The error bars represent standard error. The 

bars corresponding to the naked mole rat and Damaraland mole rat are shaded. 

(C) Kidney and liver Se levels correlate with the number of Sec residues in selenoprotein P. The error 

bars represent standard error. The points are colored by taxonomical order. Pearson correlation coefficient: 

0.62 for kidney and 0.42 for liver. 
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Figure 4.7. Mammalian Selenoprotein P.  

(A) Multiple sequence alignment of the C-terminal region of Selenoprotein P. The positions of 

Sec (“U”) are highlighted in red; cysteine (C) are highlighted in cyan. All these species have one 

additional Sec residue in the N-terminal region (not shown). Position numbering is based on human 

sequence (included here for reference). The sequences of sugar glider, shrew, hedgehog, tube-nosed 

bat, Brazilian bat, horse, pig, goat, cat, dog, bear, badger, vervet, rabbit, chipmunk, guinea pig, white-

footed mouse, hamster, gerbil, spiny mouse, rat, and house mouse were based on assembled 

transcriptomes in (Fushan et al., 2015). We confirmed they were consistent with the records in NCBI. 

The sequences of human, macaque, and naked mole rat were extracted from UCSC Multiz 100-way 

Alignment. The sequence of Damaraland mole rat (XM_010633881.1) was obtained from NCBI. 

(B) Number of Sec residues in Selenoprotein P.  The number includes the additional Sec residue in 

the N-terminal region (i.e. one more than the number of Sec shown in (A)). 
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Figure 4.7 (Continued) 
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Nature alters elemental composition to adjust lifespan and body mass 

To understand the relationship between element levels and longevity, we obtained the lifespan 

data from AnAge database (Tacutu et al., 2013) and performed regression analysis using generalized 

least squares, to account for the phylogenetic relatedness of species and incorporate the measurement 

errors (Felsenstein, 1985; Grafen, 1989; Ives et al., 2007). We focused on adult weight as well as 4 

longevity traits: Maximum Lifespan (ML), Maximum Lifespan Residual (MLres), Female Time to 

Maturity (FTM), and Female Time to Maturity Residual (FTMres) (Table 4.1). FTM was used as an 

alternative measure for longevity, since it is easier to quantify and less prone to reporting bias than 

ML (Pearson correlation coefficient between ML and FTM = 0.84, p value < 10-7). The residuals 

(MLres and FTMres) describe the portion of the trait that has not been accounted for by body mass. 

We evaluated different evolutionary models, selected the best-fit model by maximum likelihood, and 

reported the slope coefficient and p value (Figure 4.8A, Table 4.2; Chapter 2, “Phylogenetic 

Regression”). A two-step verification procedure was applied to remove potential outliers and ensure 

the results were generalizable (Chapter 2).   
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Figure 4.8. Elements correlating with life history traits. 

(A) Correlation of elements in each organ with Adult Weight, Maximum Lifespan (ML), 

Maximum Lifespan Residual (MLres), Female Time to Maturity (FTM), and Female Time to 

Maturity Residual (FTMres). Only those with regression p value.robust < 0.02 are indicated in 

colors: red – positive correlation; blue – negative correlation (see Table 4.2 for more details). Green 

asterisks indicate those with q value.robust < 0.05. 

Adult Weight correlates (B) positively with liver Zn level and (C) negatively with heart Fe level. 

The error bars represent standard error (already incorporated in regression calculation). The points are 

colored by taxonomical order. (B) p value.all = 4.41×10-7; q value.all = 9.25×10-5; p value.robust = 

4.15×10-9; q value.robust = 1.70×10-8; p value.max = 2.48×10-7; q value.max = 1.04×10-4. (C) p 

value.all = 4.91×10-4; q value.all = 0.0187; p value.robust = 6.00×10-4; q value.robust = 0.0194; p 

value.max = 1.21×10-3; q value.max = 0.036. 

Maximum Lifespan correlates (D) positively with liver Cd level and (E) negatively with liver Se 

level. Selected species are indicated. (D) p value.all = 4.28×10-6; q value.all = 4.49×10-4; p 

value.robust = 5.63×10-6; q value.robust = 4.73×10-4; p value.max = 2.50×10-6; q value.max = 

2.10×10-4. (E) p value.all = 0.0331; q value.all = 0.266; p value.robust = 0.0126; q value.robust = 

0.120; p value.max = 0.0335; q value.max = 0.285. 
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Figure 4.8 (Continued) 
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Table 4.2. Phylogenetic regression of element level in each organ with Adult Weight, Maximum 

Lifespan (ML), Maximum Lifespan Residual (MLres), Female Time to Maturity (FTM), and 

Female Time to Maturity Residual (FTMres). “Slp.all”, “p value.all”, and “q value.all” refer to the 

slope coefficient, regression p value, and False Discovery Rate adjustment q value, respectively, using 

all the data points. “p value.robust” and “q value.robust” refer to the regression parameters after 

removing the point with the largest residual error. “p value.max” and “q value.max” refer to the 

maximal p value and FDR adjustment q value, when each one of the species was left out, one at a 

time. Those with p value.robust < 0.02 are listed. “E” refers to exponent with base 10 (e.g. “4.3E-03” 

denotes 4.3×10-3). 

  



 

 121  

Table 4.2 (Continued) 

Trait Organ Element 
Slp. 

all 

p value. 

all 

q value. 

all 

p value. 

robust 

q value. 

robust 

p value. 

max 

q value. 

max 

Adult 

Weight 

Br Ni60 -0.24 4.3E-03 7.5E-02 6.9E-03 8.8E-02 7.8E-03 1.1E-01 

Br Mo95 -0.18 7.8E-03 1.1E-01 4.4E-03 6.6E-02 6.5E-03 1.0E-01 

Ht B11 -0.07 1.4E-02 1.5E-01 1.4E-02 1.3E-01 3.2E-02 2.8E-01 

Ht Mn55 -0.21 2.6E-03 5.2E-02 9.9E-04 2.4E-02 5.8E-03 9.4E-02 

Ht Fe56 -0.12 4.9E-04 1.9E-02 6.0E-04 1.9E-02 1.2E-03 3.6E-02 

Ht Fe57 -0.11 2.3E-03 5.1E-02 3.4E-03 5.4E-02 7.2E-03 1.0E-01 

Ht Co59 -0.21 6.6E-03 1.0E-01 1.1E-03 2.5E-02 6.9E-03 1.0E-01 

Ht Ni60 -0.37 9.6E-04 2.5E-02 3.6E-04 1.4E-02 1.5E-03 4.2E-02 

Ht Mo95 -0.20 1.0E-02 1.3E-01 4.6E-03 6.6E-02 3.2E-02 2.8E-01 

Kd Na23 0.06 1.4E-02 1.5E-01 9.0E-03 9.9E-02 5.4E-03 9.2E-02 

Kd Ca40 0.04 1.4E-02 1.5E-01 3.4E-03 5.4E-02 3.0E-02 2.8E-01 

Kd Mn55 -0.05 5.8E-02 3.6E-01 2.0E-02 1.6E-01 4.5E-02 3.2E-01 

Kd Co59 -0.10 3.4E-02 2.7E-01 1.8E-02 1.5E-01 3.6E-02 2.8E-01 

Kd Ni60 -0.24 4.2E-03 7.5E-02 1.6E-03 3.3E-02 1.1E-03 3.6E-02 

Kd Zn64 0.07 7.2E-04 2.2E-02 7.5E-03 8.8E-02 2.9E-03 6.1E-02 

Kd Zn66 0.07 7.3E-04 2.2E-02 7.6E-03 8.8E-02 3.0E-03 6.1E-02 

Lv Ca40 0.02 1.8E-01 5.4E-01 9.9E-03 1.0E-01 1.1E-01 4.5E-01 

Lv Ni60 -0.15 9.6E-03 1.3E-01 3.4E-03 5.4E-02 2.5E-03 5.8E-02 

Lv Zn64 0.12 1.2E-07 5.0E-05 4.2E-09 1.7E-06 8.6E-07 1.8E-04 

Lv Zn66 0.11 4.4E-07 9.3E-05 1.7E-08 3.6E-06 2.5E-07 1.0E-04 

ML 

Kd Zn64 0.35 3.2E-05 1.7E-03 3.5E-03 5.4E-02 5.3E-05 2.8E-03 

Kd Zn66 0.33 4.0E-05 1.9E-03 1.9E-05 1.1E-03 7.4E-05 3.5E-03 

Kd Cd111 2.48 1.5E-04 6.2E-03 4.8E-04 1.7E-02 4.1E-04 1.4E-02 

Lv Zn64 0.36 2.5E-03 5.2E-02 3.5E-04 1.4E-02 5.5E-03 9.2E-02 

Lv Zn66 0.33 4.0E-03 7.5E-02 7.4E-04 2.1E-02 9.4E-03 1.2E-01 

Lv Se78 -0.36 3.3E-02 2.7E-01 1.3E-02 1.2E-01 3.4E-02 2.8E-01 

Lv Cd111 1.94 4.3E-06 4.5E-04 5.6E-06 4.7E-04 2.5E-06 2.1E-04 

MLres 

Ht B11 0.29 4.4E-02 3.2E-01 7.9E-03 9.0E-02 6.1E-02 3.4E-01 

Kd Cd111 2.33 1.4E-02 1.5E-01 1.6E-03 3.3E-02 2.3E-03 5.7E-02 

Lv Fe56 0.48 4.9E-02 3.3E-01 7.1E-03 8.8E-02 4.5E-02 3.2E-01 

Lv Fe57 0.46 6.0E-02 3.6E-01 9.6E-03 1.0E-01 7.2E-02 3.6E-01 

Lv Se78 -0.44 3.7E-02 2.8E-01 1.5E-02 1.3E-01 7.8E-02 3.7E-01 

Lv Cd111 2.07 8.2E-04 2.3E-02 3.7E-06 3.9E-04 3.2E-04 1.2E-02 

FTM 

Kd Ca40 0.11 4.1E-02 3.1E-01 1.3E-02 1.2E-01 4.5E-02 3.2E-01 

Kd Zn64 0.26 7.9E-06 6.6E-04 8.7E-07 1.2E-04 1.7E-06 2.1E-04 

Kd Zn66 0.24 1.2E-05 8.5E-04 6.4E-05 3.4E-03 3.3E-06 2.3E-04 

Kd Cd111 1.80 2.5E-05 1.5E-03 9.1E-05 4.2E-03 3.3E-05 2.0E-03 

Lv Ca40 0.13 1.4E-02 1.5E-01 1.4E-03 3.0E-02 6.7E-02 3.5E-01 

Lv Zn64 0.24 5.7E-03 9.6E-02 6.8E-04 2.0E-02 7.6E-03 1.1E-01 

Lv Zn66 0.21 1.0E-02 1.3E-01 2.5E-03 4.6E-02 1.5E-02 1.6E-01 

Lv Se78 -0.24 4.5E-02 3.2E-01 6.0E-03 8.1E-02 3.3E-02 2.8E-01 

Lv Cd111 1.42 2.4E-06 3.3E-04 9.9E-06 6.9E-04 2.1E-06 2.1E-04 

FTMres 

Ht B11 0.20 9.9E-03 1.3E-01 1.8E-03 3.5E-02 1.1E-02 1.4E-01 

Ht Na23 0.18 3.4E-02 2.7E-01 1.7E-02 1.4E-01 5.3E-02 3.4E-01 

Ht P31 0.07 1.6E-01 5.4E-01 1.1E-02 1.1E-01 3.5E-02 2.8E-01 

Kd Cd111 1.86 6.7E-03 1.0E-01 5.7E-03 7.9E-02 3.8E-03 7.0E-02 

Lv S34 -0.05 1.1E-01 4.5E-01 1.4E-02 1.2E-01 1.1E-01 4.5E-01 

Lv Fe56 0.31 6.0E-02 3.6E-01 1.2E-02 1.2E-01 5.4E-02 3.4E-01 

Lv Fe57 0.31 6.0E-02 3.6E-01 1.0E-02 1.0E-01 5.2E-02 3.4E-01 

Lv Se78 -0.29 5.2E-02 3.4E-01 7.2E-03 8.8E-02 7.3E-02 3.6E-01 

Lv Cd111 1.46 1.4E-03 3.4E-02 7.9E-04 2.1E-02 2.1E-03 5.5E-02 
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In terms of body mass, liver Zn level showed a strong positive correlation (Figure 4.8B; p 

value.robust = 4.15×10-9 for 64Zn and 1.70×10-8 for 66Zn; q value.robust < 10-5 for both), whereas 

negative correlations were observed for Fe, Mn, Co and Ni, especially in heart tissue (Figure 4.8C). In 

terms of longevity, Zn levels in liver and kidney showed strong, positive correlations with ML and 

FTM.  However, the relationships became much weaker in MLres and FTMres, suggesting the 

observed correlation is largely due to the effects of body mass. 

Cd levels in liver and kidney correlated positively with all four measures of longevity (Figure 

4.8A), with a particularly robust relationship in liver (q value.robust < 0.05 in all four measures). 

While the Cd levels might potentially be affected by diets, the correlation remained statistically 

significant when we methodically left out each species one at a time. As there has been no known 

biological role for Cd in mammals, the result was somewhat unexpected. Since Cd mostly comes from 

the soil or food, one possibility is that longer lived/larger mammals simply consume a greater amount 

of food over their life time and, as they cannot efficiently excrete this metal, accumulate more Cd. 

Among our samples, the liver Cd levels were highest in horse and bear, both of which were large and 

long-lived. The naked mole rat, being the longest-lived rodent, also had a much higher liver Cd level 

than other rodents of comparable sizes. 

Liver Se was the only element correlating negatively with all four measures of longevity, 

although the correlations were relatively weak (Figure 4.8E and Table 4.2; p value.robust = 0.013 for 

ML, 0.015 for MLres, 0.006 for FTM, and 0.007 for FTMres). Even when the points corresponding to 

the African mole rats were excluded, we still observed a negative correlation with ML (p value = 

0.028). Selenoproteins are important cellular redox regulators, whose changes may affect redox 

homeostasis and DNA mutation rates. Interestingly, the long-lived naked mole rat may experience 

significant oxidative stress in captivity (Andziak et al., 2006) and limit both GPX1 expression and 

GPX activity (Andziak et al., 2005; Kasaikina et al., 2011; Kim et al., 2011). Excessive intake of Se is 

toxic and can lead to selenosis. Therefore, there is a delicate balance between the beneficial aspects of 

Se, its toxicity, and other systems that support maintenance functions. 
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DISCUSSION 

Prior to this study, it has been unclear how evolutionary processes adjust the ionomes across 

mammalian species and organs according to phylogeny, longevity and body mass. We were able to 

offer new insights on elemental composition of organs and species, identify common and distinct 

patterns of element utilization, and link these findings to physiological functions. The elements 

clustered as macronutrients, transition metals or toxic elements, suggesting they are handled by 

mammals using common strategies based on their biological functions. Some elements also showed 

lineage-specific changes, including decreased utilization of Se in African mole rats, and a strong link 

between the number of Sec residues in SelP and the kidney and liver Se levels across mammals. In 

addition, we found that lifespan of mammals was positively linked with Cd tissue levels and 

negatively linked with Se in liver. Some elements, such as Zn, showed a positive association with 

species body mass, whereas others, such as Ni, Co, Fe, and Mn, showed negative association. 

The multiple associations and interactions among these elements revealed by our study would 

not have been possible without examining a wide spectrum of mammals and different organs. This 

approach can also offer valuable insights into the interaction between elements and environment, as 

previously demonstrated by similar studies in plants (Watanabe et al., 2007; White et al., 2012). When 

the same plant species were collected under different fertilizer treatments and environmental 

conditions, the concentrations of Ca, Zn, Mn and Mg were found to remain more closely linked to 

phylogeny. In contrast, the concentrations of Cu and Fe varied more strongly with environmental 

factors, suggesting different elements might be more or less responsive to external variations. In 

addition, related species may be exposed to similar environmental conditions, or may have similar 

detoxification abilities, either of which can drive the similarities in their ionomes and potentially 

confound the phylogenetic signals. Similar studies on a much larger scale will help determine the 

variability and elasticity of element levels in mammals under different dietary regimens. Overall, this 

study provided direct insights into how evolution may adjust the ionome of mammals according to 

organ physiology, phylogeny, environment, lineage specialization and life histories and may provide a 

useful predictive tool in future studies.  
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EXPERIMENTAL PROCEDURES 

Biological samples and element quantifications 

Inductively-coupled plasma mass spectrometry (ICP-MS) was applied to characterize element 

levels in the brain, heart, kidney, and liver of 26 mammalian species. The species were as described 

previously (Fushan et al., 2015; Ma et al., 2015). The animals were young adults and, except for horse 

and vervet, all were males, with two to four biological replicates (tissues from different animals) for 

most species. Whole liver, kidney, heart, or frontal parts of brain were frozen in liquid nitrogen and 

stored at -80ºC until further use.  

The concentrations of Li (nM), B (nM), Na (mM), Mg (µM), P (mM), S (mM), K (mM), Ca 

(µM), Mn (nM), Fe (µM), Co (nM), Ni (nM), Cu (µM), Zn (µM), As (nM), Se (nM), Mo (nM), and 

Cd (nM), per gram of tissue digested, were quantified with spike-in 50 µg/L Ga as internal control, 

using the sample preparation and data collection method described previously (Malinouski et al., 

2014). Two isotopes were measured for Fe (56Fe, 57Fe), Cu (63Cu, 65Cu), and Zn (64Zn, 66Zn). The 

samples were subjected to four independent ICP-MS runs, each with three injections to each sample. 

Those injections with clearly abnormal results (i.e. reporting negative concentrations for most 

elements and differing significantly from the other runs of the same sample) were discarded (79 out of 

over 2600 injections, or ~ 3%, were discarded this way). 

Data processing 

The results were log10-transformed and batch effect was removed using R package “sva” 

(Leek et al.) (Figure 4.2). The average values were computed across the four runs and the mean and 

standard errors were calculated across the replicates. For those without biological replicates, the 

standard error was taken as average standard error of the other samples. Standardized concentrations 

(i.e. scaled to mean = 0 and standard deviation = 1) were used for cross-element analysis. 

Element distribution in organs 

Wilcoxon Rank-Sum Test was used to identify elements relatively enriched or depleted in a 

particular organ. Data from the same animal were considered as paired. For each element, the 

numbers of significant pair-wise comparisons (p value < 0.05) were tabulated. Enrichment or 
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depletion was declared in an organ if at least two out of the three pair-wise comparisons were 

statistically significant. 

Phylogenetic signals and phylogenetic ANOVA 

Pagel’s lambda and Blomberg’s K were calculated using R package “phytools” (Revell, 

2012), after incorporating standard error of measurement. Those elements with p value < 0.05 in both 

cases were considered to have significant phylogenetic signals. Phylogenetic ANOVA was performed 

using R package “geiger” (Harmon et al., 2008). The species were grouped and compared according 

to their taxonomical orders or families.  

Regression by generalized least square and robustness of results 

See Chapter 2. The cut-off for top hits was p value.robust < 0.02. 
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ABSTRACT 

The budding yeast has served as a useful model organism in aging studies, leading to the 

identification of genetic determinants of longevity, many of which are conserved in higher eukaryotes. 

However, factors that promote longevity in a laboratory setting often have severe fitness 

disadvantages in the wild. To obtain an unbiased view on longevity regulation, we analyzed how a 

replicative lifespan is shaped by transcriptional, translational, metabolic, and morphological factors 

across 22 wild-type Saccharomyces cerevisiae isolates. We observed significant differences in 

lifespan across these strains and found that their longevity is strongly associated with up-regulation of 

oxidative phosphorylation and respiration and down-regulation of amino- acid and nitrogen 

compound biosynthesis. As calorie restriction and TOR signaling also extend the lifespan by adjusting 

many of the identified pathways, the data suggest that the natural plasticity of yeast lifespan is shaped 

by the processes that not only do not impose cost on fitness, but also are amenable to dietary 

intervention. 
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INTRODUCTION 

The idea of slowing aging and extending lifespan of organisms has attracted much attention, 

leading to the identification of numerous factors that mitigate the effects of the aging process. At the 

cellular level, the driving force behind aging may be the inevitable accumulation of a myriad different 

forms of molecular damage (Gladyshev, 2012). Many genetic and pharmacological interventions have 

been discovered that increase the lifespan of model organisms, including some with single gene effects 

(Finch and Ruvkun, 2001; Kenyon, 2010). In addition, diverse classes of genes have been reported to 

be involved in lifespan control, pointing to several key regulatory pathways. However, it remains to be 

seen whether similar strategies may be applied to combat aging in humans. A major challenge in the 

field is that many of the findings apply to model organisms in laboratory settings, but these longevity 

conditions may come at the expense of fitness, making them detrimental when organisms are in their 

natural environment.  

Aging is a process that involves complex gene networks. While broad genome manipulation is 

not yet practical in higher eukaryotes, fine-tuning these gene networks by environmental or dietary 

factors may offer a solution. It has been shown that manipulations such as calorie restriction (CR), 

oxygen availability, pH, and alternative carbon sources can modulate gene expression and the aging 

process (Botta et al., 2011; McCay et al., 1935; Murakami et al., 2012; Pitt et al., 2014). CR is among 

the most studied and widely used longevity interventions, which can extend lifespan in almost all model 

organisms (Finch and Ruvkun, 2001). Although the precise mechanisms of CR-mediated lifespan 

extension remain debatable, it is known that CR causes a metabolic shift from fermentation to 

respiration in yeast, and that mitochondrial metabolism tends to increase in multicellular eukaryotes 

subjected to CR (Lin et al., 2002; Lopez-Lluch et al., 2006; Schulz et al., 2007). These findings also 

agree with the effects observed by manipulating various lifespan-regulating pathways, such as TOR 

(target of rapamycin) signaling (Johnson et al., 2013). Suppression of TOR signaling mimics the 

reduction of nutritional input under CR in yeast and extends lifespan while concomitantly increasing 

mitochondrial respiration (Bonawitz et al., 2007; Johnson et al., 2013). Taken together, these studies 
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link elevated mitochondrial function with lifespan, suggesting that a metabolic switch to oxidative 

metabolism is beneficial with regard to delaying aging. 

The fact that metabolic pathways can be modulated by both CR and TOR inhibition suggests 

that complex processes such as aging may also be amenable to environmental and genetic manipulation. 

It is conceivable that the interaction between environmental factors and gene networks can explain the 

diverse phenotypes of species inhabiting different ecological niches. It is known that environmental 

adaptation and parallel evolution help create the genetic diversity for selection in natural populations 

(Reznick et al., 2001). By evaluating the lifespan differences among natural populations of closely 

related strains or species, one may obtain insights into the underlying mechanisms that modulate aging 

and longevity. Towards this goal, in the current work we employed a powerful aging model, the budding 

yeast. Analyses of the aging process in Saccharomyces cerevisiae have mostly been performed on a 

small number of laboratory-adapted strains, but whether the identified mechanisms can explain the 

lifespan variation across natural strains is unknown. We evaluated the lifespans of 22 natural isolates 

of S. cerevisiae (Liti et al., 2009) and used transcriptome, proteome, metabolome and morphology data 

(Skelly et al., 2013) to identify the signatures associated with natural lifespan variation. Our data suggest 

that increased replicative lifespan (RLS) in natural yeast populations is associated with increased 

oxidative phosphorylation and reduced amino acid biosynthesis. Our study also represents a new 

approach that combines phenotypic variation across yeast populations with high-throughput data to 

elucidate underlying molecular mechanisms driving this variation.  
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RESULTS 

Variation in replicative lifespan and growth rate across natural yeast isolates 

Phylogenetic analysis using complete genome sequence alignment of 22 natural S. cerevisiae 

isolates revealed a complex cladogram that could be divided into two main groups (Figure 5.1A). 

Assaying these isolates at 30 °C on standard YPD plates, we observed over 10-fold variation in RLS 

(Pearson correlation coefficient = 0.95 between mean and maximum lifespans; Figure 5.1B and Table 

5.1). BC187 showed the largest number of cell divisions (mean = 39; maximum = 60); NCYC361 and 

YS2 had the fewest (mean = 3 for both; maximum = 7 for NCYC361 and 9 for YS2); and many strains 

produced on average 20-30 daughter cells, similar to BY4743, a standard laboratory diploid strain and 

the parental strain of the yeast ORF deletion collection (Table 5.1). 

Changes in growth rate have previously been shown to affect mRNA, protein and metabolite 

levels (Brauer et al., 2008; Castrillo et al., 2007; Regenberg et al., 2006), and a recent study has reported 

a positive correlation between time spent in the G1 phase of the cell cycle and RLS in yeast (He et al., 

2014). To determine a potential relationship between growth rate and lifespan, we monitored the growth 

of these strains by automated Bioscreen-C growth analyzer and calculated the doubling time in both 

glucose and glycerol medium. Of the 22 isolates, 21 grew faster than BY4743 strain, and four strains 

doubled in less than 50 min (Figure 5.1C, Table 5.1) in glucose medium. However, we found only a 

weak negative correlation between the doubling time and mean lifespan (Pearson correlation coefficient 

= -0.42). In addition, we observed that all strains can utilize glycerol as a carbon source, which indicates 

these strains are capable of mitochondrial respiratory metabolism (Table 5.1).  
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Figure 5.1.Yeast strains examined in this study. 

(A) Phylogenetic relationship. The tree was constructed based on the alignment of complete genome 

sequences of the strains, using MEGA 6.06 (Tamura et al., 2013) and neighbor joining method 

(Saitou and Nei, 1987). The branches are colored according to strain types shown in the legend in the 

lower right corner. 

(B) Mean replicative lifespan and (C) mean growth rate (doubling time) of the strains in glucose 

media. The strains are ordered by phylogeny. The error bars indicate standard error. Red dotted lines 

indicate the mean replicative lifespan (B) and doubling time (C) of the reference strain BY4743. 

  



 

 135  

T
a

b
le

 5
.1

. 
S

tr
a
in

s 
u

se
d

 i
n

 t
h

is
 s

tu
d

y
. 
N

at
u
ra

l 
is

o
la

te
s 

o
f 

y
ea

st
 s

tr
ai

n
s 

ar
e 

sh
o
w

n
 a

lo
n

g
 w

it
h

 t
h

ei
r 

w
il

d
 n

ic
h

e,
 m

ea
n
 a

n
d

 m
ax

im
u
m

 l
if

es
p

an
, 

m
ax

im
u

m
 d

o
u

b
li

n
g

 t
im

e 
in

 g
lu

co
se

 a
n
d
 g

ly
ce

ro
l 

m
ed

ia
, 

re
la

ti
v
e 

co
v
er

ag
e 

o
f 

m
it

o
ch

o
n

d
ri

al
 D

N
A

, 
an

d
 c

el
l 

si
ze

. 
“S

.E
.”

 d
en

o
te

s 
st

an
d
ar

d
 

er
ro

r 
o
f 

m
ea

n
. 

  
C

el
l 

S
iz

e 

(µ
m

) 

1
0
 

1
3
 

1
2
 

1
1
 

1
1
 

1
0
 

1
0
 

1
0
 

1
0
 

1
2
 

1
3
 

1
4
 

1
0
 

1
2
 

1
3
 

1
2
 

1
2
 

1
4
 

1
1
 

1
1
 

1
2
 

1
1
 

--
 

M
it

o
ch

o
n

d
ri

a
l 

D
N

A
 

co
v

er
a

g
e 

4
 

5
 

4
 

4
 

4
 

4
 

5
 

4
 

3
 

4
 

6
 

3
 

7
 

5
 

4
 

5
 

6
 

8
 

6
 

5
 

5
 

4
 

4
 

D
o

u
b

li
n

g
 T

im
e 

in
 g

ly
ce

ro
l 

(m
in

) 

S
.E

. 

1
.1

3
 

1
1

.7
4
 

0
.7

4
 

4
.9

3
 

5
.5

2
 

1
.4

6
 

3
.9

2
 

1
.2

9
 

1
.8

3
 

1
0

.8
8
 

1
.2

4
 

0
.9

1
 

0
.3

5
 

1
.3

4
 

5
.0

6
 

1
.5

2
 

4
.2

1
 

3
.1

6
 

3
.2

8
 

2
.4

8
 

0
.7

5
 

2
.3

1
 

7
.1

7
 

m
ea

n
 

1
1

0
 

1
9

0
 

1
0

7
 

1
1

7
 

1
1

6
 

1
0

7
 

1
1

8
 

9
8

.5
 

9
7

.7
 

2
0

5
 

1
0

9
 

1
3

1
 

1
1

8
 

1
0

5
 

9
9

.2
 

1
0

9
 

1
1

0
 

1
0

2
 

1
0

7
 

1
2

3
 

1
1

8
 

2
1

6
 

1
6

4
 

D
o

u
b

li
n

g
 T

im
e 

in
 

g
lu

co
se

 (
m

in
) 

S
.E

. 

3
.5

6
 

3
3

.9
5

 

5
.9

6
 

8
.2

3
 

9
.1

4
 

9
.4

7
 

1
.8

3
 

7
.2

2
 

5
.6

8
 

2
.6

4
 

3
.6

3
 

4
.1

5
 

2
.4

6
 

1
.7

5
 

2
.9

1
 

2
.2

6
 

1
.8

9
 

1
.4

3
 

2
.8

9
 

4
.9

3
 

2
.8

4
 

4
.6

7
 

2
.8

9
 

m
ea

n
 

6
3

.7
9
 

5
1

.6
2
 

3
2

.9
1
 

5
6

.0
3
 

6
2

.7
7
 

4
2

.9
6
 

5
8

.9
1
 

3
5

.4
3
 

3
4

.7
8
 

6
5

.0
4
 

7
2

.7
5
 

6
3

.0
8
 

6
4

.0
3
 

5
8

.6
8
 

6
2

.6
 

6
4

.7
 

6
4

.2
 

6
7

.6
8
 

6
3

.0
7
 

6
6

.5
8
 

6
2

.9
7
 

8
7

.5
5
 

7
6

.3
8
 

R
ep

li
ca

ti
v

e 
L

if
es

p
a

n
 

(g
ly

ce
ro

l)
 S

.E
. 

2
.2

5
 

--
 

--
 

--
 

--
 

--
 

1
.4

2
 

2
.1

3
 

--
 

--
 

2
.0

4
 

--
 

4
.8

6
 

--
 

1
.6

6
 

1
.5

5
 

--
 

1
.5

1
 

1
.3

 

1
.8

6
 

--
 

--
 

--
 

m
ea

n
 

3
5
 

--
 

--
 

--
 

--
 

--
 

2
4
 

3
3
 

--
 

--
 

3
5
 

--
 

4
3
 

--
 

1
5
 

2
4
 

--
 

2
0
 

2
3
 

3
0
 

--
 

--
 

--
 

m
a

x
 

5
7
 

--
 

--
 

--
 

--
 

--
 

3
7
 

5
6
 

--
 

--
 

5
2
 

--
 

9
2
 

--
 

2
1
 

3
2
 

--
 

3
0
 

3
0
 

4
9
 

--
 

--
 

--
 

R
ep

li
ca

ti
v

e 
L

if
es

p
a

n
 

(g
lu

co
se

) 

S
.E

. 

3
.4

3
 

3
.3

9
 

3
.7

2
 

3
.3

9
 

3
.5

1
 

4
.1

6
 

3
.9

2
 

1
.7

6
 

4
.6

1
 

2
.0

6
 

3
.5

5
 

2
.9

 

5
.3

9
 

3
.6

3
 

1
.7

6
 

2
 

1
.7

6
 

4
.7

8
 

5
.1

8
 

3
.0

2
 

0
.5

3
 

0
.5

7
 

1
.6

7
 

m
ea

n
 

2
7
 

2
7
 

1
9
 

2
3
 

2
4
 

3
0
 

3
7
 

3
8
 

3
3
 

2
3
 

2
8
 

2
1
 

3
9
 

3
0
 

1
0
 

2
4
 

9
 

2
5
 

3
4
 

2
3
 

3
 

3
 

2
8
 

m
a

x
 

4
7
 

4
5
 

3
5
 

3
7
 

4
2
 

5
2
 

5
5
 

4
4
 

5
4
 

3
1
 

4
5
 

3
7
 

6
0
 

4
7
 

1
6
 

3
2
 

1
8
 

5
0
 

5
2
 

3
5
 

7
 

9
 

4
4
 

S
o

u
rc

e
 

g
ra

p
e 

so
il

 

p
la

n
t 

b
ee

 

p
la

n
t 

fr
u

it
 

p
al

m
 w

in
e 

o
ak

 t
re

e 

o
ak

 t
re

e 

sp
u

tu
m

 

fe
ca

l 

u
n

k
n
o

w
n
 

b
ar

re
l 

m
u

st
 

u
n

k
n
o

w
n
 

g
ra

p
es

 

v
ag

in
al

 

v
ag

in
al

 

v
ag

in
al

 

so
il

 

w
o

rt
 

u
n

k
n
o

w
n
 

g
ra

p
e 

S
tr

a
in

 T
y

p
e
 

la
b

 

la
b

 

w
il

d
 

w
il

d
 

w
il

d
 

w
il

d
 

fe
rm

en
ta

ti
o

n
 

w
il

d
 

w
il

d
 

cl
in

ic
al

 

cl
in

ic
al

 

b
ak

in
g
 

fe
rm

en
ta

ti
o

n
 

fe
rm

en
ta

ti
o

n
 

u
n

k
n
o

w
n

 

fe
rm

en
ta

ti
o

n
 

cl
in

ic
al

 

cl
in

ic
al

 

cl
in

ic
al

 

w
il

d
 

fe
rm

en
ta

ti
o

n
 

b
ak

in
g
 

la
b

 

S
tr

a
in

 N
a

m
e
 

Y
5

5
 

S
K

1
 

U
W

O
P

S
8

7
-2

4
2

1
 

U
W

O
P

S
0

5
-2

2
7

.2
 

U
W

O
P

S
0

5
-2

1
7

.3
 

U
W

O
P

S
8

3
-7

8
7

.3
 

Y
1

2
 

Y
P

S
6

0
6

 

Y
P

S
1

2
8

 

3
7

8
6
0

4
X

 

2
7

3
6
1

4
N

 

Y
S

9
 

B
C

1
8

7
 

L
-1

3
7
4
 

D
B

V
P

G
6

7
6

5
 

D
B

V
P

G
1

1
0

6
 

Y
JM

9
7

8
 

Y
JM

9
8

1
 

Y
JM

9
7

5
 

D
B

V
P

G
1

3
7

3
 

N
C

Y
C

3
6

1
 

Y
S

2
 

B
Y

4
7

4
3
 

 



 

 136  

Phenotypic variation across strains 

Gene expression, proteomic, metabolomic, and morphological data for these 22 strains have 

been reported previously (Skelly et al., 2013). After our filtering and quality control, the dataset 

contained RNA-seq reads for 6207 transcripts; proteomic measurement of 6842 peptide fragments 

corresponding to 1643 unique genes; mass spectrometric quantification of 107 metabolites; and 

quantitative microscopy of 392 morphological phenotypes (Experimental Procedures). In particular, 

1641 unique genes were represented by both transcripts and peptides, but the correlation between the 

transcript and peptide levels was not strong (median Spearman correlation coefficient = 0.31; Figure 

5.2A). Similar conclusions were reached when we used the mean peptide values for each gene instead 

(median Spearman correlation coefficient = 0.28; Figure 5.2B). 

 To visualize phenotypic variation across these strains, we performed Principal Component 

Analysis on each type of the phenotypic data as well as on the combined data (Figure 5.3A, Figure 

5.4A-D; the combined data excluded metabolites as values were not available for strain 378604X). 

The observed patterns resembled the phylogenetic relationship, with the first 3 Principal Components 

(PCs) explaining 36-53% of total variance (Figure 5.4E).  Examination of the genes contributing to 

the first 3 PCs in the combined data revealed a distinctive set of GO terms and KEGG pathways, 

including oxidative phosphorylation (PC1), aerobic respiration (PC1), mitochondrion (PC1), response 

to temperature stimulus (PC1), ribosome (PC2), protein synthesis (PC2), regulation of translation 

(PC2 and PC3), ribonucleoprotein complex (PC3), and ribosome biogenesis (PC3). These results 

suggest that the strains predominantly differ in energy metabolism, protein synthesis, and ribosome 

regulation. Consistent with a previous report (Skelly et al., 2013), along PC1 the strains segregated 

largely according to their relative preferences for aerobic respiration or fermentation (Figure 5.3B). 
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Figure 5.2. Spearman correlation coefficients between transcript values and (A) individual 

peptide values, or (B) mean peptide values for genes. The 25th, 50th, and 75th percentile values 

are: (A) 0.08, 0.31, 0.54, respectively; and (B) 0.05, 0.25, 0.51, respectively. 
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Figure 5.3. Phenotypic variation across the strains. 

 (A) Principal Component Analysis (PCA) of combined data. PCA was performed by combining 

transcripts, peptides, and morphology data (metabolite data were not available for strain 378604X 

and were omitted). Percentage variance explained by each Principal Component (PC) is shown in 

the parentheses.  

(B) Relative levels of transcripts and peptides involved in aerobic respiration or fermentation. 

The heat map shows the transcripts and peptides with top contribution to Principal Component 1 

and involved in aerobic respiration or fermentation. Hierarchical clustering was performed using 

complete linkage. 
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Figure 5.4. Principal Component Analysis. 

Principal Component Analysis of (A) transcripts, (B) peptides, (C) metabolites, and (D) morphology 

data. Percentage variance explained by each Principal Component (PC) is shown in parentheses. 

 (E) Cumulated percentage of variance explained by Principal Components. Combined data: Figure 

5.3A; transcripts, peptides, metabolites, and morphology: Figure 5.4A-D, respectively. 
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Correlation between phenotype and lifespan  

To identify a link between phenotypic variation and lifespan, we performed phylogenetic 

regression by generalized least squares, uncovering the phenotypes associated with longevity after 

accounting for the phylogenetic relationship of these strains (Felsenstein, 1985; Freckleton et al., 

2002; Martins and Garland, 1991) (Chapter 2). Regression was performed between phenotypic values 

and any one of the following lifespan measurements: mean RLS, maximum RLS (Max RLS), log 

mean RLS (Log Mean RLS), and log maximum RLS (Log Max RLS). Different models of trait 

evolution were tested and the best-fit model was then selected based on maximal likelihood (Materials 

and Methods). To assess robustness of the relationship, we also left out one yeast strain at a time and 

re-calculated regression slopes using the remaining strains (Chapter 2). This ensured the overall 

relationship did not depend on a particular isolate. 

The four different RLS measurements yielded very similar results, with Pearson correlation 

coefficients ranging between 0.90 and 0.98 for the regression slopes. We defined the top hits as 

phenotypes with statistically significant regression slopes under at least two different RLS measures, 

and identified 249 gene transcripts, 347 peptide fragments (representing 216 unique genes), 5 

metabolites, and 43 morphology features (Table 5.2). Among the top gene transcripts and peptide 

fragments, only 10 unique genes were supported by both measures, consistent with the weak 

correlation between transcript and peptide levels noted above (Figure 5.2). When the mean peptide 

values were used for calculation, 88 genes reached statistical significance, 80 of which were also 

supported based on peptide fragments (Table 5.2). 

With regard to morphology measures, features such as “maximal intensity of nuclear 

brightness divided by average”, “nucleus roundness in mother cell”, and “length from bud tip to 

mother cell’s short axis on nucleus C” showed significant negative correlation with RLS, whereas 

“fitness in nucleus C” correlated positively with longevity. Among the metabolite top hits, asparagine 

showed negative correlation with Max RLS (p value = 0.014) and Log Max RLS (p value = 0.017) 

(Figure 5.5A). A related amino acid, glutamine, also negatively correlated with Max RLS (p value = 

0.042) and weakly with Log Max RLS (p value = 0.055) (Figure 5.5B). This was of note, since the 
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TOR pathway is known to be regulated by the levels of amino acids, especially intracellular glutamine 

(Martin and Hall, 2005). Treating yeast cells with methionine sulfoximine, an inhibitor of glutamine 

synthetase, has been shown to decrease both intracellular glutamine levels and TOR-dependent 

signaling (Crespo et al., 2002) while increasing RLS (Kaeberlein et al., 2005), whereas removal of 

either asparagine or glutamate from the medium produced a dose-dependent effect on chronological 

lifespan (CLS; CLS is the survival time of populations of nondividing cells, while RLS is the number 

of daughter cells produced by a mother cell prior to senescence; they are related but not identical) 

(Powers et al., 2006). We also found 2-octenoic acid to correlate negatively with Max RLS (p value 

=0.019) and Log Max RLS (p value =0.014) (Figure 5.5C). This compound is known to be elevated in 

mitochondria, but its effect on aging is not known. Some of the transcript and peptide top hits have 

also been implicated in lifespan regulation in yeast. For example, the protein levels of ADH1p 

(alcohol dehydrogenase, coded by YOL086C) correlated negatively with both Mean RLS and Max 

RLS, and deletion of ADH1 was found to extend RLS by 23% in MATα and 15% in MATa (Smith et 

al., 2008). DCW1 (also known as YKL046C, coding for a putative mannosidase in cell wall 

biosynthesis), whose transcript levels correlated negatively with all four RLS measurements, was 

previously identified in a genetic screen to increase yeast CLS when deleted (Matecic et al., 2010). In 

addition, a number of top hits correlating positively with longevity at the transcript (e.g. VRP1 

(YLR337C), KGD1 (YIL125W)) and protein (e.g. PET9p (YBL030Cp), SP160p (YJL080Cp), GSY2p 

(YLR258Wp)) levels were previously shown to decrease RLS or CLS when deleted or mutated 

(Fabrizio et al., 2010; Laschober et al., 2010; Smith et al., 2008; Wang et al., 2008). 
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Table 5.2. (see attached Excel file) Phenotypes with significant correlation to mean replicative 

lifespan (Mean RLS), maximum replicative lifespan (Max RLS), log mean replicative lifespan 

(Log Mean RLS), and log maximum replicative lifespan (Log Max RLS). Only phenotypes 

with significant correlation to at least two of the RLS measurements are shown. “Best.Model” 

indicates the best-fit regression model; “Slope.coefficient” indicates the regression slope under the 

best-fit model (positive value indicates positive correlation; negative value indicates negative 

correlation); “p.value” indicates the regression slope p value; “RobustTest.Min”, 

“RobustTest.Median”, and “RobustTest.Max” indicate the minimal, median, and maximal p values 

when the regression is performed by leaving out one strain at a time. “peptide_mean” refers to the 

mean peptide values across all the peptide fragments for the unique genes. The “Note” column in 

“peptide_mean” indicates the number of peptide fragments for each unique gene. 
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Figure 5.5. Selected phenotypes correlating with replicative lifespan. 

Levels of (A) asparagine, (B) glutamine, and (C) 2-octenoic acid negatively correlate with 

maximum replicative lifespan (MaxRLS). Regression slope p values: (A) 0.014; (B) 0.042; (C) 

0.019.  

(D) Protein-protein interaction network of the top hits identified by the mean peptide values. 

The interaction network is based on STRING database (evidence view). Genes without interacting 

partners are omitted. Selected pathways are indicated by colored rings. Most of the peptides here 

showed significant correlation to all four RLS measures.  
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Networks and pathways represented by top hits 

To further understand the biological pathways underlying natural regulation of lifespan, we 

performed pathway enrichment analysis using DAVID (Huang da et al., 2009). The enrichment 

results for the peptide fragments were especially significant. Among the peptide fragments correlating 

positively with longevity, the enriched terms included “oxidative phosphorylation”, “mitochondrial 

respiratory chain”, “ion transport”, “hexose metabolic process”, “glucose metabolic process”, and 

“aerobic respiration”. On the other hand, for those correlating negatively with longevity, “amino acid 

biosynthesis”, “organic acid biosynthetic process”, “nitrogen compound biosynthetic process”, 

“nucleotide binding”, “cofactor binding”, and “glycolysis” were enriched. Many of these terms were 

similarly enriched when we carried out calculations using the mean peptide values. In comparison, the 

enrichment statistics were weaker for the transcripts, even though the numbers of top hits were 

similar. Among those with positive correlation, enrichment was observed for “ion transport”, 

“mitochondrial membrane part”, “ATP biosynthetic process”, “oxidative phosphorylation”, and “actin 

binding”. For the transcripts with negative correlation to lifespan, the enriched terms included “RNA 

polymerase II transcription factor activity”, “transcription regulator activity”, “microtubule”, 

“regulation of RNA metabolic process”, and “mRNA splicing”. Overall, the results suggest that the 

long-lived strains tend to up-regulate oxidative phosphorylation, aerobic respiration, and ion transport; 

and down-regulate transcription, splicing, and various biosynthetic processes (especially amino acid 

metabolism). 

We visualised protein-protein interactions among the top hits using STRING (Jensen et al., 

2009) and found the network is significantly enriched in interactions. The top hits identified using the 

mean peptide values were grouped into several prominent clusters, including oxidative 

phosphorylation and aerobic respiration (positive correlation); organic acid and nitrogen compound 

biosynthetic process (negative correlation); and protein targeting (negative correlation) (Figure 5.5D). 

Similar clusters of the top hits were observed for transcripts and peptide fragments data (Figure 5.6), 

suggesting that the top hits, rather than being a random collection of genes, represent interconnected 

nodes in regulatory networks and pathways.  
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Figure 5.6. Protein-protein interaction network of top hits identified based on (A) transcripts 

and (B) peptide fragments. The interaction network is based on STRING database (evidence 

view, high confidence). Genes without interacting partners are omitted. Selected pathways are 

indicated by colored rings. 
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Mitochondrial abundance and composition of the strains 

Since the results suggested a relative up-regulation of oxidative phosphorylation and aerobic 

respiration among the long-lived strains, we examined more closely the nature of such differences. 

First, the genomic reads of these strains (Skelly et al., 2013) were used to calculate average coverage 

of the mitochondrial DNA relative to that of the chromosomes (Table 5.1, Figure 5.7A), as a proxy for 

mitochondria copy number. While the relative coverage was highest in YJM381 (8.0) and lowest in 

YPS128 (3.0), the values were relatively constant for most of the strains (4.0—5.0) and there was no 

overall correlation with longevity (Pearson correlation p value = 0.31 with Max RLS and 0.53 with 

Mean RLS). Moreover, Western blotting confirmed the similar expression of a mitochondrial marker 

protein Por1 in these strains (Figure 5.7B). In addition, the doubling times in glycerol media were also 

similar (100-120 min for most of the strains, with exception of >180 min for YS2, DBVPG1373, and 

Y55 strains; Figure 5.7C), suggesting the longevity variation across these strains could not be simply 

explained by total mitochondrial content or number. 

However, when we examined the top hits based on mean peptide values (Table 5.2), a trend 

emerged. Approximately 1/3 of these peptides were related to mitochondria, with characteristic 

distribution patterns across the strains depending on their lifespans (Figure 5.8). For example, the 

longer-lived strains generally contained higher levels of proteins belonging to pyruvate 

dehydrogenase complex (PDH complex), Complex III, Complex IV, mitochondrial ATP synthase, 

inner membrane ADP/ATP carrier, as well as mitochondrial ribosomal proteins. On the other hand, 

long-lived strains had lower relative levels of outer membrane translocases, mitochondrial 

chaperonins, and certain metabolic enzymes (Figure 5.8B). The results suggest that the mitochondrial 

metabolism may vary widely across the strains according to their longevity. The longer-lived strains 

seem to enhance the electron transport chain and oxidative phosphorylation capacity, whereas the 

shorter-lived strains place more emphasis on protein folding and outer membrane transport. While the 

biological implications underlying these observations need to be further explored, the results show 

that distinct mitochondrial composition is associated with different yeast strains, and such patterns 

agree well with the observed lifespan variation.  
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Figure 5.7. Analysis of mitochondria across the strains.  

(A) Relative coverage of the chromosomes and mitochondria DNA. The upper panel shows the 

relative coverage for each of the chromosomes as well as mitochondria DNA (mean coverage 

across the chromosomes for each strain is set as 1.0). Each bar represents one chromosome in one 

strain. The strains are ordered by their mean replicative lifespan. The lower panel shows the 

enlarged view for mitochondria DNA.  

(B) Western blot shows the strains contain similar amount of mitochondria. POR1 (coded by 

YNL055C): mitochondrial porin (voltage-dependent anion channel).  PGK1 (coded by YCR012W): 

3-phosphoglycerate kinase.  

(C) Mean doubling time in glycerol media. The error bars indicate standard error.   
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Figure 5.8. Mitochondrial respiratory composition varies across the strains according to 

lifespan.  

(A) Mean replicative lifespan of strains. Strains are ordered according to their mean lifespan.  

(B) Levels of certain proteins correlate with lifespan. The mean values of the selected proteins 

(related to mitochondrial function) are shown.  

 (C) Effect of growth on a respiratory substrate on lifespan. Replicative lifespan of 10 strains 

was tested on yeast peptone glycerol (3% YPG) plates and expressed as mean (left) and maximum 

(right) replicative lifespan. Except for the three long-lived outlier strains (YJM981, YJM975, and 

Y12), all strains either increased or did not change lifespan when their growth substrate was 

switched from glucose to glycerol.. 
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Comparison of related long-lived and short-lived strains 

A number of our strains (YJM978, YJM981, YJM975, DBVPG1373, NCYC361, and YS2) 

are closely related to each other phylogentically (Figure 5.1A), but differ significantly in replicative 

lifespan (Figure 5.1B). In particular, they may be grouped into long-lived (YJM981, YJM975, and 

DBVPG1373) and short-lived (YJM978, NCY361, and YS2). If our findings above were valid, then 

we should observe similar sets of genes and pathways differentially expressed between these two 

groups. The analysis showed that the genes involved in “hexose metabolic process”, “glucose 

metabolic process”, and “glycolysis” were expressed highly in the long-lived strains, whereas those 

involved in “organic acid biosynthetic process”, “amino acid biosynthesis”, and “cofactor binding” 

were expressed at relatively low levels. Compared with the pathways we identified above, the genes 

involved in oxidative phosphorylation and aerobic respiration did not emerge as top hits, and there 

were not as many proteins related to mitochondria among these 6 strains. This is likely because all of 

these strains prefer fermentation over aerobic respiration (Figure 5.3B), and they already share similar 

mitochondrial composition profiles (Figure 5.8B). Among the strains designated as YJM are clinical 

isolates and their adaptation to longevity appears to be different from other strains. For example, 

YJM975 and YJM981 are long-lived, but their mitochondrial patterns are similar to the short-lived 

strains. Perhaps, their longevity is based on lineage-specific features that are not shared by other long-

lived isolates. Nevertheless, among the long-lived strains we observed lower levels of expression of 

genes and proteins involved in biosynthetic processes (most of which were cytoplasmic), in 

agreement with our observations based on the 22 strains. This suggests that long lifespan can also 

arise without substantially altering the mitochondrial composition, although the reduction in 

biosynthesis seems to be a common feature.  
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DISCUSSION 

Availability of high quality genome sequence of Saccharomyces cerevisiae has made yeast an 

attractive model for dissecting complex traits associated with various phenotypes. Comparative 

genomics across multiple natural yeast isolates enabled the identification of extensive natural genetic 

variation at the nucleotide polymorphism (SNP) level and the elucidation of genotype to phenotype 

relation in several traits (Liti and Louis, 2012). Here, we ask: can similar strategies be applied to 

understand the common determinants of aging and longevity?  

Using high throughput omics data, we examined 22 yeast natural isolates, which were found 

to vary over 10 fold in RLS. These isolates occupy diverse ecological niches and face different 

evolutionary pressures, so their natural lifespan variation must be encoded in their respective 

genomes. However, it has been challenging to characterize the cumulative effect of multiple alleles on 

a phenotype, especially if the underlying process involves a complex gene network. Alternatively, one 

may look at variation in transcriptome and proteome and correlate them and the associated pathways 

with the phenotypic traits, since the genotypic variation should be reflected in the expression variation 

in order to create the associated phenotypic differences (Brem et al., 2005). 

To identify a link between transcript variation and lifespan, we performed phylogenetic 

regression and identified genes correlating with RLS, some of which were previously implicated in 

longevity regulation. Our pathway analysis showed that the long-lived strains tend to up-regulate 

oxidative phosphorylation, aerobic respiration, and ion transport; and down-regulate transcription, 

splicing, glycolysis and various biosynthetic processes, most notably amino acid synthesis. In 

particular, the variation in mitochondrial respiratory composition of these strains agrees well with 

their differences in lifespan. Mitochondria are at the heart of cellular metabolism and energy 

production, and increased mitochondrial respiratory capacity has been linked to longevity (Bonawitz 

et al., 2007; Pan and Shadel, 2009). We hypothesize that many of these natural isolates reside in the 

environments with low fermentable carbon sources, so that they undergo diauxic shift and metabolize 

respiratory carbon sources. Shifting from fermentable (glucose) to respiratory carbon sources is 

known to extend both replicative and chronological lifespan in yeast (Delaney et al., 2011). 
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Genetic variation responsible for lifespan differences may also affect metabolite levels and 

morphology. Among the examined metabolites, glutamine and asparagine showed strong negative 

correlation with RLS, which is consistent with the known inhibition of TOR activity and extension of 

chronological lifespan by removing glutamine or asparagine from yeast media (Powers et al., 2006) 

and extension of RLS by treating cells with methionine sulfoximine (Kaeberlein et al., 2005). In terms 

of cell morphology, a number of nuclear features such as brightness, roundness and distance to bud tip 

showed significant negative correlation with RLS, whereas “fitness in nucleus C” correlated 

positively with longevity. Interestingly, longer-lived strains tend to possess smaller mother cell 

volume (Figure 5.9), indicative of a potential compromise between mother cell size and lifespan, as 

has been previously observed for long-lived cells treated with ibuprofen (He et al., 2014). In 

agreement, inverse correlation between cell size and lifespan has been observed in yeast previously 

(Yang et al., 2011). Thus, here too, natural changes in a phenotype can be linked with longevity 

interventions and maybe used as aging biomarkers. 

 

 

 
Figure 5.9. Variation of (A) mean replicative lifespan and (B) maximum replicative lifespan 

according to mother cell size. p values refer to ANOVA test comparing 10 µm2 mother cells 

against 11-14 µm2 mother cells. Overlapping points are jittered for visualization. 
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 It should be noted that our method is limited to identifying the genetic and metabolic 

processes that show concerted changes in relation to longevity across these 22 strains, which are more 

likely to be generalizable and do not depend on single or a few strains. On the other hand, an 

exceptionally long-lived or short-lived strain can also have arisen due to certain strain-specific 

changes that are not shared by other isolates, and such changes may be missed by our method. 

Comparison among the 6 related long-lived and short-lived strains suggests there may be more than 

one way to achieve long lifespan, and it will be useful to examine strains across different evolutionary 

distances to identify the common features. 

To our knowledge, this is the first report that analyzes inter-strain natural diversity of RLS at 

the population level using high throughput data. Natural isolates occupying diverse ecological niches 

may face different selection pressures and have evolved to adjust their gene expression, metabolism, 

longevity, and reproduction to ensure survival and propagation (Spor et al., 2009). While evolution 

can sometimes provide different solutions to the same challenge (Romano et al., 2010), our data 

suggest a consistent set of genes and pathways are responsible for modulating the lifespan trait across 

a broad diversity of wild yeast isolates. 

Finally, it has been unclear whether the previous findings of various longevity regulator genes 

identified in the laboratory setting could be translated to the natural environment. A possibility is that 

these lifespan-extending interventions come at the expense of fitness. For example, many longest-

lived C. elegans laboratory mutants tend to develop and move slowly and often show reduced 

fecundity, so they will probably be eliminated quickly for lack of competitive advantage in the wild. 

Consistent with this, 65% of long lived single gene deletion mutants in yeast demonstrated 

significantly reduced fitness compared to isogenic wild type cells (Delaney et al., 2011). Our results 

show that natural changes in lifespan need not compromise fitness, as longer-lived yeast isolates are 

presumably well adapted to their respective ecological niches. In addition, our analysis is unbiased 

with regard to the genes and pathways involved in lifespan control and supports a possibility that 

multiple correlates cumulatively contribute to the longevity phenotypes. Specifically, we found that 

the ability of yeast cells to rely more heavily on respiration and repress their anabolic programs, even 

under conditions of glucose excess, are among the key adaptations that lead to increased lifespan. 
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Importantly, since CR and TOR signaling are also known to extend lifespan by activating respiration 

and inhibiting biosynthetic processes, these data show that natural plasticity of yeast lifespan is 

shaped by pathways that both impose little cost on fitness and are amenable to dietary intervention. 

Thus, environment may be a trigger for changes associated with increased lifespan that are then fixed 

in the genomes. 
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EXPERIMENTAL PROCEDURES 

Yeast strains 

Diploid natural isolates of S. cerevisiae were obtained from the Sanger Institute and are 

summarized in Table 5.1. These strains are well-characterized (Bergstrom et al., 2014; Liti et al., 

2009). The diploid laboratory strain BY4743 was purchased from ATCC. 

Replicative lifespan assay 

For each strain, cells were freshly grown on YPD plates prior to dissections. Several colonies 

were streaked onto new YPD plates using pipette tips. After overnight growth, 40-50 dividing cells 

were lined up. Newborn daughter cells were chosen for RLS assays after the first division using a 

micromanipulator. Plates were incubated at 30 °C between dissections and left at 4 °C during night. 

All RLS assays were performed in standard YPD plates with 2% glucose as previously described 

(Steffen et al., 2009). For each natural isolate, at least two independent assays were performed. Each 

assay contained 20-40 mother cells. 

Phenotypic data 

Growth rates were determined using a Bioscreen C MBR machine by analysis of optical 

density in the OD420-580 range as previously described in combination with the YODA Software 

package (Olsen et al., 2010). The data on transcripts, peptides, metabolites and morphology were 

downloaded from Yeast Resource Center (http://www.yeastrc.org/g2p/download.do). Values 

corresponding to the 22 strains were extracted; metabolite data were not available for 378604X. 

Metabolites with missing values in more than one strain (other than 378604X) were discarded; the 

remaining missing values (6 out of 107 metabolites) were imputed based on 10 nearest neighbors. For 

comparison across the phenotypic data, the values were standardized across the strain by setting mean 

= 0 and standard deviation = 1. In addition, for genes represented by multiple peptides, we calculated 

the mean standardized values to perform the regression. 

Principal component analysis (PCA) 

PCA was performed on standardized values using R package “stats” (R Development Core 

Team, 2013). To identify the underlying pathways, the factors in each of the first three principal 
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components (PCs) were ranked by their contributions, and pathway enrichment analysis was 

performed on the top 10% factors using DAVID after correcting for background. 

Phylogenetic regression by generalized least square 

See Chapter 2. The cut-off for top hits was p value  < 0.05 in at least two RLS measurements. 

Relative coverage of mitochondrial DNA 

Genomic reads of strains examined in our study were downloaded from Yeast Resource 

Center and mapped to reference genome of Saccharomyces cerevisiae strain S288c. The average 

coverage per base across the chromosomes (excluding positions 45,000 to 50,000 of chromosome 

XII) was calculated using R package “ShortRead” for each strain. The relative coverage of 

mitochondrial DNA was expressed as the ratio of per-base coverage of mitochondrial DNA to per-

base coverage of chromosomes. 

Differential expression between long-lived and short-lived groups.  

Six closely related strains were grouped into long-lived (YJM981, YJM975, DBVPG1373) 

and short-lived (YJM978, NCY361, YS2). Differential expressions of the phenotypic data were 

calculated using R package “limma” (R Development Core Team, 2013). 

Mitochondrial protein expression 

Logarithmically growing cells (5 ml and OD600=0.6) were harvested and incubated in 150 µl 

extraction buffer (1.85 mM NaOH and 2% β-mercaptoethanol) on ice for 10 min. Then, 150 µl of 

50% TCA (trichloroacetic acid) was added and incubated for 30 min on ice. After incubation, the cells 

were pelleted and supernatant aspirated. After 30 min of air drying, the pellets were heated at 60oC in 

SDS loading buffer and 4 µl of each sample was analyzed by SDS-PAGE. To examine the expression 

of a mitochondrial protein, Western blotting was carried out with antibodies against mitochondrial 

outer membrane protein Por1 (Abcam). The membranes were stripped and developed with antibodies 

against phosphoglycerate kinase (Pgk1) (Life technologies) as an internal loading control. 
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ABSTRACT 

Lifespan varies dramatically among species, but the biological basis is not well understood. 

Previous studies in model organisms revealed the importance of nutrient sensing, mTOR, 

NAD/sirtuins and insulin/IGF1 signaling in lifespan control. By studying the life history traits and 

transcriptomes of 14 Drosophila species differing more than 6 fold in lifespan, we explored 

expression divergence across these flies and identified genes and processes that correlate with 

longevity. These longevity signatures suggested that longer-lived flies up-regulate fatty acid 

metabolism, down-regulate neuronal system development and activin signaling, and alter dynamics of 

RNA splicing. Interestingly, there was significant overlap between the genes correlating with natural 

lifespan and those found to influence lifespan in model organisms. Moreover, these gene expression 

patterns resembled those of flies under dietary restriction and several other lifespan-extending 

interventions. The data suggest that natural variation in longevity across species can be represented by 

gene expression patterns and is achieved via pathways amenable to dietary intervention. 
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INTRODUCTION 

Since the early 20th century, fruit flies have remained a vital tool in cell biology, genetics, 

development, and evolution. While the best known early example is probably the use of Drosophila 

melanogaster by Thomas H. Morgan to elucidate the chromosomal theory of inheritance, other 

species such as D. pseudoobscura and D. virilis have long been used to study evolution and speciation 

(Markow and O'Grady, 2007). The entire genus Drosophila contains over 2000 described species that 

occupy diverse ecological niches such as forests, deserts, and cosmopolitan areas (Markow and 

O'Grady, 2005; Schnebel and Grossfield, 1983). With the recent completion of full genome sequences 

of 12 Drosophila species (Clark et al., 2007), researchers are able to explore various aspects of their 

biology in much greater depth. Examination across multiple evolutionarily related lineages can reveal 

insights on the unique biology of flies, as well as new themes and biological mechanisms that apply 

across diverse life forms. 

Given their relatively short life cycle, fruit flies are particularly suitable for studying 

longevity and aging. Under laboratory settings, the lifespan of D. melanogaster has been successfully 

increased by genetic manipulations (Clancy et al., 2001; Hwangbo et al., 2004; Kapahi et al., 2004; 

Lin et al., 1998; Orr and Sohal, 1994; Parkes et al., 1998; Sun et al., 2002; Tatar et al., 2001), dietary 

interventions (Chapman and Partridge, 1996; Grandison et al., 2009; Lee et al., 2014; Magwere et al., 

2004; Mair et al., 2003; Min and Tatar, 2006), and pharmacological treatments (Bjedov et al., 2010; 

Danilov et al., 2013; Wang et al., 2013). These findings are similar to those reported in other model 

organisms and highlight the important role of nutrient sensing, mTOR, NAD/sirtuins, insulin/IGF1 

signaling pathways and other systems in lifespan control (Fontana et al., 2010; He et al., 2014).  

Lifespan, weight, time to maturity and other life history traits naturally differ across various 

Drosophila species as the result of millions of years of natural selection, drift and adaptation. Since 

the divergence from a common ancestor, Drosophila lifespan has increased along certain lineages but 

decreased in others (Schnebel and Grossfield, 1983), indicating that longevity can be modulated in 

both directions on the evolutionary time scale. The heritability and stability of species lifespan across 

generations indicates a genetic basis for the longevity determinant(s). Furthermore, the species 
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naturally differing in lifespan are fit and well adapted to thrive in their respective ecological niches, 

whereas many long-lived model organisms produced in the laboratory setting by genetic or dietary 

interventions are often less robust, suggesting that nature has managed to modulate longevity without 

compromising fitness. 

By identifying the genes whose expression levels correlate with lifespan across the 

Drosophila lineage, one may obtain clues about the pathways involved and ultimately the 

mechanisms through which nature modulates longevity. Such gene expression patterns may also be 

compared with known lifespan-extension strategies to identify commonality in their effects. Here, we 

used 14 Drosophila species spanning 5 taxonomical groups and more than 30 million years of 

evolution, examining their lifespan, body mass, development time, and gene expression profiles. We 

explored the relationships among various life-history traits, identified the pathways that diverged 

significantly across these species, and observed the role of stabilizing selection in gene expression 

variation. We also identified the genes and pathways with significant positive or negative correlation 

to longevity, after taking into account the influence of phylogeny and body mass differences. Finally, 

we analyzed our list of genes against previously published lifespan extension data, offering various 

insights into regulation of longevity. 
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RESULT 

Life history traits in Drosophila  

The 14 species surveyed in this study fall into two subgenera, Drosophila and Sophophora, 

which diverged ~30 million years ago (Figure 6.1, Table 6.1). Subgenus Drosophila is represented by 

D. virilis and D. mojavensis, which together form the virilis-repleta radiation (Markow and O'Grady, 

2007). Within subgenus Sophophora, D. melanogaster and eight related species belong to the 

melanogaster species group, whereas the other two species groups (saltans and willistoni) are 

represented by one to two members. The flies within the melanogaster species group can be classified 

further into melanogaster subgroup and other subgroups (Figure 6.1). 

We first characterized lifespan, body mass, and developmental time of these flies. D. virilis 

was morphologically distinct, largest in size (almost 2 grams), and longest-lived (mean lifespan: male 

52.8 days; female 62.3 days), whereas D. sechellia, D. yakuba, and D. bipectinata were among the 

shortest-lived (mean lifespan 8-16 days) and relatively small (0.5-0.8 grams) (Figure 6.2A and Table 

6.1). For most of the other species, the mean lifespan ranged between 20 and 40 days, consistent with 

the literature records (Schnebel and Grossfield, 1983). Within each species, female flies were also 

generally larger in size than male flies (Table 6.1). When their body weights were plotted against 

median lifespan on log-scale, a strong positive correlation was observed (Figure 6.2B; Pearson 

correlation coefficient=0.59, p value=8.7×10-4). Furthermore, longer-lived species also developed 

more slowly (Figure 6.2C), suggesting the relationship between longevity and various life history 

traits previously observed in mammals and birds (Fushan et al., 2015; Speakman, 2005) also applies 

across the Drosophila species. 
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Figure 6.1. Drosophila species surveyed in the current study. The species are coloured by 

taxonomical grouping (abbreviations of species names shown in parentheses). The tree is based on 

amino acid sequences of orthologs and calibrated using previous estimates (Russo et al., 1995). 

Images of flies (all males) were obtained from Flybase (copyright: Nicolas Gompel). 
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Figure 6.2. Life history traits of examined species. 

(A) Mean lifespan. Error bars indicate 95% confidence intervals (C.I.) by Kaplan-Meier method. 

(B) Adult weight and (C) developmental time correlate positively with median lifespan. Each 

point represents one species. 
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Gene expression variation reflects evolutionary relationships 

To examine the expression variation underlying the differences in life history traits, we 

subjected young adult male flies of each species to whole body RNA sequencing. After normalization 

across species and filtering out genes with low expression, log-RPKM values were calculated for 

6510 gene ortholog sets to represent the expression levels. Overall, the expression profiles were 

similar to one another, with Spearman correlation coefficients of species pairs ranging between 0.68 

and 0.90.  

To determine whether the evolutionary relationship of these species could be recapitulated by 

their expression variation, gene expression phylograms were constructed using a distance matrix of 1 

minus Spearman correlation coefficients and the neighbor-joining method (Brawand et al., 2011; 

Clark et al., 2007). The resulting topology was largely consistent with their phylogeny (Figure 6.3A). 

For example, there was a clear separation between subgenera Drosophila and Sophophora; all 9 

species of the group melanogaster fell under a single clade; and the 2 species of the saltans group also 

clustered with each other. Most of the nodes received strong support in bootstrapping, indicating the 

segregation pattern was evident in many genes. However, D. biarmipes was placed within the 

subgroup melanogaster, which might reflect variation in biological sampling or actual deviation from 

phylogeny.  

Principal Component Analysis also showed that the species clustered according to their 

lineages (Figure 6.3B), with the first three principal components (PCs) accounting for 45% of the total 

variance. To identify the biological processes that diverge significantly across these species, the genes 

were ranked by their contributions to each PC and pathway enrichment analysis was performed on the 

top 5% candidates in the first three PCs using DAVID (Huang da et al., 2009a, b). The enriched 

KEGG and GO terms in the PC1 included “oxidative phosphorylation” (KEGG), “respiratory electron 

transport chain” (Biological Processes), “NADH dehydrogenase activity” (Molecular Function), 

“ribosomal subunits” (Cellular Compartment), “structural constituent of ribosome” (MF), and 

“microtubule-based process” (BP). In PC2, we observed enrichment of “regulation of transcription” 

(BP), “positive regulation of biosynthetic process” (BP), “transcription factor complex” (CC), and 
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“ovarian follicle cell development” (BP). In PC3, “vitamin binding” (MF), “glycine, serine and 

threonine metabolism” (KEGG), “cellular amino acid biosynthetic process” (BP) and “oligopeptide 

transport” (BP) were enriched. The results suggest that the physiological, morphological, and life 

history diversities among these species may be attributed to their differences in transcription, 

translation, mitochondrial functions, and metabolic processes. 
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Figure 6.3. Gene expression reflects evolutionary relationships. 

(A) Phylogram constructed based on gene expression. D. virilis was used as out-group. 

Reliability of the branching pattern was assessed by 1000-time bootstrap across the genes 

(bootstrap values next to the nodes; green: ≥0.9; yellow: 0.6-0.9). 

(B) Principal Component Analysis. Proportion of variance explained by each principal 

component (PC) is indicated in parentheses. 

(C) Gene expression divergence reaches a plateau. Each triangle represents a pair of species. The 

red curve represents the best-fit line based on the model previously described (Bedford and Hartl, 

2009), with the following parameters: selection parameter α=0.11 (95% C.I.: 0.10–0.11); drift 

parameter σ2=0.22 (95% C.I.: 0.21–0.24) (Experimental Procedures). Orange curves represent the 

best-fit lines when each individual species was removed, one at a time (α ranged between 0.08 and 

0.14). 

(D) Amino acid substitutions per site increase faster in Drosophila than in mammals. Amino 

acid substitutions per site between species pairs were calculated based on concatenated, gap-free 

alignment of orthologs.  
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Expression variation is best described by stabilizing selection 

Since both life history traits and gene expression patterns are shaped by forces of evolution, 

we next examined the evolutionary models underlying expression variation across these species. In 

the absence of selective pressure, variation between a pair of species is expected to increase linearly 

with divergence time and can be modeled by a Brownian Motion (BM) process (Felsenstein, 1985). 

This has been observed for transcription of many genes in mammals (especially among primates), 

supporting a neutral model of evolution (Brawand et al., 2011; Khaitovich et al., 2004). However, 

while the genetic variation also increases with divergence time in Drosophila, previous studies based 

on genomes and transcriptomes observed that a large fraction of the genes in fruit flies were likely 

subjected to stabilizing selection (Bedford and Hartl, 2009; Clark et al., 2007; Kalinka et al., 2010; 

Rifkin et al., 2003). In particular, the increase in gene expression divergence between species pairs 

eventually reaches a plateau (Bedford and Hartl, 2009), which may be better described by Orstein-

Uhlenbeck (OU) process (Butler and King, 2004; Martins and Hansen, 1997).  

In agreement, we observed a non-linear relationship with a plateau phase when plotting the 

average expression variances of the Drosophila species pairs against their divergence time (Figure 

6.3C). Fitting the data with a previously published equation (Bedford and Hartl, 2009) (Experimental 

Procedures), we confirmed the selection parameter α was significantly greater than 0 (α=0.11; 95% 

confidence interval: 0.10–0.11), and the observed relationship did not depend on any particular 

species (α ranged between 0.08 and 0.14 when each species was removed, one at a time). Data 

simulation also suggested that this trajectory resembled the pattern produced under an OU model 

more than that produced under a BM model, or it could be a mixture of both models with greater 

contribution from OU (Figure 6.4A). For comparison, a similar analysis was performed using the 

brain and liver data of 9 mammalian species (Brawand et al., 2011), but the plateau feature was not as 

strong (Figures 6.4B and 6.4C). Importantly, in Drosophila the average expression variance became 

saturated for species pairs that diverged more than 30 million years ago, yet in mammals the 

saturation was not evident among species that diverged within the last 100 million years. Indeed, 

when amino acid substitutions per site between species pairs were plotted against divergence time, 
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Drosophila produced a much steeper slope than the mammals (Figure 6.3D). This likely reflects the 

notion that the evolutionary divergence covered by the genus Drosophila equals or exceeds that of the 

entire mammalian radiation, probably due to the short generation time of fruit flies (Clark et al., 2007; 

Stark et al., 2007). 

To examine the evolutionary models at the individual gene level, phylogenetic signals were 

measured using two metrics, Pagel’s λ (Pagel, 1999) and Blomberg’s K (Blomberg et al., 2003). 

These metrics are usually high for genes that follow BM model, but can be weakened by processes 

such as stabilizing selection. We found that the phylogenetic signals were low for many genes (Figure 

6.4D; median values: λ=0.03, K=0.41), suggesting most of the variations observed were not fully 

accounted for by the BM model. In addition, when we compared the goodness of fit of individual 

gene expression under BM model against OU models with up to three optima (Butler and King, 2004; 

Kalinka et al., 2010), we found over 85% of the genes fitted better with one of the OU models than 

with the BM model (Figures 6.4E and 6.4F), similar to the percentage previously observed (Kalinka et 

al., 2010). Together, these data suggest that stabilizing selection likely plays an important role in 

influencing the gene expression patterns in Drosophila and may also affect the evolution of life 

history traits.  
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Figure 6.4. Expression divergence and evolutionary model.  

(A) Simulation under Orstein-Uhlenbeck (OU) and Brownian Motion (BM) models. Data were 

simulated for 6000 genes using the phylogenetic tree in Figure 6.1, as well as the α (for OU only) 

and σ2 (for both BM and OU) values estimated in Figure 6.3C.  

Average expression variance in (B) brain and (C) liver of 9 mammalian species. The species are 

human, gorilla, bonobo, chimpanzee, orangutan, macaque, mouse, opossum, and platypus. Estimated 

parameters: (B) α<10-5 (95% C.I.: 10-5–10-5), σ2=0.0092 (95% C.I.: 0.0091–0.0092); (C) α<10-5 (95% 

C.I.: 10-5–10-5), σ2=0.0087 (95% C.I.: 0.0086–0.0087). Red lines indicate the best-fit lines using all 

the species. Orange lines indicate the best-fit lines when one of the species is excluded. 

(D) Pagel’s λ and Blomberg’s K were small in many genes. Right side of the dotted lines indicates 

the genes with strong phylogenetic signals (i.e. Pagel’s λ > 0.9 or Blomberg’s K > 1). 

(E) Gene expression fitted by OU models with up to 3 optima. The phylogenetic tree is the same 

as Figure 1, with the tip labels omitted.  

(F) Percentage of genes best fitted by each of the models. The goodness of fit of the models was 

determined by likelihood ratio test. 
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Gene expression and longevity 

To identify the genes that correlate with species longevity, the phylogenetic generalized least 

squares approach was employed to adjust for the evolutionary relationship (Felsenstein, 1985; 

Freckleton et al., 2002; Grafen, 1989; Martins and Garland, 1991) (Chapter 2). Regression was 

performed between expression values and male median lifespan (“ML”), or male median lifespan 

with adult weight as covariant (“ML-aw”). Inclusion of adult weight in the equation accounted for the 

potential influence of body mass. Different models of trait evolution were tested and the best-fit 

model was then selected based on maximal likelihood (Experimental Procedures). Given that D. 

virilis was much larger in size and longer-lived than the other species, we also performed regression 

after excluding the D. virilis data. In addition, we examined the data after introducing 10% variation 

to the median lifespan values to account for possible inaccuracy in measurements (Experimental 

Procedures). 

For regression with ML, we found 383 out of the 6510 genes with significant regression slope 

(p value < 0.05), among which 195 were in positive correlation and 188 were in negative correlation. 

85% of them were unaffected by the introduction of variation in lifespan measurement, and 73% still 

remained significant when D. virilis was excluded. When the effect of body mass was accounted for 

(ML-aw), we obtained a shorter list of 172 top genes, with 80 in positive and 92 in negative 

correlation. Over 77% and 82% of these genes remained statistically significant after introducing 

variation and excluding D. virilis, respectively (Table 6.2). 

To understand the biological pathways represented by these genes, enrichment analysis was 

performed using DAVID separately for those with positive and negative correlation, after adjusting 

for the full list of orthologs as background. Among those with positive correlation with ML, the top 

annotation clusters consisted of GO terms related to lipid synthesis and metabolism, including 

“organic acid biosynthetic process” (BP), “fatty acid metabolic process” (BP), “fatty acid beta-

oxidation” (BP), and “lipid particle” (CC). Another group of genes were related to cofactors, such as 

“cofactor metabolic process” (BP), “cofactor biosynthetic process” (BP), “iron ion binding” (MF), 

“tetrapyrrole binding” (MF), and “heme binding” (MF). KEGG pathways “glyoxylate and 
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dicarboxylate metabolism” and “limonene and pinene degradation” were also enriched. When the 

influence of body mass was removed, there were fewer top genes and the enriched terms included 

“aspartate oxidase activity” (MF) and “disaccharide biosynthetic process” (BP) (Table 6.2). On the 

other hand, for genes with negative correlation to ML, significant enrichment was observed for 

several developmental processes, especially those related to the nervous system. The top terms 

included “neuron recognition” (BP), “synaptic transmission” (BP), “cell projection morphogenesis” 

(BP), “salivary gland development” (BP), and “visual behaviour” (BP). In addition, gene expression 

and post-translational modification of proteins were implicated, such as “protein-DNA complex” 

(CC), “DNA binding” (MF), “protein amino acid phosphorylation” (BP), and “protein kinase activity 

(MF). After accounting for body mass, enrichment was still observed for the developmental and 

behavioural processes, including “neuron recognition” (BP), “cell recognition” (BP), “axongenesis” 

(BP), “regulation of synapse structure and activity” (BP), and “response to light stimulus” (BP). 

Additionally, a number of the top genes were involved in “RNA processing” (BP), “nucleotide 

binding” (MF), “ATP binding” (MF), and “cellular macromolecular complex assembly” (BP), 

suggesting the potential regulation of alternative splicing (Table 6.2). 

 We visualized protein-protein interactions among top hits using STRING (Jensen et al., 

2009) and found the network significantly enriched in interactions (p value =3.9×10-13; Figure 6.5). 

Among the genes positively correlating with lifespan, those found in lipid metabolic processes or lipid 

particles clustered together (Figure 6.5). For example, Thiolase, Acox57D-d (acyl-CoenzymeA 

oxidase at 57D distal), and CG6543 (enoyl-CoA hydratase) are involved in fatty acid beta-oxidation, 

and two of them (Thiolase and CG6543) code for mitochondrial matrix proteins (St Pierre et al., 

2014). Taz and CG4585 are also involved in the metabolism of phospholipids. Several studies in 

Drosophila reported links between fatty acid oxidation and longevity control: flies overexpressing 

genes involved in beta-oxidation were longer-lived and more resistant to oxidative stress induced by 

paraquat treatment (Lee et al., 2012), while knockout of Thiolase significantly shortened lifespan 

(Kishita et al., 2012). Another smaller cluster consisted of genes implicated in cofactor binding and 

metabolism of small organic molecules, including Dhfr (dihydrofolate reductase), CG18003 

(glycolate oxidase), Upgo (uroporphyrinogen decarboxylase), CG5854 (contains an NAD(P)-binding 
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domain), and CG31673 (glyoxylate reductase activity). In addition, some of the top genes were 

previously found to influence longevity in flies. For example, cyclin-dependent kinase Cdk5 requires 

an activating subunit (p35) for its full biological function, and flies with p35 mutation had 

significantly shortened lifespan and age-dependent loss of motor function (Connell-Crowley et al., 

2007). Another gene was Gclm, which codes for the modulatory subunit of glutamate-cysteine ligase 

(GCL), the rate-limiting enzyme in de novo glutathione biosynthesis. Global overexpression of GCLm 

in flies extended the mean lifespan by 24%, and neuronal overexpression of the catalytic subunit 

(GCLc) increased mean and maximum lifespans by up to 50% (Orr et al., 2005). 

Many genes negatively correlating with lifespan were involved in nervous system 

development (Figure 6.5). Among them were several cell surface receptors and signaling molecules, 

such as Fas2, which codes for a cell adhesion protein Fasciclin 2 that interacts with semaphorine 

(Smad) and connectin to regulate axon fasciculation (Yu et al., 2000); babo, which codes for a type I 

activin receptor and regulates cell proliferation by stimulating Smad2-dependent pathways (Brummel 

et al., 1999); and shark, which codes for SH2 ankyrin repeat tyrosine-protein kinase and is required 

for dorsal closure during development (Fernandez et al., 2000). Also present were component of gap 

junction (ogre) and TGF-beta receptor (tkv). Down-regulation of activin signaling by forkhead 

transcription factor (FOXO) in muscle tissues of flies has been shown to improve muscle 

performance, reduce secretion of insulin peptides from brain, and extend lifespan (Bai et al., 2013). 

Flies with babo knockdown in muscle lived about 20% longer than wild type, and pathway analysis of 

FOXO gene targets revealed enrichment of processes involved in post-embryonic development, 

neuron differentiation, axongenesis, and regulation of transcription and growth (Bai et al., 2013), 

similar to the terms we observed here (Table 6.2). The low expression levels of development genes 

(especially those related to neuronal control) among the longer-lived species were consistent with 

their slower growth rates (Figure 6.2C). A study in mammals also revealed a significant negative 

correlation between species maturity time and amino acid levels in brain, whereas the relationship was 

not as strong in non-neuronal organs (Ma et al.). Another cluster included several genes affecting 

RNA polyadenylation (cleavage and polyadenylation specificity factor Cpsf160 and Cpsf73) and RNA 

splicing (e.g. CG6841, CG10333, CG6686, Ars2, CG7564, and l(2)35Df) (St Pierre et al., 2014). 
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Many of them were also involved in the nervous system development, as alternative splicing has very 

important roles in modulating neuronal maturation and functions (Li et al., 2007). 

 

 
Figure 6.5. Protein-protein interaction network among the top hits correlating with median 

lifespan. The interaction network is based on STRING database (evidence view). Genes without 

interacting partners are omitted. 

 

 

Table 6.2. (see attached Excel file) Genes with significant correlation to median lifespan (ML) 

and median lifespan with adult weight as covariant (ML-aw). “Best.Model” indicates the best-fit 

regression model; “Benjamini” indicates the p value adjustment for multiple testing (Benjamini and 

Hochberg, 1995); “p.val (excl D.virilis)” indicates the p values excluding the D. virilis data; “p.val 

(Variation 25 percentile)” and “p.val (Variation 75 percentile)” indicate the 25th and 75th percentile p 

values after adding ±10% variation to the median lifespan data. Enrichment analysis was performed 

using DAVID, separately for genes with positive and negative correlations. 
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Changes in gene expression drive changes in species lifespan  

Natural changes in gene expression observed across Drosophila may be related to both the 

direction of changes in these genes in response to changes in diet and environment, and the 

consequences of genetic manipulations in these genes in laboratory setting. To examine these 

possibilities, we searched GenAge and GenDR databases (de Magalhães et al., 2009; Plank et al., 

2012) to test if any of our longevity signature genes had been experimentally confirmed for 

association with aging or dietary restriction in yeast, flies, worms, and mice. Specifically, we checked 

whether the direction of correlation was in agreement with the longevity effects revealed by the 

experiments, i.e. genes showing positive correlation in our list should have pro-longevity and those 

showing negative correlation should be anti-longevity effects. Among the ML gene list, 18 genes 

were found in the database and 14 of them were in the expected direction of correlation; whereas for 

ML-aw, 4 out of the 6 genes had the expected direction (Table 6.3). Among these genes, all 

correlations in flies were in the correct direction; inconsistencies primarily involved the data in 

worms. However, even with these cross-species differences, the overall result was statistically 

significant (binomial p value = 0.011).  

We further compared our top genes against published microarray experiments in flies, in 

which changes in longevity were induced by dietary or genetic interventions (Table 6.4). Treatments 

included dietary restriction in different strains of D. melanogaster, overexpression of Sir2, mutation in 

OvoD1 (to repress egg maturation in females), knockdown of tumor suppressor p53, and ablation of 

corpora allata (the endocrine gland that generates juvenile hormone). Again, we checked whether the 

direction of correlation of our top genes was consistent with the up- or down-regulation observed in 

these studies. The data indicated that the top genes in ML and ML-aw both showed significant 

similarity to the lifespan-modification treatments (Table 6.4). Simulation confirmed that these results 

could not have arisen by chance. The data suggest that there are commonalities between the 

mechanisms that nature employs to vary lifespan across species, and those that have been 

experimentally verified to influence longevity in model organisms.  
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DISCUSSION 

Fruit flies have contributed significantly to our understanding of genetics and developmental 

biology and remain a vital tool in the studies on aging and longevity. While most experiments in the 

aging field have been conducted using single species, we hypothesized that the comparative analysis 

of closely related species with varying natural lifespan may offer unbiased information on longevity 

mechanisms. By studying life history traits and transcriptomes of 14 Drosophila species, we identified 

the pathways that diverge across these species and confirmed the role of stabilizing selection in 

influencing their expression patterns. Similar to mammals and birds, fruit flies exhibit the typical 

positive correlation among longevity, body mass, and development time. By identifying the genes that 

correlate with longevity across these species, we found that longer-lived species up-regulate genes 

involved in lipid metabolism and down-regulate those involved in neuronal system development and 

activin signaling. The dynamics of RNA polyadenylation and splicing also differed across the species. 

Interestingly, some genes that showed significant association with longevity in our study were also 

found to influence lifespan in other model organisms and showed the same direction of change as 

lifespan extension experiments in flies. The results suggest that the natural variation of lifespan across 

closely related species under the forces of evolution may have been achieved via pathways that are 

also influenced by dietary restriction or other interventions. The data suggest that our approach offers 

an unbiased way to uncover genes and processes whose changes lead to changes in lifespan. More 

generally, the findings suggest the molecular mechanisms by which nature alters species longevity. 

Finally, our data may serve as a starting point for experimental analysis of genes, processes, diets and 

pharmacologic interventions that mimic natural changes in lifespan, thereby exhibiting longevity 

modification effects.  
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EXPERIMENTAL PROCEDURES 

Fly stocks and husbandry 

14 Drosophila species, D. ananassae, D. austrosaltans, D. biarmipes, D. bipectinata, D. 

erecta, D. kikkawai, D. melanogaster, D. mojavensis, D. saltans, D. sechellia, D. simulans, D. virilis, 

D. willistoni, and D. yakuba, were purchased from UC San Diego Stock Center (La Jolla, CA, USA) 

(Table 6.1). Flies were maintained on corn meal food (85.7 g corn meal ‘Aunt Jemina’ (The Quaker 

Oats Company, Chicago, IL, USA), 50 ml golden A unsulfured molasses (Groeb Farms Inc, Onsted, 

MI, USA), 71.4 g Torula yeast (MP Biomedicals, Solon, OH, USA), 2.86 g p-hydroxybenzoic acid 

methyl ester (Sigma), 6.4 g agar (MoorAgar Inc, Loomis, CA, USA) and 5.7 ml propionic acid 

(Sigma) per litre water) and kept in a temperature-controlled incubator at 25 °C with 12-h light/dark 

cycle and ~60% humidity. Newly emerged flies were collected within 18 h at 18 °C, transferred to 

fresh corn meal food at density of 35 animals per vial, and allowed to mate for 1–2 days. Three-day-

old mated flies were collected using CO2, sorted by sex and then transferred to cages in the 

temperature-controlled incubator. Experimental flies were held on the designed diet and transferred to 

fresh vials without anaesthesia every 3 days. Dead flies were removed by aspiration and counted. 

Survival analyses were performed using R package “survival” (Kaplan and Meier, 1958; Therneau, 

2014).  

RNA sequencing 

Three-day-old male flies were placed in vials on the corn meal diet for 12 days, with three 

replica vials for each species. Fresh food was supplied every 3 days and dead flies were removed by 

aspiration. After 12 days, those flies were subject to total RNA extraction. RNA sequencing libraries 

were constructed using the Illumina mRNA-Seq Prep Kit and oligo(dT) magnetic beads were used to 

purify polyA containing mRNA molecules. mRNA was further fragmented and randomly primed 

during the first strand synthesis by reverse transcription and followed by second-strand synthesis with 

DNA polymerase I to create double-stranded cDNA fragments. Double stranded cDNA was subjected 

to end repair by Klenow and T4 DNA polymerases and A-tailed by Klenow lacking exonuclease 

activity. Ligation to Illumina Paired-End Sequencing adapters, size selection by gel electrophoresis 
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and then PCR amplification completed library preparation. The 200 bp paired-end libraries were 

sequenced using Illumina HiSeq according to the manufacturer's protocol. 

Ortholog set identification 

Ortholog sets across the species were identified by reciprocal best hits in BLAST. Briefly, we 

downloaded the genomes and annotation files for the species from Ensembl and NCBI and extracted 

all coding sequences (“Species CDS”). The genomes of D. austrosaltans and D. saltans were based 

on our unpublished data. As reference we extracted the longest open reading frame for each gene in 

D. melanogaster (“Dmel ORF”), after excluding those with multiple paralogs (i.e. genes with over 

80% identity over 70% of length) or highly repetitive sequences. Mega BLAST (Morgulis et al., 

2008) was performed to obtain reciprocal best hits between Dmel ORF and Species CDS. An ortholog 

set was declared if the orthologs were present in all 14 species. We confirmed our list had over 90% 

overlap with the curated ortholog list on Flybase (St Pierre et al., 2014) (which covered 9 of our 

species). To improve the quality of ortholog sequences, Trinity (Grabherr et al., 2011) was also used 

to de novo assemble transcriptomes from RNA-seq data. Poorly annotated Species CDS (e.g. those 

without proper start or stop codons) were replaced by Trinity transcripts where applicable and we 

ensured that the final list of orthologs contained at least 20% conserved blocks in multiple sequence 

alignment. The final ortholog sequences were mapped back to their respective genomes with 

GMAP(Wu and Watanabe, 2005) to generate customized GFF (General Feature Format) files. 

Data processing 

RNA-seq reads alignment was performed using TopHat (Trapnell et al., 2009) and read 

counting was performed using featureCounts (Liao et al., 2014). Ortholog sets with low expression 

(i.e. less than 3 counts in 3 or more species) were removed and counts were normalised by total 

library sizes with Trimmed Mean of M-values correction. The final list consisted of 6510 ortholog 

sets. The normalised counts were then converted to reads per kilobase per million mapped reads 

(PRKM) values and natural log transformed. For cross-species comparison, log-RPKM values of each 

ortholog set were standardised by setting mean as 0 and standard deviation as 1. Q-Q plot and 

Shapiro-Wilk test confirmed that normalcy was a valid assumption for 88% of the ortholog sets on 

log-scale. 
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Divergence time and phylogram 

Drosophila species divergence time was estimated based on previous estimates and ortholog 

amino acid sequences. Briefly, ortholog sequences were aligned with Clustal Omega v1.2.0 (Sievers 

et al., 2011) and concatenated gap-free with Gblocks v0.91 (Castresana, 2000). The tree was 

constructed using neighbour-joining method (Saitou and Nei, 1987) in Mega 6.06 (Tamura et al., 

2013) and calibrated using estimates of divergence time in the literature (Russo et al., 1995). The 

Drosophila expression phylogram was based on a distance matrix of 1 minus Spearman correlation 

coefficient and constructed by neighbour-joining method using R package “ape” (Paradis et al., 2004). 

Reliability of the branching pattern was assessed by 1000-time bootstrap across the genes. For the 

mammalian dataset (Brawand et al., 2011), the amino acid sequence alignments of 8 mammalian 

species (human, gorilla, chimpanzee, orangutan, macaque, mouse, opossum, and platypus; sequences 

for bonobo not available) were extracted from the 46-way multiple alignment in UCSC genome 

browser (Kuhn et al., 2013). Species divergence time was based on TimeTree database (Hedges et al., 

2006). 

Principal Component Analysis (PCA) and heat maps 

PCA was performed on standardized expression values using R package “stats” (R 

Development Core Team, 2013). To identify the underlying pathways, the genes in each of the first 

three principal components (PCs) were ranked by their contributions and pathway enrichment analysis 

was performed on the top 300 (about 5%) genes in each PC using DAVID (Huang da et al., 2009a, b) 

after correcting for background. To generate the heat map, the genes (columns) were ordered by 

contributions and the species (rows) were ordered by projection values. 

Expression divergence 

Expression divergence was measured as average expression variance in standardized 

expression values across all ortholog sets between species pairs. The points were fitted by the model 

previously described (Bedford and Hartl, 2009): 𝑦 =
𝜎2

2𝛼
(1 − 𝑒−2𝛼𝑥), where 𝑥 represents divergence 

time, 𝑦 represents expression divergence, 𝛼 represents strength of selection, and 𝜎2 represents 

strength of drift. It can be shown that (in the case of a pure BM model): lim
𝛼→0

𝑦 = 𝜎2𝑥. Optimal values 
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of parameters were estimated by least squares method. Confidence intervals (C.I.) were estimated by 

1000-time bootstrap. To test robustness of the relationship, individual species were removed one at a 

time and the remaining species were then subjected to the same analysis.  

Regression by generalized least square 

See Chapter 2. The cut-off for top hits was p value < 0.05. 

Test for robustness 

To confirm the robustness of the results, two methods were used. First, regression was 

performed by leaving out D. virilis (the most long-lived species) and computing p values using the 

remaining species. Second, median lifespan of species was randomly varied by ±10% (on log scale) 

and then used to compute regression p values. Simulation was performed 1000 times for each gene 

and the 25th and 75th percentiles of the p values were determined. This method imitated potential 

inaccuracy in our lifespan measurements. 

Comparison with GenAge/GenDR database and microarray data 

Our gene list was examined against GenAge/GenDR databases (de Magalhães et al., 2009; 

Plank et al., 2012) to determine how the longevity effects reported in model organisms relate to our 

gene dataset. To analyze microarray datasets, data were downloaded from Gene Expression Omnibus 

(GEO) database. Relevant comparisons of treatment versus control were selected and differentially 

expressed (DE) genes were identified using R package “limma” (Smyth, 2005). These DE genes were 

then compared with our list of top hits to determine if the direction of correlation was consistent. Two 

methods were employed to calculate p values. The first relied on binomial distribution, counting the 

number of match (i.e. same direction of correlation) and the number of mis-match (i.e. opposite 

direction of correlation), assuming equal probability of obtaining a match and a mismatch by chance. 

The second method relied on simulation, where the direction of correlation in our top list was shuffled 

randomly and compared with microarray experiments to calculate p values (by binomial distribution); 

this procedure was repeated 1000 times to generate an empirical distribution. The original p value was 

then compared to the empirical distribution. Both methods produced very similar results. 
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ABSTRACT 

The natural species lifespan across mammals differs by more than 100-fold, but the molecular 

signatures associated with such longevity differences are not yet fully understood. Cross-species 

analyses are also hampered by the inability to conduct these studies under controlled experimental 

settings. Here, we analyzed primary skin fibroblasts isolated from 16 species of mammals and 

maintained under identical conditions in cell culture. We further developed a pipeline for obtaining 

species-specific ortholog sequences, profiled gene expression by RNA sequencing and small 

molecules by metabolite profiling, and identified genes and metabolites correlating with species 

longevity. We found that cells from long-lived species up-regulate genes involved in DNA repair and 

glucose metabolism, down-regulate proteolysis and protein transport, and show high levels of amino 

acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The study 

suggests that fibroblast profiling captures differences in longevity across mammals at the level of 

global gene expression and metabolism and reveals pathways that may define these differences.  
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INTRODUCTION 

The maximum lifespan of mammalian species differs by more than 100-fold, ranging from ~2 

years in shrews to >200 years in bowhead whales (Tacutu et al., 2013). While it has long been 

observed that maximum lifespan tends to correlative positively with body mass and time to maturity, 

but negatively with growth rate, mass-specific metabolic rate, and number of offspring (Peters, 1986; 

Sacher, 1959; Western, 1979), the underlying molecular basis is only starting to be understood.  

One way to study the control of longevity is to identify genes, pathways, and interventions 

capable of extending lifespan or delaying aging phenotypes in experimental animals. Studies using 

model organisms have uncovered several important conditions, such as knockout of insulin-like 

growth factor 1 (IGF-1) receptor (Friedman and Johnson, 1988; Holzenberger et al., 2003; Tatar et al., 

2001), inhibition of mechanistic target of rapamycin (mTOR) (Harrison et al., 2009; Kenyon, 2010; 

Miller et al., 2014), mutation in growth hormone (GH) receptor (Coschigano et al., 2000), ablation of 

anterior pituitary (e.g. Snell dwarf mice) (Flurkey et al., 2002), augmentation of sirtuin family 

proteins functions (Chang and Guarente, 2013; Gomes et al., 2013; Mouchiroud et al., 2013; Wood et 

al., 2004), and restriction of dietary calorie intake (Guarente and Kenyon, 2000; Heilbronn and 

Ravussin, 2003; McCay et al., 1935; Weindruch et al., 1986). While many of these genes and 

pathways have been verified in yeast, flies, worms, and mice, the comparisons largely involve 

treatment and control groups of the same species, and the extent to which they explain the longevity 

variations across different species is unclear. For example, do the long-lived species have metabolic 

profiles resembling calorie restriction? Do they suppress IGF-1 or growth hormone signaling 

compared with the shorter-lived species? More generally, how the evolutionary strategies of longevity 

relate to the experimental strategies that extend lifespan in model organisms?  

To begin address these questions, a popular approach has been to compare exceptionally 

long-lived species with closely related species characterized by more common lifespan, identifying 

features associated with exceptional longevity. Examples include amino acid changes in Uncoupling 

Protein 1 (UCP1) and production of high-molecular-mass hyaluronan in the naked mole rat (Kim et 

al., 2011; Tian et al., 2013); unique sequence changes in IGF1 and GH receptors in Brandt’s bat (Seim 
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et al., 2013); gene gain and loss associated with DNA repair, cell-cycle regulation, and cancer, as well 

as alteration in insulin signaling in the bowhead whale (Keane et al., 2015; Seim et al., 2014); and 

duplication of the p53 gene in elephants (Abegglen et al., 2015). Again, it is important to ascertain 

whether these mechanisms are unique characteristics of certain exceptionally long-lived species, or 

they can also be extended to account for the general lifespan variation (Partridge and Gems, 2002). 

An extension of this approach has been cross-species analyses in a larger scale. For example, 

several biochemical studies across multiple mammalian and bird species identified some features 

correlating with species lifespan. Thus, longevity of fibroblasts and erythrocytes in vitro (Rohme, 

1981), poly (ADP-ribose) polymerase activity (Grube and Bürkle, 1992), and rate of DNA repair 

(Cortopassi and Wang, 1996) were found to be positively correlated with longevity, whereas 

mitochondrial membrane and liver fatty acid peroxidizability index (Pamplona et al., 2000; Pamplona 

et al., 1998), rate of telomere shortening (Haussmann et al., 2003), and oxidative damage to DNA and 

mitochondrial DNA (Adelman et al., 1988; Barja and Herrero, 2000) showed negative correlation. 

Recently, the advent of high throughput RNA sequencing (RNAseq) and mass spectrometry 

technologies has enabled the quantification of whole transcriptomes (Fushan et al., 2015), 

metabolomes (Ma et al., 2015b), and ionomes (Ma et al., 2015a), across multiple species and organs. 

These studies revealed the complex transcriptomic and metabolic landscape across different organs 

and species, as well as some overlaps with the changes observed in the long-lived mutants created in 

laboratory (Ma et al., 2015b).  

In this regard, while molecular profiling of mammals at the level of tissues may better 

represent the underlying biology, profiling in cell culture represents more defined experimental 

conditions and allows further manipulation to alter the identified molecular phenotypes. In this study, 

we examined the transcriptomes and metabolomes of primary skin fibroblasts across 16 species of 

mammals, to identify the molecular patterns associated with species longevity. We report that the 

genes involved in DNA repair and glucose metabolism were up-regulated in the longer-lived species, 

whereas proteolysis and protein translocation activities were suppressed. In terms of metabolites, the 

longer-lived species had higher levels of amino acids, but lower levels of lyosphosphatidylcholine and 
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lysophosphatidylethanolamine. Thus, molecular insights into longevity may indeed come from 

defined cell culture systems in mammals. 

 

RESULTS 

Longevity trait variation among the species 

To identify the molecular signatures associating with differences in longevity, we obtained 

primary skin fibroblasts from 13 species of rodents, and supplemented them with fibroblasts of 2 

species of bats and 1 species of shrew which served as outgroups (Figure 7.1). These animals 

represented 3 taxonomic orders (Rodentia, Chiroptera, and Soricomorpha) and were characterized by 

a wide range of maximum lifespan (ML; from 2.2 years in shrew to 34.0 years in little brown bat) and 

adult weight (AW; from 10 g in little brown bat to 20 kg in beaver) (Figure 7.1, Table 7.1.). Female 

time to maturity (FTM) was included as an additional longevity trait, as it might be less prone to 

reporting bias than ML (Spearman correlation coefficient between ML and FTM was 0.87). In 

addition, since both ML and FTM increase with AW, we calculated the body mass adjusted residuals 

(i.e. MLres and FTMres), to represent the ratio between the observed longevity and the expected 

longevity based on body mass (Ma et al., 2015b; Tacutu et al., 2013). For instance, the little brown bat 

is small in size but exceptionally long-lived (Brunet-Rossinni, 2004), hence its positive log10 MLres 

value (Figure 7.1).  
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Figure 7.1. Phylogenetic relationship among species used in the study.  

The tree was constructed using Neighbor-Joining method based on nucleotide sequences. Shrew 

was used as the out-group. Gerbil was collected for metabolite data only and mouse was included 

as reference. The species are colored by taxonomic order. Adult Weight (AW), Maximum Lifespan 

(ML), Female Time to Maturity (FTM), Maximum Lifespan Residual (MLres), and Female Time to 

Maturity Residual (FTMres) of these species are displayed in log10 scale.  
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Gene expression by RNA sequencing 

We profiled gene expression by RNAseq on 28 samples representing 15 species, with 12-28 

million reads per sample and read length of 50 or 100 nucleotides (Table 7.2). Since only 5 of the 

species had publicly available genomes, it posed some challenges for cross-species analysis. Reliable 

reference sequences (e.g. genome or transcriptome) are crucial for accurate RNAseq read alignment 

and read counting, and aligning reads to the genome of a related species is often far from ideal: only 

13% of the reads of African grass rat could be uniquely mapped to the mouse genome (even though 

both species belong to the same Family Muridae), and the alignment rate was even lower for the red 

squirrel (about 5%). Furthermore, while the gene orthology information for many well-studied 

animals can be obtained from public databases (Blanchette et al., 2004; Remm et al., 2001; Vilella et 

al., 2009), such information is very limited or unavailable for the less common species.  

To address these issues, we developed a pipeline to obtain species-specific ortholog sets 

(Figure 7.2A, Experimental Procedures). First, we defined a set of mouse reference sequences based 

on Ensembl by selecting the longest transcript per gene and removing highly repetitive or highly 

similar sequences. Then, from the raw RNAseq reads, the transcriptome was assembled de novo for 

each species. To identify the ortholog sets, BLAST was used to find reciprocal best hits between the 

assembled transcriptome (and published genome, if available) and the mouse reference (Altschul et 

al., 1997; Camacho et al., 2009; Tatusov et al., 1997). The reciprocal best hits were then trimmed 

down to open reading frame (ORF, i.e. coding sequence flanked by start and stop codons) and the 

quality of the ortholog sets was assessed by multiple sequence alignment.  

With respect to the mouse reference sequences, the median nucleotide sequence identity for 

our ortholog sets ranged from 83.2% (shrew) to 95.0% (African grass rat), and protein sequence 

identity from 88.0% (little brown bat) to 96.8% (African grass rat) (Figure 7.2B), consistent with the 

evolutionary distance of the species to mouse. The read alignment rates to our ortholog sets were also 

largely consistent across samples (Figure 7.2C), and we observed no significant differences between 

the species with publicly available genomes and those without. For those with publicly available 

genomes, the read counts using the complete genome also agreed well with the read counts using our 
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ortholog sets (Pearson correlation coefficient 0.95-0.98 for log10 counts; Table 7.2). For a number of 

sequences with poor coverage, consensus sequences of closely related species were used instead 

(Figure 7.3A); this did not significantly affect the results (Figure 7.3B). After data filtering and 

normalization (Experimental Procedures), the expression of 9389 gene orthologs were reliably 

detected across the 28 samples. 

 

Table 7.2. RNA sequencing and read mapping. The read mapping statistics were based on STAR. 

For those species with publically available genomes, the reads were also aligned to the full genomes 

for mapping rate comparison. 

Sample ID 
Read 

Counts 

Average 

read 

length 

Aligned to 

ortholog 

sets 

Aligned to 

complete 

genome 

Read counts 

correlation 

(mean) 

Shrew.1  13,936,898 97 43.7% n/a n/a 

BigBrownBat.1  20,591,634 97 42.1% 84.9% 0.968 

LittleBrownBat.1  14,475,085 97 42.7% 77.4% 0.933 

LittleBrownBat.2  16,713,612 97 41.1% 77.6% 0.931 

GuineaPig.1  17,244,791 97 41.6% 86.5% 0.965 

GuineaPig.2  22,611,505 195 37.8% 89.1% 0.972 

Porcupine.1  16,797,544 97 37.0% n/a n/a 

Porcupine.2  15,861,088 97 19.7% n/a n/a 

Chinchilla.1  22,077,329 195 45.3% 90.1% 0.983 

Chipmunk.1  16,203,627 97 24.6% n/a n/a 

RedSquirrel.1A Technical 

Replicates 

37,526,540 195 42.1% n/a n/a 

RedSquirrel.1B 23,118,578 195 48.5% n/a n/a 

RedSquirrel.2  14,929,276 97 46.6% n/a n/a 

FoxSquirrel.1  14,759,305 97 47.4% n/a n/a 

FoxSquirrel.2  12,470,932 97 21.9% n/a n/a 

Beaver.1  12,907,469 97 34.9% n/a n/a 

Beaver.2  17,404,650 97 39.2% n/a n/a 

AfricanGrassRat.1  27,700,912 196 50.3% n/a n/a 

MeadowVole.1  15,904,868 97 33.8% n/a n/a 

CottonRat.1  18,164,822 97 44.7% n/a n/a 

WhiteFootedMouse.1  14,953,087 97 43.3% n/a n/a 

DeerMouse.1  17,338,832 97 47.8% 85.8% 0.954 

DeerMouse.2A Technical 

Replicates 

16,152,677 97 38.0% 81.8% 0.948 

DeerMouse.2B 18,526,425 97 38.5% 81.2% 0.952 

DeerMouse.3A  18,696,359 97 42.9% 84.8% 0.950 

DeerMouse.4  21,536,475 195 50.2% 90.6% 0.965 

DeerMouse.5  18,726,959 97 41.5% 82.4% 0.949 

DeerMouse.6  15,027,631 97 40.5% 83.2% 0.952 
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Figure 7.2. Cross-species analysis of gene expression in cultured skin fibroblasts.  

(A) Pipeline to obtain the species-specific ortholog sets and expression values. See Experimental 

Procedures for a more detailed description of the methodology. 

(B) Sequence identity of ortholog sets compared to mouse. Nucleotide and amino acid sequence 

identity of the ortholog sets in each species was compared to mouse reference (mouse was set as 

100%). The ortholog sequences were based on de novo assembled transcriptomes, as well as NCBI 

genomes (if available; indicated by “#”). The box plot shows the distribution across the 9389 gene 

orthologs, with the central bars indicating median values. 

(C) Read alignment rates for mapping to complete genomes and ortholog sets. Percent of total 

reads that could be uniquely aligned to the complete genomes (if available, indicated by “#”; shaded 

bars) or to the ortholog sets are shown. Error bars refer to standard error of mean. Number of samples 

(biological and technical replicates) per species is indicated in parenthesis.  
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Figure 7.2 (Continued) 
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Figure 7.3. Genes filled up with consensus sequences. 

(A) Percentage of ortholog sets filled up using consensus. The horizontal axis indicates the 

percentage of sequence length filled up by consensus. For example, 74% of the ortholog sets did 

not require filling up or were filled up < 10% of the sequence length. 5% of the ortholog sets were 

filled up 90% - 100% of the sequence length. 

(B) Standardized expression values of ortholog sets filled up using consensus. Within each 

ortholog set, the expression values were standardized to mean = 0 and standard deviation = 1. 
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Gene expression patterns in fibroblasts follow phylogeny 

To assess gene expression patterns across species, we first performed Principal Component 

Analysis and projected the data on the first 3 Principal Components (Figure 7.4A). Samples 

segregated predominantly by taxonomic relationship. For example, the species belonging to the sub-

orders Sciuromorpha (chipmunk, red squirrel, and fox squirrel), Hystricomorpha (guinea pig, 

porcupine, and chinchilla), and Myomorpha (African grass rat, meadow vole, cotton rate, white-

footed mouse, and deer mouse) separated clearly from one another (Figure 7.4A). Furthermore, when 

we constructed a phylogram using the expression values, the topology was also similar to the tree 

based on nucleotide sequences (Figure 7.4B), suggesting the expression patterns are influenced by 

phylogeny. In addition, the biological and technical replicates of the respective species clustered 

together, confirming that the within-species variation was generally smaller than the cross-species 

variation (Ma et al., 2015b).  
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Figure 7.4. Gene expression variation and correlation with longevity. 

(A) Projection of the first 3 Principal Components (PCs) in Principal Component Analysis. 

Values in parenthesis indicate percentage of variance explained by each of the PCs. Points are 

colored by taxonomic order (same color scheme as in Figure 7.1) 

(B) Gene expression phylogram. Color of the nodes indicates the result of 1000 times 

bootstrap. 

(C) Overlap of genes associating with Adult Weight and indicated longevity traits. AW: 

Adult Weight; ML: Maximum Lifespan; FTM: Female Time to Maturity; MLres: Maximum 

Lifespan Residual; FTMres: Female Time to Maturity Residual.  

(D) Heat map showing expression patterns of the top enrichment pathways. Species are 

arranged in the order of increasing longevity (the four longevity traits are scaled between 0 and 

1). 
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Figure 7.4 (Continued) 
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Expression of many genes correlates with longevity traits 

To identify genes with significant correlation with longevity, we performed regression by 

generalized least squares between the gene expression values and AW, as well as the four longevity 

traits (ML, FTM, MLres, and FTMres). The phylogenetic relationship of the species was incorporated 

in the variance-covariance matrix and four different trait evolutionary models were tested to select the 

best models based on maximum likelihood (Experimental Procedures) (Lavin et al., 2008; Ma et al., 

2015b). A two-step verification procedure was applied to assess robustness of the results, as 

previously described (Ma et al., 2015b). Briefly, in the first step, regression was performed by 

excluding the species with the largest residue error (e.g. a potential outlier) to report the regression 

slope p value (“p value.robust”); in the second step, regression was repeated by excluding each 

species, one at a time, to report the maximal (i.e. least significant) p value (“p value.max”), to ensure 

the overall relationship did not depend on any single species. The respective False Discovery Rates 

(i.e. “q value.robust” and “q value.max”) were also computed.  

We qualified as top hits those genes meeting both criteria of p value.robust < 0.01 (~11% 

FDR) and p value.max < 0.05. The numbers of top hits were 669 for AW, 796 for ML, 822 for FTM, 

493 for MLres, and 782 for FTMres, with roughly equal proportions in positive and negative 

correlations. There was significant overlap among the top hits identified by the four longevity traits 

(Figure 7.4C). For most of the top hits, the directions of correlation were also consistent across the 

four longevity traits (even for those that failed to reach statistical significance). Therefore, our 

procedure was able to identify a core set of longevity-associated genes that behaved consistently 

across the life history traits, and minor inaccuracy in the reported lifespan data was unlikely to affect 

the overall results. On the other hand, the overlap with the hits identified by AW was much smaller 

(Figure 7.4C), suggesting the observed correlations were not driven mainly by body mass differences. 

For the 820 top hits supported by two or more longevity traits, we performed pathway enrichment 

analysis using DAVID (Table 7.3) (Huang da et al., 2009a, b) and visualized the results using heat 

map (Figure 7.4D) and STRING (Figure 7.5) (Jensen et al., 2009). 
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Table 7.3. Pathway enrichment analysis of the genes with significant correlation with the longevity traits. 

The genes were supported by at least 2 longevity traits (p value.robust < 0.01 and p value.max < 0.05). Pathway 

enrichment was performed using DAVID. Only selected pathways are shown here. GO (BP): Gene Ontology 

(Biological Process). SP/PIR: SwissProt and Protein Information Resource. 

Annotation 

Cluster 
Enriched Terms and Genes 

No. of 

Genes 
p value 

Positive 

Correlation 

 

Cluster No. 1 

GO (BP): adenyl nucleotide binding 50 3.52×10-4 

GO (BP): nucleotide binding 64 7.06×10-4 

Acly, Atad2, Atp2b4, Cdk2, Cdk20, Chd7, Chek1, Chkb, Cpsf7, D2hgdh, Dgkq, Dhx58, Dock6, 

Ero1lb, Etnk1, Fastkd5, Fn3krp, Gnai1, Guk1, Hk1, Hmgcr, Hnrnpd, Hyou1, Insr, Madd, 

Map4k5, Mastl, Mlkl, Mov10, Msh6, Mx2, Nadsyn1, Oplah, Pdk1, Pfkp, Phka2, Phkg2, Pkmyt1, 

Pms2, Pnkp, Ppp2r4, Prkar1b, Qrsl1, Rbm10, Rbm15b, Rbm38, Rhot2, Rnasel, Rps6ka2, Sacs, 

Sirt3, Slirp, Smarca1, Smarca5, Srsf9, Stk19, Stk36, Tbrg4, Tesk2, Thnsl1, Tia1, Top3a, Trpm4, 

Ttf2, Tyk2, Vps4a, Ythdc2 

Positive 

Correlation 

 

Cluster No. 2 

SP/PIR: DNA damage 13 8.37×10-4 

SP/PIR: DNA repair 11 3.66×10-3 

GO (BP): cellular response to stress 15 4.55×10-2 

Bnip3, C17orf70, Chek1, Dtx3l, Ercc1, Errfi1, Fancg, Hif1a, Mapkbp1, Msh6, Myd88, Pms2, 

Pnkp, Prdx3, Prpf19, Pttg1, Rif1, Rnaseh1, Slx4, Tdp2, Terf1, Tinf2, Top3a, Wrap53 

Positive 

Correlation 

 

Cluster No. 3 

SP/PIR: chromatin regulator 11 7.41×10-4 

GO (BP): chromosome organization 17 1.13×10-2 

Bnip3, Cenph, Chd7, Dtx3l, Ercc1, Hdac2, Jade1, Kdm5d, Kmt2c, Pttg1, Rcor1, Rrp8, 

Smarca1, Smarca5, Smyd3, Terf1, Tinf2, Wdr5, Wrap53 

Positive 

Correlation 

 

Cluster No. 5 

GO (BP): glucose metabolic process 11 7.34×10-4 

GO (BP): hexose metabolic process 11 3.01×10-3 

GO (BP): generation of precursor metabolites and energy 14 3.52×10-3 

Aldh5a1, Atp6v0d1, Atp6v0e2, Ero1lb, Fads1, Gbe1, Gpi1, Hk1, Ndufa8, Pdk1, Pfkp, Phka2, 

Phkb, Phkg2, Sdhaf3, Tpi1 

Negative 

Correlation 

 

Cluster No. 1 

GO (BP): modification-dependent protein catabolic process 26 3.81×10-5 

SP/PIR: ubiquitin conjugation pathway 25 1.33×10-4 

GO (BP): proteolysis 36 1.83×10-3 

Adamts2, Agtpbp1, Anapc4, Atg10, Atg4a, Atg7, Btbd1, Ctsl, Ctsz, Dcaf10, Dda1, Dpp8, 

Fbxl17, Fbxl20, Fbxo18, Fbxw2, Kcmf1, Map1lc3b, Med8, Mmp2, Mycbp2, Oma1, Pcsk5, 

Pgpep1, Pmepa1, Ppp2r5c, Rad18, Rfwd2, Rnf14, Rnf2, Rnf6, Sumo3, Tpp2, Ube2b, Ube2v1, 

Ufm1, Vhl 

Negative 

Correlation 

 

Cluster No. 2 

GO (BP): protein localization 38 4.86×10-7 

GO (BP): protein transport 34 1.08×10-6 

Agap1, Akap7, Ap3d1, Atg10, Atg4a, Atg7, Bax, Cav1, Clpx, Cnih1, Col4a3bp, Cry2, Dirc2, 

Ergic2, Fdx1l, Fkbp15, Gabarapl2, Gdi2, Gm10273, Golt1b, Hspa9, Ift46, Ipo4, Kif1bp, 

Kpna4, Laptm4a, Lrp4, mt-Nd4, Mtch1, Ndel1, Ndufb11, Necap1, Ppp3ca, Rab18, Rab2a, 

Rab6a, Rhot1, Sar1a, Sec22a, Sec31a, Sec62, Slc25a12, Slc29a1, Slc33a1, Slc35a4, Snx12, 

Snx13, Stx17, Timm8a1, Tomm6, Trappc6b, Trp53, Tsg101, Vps36, Vps53, Ywhag 

Negative 

Correlation 

 

Cluster No. 4 

GO (BP): regulation of transcription 73 2.07×10-5 

SP/PIR: transcription regulation 55 2.45×10-4 

Actl6a, Ak6, Anp32a, Anp32e, Atf6b, Bckdha, Bmi1, Ccdc59, Cd3eap, Cdc5l, Cggbp1, Clk2, 

Cnbp, Cops7a, Crtc3, Cry2, Csrp2, Ebna1bp2, Ehmt2, Elk4, Ergic2, Fbxo18, Fip1l1, Fosb, 

Foxo3, Gatad2b, Gid8, Gmcl1, Gtf2h1, Gtf2h2, Gtf2h5, Harbi1, Hlx, Hmga1-rs1, Hnrnpab, 

Hnrnpf, Ift57, Ing2, Ints4, Ipo4, Jund, Klf11, Klf2, Klf4, Klf9, Kpna4, Mafb, Mapk1, Mdm4, 

Med16, Med17, Med31, Med8, Mef2a, Mettl8, Mmp2, Mnt, Morf4l2, Mta1, Mtdh, Mxd1, 

Mycbp2, Nabp2, Ncor2, Neo1, Nfe2l2, Nr1d2, Papd4, Parp2, Phf12, Phlpp1, Pkig, Pomp, 

Pop5, Ppp1r8, Ppp2r5c, Ppp3ca, Ptbp1, R3hdm4, Rab18, Rad18, Rbbp4, Rfwd2, Rnf14, Rnf2, 

Rnf6, Rps6ka4, Rrs1, Sap30l, Sav1, Scoc, Sfmbt1, Sin3b, Snrk, Sqstm1, Srpk2, Ssbp1, Tep1, 

Tgfbr3, Trim35, Trip6, Trp53, Tsg101, Ube2b, Ube2v1, Ubtf, Ufm1, Vhl, Vps36, Wiz, Xrcc5, 

Yeats4, Zbtb14, Zfp414, Zfp637, Zfp655, Zfp710, Zfp821 
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Figure 7.5. Interaction network among the top hits in (A) positive and (B) negative 

correlation with longevity. The lines represent interaction based on “evidence view” of STRING 

database. Selected gene names are colored based on the enriched pathways (see Table 7.3). 
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Genes showing positive correlation with lifespan 

Genes showing positive correlation were enriched for pathways that included “nucleotide 

binding”, “DNA repair”, “chromosome organization”, and “glucose metabolic process” (Table 7.3, 

Figure 7.4D). “DNA repair” genes included DNA mismatch repair (Msh6, Pms2), nucleotide excision 

repair (Ercc1, Pnkp), Fanconi anemia-associated DNA damage response network (C17orf70, Fancg), 

and protection of telomeres (Rif1, Terf1, Tinf2). The products of checkpoint kinase Chek1 and 

anaphase promoting complex substrate Pttg1 were regulators of cell cycle. 

Among other genes, Hif1a encodes the alpha subunit of hypoxia-inducible factor 1 (HIF-1), a 

key transcription factor in mediating the metabolic responses to hypoxia, whereas Prdx3 encodes 

mitochondrial peroxiredoxin that regulates redox homeostasis. In particular, Pnkp (Figure 7.6A), 

Prdx3, and Rif1 reached statistical significance in all four longevity traits. Consistent with the 

findings, over-expression of hif-1 in C. elegans was shown to promote longevity (Zhang et al., 2009), 

whereas deletion of rif1 and msh6 in yeast (Austriaco and Guarente, 1997; Laschober et al., 2010), 

knockout of prdx3 in C. elegans (Ha et al., 2006), and disruption of Ercc1 in mouse (Weeda et al., 

1997) were all detrimental and led to decreased lifespan. Several previous studies also suggested that 

long-lived species generally had enhanced DNA repair capacity (Cortopassi and Wang, 1996), higher 

poly (ADP-ribose) polymerase activity (Grube and Bürkle, 1992), up-regulation of genes in base-

excision repair and superoxide metabolic process (Fushan et al., 2015), as well as reduced free radical 

production (Perez-Campo et al., 1998), reduced oxidant generation (Sohal et al., 1995), and less 

oxidative damage to nuclear DNA (Adelman et al., 1988) and mitochondrial DNA (Barja and Herrero, 

2000), although the degree of contribution towards the observed differences in lifespan varied and had 

potential confounding effects (Debrabant et al., 2014; Montgomery et al., 2012; Promislow, 1994).  

“Glucose metabolic process” included gene products of hexokinase Hk1, glucose phosphate 

isomerase Gpi1, triose phosphate isomerase Tpi1, phosphofructose kinase Pfkp, and pyruvate 

dehydrogenase kinase (Pdk1) which are involved in glycolysis/gluconeogenesis, glucan branching 

enzyme (encoded by Gbe1) and several phosphorylase kinases (encoded by Phka2, Phkb, Phkg2), 

which regulate the metabolism of glycogen. In addition, the genes coding for NAD synthetase 
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(Nadsyn1), which is involved in converting nicotinate adenine dinucleotide (NaAD) to nicotinamide 

adenine dinucleotide (NAD), also showed positive correlation with all four longevity traits (Figure 

7.6B). Previously, it was observed that NAD+ levels declined with age and affected SIRT1 functions, 

whereas supplementation with NAD+ precursors reversed the aging phenotypes in mouse muscle 

(Gomes et al., 2013) and overexpression of SIRT1 in mouse brain could protect against aging-

dependent circadian changes (Chang and Guarente, 2013). Calorie restriction also increases the 

NAD+/NADH ratio in yeast (Lin et al., 2004). As our study did not directly quantify the 

NAD+/NADH ratio, it remains to be seen how high Nadsyn1 expression in long-lived species affects 

these metabolites. 
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Figure 7.6. Selected genes with significant correlation with longevity. 

(A) Pnkp and (B) Nadsyn1 show positive correlation with the longevity traits. (C) Trp53, (D) 

Bax, (E) Mapk1, and (F) Jund show negative correlation with the longevity traits. In each plot, 

the vertical axis indicates the average log10 expression value; the horizontal axis indicates the 

log10 longevity traits (ML: Maximum Lifespan; FTM: Female Time to Maturity; MLres: 

Maximum Lifespan Residual; FTMres: Female Time to Maturity Residual); the numbers in 

parenthesis indicate p value.robust; the labeled species is the one with the largest residual error 

(which was removed to calculate p value.robust). Error bars indicate standard error of mean. Points 

are colored by taxonomic group (same color scheme as in Figure 7.1). 
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Expression of genes showing negative correlation with lifespan 

With regard to the top hits showing negative correlation, the major enriched pathways 

included “proteolysis”, “protein transport/localization”, and “regulation of transcription” (Table 7.3, 

Figure 7.4D). For “proteolysis”, we observed relatively low expression of genes coding for E2 

ubiquitin-conjugating enzyme (Ube2b, Ube2v1), E3 ubiquitin-protein ligase (Rad18, Mycbp2), 

ubiquitin-like modifier (Sumo3, Ufm1), as well as several proteins containing RING finger domain 

(Rnf2, Rnf6, Rnf14, Rfwd2) or F-box domain (Fbxl17, Fbxl20, Fbxo18, Fbxw2), both of which are 

known to be involved in the ubiquitination pathway. Also, low expression was observed for the genes 

encoding autophagy related proteins (Atg4a, Atg7, Atg10) and lysosomal cysteine proteinases (Ctsl, 

Ctsz). Genes implicated in “protein transport/localization” included several vesicle trafficking proteins 

(Sec22a, Sec31a, Sec62, Golt1b), mitochondrial membrane translocases (Timm8a1, Tomm6), and 

nuclear transport receptors (Ipo4, Kpna4). As for “regulation of transcription”, we observed down-

regulation of genes coding for mediator complex subunits (Med8, Med16, Med17, Med31), zinc finger 

proteins (Zfp414, Zfp655, Zfp637, Zfp710, Zfp821), Kruppel-like factors (Klf2, Klf4, Klf9, Klf11) and 

members of the MYC/MAX/MAD network of transcription factors (Mxd1, Mnt). Interestingly, the 

tumor suppressor TP53 (encoded by Trp53) and its regulator MDM4 (encoded by Mdm4), apoptosis 

regulator BAX (encoded by Bax), transcription activator of apoptosis FOXO3 (encoded by Foxo3), 

transforming growth factor beta (TGF-β) receptor (encoded by Tgfbr3), mitogen-activated protein 

(MAP) kinase (encoded by Mapk1), and transcription factor JunD (encoded by Jund) were all lower 

in longer-lived species (Figures 7.6C-F).  

Overall, the results suggested that fibroblasts of longer-lived species had lower protein 

degradation, lower protein transport activities, and subdued signaling for growth and apoptosis. The 

link between proteolysis/autophagy and aging has been proposed by a number of authors, as generally 

the proteolytic functions decline and oxidized proteins increase with age, and autophagy genes are 

required for the lifespan extension effects of Insulin/IGF-1 signaling and dietary restriction 

(Chondrogianni and Gonos, 2008; Hansen et al., 2008; Kenyon, 2010; Kevei and Hoppe, 2014; Low, 

2011; Melendez et al., 2003; Rubinsztein et al., 2011; Starke-Reed and Oliver, 1989; Vernace et al., 
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2007). Activation of proteasome or autophagy has also been shown to extend lifespan in C. elegans 

(Chondrogianni et al., 2015; Ghazi et al., 2007), yeast (Kruegel et al., 2011), and flies (Simonsen et 

al., 2008). Immunoproteasome and proteasome activity was also elevated in the livers of long-lived 

Snell dwarf mice and in mice exposed to drugs known to extend lifespan (Pickering et al., 2015). On 

the other hand, our results suggest that across the species with natural lifespan variations, the longer-

lived animals actually have lower expression levels of genes involved in proteolysis and autophagy, 

and of the tumor suppressor TP53. While our study examined only mRNA levels and disregarded 

potential differences in protein levels, coding sequences, and enzymatic activities, one could speculate 

that the naturally long-lived species need less protein degradation, perhaps due to lower damage 

generation or more efficient repair mechanisms. In fact, in a study examining gene expression in 

mammalian organs (Fushan et al., 2015), down-regulation of the ubiquitin ligase complex was 

observed in the liver of longer-lived species. 
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Metabolites correlating with longevity traits 

For 12 of the rodent species, we also profiled metabolites (Townsend et al., 2013). 

After data filtering and normalization, 144 water soluble metabolites and 82 lipids were 

reliably detected across 22 biological samples. Principal Component Analysis (Figure 7.7A) 

and the phylogram based on metabolite levels (Figure 7.7B) both indicated that the metabolic 

profiles of these species, like gene expression, segregated according to phylogeny, although 

the patterns were less clear-cut than those based on the RNAseq dataset. This might be partly 

due to the much fewer metabolites detected compared to the genes (226 metabolites vs. 9389 

genes), but the degree of deviation from phylogeny might also depend on tissue origin (Ma et 

al., 2015b). Nevertheless, the biological and technical replicates clustered together (Figure 

7.7B), suggesting the within-species variation was relatively small. 

To identify metabolites with significant correlation with longevity traits, we also 

applied the phylogenetic regression method described above. Since there were fewer species 

for the metabolite dataset, the statistical power was weaker than the gene expression dataset. 

At the cut-off of p value.robust < 0.01 (~11% FDR) and p value.max < 0.05, 12 metabolites 

showed significant correlation with AW, 24 metabolites with ML, 18 metabolites with FTM, 

16 metabolites with MLres, 17 metabolites with FTMres, and 22 of these metabolites were 

supported by 2 or more longevity traits (Figure 7.7C). Pathway analysis revealed enrichment 

of “common amino acids” among the top hits with positive correlation, and 

“glycerophospholipids” among the top hits with negative correlation. In particular, 

tryptophan, glutamate, leucine, arginine, lysine, and histamine showed positive correlation 

with multiple longevity traits; so did a number of nucleotides/nucleosides including ADP, 

GDP, and adenosine. This stands in contrast with the observation that the longer-lived 

mammalian species tend to have lower levels of amino acids in their brains (Ma et al., 

2015b). On the other hand, a number of lysophosphatidylchonline (LPC; e.g. C16:0 LPC, 
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C18:0 LPC, C18:1 LPC) and lysophosphatidylethanolamine (LPE; e.g. C20:4 LPE, C22:6 

LPE) showed negative correlation (Figure 7.7D), which were consistent with the previous 

report of low LPC and LPE in long-lived mammals (Ma et al., 2015b). LPC levels were also 

previously reported to decrease with age but maintained in mice under caloric restriction (De 

Guzman et al., 2013). LPC and LPE are generated by phospholipase-dependent hydrolysis of 

phosphatidylcholine and phosphatidylethanolamine, respectively. Elevated phospholipase A2 

(PLA2) activity can lead to inflammatory response and is linked to coronary artery disease in 

humans (Rosenson and Stafforini, 2012). If we relaxed the cut-off criteria to p value.robust < 

0.05, the patterns of positive correlation with amino acids and negative correlation with LPC 

and LPE were still supported across multiple longevity traits (Table 7.4). 
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Figure 7.7. Metabolite variation and correlation with longevity. 

(A) Projection of the first 3 Principal Components (PCs) in Principal Component Analysis. 

Values in parenthesis indicate percent of variance explained by each of the PCs. 

(B) Metabolite phylogram. Color of the nodes indicates the result of 1000 times bootstrap. 

(C) Overlap of metabolites associating with Adult Weight and longevity traits.  

(D) Selected metabolites with significant correlation with longevity. 
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Table 7.4. Top hits identified by 2 or more longevity traits, using cut-off of p value.robust < 

0.05. The p value.robust against each of the four longevity traits (ML, FTM, MLres, and FTMres) as 

well as adult weight (AW) are shown. 

Metabolite AW ML FTM MLres FTMres 

valine 3.40E-02 2.32E-02 3.45E-02 5.95E-02 4.86E-02 

C36.1.PC 5.52E-02 4.68E-02 2.11E-02 1.08E-01 3.77E-02 

lactose 4.16E-02 2.06E-02 2.63E-02 8.61E-02 1.01E-01 

lactate 3.87E-02 1.91E-02 1.91E-02 1.05E-01 5.75E-02 

histidine 1.32E-01 5.21E-02 4.90E-02 1.75E-02 2.22E-02 

X2.hydroxyglutarate 2.38E-01 9.81E-02 5.34E-02 1.72E-02 2.42E-02 

ADMA.SDMA 6.25E-02 1.77E-02 4.95E-02 1.36E-02 4.65E-02 

acetylcholine 5.82E-03 1.28E-02 4.64E-02 1.95E-01 1.99E-01 

C34.2.PC -1.53E-01 1.26E-01 1.94E-02 2.74E-01 1.27E-02 

trimethylamine.N.oxide 1.82E-01 3.05E-02 2.31E-02 2.34E-02 1.27E-02 

phenylalanine 8.50E-02 1.27E-02 2.18E-02 1.29E-02 2.25E-02 

UDP 2.57E-01 4.82E-02 1.04E-01 1.24E-02 5.99E-02 

NMMA 2.24E-02 4.04E-02 1.89E-02 1.74E-02 1.19E-02 

oxalate 1.75E-02 1.12E-02 1.18E-02 2.68E-02 3.14E-02 

cotinine 1.12E-01 1.15E-02 5.88E-02 1.02E-02 4.07E-02 

C32.2.PC -2.81E-01 2.51E-01 3.00E-02 1.65E-01 9.37E-03 

hippurate 1.50E-01 1.70E-02 8.03E-02 9.15E-03 1.03E-01 

methionine 1.10E-02 7.87E-03 2.47E-02 1.90E-02 5.75E-02 

CDP 6.62E-02 7.62E-03 2.65E-02 1.41E-02 2.23E-02 

tryptophan 1.29E-01 6.71E-03 6.45E-03 1.78E-02 1.74E-02 

kynurenine 2.91E-02 8.41E-02 6.11E-03 2.50E-01 3.52E-02 

creatine 6.35E-02 8.83E-03 9.80E-02 5.64E-03 1.22E-01 

tyrosine 3.13E-02 1.28E-02 4.06E-02 4.56E-03 1.13E-01 

proline 7.77E-03 4.26E-03 1.52E-02 1.34E-02 3.81E-02 

glutamate 2.35E-02 4.13E-03 2.44E-02 8.22E-03 5.31E-03 

leucine 1.09E-02 4.65E-03 3.70E-03 3.49E-02 1.02E-02 

arginine 1.78E-02 3.94E-03 2.97E-03 1.38E-02 4.33E-03 

histamine 4.02E-02 2.93E-03 4.61E-03 4.90E-03 8.47E-03 

C34.3.PC -1.85E-01 1.70E-01 3.30E-02 3.82E-02 2.52E-03 

sarcosine 8.57E-02 1.73E-02 1.02E-01 2.49E-03 1.06E-01 

C34.2.DAG -5.30E-02 2.23E-01 3.03E-02 7.34E-02 1.43E-03 

ADP 5.95E-02 1.57E-03 7.51E-03 1.43E-03 3.35E-03 

pyroglutamic.acid 1.87E-02 1.22E-03 1.51E-02 1.30E-02 2.79E-01 

lysine 1.88E-04 1.77E-03 1.06E-03 7.04E-02 9.22E-03 

GDP 4.53E-01 4.55E-03 1.55E-02 3.68E-04 3.11E-03 

sorbitol 2.53E-02 3.22E-02 2.26E-03 2.23E-03 2.69E-04 

adenosine 9.69E-02 4.04E-03 8.61E-04 4.12E-03 2.31E-04 

X3.phosphoglycerate -7.79E-01 -8.37E-03 -3.49E-02 -1.57E-04 -5.21E-03 

C16.0.LPC -5.44E-03 -7.79E-04 -1.83E-04 -1.15E-02 -7.16E-03 

C20.4.LPE -1.30E-02 -4.99E-04 -6.90E-04 -2.21E-03 -1.09E-03 

alpha.glycerophosphate -5.34E-01 -8.13E-02 -7.55E-03 -5.47E-04 -1.61E-03 

X2.deoxycytidine -7.02E-03 -6.22E-04 -5.75E-04 -1.89E-03 -1.30E-03 

malondialdehyde -9.58E-03 -7.66E-04 -7.59E-03 -5.23E-03 -6.23E-02 

cytidine -1.98E-04 -1.46E-03 -1.70E-03 -1.05E-01 -1.68E-01 

C36.4.PC.B -1.81E-02 -2.35E-03 -7.29E-03 -4.80E-03 -2.02E-02 

C36.4.PC.A -3.73E-01 -7.46E-02 -1.65E-02 -8.33E-02 -3.32E-03 

X2.aminoadipate -7.94E-02 -4.49E-02 -3.54E-03 -3.82E-01 -1.09E-02 

C18.1.LPC -9.03E-03 -4.39E-03 -6.89E-03 -4.05E-01 -5.88E-02 

C22.6.LPE -4.15E-02 -2.23E-02 -4.87E-03 -7.04E-02 -5.09E-03 

C18.0.LPC -5.06E-02 -2.69E-02 -6.30E-03 -6.26E-02 -6.02E-03 



 

 218  

Table 7.4 (Continued) 

Metabolite AW ML FTM MLres FTMres 

C18.0.SM -4.41E-03 -8.57E-03 -7.48E-03 -3.16E-01 -3.19E-02 

kynurenine.vs.tryptophan -3.45E-02 -9.08E-03 2.16E-02 -6.06E-02 5.54E-02 

C18.2.LPC -4.00E-02 -3.18E-02 -1.26E-02 -5.89E-02 -1.04E-02 

putrescine -1.57E-01 -1.30E-01 -1.85E-02 -6.68E-02 -1.12E-02 

dCMP -1.32E-02 -1.18E-02 -3.08E-02 -5.34E-02 -8.54E-02 

X4.pyridoxate -2.83E-02 -7.87E-02 -1.32E-02 -1.43E-01 -2.39E-02 

C16.carnitine -9.17E-02 -2.64E-02 -5.50E-02 -1.54E-02 -4.94E-02 

glycocholate -1.28E-02 -1.62E-02 -3.80E-02 -1.02E-01 -1.29E-01 

X3.methyladipate.pimelate -2.08E-01 -5.84E-02 -3.41E-02 -3.04E-02 -1.80E-02 

C5.carnitine -1.53E-01 -2.02E-02 -2.42E-02 -1.83E-02 -2.09E-02 

cystathionine -4.40E-02 -4.16E-02 -2.22E-02 -1.48E-01 -4.57E-02 

C16.0.LPE -5.08E-02 -2.62E-02 -3.87E-02 -2.32E-01 -1.23E-01 

C20.4.LPC -7.02E-03 -2.75E-02 -2.67E-02 -1.80E-01 -5.59E-02 

cytosine -6.78E-04 -3.49E-02 -2.90E-02 -3.08E-01 -2.87E-01 

C22.6.LPC -2.66E-02 -3.92E-02 -3.12E-02 -2.55E-01 -9.34E-02 

C38.5.PC -2.81E-03 -4.05E-02 -4.93E-02 -2.45E-01 -2.58E-01 

C14.0.SM -4.41E-02 -1.06E-01 -4.30E-02 -1.87E-01 -4.81E-02 

C52.6.TAG 5.06E-01 -1.99E-01 -1.29E-01 -4.93E-02 -4.99E-02 

 

  



 

 219  

DISCUSSION 

All mammals descended from the same common ancestor ~230 million years ago, and since 

then they have undergone remarkable diversification in body size, metabolic rate, fertility, and 

longevity, with the corresponding changes in the gene expression and metabolite landscape (Fushan et 

al., 2015; Ma et al., 2015b). As fibroblasts can be obtained without sacrificing animals and can be 

cultured under standardized conditions, it is of great interest to determine if their gene expression and 

metabolite patterns represent lifespan across mammals. In addition, fibroblasts are amenable to 

experimental manipulation. On the other hand, cross-species gene expression analyses are often 

hampered by the lack of publicly available genomes and gene orthology information, especially for 

those species not commonly studied. Using the primary fibroblasts from 16 species of rodents, bats, 

and shrew, we developed a pipeline for generating species-specific ortholog sets, profiled gene 

expression by RNAseq and the metabolites by mass spectrometry, and identified the molecular 

features associated with the longevity traits. 

Our pipeline can be easily extended for a larger number of species. We took an approach of 

defining gene orthology based on reciprocal best hit in BLAST (Tatusov et al., 1997) and ignored the 

issues of gene duplication and gene loss. We also filled up sequence fragments and missing sequences 

using consensus of the other species, so as to avoid significant length differences within the ortholog 

sets. While these steps unavoidably introduced inaccuracy within our species-specific ortholog 

sequences, they did not significantly affect the read alignment result (Figures 7.2B-C, Figure 7.3) and 

would be much preferred to aligning all the reads to a single reference species (e.g. mouse).  

The gene expression findings revealed a clear segregation based on phylogeny (Figures 7.4A-

B), suggesting the evolutionary relationship significantly influenced the expression patterns. On the 

other hand, the metabolite patterns were less clear-cut (Figures 7.7A-B), which might be attributed to 

the fewer species and metabolites, and/or stronger environmental influences. Using phylogenetic 

regression and the two-step verification procedure, we identified a list of genes and metabolites with 

significant correlations to multiple longevity traits. Importantly, although many longevity traits 

correlate positively with body mass, our lists of genes and metabolites were not driven primarily by 
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adult weight differences (Figures 7.4C and 7.7C). In terms of gene expression, the pathways of 

“nucleotide binding”, “DNA repair”, “chromosome organization”, and “glucose metabolic process” 

were enriched among the genes with positive correlation with longevity, whereas “proteolysis”, 

“protein transportation/localization” and “regulation of transcription” were enriched for the negative 

correlation. A previous study on gene expression variation in mammalian organs also reported up-

regulation of “base excision repair” and down-regulation of “ubiquitin ligase complex” among long-

lived species (Fushan et al., 2015), suggesting that some of the longevity signatures were also evident 

in fibroblasts. Interestingly, proteolysis and autophagy functions of an organism generally decline 

with age, and restoration of these functions have been shown effective in extending lifespan 

(Chondrogianni et al., 2015; Ghazi et al., 2007; Kruegel et al., 2011; Simonsen et al., 2008). 

Furthermore, genes coding for the tumor suppressor TP53, apoptosis regulator BAX, and several 

growth and proliferation signaling pathways were all down-regulated in longer-lived species (Figure 

7.6C-F). One possible interpretation may be that these species generate less damage and/or have 

better repair mechanisms, so that the cells rely less on proteolysis, autophagy and apoptosis. In 

agreement, previous studies reported enhanced DNA repair mechanism and reduced oxidative damage 

in longer-lived species (Adelman et al., 1988; Cortopassi and Wang, 1996; Grube and Bürkle, 1992; 

Perez-Campo et al., 1998; Sohal et al., 1995). The metabolite dataset, on the other hand, had weaker 

statistical power due to the fewer species and samples. The pattern of low LPC and LPE among long-

lived species was consistent with previous reports, although the positive correlation between amino 

acids and longevity was contrary to the observation based on mammalian brain tissues (De Guzman et 

al., 2013; Ma et al., 2015b). 

Overall, our study is consistent with the idea that gene expression, and to some degree 

metabolite levels, in fibroblast cultures can uncover the cell states that correspond to longer life. 

Apparently, these expression patterns are preserved when the intraorganismal environment is removed 

and cells instead subjected to standardized cell culture conditions in the lab setting. This makes 

fibroblasts a particularly attractive experimental system to examine and manipulate molecular 

patterns, with gene expression (or a combination of gene expression and metabolite patterns) as a 

readout. While our study represents an initial study, this approach can be extended to a larger group of 
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species and samples, refining the molecular signatures and then manipulating them via genetic and 

environmental manipulations. Ultimately, this should reveal the genetic basis for differences in 

species longevity and lead to new strategies for targeting them, thereby shifting cells, and ultimately 

organisms to the state of related longer-lived species. 
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EXPERIMENTAL PROCEDURES 

Sample collection and RNA sequencing 

Primary skin fibroblast samples were collected from shrew (Blarina brevicauda), big brown 

bat (Eptesicus fuscus), little brown bat (Myotis lucifugus), guinea pig (Cavia porcellus), porcupine 

(Erethizon dorsatum), chinchilla (Chinchilla lanigera), chipmunk (Tamias striatus), fox squirrel 

(Sciurus niger), red squirrel (Sciurus vulgaris), beaver (Castor canadensis), gerbil (Meriones 

unguiculatus), African grass rat (Arvicanthis niloticus), meadow vole (Microtus pennsylvanicus), 

cotton rat (Sigmodon hispidus), white-footed mouse (Peromyscus leucopus), and deer mouse 

(Peromyscus maniculatus brandii). Biological replicates (i.e. tissues from different individuals) and 

technical replicates were collected on selected species. 

RNAseq libraries were prepared as previously described (Fushan et al., 2015). Paired end 

sequencing was done on the Illumina HiSeq2000 platform generating approximately 30 to 75 million 

reads per sample, with read length 50 or 100 nucleotides. The raw data were processed by Cutadapt 

(Martin, 2011) to remove low quality reads. 

Species specific ortholog sets and expression values 

Reference genomes were publicly available for 5 species (Eptesicus fuscus, Myotis lucifugus, 

Cavia porcellus, Chinchilla lanigera, Peromyscus maniculatus brandii). To ensure consistency across 

the entire dataset, we developed the following pipeline to identify species-specific ortholog sets, map 

the reads and obtain expression values. 

Step 1: generate mouse reference. Based on the Mus musculus Ensembl genome and 

annotation (release 78), the longest transcript was extracted for each protein-coding gene locus, after 

confirming the presence of start and stop codons and the proper reading frame. Those transcripts 

containing highly repetitive or highly similar sequences were identified and removed using BLAST 

(at e-value cut-off 10-6) (Camacho et al., 2009). This generated the Mouse Reference, representing the 

coding sequences of 16,816 unique protein-coding genes. 

Step 2: identify species-specific ortholog sets. For each species, the transcriptome was 

assembled de novo from the RNAseq reads using Trinity (Grabherr et al., 2011). BLAST (with “dc-
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megablast” option) was performed between Mouse Reference and the assembled transcriptome (and 

the published genome, if available) of each species to identify the reciprocal best hits (Tatusov et al., 

1997). The sequences were trimmed down to open reading frame (i.e. flanked by start and stop 

codons) using Exonerate (Slater and Birney, 2005). Within each ortholog sets, multiple sequence 

alignment was performed using MUSCLE (Edgar, 2004) and the percentage of sequence identity was 

assessed by MView (Brown et al., 1998). For the sequence fragments or missing sequences due to 

poor coverage, they were filled up using the consensus. We confirmed the filling up procedure did not 

significantly affect the read counting results. 74% of the ortholog sets did not require filling up or 

were filled up < 10% of the sequence length, whereas 5% of the ortholog sets were filled up 90% - 

100% of the sequence length. When the expression values were standardized to mean = 0 and 

standard deviation = 1 within each ortholog set, there was no significant bias against those ortholog 

sets with high percentage of filling up. 

Step 3: read mapping, counting, filtering and normalization. The RNAseq reads were mapped 

to the species-specific ortholog sets using STAR (Dobin et al., 2013), with an average read alignment 

rate of ~ 40%. As comparison, read mapping to publically available genomes achieved an average 

alignment rate of ~85%. The lower alignment rate to the species-specific ortholog sets was likely due 

to the exclusion of 5’ and 3’ untranslated regions, repetitive or highly similar sequences, and introns. 

Nevertheless, the alignment rates were largely similar across the samples and species. Read counting 

was performed by featureCounts (Liao et al., 2014) and those ortholog sets with too high counts (i.e. 

read counts contributing to >5% of the total counts; 3 orthologs were removed this way) or too low 

counts (i.e. < 10 counts in 4 or more samples) were discarded. The library sizes were then scaled by 

trimmed mean of M-values (TMM) method, log10-transformed, and quantile-normalized. The final 

expression set consisted of 9389 gene orthologs across 28 samples. 

Metabolite profiling and data processing 

The metabolite levels were quantified by mass spectrometry as previously described 

(Townsend et al., 2013). From the raw metabolite measurements, we kept only those metabolite with 

< 10% missing values. The raw values were normalized separately for the 3 collection modes (water 

soluble positive ionization mode “HILIC-pos”, water soluble negative ionization mode “HILIC-neg”, 
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and lipid mode “C8-pos”), first by the internal standards, and then by the total signals within each 

mode. The data were then log10-transformed and quantile normalized. The final expression set 

consisted of 226 metabolites across 22 samples. 

Principal Component Analysis and Phylograms 

Principal Component Analysis was performed on the standardized expression values or 

metabolite values and the first 3 Principal Components were extracted. The phylograms were 

constructed using neighbor joining method (Saitou and Nei, 1987), based on the distance matrix of 1 

minus Pearson correlation coefficient of the standardized expression values or metabolite values. The 

reliability of the branching patterns was assessed by 1000 times bootstrap. 

Phylogenetic regression and two-step verification procedure 

See Chapter 2, Phylogenetic Regression. To qualify as a top hit, we required a gene to have p 

value.robust < 0.01 and p value.max < 0.05. For pathway enrichment purposes, we further required 

that the genes were identified as a top hit in 2 or more longevity traits (ML, FTM, MLres or FTMres). 

Pathway enrichment analysis and interaction network 

For the genes, pathway enrichment analysis was performed using DAVID (Huang da et al., 

2009a, b). For those genes showing positive and negative correlation with longevity (supported by 2 

or more longevity traits), we queried Gene Ontology (“GO Term”; Biological Process and Molecular 

Functions only), SwissProt and Protein Information Resource (“SP PIR Keywords”), and Kyoto 

Encyclopedia of Genes and Genomes (“KEGG Pathway”). STRING (Jensen et al., 2009) was used to 

visualize the interaction network among the top hits. Selected nodes were highlighted based on the 

enriched pathways. For the metabolites, pathway information was obtained from ConsensusPathDB 

(Kamburov et al., 2009) and Human Metabolome Database (HMDB) (Wishart et al., 2013). For 

ConsensusPathDB, only pathways with known KEGG IDs were incorporated. Analysis was 

performed on pathways with at least 5 but less than 100 metabolites. Enrichment statistics was based 

on a hypergeometric distribution. Odd ratios and expected counts were calculated as previously 

described (Gentleman et al., 2013).  
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Chapter 8  Mammalian Transcriptome 

Previously, our laboratory carried out RNAseq-based gene expression analyses in brain, 

kdiney, and liver of 33 mammalian species (Fushan et al., 2015). We have now analyzed additional 

species and incorporated RNAseq data from databases, generating a gene expression dataset 

consisting of 383 biological samples across brain, cerebellum, heart, kidney, liver, and testis in 

chicken and 41 mammalian species. This chapter presents initial analyses of this dataset, revealing 

insights into how Nature adjusts lifespan of mammals by altering gene expression in an organ-, 

pathway- and gene-specific manner. 

PRELIMINARY RESULTS AND DISCUSSION 

Biological samples and RNA sequencing 

We compiled RNAseq data for chicken (used as an out-group) and 41 mammalian species in 

brain (37 species), kidney (37 species), liver (42 species), cerebellum (11 species), heart (14 species), 

and testis (11 species). In this dataset, 48 samples were newly sequenced and 335 samples 

corresponded to datasets previously published by us and other laboratories (Brawand et al., 2011; 

Fushan et al., 2015; Merkin et al., 2012). Biological replicates (i.e. samples from multiple individuals 

of a species) were available for most species. These mammals represent 12 taxonomic orders, over a 

wide range of longevity-associated traits (e.g. adult weight ranged from 7.0 g in the Brandt’s bat to 

100 tons in the bowhead whale; maximum lifespan ranged from 3.2 years in the shrew to 211 years in 

the bowhead whale) (Tacutu et al., 2013) (Figure 8.1, Table 8.1). 29 of these species were represented 

by publicly available genomes in NCBI or Ensembl, whereas the other 13 species required de novo 

assembly of the transcriptomes. To ensure consistency of read alignment and counting across the 

samples, a pipeline was developed to identify the sets of ortholog sequences in each species (Chapter 

2, “Species Without Reference Genomes”). We confirmed that the read alignment rates to the 

ortholog sets were consistent across the samples with and without complete genomes (Figure 8.2A), 

and the Spearman correlation coefficients for the read counts from alignment to ortholog sets and 

from alignment to complete genomes were > 0.95 for most of the samples (Figure 8.2A). For those 
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species with Ensembl annotations for gene orthologs, 90-99% of our definition of ortholog sets agreed 

with the Ensembl annotation (Chapter 2, Table 2.5). After data filtering and normalization, 13,784 

genes were reliably detected across 383 samples. For cross-organ analysis, the expression values were 

standardized to mean 0 and standard deviation 1. Mean values and standard errors were calculated 

across biological replicates. 

 

Figure 8.1. The 42 species examined in this study. The tree is based on nucleotide sequences and 

constructed by neighbor joining method (Saitou and Nei, 1987). Chicken is used as the out-group. 

The tips are colored by taxonomic orders. For simplicity, the same color is used for Monotremata 

(platypus), Didelphimorphia (opossum), and Diprotodontia (sugar glider). 
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Table 8.1. 42 species and life history traits. Adult Weight (AW), Maximum Lifespan (ML) and 

Female Time to Maturity (FTM) were obtained from AnAge database (Tacutu et al., 2013). Maximum 

Lifespan Residuals (MLres) and Female Time to Maturity Residuals (FTMres) were computed using 

the following allometric equations: MLres = ML/(4.88×AW0.153); FTMres = FTM/(78.1×AW0.217). 

The numbers of samples in brain (Br), cerebellum (Cb), heart (Ht), kidney (Kd), liver (Lv) and testis 

(Ts) are shown. 
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Figure 8.2. Data quality assessment 

(A) Comparison of read alignment to ortholog sets and to genome. Percentage of reads for each 

species aligned to the ortholog sets are shown (top). For species with complete genomes, the reads 

were also aligned to the respective genomes (middle), and the average Spearman correlation 

coefficient between the read counts of ortholog set alignment and the read counts of genome 

alignment was calculated (bottom). See Table 2.5 for more details. 

(B) Percentage of total variation explained by species and replicates. The box plots show the 

results of ANOVA in each organ. 

(C) Gene expression patterns are least conserved in testes. The pairwise Spearman correlation 

coefficients between the species were calculated for each organ. Here, only six species were used: 

bonobo, chicken, chimpanzee, gorilla, human, macaque, mouse, opossum, and platypus, because 

data are available for these species in each of the organs. 
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Segregation of samples by organ origin 

Principal Component Analysis (PCA) revealed that the samples segregated predominantly by 

their organ origin (Figure 8.3A). The cerebellum samples clustered closely with the brain (cortex) 

samples, whereas the testis samples were distant from those of the other organs. Analysis of Variance 

(ANOVA) confirmed that organ and species were the predominant sources of variation and together 

accounted for 87% of the total variance, whereas variation among replicates accounted for only 13%. 

Within individual organs, the variance due to species was 82-94% and due to replicates 6-18% 

(Figure 8.2B). To determine how well the gene expression patterns were conserved across the species, 

we calculated the Spearman correlation coefficients among the species in each organ, using the mean 

expression values across the replicates. This revealed that the neural tissues such as brain and 

cerebellum had high degree of conservation (Brawand et al., 2011; Fushan et al., 2015; Ma et al., 

2015b), whereas the expression patterns in testis were very diverse across the species (Figure 8.3B). 

Similar results were obtained if we included only those species with data in all 6 organs (Figure 8.2C), 

consistent with the notion that testis is a rapidly evolving tissue under the impact of sex-related 

evolutionary forces (Brawand et al., 2011; Kaessmann, 2010; Khaitovich et al., 2006). 
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Figure 8.3. Sample segregation and organ-specific expression patterns. 

(A) Samples cluster by organ origin in Principal Component Analysis. The samples (biological 

replicates treated as individual points) were projected on the first 3 Principal Components (PCs). 

The number in the parenthesis indicates the percentage of total variance explained by each PC. The 

points are colored by organ origin. 

(B) Gene expression patterns are least conserved in testis. Pairwise Spearman correlation 

coefficients between the species were calculated for each organ. The results are displayed in a box 

plot. The numbers in the parenthesis indicate the number of species available in each organ. 

(C) Heat map showing organ-specific expression patterns. The heat map shows 6,050 genes 

significantly enriched or depleted in one organ relative to the others. Rows represent biological 

samples and are colored by organ origin (the same color scheme as (A)). Columns represent the 

genes with significant enrichment or depletion. Pathway enrichment analysis was performed on 

selected genes. The top enriched terms are shown. 

 

  



 

 238  

Figure 8.3 (Continued) 
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Organ-specific expression patterns 

To check that the expression patterns of the organs were consistent with their biological 

functions, we used Wilkoxon rank-sum test to identify 6,050 genes significantly enriched or depleted 

(p value < 0.01) in one organ relative to the others. The results were visualized on a heat map and the 

genes were analyzed for the enriched pathways (Figure 8.3C). In kidney, genes involved in ion 

transport and sodium transport (e.g. genes coding for aquaporins and many solute carrier family 

proteins) were overexpressed, consistent with its functions in ultra-filtration and selective 

reabsorption. In liver, genes coding for proteins involved in steroid metabolism and detoxification 

(e.g. hydroxysteroid dehydrogenases, cytochrome P450 family proteins, apolipoproteins), and in 

complement and coagulation cascades (e.g. coagulation factors, complement components) were found 

expressed at high levels, as these processes are largely liver-specific. Consistent with their high 

energy demand, the heart exhibited high expression of genes related to mitochondria and oxidative 

phosphorylation (e.g. those coding for mitochondrial H+ transporting ATP synthase, different subunits 

of NADH dehydrogenases, and several mitochondrial ribosomal proteins), as well as enzymes of the 

tricarboxylic acid cycle. On the other hand, the brain and cerebellum specifically expressed genes 

involved in synaptic transmission (e.g. those coding for cholinergic receptors, gamma-aminobutyric 

acid (GABA) receptors, and glutamate receptors) and neuronal differentiation and development (e.g. a 

number of homeobox proteins). The testes were unique for their high expression levels of genes 

coding for cyclins, centrosomal proteins, and spermatogenesis-associated proteins, underlying their 

roles in sexual reproduction. Overall, the organ-specific expression patterns were in-line with their 

biological roles, and most of the samples clustered according to organ origin. The exceptions were the 

samples from chicken and platypus, which clustered by species and away from the rest of the samples 

(Figure 8.3C, the bottom rows of the heat map), probably due to their significant evolutionary 

distance from the rest of the examined mammalian species. 
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Genes associated with longevity 

For the brain, kidney and liver samples, we performed phylogenetic regression by generalized 

least squares (Chapter 2, “Phylogenetic Regression”) to identify the genes with significant association 

with maximum lifespan (ML), female time to maturity (FTM), as well as the body-mass adjusted 

maximum lifespan residual (MLres) and female time to maturity residual (FTMres). Four different 

models of trait evolution were tested and the best models were selected by maximum likelihood 

(Chapter 2, “Phylogenetic Regression”). A two-step verification procedure was also applied to assess 

robustness of the data (Chapter 2, “Phylogenetic Regression”). Briefly, in the first step, the regression 

slope p value (“p value.robust”) was calculated by excluding species with the largest residue error 

(e.g. a potential outlier); in the second step, regression was repeated by excluding each species, one at 

a time, to report the maximal (i.e. least significant) p value (“p value.max”), so that the overall 

relationship did not depend on any single species. The corresponding False Discovery Rates (i.e. “q 

value.robust” and “q value.max”) were also computed. In each organ, the cut-off of p value.robust < 

0.01 and p value.max < 0.05 was used to define the top hits (corresponding to ~ 8% false discovery 

rate). 

Across the organs, depending on the longevity trait, ~ 800-2,000 genes showed significant 

correlation, with slightly more genes with negative correlation than with positive correlation (Table 

8.2). Since ML and FTM correlate with each other (Pearson correlation coefficient 0.84), many of the 

genes showed the same direction of correlation across all four longevity traits. To identify the 

pathways represented by the top genes in each organ, we applied a stringent criterion of considering 

only those genes with significant correlations to both ML and MLres, or to both FTM and FTMres 

(Table 8.2), so that the results would not be due purely to body mass differences. To ensure the 

overall consistency of the results, we also pooled together the top candidates from all 3 organs. 

Pathway enrichment analysis revealed a number of common pathways across brain, kidney and liver, 

as well as some organ-specific processes (Figure 8.4). 
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Figure 8.4. Pathways with significant correlation to longevity traits. 

(A) Enriched pathways for genes with positive (top, red) and negative (bottom, blue) 

correlation to the longevity traits. The grid indicates the p values for enrichment analysis. Only p 

value < 0.01 are shown in color. Green asterisks indicate false discovery rate < 0.1. Input genes 

were those with significant correlation to both ML and MLres, or to both FTM and FTMres. 

(B) Genes in the selected pathways. The grids showed the p value.robust for phylogenetic 

regression against the longevity traits. Only p value.robust < 0.01 are shown in color.  
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Table 8.2. Number of genes with significant correlation to longevity traits. Genes with significant 

correlation to both ML and MLres, or to both FTM and FTMres, are selected for pathway enrichment 

analysis. 

Analysis Longevity trait 
Brain Kidney Liver Combine 3 organs 

Pos Neg Pos Neg Pos Neg Pos Neg 

Phylogenetic 

Regression 

ML 679 844 581 887 751 1098 N/A N/A 

FTM 1071 1393 673 983 1908 1308 N/A N/A 

MLres 355 424 460 684 374 570 N/A N/A 

FTMres 690 838 673 907 548 808 N/A N/A 

Pathway 

Enrichment 

Both ML and MLres 157 225 187 352 197 337 472 746 

Both FTM and FTMres 393 527 293 472 325 507 869 1251 

 

In terms of positive correlation, the most significant common pathways were “structural 

constituent of ribosome” (enrichment p value = 2.67×10-9 in brain, 1.48×10-3 in kidney, 4.99×10-22 in 

liver) and “translation” (p value = 2.80×10-7 in brain, 2.70×10-3 in kidney, 7.54×10-20 in liver), 

consisting of ~40-50 ribosomal proteins (both large subunits; e.g. Rpl3, Rpl6, Rpl8, Rpl10a, Rpl11, 

Rpl13, Rpl18a, Rpl22, Rpl23, Rpl24, Rpl26; Rpl28; Rpl30, Rpl31, Rpl32, Rpl35a, Rpl37, Rpl37a, 

Rpl38, Rpl39; and small subunits, e.g. Rps5, Rps9, Rps11, Rps15, Rps15a, Rps16, Rps21, Rps27) 

(Figure 8.5A) and mitochondrial ribosomal proteins (large subunits such as Mrpl20, Mrpl21, Mrpl27, 

Mrpl37, Mrpl41, Mrpl43; and small subunits such as Mrps2, Mrps11, Mrps12, Mrps15, Mrps24) 

(Figure 8.5B). Ribosomal proteins are key components of ribosomes, the cellular machinery for 

protein synthesis, and higher expression of ribosomal proteins may imply adjusted levels of protein 

synthesis, larger amounts of ribosomes, and/or greater turn-over of ribosomes in the longer-lived 

species. Interestingly, among the genes with negative correlation to longevity were those involved in 

“ubiquitin-protein transferase activity” (p value = 6.87×10-4 in brain, 7.75×10-3 in kidney, 8.35×10-5 

in liver) and “ubiquitin protein ligase activity” (p value = 3.92×10-6 in liver) (Figure 8.4). These 

processes included a number of genes coding for ubiquitin protein ligases (e.g. Ube2a, Ube2g1, 

Ube2k, Ube2s, Ube2w, Ube3b, Ube4a, Ube4b, Ubr1, Ubr3, Ubr4, Ubr5, Smurf2), kelch-like proteins 

(Klkl13, Klhl17, Klhl24, Klhl38), and ring finger proteins (March2, March5, March6, Rnf4, Rnf10, 

Rnf13, Rnf115, Rnf139, Rnf144b) (Figure 8.5C), which are involved in protein degradation. In 

addition, the genes involved in “base excision repair” (e.g. Ogg1 coding for 8-oxoguanine DNA-

glycosylase 1; Mpg coding for N-methylpurine-DNA glycosylase; Rpa2 coding for replication protein 
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A2; Sirt6 coding for sirtuins 6) were up-regulated in liver of the long-lived species, whereas those in 

“tricarboxylic acid cycle” (e.g. aconitase Aco1, Aco2; isocitrate dehydrogenase Idh1, Idh2, Idh3a; 

succinate dehydrogenase complex Sdha, Sdhb; succinate-CoA ligase Sucla2, Suclg1) were down-

regulated in kidney of these species (Figure 8.5D). 

Together, the results suggested that, among the long-lived species, protein degradation 

activities decreased whereas the transcription of ribosomal proteins increased. This stood in contrast 

with a number of lifespan experiments in model organisms, wherein depletion of ribosomal proteins 

was found to extend lifespan in yeast (Heeren et al., 2009; Steffen et al., 2008), and activation of 

proteasome or autophagy could extended lifespan in C. elegans (Chondrogianni et al., 2015; Ghazi et 

al., 2007), yeast (Kruegel et al., 2011), and fruit flies (Simonsen et al., 2008). On the other hand, 

analysis of gene expression in primary fibroblasts of 15 species of rodents, bats, and shrew also found 

that the levels of genes involved in ubiquitin-mediated protein degradation were lower in the long-

lived species than in the short-lived ones, whereas the genes involved in DNA repair were high in the 

long-lived species (Chapter 7). Similar relationships were also observed in the previous gene 

expression study involving a smaller subset of mammalian species (Fushan et al., 2015). Furthermore, 

a recent study comparing gene expression in the muscle tissues of hibernating black bears and arctic 

ground squirrels with the summer active animals revealed a similar signature of up-regulation of 

ribosomal proteins and down-regulation of oxidation-reduction and glucose metabolism during 

hibernation (Fedorov et al., 2014). While more data would be required to guide interpretation, one 

might speculate that the longer-lived species exhibit lower levels of protein degradation, probably due 

to higher accuracy of protein synthesis, lower level of damage, or better maintenance of the 

translation machinery. 
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Figure 8.5. Selected genes with significant correlation with longevity. 

(A) Ribosomal protein large subunit Rpl30 and (B) mitochondrial ribosomal protein large 

subunit Mrpl21 show positive correlation with the longevity traits. (C) E3 ubiquitin ligase 

Smurf2 and (D) succinate dehydrogenase complex subunit Sdhb show negative correlation 

with the longevity traits. In each plot, the vertical axis indicates the average log10 expression 

value in the organ; the horizontal axis indicates the log10 longevity traits (ML: Maximum Lifespan; 

FTM: Female Time to Maturity; MLres: Maximum Lifespan Residual; FTMres: Female Time to 

Maturity Residual); the numbers in parenthesis indicate p value.robust. The error bars indicate 

standard error of mean. The points are colored by taxonomic group (same color scheme as in Figure 

8.1). 
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Gene expression and metabolic pathways 

Previously, we performed metabolic profiling on a subset (26 species) of the species in this 

study and reported a number of metabolites with signficant correlation with species longevity (Ma et 

al., 2015a). In particular, we observed that the urate:allantoin ratio in kidney showed positive 

correlation with the longevity traits, suggesting that the long-lived species had higher urate and/or 

lower allantoin levels. Furthermore, the liver levels of two tryptophan degradation products, 

kynurenine and anthranilic acid, as well as the kynurenine:tryptophan ratio and the anthranilic 

acid:tryptophan ratio, showed negative correlation with longevity. Here, we related these metabolic 

changes with gene expression patterns. 

In mammals, urate is produced from the degradation of purines and is then converted to 

allantoin by the enzyme uric acid oxidase (also known as uricase) and secreted into urine (Ngo and 

Assimos, 2007) (Figure 8.6A). In humans and other hominoids, the gene coding for uric oxidase is a 

pseudogene and urate is excreted instead (Oda et al., 2002; Wu et al., 1989; Wu et al., 1992). Our 

analyses showed that the expression levels of Uox in liver correlated negatively with FTM and 

FTMres (p value.robust = 5.26×10-3 for FTM and 1.94×10-3 for FTMres; Figure 8.6A), and to a lesser 

extent, with ML and MLres (p value.robust = 0.021 for ML and 0.013 for MLres). As expected, the 

read counts in human, bonobo, orangutan, chimpanzee and gorilla were all much lower (~10-1000 

times) than those of other primate species (including macaque, rhesus monkey, vervet, and baboon), 

suggesting the gene (in the form of pseudogene) was not well transcribed among the hominoids. 

Consistent with our previous observations (Ma et al., 2015a), Uox expression was also low in naked 

mole rats and Damaraland mole rats (Figure 8.6A). 

In terms of the tryptophan degradation products, we did not observe longevity correlation for 

the genes coding for tryptophan 2,3-dioxygenase (TDO) and indoleamine 2.3-dioxygenase (IDO), the 

enzymes that mediate the first step of degradation. On the other hand, quinolinic acid, which is at the 

end of the degradation pathway, can be converted to nicotinamide adenine dinucleotide (NAD) via a 

number of intermediates (Figure 8.6B). It was observed previously in mouse muscles that NAD+ 

levels declined with age and affected SIRT1 functions (which consumed NAD in deacetylation), 
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whereas supplementation with nicotinamide mononucleotide (NaMN) reversed the aging phenotypes 

(Gomes et al., 2013). Overexpression of SIRT1 in mouse brain could protect against aging-dependent 

circadian changes (Chang and Guarente, 2013). Here, we observed that the gene expression levels of 

Qprt (coding for quinolinic acid phosphoribosyltransferase) and Nadsyn1 (coding for NAD synthetase 

1) in brain correlated positively with FTM (p value.robust = 6.84×10-3 for Qprt and 4.58×10-3 for 

Nadsyn1; Figure 8.6B), but the correlations were generally weak with the other longevity traits and in 

the other organs (NMNAT1 did not show signficant correlation either). More data would be needed to 

determine whether the species longevity variation was linked to NAD synthesis. 

 

Figure 8.6. Expression of genes in longevity-related metabolic pathways. 

(A) Urate oxidase (Uox) expression in liver correlates negatively with longevity. The hominoids 

are indicated (H: human; C: chimpanzee; O: orangutan; B: bonobo; G: gorilla). The points 

representing naked mole rat (NMR), Damaraland mole rat (DMR) and beaver are indicated. 

(B) Quinolinate phosphoribosyl transferase (Qprt) and NAD synthetase 1 (Nadsyn1) expression in brain 

correlates positively with female time to maturity (FTM).  
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Chapter 9  Conclusions 

 

 

 

 

 

 

“Today is the oldest you’ve ever been 

and the youngest you’ll ever be again.” 

-- Eleanor Roosevelt 
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SUMMARY OF MAIN FINDINGS 

Since their decent from a common ancestor ~210 million years ago, mammals have 

undergone remarkable diversification in body size, morphology, diet, habitat, reproduction strategies, 

and lifespan. From the small shrews weighing under 2 grams and living about 3 years to the gigantic 

bowhead whales weighing over 100 tons and surviving more than 2 centuries, evolution has acted like 

a Master Scientist to bring about so many species with wide variation in their life history traits. Just as 

much of our biology knowledge has come from studying different model organism mutants in the 

laboratory, we may also be able to gain a better understanding of the control of lifespan by examining 

natural variation across different species. Much of the prior effort was limited by technical constraints 

and focused on a few traits across a small set of species. As the high throughput ‘omics approaches 

have become technically accessible and cost-effective, we now have the opportunity to examine the 

full transcriptomes, metabolomes, ionomes, and proteomes, across multiple organs and across a 

significant number of species. This dissertation presents a few of such snapshots – they illustrate the 

highly complex landscape of changes associated with species longevity (Table 9.1) and may inform 

the future research with regard to the strategies for lifespan control. In addition, the organ- and 

lineage-specific patterns of gene expression, metabolite, and element distribution were examined 

(Tables 9.2 and 9.3) – some are consistent with known physiology of the tissues and animals, while 

other patterns can offer new insights into various aspects of biology. 

Moving from the short-lived mammals to the long-lived ones, the general trends of larger 

body mass, longer female time to maturity, fewer offspring with better survival rates, reduced damage 

generation, and enhanced repair and maintenance capacities are well known (Adelman et al., 1988; 

Barja and Herrero, 2000; Cortopassi and Wang, 1996; Peters, 1986; Sacher, 1959; Western, 1979). In 

our work, we identified the corresponding changes on the molecular levels, including higher 

expression of genes involved in DNA repair (liver and fibroblast), up-regulation of ribosomal proteins 

(brain and liver), down-regulation of protein ubiquitination pathways (brain, kidney, liver, and 

fibroblast), lower expression of genes involved in apoptosis (fibroblast), and reduced levels of 

oxidation-prone triacylglycerols with polyunsaturated fatty acid side chains (PUFA TAGs; kidney). 
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Other molecular signatures previously implicated in aging and longevity studies, such as high 

sphingomyelins (SM; brain, heart, kidney, and liver), high expression of NAD synthase 1 (NADSYN1) 

(brain and fibroblast), low lysophosphatidylcholine (LPC; brain, heart, kidney) and 

lysophosphatidylethanolamine (LPE; brain, kidney), low tryptophan degradation products (liver), and 

high urate and low allantoin levels (brain, kidney, liver), were also observed (Capuron et al., 2011; 

Cutler, 1984; De Marte and Enesco, 1986; Frick et al., 2004; Gonzalez-Covarrubias et al., 2013; Kaur 

and Halliwell, 1990; Rosenson and Stafforini, 2012; Segall and Timiras, 1976). Overall, the patterns 

suggest a set of coordinated changes across multiple organs and tissues, underlying the theme of 

better maintenance and repair and less damage generation among the long-lived mammals. In terms of 

the non-mammalian datasets, the Drosophila data highlighted the key roles of fatty acid metabolism 

in lifespan variation, whereas the yeast data suggested that the replicative lifespan was influenced by 

mitochondria composition rather than by mitochondria number. Furthermore, a number of these 

longevity-associated genes in Drosophila were also shown in previous experiments to affect lifespan, 

suggesting our method has the potential to identify new nodes of lifespan regulation. 

Table 9.1. Summary of the molecular patterns and signatures associated with longevity. 

Dataset Positive correlation with longevity Negative correlation with longevity 

Mammalian 

Metabolome 

 ↑ sphingomyelin (brain, heart, kidney, 

liver) 

 ↑ urate:allantoin ratio (kidney, liver) 

 ↓ polyunsaturated triacylglycerols 

(kidney) 

 ↓ lysophosphatidylcholine (LPC; 

brain, heart, kidney) 

 ↓ lysophosphatidylethanolamine 

(LPE; brain, kidney) 

 ↓ amino acids (brain) 

 ↓ allantoin (brain, kidney, liver) 

 ↓ kynurenine:tryptophan ratio (liver) 

 ↓ anthranilic acid:tryptophan ratio 

(liver) 

Long-lived 

Mouse Models 

Metabolome 

 ↑ sphingomyelin (liver) 

 ↑ methionine (brain) 

 ↓ polyunsaturated triacylglycerols 

(liver) 

Note: 

 Brain metabolites remain largely unchanged under caloric restriction (CR), 

acarbose treatment (ACA), rapamycin treatment (RAP), and growth hormone 

receptor knock-out (GHRKO). Only Snell dwarf mice (Snell) exhibited significant 

changes in brain. 

 CR and ACA produced very similar changes in liver metabolites but were rather 

different from the profiles of RAP and GHRKO. The profile of Snell shared 

similarity with CR and ACA. 

Mammalian 

Ionome 

 ↑ zinc (kidney and liver; effects likely 

due to body mass differences) 

 ↑ cadmium (kidney and liver) 

 ↓ selenium (liver; weak effects) 
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Table 9.1. (Continued) 

Dataset Positive correlation with longevity Negative correlation with longevity 

 

Fly 

Transcriptome 

 

 ↑ organic acid biosynthetic process 

 ↑ fatty acid beta oxidation 

 ↑ cofactor biosynthetic process 

 ↑ glyoxylate and dicarboxylate 

metabolism 

 ↓ neuron recognition / axongenesis 

 ↓ synaptic transmission 

 ↓ DNA binding 

 ↓ protein kinase activity 

 ↓ RNA processing 

Note: 

18 of the genes correlating with maximum lifespan in fly were previously reported to 

affect lifespan; 14 of them had the expected direction of correlation (i.e. pro-longevity 

genes were expressed at high levels in long-lived Drosophila species; anti-longevity 

genes were expressed at low levels in long-lived Drosophila species) 

Yeast 

Transcriptome 

and Proteome 

Gene expression: 

 ↑ oxidative phosphorylation / aerobic 

respiration / mitochondrial respiratory 

chain 

 ↑ ion transport 

 ↑ hexose/glucose metabolic process 

 ↑ actin binding 

 

Mitochondrial composition: 

 ↑ Pyruvate dehydrogenase complex 

 ↑ Complex III 

 ↑ Complex IV 

 ↑ Mitochondrial ATP synthase 

 ↑ Mitochondrial ribosomal proteins 

Metabolites: 

 ↓ asparagine, glutamine, 2-octenoic 

acid 

 

Gene expression: 

 ↓ protein targeting 

 ↓ transcription regulation 

 ↓ mRNA splicing/ ribonucleoprotein 

complex 

 ↓ cytoskeleton organization 

 ↓ nitrogen compound biosynthetic 

process 

 

Mitochondrial composition: 

 ↓ outer membrane translocases 

 ↓ mitochondrial chaperonine 

 ↓ metabolic enzymes 

Rodent 

Fibroblasts 

Gene expression: 

 ↑ adenyl nucleotide binding 

 ↑ DNA repair / DNA damage 

 ↑ chromatin regulator / chromosome 

organization 

 ↑ glucose / hexose metabolic process 

 

Metabolites: 

 ↑ amino acids 

Gene expression: 

 ↓ proteolysis / ubiquitin conjugation 

pathway 

 ↓ protein transport 

 ↓ transcription regulation 

 

Metabolites: 

 ↓ glycerophospholipids (LPC, LPE) 

Mammalian 

Transcriptome 

 ↑ structural constituent of ribosome 

(brain, kidney liver) 

 ↑ translation (brain, kidney, liver) 

 ↑ rRNA binding (brain, liver) 

 ↑ RNA binding (kidney, liver) 

 ↑ base-excision repair (liver) 

 ↑ negative regulation of apoptotic 

process (liver) 

 ↓ ubiquitin-protein transferase 

activity (brain, kidney, liver) 

 ↓ protein polyubiquitination (brain, 

liver) 

 ↓ protein serine/threonine kinase 

activity (brain, kidney) 

 ↓ tricarboxylic acid cycle (kidney, 

liver) 

 ↓ protein transport (kidney, liver) 

 ↓ voltage-gated potassium channel 

activity (brain) 

 ↓ neuromuscular junction 

development (brain) 

 ↓ potassium / calcium ion transport 

(brain) 

 ↓ unfolded protein binding (kidney) 
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Table 9.2. Organ-specific changes in metabolome, ionome, or transcriptome. Red upward arrows denote 

relatively high level; blue downward arrows indicate relatively low level. 

Organ Mammalian Metabolome Mammalian Ionome Mammalian Transcriptome 

Brain 

Metabolites diverge least 

↑ glycerophospholipids 

↑ sphingomyelins 

↑ neurotransmitters 

↑ potassium (K) 

↑ phosphorous (P) 

↑ synaptic transmission 

↑ neuron differentiation 

Heart 
↑ acylcarnitines 

↑ triacylglycerols 
 

↑ oxidative phosphorylation 

↑ tricarboxylic acid cycle 

Kidney 
↑ most amino acids 

↓ glutamine 

↑ lithium (Li) 

↑ sodium (Na) 

↑ calcium (Ca) 

↑ selenium (Se) 

↑ cadmium (Cd) 

↑ ion transport 

↑ sodium transport 

Liver 

↑ amino acids 

↑ glycerophospholipids 

↑ carbohydrates 

↑ steroids 

↑ sucrose / lactose 

↑ bile acid components 

↑ iron (Fe) 

↑ molybdenum (Mo) 

↑ manganese (Mn) 

↑ selenium (Se) 

↑ cadmium (Cd) 

↑ copper (Cu) 

↑ zinc (Zn) 

↑ steroid metabolism 

↑ complement and coagulation 

cascades 

Testis   

Metabolites diverge most 

↑ cell cycle 

↑ spermatogenesis 

↑ steroid metabolism 

↑ sexual reproduction 

 

Table 9.3. Lineage specific changes or correlation patterns.  

Dataset Lineage specific changes / Correlation patterns 

Mammalian 

Metabolome 

 ↓ methionine sulfoxide in bats 

 ↓ allantoin and ↓ urate oxidase in African mole rats 

 Bile acid conjugation consistent with diet preference: carnivores prefer taurine-

conjugation; herbivores prefer glycine-conjugation 

Mammalian 

Ionome 

 Divalent ions such as iron, molybdenum, manganese, nickel and cobalt have 

similar distribution patterns 

 Copper and zinc have similar distribution patterns 

 ↑ magnesium, ↑ sulfur, ↑ phosphorus, and ↑ potassium in brain of rodents 

 ↓ selenium in kidney and liver of African mole rats 

 The numbers of selenocysteine residues in selenoprotein P of the species agree 

with their kidney and liver selenium levels. 

Yeast 

Transcriptome 

and Proteome 

 Pathways that are differentially expressed across the yeast strains: 

o oxidative phosphorylation 

o ribosome biogenesis 

o ribonucleoprotein complex 

o protein synthesis 

o translation regulation. 

Fly 

Transcriptome 

 Pathways that are differentially expressed across the Drosophila species: 

o oxidative phosphorylation 

o electron transport chain, NADH dehydrogenase activity 

o structural constituents of ribosomes 

o transcription regulation 

o amino acid biosynthesis. 

 The expression divergence of the flies indicate strong stabilizing selection. 
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WITHIN-SPECIES VS. CROSS-SPECIES LIFESPAN VARIATIONS 

In Chapter 1 of this dissertation, a distinction was made between the pathways underlying 

lifespan extensions within single species and those underlying lifespan changes across different 

species, and questions were raised regarding the extent of their overlap. With hindsight, this issue can 

now start to be addressed.  

Comparison with the metabolic profiles of the 5 long-lived mouse models suggested that a 

number of changes (including high SMs and low PUFA TAGs) were common in both within-species 

and cross-species lifespan variations. The up-regulation of DNA repair pathways among long-lived 

mammals is also a key feature of some of the known within-species lifespan extension strategies. On 

the other hand, several cross-species longevity signatures seem to contradict some of the established 

paradigms of within-species lifespan extension. For example, autophagy is required for the lifespan 

extension via dietary restriction and subdued IGF-1 signaling (Chondrogianni and Gonos, 2008; 

Hansen et al., 2008; Kenyon, 2010; Kevei and Hoppe, 2014; Low, 2011; Melendez et al., 2003; 

Rubinsztein et al., 2011; Starke-Reed and Oliver, 1989; Vernace et al., 2007) and activation of 

proteasome or autophagy can extend lifespan in C. elegans, yeast, and flies (Chondrogianni et al., 

2015; Ghazi et al., 2007; Kruegel et al., 2011; Simonsen et al., 2008), yet the genes involved in 

proteolysis and ubiquitination were found to be expressed at lower levels among long-lived species. 

Depletion of ribosomal proteins in yeast has lifespan extension effect (Heeren et al., 2009; Steffen et 

al., 2008), but the long-lived mammals also express high levels of ribosomal proteins. Based on these 

results, it seems that there are indeed some overlaps between the within-species lifespan extension 

pathways and the cross-species longevity signatures, but there are also clear differences in many other 

aspects. Although up-regulation of genes involved in DNA repair pathways are observed in both 

cases, more data will be needed to clarify whether they are brought about by the same mechanism. For 

example, the up-regulation of DNA repair for within-species lifespan extension is likely controlled by 

transcription factors such as FOXO (Tran et al., 2002) and is largely a temporary response to dietary 

restriction or drug treatment, whereas the high expression of DNA repair genes in long-lived species 

may be the result of more permanent changes (e.g. changes in promoter sequences). 
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Importantly, the results here also suggest the various within-species lifespan extension 

strategies may act through different molecular pathways and have different effects on the organs. The 

metabolic profiles of the 5 long-lived mouse models reveal that caloric restriction and acarbose 

treatment produce similar metabolic shifts, whereas rapamycin treatment, growth hormone receptor 

knock-out, and Snell dwarf mice seem to affect different sets of metabolic pathways. It was 

previously shown that caloric restriction could extend the lifespan of both wild-type mice and long-

lived Ames dwarf mice (Bartke et al., 2001), even though the gene expression changes were rather 

divergent (Masternak et al., 2004), indicative of potentially different pathways of lifespan controls. 

Furthermore, although there were extensive metabolic shifts in liver of the long-lived mouse models, 

only the Snell dwarf mice (which have ablation of anterior pituitary) exhibited significant changes in 

brain metabolite levels, suggesting the brain metabolites might be more stable and refractory to 

fluctuation than the liver metabolites. At the moment, most of the gene expression and metabolite data 

of lifespan extension strategies are reported independently by different research groups, often using 

different animal models and in different organs and tissues. While some attempts were made to 

perform meta-analysis on these datasets to identify the common features (de Magalhães et al., 2009; 

Swindell, 2007), it was rather difficult to distinguish the variations due to actual biological differences 

of the various lifespan extension pathways, from those due to different genetic backgrounds and 

experimental set ups. The organ context of the data was not sufficiently explored either. On the other 

hand, by subjecting the mice of identical genetic background to different lifespan extension treatments 

within the same experiment set up and collecting the data across multiple organs, we were able to 

directly observe and compare the different biological effects of these treatments. In future, it will be 

helpful to measure the gene expression profiles of these mouse models, so as to systematically assess 

the extent of overlap among these lifespan extension pathways, as well as with the cross-species 

longevity signatures. 

Conceptually, it is possible, and even probable, that within-species lifespan extension and 

cross-species lifespan variation are governed by different mechanisms: many of the changes observed 

in within-species lifespan extension (e.g. up-regulation of anti-oxidant enzymes, up-regulation of 

autophagy, suppression of anabolic metabolism and reproduction, and induction of stress responses) 
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are suited for dealing with acute stress and short-term adversity, whereas the long-term, sustained 

alteration of lifespan across species may involve other permanent and coordinated modifications. 

Furthermore, many of the long-lived models produced in laboratory settings may not be fit to compete 

in the wild, whereas the naturally long-lived species are well adapted to their respective ecological 

niches. Furthermore, some of the cross-species trends may not apply to the within-species 

comparison. While larger mammals are known to live longer than small mammals, within species 

patterns are often opposite, e.g. smaller dogs live longer than large dogs, and dwarf mice live longer 

than control mice. Therefore, the validity of these observations here may be dependent on the levels 

of comparison, and further research efforts will be needed to determine where the line can be drawn. 

It should be noted that the key pathways for within-species lifespan extension have been 

experimentally validated in yeast, flies, worms, and mice, whereas the cross-species longevity 

signatures identified here are yet verified (except the “natural evolutionary experiment” that gave rise 

to these species). It cannot be excluded that the cross-species signatures represent such fundamental 

re-wiring and re-programming of the biological systems that they will not be applicable within the 

context of a single species, at least using the currently available methods.   
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POTENTIAL PITFALLS 

While the molecular patterns and signatures of longevity presented here satisfy stringent 

statistical criteria, one should keep in mind of several potential pitfalls when interpreting the data.  

First, all these relationships are based solely on correlation and do not prove causation. On the 

one hand, there are consistent and coordinated changes in gene expression and metabolite profiles in 

relation to longevity variation, and they are likely modulated by the same set of underlying forces and 

factors. Some of these changes may be the result, and not the cause, of a long lifespan, though it is 

often difficult to differentiate between the two. For example, we found that the levels of cadmium in 

brain, heart, kidney and liver showed strong positive correlation with longevity, and the relationship 

was not affected by differences in body mass. Since cadmium is a heavy metal, is toxic at high levels, 

and plays no known biological functions in mammals, it is hard to perceive the potential longevity 

benefit of high cadmium. Rather, the observation may simply reflect the passive accumulation of 

cadmium from food intake, as the longer-lived mammals consume a greater amount of food over their 

life time. Further experimental evidence will be required to pinpoint the causality. 

Second, although the enrichment analyses provide useful summaries of the major pathways 

related to longevity variation, more detailed and careful interpretation of the results will be needed to 

fully delineate the principles governing lifespan regulation. For example, while “lipid metabolic 

process” was shown to have positive correlation with Drosophila lifespan (Chapter 6), it is important 

to differentiate the genes involved in fatty acid beta-oxidation from those involved in fatty acid 

synthesis. Although as a group the PUFA TAGs showed significant negative correlation to longevity, 

individually they have different biological functions depending on the numbers and positions of the 

double bonds. While many ribosomal proteins showed positive correlation with longevity, it may be 

useful to carefully examine and map the ribosomal proteins on the ribosome structure. If the identified 

proteins are mostly in the external shell, then they may indicate improved accuracy of protein 

synthesis. Beside the annotated pathways in the databases, the roles of the various metabolites should 

also be viewed in terms of the respective organs and biological origins, as the same metabolite (e.g. 

methionine) may also affect very diverse functions depending on organ and tissue. The levels of 
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trimethylamine N-oxide (TMAO) in brain and heart showed positive correlation with longevity, but it 

is also a product of gut microbiome, and such aspects deserve further exploration. Additionally, 

epigenetic changes such as DNA methylation and histone modifications also show important age- and 

longevity-related trends, but they are not yet reflected in the current datasets. 

Third, the results should be viewed in the light of possible sample bias and variation. The 

gene expression and metabolite data presented here are cross-sectional in nature: they represent a 

snapshot measurement across various species at a single point in time. While they provide very useful 

information on the cross-species variation, they cannot inform us on the within-species variation, e.g. 

due to differences in fed or fasting state, diets, and genders. In many long-lived animal models, it has 

been shown that the dietary restriction and other lifespan extension strategies are often more effective 

in females than in males (Burger and Promislow, 2004; Magwere et al., 2004; Miller et al., 2014), 

although the mammalian and fly data presented here came mostly from males. It was also pointed out 

that the gene expression profiles of the primary fibroblasts might be confounded by culture 

conditions, as the fibroblasts from the long-lived species might survive better in cell culture than those 

from the short-lived species, and the observed expression patterns reflect more of the cellular states in 

culture than the cellular states in vivo. As for the Drosophila dataset, the different species of flies were 

fed a diet optimal for D. melanogaster, which might not be ideal for the non-conventional species. 

While we have shown that the variation due to biological replicates within a species is generally much 

smaller than the variation in the longevity traits across the species, it will be very informative to 

collect more samples to formally assess the variation in gene expression and metabolites due to 

differences in gender, diet, feeding state, and cell culture conditions. 
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FUTURE DIRECTIONS 

Overall, these studies provide the starting points for discovering and exploring new 

mechanisms and paradigms of lifespan regulation. To experimentally apply these findings, one can 

make use of the Transgenic RNAi Project (TRiP) library of D. melanogaster to test the longevity 

effects of knocking out specific genes of interest (Ni et al., 2008). The recently developed CRISPR-

Cas system can also be used to generate more stable deletion lines and ameliorate the off-target 

effects of RNAi (Jinek et al., 2012; Sander and Joung, 2014). Most importantly, one may query the 

Connectivity Map Database to identify small chemical molecules capable of producing the desired 

molecular signatures (Lamb et al., 2006) and test their longevity effects on laboratory animals 

(Calvert et al., 2016). A similar approach may involve genetic manipulations as well as screens. For 

example, resemblance of the gene expression pattern resulting from gene knockout to our 

evolutionary signature will suggest that this gene knockout is a candidate for lifespan extension. Due 

to the inter-connected and systemic nature of lifespan regulation, one may need to simultaneously 

perturb multiple pathways using a combination of gene manipulation and small pharmacological 

molecules to bring about the optimal lifespan extension effects. As recently demonstrated in C. 

elegans, targeting 3 network modules of dietary restriction simultaneously could produce 

exceptionally long-lived animals (Hou et al., 2016). 

At the moment, it is not known whether the different species follow the same trajectory of 

aging (i.e. age at the same rate). For example, it was shown in C. elegans that interventions as diverse 

as changes in diet, temperature, exposure to oxidative stress, and disruption of genes all altered 

lifespan distributions by an apparent stretching or shrinking of time (Stroustrup et al., 2016). In 

addition to the cross-sectional data presented here, one should also obtain longitudinal data from 

animals of different ages, to assess the gene expression and metabolite changes from young to old and 

determine whether they are related to the cross-species longevity signatures identified here. It will 

also be useful to obtain samples from animals of different genders and feeding states, to formally 

determine the degree of data variation. A number of studies in plants (Watanabe et al., 2007; White et 

al., 2012) showed that when the same plant species were collected under different fertilizer treatments 
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and environmental conditions, the concentrations of Ca, Zn, Mn and Mg were found to remain more 

closely linked to phylogeny, but Cu and Fe varied more strongly with environmental factors, 

suggesting different elements might be more or less responsive to external variations. Similarly, some 

metabolites and genes in mammals may be more resistant to dietary and gender variation than others 

and may therefore serve as more useful and stable longevity signatures. 

 As high throughput methods become increasingly accessible, we will likely see more and 

more cross-species expression and metabolomics studies. These studies bring with them their own set 

of unique challenges, including the phylogenetic relationship of samples and identification of accurate 

ortholog sequences (often without the reference genomes available). The phylogenetic regression 

method was originally developed by evolutionary biologists to study co-evolution of a few traits. 

Here, we applied it on hundreds of metabolites and tens of thousands of genes, and although we 

adjusted for false discovery rate using the conventional approach, more careful thoughts shall be 

given to better understand the issue of multiple testing. Furthermore, the phylogenetic regression 

method here assumes normal distribution (which was valid for ~80% of all genes and metabolites on 

log scale), but other distribution models (e.g. negative binomial) may be more appropriate for 

RNAseq data, so there will be much room for improvement of the phylogenetic regression model. In 

terms of ortholog identification, we assembled our pipeline using a number of publicly available 

software and packages. Development of a single tool, with scalable inputs, standardized outputs, and 

more robust quality controls will significantly facilitate cross-species comparative studies. 

Lastly, it will also be fruitful to obtain the gene expression profiles of various long-lived 

mouse models, and examine them against each other as well as against the cross-species longevity 

signatures identified here. It may be possible that the longevity signatures will be represented by 

multiple dietary, pharmacological and/or genetic interventions, which again will suggest that such a 

combination may result in lifespan extension. Ultimately, these approaches should lead to defining the 

gene expression space (and similarly the metabolite space) that is associated with the most robust 

longevity effects.   
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