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Molecular Patterns and Signatures of Longevity
Abstract

Since their divergence from a common ancestor some 200 million years ago, mammals have
undergone significant diversification in physiology, morphology, habitat, size, and longevity. The
maximum lifespan of mammalian species ranges from under 3 to over 200 years, but the molecular
basis of such variation is poorly understood. While many genes, pathways, dietary interventions, and
pharmacological compounds have been shown to influence the lifespan of model organisms, it is not
known whether the same mechanisms are responsible for the longevity variation across different
species. This thesis presents the analyses of gene expression and the levels of metabolites, chemical
elements, and/or proteins, across multiple organs and tissues of up to 42 species of mammals, as well
as the analyses of 5 long-lived mouse models, 22 natural isolates of yeast, and 16 species of fruit flies,
to identify the molecular patterns and signatures associated with species longevity. The results show
that longer-lived mammals up-regulate ribosomal proteins and genes involved in DNA repair, and
down-regulate ubiquitin-mediated proteolysis and apoptotic functions. Some of the metabolic changes
in long-lived mammals, such as higher levels of sphingomyelins and glycerophospholipids but lower
levels of polyunsaturated triacylglycerols, were also observed in long-lived mouse models. Yeast
strains of varying replicative lifespan differed in their aerobic respiration capacity, attributable to
different protein composition in mitochondria. Long-lived fruit flies overexpressed the genes involved
in lipid metabolism but suppressed the genes involved in neuronal development. Many genes
previously implicated in lifespan control in model organisms also showed the expected correlation
with the longevity traits across species. This thesis presents the snapshots of the complex changes
associated with species natural lifespan variation and offers new insights into the mechanisms of

longevity control and potential lifespan extension strategies.
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Chapter 1 Introduction

The great ships full of boys and girls sent in search of the immortal medicine by the Chinese

Emperor Shih Huang Ti. By Utagawa Kuniyoshi (1797-1861). Source:
http://www .kuniyoshiproject.com/Warrior%20triptychs%201839-1841,%20Part%201%20%28T47-

T62%29.htm



According to Benjamin Franklin, “The only things certain in life are death and taxes.”
Although the deadline for filing IRS tax returns comes every April, most of us are more concerned
about the one that comes once a lifetime. Legend has it that more than 2000 years ago the First
Emperor of China sent hundreds of young men and women out to the sea in search of the elixir of
immortality. The First Emperor expired before the return of this expedition, but the quest for eternal
youth has never ceased. Today, there is an active research enterprise focused on the biology of aging
and are many health and supplement products claiming anti-aging effects; yet the secrets of longevity

remain unsolved.

AGING WITHIN SINGLE SPECIES

The research aging and longevity can be largely divided into two areas. One is the aging
process within a single species (Figure 1.1). As an organism grows old, a large number of changes
occur on the cellular level; Lopez-Otin and colleagues summarize 9 typical hallmarks of aging:
increased genome instability, telomere attrition, changes in epigenetic markers, loss of proteostasis,
deregulated nutrient sensing, mitochondrial dysfunction, induction of cellular senescence, exhaustion
of stem cell population, and altered intercellular communication (Lopez-Otin et al., 2013). On the
physiological level, the aging phenotypes include reduction in hair re-growth, dermal thickness and
subcutaneous adipose in mice (Tyner et al., 2002); decreases in pharyngeal pumping, body movement
and chemotaxis in C. elegans (Collins et al., 2008); and reduction in locomotion, reproduction and
climbing activities in flies (Iliadi and Boulianne, 2010). In addition, in the absence of extrinsic causes
of death, the mortality rate (i.e. number of deaths per unit population per unit time) of most species
increases with age (Jones et al., 2014), producing a concave, downward sloping survival curve. Much
effort has been directed to identify the genes, pathways, and treatments that can either delay these
age-related changes, or increase the lifespan of the species (i.e. shifting the survival curve to the

right), or both (Figure 1.1B).
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Figure 1.1. Aging within a single species.

(A) Physiological changes with age. Photo credit: JenkoAtaman, Adobe Stock.

(B) A typical survival curve. A successful lifespan extension strategy shifts or scales the black
curve to the red.

(C) Major pathways implicated in lifespan extension. Only selected components of the pathways

are shown. Cross-talks among the pathways are omitted.



Research across various model organisms has identified several pathways involved in lifespan
control (Fontana et al., 2010; Haigis and Sinclair, 2010; Kenyon, 2010) (Figure 1.1C). One is the
GH/IGF-1/PI3K/AKT/FOXO axis (GH: growth hormone; IGF-1: insulin-like growth factor 1; PI3K:
phosphoinositide 3-kinase; AKT: protein kinase B; FOXO: forkhead box O). FOXO proteins are a
group of transcription factors controlling a number of downstream processes to promote antioxidant
enzymes synthesis, cell-cycle arrest, and energy homeostasis, with the overall effects of increasing
stress resistance and enhancing survival (Carter and Brunet, 2007). In the presence of growth signal
IGF-1, AKT phosphorylates FOXO to keep them in the cytoplasm, and the cell favors a program of
growth and proliferation. Ablation of IGF-1 signaling pathway has been found to extend lifespan, first
reported in the nematode C. elegans (Friedman and Johnson, 1988; Kenyon et al., 1993), and later
confirmed in flies and mammals (Fontana et al., 2010; Taguchi and White, 2008). Modulation of GH
signaling, which in turn affects IGF-1 secretion, can also affect longevity (Swindell, 2007). Mutant
strains such as Snell dwarf (defective in anterior pituitary development) (Flurkey et al., 2001) and GH
receptor knockout (GHRKO) (Coschigano et al., 2003) are long-lived, due to altered signaling in GH
itself or through GH-stimulated production of IGF-1. Human individuals with mutation in the gene
coding for GH receptor (“Laron syndrome”) exhibit dwarfism but also have strikingly low rates of
cancer and diabetes (Wade, 2011).

Three other pathways, TOR/S6K (TOR: target of Rapamycin; S6K: ribosomal S6 kinase),
sirtuins, and AMPK (AMP-activated protein kinase), are often termed “nutrient sensing”, given their
abilities to monitor and respond to the metabolic and energy status of the cells (Figure 1.1C). TOR
becomes activated by abundance of amino acids; it in turns actives S6K to promote growth and
proliferation (Jewell et al., 2013). On the other hand, during amino acid deprivation, TOR activities
decrease and a transcription program of stress resistance is initiated (Gallinetti et al., 2013).
Rapamycin, an inhibitor of mMTORCI, produces similar effects and leads to 23-26% increase in
median lifespan of mice (Harrison et al., 2009; Miller et al., 2014). Sirtuins are a family of enzymes
with deacetylase activities that require the splitting of NAD" (nicotinamide adenine dinucleotide) into
nicotinamide and Ac-ADP-ribose during the deacetylation process (Michan and Sinclair, 2007).

SIRTI1 interacts with and deacetylates a number of proteins to promote cell survival and DNA repair



and reduce inflammation (Haigis and Sinclair, 2010). During aging, the NAD*/NADH ratio in the cell
decreases and there is a loss of mitochondrial oxidative phosphorylation system components, but
supplement with NAD" precursor can reverse these aging effects in a SIRT 1-dependent manner
(Gomes et al., 2013). The anti-aging effects of sirtuins activation have been shown in yeast, flies,
worms, and mammals (Kaeberlein et al., 1999; Michan and Sinclair, 2007; Rogina and Helfand, 2004;
Tissenbaum and Guarente, 2001). Resveratrol and other sirtuins activators are promising candidates to
pharmacologically induce these beneficiary effects (Baur et al., 2006; Hubbard et al., 2013; Wood et
al., 2004). AMPK is also an important sensor of energy level: it remains inactive when cellular ATP is
abundant, but becomes activated as ATP is consumed and turned into AMP (Burkewitz et al., 2014;
Hardie et al., 2012). Activated AMPK up-regulates a number of downstream processes, including
mitochondrial biogenesis, beta oxidation, glucose uptake, and autophagy, while inhibiting protein
synthesis (Burkewitz et al., 2014). Metformin is a chemical activator of AMPK and has been shown to
extend lifespan in C. elegans (Onken and Driscoll, 2010).

Signaling through these nutrient sensing pathways likely explains the lifespan extension by
dietary restriction (DR), in which an animal’s dietary calorie intake is reduced while maintaining
normal balance of nutrients. DR is the first method proven effective in extending mammalian
longevity, and it has been validated in yeast, worms, flies, and mice (Fontana et al., 2010; McCay et
al., 1935; Sinclair, 2005). Animals under DR experience substantial metabolic remodeling, with
significant changes in endocrine levels, fat oxidation, reactive oxygen species production and protein
turnover, mimicking the responses to mild biological stress (Sinclair, 2005). However, the exact
mechanisms of DR are not fully clear: in Drosophila it seems the reduction of nutrients, rather than
calories, is responsible for the lifespan extension (Mair et al., 2005); reduction of methionine alone is
sufficient to produce the longevity effect (Lee et al., 2014); and the benefit of DR can be achieved
even when initiated late in life (Mair et al., 2003). The effectiveness of DR in primates is still debated
(Colman et al., 2014; Mattison et al., 2012). Nevertheless, numerous lines of evidence have linked DR
to each of these nutrient sensing pathways, and there are also cross-talks among the signaling cascade
components. It is possible that DR may produce the condition of low amino acids, high NAD*/NADH

ratio and high AMP/ATP ratio, thereby impacting all of these pathways (Figure 1.1C). It was recently



demonstrated that mice with only one copy of Myc exhibited increased lifespan, reduced serum IGF-
1, increased AMPK activity and reduced AKT, TOR and S6K activities (Hofmann et al., 2015),
suggesting yet another potential intervention point for lifespan extension.

While many of the lifespan experiments were conducted in metazoa, particualrly fruit flies,
worms, and mice, the unicellular budding yeast Saccharomyces cerevisiae was particularly useful for
early steps in our understanding of aging and longevity. The lifespan of yeast can be defined as either
“replicative” (RLS; the number of daughter cells produced by a mother cell before senescence) or
“chronological” (CLS; the length of time a yeast cell can survive in a non-dividing state) (Kaeberlein
et al., 2007), and several known regulators of aging were discovered using these assays. It was found
that reducing glucose or amino acids in culture media can extend both RLS and CLS (Jiang et al.,
2000; Reverter-Branchat et al., 2004). Genome-wide screens of single-gene deletion strains for
extended lifespan have identified mutations that decrease TOR activity (Kaeberlein et al., 2005;
Powers et al., 2006). The role of sirtuins in lifespan regulation was also first demonstrated in yeast, as
overexpression of STR2 increased RLS by suppressing homologous recombination at rDNA repeats
and preventing accumulation of extrachromosomal rDNA circles, whereas the deletion of S/R2
produced the opposite effects (Kaeberlein et al., 1999; Kennedy et al., 1995; Sinclair and Guarente,
1997). Sir2 orthologs were subsequently found to mediate lifespan extension in both worms and flies

(Longo and Kennedy, 2006; Rogina and Helfand, 2004; Tissenbaum and Guarente, 2001).



LONGEVITY ACROSS DIFFERENT SPECIES

The other area of aging research looks at the lifespan differences across species, which is the
subject of this dissertation. Let’s consider a simple example: a boy, a cat, and a mouse, all living
under the same roof, can be considered under the influence of a similar set of environmental factors.
In the absence of diseases and accidents, the boy will almost certainly be around to celebrate his 60th
birthday. If he (or the cat) is lucky, he may keep the cat as a pet for 10-15 years. However, it is almost
impossible for the mouse to survive beyond 4 years of age. What causes such dramatic difference in
lifespan?

If we focus on mammals only, the differences in longevity are already remarkable (Figure
1.2A). All modern mammals descend from a common ancestor that lived ~210 million years ago, yet
they exhibit more than 100-fold differences in lifespan and 50 million-fold variation in body weight
(Tacutu et al., 2013) (Figure 1.2B). On the one extreme are small and short-lived species: Etruscan
shrews (Suncus etruscus) weigh ~ 2g and live up to 3.2 years. The other extreme are the large and
long-lived beasts: African elephants is the largest land mammal, weighing up to 6 tons and living to
70 years; in the ocean, bowhead whales (Balaena mysticetus) can weigh > 100 tons and are estimated
to live > 200 years (Tacutu et al., 2013). In general, the longer-lived species also tend to be bigger,
produce fewer offspring, grow more slowly, and have lower mass-specific metabolic rates (Peters,
1986; Sacher, 1959; Western, 1979), suggesting these life history traits may be modulated by the
same underlying evolutionary forces. In addition, certain lineages have evolved to live longer as a
whole: despite their small body sizes (~10-20 g; similar to shrews and small rodents), most bats can
live for 10-20 years (compared to <4 years in shrews and small rodents) (Seim et al., 2013) (Figure
1.2B). In other instances, exceptionally long-lived species have emerged sporadically among short-
lived taxonomic relatives: the naked mole rat (Heterocephalus glaber) lives ten times longer than
other rodents of comparable size (Buffenstein, 2008; Fang et al., 2014; Kim et al., 2011). Humans
(Homo sapiens) are also exceptionally long-lived: Jeanne Calment of France held the longevity record
of 122 years and 164 days (Whitney, 1997), while gorillas, chimpanzees and orangutans can live to ~

60 years (Tacutu et al., 2013).
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Life expectancy can be impacted by unnatural causes of death, such as diseases, accidents,
homicide, and suicide. Over the last century, the life expectancy at birth in developed countries has
increased by 27 years, largely achieved by the improvement in public health care (Hayflick, 2007).
Nevertheless, heathcare alone cannot change the biological limit of longevity: even with the best
provision of nutrients and care in a laboratory, no mice can survive beyond 5 years. Therefore, when
talking about longevity of a species here, we refer to its maximum lifespan or maximum lifespan
potential, i.e. the longest time a member of the species has been observed to live, or the longest time it
has the potential to live (assuming free from predation and other external causes of death). For most
animals this refers to their lifespans in captivity (Holliday, 2006); but for the exceptionally long-lived
species, one has to rely on unconventional methods. For example, a male Brandt’s bat (Myotis
brandtii) was recaptured in the wild in Siberia of Russia, 41 years after it was originally banded
(Podlutsky et al., 2005). Harpoon points made of ivory and stone were found in three bowhead whales
captured in 2007; such weapons were last manufactured in New England in about 1880 (Gardner,
2007). Since maximum lifespan may suffer from reporting bias, as an alternative one can track female
time to maturity (i.e. time taken to reach puberty), which may be measured more easily and correlate
significantly with maximum lifespan (Pearson correlation 0.83; Figure 1.2C).

One useful framework to view the variation in longevity is the #/K selection theory, which
highlights the links among lifespan, reproduction, and selection pressure (Austad, 1997; MacArthur
and Wilson, 1967; Pianka, 1970). Briefly, the r-selected species tend to be small in size, have short
generation time, and produce many offspring, although each of the offspring has relatively low
probability of reaching adulthood. Examples include small rodents, which often occupy the bottom of
the food chain and compete by their sheer numbers. On the other hand, K-selected species are large in
size, mature slowly, produce fewer offspring, but each has high chance of survival and relatively long
lifespan. Large animals like humans and whales are K-selected species and are usually on the top of
the food chain; they win by quality, not quantity. Although the K-selected species have high chance of
survival, over-reproduction and over-population may cause them to quickly run out of food.
Therefore, the optimal strategy choice depends on the evolutionary force and selection pressure, and

some experiments suggest that changes in these factors can indeed influence species lifespan. A study



of two Virginia opossum populations separated for ~5000 years reveals that the population on an
island with less exposure to predators had greater survivorship, reduced litter sizes, slower
acceleration of age-specific mortality, and fewer signs of physiological aging, when compared to the
control population living on mainland (Austad, 1993). Experiments on Drosophila also showed that in
populations selected for late reproduction, the lifespan of flies increased significantly, together with
delayed senescence and reduced early fecundity (Luckinbill et al., 1984).

Yet, on the molecular level, the mechanism of lifespan variation across species is still poorly
understood. For example, are those pathways involved in the aging regulation within a single species
also applicable across different species? Do the naturally long-lived species have a transcriptomic and
metabolic state similar to those laboratory animals under DR? Although telomeres tend to shorten
with age and stress (Epel et al., 2004) and there have been reports linking telomere length with
longevity in human individuals and birds (Cawthon et al., 2003; Heidinger et al., 2012), the lengths of
telomere across different species in fact show negative correlation with maximum lifespan (Gomes et
al., 2011), e.g. humans have the shortest telomeres, but the longest lifespan among primates (Kakuo et
al., 1999). Other authors have quantified a number of biochemical and enzymatic parameters using
samples across various species and revealed that the longer-lived ones probably have greater
maintenance capacity, suffer less damage, and are more efficient at repair than the shorter-lived ones
(Holliday, 1997, 2006) (Table 1.1). However, until recently there have been only very few cross-
species comparative studies analyzing the entire mammalian transcriptome or metabolome (Brawand
et al., 2011; Fushan et al., 2015; Merkin et al., 2012). Besides the difficulty in obtaining reliable
samples, the large-scale quantification of gene expression and metabolites only recently became cost
effective, due to advance in high-throughput sequencing and mass spectrometry. In contrast to the
studies comparing treatment and control samples of a single species, cross-species analyses bring
about special statistical considerations due to the phylogenetic relationship and statistical non-
independence. Furthermore, to date there are only < 50 mammalian species with publicly available
complete genomes, posing significant challenges on the read alignment of RNA sequencing data

without reference genomes.
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Another valuable approach has been to compare exceptionally long-lived species with closely
related species characterized by more common lifespan, identifying features associated with
exceptional longevity. Examples include amino acid changes in Uncoupling Protein 1 (UCP1) and
production of high-molecular-mass hyaluronan in the naked mole rat (Kim et al., 2011; Tian et al.,
2013); unique sequence changes in IGF1 and GH receptors in Brandt’s bat (Seim et al., 2013); gene
gain and loss associated with DNA repair, cell-cycle regulation, and cancer, as well as alteration in
insulin signaling in the bowhead whale (Keane et al., 2015; Seim et al., 2014); and duplication of the
p53 gene in elephants (Abegglen et al., 2015). Again, it is important to ascertain whether these
mechanisms are unique characteristics of certain exceptionally long-lived species, or they can also be

extended to account for the general lifespan variation (Partridge and Gems, 2002).
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Table 1.1. Comparison of maintenance and repair efficiencies across different mammalian

species. Table is based on (Holliday, 1997).

Parameters measured Longevity Species Reference
Correl.
Longevity of fibroblasts in vitro positive

Mouse, rat, kangaroo rat, mink,

rabbit, bat horse, human

(Rohme, 1981)

Longevity of erythrocytes in vitro positive
Poly (ADP-ribose) polymerase o Elgphant., pig, rabbit, horse, rat, (Grube and
o positive guinea pig, marmoset, sheep, ..
activity . . Biirkle, 1992)
chimpanzee, gorilla, donkey, cattle
Mouse, rat, shrew, hamster, rabbit, (Cortopassi and
Rate of DNA repair Positive dog, cat, cow, horse, elephant, P
Wang, 1996)
corolla, human
o . . (Yamauchi et
Cross-linking of collagen negative Human, bovine, rat
al., 1988)
Mitochondrial membrane neeative Mouse, rat, guinea pig, sheep, dog, (Pamplona et
peroxidizability index & pig, cow, horse al., 1998)
. . S . Mouse, rat, guinea pig, dog, pig, (Pamplona et
Liver fatty acid peroxidizability index | negative cow, horse al., 2000)
. . Finch, tree swallow, penguin, tern, (Haussmann et
Rate of telomere shortening negative Leach’s storm-petrel al., 2003)
Mitochondrial free radicals production | negative
Lung glutathione reductase activity negative
Combining data from a number of (Perez-Campo
studies etal., 1998)
Brain glutathione peroxidase activity negative
Liver catalase activity negative
Oxidative damage to DNA negative Mouse, rat, monkey, human (Adellrrglgré)et al.,
Oxidative damage to mitochondrial negative Mouse, rat, guinea pigs, rabbit, (Barja and
DNA g sheep, pig, cow, horse Herrero, 2000)
Susceptibility to protein oxidation negative Mouse, rat, rabbit, pig, pigeon (Agarwal and
P ytop g , Iat, > P18, P12 Sohal, 1996)
Capacity to convert benzo(a)pyrene to negative Hamster, mouse, rat, guinea pig, (Moore and

water-soluble metabolites

rabbit, cow, elephant, human

Schwartz, 1978)
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SCOPE OF DISSERTATION

This dissertation presents the analyses of transcriptomes, metabolomes, proteomes and/or
ionomes, across different species of mammals and Drosophila, and natural isolates of budding yeast
Saccharomyces cerevisiae, to identify the molecular patterns and signatures associated with species
longevity.

Chapter 2 focuses on the key methods employed in the analyses. It explains the rationale and
implementation of phylogenetic regression to account for the phylogenetic relationship of the cross-
species data, and the two-step verification procedure to assess data robustness. It also presents the
method for identifying ortholog sets and aligning RNA sequencing reads, especially for the species
without publicly available genomes. Finally, given that the samples were collected from different
species with potentially significant variation in diet, gender, and other parameters, it addresses the
issue of data variability.

Chapter 3 presents the metabolome analysis of brain, heart, kidney, and liver across 26
mammalian species. The metabolites significantly enriched or depleted in a particular organ (e.g. low
glutamine in kidney) or among a particular phylogenetic lineage of species (e.g. low methionine
sulfoxide in liver of bats; the bile acid conjugation strategies among carnivores, herbivores and
omnivores) are discussed, in light of the known organ- and species-specific physiologies. Using
phylogenetic regression, the metabolites with significant positive or negative correlation to species
longevity were identified (e.g. long-lived species had high urate:allantoin ratio but low tryptophan
degradation products). The results are compared to the metabolic changes in 5 long-lived mouse
models, and certain overlapping metabolic changes (e.g. up-regulation of sphingomyelin and down-
regulation of polyunsatureated triacylglycerols) are discussed.

Chapter 4 presents the analysis of 18 metal and non-metal elements among the mammalian
species and organs discussed in Chapter 3. Here, the groups of elements with similar distribution
patterns (e.g. copper and zinc) were identified. The kidney and liver levels of selenium were also
found to correlate with the number of selenocysteine residuals of selenoprotein P sequences of the

species. In terms of longevity, liver selenium levels negatively correlated with species lifespan,
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whereas kidney and liver cadmium levels showed strong positive correlation, but it raised the
interesting question of correlation and causality.

Chapter 5 presents the analysis of transcriptome, proteome, and metabolome of 22 strains of
S. cerevisiae. The natural isolates with high replicative lifespan up-regulated oxidative
phosphorylation and mitochondrial respiratory chains and down-regulated protein targeting and
nitrogen compound biosynthesis. Interestingly, the strains differed not by mitochondrial numbers, but
by the composition of mitochondria, with the longer-lived strains having higher levels of proteins of
the pyruvate dehydrogenase complex, Complex III, and Complex IV, and the shorter-lived strains
with higher expression of outer membrane translocases and mitochondrial chaperones.

Chapter 6 examines the gene expression variation across 14 species of Drosophila, with mean
lifespan ranging from 8 days to ~60 days. It was observed that the longer-lived flies up-regulate the
genes in lipid metabolism and down-regulated those in neuronal development. Many genes previously
shown to affect lifespan in model organisms also showed similar directions of change with respect to
species lifespan.

Chapter 7 presents the analysis of gene expression and metabolites in primary skin fibroblasts
of 16 species of mammals (most of which were rodents). Regression against the longevity traits
revealed positive correlation with the genes involved in DNA repair and negative correlation with the
genes involved in proteolysis.

Similar conclusions were reached in Chapter 8, which profiled the gene expression in brain,
kidney, and liver across 42 mammalian species. Chapter 8 also reports up-regulation of ribosomal
proteins and down-regulation of tricarboxylic acid cycle; such patterns were also observed in
hibernating animals.

Chapter 9 summarizes the main findings across these datasets and discusses a number of

lessons learned from these analyses.
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PHYLOGENETIC REGRESSION

Given two sets of variables, x and y, their statistical relationship can be estimated using
regression analysis. With respect to longevity and aging research, one can perform regression between
any molecular measurement (e.g., gene expression or metabolite level) and longevity trait (e.g.,
maximum lifespan or time to maturity), to identity the genes or metabolites showing statistically
significant correlations.

Simple linear regression by ordinary least squares approach is perhaps the simplest and most
commonly encountered form of regression in biology research (e.g. in the form of two-sample t-test).
For the analysis to be valid, it requires the input data to meet a number of statistical assumptions,
some of which concern the regression residual (the difference between the predicted value based on
the regression model, and the actual observed value). Specifically, the variances of the residuals are
assumed to be equal (“homoscedasticity”) and uncorrelated (“independence”) (Logan, 2010). While
these assumptions are likely true for the random samples from a single species, the picture becomes
much more complicated for the samples collected across many different species.

Take as an example a study comparing brain glucose levels among different species of
rodents and carnivores. It is likely that the readings from all the rodent species will be similar to one
another, and the readings among the carnivores will be also similar. To determine whether there is
significant difference between the rodents and carnivores, one needs to consider not only the
difference in mean values, but also the variance (or standard deviation). Since all the rodent species
are phylogenetically related due to their shared evolutionary history (the same is also true for the
carnivores), the data variance is likely to be smaller than if these species were completely unrelated. If
one then applies simple t-test (which assumes the data points are independent) without regards to the
phylogenetic relationship, the variance will be underestimated and the significance will be overstated.

The solution to this problem has been provided by a number of authors in comparative and
evolutionary biology (Butler and King, 2004; Felsenstein, 1985; Freckleton et al., 2002; Garland et
al., 1993; Grafen, 1989; Martins and Hansen, 1997; Pagel, 1999). Known as “phylogenetic

9 ¢

regression”, “phylogenetically independent contrast”, or “phylogenetic generalized least squares”, this
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approach basically incorporates the phylogenetic relationship of the species, modifies the assumption
of independence and homoscedasticity, and performs regression analysis using generalized least
squares approach. The overall effect is to increase the stringency for statistical significance (i.e. the p
values under phylogenetic regression are usually much larger (less significant) than those under
simple linear regression), such that many of the candidates considered significant under simple linear
regression will no longer meet the cut-off. In other words, the approach requires that a relationship
across the species must persist, above and beyond what can be expected based on phylogeny.

The following sections will elaborate on: ordinary least squares (OLS) approach and its
assumptions; generalized least squares (GLS) approach and relaxation of OLS assumptions;
maximum likelihood (ML) approach and its relation to GLS; different trait evolution models (i.e.
different ways to describe the phylogenetic relationship); and a two-step verification procedure to test
robustness of results. The methods will be illustrated using the following numerical example of

longevity trait and metabolite level across 12 different species (Table 2.1 and Figure 2.1):
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Table 2.1. Hypothetical dataset showing metabolite and trait variations across different species.

Species Metabolite Trait
Guinea Pig 7.525 -0.682
Porcupine 8.946 0.293
Chinchilla 8.139 -0.121
Chipmunk 8.191 -0.044
Red Squirrel 8.744 -0.024
Fox Squirrel 9.322 0.025
Beaver 8.803 -0.022
African Grass Rat 7.863 -0.682
Gerbil 7.294 -0.652
Meadow Vole 8.368 -0.625
Cotton Rat 7.160 -0.783
White-footed Mouse 8.357 -0.322
A Fox Squirrel B internal node )
(e.g. common ancestor of tip

Guinea Pig, Procupine,

o] . and Chinchilla) /
= H i i
‘ H Porcupine \ Guinea Pig
Red Squirrel Porcupine
Meadow Vole  White-footed ‘ i Chinchilla

2 . Mouse
% oo | ; . @ Chipmunk ghlpmunlk
& o i Chinchilla ed Squirrel
D o5 Grass Rat i )
= @ Fox Squirrel
v root
4 (common ancestor
~ @Guinea Pig of all the species) Gerbil
6 Gerbil African Grass Rat
o .Cutlun Rat —— Meadow Vole
~ [ Cotton Rat
-OI.S -OI,4 0!0 0']4 : : l—IWh\te—footed Mouse
Taxonomic grouping Trait 75 50 25 0
. Caviomorpha |:| Castorimorpha Divergence time

M sciuromorpha [l Myomorpha (million years ago)

Figure 2.1. An example for phylogenetic regression.

(A) Plot of metabolite against trait. The data are based on Table 2.1. The species are colored by
taxonomic grouping. The green line indicates the OLS solution. The vertical dotted lines indicate
the regression residuals.

(B) Phylogenetic tree of the species. The root, tip, and internal node of the tree are indicated.
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Ordinary Least Squares approach

For the dependent variable y and independent variable X, the general form of the regression
model is:
y=Xf+¢
e yisan nx1 matrix (for n species)
e X s an nx2 matrix, containing s in the 1% column and the predictor in the 2™ column
e fis an 2x1 matrix containing the vertical intercept and slope
e gisan nx]1 matrix containing the regression residuals, with the assumptions that:
o & follows multivariate normal distribution;
o E(&) = 0 (i.e. mean value is 0), and
o Var(g) = oI, where I is an identity matrix (i.e. independence and homoscedasticity)
For an estimator B, the regression residual becomes:
e=y—XB
And the Residual Sum of Squares (RSS) is:
eTe=(y—XB) (v - XB)
The OLS solution f8 is one that minimizes RSS:

d(eTe) _ 0
op

0 _ SR _
B 'y -B"X"y—y"XB +B"X"XB) =0
—2XTy +2XTXB =0
P -1
B=(X"x) xTy

Hence 8 = (X Tx )_IXTy is the OLS solution. The statistics of 8 is given in Table 2.2.
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Table 2.2. Regression by ordinary least squares (OLS) approach.

General form:

Numerical example: y is metabolite level; X is trait

y=XB+e 7.5257 1 —0.682]
8.946 1 0.293
€ is an nx1 matrix 8.139 1 -0.121
containing residuals in the 8.191 1 -0.044 100 0 0
model and assuming: 8.744 1 -0.024 |[0 1 0 0 0]|
y = 9.322 X = 1 0.025 Var(e) = o2
& follows multivariate 8.803/ 1 -0.022) lo 0 0 1 0‘
normal distribution; 7.863 1 —-0.682 00 0 0 1
7.294 1 —-0.652
E(g) =0, and 8.368 1 —0.625
7.160 1 -0.783
Var(€) = oI, where I is 18.357 1 —0.322
an identity matrix
Formula to find predictor: (XTX)! = [0.146 0.207
B = (XTX)'XTy 0.207  0.683
B= 8.695
1.546
Variance: 7.5257 11 —0.6827 r—0.1157
Var([?) 8.946 1 0.293 —0.202
= G2 (XTX)1 8.139| |1 —0.121 —0.369
RSS o1 8.191 1 —-0.044 —0.436
=Tf_(X X) 8.744| |1 -0.024 0.086
e e=y—xp=|9322|_[1 0025|8695 _| 0589
= (XTx)"1 8.803| |1 —0.022|l1.546 0.142
where "2 7863| |1 —0.682 0.223
e  RSS: residual sum of 7.294 1 —0.652 —0.393
squares 7160| |1 os3 o328
*  dJ: degree of freedom 83571 L1 —0.322] [ 0.160 |
e (o is estimated by
RSS/d.f Var(B) = 2227 [-146 0207) _ 00219 0.0310
12 —210.207 0.683 0.0310 0.1023

Standard error (S.E.):
S.E.(B) = |Var(B)

Statistics:
_B_
S.E(B)

t value =

S.E. of intercept: v0.0219 = 0.148
S.E. of slope: v0.1023 = 0.320

Intercept: t value = 8.695/0.148 = 58.75, p value = 4.9x10°'4
Slope: t value = 1.546/0.320 = 4.831, p value = 6.9x10*
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Generalized Least Squares approach

Let’s still consider the regression model y = X8 + € and keep the assumptions that € follows
multivariate normal distribution and E (&) = 0, but now let Var(g) = 2%, such that:
o The diagonal elements of £ may be different (heteroscedasticity)
e The off-diagonal elements of X may be non-zero (autocorrelation)
If we can find a matrix W, such that:
wiw =x1
Then, the regression model can be transformed to:

Wy) = (WX)B + (We)
Making use of the results Var(X) = E [(X — E(X))(X — E(X))T]; E(€) = 0; and Var(g) = o22:

Var(We)
= E|(We - EWa)(We - EW?))' |
= E[(We)(We)']
= E[Wee"WT ]
= WE[eeT|WT
=WVar(e)WT
= Wo2ZW"
=02l
In other words, (Wy) = (WX)B + (We) satisfies the assumption of OLS and can be solved using the

formula:

—~

B
= (W' WX) ™ WX)" Wy)
= (X"TWTwx) " XTwTwy
= (XT(WTW)X) " XT(WTW)y
— (XTE_1X)_1XTE_1y
By analogy, the RSS is given by:
(We)T(We) = eTWTWe = T2 e
The GLS solution is presented in Table 2.3, assuming the matrix X is already known (based on

Brownian Motion model, Figure 2.1B).
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Table 2.3. Regression by generalized least squares (GLS) approach.

General form:

Numerical example: Y is metabolite level; X is trait

y=XB+¢ [7.5257 1 —0.6827
8.946 1 0.293
£ is an nx1 matrix 8.139 1 —-0.121
containing residuals in 8.191 1 -0.044
the model and assuming: 8.744 1 -0.024
y= 9.322 X = 1 0.025
& follows multivariate 8.803/ 1 -0.022f
normal distribution; 7.863 1 —-0.682
7.294 1 —-0.652
E(g) =0, and 8.368 1 -0.625
7.160 1 -0.783
Var(e) = 0%Z, 18357 1 —0.322
p)
r 1 043 043 0 0 0 0 0 0 0 0 0 1
0.43 1 049 O 0 0 0 0 0 0 0 0
043 049 1 0 0 0 0 0 0 0 0 0
0 0 0 1 05 0.5 0.02 0.02 0.02 0.02 0.02 0.02
0 0 0 0.5 1 074 0.02 0.02 0.02 0.02 0.02 0.02
0 0 0 05 074 1 0.02 0.02 0.02 0.02 0.02 0.02
0 0 0 0.02 0.02 0.02 1 0.05 0.05 0.05 0.05 0.05
0 0 0 0.02 0.02 0.02 0.05 1 049 047 047 047
0 0 0 002 002 002 005 049 1 047 047 047
0 0 0 002 002 0.02 005 047 047 1 056 0.56
0 0 0 002 0.02 0.02 005 047 047 056 1 0.56
L0 0 0 0.02 0.02 0.02 005 047 047 056 0.56 1
Formula to find predictor: rv-1vv—1 _ [0.225 0.163
B X27X _8[%83 0.670
— (YT y-1y\-1yT y—1 5 _ [
=X'Z'X)"' X'z y B = 1676
Variance: 17.5257 11 —0.6827 r—0.0327
Var([?) 8.946 1 0.293 —0.245
= o2(XTE1x)1 8.139 1 -0.121 —0.358
RSS . o . 8.191 1 -0.044 —0.435
=d_—f_(XE X) 8.744| |1 —0.024 0.084
Trle . 9.322| _[1 0.025 |8.700] _| 0.580
= (XTz1x)1 8.803 1 -0.022]l1.676 0.140
o B ey I
e  RSS: residual sum of : ) :
squares 8.368 1 —-0.625 0.716
e« df: degree of 7.160 1 -0.783 —0.227
freedom 18.3574 L1 —0.322! L 0.197 |
* 07 is estimated by oy 285210225 0.163]_ [0.0642 0.0464
RSS/d.f. var®) =135 l0163 0670 = 00464 01911
Standard error (S.E.):

S.E.(B) = [Var(B)

Statistics:

B
t l = —=
value = — @

S.E. of intercept: vV0.0642 = 0.253
S.E. of slope: v0.1911 = 0.437

Intercept: t value = 8.700/0.253 = 34.35, p value = 1.0x10"!
Slope: t value = 1.676/0.437 = 3.83, p value = 3.3x10
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Maximum Likelihood approach

In addition to the OLS and GLS approaches, the regression parameter can also be estimated

using Maximum Likelihood (ML). For example, suppose x is a univariate normal distribution with

2

known mean p and variance o2, i.e. x~N(u, 32), so the probability density function is given by:

F@) = oo™ 2
xX) = e 20
V2mo?

In other words, if we take #n random samples from the distribution x with known mean and variance,
then the frequency distribution of these n values is described by the above equation. The ML approach
can be considered the reverse process: given n values taken randomly from the distribution x, we can
estimate the mean and variance of such distribution. Mathematically, the likelihood function for

samples (x;, X2, X3, ..., X») is defined as:

n

n n 1 N2
L o) = [ [£Golio®) = @72 (67) 2e 2 et

r=1

which is often presented in the log form:
1 n
n n
In(L) = —Eln(Zn) — Eln(az) = 557 Z(xr —p)?
r=

The parameters u and o2 can be found iteratively, such that the likelihood L (or log-likelihood In(L))
is at maximum.

When this result is extended to k-dimensional, multivariate normal distribution .+ with mean
u and variance 02, i.e. x~N, (u, 02 X), the probability density function is given by:

1 MESDHES) k 11 . 1
f(x) = ——==e 2022 = (2m) 2 |02X| 2 e 202 (-T2 (x-p)

V(@2m)ko?x

For n random samples, the likelihood function and log-likelihood function are:

n
nk n _1en )T 1y —
Lt 0”210 = | [ Flio?s) = @77 |o?5| 2e 2o 0T G

r=1

nk n ) 1 - —
In(L) = = == In(2m) = 5 (102D = 55 > (e = T2t = )
r=1
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Recall that for the regression model y = Xf + &, the residual € is assumed to follow
multivariate normal distribution with mean E (&) = 0 and variance Var(g) = g2Z. Given € is an nx1

matrix, the log-likelihood is:

In(L)

= Mnem - Mn(o2E]) - — 5 1e
- T mem o mlo 202

= ~in(zm) - Zin(lo?E]) — = (RSS)

= 2 n(Zm 2 n(|o 2

When B = (XT271X)~1X" X2~y (the GLS solution), RSS is at minimum, i.e. [n(L) is at maximum. In
other words, the GLS (or OLS, in case of homoscedasticity and independence) approach and the ML

approach is equivalent.
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Different trait evolution models

So far, we have assumed that the matrix X in the variance Var(g) = 2% is already known.
The matrix X is sometimes called the variance-covariance (VCV) matrix, in which the diagonal
elements describe the variance of each sample, and the off-diagonal elements describe the covariance
between two selected samples. In the case of OLS, the matrix X is an identity matrix, such that the
diagonal elements are all 1s (and scaled by o2 to give equal variance for the residuals, i.e.
homoscedasticity) and the off-diagonal elements are all Os (i.e. independence among the residuals). In
the case of GLS, the diagonal elements can be unequal and the off-diagonal elements can be non-
zeros. This section will focus first on the situation of non-zero off-diagonals.

The evolutionary relationship of any given number of species can be represented using a
phylogenetic tree (Figure 2.1B). The tips of the tree showing the species names denote the present
states of the species, whereas the root of the tree denotes the state of the common ancestor of all the
species in the distant past. The internal nodes represent speciation events when two branches start to
diverge, and the branch lengths are proportional the amount of changes (Baum, 2008). Commonly, the
tree can be constructed based on nucleotide or protein sequence variations across the species, and

calibrated using fossils to represent the estimated time of divergence.

The Basics: Brownian Motion model

The evolution of a trait among species can be modeled by a Brownian Motion (BM) process
(Felsenstein, 1985; Revell, 2010; Revell et al., 2008). Consider a simple example of 4 species A, B, C,
and D (Figure 2.2). Setting the relative time as 0.0 at the root and 1.0 at the tip, the phylogenetic tree
illustrates three speciation events: at relative time 0.0, the ancestor of Species A and B splits from the
ancestor of Species C and D; at relative time 0.4, Species C and D split apart; and at relative time 0.7,
Species A and B split apart (Figure 2.2A). In other words, between relative time 0.0 and 0.4 Species C
and D evolve along the identical path, and between relative time 0.0 and 0.7 Species A and B evolve
along the identical path (Figure 2.2B, the black line). Only after the respective speciation events then

they start to evolve independently.
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Under the BM model, the amount of changes in a trait is proportional to time. If the rate of
change (per unit time) in the trait is 0 and is constant over the entire tree, then the variance between
Species A and the root of the tree (i.e. the common ancestor of all 3 species) is Var(4) = 2 x 1.0,
where 1.0 is the relative time between the root and tip. Similarly, Var(B) = 2 X 1.0, Var(C) =
02 x 1.0 and Var(D) = a2 x 1.0 for Species B, C and D, respectively. In addition, since Species A
and B evolve together between relative time 0.0 and 0.7, their covariance is Cov(4,B) = 02 x 0.7.
Similarly, the covariance between Species C and D is Cov(C,D) = 02 X 0.4. All the information can
be summarized using a VCV matrix X, where the diagonal is the relative time between the root and tip
of the tree, and the off-diagonal is the relative time between the root and the last common ancestor of

the two species (Figure 2.2C). Hence, variance in trait £ is Var(g) = 02 and can be solved by GLS.

B C

ancestor of Sp. Aand Sp. B

o |Sp.C
o |Sp.D

© - 1 [o.70

<€— ancestor of all Sp. 0.70( 1

o
o

Sp.C

/ Sp.D o -

ancestor of Sp. C and Sp. D ' Sp.D| O | O |0.40( 1

Sp.C{ 0 [0 | 1 ]040

Trait value

I T T T T 1
I | | | | | i - i
0.00 020 040 060 0.80 1.00 0.00 0.20 040 060 0.80 1.00 Var':’\?é?,f;‘;?,'i'f"ce

Relative time Relative time

Figure 2.2. Brownian Motion (BM) model of trait evolution.

(A) Phylogenetic tree showing the relative time of evolution.

(B) Simulation of trait evolution. The common ancestor of all 4 species is assumed to have a trait
value 0 (at relative time 0.0). The variance a2 is assumed to be 0.02. The trait was simulated over
1000 time points.

(C) The variance-covariance (VCV) matrix for the species.
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Variation: Null model and Lambda model

In BM model, we assume that the phylogenetic tree fully and accurately reflects the evolution
of trait. To relax this assumption, a number of ways have been proposed to transform the phylogenetic
tree and VCV, one of the most common being “Pagel’s lambda” (Pagel, 1999). In the Lambda model,
the off-diagonal elements of the VCV are scaled by a factor lambda that ranges between 0 and 1
(Figure 2.3). There are two interesting situations. When lambda = 1, it is the same as BM model
(Figure 2.2C). When lambda = 0, all the off-diagonals are 0 and the diagonals are 1, i.e. it becomes an
identity matrix and variance in trait € is Var(g) = o1, satisfying the OLS assumptions; this is also
called the Null model. In other words, the Null model assumes that the species are effectively

independent of one another.

A orignal VCV transformed VCV
1 |o.70| O 0 1 0.70xA| OxA OxA
multiply off-diagonals by A;
"a“'sﬁ‘,g:,:w:ﬁon: 070/ 1 10 | 0] |eepdiagonals unchanged  |0-70%A| 1 OxA | OxA
o|o | 1[040 0=A=1 0xA | OxA 1 0.40xA
0 0 |0.40] 1 0xA 0xA  |0.40xA 1
B lambda=0 lambda=0.3 lambda=0.6 lambda=1
(Null model) (Brownian Motion model)
[&] o [&] a [&] o o [=]
a a a a a o a o
R R 2 W D
1 0 0 0 1 10.211 O 0 1 |042] O 0 1 10.70] O 4]
0 1 0 0 0.21] 1 0 0 0.42| 1 0 0 0.70| 1 0 0
Sp.C| 0 0 1 Sp.C| O [¢] 1 1012 Sp.C| 0 0 1 |0.24 Sp.C| 0 0 1 10.40
Sp.D| O 0 0 1 Sp.D| O 0 |0.12| 1 Sp.D| O 0 (0.24] 1 Sp.D| O 0 |0.40] 1

Phylogenetic trees:

Sp. D Sp.D Sp. D Sp.D

Trait simulation:

3“‘)* 3 w0 ;g w0 3 w -
S 5o S %o
5 ko B ®
[l = w = w4 [l
T T T T T T T T T T T T
0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00
Relative time Relative time Relative time Relative time

Figure 2.3. Lambda model of trait evolution.

(A) Lambda transformation of variance-covariance (VCV) matrix. The original VCV is
based on Brownian Motion model in Figure 2.2.

(B) The effects of different values of lambda. From left to right: the lambda value is 0,
0.3, 0.6 and 1, and the corresponding phylogenetic trees and trait simulation are shown

below. When lambda=0, it becomes the “Null” model.
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Variation: Ornstein-Uhlenbeck model

Under the BM model, the differences in a trait among the species simply increase with
divergence time. On the other hand, for certain traits (e.g. body temperature) there may be physical
limits and boundaries, or there may be an optimal value. The Ornstein-Uhlenbeck (OU) model (Butler
and King, 2004; Martins and Hansen, 1997) builds on the BM model, by adding the selection strength
parameter o and the optimal trait value 0, such that the trait values of the species will be pulled

towards 6. The effects of OU transformation on the VCV and trait evolution are illustrated in Figure

2.4. Note that when o=0, it becomes the BM model.

orignal VCV transformed VCV

1 lo.70| © 0 set the off-diagonals as: 1 R(0.70)| R(0) R(0)
e-th(1-x)(1 _ e-ZC(X)
(1-e29)

0 0 1 ]0.40 where "x" is the off-diago:al, R(0) R(0) 1 R(0.40)

"a" is the selection strength,
0 0 10.40( 1 and optimal value (8) is 0. R(0) R(0) |R(0.40) 1

A

070l 1 |0 |0 R(x)= R(0.70)| 1 R(0) | R(0)

transformation:

B alp(réan;(:;‘:’r:;ztlsro alpha=0.01, theta=0 a|pha=0_5, theta=0
© o o [=] (&) (=]
o @ a8 & & &
1 [0.70] 0 | O 1 06979 O 0 1 10.5900| © 0
0.70] 1 0 0 0.6979 1 0 0 0.5900 1 0 0
Sp.C| 0 0 1 10.40 Sp.C 0 0 1 0.3976| Sp.C 0 0 1 0.2862
Sp.D| O 0 [0.40| 1 Sp.D 0 0 0.3976 1 Sp.D 0 0 0.2862 1
Trait simulation:
%) [Tl q:_) 0~ g 0~
= = ©
o §O—W:\..ﬁ > O | a0
& g ’ &
': 10 [ L;P a = Ll.'|7 .
T T T T T
0.00 0.50 1.00 0.00 050 1.00 0.00 0.50 1.00
Relative time Relative time

Relative time

Figure 2.4. Ornstein-Uhlenbeck (OU) model of trait evolution.

(A) OU transformation of variance-covariance (VCV) matrix. The original VCV is based on

Brownian Motion model in Figure 2.2.

(B) The effects of different values of alpha. The optimal trait value (theta) is set as 0 in all cases.

When alpha=0, it becomes the BM model.
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Selecting the best model

Recall that for the hypothetical dataset (Figure 2.1), the regression of metabolite level against
longevity trait across 12 different species can be solved using GLS (Table 2.3), or if the species are
assumed to be independent of one another, using OLS (Table 2.2). In addition, the maximum
likelihood (ML) approach can also obtain the same results.

Both GLS and ML require 3 inputs: the independent variable (e.g. longevity trait), the
dependent variable (e.g. metabolite level), and the VCV. The form of the VCV depends on the
assumed model of trait evolution, and here four models (Null, BM, Lambda, and OU) are presented.
Different VCV can be generated by changing the model parameters (e.g. lambda or alpha), and then
be used as input for GLS or ML to obtain the regression slope and p value. The ML approach has an
additional advantage, that it calculates explicitly the likelihood under each set of parameters (i.e. the
goodness of fit of data), and the parameters are estimated at the same time as the regression statistics.
The best model will then be the one with the largest likelihood (Lavin et al., 2008). This approach also
means that one needs not make any a priori assumption on the mode of trait evolution: if the data do
suggest that the input data are independent and no phylogenetic correction is needed, then the ML
approach should simply return the Null model as the best model.

Table 2.4 illustrates the model selection using the hypothetical dataset. Since the OU model
produces the largest likelihood (i.e. least negative log likelihood), it is considered the best model and
its regression slope and p value will be reported. Note that in this case, the BM model is considered
inferior to the Null model based on maximum likelihood, and the Lambda model returns an estimated
lambda = 0 (i.e. effectively the Null model).

Table 2.4. The best model for the hypothetical dataset. See Table 2.1 for the values of the
longevity trait and metabolite level. See Table 2.3 for the variance-covariance (VCV) matrix of the

phylogenetic tree.

o ) Estimated
Model Log likelihood Slope coefficient Slope p value Parameter(s)
Null -4.540 1.546 6.887x10* --
BM -6.697 1.676 3.299x10 --
Lambda -4.540 1.546 6.887x10* Lambda=0
ou -4.534 1.543 7.110x10* Alpha=11.2
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Two-step verification procedure for robustness

Since the regression may be influenced by outlier values, a two-step verification procedure is
developed to assess the robustness of the results. In the first step, the point with the largest residual is
identified and removed, and regression is performed using the remaining points (Figure 2.5A). This
ensures the regression line will not be skewed by a single outlier, and the resulting p value is reported
as “p value.robust”. In the second step, regression is repeated by removing each of the remaining
points (already excluding the outlier point in the first step), one at a time, and the largest (i.e. least
significant) p value is reported as “p value.max” (Figure 2.5B). This ensures the relationship is

generalizable and does not depend on any single species.
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Figure 2.5. Two-step verification procedure.

(A) First step: remove the point with largest residual. Meadow vole has the largest residual
(0.64) and is removed. Regression using the remaining species gives p value = 2.33x10™* (i.e. p
value.robust).

(B) Second step: remove each species, one at a time. Removal of cotton rat gives the largest
(least significant) p value = 1.41x107 (i.e. p value.max). Meadow vole is already removed after the

first step.
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SPECIES WITHOUT REFERENCE GENOMES

RNA sequencing, read alignment and read counting

The general workflow for quantifying gene expression by RNA sequencing is illustrated in
Figure 2.6. RNA molecules are isolated from biological samples and fragmented into short sequences.
Using reverse transcription, these fragments are converted into a sequence library and the nucleotide
sequences can be read by a sequencing machine. If the reference genome for the species is publicly
available, the short reads can be aligned to the reference genome (e.g. using alignment software
STAR (Dobin et al., 2013)) and the number of aligned reads can then be counted (e.g. using
featureCounts function of Subread (Liao et al., 2014)) to represent the gene expression values.

If the species has no complete genome, then the transcriptome may be de novo assembled
from the short reads (e.g. using software Trinity (Grabherr et al., 2011)). By relying on the
overlapping sequences among the short reads, these reads may be “stitched” back together to derive
the original RNA sequences. These assembled sequences can then be used for read alignment and
read counting. However, for those genes with low expression, there may not be sufficient reads to

regenerate the complete sequences.
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Figure 2.6. Schematic workflow of gene expression analysis by RNA sequencing. When the

reference genome is available, the reads can be aligned to the r

eference genome directly. When the

reference is not available, the transcriptomes can be assembled de novo and then used for read

alignment. The assembly of transcriptomes replies on “stitchin
overlapping sequences. For modestly expressed genes, a part o

may fail to be assembled.

38

g” together the short reads with

f or the entire transcript sequences



Identification of gene orthologs across species

For studies involving samples from the same species, it is relatively straightforward to
identify the differentially expressed genes. On the other hand, for gene expression comparison across
different species, several complications can arise. First is the adjustment for the phylogenetic
relationship of the species, as discussed above. Second is the identification of gene orthologs (i.e.
genes in different species that evolved from a common ancestral gene by speciation). In order to make
meaningful comparison of the read counts of a particular gene, one needs to decide on the sequence of
this gene in each species to be used for read alignment and read counting. For the commonly studied
species, the ortholog sets can be downloaded from a number of online databases (e.g. HomoloGene of
NCBI; BioMart of Ensembl; and Multiz Alignment of UCSC Genome Browser). However, for the
less common species (especially those without complete genomes), there is little information on gene
orthology relationship. Aligning reads to the genome of a related species is often far from ideal: for
example, only 13% of the reads of African grass rat fibroblasts could be uniquely mapped to the
mouse genome (even though both belong to the same Family Muridae), and the alignment rate was
even lower for red squirrel (about 5%). Given that a few of the studies presented here involved
multiple species without complete genomes, a pipeline was developed to identify ortholog sequences

across the species (Figure 2.7).

Step 1: generate mouse reference

Based on the Mus musculus Ensembl genome and annotation (release 78), the longest
transcript was extracted for each protein-coding gene locus, after confirming the presence of start
codon and stop codon and the proper reading frame. Those transcripts containing highly repetitive or
highly similar sequences (e.g. genes coding for histones and olfactory receptors) were identified and
removed using BLAST (at e value cut-off 10°) (Camacho et al., 2009), ensuring that the read
alignment would be unique and unambiguous. This generated the Mouse Reference, representing the

coding sequences of 16,816 unique protein-coding genes.
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Step 2: identify species-specific ortholog sets

For each species, the transcriptome was assembled de novo using Trinity (Grabherr et al.,
2011). BLAST (with “dc-megablast” option) was performed between Mouse Reference and the
assembled transcriptome (and the published genome, if available) to identify the reciprocal best hits
(Tatusov et al., 1997). The sequences were trimmed down to open reading frame (i.e. flanked by start
and stop codons) using Exonerate (Slater and Birney, 2005). Within each ortholog sets, multiple
sequence alignment was performed using MUSCLE (Edgar, 2004) and the percentage of sequence
identity was assessed by MView (Brown et al., 1998).The sequence fragments or missing sequences

due to poor coverage were filled up using the consensus of related species.

Step 3: read mapping, counting, filtering and normalization

The RNA sequencing reads were aligned to the species-specific ortholog sets using STAR
(Dobin et al., 2013) and read counting was performed by featureCounts (Liao et al., 2014). Those
ortholog sets with too high counts (i.e. read counts contributing to >5% of the total counts) or too low
counts (i.e. less than 10 counts in > 30% of the samples) were discarded. The library sizes were scaled
by trimmed mean of M-values (TMM) method, logl10-transformed, and quantile-normalized

(Robinson and Oshlack, 2010).
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Ortholog quality assessment

Before proceeding with data analysis, we assessed the quality of the orthologs in terms of the
following areas (Figure 2.8; illustrated using data from Chapter 8):

Filling up with consensus

The sequence fragments and missing sequences were filled up using the consensus of related
species, for two main purposes. First, the ortholog sequences would be of similar lengths, so that read
count variations across the species would not be influenced by length differences. Second, if a gene
was expressed at low level in one species (and its sequence failed to be assembled de novo), the
consensus sequence of the related species could be used for read alignment and counting.

In the mammalian transcriptome dataset (Chapter 8), 80% of the orthologs did not require
filling up or were filled up <10% of sequence length, whereas only 4% were filled up 90~100% of
sequence length (Figure 2.8A). In terms of standardized expression values, there was no significant
bias against those filled up using consensus (Figure 2.8A), perhaps except for a slight decline in the
90-100% category. Therefore, the filling up procedure did not negatively impact the overall results.

Aligned to genomes vs. aligned to ortholog sets

Unlike a complete genome, the de novo assembled ortholog sequences did not contain introns
and non-coding regions. The 5’ and 3’ untranslated regions were also removed to facilitate sequence
alignment. For those species with publically available genomes, ~82% of the reads could be aligned to
the complete genomes and ~46% of the reads could be aligned to the ortholog sets. For those without
genomes, ~42% of the reads could be aligned to the ortholog sets (Table 2.5, Figure 2.8B). The
Spearman correlation coefficients between the read counts based on ortholog set alignment and those
based on genome alignment were > 0.95 for most species (Table 2.5, Figure 2.8B).

Our orthology definition vs. Ensembl orthology definition

For those species with annotated genomes in Ensembl, we compared our orthology definition
with the orthology definition in Ensembl. Orthology information for ~10,000 to ~15,000 of our
orthologs could be found in Ensembl, and 90-99% of them matched our orthology definition (Table

2.5), suggesting the results of our pipeline were consistent with other databases.
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genomes, the reads were also aligned to the genomes (middle), and the average Spearman

correlation coefficient between the read counts of ortholog set alignment and the read counts of

genome alignment was calculated for these species (bottom). See Table 2.5 for more details.
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Table 2.5. Assessment of ortholog sets quality. For each species, the reads were aligned to de novo
assembled ortholog sets, and if available, to the complete genome. The average Spearman correlation
coefficient between the read counts of ortholog set alignment and of genome alignment was
calculated (see Figure 2.8B). For those species with Ensembl annotations, the ortholog definition from

Ensembl were compared with our ortholog definition.

Alignment Rates and Counts Ortholog definition
Species Aligned to | Source of Aligned to | Read COl}lltS No. with No. (31' % o-f
complete | correlation | Ensembl | matching matching
DUOUERES EEns genome (mean) definition | definition | definition
Chicken 41.0% Ensembl 81.6% 0.958 11,249 11,182 99.4%
Platypus 47.2% Ensembl 66.2% 0.918 11,363 10,667 93.9%
Opossum 41.2% Ensembl 72.0% 0.958 13,569 13,454 99.2%
Sugar glider 32.4% N/A
Shrew 45.9% N/A
Hedgehog 37.4% Ensembl 50.1% 0.942 11,510 11,440 99.4%
Pig 47.0% Ensembl 81.8% 0.907 13,880 13,598 98.0%
Bowhead whale 43.9% N/A
Minke whale 45.8% NCBI 92.3% 0.974
Goat 43.9% NCBI 86.8% 0.971
Cattle 43.3% Ensembl 81.4% 0.973 15,095 15,005 99.4%
Yak 44.9% NCBI 89.9% 0.974
Brazilian bat 53.0% N/A
Tube-nosed bat 33.1% N/A
Brandt's bat 48.5% NCBI 68.9% 0.964
Horse 45.4% Ensembl 90.6% 0.977 14,866 14,808 99.6%
Cat 47.0% Ensembl 91.3% 0.981 14,827 14,743 99.4%
Dog 49.4% Ensembl 90.7% 0.966 14,900 14,819 99.5%
Bear 41.1% N/A
Badger 41.8% N/A
Rabbit 48.5% Ensembl 82.4% 0.951 14,039 13,942 99.3%
Tree shrew 54.0% Ensembl 53.4% 0.935 11,841 11,776 99.5%
Vervet 33.3% N/A
Baboon 56.2% NCBI 92.4% 0.965
Rhesus monkey 46.1% NCBI 92.9% 0.977
Macaque 44.8% Ensembl 76.3% 0.947 14,771 14,615 98.9%
Orangutan 44.9% NCBI 79.0% 0.962
Gorilla 45.8% Ensembl 79.6% 0.961 14,760 14,657 99.3%
Human 45.6% Ensembl 79.4% 0.966 15,409 14,934 96.9%
Bonobo 44.4% NCBI 77.3% 0.970
Chimpanzee 41.0% Ensembl 78.4% 0.963 14,576 14,527 99.7%
Guinea pig 44.2% Ensembl 84.1% 0.979 14,592 14,521 99.5%
Damaraland mole Rat 44.4% NCBI 92.2% 0.976
Naked mole rat 56.0% NCBI 96.2% 0.974
Chipmunk 42.1% N/A
Beaver 34.8% N/A
White-footed mouse 38.0% N/A
Hamster 46.6% NCBI 90.4% 0.976
Gerbil 45.5% N/A
Spiny mouse 54.7% N/A
Rat 48.3% Ensembl 89.2% 0.947 15,791 14,493 91.8%
Mouse 46.5% Ensembl 80.8% 0.961 16,817 16,817 100.0%
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DATA VARIABILITY

Each of the studies presented in this dissertation involves biological samples from different
species or strains, often obtained from different sources. While care has been taken to match the
samples by biological age and sex (e.g. for the mammalian species in Chapter 3, Chapter 4, and
Chapter 8, the samples were obtained from young, male adults (except for female for vervet and
horse)), other factors such as diet, circadian cycle, and even measurement inaccuracy, will introduce
additional data variation. Furthermore, we rely on the public database for the longevity trait
information; such data will not be entirely accurate either. Here the issue of data variability will be

discussed in more detail.

45



Within-species variation vs. between-species variation

Chapter 3 presents the metabolite data of brain, heart, kidney, and liver of 26 mammalian
species. Chapter 8 presents the gene expression data of brain, kidney, and liver of chicken and 41
mammalian species. Analysis of Variance (ANOVA) revealed that organs, species and their
interaction together accounted for 91% of the total variation in the metabolite dataset, and 87% of the
total variation in the gene expression dataset, whereas the differences between replicates accounted
for only 9% and 13%, respectively (Figure 2.9). This suggests the within-species variation is likely to

be much smaller than the between-species variation.
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Figure 2.9. Sources of data variation. The box plots showed the distribution of the ANOVA

results for individual metabolites (left) or genes (right).
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Samples from different datasets

In Chapter 8, besides the samples collected and sequenced by our laboratory (Fushan et al.,
2015), other published RNA sequencing samples were also incorporated (Brawand et al., 2011;
Merkin et al., 2012). For the species that were common across different datasets, we analyzed their
variations by hierarchical clustering. For example, Fushan et al. (Fushan et al., 2015) reported
expression data in brain, kidney, and liver for 3 mice and 2 cattle; Brawand et al. (Brawand et al.,
2011) reported data in brain, cerebellum, heart, kidney, and liver for 3 mice (as well as testis for 2 of
the mice); and Merkin et al. (Merkin et al., 2012) reported data in brain, heart, kidney, and liver for 2
cattle (Figure 2.10). The result showed that the samples segregated first by organ, then by species, and
there was no obvious segregation by the sources of sample. The variations between the replicates

were smaller than the variations between species and between organs.
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Metabolic effects of drug treatment and gene knockout

In Chapter 3, metabolite profiling was performed on brain, heart, kidney and liver of 26
mammalian species, as well as on brain and liver of 5 long-lived mouse models (i.e. caloric restriction
(CR), rapamycin treatment (RAP), acarbose treatment (ACA), growth hormone receptor knock-out
(GHRKO), and Snell dwarf mutant mice). Compared to wild-type, these long-lived mice exhibited
certain metabolic changes (e.g. lower level of polyunsaturated triacylglycerols and higher levels of
sphingomyelin) that were also found to correlate with longevity across various mammalian species
(Chapter 3). To visualize the extent of metabolic changes, we performed Principal Component
Analysis (PCA) on brain and liver data of the long-lived mice, wild-type mice, and the other
mammalian species (Figure 2.11). The result showed that while these treatments and gene
manipulation changed the metabolite levels in these mice, the long-lived mouse samples still clustered
more closely to the wild-type mice than to the other species, suggesting that the inherent metabolic
signatures of the species are relatively robust, and the variations across biological replicates are minor

compared to the variations across different species and organs.
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Figure 2.11. Sources of data variation. The box plots showed the distribution of the ANOVA

results for individual metabolites (left) or genes (right).
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ABSTRACT

Biological diversity among mammals is remarkable. Mammalian body weights range seven
orders of magnitude and lifespans differ more than 100-fold among species. While genetic, dietary,
and pharmacological interventions can be used to modulate these traits in model organisms, it is
unknown how they are determined by natural selection. By profiling metabolites in brain, heart,
kidney, and liver tissues of 26 mammalian species representing ten taxonomical orders, we report
metabolite patterns characteristic of organs, lineages, and species longevity. Our data suggest different
rates of metabolite divergence across organs and reveal patterns representing organ-specific functions
and lineage-specific physiologies. We identified metabolites that correlated with species lifespan,
some of which were previously implicated in longevity control. We also compared the results with
metabolite changes in five long-lived mouse models and observed some similar patterns. Overall, this
study describes adjustments of the mammalian metabolome according to lifespan, phylogeny, and

organ and lineage specialization.
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INTRODUCTION

All modern mammals descend from a common ancestor that lived ~210 million years ago
and have since undergone remarkable diversification in morphology, life history, and other
characteristics. Their body parts, such as tongues, ears, fingers, and feet, have been modified for
numerous functions including nectar-feeding, echolocating, swimming, flying, and digging; their
body weights range from under 2 g (Etruscan shrew, Suncus etruscus) to over 150 tons (blue whale,
Balaenoptera musculus); and their maximum lifespans differ by more than 100-fold (Tacutu et al.,
2013). Many of the traits affecting development, body weight, and lifespan (i.e., the life history traits)
are often correlated. Longer-lived species tend to be bigger, produce fewer offspring, grow more
slowly, and have lower mass-specific metabolic rates (Peters, 1986; Sacher, 1959; Western, 1979),
indicative of modulation by the same underlying evolutionary forces. Certain lineages (e.g., bats
(Seim et al., 2013) and primates) have evolved to live longer as a whole, whereas other instances of
exceptional longevity have emerged sporadically among short-lived taxonomic relatives (e.g. the
naked mole rat (Heterocephalus glaber) lives ten times longer than other rodents of comparable size
(Buffenstein, 2008; Fang et al., 2014; Kim et al., 2011)).

Longevity is elastic and can vary along a continuum, but the underlying factors are only
starting to be characterized. Research in model organisms revealed several important molecular
players, such as insulin-like growth factor 1 (IGF-1) (Friedman and Johnson, 1988; Holzenberger et
al., 2003; Tatar et al., 2001), mechanistic target of rapamycin (mTOR) (Kenyon, 2010; Vellai et al.,
2003), and sirtuins (Lin et al., 2000; Tissenbaum and Guarente, 2001). Dietary and pharmacological
interventions can also extend lifespan in diverse organisms (Harrison et al., 2009; McCay et al., 1935;
Weindruch et al., 1986). In particular, lifespan of laboratory mice can be increased by restriction of
food or methionine (Flurkey et al., 2010; Sun et al., 2009), administration of rapamycin (Harrison et
al., 2009; Miller et al., 2014) or acarbose (Harrison et al., 2014), or certain genetic mutations (Ladiges
et al., 2009). Rapamycin, an inhibitor of mMTORCI, leads to 23-26% increase in median lifespan of
mice (Miller et al., 2014). Acarbose inhibits glycoside hydrolases (the enzymes that digest complex

carbohydrates to absorbable sugars in the gastrointestinal tract) and is used clinically to blunt post-
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prandial glucose surges in diabetic patients; it seems plausible that limiting peak glucose
concentrations may explain its longevity benefits. Mutant strains such as Snell dwarf (defective in
anterior pituitary development) (Flurkey et al., 2001) and growth hormone receptor knockout
(GHRKO) (Coschigano et al., 2003) are also long-lived, due to altered signaling in growth hormone
(GH) itself or through GH-stimulated production of IGF-1.

How longevity is modulated during evolution to produce both long-lived and fit animals,
however, is still unclear. Lifespan is an inherent characteristic of a species and remains relatively
stable through generations, but it can also change in either direction over time. In order to vary
lifespan on an evolutionary time scale, a number of biological pathways may need to be altered,
rewired or reprogrammed. Omics-scale comparative studies across multiple species are instrumental
in understanding the evolution of mammalian genomes and gene expression (Brawand et al., 2011;
Lindblad-Toh et al., 2011). To gain insights into the metabolic basis of mammalian diversity and
longevity, we quantified metabolite levels in brain, heart, kidney, and liver tissues of 26 species of
mammals and identified metabolites with organ-, lineage-, and trait-specific patterns. We described
the metabolite divergence and distribution in different organs; linked the lineage-specific metabolic
patterns to lineage-specific physiologies; and identified metabolites with positive or negative
correlation to longevity traits. In addition, we profiled the metabolites in brain and liver of five long-
lived mouse models (caloric restriction, rapamycin treatment, acarbose treatment, GHRKO, and Snell
dwarf) and compared the observed changes with the mammalian longevity signatures. Our study
provides the first glimpse into how metabolism may have been altered to modulate mammalian

lifespan.
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RESULTS

Metabolite conservation and divergence among organs

We applied targeted metabolite profiling to quantify the metabolite levels in brain, heart,
kidney, and liver of 26 species of mammals, representing 10 taxonomical orders and covering a wide
range of longevity-associated traits (Figure 3.1, Table 3.1). The species were matched by biological
age (all young adults) and sex (all were males, except for horse and vervet). Biological replicates (i.e.
samples from multiple individuals of a species) were collected for most of the species (Table 3.1).
Those metabolites with more than 20% missing values in a particular organ were excluded from
analysis in that organ (Figure 3.2A). In total, 162 water soluble metabolites and 100 lipids were
reliably detected across 235 samples. Across the biological replicates, over 90% of the measurements

had coefficient of variation (i.e. standard deviation divided by mean) < 0.06 (Figure 3.2B).
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Figure 3.1. Diversification of mammals.

(A) Maximum lifespan correlates positively with body mass. Maximum lifespan (years) was
plotted against adult weight (grams) on log10-scale for 995 mammalian species from AnAge
database (Tacutu et al., 2013), color coded by taxonomical orders. To simplify the color scheme,
Artiodactyla and Perissodactyla were grouped together, and Ericomorpha and Soriceomorpha were
grouped together.

(B) Phylogeny of the mammals examined in the current study. Branches and tips are colored
according to taxonomical orders (same color scheme as in (A)). Divergence times were based on
previous estimates (Fushan et al., 2015; Meredith et al., 2011). Animal silhouettes are for

illustration only.
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Figure 3.2. Mammalian species dataset quality assessment.

(A) Number of metabolites with missing values in each organ. Those metabolites with more
than 20% missing values were excluded from analysis.

(B) Coefficient of variation among biological replicates. Coefficient of variation was computed
as standard deviation divided by mean, using only those samples with biological replicates. The
90th percentile was 0.06 and 95th percentile was 0.08.

(C) Percentage of total variation in metabolite levels attributed to organ, species, and
biological replicates. The plot indicates the percentage of total sum of squares in analysis of
variance (ANOVA) attributed to the respective factors. The model “Metabolite Level ~ Organ +
Species + Organ:Species” was fitted to each metabolite across the four organs (“Organ:Species”
denotes the interaction term).

(D) Percentage of total variation in metabolite levels in each organ attributed to species and
biological replicates. The model “Metabolite Level ~ Species” was fitted to each metabolite within

the indicated organ.
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Principal Component Analysis revealed the samples segregated predominantly by organ
origin, with most of the replicates clustering together and the first three Principal Components
accounting for about 50% of the total variance (Figure 3.3A). Variations due to organ, species, and
biological replicates were assessed by analysis of variance (ANOVA). In terms of the overall data,
organ and species origins accounted for over 80% of total variation (Figure 3.2C). In terms of the data
within each organ, species origins accounted for over 80% of variation (Figures 3.2D). This indicated
the between-species and between-organ variations were much greater than the within-species
variations. The clustering pattern also agreed with those based on mammalian gene expression
profiles (Brawand et al., 2011; Fushan et al., 2015), suggesting that metabolite levels and organ-
specific metabolism were generally well conserved across the mammals.

The phylogenetic relationship of many mammals has been established based on fossil and
molecular evidence (Brawand et al., 2011; Fushan et al., 2015; Meredith et al., 2011). To determine if
their metabolite levels recapitulate this relationship, we constructed phylograms using the metabolite
levels in each organ and found them largely consistent with the reference phylogeny (Figure 3.4A).
The brain phylogram had the shortest tip-to-root branch lengths (Figures 3.4B and 3.4C), and we
found by data simulation that increasing branch lengths might be due to deviation from phylogeny and
presence of random noise (Figure 3.4D). The brain samples also showed highest Spearman correlation
coefficients (Figure 3.3B) and had the largest proportion of metabolites with high phylogenetic
signals (i.e. Pagel’s lambda > 0.9 (Pagel, 1999) and Blomberg’s K > 1 (Blomberg et al., 2003);
Figures 3.3C and 3.3D), suggesting that brain metabolites are most conserved among the four organs
and have evolved largely according to the phylogeny (Brawand et al., 2011). In contrast, the
metabolites in the other examined organs diverge to much greater extent, possibly due to stronger

environmental influence or other selection pressures.
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Figure 3.3. Metabolite divergence and correlation.

(A) Samples segregate predominantly according to organ origin. Values in parenthesis indicate
the percentage of variance explained by each of the first three Principal Components (PCs).
Biological replicates were treated as individual points.

(B) Brain samples show highest Spearman correlation coefficients. The box plot shows the pair-
wise correlation among the samples in each organ. Wilcoxon rank sum test p value < 2x10'¢ for
brain against each of the other organs.

(C) and (D) Brain has the largest percentage of metabolites with high phylogenetic signals. In

(C), only Pagel’s lambda > 0.6 are shown. In (D), the dotted line indicates Blomberg’s K=1.0.
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Figure 3.4. Metabolite divergence in mammalian organs.

(A) Phylograms based on metabolite levels in each organ. The trees were constructed by neighbor
joining method using a distance matrix of 1 minus Spearman correlation coefficients. Biological
replicates were treated as individual tips and the branches were colored according to taxonomical
orders. Colors of nodes indicate 1000-time bootstrap values.

(B) and (C) Metabolites diverge least in brain. The average tip-to-root branch lengths excluded the
branch leading to sugar glider (the out-group). The box plot represents the results of 1000 trees
generated by bootstrap in each organ, using (B) all the species available or (C) only those species
common to all the four organs. The central bands indicate median values and the whiskers indicate 5th
and 95th percentiles. Wilcoxon rank sum test p values < 2x10-'¢ (Bonferroni-adjusted) for brain
versus each of the other organs.

(D) Simulation of tip-to-root branch lengths. The box plot represents the results of 1000
phylograms based on simulated data. For “Brownian motion”, the reference phylogenetic tree was
used directly (i.e. trait evolution follows phylogeny). For “OU model”, the tree was transformed with
a restraining force (a=1) to mimic the Ornstein-Uhlenbeck (OU) process. For “Pagel model”, the tree
was transformed by Pagel’s lambda (A=0.5). For “Random noise”, random normal variables with
mean 0 and standard deviation 1 were added to the simulated data from “Brownian motion” to mimic

the effect of non-phylogenetic variation.
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Figure 3.4 (Continued)
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Metabolite profiles reflect organ functions

The metabolite profile of an organ is expected to reflect its biological functions. We
visualized the distribution of metabolites on a heat map (Figure 3.5A) and used the Wilcoxon rank
sum test to identify metabolites selectively enriched or depleted in a particular organ (in comparison
with at least two other organs).

18 out of the 19 proteinogenic amino acids measured (cysteine was not quantified) were
found at moderate to high levels in kidney relative to the other organs, likely due to reabsorption at
the renal proximal tubule. One exception was glutamine (Figure 3.5B), which is routinely metabolized
by kidney for nitrogen disposal and acid-base balance. Glutamine is broken down to ammonia and
glutamate, helping to remove excessive protons and generate bicarbonate ions (van de Poll et al.,
2004).

The metabolite profile of the heart largely reflected its energy demand. Heart tissue was
depleted of amino acids and many other metabolites, but enriched with acylcarnitines (especially
short-chain acylcarnitines, Figure 3.5C) and triacylglycerols (TAGs). Acylcarnitines help transport
fatty acids across mitochondrial inner membranes (Vaz and Wanders, 2002), whereas carnitine acts as
an acetyl group acceptor, buffering the cellular pool of coenzyme A (CoA) and preventing inhibition
of pyruvate dehydrogenase, especially in tissues dependent on beta-oxidation (Hoppel, 2003).

In contrast, the brain normally relies on glucose for fuel and contains relatively few TAGs.
However, it had high concentrations of glycerophospholipids and a number of sphinogmyelins (SMs)
(Figure 3.5D), which are both key constituents of animal cell membranes. In particular, SMs are
mainly found in the myelin sheaths surrounding nerve cell axons. Neurotransmitters gamma-
aminobutyric acid (GABA) and glutamate were also present at high levels.

Liver was enriched with a wide range of metabolites including amino acids,
glycerophospholipids, carbohydrates, and steroids. Some of them were significantly higher than in the
other organs, likely indicative of liver-specific pathways. For example, sucrose and lactose were
found at very high concentrations in liver (Figure 3.5E), as these sugars are not routinely utilized by

the other organs. Bile acid components such as glycocholate, taurocholate, taurodeoxycholate and
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taurochenodeoxycholate were restricted mostly to liver (Figure 3.5E), since primary bile acids are

synthesized by liver cells from cholesterol.

For the lipids, we grouped them according to LIPID MAPS Classification System

(Experimental Procedures) (Fahy et al., 2007). Within each category, we compared the relative

percentage abundance of individual lipids in our study with those previously reported in human

plasma (Quehenberger et al., 2010). Significant correlations were observed for TAG,

lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and cholesteryl ester (CE) (Table 3.2),

suggesting the overall lipid composition was conserved across mammals.

Table 3.2. Correlation between the abundance of lipids measured in our study and previously

reported lipids in human plasma. Human plasma data are based on (Quehenberger et al., 2010). For

each class of lipid molecules, the relative percentage abundance of individual lipid molecules in a

mammalian species in brain (Br), heart (Ht), kidney (Kd), or liver (Lv) was computed and compared

with that reported in human plasma. Pearson () and Spearman (p) correlation coefficients between

the observed and the reported abundance were calculated. The 25th, 50th and 75th percentiles of the

correlation coefficients (across all the mammalian species) are shown below. Coefficients > 0.60 are

highlighted in bold. TAG: triacylglycerol; LPC: lysophosphatidylcholine; PC: phosphatidylcholine;

LPE: lysophosphatidylethanolamine; SM: sphingomyelin; CE: cholesteryl ester.

Lipid class TAG LPC PC LPE SM CE
Correlat?on » 5 p 5 » B » B » p ’ P
Percentile
25% 1030 036 | 086 | 0.64 | 036 | 0.65 | 0.19 | 0.15 | -0.03 | 0.36 | 0.63 | 0.50
Br 50t 1050 | 053 | 0.87 | 0.71 | 0.39 | 0.68 | 0.23 | 0.50 | 0.04 | 0.48 | 0.80 | 0.80
75t 1 0.61 | 0.69 | 0.88 | 0.71 | 0.43 | 0.70 | 0.36 | 0.50 | 0.10 | 0.64 | 0.95 | 0.80
25 1 0.74 | 0.72 | 0.76 | 0.66 | 0.48 | 0.66 | 0.11 |-0.17 | 0.06 | 0.39 | 0.93 | 0.71
Ht 50t 1 0.80 | 0.82 | 0.82 | 0.83 | 0.56 | 0.75 | 0.25 | -0.03 | 0.09 | 0.43 | 0.98 | 0.82
75% 1085 | 0.86 | 0.86 | 0.94 | 0.74 | 0.79 | 0.37 | 0.09 | 0.23 | 0.50 | 0.99 | 0.89
25" 1058 | 0.65 | 081 | 0.82 | 0.60 | 0.75 | -0.24 | -0.33 | 0.21 | 0.36 | 0.84 | 0.70
Kd 50t | 0.68| 0.73 | 0.86 | 0.86 | 0.66 | 0.77 | -0.09 | -0.23 | 0.35 | 0.43 | 0.94 | 0.75
75% 1 0.83 | 0.82 | 0.88 | 0.93 | 0.72 | 0.83 | 0.16 | -0.07 | 0.54 | 0.48 | 0.98 | 0.83
25" 1 0.69 | 0.74 | 0.69 | 0.71 | 0.69 | 0.77 | -0.27 | -0.36 | -0.06 | 0.29 | 0.69 | 0.61
Lv 50" 1 0.79 | 0.81 | 0.77 | 0.86 | 0.80 | 0.81 | -0.11 | -0.23 | -0.02 | 0.35 | 0.91 | 0.68
75% 1086 | 0.85 | 0.86 | 092 | 0.84 | 0.85 | 0.08 | -0.03 | 0.06 | 0.38 | 0.97 | 0.81
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Figure 3.5. Distribution of metabolites across the organs.

(A) The overall pattern visualized on a heat map. Hierarchical clustering was performed on

standardized concentrations using average linkage. Each row represents one metabolite and each

column represents one biological sample. Selected classes of metabolites are highlighted.

(B) Kidney is depleted of glutamine. Each box represents the range of standardized concentrations

for a particular amino acid in kidney across the mammals.

(C) Heart is enriched with carnitine and short-chain acylcarnitines. The alternative names are

acetylcarnitine (C2 carnitine), propionylcarnitine (C3 carnitine), and malonylcarnitine (C3-DC

carnitine).

(D) Brain is enriched with sphingomyelins (SM) and the neurotransmitter gamma-

aminobutyric acid (GABA).

(E) Liver has high levels of sucrose, lactose, and bile acid components.



Metabolites with lineage-specific changes

Since a particular lineage of mammals often exhibits biological and physiological features
distinctive from the others, we grouped the species by taxonomic orders or families and applied
phylogenetic ANOVA (Garland et al., 1993) to determine if the concentration of a metabolite in one
group was significantly different from the other groups.

Bats (Order Chiroptera) showed significantly reduced levels of methionine sulfoxide in both
kidney and liver (phylogenetic ANOVA p value = 0.003 in kidney and 0.002 in liver), while their
methionine levels were typical of other mammals (Figure 3.6A). Methionine sulfoxide is produced by
oxidation of methionine by reactive oxygen species (ROS) and in most species its level increases
during aging or oxidative stress (Berlett and Stadtman, 1997). Bats are the longest-lived mammalian
order after controlling for the effect of body size and there is evidence that they produce less ROS and
are more resistant to oxidative stress. For example, cave Myotis bats and Mexican free-tailed bats
(both with maximum lifespan potential of 12 years) show lower protein carbonylation and
ubiquitination in liver than mice and their cells are more resistant to protein oxidation (Salmon et al.,
2009; Shi et al., 2010). Bat mitochondria from heart also produce less hydrogen peroxide than those
from shrew and white-footed mouse (Brunet-Rossinni, 2004), although the differences are less than
divergence in their maximum lifespans (Buffenstein et al., 2008). Hence, low methionine sulfoxide
levels are consistent with reduced oxidative stress generally observed in bats.

Several genetic and physiological features of African mole rats (Order Bathyergidae) are
distinct from those of other rodents (Fang et al., 2014; Kim et al., 2011), so we compared
Bathyergidae against the other examined species, as well as against the other rodents. Several
metabolites were detected in both comparisons across multiple organs, including enrichment of
acetylglycine (in heart and liver), enrichment of trimethylamine N-oxide (in brain and heart), and
depletion of allantoin (in brain, heart, kidney, and liver) (Figure 3.6B). This depletion of allantoin in
the Bathyergidae is particularly striking, since other African rodents (in particular the Cricetidae)
excrete high levels of allantoin (Buffenstein et al., 1985). Using the gene expression data for some of

these species (Fushan et al., 2015), we confirmed the positive correlation between uricase expression
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and allantoin level in liver (Figure 3.6C), with particularly low expression in the naked mole rat. In
mammals, degradation of purine produces urate, which is then converted to allantoin by the enzyme
uricase and excreted in urine (Buffenstein et al., 1985; Ngo and Assimos, 2007). In humans and other
higher primates, the gene coding for uricase is a pseudogene and urate is excreted instead. However,
these genetic changes were not found in the African mole rat enzymes, so the low uricase expression
appears to be achieved by a different mechanism.

Since the mammalian species used in this study include carnivores, insectivores, omnivores,
and herbivores, we wondered if the dietary preferences would also be reflected in the metabolic
profiles, especially in terms of different bile acid conjugates. Bile acids can be conjugated with either
taurine or glycine, depending on their concentrations in liver and affinities for the enzyme bile acid
CoA:amino acid N-acyltransferase. Most animals conjugate exclusively with taurine, whereas glycine
conjugation is limited to certain placental mammals and herbivores (Huxtable, 2002; Vessey, 1978).
Indeed, in liver the taurocholate:glycocholate ratio correlated positively with taurine:glycine ratio
(Pearson correlation coefficient = 0.74; Figure 3.6D). Rabbit and guinea pig are known to employ
glycine-conjugation only and had low values for both ratios, while cat, being an obligate carnivore,
was high in both (Figure 3.6D). Based on the clustering pattern, hedgehog and shrew (predominantly
insectivores), as well as animals belonging to Order Carnivora probably use taurine-conjugation only,
whereas most rodents of the Family Muridae and animals of Orders Artiodactyla and Perissodactyla

use both taurine- and glycine-conjugation (Figure 3.6D).
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Figure 3.6. Metabolite patterns reflect species physiology.

(A) Bats have low levels of methionine sulfoxide in liver. The error bars indicate standard errors
(only for those with biological replicates). The species are colored according to taxonomical orders
(same color scheme as in Figure 3.1A). The bars representing the bats are shaded.

(B) African mole rats have low levels of allantoin in kidney and liver. The bars representing the
naked mole rat and Damaraland mole rat are shaded.

(C) Liver allantoin levels correlate positively with uricase expression. The error bars indicate
standard errors in gene expression measurements (horizontal direction) or in metabolite
measurements (vertical direction). The correlation relationship is robust (correlation coefficients
using all points: Pearson = 0.86, Spearman = 0.78; excluding naked mole rat: Pearson = 0.76,
Spearman = 0.74). Gene expression data were not available for Damaraland mole rat.

(D) Use of taurine and glycine for bile acid conjugation among the mammals. The species with
known conjugated strategy are highlighted. Square (m): taurine-conjugation only; triangle (A ):
glycine-conjugation only; circle (®): both taurine- and glycine-conjugation. Cross (x): conjugation

strategy unknown.
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Metabolome remodeling and longevity variation

Next we examined the general trend in longevity and body mass across these species. We
obtained the traits data from public databases (Carey and Judge, 2000; Tacutu et al., 2013) and
focused primarily on Adult Weight (AW) and the longevity metrics Average Lifespan (AL),
Maximum Lifespan (ML), Female Time to Maturity (FTM), as well as their body mass adjusted
residuals (i.e. ALres, MLres, and FTMres, respectively) (Table 3.1). While AL and ML are most
closely related to the concept of longevity, FTM can be measured more easily and may be less prone
to reporting bias. They also correlated strongly with one another (Pearson correlation coefficient =
0.91 between AL and ML; 0.87 between AL and FTM; 0.84 between ML and FTM). Since adult
weight correlates positively with lifespan, the longevity residuals were computed to remove the body
mass influence. To account for the evolutionary relationship of the species, we performed regression
by phylogenetic generalized least squares (Chapter 2, “Phylogenetic Regression”) (Table 3.3).
Different models of trait evolution were tested and within-species variations were incorporated in the
calculation and we applied a two-step verification procedure to assess the robustness of the results
(Chapter 2, “Phylogenetic Regression”). The results were also adjusted for False Discovery Rate. p
value.robust < 0.01 was chosen as the cut-off and the top hits were tabulated across the organs and
traits. (Table 3.3).

When the results were visualized on a heat map (Figure 3.7A), a few observations became
apparent. Within each organ the correlations with the longevity metrics were largely consistent.
Although the reported lifespan data were obtained from different databases and might not be entirely
accurate, they did not significantly affect the calculated correlation, suggesting the results were robust
to sample variation or measurement inaccuracy. On the other hand, the patterns were rather distinct
across the four organs, suggesting the metabolites in different organs may follow different trajectories
during evolution. By pooling the top hits (p value.robust < 0.01) of the two sets of longevity metrics
(i.e. combining AL, ML, and FTM as one set; ALres, MLres, and FTMres as the other set), a number
of positively and negatively correlating pathways were found to be enriched in each organ (Figure

3.7B).
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Body mass and longevity signatures

With respect to adult weight, creatinine (Crn) showed significant positive correlation in all
four organs (p value.robust < 10°8; Figure 3.7C, Table 3.3). A related metabolite, creatine (Cr), also
emerged as a top hit in heart and liver. It is well known that urinary and serum Crn levels increase
with body mass (especially lean body mass) (Forbes and Bruining, 1976), as most Crn is derived from
Cr in skeletal muscles and larger animals tend to have greater muscle mass. On the other hand, several
glycerophospholipids (e.g. C16:0 LPE, C22:6 LPE, C18:0 LPC, C22:6 LPC) negatively correlated
with body mass, especially in brain and heart (Figure 3.7B). A number of triacylglycerols showed
significant but opposite trends in heart (positive correlation) and kidney (negative correlation) (Figure
3.7B).

In terms of the longevity traits, negative correlation was observed for amino acids, LPC, LPE,
and metabolites involved in thiamine metabolism, whereas positive correlation was observed mainly
for SM (Figure 3.7B, Table 3.3). LPC and LPE are generated by phospholipase-dependent hydrolysis
of PC and PE, respectively. Phospholipase A2 (PLA;) activity releases fatty acids such as arachidonic
acid from sn-2 position of glycerol backbone of phospholipids and is commonly associated with
inflammatory signaling in mammalian tissues. For example, elevated circulating lipoprotein-
associated PLA, activity is linked to coronary artery disease in humans (Rosenson and Stafforini,
2012), supporting a potential inverse relationship between phospholipase activities (and hence LPC
and LPE levels) and longevity.

Similar to the situation with body mass, TAG as a whole showed opposing trends to longevity
in heart (positive) and kidney (negative). Closer examination revealed that the negative correlations in
kidney were largely attributed to TAG with polyunsaturated fatty acid (PUFA) side chains (i.e.
multiple double bonds, Figure 3.7D), whereas the positive correlations in heart were due to TAG with
saturated or monounsaturated fatty acid (MUFA) side chains. A recent study on human plasma
lipidomes of middle-aged offspring of nonagenarians revealed a signature of 19 lipid species
associating with female familial longevity, including high levels of SM and low levels of PUFA TAG

(Gonzalez-Covarrubias et al., 2013). Analysis of phospholipids in heart of a number of mammals also
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revealed a negative correlation between double bond content and maximum lifespan (Pamplona et al.,
2000). Naked mole rat tissues contain much lower levels of docosahexaenoic acid -containing (with 6
double bonds) phospholipids compared to mouse (Mitchell et al., 2007). Since PUFA are particularly
sensitive to peroxidation damage, reduced level of polyunsaturated TAG in long-lived species may
reflect their enhanced resistance to oxidative stress.

Allantoin correlated negatively with longevity in brain, kidney and liver, whereas urate
showed some moderate positive correlation (Table 3.3). Furthermore, urate:allantoin ratio showed
significant positive correlation with ML, ALres and MLres in kidney (p value.robust < 10; Figure
3.7E), indicating that long-lived mammals had higher urate and lower allantoin levels. The ranges of p
values in kidney remain significant even when each species was left out one at a time (p value.max =
1.21x102 for ML, 1.89x107 for ALres, and 1.60x10* for MLres), so the observation is generally
applicable across the examined mammals and does not depend on any particular species. A previous
study in primate and non-primate mammals also found significant positive correlation between
maximum lifespan potential and urate concentration in serum and brain per specific metabolic rate
(Cutler, 1984). Interestingly, humans have the highest serum urate level and are the longest-lived
primates (Cutler, 1984). The naked mole rat, the longest-living rodent, also had very low levels of
uricase expression in liver (Figure 3.6C). Allantoin can also be produced from urate by free radical
oxidation (Kaur and Halliwell, 1990), and studies on human samples suggest high allantoin level may
be a marker of oxidative stress (Kand'ar and Zakova, 2008; Yardim-Akaydin et al., 2006).

The liver concentrations of two tryptophan degradation products, anthranilic acid and
kynurenine, showed robust negative correlation with longevity (Table 3.3). Over 95% of free
tryptophan is degraded via the kynurenine pathway, with the first rate-limiting step catalyzed by
indoleamine 2,3-dioxygenase (IDO) or tryptophan 2,3-dioxygenase (TDO). Anthranilic acid is
produced from enzymatic hydrolysis of kynurenine. Several studies have linked tryptophan
metabolism to aging and longevity. Knockdown of tdo-2 gene in C. elegans can suppress the toxicity
of aggregation-prone proteins and extend lifespan (van der Goot et al., 2012). Fruit flies with TDO
deficiency live significantly longer than wild-type controls (Oxenkrug, 2010). In mammals, reducing

dietary tryptophan can extend lifespan and delay age-related changes in rats and mice (De Marte and
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Enesco, 1986; Segall and Timiras, 1976), and the kynurenine:tryptophan ratio in humans increases
with aging (Capuron et al., 2011; Frick et al., 2004). In agreement, we also observed significant
negative correlation with longevity for kynurenine:tryptophan ratio and anthranilic acid:tryptophan
ratio in liver (Figure 3.7F, Table 3.3).

Reducing dietary amino acids levels has proved effective in lifespan extension (Grandison et
al., 2009; Lee et al., 2014; Min and Tatar, 2006). Here the amino acids in brain showed negative
correlation predominantly with FTM and FTMres (Figure 3.7B, Table 3.3), implying that mammals
that mature more slowly (which are usually also longer-lived) tend to have lower levels of brain
amino acids. The levels of branched chain amino acids such as leucine and isoleucine are also low in
long-lived Ames dwarf mice (Wijeyesekera et al., 2012), which are defective in adenohypophyseal
development and have stunted growth. 4-pyridoxate (catabolite of vitamin B6) in brain and thiamine
(vitamin B1) in kidney and liver also negatively correlated with lifespan. They are required,
respectively, for the synthesis of pyridoxal phosphate (PLP) and thiamine pyrophosphate (TPP),
which are the essential cofactors for many enzymes involved in amino acid metabolism (Eliot and
Kirsch, 2004; Lonsdale, 2006). Overall, the result is consistent with reduced rate of mass-specific

metabolism in longer-lived mammals.

Table 3.3. (see attached Excel file) Metabolites with significant correlation to body mass and
longevity traits. Phylogenetic regression was performed on each metabolite in each organ against
Adult Weight (AW); Average Lifespan (AL); Maximum Lifespan (ML); Female Time to Maturity
(FTM); Average Lifespan Residual (ALres); Maximum Lifespan Residual (MLres); and Female
Time to Maturity Residual (FTMres). The values are “p value.robust”: the regression slope p value
after the point with the largest residual error was removed. Only those metabolites with p
value.robust < 0.01 are shown. For those with positive correlation, the p values are rendered

positive. For those with negative correlation, the p values are rendered negative.
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Figure 3.7. Metabolites correlating with body mass and longevity.

(A) Overview of correlation with body mass and longevity. The grids represent the robust
regression p value (“p value.robust”) between metabolite levels in each organ and the indicated
traits (“AW”: Adult Weight; “AL”: Average Lifespan; “ML”: Maximum Lifespan; “FTM”: Female
Time to Maturity; “ALres”: Average Lifespan Residual; “MLres”: Maximum Lifespan Residual;
“FTMres”: Female Time to Maturity Residual). Only p value.robust < 0.01 are shown in color, with
positive correlation in red and negative correlation in blue. Selected classes of metabolites are
highlighted by rows (same color scheme as in Figure 3.5A). See Table 3.3 for more details.

(B) Top pathways correlating with body mass and longevity. The grids represent the pathway
enrichment analysis p values (only p values < 0.01 are shown in color), with positive correlation in
red and negative correlation in blue. For the purpose of enrichment analysis, the top hits (p
value.robust < 0.01) in AL, ML, and FTM were pooled together, and the top hits in ALres, MLres
and FTMres were also pooled together. “Monounsaturated TAG” refers to TAG with at most 2
double bonds in total. “Polyunsaturated TAG” refers to TAG with 3 or more double bonds.

(C) Liver creatinine level correlates positively with Adult Weight. The vertical error bars
indicate standard error. The points are colored according to taxonomical orders (same color scheme
as in Figure 3.1A). Regression p value.robust = 1.01x10'%; p value.max = 4.20x10°'°,

(D) Kidney C56:4 TAG level correlates negatively with Average Lifespan. Regression p
value.robust = 9.75x107%; p value.max = 3.70x1072.

(E) Kidney urate:allantoin ratio correlates positively with Maximum Lifespan Residual. The
points representing the naked mole rat and the Damaraland mole rat are indicated. Regression p
value.robust = 8.41x10; p value.max = 1.60x10,

(F) Liver kynurenine:tryptophan ratio correlates negatively with Maximum Lifespan.

Regression p value.robust = 7.23x107; p value.max = 1.89x10.
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Figure 3.7 (Continued)
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Insights from the analysis of long-lived mouse models

To compare our results with established long-lived animal models, we performed metabolite
profiling on brain and liver tissues of mice under caloric restriction (CR), rapamycin treatment (RAP),
acarbose treatment (ACA), as well as GHRKO and Snell dwarf mice (Snell), against their respective
wild type controls under control diets (Table 3.4). Five age-matched (approximately one-year old
when sacrificed) biological replicates were collected for each condition, with both males and females
for CR, RAP and ACA, and males only for GHRKO and Snell (Table 3.4). In total, 358 metabolites
were reliably quantified across the 120 samples, and 241 of these metabolites overlapped with the
mammalian dataset (Figure 3.8). Across the biological replicates, over 90% of the measurements had
coefficient of variation < 0.06 (Figure 3.8A). Segregation of the samples in each organ was examined

by hierarchical clustering (Figures 3.8D and 3.8E).

Table 3.4. Five long-lived mouse models. Sex, age of sacrifice and weight are indicated.

L U P ((ﬁg;s) g:;g:::)t Brain SRIPIe [RRels Liver
Control F 367 43.6 |Brain.Control.F.1 Liver.Control.F.1
Control F 367 49.8  |Brain.Control.F.2 Liver.Control.F.2
Control F 374 28.3 |Brain.Control.F.3 Liver.Control.F.3
Control F 374 39.9 |Brain.Control.F.4 Liver.Control.F.4
Control F 392 30.1 |Brain.Control.F.5 Liver.Control.F.5
Caloric restriction F 369 26.5 |Brain.CR.F.1 Liver.CR.F.1
Caloric restriction F 369 21.5 |Brain.CR.F.2 Liver.CR.F.2
Caloric restriction F 376 22.9 |Brain.CR.F.3 Liver.CR.F.3
Caloric restriction F 376 25.5 |Brain.CR.F.4 Liver.CR.F.4
Caloric restriction F 373 26.7 |Brain.CR.F.5 Liver.CR.F.5
Rapamycin F 369 29.5 |Brain.Rapamycin.F.1 Liver.Rapamycin.F.1
Rapamycin F 369 26.3 |Brain.Rapamycin.F.2 Liver.Rapamycin.F.2
Rapamycin F 376 35.6 |Brain.Rapamycin.F.3 Liver.Rapamycin.F.3
Rapamycin F 376 30.6 |Brain.Rapamycin.F.4 Liver.Rapamycin.F.4
Rapamycin F 378 33.9 |Brain.Rapamycin.F.5 Liver.Rapamycin.F.5
Acarbose F 375 29.5 |Brain.Acarbose.F.1 Liver.Acarbose.F.1
Acarbose F 376 29.3  |Brain.Acarbose.F.2 Liver.Acarbose.F.2
Acarbose F 376 30.4 |Brain.Acarbose.F.3 Liver.Acarbose.F.3
Acarbose F 376 28.4 |Brain.Acarbose.F.4 Liver.Acarbose.F.4
Acarbose F 376 28.7 |Brain.Acarbose.F.5 Liver.Acarbose.F.5
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Table 3.4 (Continued)

Snell mutant

Brain.SnellMut. 1

Liver.SnellMut. 1

Treatment Sex ((ﬁg)'i) g::.gr:)t Brain SRRl RS Liver
Control M 364 40.6  |Brain.Control.M.1 Liver.Control.M.1
Control M 362 30.7 |Brain.Control.M.2 Liver.Control.M.2
Control M 362 40.7  |Brain.Control.M.3 Liver.Control.M.3
Control M 381 45.8 |- Liver.Control.M.4
Control M 376 43.2 |Brain.Control.M.5 Liver.Control.M.5
Control M 371 47.1 |Brain.Control.M.6 --
Caloric restriction M 371 37.1 |Brain.CR.M.1 Liver.CR.M.1
Caloric restriction M 371 31.7 |Brain.CR.M.2 Liver.CR.M.2
Caloric restriction M 373 33.3 |Brain.CR.M.3 Liver.CR.M.3
Caloric restriction M 372 32.5 |Brain.CR.M.4 Liver.CR.M 4
Caloric restriction M 377 36.1 |Brain.CR.M.5 Liver.CR.M.5
Rapamycin M 364 37.9 |Brain.Rapamycin.M.1 Liver.Rapamycin.M. 1
Rapamycin M 362 33 Brain.Rapamycin.M.2 Liver.Rapamycin.M.2
Rapamycin M 362 40.5 |Brain.Rapamycin.M.3 Liver.Rapamycin.M.3
Rapamycin M 372 41.5 |Brain.Rapamycin.M.4 Liver.Rapamycin.M.4
Rapamycin M 377 28.5 |Brain.Rapamycin.M.5 Liver.Rapamycin.M.5
Acarbose M 369 36.3 |Brain.Acarbose.M.1 Liver.Acarbose.M. 1
Acarbose M 369 41.7 |Brain.Acarbose.M.2 Liver.Acarbose.M.2
Acarbose M 381 34.2 |Brain.Acarbose.M.3 Liver.Acarbose.M.3
Acarbose M 376 34.1 |Brain.Acarbose.M.4 Liver.Acarbose.M.4
Acarbose M 376 27.8 |Brain.Acarbose.M.5 Liver.Acarbose.M.5
Control M -- - Brain. GHRWT.1 Liver. GHRWT.1
Control M -- -- Brain. GHRWT.2 Liver GHRWT.2
Control M -- -- Brain.GHRWT.3 Liver GHRWT.3
Control M -- -- Brain. GHRWT .4 Liver GHRWT.4
Control M -- -- Brain. GHRWT.5 Liver. GHRWT.5
GHR knockout M -- -- Brain.GHRKO.1 Liver. GHRKO.1
GHR knockout M -- -- Brain.GHRKO.2 Liver. GHRKO.2
GHR knockout M -- -- Brain.GHRKO.3 Liver.GHRKO.3
GHR knockout M -- - Brain. GHRKO .4 Liver. GHRKO.4
GHR knockout M -- -- Brain.GHRKO.5 Liver. GHRKO.5
Control M - - Brain.SnellWT.1 Liver.SnellWT.1
Control M - - Brain.SnellWT.2 Liver.SnellWT.2
Control M -- -- Brain.SnellWT.3 Liver.SnellWT.3
Control M -- - Brain.SnellWT.4 Liver.SnellWT.4
Control M -- - Brain.SnellWT.5 Liver.SnellWT.5
M
Snell mutant M -- - Brain.SnellMut.2 Liver.SnellMut.2

Snell mutant M -- - Brain.SnellMut.3 Liver.SnellMut.3

Snell mutant M -- - Brain.SnellMut.4 Liver.SnellMut.4

Snell mutant M -- -- Brain.SnellMut.5 Liver.SnellMut.5
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Figure 3.8. Long-lived mouse model dataset quality assessment.

(A) Coefficient of variation among biological replicates. 90" percentile: 0.05; 95 percentile:
0.07.

(B) Spearman correlation coefficients among brain samples and among liver samples.

(C) Weights of the animals of the long-lived models. In both male and female, there is no
significant difference in weights among mice under caloric restriction (CR), rapamycin treatment
(RAP) and acarbose treatment (ACA) (pairwise t-test p value > 0.05).

Clustering of the samples in (D) brain and (E) liver. The samples are colored by treatment types.
The hierarchical clustering was based on 1 minus Spearman correlation coefficient and used

complete linkage.
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We identified the metabolites differentially distributed between the long-lived mouse models
and the corresponding controls and performed pathway enrichment analysis (Table 3.5, Figure 3.9).
The long-lived mouse model dataset clustered with the mouse data in mammalian dataset (Figure
3.90), indicating the overall metabolic signatures inherent in the species were well preserved.
Interestingly, while a significant number of top hits were found in liver, the brain metabolite levels
did not change much between the treatment and control (Figure 3.9A) and they were more conserved
than those in liver (Figure 3.8B). The blood-brain barrier may help keep the brain metabolism in tight
homeostasis and refractory to external modulations. The only exception was the Snell mice, which are
defective in anterior pituitary development. Compared to control, the Snell mice brain likely exhibits
a shift from oxidative phosphorylation towards glycolysis (Figure 3.9B).

In liver, CR, ACA and Snell mice produced very similar metabolic shifts, and these patterns
were observed in both males and females (Figures 3.9A and 3.9B). Remarkably, there was extensive
reduction in PUFA TAG levels across all these three models (Figures 3.9B and 3.9D, Table 3.5),
which was consistent with the longevity signature we identified across the mammalian species and
may indicate reduced susceptibility to peroxidation damage and oxidative stress in the long-lived
mice. While the low PUFA TAG levels might be partly explained by the lower weights of these long-
lived mice, this signature was not observed in GHRKO dwarf mice or in RAP mice. There were no
significant differences in body weight among CR, RAP, and ACA in either gender (Figure 3.8C). In
addition, the long-lived mouse models exhibited elevated levels of SM (in particular C14:0 SM,
C16:0 SM, C18:0 SM and C18:1 SM), which also showed positive correlation in longevity in the
mammalian species dataset. Previously, SM levels were reported to be low in old mice but at normal
level in those under chronic CR (De Guzman et al., 2013), and were found to be high in the serum of
centenarians (Montoliu et al., 2014). High SM levels are also associated with human female familial
longevity (Gonzalez-Covarrubias et al., 2013). Sphingosine-linked fatty acids like ceramides are often
regarded as “damage-associated molecular patterns” and may cause inflammatory damage by
activating Nlrp3 inflammasome (De Guzman et al., 2013; Vandanmagsar et al., 2011). Elevated SM

levels may also reflect reduced turnover to ceramides.
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Other similarities as well as differences exist between our two datasets and those in the
literature. For example, methionine is found at high levels in long-lived Ames dwarf mice, which may
represent an increased methionine flux to transsulfuration and improved oxidative stress resistance
(Wijeyesekera et al., 2012). Methionine level is also high in brain of male CR mice and liver of
female ACA mice (Table 3.5). LPC levels were previously found to decrease with age but maintained
in CR mice (De Guzman et al., 2013); in both our datasets they were low in long-lived animals.
Furthermore, the mammalian dataset signatures of high urate:allantoin ratio and low
kynurenine:tryptophan ratio were either insignificant or showed the opposite trends in the mouse
models (Table 3.5).

To quantify the similarity between the longevity signatures from our two datasets, we counted
the number of top hits in both datasets that had the same direction of correlation to longevity and
compared that with the probability of getting similar results by chance (Experimental Procedures).
The liver signatures of Snell, CR, and ACA mice matched very well to those based on AL, ML, and
FTM in kidney of the mammalian dataset (Figure 3.9E). In addition, these liver signatures also
clustered together (Figure 3.9F), suggesting lifespan extension by CR, acarbose treatment and in Snell
mutants may affect certain common pathways, where rapamycin treatment and growth hormone

receptor knockout may achieve lifespan extension via different mechanisms.

Table 3.5. (see attached Excel file) Metabolites differentially distributed in long-lived mouse
models. Metabolites differentially distributed in brain samples and liver samples were identified
with respect to the matching controls. Only those metabolites with p value < 0.01 are shown. For
those with positive correlation, the p values are rendered positive. For those with negative
correlation, the p values are rendered negative. CR: caloric restriction; RAP: rapamycin treatment;
ACA: acarbose treatment; GHRKO: growth hormone receptor knockout; Snell: Snell dwarf mouse;

F: female; M: male.
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Figure 3.9. Metabolites differentially distributed in long-lived mouse models.

(A) Overview of metabolite differential distribution. The grids represent the linear model p
values for differential distribution in the indicated long-lived mouse models with respect to their
corresponding controls in brain and liver (CR: caloric restriction; RAP: rapamycin treatment; ACA:
acarbose treatment; GHRKO: growth hormone receptor knockout; Snell: Snell dwarf mouse; F:
female; M: male). Only p value < 0.01 are shown in color, with positive correlation in red and
negative correlation in blue. Selected classes of metabolites are highlighted by rows (same color
scheme as in Figure 3.5A). See Table 3.5 for more details.

(B) Top enriched pathways. The grids represent the pathway enrichment analysis p values (only p
values < 0.01 are shown in color), with positive correlation in red and negative correlation in blue.
For brain, only Snell is shown.

(C) Long-lived mouse models data cluster well with mammalian species data. Values in
parenthesis indicate the percentage of variance explained by each Principal Component (PC).
Biological replicates were treated as individual points.

(D) Liver C56:4 TAG level across the long-lived mouse models. C56:4 TAG levels were
significant lower in CR(F) (p value = 2.21x10%), CR(M) (p value = 8.17x107%), ACA(F) (p value =
7.22x107%), and Snell (p value = 9.07x10%), compared to their respective controls.

(E) Overlap among longevity signatures. Between each pair of comparison, the numbers of
metabolites with matching and opposite direction of correlation to longevity were calculated. The p
value was based on binomial statistics, assuming equal probability of getting a match or a mismatch
by chance. Only p value < 0.01 are shown in color.

(F) Hierarchical clustering of the long-lived mouse models. The distance matrix is based on the
similarity among the longevity signatures (i.e. pairwise binomial p values). Only the liver data are

shown. The mouse models are as shown above.
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Figure 3.9 (Continued)
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DISCUSSION

Mammals have diversified dramatically over the tens of millions of years of evolution with
remarkably different longevity profiles. How are their lifespans modulated by evolution while
preserving competitiveness within their ecological niches? Which metabolites are involved and, more
generally, how is metabolism adjusted in order to increase lifespan? While most of research on the
control of lifespan was performed on single model organisms, our study addressed these questions by
analyzing metabolite levels in several organs across the class of Mammalia. We found that
metabolites in brain diverged less than in the other examined organs and the organ-differential
distribution of metabolites represented their respective biological functions. The lineage-specific
metabolite features we identified reflect known physiology of animals (e.g., low oxidative stress in
bats) and also offer some new insights (e.g., bile acid conjugation strategies among mammals and
diminished conversion of urate to allantoin in African mole rats). With regard to the longevity traits,
we identified metabolites previously implicated in lifespan control as well as several new candidates.
In particular, long-lived mammals were associated with low polyunsaturated triacylglycerols, low
tryptophan degradation products, and low brain amino acids; as well as high sphingomyelin levels and
high urate:allantoin ratio. Comparison of our signatures with the metabolite changes in long-lived
mouse models indicated some overlap with mice under CR, mice treated with acarbose and Snell
dwarf mice, especially for decrease in polyunsaturated triacylglycerols and increase in sphingomyelin.
Similar changes were also previously reported in studies on human centenarians and other long-lived
animal models. Furthermore, these three mouse models produced metabolite signatures distinct from
those observed in rapamycin treatment and growth hormone receptor knockout mice, so the lifespan
extension effects may have been achieved via different mechanisms.

Our study also reveals some unexpected complexities in analyzing metabolites and longevity.
While some metabolites show consistent correlation with longevity traits across multiple organs,
many patterns seem to be organ-specific. In the long-lived mouse models, many liver metabolites
change significantly compared to the controls, but the brain exhibits very little perturbation.

Furthermore, the longevity signatures in liver of the long-lived mouse models matched with the
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kidney (but not liver) signature across the mammalian species, suggesting certain aspects of the
mammalian longevity signatures may be distinct from the long-lived mouse models. In addition, the
molecular mechanisms underlying the lifespan extension in these mouse models are not yet well-
delineated, and differences among various long-lived mouse models have been previously reported.
For example, in heart, kidney, and liver tissues, Snell and GHRKO mice showed different levels of
chaperone mRNAs (Swindell et al., 2009). A low calorie diet is beneficial to Ames dwarf mice
(Bartke et al., 2001) but not to GHRKO mice (Bonkowski et al., 2009). Expression of genes related to
xenobiotic detoxification in liver are distinctly different among rapamycin-treated mice, CR mice
(Miller et al., 2014), and GHR deletion mice (Li et al., 2013). CR mice also differ from rapamycin-
treated mice in terms of leptin, FGF-21, and glucose tolerance (Lamming et al., 2013; Miller et al.,
2014).

Compared with research that focuses on a single species, the current study benefited from the
large effects of trait differences. While various factors such as feeding status, circadian cycle, gender,
and body weight differences can introduce additional noise, ANOV A suggests that the variation
between different species is generally much greater than variation among replicates of the same
species. Even with the ablation of GHR or anterior pituitary, the brain and liver profiles of the long-
lived mice still clustered well with the mouse data in the mammalian dataset and very similar
longevity signatures were also obtained from both males and females of the same long-lived model.
However, our study also suffers from a number of limitations. The current study does not prove
causality between the metabolites and longevity traits, as the metabolite levels may influence and also
be influenced by longevity. The number of metabolites quantified here only represents a fraction of
the entire metabolome space and potentially important candidates may have been missed by our
targeted approach. Many metabolites correlated strongly among one another and can inflate the
signals observed. The metabolic fluxes through pathways and the metabolic changes during aging
would not be reflected in our data either. While the biological implications of many metabolites
identified here are far from fully understood, our study provides the first report of metabolite

signatures of longevity across the mammalian spectrum, from which future studies should benefit.
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EXPERIMENTAL PROCEDURES

Animal samples

Descriptions of the 26 mammalian species are provided in Table 3.1. The mammalian organ
samples were obtained from various sources (Fushan et al., 2015). The animals were young adults and
all were males, except for horse and vervet. Immediately after sacrificing, whole liver, kidney, heart,
or frontal parts of brain were frozen in liquid nitrogen and stored at -80°C until further use. To ensure
comparability of data derived from homologous organs between species, each organ was ground in
liquid nitrogen-cooled mortar and used for metabolite extraction. Most tissue samples were prepared
in biological duplicates or triplicates (i.e. samples from different animals). Tissue samples were
homogenized in water and normalized to protein concentration prior to metabolite analyses.

Descriptions of the five long-lived mouse models are provided in Table 3.4. All these models
as well as genotype and diet matched controls were from the colonies at University of Michigan
Medical School. Liver and brain cortex samples were taken at 12 months of age from male and female
mice treated from 4 months of age with rapamycin (14.7 ppm, as in (Miller et al., 2014)), or acarbose
(1000 ppm, as in (Harrison et al., 2014)), or from mice subjected to 40% dietary restriction, or from
untreated littermate control mice of the genetically heterogeneous stock UM-HET3, in which each
mouse was genetically unique but shared the same set of inbred grandparents (C57BL/6J,
BALB/cByJ , C3H/HelJ, and DBA/2J). Liver and brain cortex samples from Snell dwarf (Flurkey et
al., 2001) and GHRKO (Coschigano et al., 2003) males, and their corresponding littermate controls,
were taken from young adults aged 4 to 6 months.
Mass spectrometry quantification and normalization

To measure polar metabolites and lipids in tissue homogenates, we used three LC-MS
methods as previously described (Townsend et al., 2013). Briefly, two targeted polar metabolite
profiling methods were developed using reference standards of each metabolite to determine
chromatographic retention times and mass-spec multiple reaction monitoring transitions, declustering
potentials and collision energies. Negative ionization mode data were acquired using an ACQUITY

UPLC (Waters) coupled to a 5500 QTRAP triple quadrupole mass spectrometer (AB SCIEX). Tissue
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homogenates (30 pL) were extracted using 120 uL of 80% methanol (VWR) containing 0.05 ng/pL
inosine-""N4, 0.05 ng/uL thymine-ds, and 0.1 ng/uL glycocholate-ds as internal standards (Cambridge
Isotope Laboratories). Positive ionization mode data were acquired using a 4000 QTRAP triple
quadrupole mass spectrometer (AB SCIEX) coupled to an 1100 Series pump (Agilent) and an HTS
PAL autosampler (Leap Technologies). Tissue homogenates (10 uL.) were extracted using nine
volumes of 74.9:24.9:0.2 (v/v/v) acetonitrile/methanol/formic acid containing stable isotope-labeled
internal standards (0.2 ng/uL valine-d8, Isotec; and 0.2 ng/uL phenylalanine-d8 (Cambridge Isotope
Laboratories)). Tissue homogenates (10 uL) were extracted for lipid analyses with 190 pL of
isopropanol containing 1-dodecanoyl-2-tridecanoyl-sn-glycero-3-phosphocholine (Avanti Polar
Lipids). MS analyses were carried out using electrospray ionization and Q1 scans in the positive ion
mode. For each method, internal standard peak areas were monitored for quality control and
MultiQuant 1.2 software (AB SCIEX) was used for automated peak integration. Metabolite peaks
were manually reviewed for quality of integration and compared against a known standard to confirm
identity.
Data processing and quality assessment

For the 26 mammalian species dataset, raw data were logl0-transformed to conform to
normal distribution; Shapiro—Wilk test confirmed assumption of normalcy was valid for over 75% of
the measurements. Mean and standard error were computed across the biological replicates.
Standardized concentrations (i.e. scaled to mean = 0 and standard deviation = 1) were used in cross-
metabolite analysis. For the 5 long-lived mouse models dataset, raw data were logl0-transformed and
those metabolites missing in any one of the models in a particular organ were excluded from analysis
in that organ. To render the two datasets comparable, the mean metabolite values in house mouse
brain and liver of the mammalian species dataset were used as baselines to scale the long-lived mouse
model dataset and R package “sva” was used to removed potential batch effects (Leek et al., 2014).
Organ-specific phylograms

The phylograms were constructed using the neighbor-joining (NJ) method (Saitou and Nei,
1987; Studier and Keppler, 1988) using sugar glider as the out-group. The distance matrix was based

on 1 minus Spearman correlation coefficient. Reproducibility of the bifurcation pattern was assessed
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using a 1000-time bootstrap procedure, by random sampling of a subset of the metabolite to build
phylogram and repeating the procedure 1000 times. The degree of metabolite divergence was
estimated using the average tip-to-root branch length of organ-specific phylogram. For the bootstrap
procedure, one replicate per organ per species was randomly selected to assemble a pseudo-dataset for
building phylogram. The procedure was repeated 1000 times to calculate the average tip-to-root
branch length (excluding the branch leading to the out-group sugar glider). Similar results were
produced by using only those species for which data were available for all four organs.
Tip-to-root branch length simulation

To investigate how various parameters might affect the tip-to-root branch length of NJ-
phylogram, we simulated four scenarios (“Brownian motion”, “Random noise”, “OU model”, and
“Pagel’s model) using R packages “phytools” (Revell, 2012) and “geiger” (Harmon et al., 2008)
(Figure 3.4D). In each scenario, 300 simulations were run according to its parameter settings to
generate a (300%x26) dataset, mimicking the number of metabolites and species in the current study. A
phylogram was constructed from each dataset using NJ method and the average tip-to-root branch
length was calculated. The procedure was repeated 1000 times for each scenario.
Phylogenetic signals

More closely related species tend to resemble each other more than if they were drawn
randomly from a phylogenetic tree, so their traits may be statistically non-independent. This
phylogenetic relatedness, or “phylogenetic signal”, can be detected using a number of metrics
(Munkemuller et al., 2012). Pagel’s lambda and Blomberg’s K were computed using R package
“phytools” (Revell, 2012). Those metabolites with Pagel’s lambda > 0.9 and Blomberg’s K > 1 were
considered to have high phylogenetic signal.
Pathway enrichment analysis

Pathway information was obtained from ConsensusPathDB (Kamburov et al., 2009) and
Human Metabolome Database (HMDB) (Wishart et al., 2013). For ConsensusPathDB, only pathways
with known KEGG IDs were incorporated. For the lipids, customised pathways were created for
sphingomyelin (SM); cholesterol ester (CE); monoacyl glycerophosphocholines (i.e.

lysophosphatidylcholine (LPC)); diacyl glycerophosphocholines (i.e. phosphatidylcholine (PC));

88



monoacyl glycerophosphoenthanoamines (i.e. lysophosphatidylethanolamine (LPE)); diacyl
glycerophosphoenthanoamines (i.e. phosphatidylethanolamine (PE)); monoacyl glycerols (MAG);
diacyl glycerol (DAG); and triacyl glycerol (TAG). Acylcarnitines were further grouped into “short-
chain” (up to 8 carbons), “medium-chain” (9 to 12 carbons), and “long-chain” (more than 12
carbons). Triacylglycerols were further grouped into monounsaturated TAG (MUFA-TAG, those with
2 or less double bounds in total) and polyunsaturated TAG (PUFA-TAG, those with more than 2
double bonds in total). Analysis was performed on pathways with at least 5 but less than 100
metabolites. Enrichment statistics was based on a hypergeometric distribution (Tavazoie et al., 1999).
Odd ratios and expected counts were calculated as previously described (Gentleman et al., 2013).
Organ-differential distribution of metabolites and lipid composition

Paired Wilcoxon rank sum test was used to identify metabolites with organ-differential
distribution for all combinations of organ pairs. To qualify as a top hit, a metabolite must show
differential distribution (Bonferroni adjusted p value < 0.05) in at least 2 organ pairs. For lipid
composition, the relative percentage abundance of individual lipid molecules within their own
categories (i.e. TAG, LPC, LPE, PC, SM, or CE) were computed and compared with those previously
reported in human plasma. Those lipid molecules with more than 10% relative abundance were
considered the major species.
Phylogenetic ANOVA

To determine lineage-specific changes in metabolite levels, the species were grouped by
taxonomical orders or families, and phylogenetic ANOV A was applied to determine if the
concentration of a metabolite in one group was significantly different from that in other groups. A
standard ANOVA assumes independence of observations, but this was not true in the current study as
the animals were related phylogenetically. In phylogenetic ANOVA, the F-value of standard ANOVA
is compared to a null distribution generated by stimulating trait evolution on a reference phylogeny,
thus accounting for the non-independence of species. Phylogenetic ANOV A was performed using R
package “phytools” (Revell, 2012).
Regression by generalized least square and test for robustness

See Chapter 2. The cut-off for top hits was p value.robust < 0.01.

&9



Differentially distributed metabolites in long-lived mouse models

R package “limma” (Smyth, 2005) was used to identify differentially distributed metabolites
between treatment and control groups in the long-lived mouse models. Pathway enrichment analysis
was performed on the top hits (p value < 0.01).
Longevity signature similarities

Binomial statistics and 5000-time bootstrap procedure were used to assess the degree of
similarity among the longevity signatures. Given any two signatures, the number of metabolites with
matching directions of correlation to longevity and the number of metabolites with opposite directions
of correlation to longevity were calculated. For binomial statistics, p values were computed by
assuming equal probability of obtaining a match or a mismatch by chance. For the bootstrap
procedure, metabolites were assigned matching or opposite directions randomly. P values were
computed as the percentage of trials yielding greater number of matches (by chance) than the

observed results.
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ABSTRACT

Trace elements are essential to all mammals, but their distribution and utilization across
species and organs remains unclear. Here, we examined 18 elements in the brain, heart, kidney, and
liver of 26 mammalian species and report the elemental composition of these organs, the patterns of
utilization across the species, and their correlation with body mass and longevity. Across the organs,
we observed distinct distribution patterns for abundant elements, transition metals, and toxic elements.
Some elements showed lineage-specific patterns, including reduced selenium utilization in African
mole rats, and positive correlation between the number of selenocysteine residues in selenoprotein P
and the selenium levels in liver and kidney across mammals. Body mass was linked positively to zinc
levels, whereas species lifespan correlated positively with cadmium and negatively with selenium.
This study provides insights into the variation of mammalian ionome by organ physiology, lineage

specialization, body mass, and longevity.
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INTRODUCTION

The full set of elements used by organisms, or the ionome, supports diverse cellular functions
(Eide et al., 2005; Salt et al., 2008). Transition metals alone are estimated to be required by more than
one third of enzymes (Holm et al., 1996; Waldron and Robinson, 2009). Selenium (Se) and iodine (I)
are used as components of proteins or hormones. Together with manganese (Mn), iron (Fe), cobalt
(Co), nickel (Ni), copper (Cu), zinc (Zn), and molybdenum (Mo), these trace elements are needed
only in minute quantities, but often act as important protein cofactors and active site components.
Their deficiency or overload can result in severe pathological conditions (Fraga, 2005; Goldhaber,
2003).

In contrast, the metals sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), as well
as nonmetals phosphorus (P) and sulfur (S), are required in much larger quantities and are often called
macronutrients. Some exist as free ions for establishing the electrochemical gradient across biological
membranes (e.g. Na" and K"); others reside in specific subcellular compartments as signaling
molecules (e.g. Ca?*). Many are constituents of macromolecules like proteins (e.g. sulfur) and nucleic
acids (e.g. phosphate groups), or key structural components in bones, shells and exoskeletons (e.g.
calcium phosphate minerals).  Yet another group of elements, including lithium (Li), arsenic (As),
and cadmium (Cd), are present in the environment and can be readily taken up by plants and animals,
but have no apparent biological functions. Depending on the quantity, these elements elicit different
biological responses, features that underlie both their use in medical treatments when applied in
moderate concentrations, and their toxicity when absorbed in excess.

While a number of large-scale cross-species ionomics studies have been performed in plants
(Ozaki et al., 2000; Watanabe et al., 2007; White et al., 2012), similar studies are lacking in mammals.
In particular, the variation of element levels across organs, species, and lineages is not well
understood. Since the use of these elements is likely shaped by evolution and environmental
constraints, one may also be able to identify the links between the ionome and life-history traits (e.g.,
body mass, time to maturity, and longevity). Crucially, the nature of these questions means that one

may need to look across a spectrum of organisms and organs to identify the common trends.
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Recent advances in sequencing technology have enabled comparative genomics analyses to
reveal the evolution of element utilization (Zhang and Gladyshev, 2009). In this study, we
characterized the mammalian ionome by directly quantifying 18 elements in brain, heart, kidney and
liver of 26 mammalian species, providing insights into the organization, distribution, and evolution of

utilization of elements in mammals.

RESULTS

Conservation of the ionomes of mammalian organs

We analyzed 233 freshly frozen samples from the brain, heart, kidney, and liver of 26
mammalian species representing 10 taxonomic orders (Figure 4.1A and Table 4.1). All animals were
young adults, and at least two biological replicates (i.e. different individual animals) were obtained for
most species. The tissue concentrations of Li, B, Na, Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se,
Mo, and Cd were quantified by four independent runs of inductively-coupled plasma mass
spectrometry (ICP-MS) (Malinouski et al., 2014). After filtering and normalization, the final data
quality was assessed graphically (Figure 4.2). The batch effect was removed using R package “sva”
(Leek et al.) (Figures 4.2A and 4.2B). Over 90% of the measurements had coefficient of variation <
0.14 (Figure 4.2C).

Both principal component analysis (PCA) and heat map showed the samples generally
clustered according to their organ origin (Figures 4.1B and 4.1C). The first three principal
components (PCs) accounted for ~ 65% of the total variance (Figure 4.1B), suggesting the elemental
composition of each organ was generally conserved. The heat map also revealed a few clusters of
elements with similar distribution patterns (Figure 4.1C), such as the transition metals Mo, Mn, Co,

and Fe; the various isotopes of Cu and Zn; as well as the macronutrients P, K, S and Mg.
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(A) Mammals examined in this study. The species and their common names are indicated and the

branches are colored according to taxonomical orders.

(B) Principal Component Analysis reveals segregation of samples by organ origin. Biological

replicates are presented as individual points and colored by organ. The percentage variation

explained by each principal component (PC) is indicated in parentheses.

(C) Overview of the mammalian ionome using heat map. Each row represents one element or

isotope. Each column represents one biological sample (same color scheme as in (B)). Hierarchical

clustering was performed using 1 minus Pearson correlation coefficient with average linkage.
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Interactions among elements are indicative of biological functions

To explore the relationship among the elements, we computed Spearman correlation
coefficients for all possible element pairs, using the full data (Figure 4.3A) and individually within
each organ (Figure 4.4). As expected, the isotopes of the same element showed very strong
correlations (all coefficients > 0.99), suggesting that mammals lack the ability to distinguish different
isotopic forms. In addition, there were several clusters of elements with high correlations (Figures
4.3A and 4.3B), suggesting potential commonality in uptake mechanism or biological functions.

One such cluster consisting of Fe, Mo, Mn, Co and Ni was consistently observed in brain,
heart, and kidney (all pair-wise correlation coefficients > 0.4; Figure 4.4). These transition metals
often exist as divalent ions, some of which are known to interact. Divalent metal transporter 1
(DMT1) is a key metal transporter with a very broad substrate range that includes Fe**, Mn**, Co*",
Ni?*, and Cd*" ions (Gunshin et al., 1997; Mackenzie et al., 2007). Mn?" uptake can be coupled with
Fe?" uptake via both transferrin-dependent and transferrin-independent pathways (Roth, 2006). Fe-S
clusters and heme groups are required for biosynthesis of the prosthetic group Moco (molybdenum
cofactor) and for functioning of most Mo enzymes (Hamza et al., 1998; Mendel and Bittner, 2006). A
trace element study of 96 fern and fern ally species also reported correlation coefficient of 0.62
between Fe and Co concentrations (Ozaki et al., 2000). Although in vertebrates Ni has no known
biological function, in bacteria and archaea Ni and Co utilize similar or common transport systems
(Zhang et al., 2009).

Cu and Zn, two of the most abundant trace metals in the body, also correlated positively in
multiple organs (Figure 4.4). Interaction between Cu and Zn at the physiological level is well
documented, as Zn administration is used to antagonize Cu overload in patients with Wilson’s disease
(Hill and Link, 2009). Cellular transport of Cu and Zn depends on their respective transporters: ZnT
and Zip transporter families for Zn; high affinity transporter CTR1, chaperone COX17, CSS, ATOX1,
and P-type ATPase ATP7A, ATP7B for Cu (Amaravadi et al., 1997; Eide, 2006; Hamza et al., 1999;
Liuzzi and Cousins, 2004). Zn is required for the catalytic activities of more than 200 enzymes and

also serves a structural role in transcription factors, whereas Cu is found in several metabolic
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enzymes, as well as cytochrome c oxidase (Complex IV) of the electron transport chain. Some
enzymes (e.g. Cu/Zn superoxide dismutase) contain both elements in the active sites. Therefore, the
observed correlation may reflect the physiological requirement for proper balance of Cu and Zn.
Interestingly, both Se and Cd were high in kidney and liver, and low in brain and heart
(Figure 4.3C). While Se is mainly found in the form of selenocysteine (Sec) in selenoproteins, Cd has
no known biological functions in higher organisms. Both elements are toxic at high concentrations
and their levels in plants and animals often depend on the environmental concentrations in soil, water,
or food (Clemens et al., 2013; Hurst et al., 2013). Another toxic element, As, also clustered very
closely with Cd and Se (Figure 4.3B), suggesting that all three elements are treated by mammals as
toxic species and are handled in a similar manner, although Se is primarily recognized as an essential

element.
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Ionomes of mammalian organs

Next we analyzed the elemental distribution across the four organs (Figures 4.3C and 4.5A).
Liver had the highest or the second highest levels of 15 out of the 21 elements and/or isotopes (Figure
4.3C), likely reflecting its central role in catabolism, anabolism, and detoxification. As electrolytes
become concentrated during renal ultrafiltration and reabsorption, kidney had relatively high levels of
Li, Na, and Ca. Brain and heart are less diverse in their metabolic functions and contained low levels
of many elements. Nevertheless, P and K were found at the highest concentrations in brain, with Na
and Ca also present at high levels. Our data also agreed well with a previous report of metal levels in
humans (Katoh et al., 2002) (Figure 4.5B).

We also examined the gene expression patterns of some enzymes known to utilize trace
elements (Figure 4.3D) (Fushan et al., 2015). Sulfite oxidase (SUOX), xanthine oxidase/
dehydrogenase (XDH), and aldehyde oxidase (AOX1) require the molybdenum cofactor (Moco) for
their activities, whereas molybdenum cofactor biosynthesis protein 1 (MOCS1) catalyzes the
biosynthesis of Moco. They were all highly expressed in liver and showed significant correlation with
Mo concentration (Spearman correlation coefficient SUOX: 0.58; XDH: 0.49; AOX1: 0.58; MOCSI:
0.68). Arginase 1 (ARG1) binds Mn at the active site and showed strong correlation with Mn
concentration (Spearman correlation coefficient 0.58). The selenoproteins glutathione peroxidase 1
(GPX1), thioredoxin reductases TXNRD1 and TXNRD2, and selenoprotein P (SEPP1) also showed
significant correlation to Se levels (Spearman correlation coefficient GPX1: 0.64; TXNRD1: 0.27;

TXNRD2: 0.40; SEPP1: 0.61).

106



Figure 4.3. Correlation and distribution of elements.

(A) Elements form clusters of significant correlation. Pairwise correlation coefficients among the
elements are shown. Coefficients > 0.4 or < -0.4 (approximately equal to p value < 0.05) are
highlighted in color. The correlations shown are based on data for all four organs.

(B) Principal Component Analysis reveals distinct clusters of elements. The elements and isotopes
are projected on the first two principal components (PCs).

(C) Distribution of elements across organs. The box plots represent standardized concentrations in
the brain, heart, kidney, and liver, with the central bands indicating median values and the whiskers
indicating 5™ and 95" percentiles.

(D) Gene expression patterns of enzymes that utilize Mo, Mn and Se are consistent with the
organ distribution of these elements. Gene expression data are based on a previous study (Fushan et
al., 2015); data for heart are not available. SUOX: sulfite oxide; XDH: xanthine
oxidase/dehydrogenase; AOX1: aldehyde oxidase; MOCS1: Molybdenum cofactor biosynthesis
protein 1; ARGI1: arginase 1; GPX1: glutathione peroxidase 1; TXNRDI1: thioredoxin reductase 1;

TXNRD2: thioredoxin reductase 2; SEPP1: selenoprotein P.
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Figure 4.3 (Continued)
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Figure 4.4. Correlations among elements in (A) brain; (B) heart; (C) kidney; and (D) liver.
Only Spearman correlation coefficients > 0.4 or < -0.4 are highlighted in color. The correlations are

based on the data in the respective organs.
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Figure 4.5. Organ differential distribution of elements.

(A) Trajectories of element distribution across the four organs. “Br”, “Ht”, “Kd”, and “Lv”
refer to brain, heart, kidney, and liver, respectively. Each line represents one species and is
colored according to taxonomical order.

(B) The distribution patterns of elements across different organs. For each element, the box plot
on the left represents the logl10 concentrations measured in our studies, and the box plot on the right
represents the log10 concentrations (converted to the appropriate molar concentrations) reported in
(Katoh et al., 2002) (“reference”). For our data, the central band represents the median value and the
box represents first and third quartiles. For the reference data, the central band represents the mean
value and the box represents +0.5 standard deviation. The insert at the bottom shows a plot of the
median values (across the elements and organs) in our study versus those in the reference (Spearman
correlation coefficient = 0.81). Cd levels are the main outliers. The differences in absolute values are

likely due to different amounts of tissues used.
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Figure 4.5 (Continued)
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Lineage-specific distribution of elements

To identify lineage-specific patterns, i.e. whether some elements were significantly higher or
lower in a particular group of related species, we quantified the phylogenetic signal using Pagel’s
lambda and Blomberg’s K (Revell, 2012), and performed phylogenetic ANOVA (Harmon et al.,
2008) to explicitly test for differential distribution in a particular taxonomical order or family.

Mg, S, P, and K in brain exhibited significant phylogenetic signals (Figure 4.6A). They were
also enriched in the brain of rodents compared to non-rodents (phylogenetic ANOVA p value <0.05
for Mg, S, K and 0.07 for P). The distribution patterns were very similar between Mg and S as well as
between K and P, supporting our observation above that these elements clustered with strong
correlation (Figure 4.3).

Among the animals examined were two species of desert-dwelling African mole rats (the
naked mole rat and the Damaraland mole rat), whose genetic and physiological features are quite
distinct from other rodents (Fang et al., 2014; Kim et al., 2011; LaVinka and Park, 2012; Maina et al.,
2001). In particular, naked mole rats face significant oxidative stress, even though they are the longest
lived rodents (Andziak et al., 2006; Buffenstein, 2005). In terms of element distribution, both had
significantly lower levels of Se in kidney and liver than all other species (Figure 4.6B; phylogenetic
ANOVA p value=0.007 for kidney and 0.005 for liver), and to a lesser extent, than other rodents (p
value=0.13 for kidney and 0.16 for liver). Se levels and glutathione peroxidase activity (Andziak et
al., 2005; Malinouski et al., 2012) are lower in the naked mole rat liver and kidney than in mouse
tissues, in part due to an early stop codon in the sequence coding for GPX1 (Kasaikina et al., 2011).
The same early stop codon is also found in Damaraland mole rat (Fang et al., 2014).

Mammalian selenoproteomes consist of 24-25 selenoproteins (Kryukov et al., 2003).
Selenoprotein mRNAs have a structure called SECIS element that supports co-translational insertion
of Sec at UGA codon. While most selenoproteins contain only single Sec residue, the number of Sec
residues in plasma selenoprotein P (SelP, coded by SEPP1) vary greatly across different organisms
(Lobanov et al., 2008). All but one of these Sec residues are found in the C-terminal region and SelP

is involved in the transport of Se throughout the body. We observed the number of Sec residues in
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SelP correlated remarkably with the measured Se levels in kidney and liver (Figures 4.6C; Pearson
correlation coefficient = 0.62 for kidney and 0.42 for liver). For example, both naked mole rat and
Damaraland mole rat had only 7 Sec residues and contained very little Se in kidney and liver, whereas
pig, the carnivores (dog, bear, and badger), and the bats had 14-16 Sec residues in SelP and relatively
high Se levels in both organs (Figure 4.7). Thus, the use of Se in mammals is tuned by altering the

number of Sec residues in the C-terminal region of SelP.
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Figure 4.6. Lineage specific distribution of elements.

(A) Elements with significant phylogenetic signals. The grids are colored based on the
standardized concentration and the columns are arranged by phylogenetic relationship. Only those
elements with p values < 0.05 for both Pagel’s A and Blomberg’s K are shown.

(B) Low kidney and liver Se in African mole rats. The error bars represent standard error. The
bars corresponding to the naked mole rat and Damaraland mole rat are shaded.

(C) Kidney and liver Se levels correlate with the number of Sec residues in selenoprotein P. The error
bars represent standard error. The points are colored by taxonomical order. Pearson correlation coefficient:

0.62 for kidney and 0.42 for liver.
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Figure 4.7. Mammalian Selenoprotein P.

(A) Multiple sequence alignment of the C-terminal region of Selenoprotein P. The positions of
Sec (“U”) are highlighted in red; cysteine (C) are highlighted in cyan. All these species have one
additional Sec residue in the N-terminal region (not shown). Position numbering is based on human
sequence (included here for reference). The sequences of sugar glider, shrew, hedgehog, tube-nosed
bat, Brazilian bat, horse, pig, goat, cat, dog, bear, badger, vervet, rabbit, chipmunk, guinea pig, white-
footed mouse, hamster, gerbil, spiny mouse, rat, and house mouse were based on assembled
transcriptomes in (Fushan et al., 2015). We confirmed they were consistent with the records in NCBL.
The sequences of human, macaque, and naked mole rat were extracted from UCSC Multiz 100-way
Alignment. The sequence of Damaraland mole rat (XM_010633881.1) was obtained from NCBI.

(B) Number of Sec residues in Selenoprotein P. The number includes the additional Sec residue in

the N-terminal region (i.e. one more than the number of Sec shown in (A)).

115



Figure 4.7 (Continued)
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Nature alters elemental composition to adjust lifespan and body mass

To understand the relationship between element levels and longevity, we obtained the lifespan
data from AnAge database (Tacutu et al., 2013) and performed regression analysis using generalized
least squares, to account for the phylogenetic relatedness of species and incorporate the measurement
errors (Felsenstein, 1985; Grafen, 1989; Ives et al., 2007). We focused on adult weight as well as 4
longevity traits: Maximum Lifespan (ML), Maximum Lifespan Residual (MLres), Female Time to
Maturity (FTM), and Female Time to Maturity Residual (FTMres) (Table 4.1). FTM was used as an
alternative measure for longevity, since it is easier to quantify and less prone to reporting bias than
ML (Pearson correlation coefficient between ML and FTM = 0.84, p value < 1077). The residuals
(MLres and FTMres) describe the portion of the trait that has not been accounted for by body mass.
We evaluated different evolutionary models, selected the best-fit model by maximum likelihood, and
reported the slope coefficient and p value (Figure 4.8A, Table 4.2; Chapter 2, “Phylogenetic
Regression”). A two-step verification procedure was applied to remove potential outliers and ensure

the results were generalizable (Chapter 2).
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Figure 4.8. Elements correlating with life history traits.

(A) Correlation of elements in each organ with Adult Weight, Maximum Lifespan (ML),
Maximum Lifespan Residual (MLres), Female Time to Maturity (FTM), and Female Time to
Maturity Residual (FTMres). Only those with regression p value.robust < 0.02 are indicated in
colors: red — positive correlation; blue — negative correlation (see Table 4.2 for more details). Green
asterisks indicate those with q value.robust < 0.05.

Adult Weight correlates (B) positively with liver Zn level and (C) negatively with heart Fe level.
The error bars represent standard error (already incorporated in regression calculation). The points are
colored by taxonomical order. (B) p value.all = 4.41x107; q value.all = 9.25x107; p value.robust =
4.15%107%; q value.robust = 1.70x107%; p value.max = 2.48x107; q value.max = 1.04x10™. (C) p
value.all = 4.91x10*; q value.all = 0.0187; p value.robust = 6.00x10*; q value.robust = 0.0194; p
value.max = 1.21x107?; q value.max = 0.036.

Maximum Lifespan correlates (D) positively with liver Cd level and (E) negatively with liver Se
level. Selected species are indicated. (D) p value.all = 4.28x10°%; q value.all = 4.49x10*; p
value.robust = 5.63x10®; q value.robust = 4.73x10*%; p value.max = 2.50x10°%; q value.max =
2.10x10*. (E) p value.all = 0.0331; q value.all = 0.266; p value.robust = 0.0126; q value.robust =

0.120; p value.max = 0.0335; q value.max = 0.285.

118



Figure 4.8 (Continued)
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Table 4.2. Phylogenetic regression of element level in each organ with Adult Weight, Maximum
Lifespan (ML), Maximum Lifespan Residual (MLres), Female Time to Maturity (FTM), and
Female Time to Maturity Residual (FTMres). “Slp.all”, “p value.all”, and “q value.all” refer to the
slope coefficient, regression p value, and False Discovery Rate adjustment q value, respectively, using
all the data points. “p value.robust” and “q value.robust” refer to the regression parameters after
removing the point with the largest residual error. “p value.max” and “q value.max” refer to the
maximal p value and FDR adjustment q value, when each one of the species was left out, one at a
time. Those with p value.robust < 0.02 are listed. “E” refers to exponent with base 10 (e.g. “4.3E-03”

denotes 4.3x107%).
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Table 4.2 (Continued)

. Slp. | p value. | q value. | p value. | q value. | p value. | q value.
Trait | Organ | Element all all all robust robust max max

Br Ni60 -0.24 | 4.3E-03 | 7.5E-02 | 6.9E-03 | 8.8E-02 | 7.8E-03 | 1.1E-01

Br Mo95 -0.18 | 7.8E-03 | 1.1E-01 | 4.4E-03 | 6.6E-02 | 6.5E-03 | 1.0E-01

Ht Bl11 -0.07 | 1.4E-02 | 1.5E-01 | 1.4E-02 | 1.3E-01 | 3.2E-02 | 2.8E-01

Ht Mn55 -0.21 | 2.6E-03 | 5.2E-02 | 9.9E-04 | 2.4E-02 | 5.8E-03 | 9.4E-02

Ht Fe56 -0.12 | 49E-04 | 1.9E-02 | 6.0E-04 | 1.9E-02 | 1.2E-03 | 3.6E-02

Ht Fe57 -0.11 | 2.3E-03 | 5.1E-02 | 3.4E-03 | 5.4E-02 | 7.2E-03 | 1.0E-01

Ht Co59 -0.21 | 6.6E-03 | 1.0E-01 | 1.1E-03 | 2.5E-02 | 6.9E-03 | 1.0E-01

Ht Ni60 -0.37 | 9.6E-04 | 2.5E-02 | 3.6E-04 | 1.4E-02 | 1.5E-03 | 4.2E-02

Ht Mo95 -0.20 | 1.0E-02 | 1.3E-01 | 4.6E-03 | 6.6E-02 | 3.2E-02 | 2.8E-01

Adult | Kd Na23 0.06 | 1.4E-02 | 1.5E-01 | 9.0E-03 | 9.9E-02 | 5.4E-03 | 9.2E-02

Weight | Kd Cad0 0.04 | 1.4E-02 | 1.5E-01 | 3.4E-03 | 5.4E-02 | 3.0E-02 | 2.8E-01

Kd Mn55 -0.05 | 5.8E-02 | 3.6E-01 | 2.0E-02 | 1.6E-01 | 4.5E-02 | 3.2E-01

Kd Co59 -0.10 | 3.4E-02 | 2.7E-01 | 1.8E-02 | 1.5E-01 | 3.6E-02 | 2.8E-01

Kd Ni60 -0.24 | 42E-03 | 7.5E-02 | 1.6E-03 | 3.3E-02 | 1.1E-03 | 3.6E-02

Kd Zn64 0.07 | 7.2E-04 | 2.2E-02 | 7.5E-03 | 8.8E-02 | 2.9E-03 | 6.1E-02

Kd Zn66 0.07 | 7.3E-04 | 2.2E-02 | 7.6E-03 | 8.8E-02 | 3.0E-03 | 6.1E-02

Lv Ca40 0.02 | 1.8E-01 | 5.4E-01 | 9.9E-03 | 1.0E-01 | 1.1E-01 | 4.5E-01

Lv Ni60 -0.15 | 9.6E-03 | 1.3E-01 | 3.4E-03 | 5.4E-02 | 2.5E-03 | 5.8E-02

Lv Zn64 0.12 | 1.2E-07 | 5.0E-05 | 4.2E-09 | 1.7E-06 | 8.6E-07 | 1.8E-04

Lv 7Zn66 0.11 | 44E-07 | 9.3E-05 | 1.7E-08 | 3.6E-06 | 2.5E-07 | 1.0E-04

Kd Zn64 0.35 | 3.2E-05 | 1.7E-03 | 3.5E-03 | 5.4E-02 | 5.3E-05 | 2.8E-03

Kd 7Zn66 0.33 | 4.0E-05 | 1.9E-03 | 1.9E-05 | 1.1E-03 | 7.4E-05 | 3.5E-03

Kd Cdll11 248 | 1.5E-04 | 6.2E-03 | 4.8E-04 | 1.7E-02 | 4.1E-04 | 1.4E-02

ML Lv Zn64 0.36 | 2.5E-03 | 5.2E-02 | 3.5E-04 | 1.4E-02 | 5.5E-03 | 9.2E-02

Lv 7n66 0.33 | 4.0E-03 | 7.5E-02 | 7.4E-04 | 2.1E-02 | 9.4E-03 | 1.2E-01

Lv Se78 -0.36 | 3.3E-02 | 2.7E-01 | 1.3E-02 | 1.2E-01 | 3.4E-02 | 2.8E-01

Lv Cdll11 1.94 | 4.3E-06 | 4.5E-04 | 5.6E-06 | 4.7E-04 | 2.5E-06 | 2.1E-04

Ht Bl1l 0.29 | 4.4E-02 | 3.2E-01 | 7.9E-03 | 9.0E-02 | 6.1E-02 | 3.4E-01

Kd Cdll11 2.33 | 1.4E-02 | 1.5E-01 | 1.6E-03 | 3.3E-02 | 2.3E-03 | 5.7E-02

MLres Lv Fe56 0.48 | 49E-02 | 3.3E-01 | 7.1E-03 | 8.8E-02 | 4.5E-02 | 3.2E-01

Lv Fe57 0.46 | 6.0E-02 | 3.6E-01 | 9.6E-03 | 1.0E-01 | 7.2E-02 | 3.6E-01

Lv Se78 -0.44 | 3.7E-02 | 2.8E-01 | 1.5E-02 | 1.3E-01 | 7.8E-02 | 3.7E-01

Lv Cdll11 2.07 | 8.2E-04 | 2.3E-02 | 3.7E-06 | 3.9E-04 | 3.2E-04 | 1.2E-02

Kd Ca40 0.11 | 4.1E-02 | 3.1E-01 | 1.3E-02 | 1.2E-01 | 4.5E-02 | 3.2E-01

Kd Zn64 0.26 | 7.9E-06 | 6.6E-04 | 8.7E-07 | 1.2E-04 | 1.7E-06 | 2.1E-04

Kd 7n66 0.24 | 1.2E-05 | 8.5E-04 | 6.4E-05 | 3.4E-03 | 3.3E-06 | 2.3E-04

Kd Cdll11 1.80 | 2.5E-05 | 1.5E-03 | 9.1E-05 | 4.2E-03 | 3.3E-05 | 2.0E-03

FTM | Lv Ca40 0.13 | 1.4E-02 | 1.5E-01 | 1.4E-03 | 3.0E-02 | 6.7E-02 | 3.5E-01

Lv Zn64 0.24 | 5.7E-03 | 9.6E-02 | 6.8E-04 | 2.0E-02 | 7.6E-03 | 1.1E-01

Lv Zn66 0.21 | 1.0E-02 | 1.3E-01 | 2.5E-03 | 4.6E-02 | 1.5E-02 | 1.6E-01

Lv Se78 -0.24 | 4.5E-02 | 3.2E-01 | 6.0E-03 | 8.1E-02 | 3.3E-02 | 2.8E-01

Lv Cdl11 1.42 | 2.4E-06 | 3.3E-04 | 9.9E-06 | 6.9E-04 | 2.1E-06 | 2.1E-04

Ht Bl11 0.20 | 9.9E-03 | 1.3E-01 | 1.8E-03 | 3.5E-02 | 1.1E-02 | 1.4E-01

Ht Na23 0.18 | 3.4E-02 | 2.7E-01 | 1.7E-02 | 1.4E-01 | 5.3E-02 | 3.4E-01

Ht P31 0.07 | 1.6E-01 | 5.4E-01 | 1.1E-02 | 1.1E-01 | 3.5E-02 | 2.8E-01

Kd Cdl11 1.86 | 6.7E-03 | 1.0E-01 | 5.7E-03 | 7.9E-02 | 3.8E-03 | 7.0E-02

FTMres | Lv S34 -0.05 | 1.1E-01 | 4.5E-01 | 1.4E-02 | 1.2E-01 | 1.1E-01 | 4.5E-01

Lv Fe56 0.31 | 6.0E-02 | 3.6E-01 | 1.2E-02 | 1.2E-01 | 5.4E-02 | 3.4E-01

Lv Fe57 0.31 | 6.0E-02 | 3.6E-01 | 1.0E-02 | 1.0E-01 | 5.2E-02 | 3.4E-01

Lv Se78 -0.29 | 5.2E-02 | 3.4E-01 | 7.2E-03 | 8.8E-02 | 7.3E-02 | 3.6E-01

Lv Cdl11 1.46 | 1.4E-03 | 3.4E-02 | 7.9E-04 | 2.1E-02 | 2.1E-03 | 5.5E-02
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In terms of body mass, liver Zn level showed a strong positive correlation (Figure 4.8B; p
value.robust = 4.15x10 for ®Zn and 1.70x10® for ®Zn; q value.robust < 10 for both), whereas
negative correlations were observed for Fe, Mn, Co and Ni, especially in heart tissue (Figure 4.8C). In
terms of longevity, Zn levels in liver and kidney showed strong, positive correlations with ML and
FTM. However, the relationships became much weaker in MLres and FTMres, suggesting the
observed correlation is largely due to the effects of body mass.

Cd levels in liver and kidney correlated positively with all four measures of longevity (Figure
4.8A), with a particularly robust relationship in liver (q value.robust < 0.05 in all four measures).
While the Cd levels might potentially be affected by diets, the correlation remained statistically
significant when we methodically left out each species one at a time. As there has been no known
biological role for Cd in mammals, the result was somewhat unexpected. Since Cd mostly comes from
the soil or food, one possibility is that longer lived/larger mammals simply consume a greater amount
of food over their life time and, as they cannot efficiently excrete this metal, accumulate more Cd.
Among our samples, the liver Cd levels were highest in horse and bear, both of which were large and
long-lived. The naked mole rat, being the longest-lived rodent, also had a much higher liver Cd level
than other rodents of comparable sizes.

Liver Se was the only element correlating negatively with all four measures of longevity,
although the correlations were relatively weak (Figure 4.8E and Table 4.2; p value.robust = 0.013 for
ML, 0.015 for MLres, 0.006 for FTM, and 0.007 for FTMres). Even when the points corresponding to
the African mole rats were excluded, we still observed a negative correlation with ML (p value =
0.028). Selenoproteins are important cellular redox regulators, whose changes may affect redox
homeostasis and DNA mutation rates. Interestingly, the long-lived naked mole rat may experience
significant oxidative stress in captivity (Andziak et al., 2006) and limit both GPX1 expression and
GPX activity (Andziak et al., 2005; Kasaikina et al., 2011; Kim et al., 2011). Excessive intake of Se is
toxic and can lead to selenosis. Therefore, there is a delicate balance between the beneficial aspects of

Se, its toxicity, and other systems that support maintenance functions.
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DISCUSSION

Prior to this study, it has been unclear how evolutionary processes adjust the ionomes across
mammalian species and organs according to phylogeny, longevity and body mass. We were able to
offer new insights on elemental composition of organs and species, identify common and distinct
patterns of element utilization, and link these findings to physiological functions. The elements
clustered as macronutrients, transition metals or toxic elements, suggesting they are handled by
mammals using common strategies based on their biological functions. Some elements also showed
lineage-specific changes, including decreased utilization of Se in African mole rats, and a strong link
between the number of Sec residues in SelP and the kidney and liver Se levels across mammals. In
addition, we found that lifespan of mammals was positively linked with Cd tissue levels and
negatively linked with Se in liver. Some elements, such as Zn, showed a positive association with
species body mass, whereas others, such as Ni, Co, Fe, and Mn, showed negative association.

The multiple associations and interactions among these elements revealed by our study would
not have been possible without examining a wide spectrum of mammals and different organs. This
approach can also offer valuable insights into the interaction between elements and environment, as
previously demonstrated by similar studies in plants (Watanabe et al., 2007; White et al., 2012). When
the same plant species were collected under different fertilizer treatments and environmental
conditions, the concentrations of Ca, Zn, Mn and Mg were found to remain more closely linked to
phylogeny. In contrast, the concentrations of Cu and Fe varied more strongly with environmental
factors, suggesting different elements might be more or less responsive to external variations. In
addition, related species may be exposed to similar environmental conditions, or may have similar
detoxification abilities, either of which can drive the similarities in their ionomes and potentially
confound the phylogenetic signals. Similar studies on a much larger scale will help determine the
variability and elasticity of element levels in mammals under different dietary regimens. Overall, this
study provided direct insights into how evolution may adjust the ionome of mammals according to
organ physiology, phylogeny, environment, lineage specialization and life histories and may provide a

useful predictive tool in future studies.

123



EXPERIMENTAL PROCEDURES

Biological samples and element quantifications

Inductively-coupled plasma mass spectrometry (ICP-MS) was applied to characterize element
levels in the brain, heart, kidney, and liver of 26 mammalian species. The species were as described
previously (Fushan et al., 2015; Ma et al., 2015). The animals were young adults and, except for horse
and vervet, all were males, with two to four biological replicates (tissues from different animals) for
most species. Whole liver, kidney, heart, or frontal parts of brain were frozen in liquid nitrogen and
stored at -80°C until further use.

The concentrations of Li (nM), B (nM), Na (mM), Mg (uM), P (mM), S (mM), K (mM), Ca
(uM), Mn (nM), Fe (uM), Co (nM), Ni (nM), Cu (uM), Zn (uM), As (nM), Se (nM), Mo (nM), and
Cd (nM), per gram of tissue digested, were quantified with spike-in 50 pg/L Ga as internal control,
using the sample preparation and data collection method described previously (Malinouski et al.,
2014). Two isotopes were measured for Fe (°°Fe, *’Fe), Cu (**Cu, ®*Cu), and Zn (**Zn, **Zn). The
samples were subjected to four independent ICP-MS runs, each with three injections to each sample.
Those injections with clearly abnormal results (i.e. reporting negative concentrations for most
elements and differing significantly from the other runs of the same sample) were discarded (79 out of
over 2600 injections, or ~ 3%, were discarded this way).
Data processing

The results were log10-transformed and batch effect was removed using R package “sva”
(Leek et al.) (Figure 4.2). The average values were computed across the four runs and the mean and
standard errors were calculated across the replicates. For those without biological replicates, the
standard error was taken as average standard error of the other samples. Standardized concentrations
(i.e. scaled to mean = 0 and standard deviation = 1) were used for cross-element analysis.
Element distribution in organs

Wilcoxon Rank-Sum Test was used to identify elements relatively enriched or depleted in a
particular organ. Data from the same animal were considered as paired. For each element, the

numbers of significant pair-wise comparisons (p value < 0.05) were tabulated. Enrichment or
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depletion was declared in an organ if at least two out of the three pair-wise comparisons were
statistically significant.
Phylogenetic signals and phylogenetic ANOVA

Pagel’s lambda and Blomberg’s K were calculated using R package “phytools” (Revell,
2012), after incorporating standard error of measurement. Those elements with p value < 0.05 in both
cases were considered to have significant phylogenetic signals. Phylogenetic ANOVA was performed
using R package “geiger” (Harmon et al., 2008). The species were grouped and compared according
to their taxonomical orders or families.
Regression by generalized least square and robustness of results

See Chapter 2. The cut-off for top hits was p value.robust < 0.02.
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ABSTRACT

The budding yeast has served as a useful model organism in aging studies, leading to the
identification of genetic determinants of longevity, many of which are conserved in higher eukaryotes.
However, factors that promote longevity in a laboratory setting often have severe fitness
disadvantages in the wild. To obtain an unbiased view on longevity regulation, we analyzed how a
replicative lifespan is shaped by transcriptional, translational, metabolic, and morphological factors
across 22 wild-type Saccharomyces cerevisiae isolates. We observed significant differences in
lifespan across these strains and found that their longevity is strongly associated with up-regulation of
oxidative phosphorylation and respiration and down-regulation of amino- acid and nitrogen
compound biosynthesis. As calorie restriction and TOR signaling also extend the lifespan by adjusting
many of the identified pathways, the data suggest that the natural plasticity of yeast lifespan is shaped
by the processes that not only do not impose cost on fitness, but also are amenable to dietary

intervention.
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INTRODUCTION

The idea of slowing aging and extending lifespan of organisms has attracted much attention,
leading to the identification of numerous factors that mitigate the effects of the aging process. At the
cellular level, the driving force behind aging may be the inevitable accumulation of a myriad different
forms of molecular damage (Gladyshev, 2012). Many genetic and pharmacological interventions have
been discovered that increase the lifespan of model organisms, including some with single gene effects
(Finch and Ruvkun, 2001; Kenyon, 2010). In addition, diverse classes of genes have been reported to
be involved in lifespan control, pointing to several key regulatory pathways. However, it remains to be
seen whether similar strategies may be applied to combat aging in humans. A major challenge in the
field is that many of the findings apply to model organisms in laboratory settings, but these longevity
conditions may come at the expense of fitness, making them detrimental when organisms are in their
natural environment.

Aging is a process that involves complex gene networks. While broad genome manipulation is
not yet practical in higher eukaryotes, fine-tuning these gene networks by environmental or dietary
factors may offer a solution. It has been shown that manipulations such as calorie restriction (CR),
oxygen availability, pH, and alternative carbon sources can modulate gene expression and the aging
process (Botta et al., 2011; McCay et al., 1935; Murakami et al., 2012; Pitt et al., 2014). CR is among
the most studied and widely used longevity interventions, which can extend lifespan in almost all model
organisms (Finch and Ruvkun, 2001). Although the precise mechanisms of CR-mediated lifespan
extension remain debatable, it is known that CR causes a metabolic shift from fermentation to
respiration in yeast, and that mitochondrial metabolism tends to increase in multicellular eukaryotes
subjected to CR (Lin et al., 2002; Lopez-Lluch et al., 2006; Schulz et al., 2007). These findings also
agree with the effects observed by manipulating various lifespan-regulating pathways, such as TOR
(target of rapamycin) signaling (Johnson et al., 2013). Suppression of TOR signaling mimics the
reduction of nutritional input under CR in yeast and extends lifespan while concomitantly increasing

mitochondrial respiration (Bonawitz et al., 2007; Johnson et al., 2013). Taken together, these studies
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link elevated mitochondrial function with lifespan, suggesting that a metabolic switch to oxidative
metabolism is beneficial with regard to delaying aging.

The fact that metabolic pathways can be modulated by both CR and TOR inhibition suggests
that complex processes such as aging may also be amenable to environmental and genetic manipulation.
It is conceivable that the interaction between environmental factors and gene networks can explain the
diverse phenotypes of species inhabiting different ecological niches. It is known that environmental
adaptation and parallel evolution help create the genetic diversity for selection in natural populations
(Reznick et al., 2001). By evaluating the lifespan differences among natural populations of closely
related strains or species, one may obtain insights into the underlying mechanisms that modulate aging
and longevity. Towards this goal, in the current work we employed a powerful aging model, the budding
yeast. Analyses of the aging process in Saccharomyces cerevisiae have mostly been performed on a
small number of laboratory-adapted strains, but whether the identified mechanisms can explain the
lifespan variation across natural strains is unknown. We evaluated the lifespans of 22 natural isolates
of S. cerevisiae (Liti et al., 2009) and used transcriptome, proteome, metabolome and morphology data
(Skelly et al., 2013) to identify the signatures associated with natural lifespan variation. Our data suggest
that increased replicative lifespan (RLS) in natural yeast populations is associated with increased
oxidative phosphorylation and reduced amino acid biosynthesis. Our study also represents a new
approach that combines phenotypic variation across yeast populations with high-throughput data to

elucidate underlying molecular mechanisms driving this variation.
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RESULTS

Variation in replicative lifespan and growth rate across natural yeast isolates

Phylogenetic analysis using complete genome sequence alignment of 22 natural S. cerevisiae
isolates revealed a complex cladogram that could be divided into two main groups (Figure 5.1A).
Assaying these isolates at 30 °C on standard YPD plates, we observed over 10-fold variation in RLS
(Pearson correlation coefficient = 0.95 between mean and maximum lifespans; Figure 5.1B and Table
5.1). BC187 showed the largest number of cell divisions (mean = 39; maximum = 60); NCYC361 and
YS2 had the fewest (mean = 3 for both; maximum = 7 for NCYC361 and 9 for YS2); and many strains
produced on average 20-30 daughter cells, similar to BY4743, a standard laboratory diploid strain and
the parental strain of the yeast ORF deletion collection (Table 5.1).

Changes in growth rate have previously been shown to affect mRNA, protein and metabolite
levels (Brauer et al., 2008; Castrillo et al., 2007; Regenberg et al., 2006), and a recent study has reported
a positive correlation between time spent in the G1 phase of the cell cycle and RLS in yeast (He et al.,
2014). To determine a potential relationship between growth rate and lifespan, we monitored the growth
of these strains by automated Bioscreen-C growth analyzer and calculated the doubling time in both
glucose and glycerol medium. Of the 22 isolates, 21 grew faster than BY4743 strain, and four strains
doubled in less than 50 min (Figure 5.1C, Table 5.1) in glucose medium. However, we found only a
weak negative correlation between the doubling time and mean lifespan (Pearson correlation coefficient
=-0.42). In addition, we observed that all strains can utilize glycerol as a carbon source, which indicates

these strains are capable of mitochondrial respiratory metabolism (Table 5.1).
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Figure 5.1.Yeast strains examined in this study.

(A) Phylogenetic relationship. The tree was constructed based on the alignment of complete genome
sequences of the strains, using MEGA 6.06 (Tamura et al., 2013) and neighbor joining method
(Saitou and Nei, 1987). The branches are colored according to strain types shown in the legend in the
lower right corner.

(B) Mean replicative lifespan and (C) mean growth rate (doubling time) of the strains in glucose
media. The strains are ordered by phylogeny. The error bars indicate standard error. Red dotted lines

indicate the mean replicative lifespan (B) and doubling time (C) of the reference strain BY4743.
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Phenotypic variation across strains

Gene expression, proteomic, metabolomic, and morphological data for these 22 strains have
been reported previously (Skelly et al., 2013). After our filtering and quality control, the dataset
contained RNA-seq reads for 6207 transcripts; proteomic measurement of 6842 peptide fragments
corresponding to 1643 unique genes; mass spectrometric quantification of 107 metabolites; and
quantitative microscopy of 392 morphological phenotypes (Experimental Procedures). In particular,
1641 unique genes were represented by both transcripts and peptides, but the correlation between the
transcript and peptide levels was not strong (median Spearman correlation coefficient = 0.31; Figure
5.2A). Similar conclusions were reached when we used the mean peptide values for each gene instead
(median Spearman correlation coefficient = 0.28; Figure 5.2B).

To visualize phenotypic variation across these strains, we performed Principal Component
Analysis on each type of the phenotypic data as well as on the combined data (Figure 5.3A, Figure
5.4A-D; the combined data excluded metabolites as values were not available for strain 378604X).
The observed patterns resembled the phylogenetic relationship, with the first 3 Principal Components
(PCs) explaining 36-53% of total variance (Figure 5.4E). Examination of the genes contributing to
the first 3 PCs in the combined data revealed a distinctive set of GO terms and KEGG pathways,
including oxidative phosphorylation (PC1), acrobic respiration (PC1), mitochondrion (PC1), response
to temperature stimulus (PC1), ribosome (PC2), protein synthesis (PC2), regulation of translation
(PC2 and PC3), ribonucleoprotein complex (PC3), and ribosome biogenesis (PC3). These results
suggest that the strains predominantly differ in energy metabolism, protein synthesis, and ribosome
regulation. Consistent with a previous report (Skelly et al., 2013), along PC1 the strains segregated

largely according to their relative preferences for aerobic respiration or fermentation (Figure 5.3B).
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Figure 5.2. Spearman correlation coefficients between transcript values and (A) individual
peptide values, or (B) mean peptide values for genes. The 25th, 50th, and 75th percentile values

are: (A) 0.08, 0.31, 0.54, respectively; and (B) 0.05, 0.25, 0.51, respectively.
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Figure 5.3. Phenotypic variation across the strains.

(A) Principal Component Analysis (PCA) of combined data. PCA was performed by combining
transcripts, peptides, and morphology data (metabolite data were not available for strain 378604X
and were omitted). Percentage variance explained by each Principal Component (PC) is shown in
the parentheses.

(B) Relative levels of transcripts and peptides involved in aerobic respiration or fermentation.
The heat map shows the transcripts and peptides with top contribution to Principal Component 1
and involved in aerobic respiration or fermentation. Hierarchical clustering was performed using

complete linkage.
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Figure 5.4. Principal Component Analysis.

Principal Component Analysis of (A) transcripts, (B) peptides, (C) metabolites, and (D) morphology

data. Percentage variance explained by each Principal Component (PC) is shown in parentheses.

(E) Cumulated percentage of variance explained by Principal Components. Combined data: Figure

5.3A; transcripts, peptides, metabolites, and morphology: Figure 5.4A-D, respectively.
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Correlation between phenotype and lifespan

To identify a link between phenotypic variation and lifespan, we performed phylogenetic
regression by generalized least squares, uncovering the phenotypes associated with longevity after
accounting for the phylogenetic relationship of these strains (Felsenstein, 1985; Freckleton et al.,
2002; Martins and Garland, 1991) (Chapter 2). Regression was performed between phenotypic values
and any one of the following lifespan measurements: mean RLS, maximum RLS (Max RLS), log
mean RLS (Log Mean RLS), and log maximum RLS (Log Max RLS). Different models of trait
evolution were tested and the best-fit model was then selected based on maximal likelihood (Materials
and Methods). To assess robustness of the relationship, we also left out one yeast strain at a time and
re-calculated regression slopes using the remaining strains (Chapter 2). This ensured the overall
relationship did not depend on a particular isolate.

The four different RLS measurements yielded very similar results, with Pearson correlation
coefficients ranging between 0.90 and 0.98 for the regression slopes. We defined the top hits as
phenotypes with statistically significant regression slopes under at least two different RLS measures,
and identified 249 gene transcripts, 347 peptide fragments (representing 216 unique genes), 5
metabolites, and 43 morphology features (Table 5.2). Among the top gene transcripts and peptide
fragments, only 10 unique genes were supported by both measures, consistent with the weak
correlation between transcript and peptide levels noted above (Figure 5.2). When the mean peptide
values were used for calculation, 88 genes reached statistical significance, 80 of which were also
supported based on peptide fragments (Table 5.2).

With regard to morphology measures, features such as “maximal intensity of nuclear
brightness divided by average”, “nucleus roundness in mother cell”, and “length from bud tip to
mother cell’s short axis on nucleus C” showed significant negative correlation with RLS, whereas
“fitness in nucleus C” correlated positively with longevity. Among the metabolite top hits, asparagine
showed negative correlation with Max RLS (p value = 0.014) and Log Max RLS (p value =0.017)
(Figure 5.5A). A related amino acid, glutamine, also negatively correlated with Max RLS (p value =

0.042) and weakly with Log Max RLS (p value = 0.055) (Figure 5.5B). This was of note, since the
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TOR pathway is known to be regulated by the levels of amino acids, especially intracellular glutamine
(Martin and Hall, 2005). Treating yeast cells with methionine sulfoximine, an inhibitor of glutamine
synthetase, has been shown to decrease both intracellular glutamine levels and TOR-dependent
signaling (Crespo et al., 2002) while increasing RLS (Kaeberlein et al., 2005), whereas removal of
either asparagine or glutamate from the medium produced a dose-dependent effect on chronological
lifespan (CLS; CLS is the survival time of populations of nondividing cells, while RLS is the number
of daughter cells produced by a mother cell prior to senescence; they are related but not identical)
(Powers et al., 2006). We also found 2-octenoic acid to correlate negatively with Max RLS (p value
=0.019) and Log Max RLS (p value =0.014) (Figure 5.5C). This compound is known to be elevated in
mitochondria, but its effect on aging is not known. Some of the transcript and peptide top hits have
also been implicated in lifespan regulation in yeast. For example, the protein levels of ADH1p
(alcohol dehydrogenase, coded by YOL086C) correlated negatively with both Mean RLS and Max
RLS, and deletion of ADH1 was found to extend RLS by 23% in MATa and 15% in MATa (Smith et
al., 2008). DCW1 (also known as YKL046C, coding for a putative mannosidase in cell wall
biosynthesis), whose transcript levels correlated negatively with all four RLS measurements, was
previously identified in a genetic screen to increase yeast CLS when deleted (Matecic et al., 2010). In
addition, a number of top hits correlating positively with longevity at the transcript (e.g. VRPI
(YLR337C), KGDI (YIL125W)) and protein (e.g. PET9p (YBL030Cp), SP160p (YJLO80Cp), GSY2p
(YLR258Wp)) levels were previously shown to decrease RLS or CLS when deleted or mutated

(Fabrizio et al., 2010; Laschober et al., 2010; Smith et al., 2008; Wang et al., 2008).
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Table 5.2. (see attached Excel file) Phenotypes with significant correlation to mean replicative
lifespan (Mean RLS), maximum replicative lifespan (Max RLS), log mean replicative lifespan
(Log Mean RLS), and log maximum replicative lifespan (Log Max RLS). Only phenotypes
with significant correlation to at least two of the RLS measurements are shown. “Best.Model”
indicates the best-fit regression model; “Slope.coefficient” indicates the regression slope under the
best-fit model (positive value indicates positive correlation; negative value indicates negative
correlation); “p.value” indicates the regression slope p value; “RobustTest.Min”,
“RobustTest.Median”, and “RobustTest.Max” indicate the minimal, median, and maximal p values
when the regression is performed by leaving out one strain at a time. “peptide_mean” refers to the
mean peptide values across all the peptide fragments for the unique genes. The “Note” column in

“peptide_mean” indicates the number of peptide fragments for each unique gene.
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Figure 5.5. Selected phenotypes correlating with replicative lifespan.
Levels of (A) asparagine, (B) glutamine, and (C) 2-octenoic acid negatively correlate with

maximum replicative lifespan (MaxRLS). Regression slope p values: (A) 0.014; (B) 0.042; (C)
0.019.

(D) Protein-protein interaction network of the top hits identified by the mean peptide values.
The interaction network is based on STRING database (evidence view). Genes without interacting

partners are omitted. Selected pathways are indicated by colored rings. Most of the peptides here

showed significant correlation to all four RLS measures.
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Networks and pathways represented by top hits

To further understand the biological pathways underlying natural regulation of lifespan, we
performed pathway enrichment analysis using DAVID (Huang da et al., 2009). The enrichment
results for the peptide fragments were especially significant. Among the peptide fragments correlating

EE AT

positively with longevity, the enriched terms included “oxidative phosphorylation”, “mitochondrial
respiratory chain”, “ion transport”, “hexose metabolic process”, “glucose metabolic process”, and
“aerobic respiration”. On the other hand, for those correlating negatively with longevity, “amino acid

2 e EEANTY

biosynthesis”, “organic acid biosynthetic process”, “nitrogen compound biosynthetic process”,
“nucleotide binding”, “cofactor binding”, and “glycolysis” were enriched. Many of these terms were
similarly enriched when we carried out calculations using the mean peptide values. In comparison, the
enrichment statistics were weaker for the transcripts, even though the numbers of top hits were
similar. Among those with positive correlation, enrichment was observed for “ion transport”,
“mitochondrial membrane part”, “ATP biosynthetic process”, “oxidative phosphorylation”, and “actin
binding”. For the transcripts with negative correlation to lifespan, the enriched terms included “RNA
polymerase Il transcription factor activity”, “transcription regulator activity”, “microtubule”,
“regulation of RNA metabolic process”, and “mRNA splicing”. Overall, the results suggest that the
long-lived strains tend to up-regulate oxidative phosphorylation, acrobic respiration, and ion transport;
and down-regulate transcription, splicing, and various biosynthetic processes (especially amino acid
metabolism).

We visualised protein-protein interactions among the top hits using STRING (Jensen et al.,
2009) and found the network is significantly enriched in interactions. The top hits identified using the
mean peptide values were grouped into several prominent clusters, including oxidative
phosphorylation and aerobic respiration (positive correlation); organic acid and nitrogen compound
biosynthetic process (negative correlation); and protein targeting (negative correlation) (Figure 5.5D).
Similar clusters of the top hits were observed for transcripts and peptide fragments data (Figure 5.6),

suggesting that the top hits, rather than being a random collection of genes, represent interconnected

nodes in regulatory networks and pathways.
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Mitochondrial abundance and composition of the strains

Since the results suggested a relative up-regulation of oxidative phosphorylation and aerobic
respiration among the long-lived strains, we examined more closely the nature of such differences.
First, the genomic reads of these strains (Skelly et al., 2013) were used to calculate average coverage
of the mitochondrial DNA relative to that of the chromosomes (Table 5.1, Figure 5.7A), as a proxy for
mitochondria copy number. While the relative coverage was highest in YJIM381 (8.0) and lowest in
YPS128 (3.0), the values were relatively constant for most of the strains (4.0—5.0) and there was no
overall correlation with longevity (Pearson correlation p value = 0.31 with Max RLS and 0.53 with
Mean RLS). Moreover, Western blotting confirmed the similar expression of a mitochondrial marker
protein Porl in these strains (Figure 5.7B). In addition, the doubling times in glycerol media were also
similar (100-120 min for most of the strains, with exception of >180 min for YS2, DBVPG1373, and
Y55 strains; Figure 5.7C), suggesting the longevity variation across these strains could not be simply
explained by total mitochondrial content or number.

However, when we examined the top hits based on mean peptide values (Table 5.2), a trend
emerged. Approximately 1/3 of these peptides were related to mitochondria, with characteristic
distribution patterns across the strains depending on their lifespans (Figure 5.8). For example, the
longer-lived strains generally contained higher levels of proteins belonging to pyruvate
dehydrogenase complex (PDH complex), Complex III, Complex IV, mitochondrial ATP synthase,
inner membrane ADP/ATP carrier, as well as mitochondrial ribosomal proteins. On the other hand,
long-lived strains had lower relative levels of outer membrane translocases, mitochondrial
chaperonins, and certain metabolic enzymes (Figure 5.8B). The results suggest that the mitochondrial
metabolism may vary widely across the strains according to their longevity. The longer-lived strains
seem to enhance the electron transport chain and oxidative phosphorylation capacity, whereas the
shorter-lived strains place more emphasis on protein folding and outer membrane transport. While the
biological implications underlying these observations need to be further explored, the results show
that distinct mitochondrial composition is associated with different yeast strains, and such patterns

agree well with the observed lifespan variation.
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Figure 5.7. Analysis of mitochondria across the strains.

(A) Relative coverage of the chromosomes and mitochondria DNA. The upper panel shows the
relative coverage for each of the chromosomes as well as mitochondria DNA (mean coverage
across the chromosomes for each strain is set as 1.0). Each bar represents one chromosome in one
strain. The strains are ordered by their mean replicative lifespan. The lower panel shows the
enlarged view for mitochondria DNA.

(B) Western blot shows the strains contain similar amount of mitochondria. POR1 (coded by
YNLO55C): mitochondrial porin (voltage-dependent anion channel). PGK1 (coded by YCRO12W):
3-phosphoglycerate kinase.

(C) Mean doubling time in glycerol media. The error bars indicate standard error.
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Figure 5.8. Mitochondrial respiratory composition varies across the strains according to

lifespan.

(A) Mean replicative lifespan of strains. Strains are ordered according to their mean lifespan.

(B) Levels of certain proteins correlate with lifespan. The mean values of the selected proteins

maximum replicative
lifespan in glucose
(number of division)

mean replicative
lifespan in glucose
(number of division)

(related to mitochondrial function) are shown.

(C) Effect of growth on a respiratory substrate on lifespan. Replicative lifespan of 10 strains
was tested on yeast peptone glycerol (3% YPQG) plates and expressed as mean (left) and maximum
(right) replicative lifespan. Except for the three long-lived outlier strains (YJM981, YIM975, and

Y'12), all strains either increased or did not change lifespan when their growth substrate was

switched from glucose to glycerol..
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Comparison of related long-lived and short-lived strains

A number of our strains (YJIM978, YIM981, YIM975, DBVPG1373, NCYC361, and YS2)
are closely related to each other phylogentically (Figure 5.1A), but differ significantly in replicative
lifespan (Figure 5.1B). In particular, they may be grouped into long-lived (YJIM981, YIM975, and
DBVPG1373) and short-lived (YIM978, NCY361, and YS2). If our findings above were valid, then
we should observe similar sets of genes and pathways differentially expressed between these two
groups. The analysis showed that the genes involved in “hexose metabolic process”, “glucose
metabolic process”, and “glycolysis” were expressed highly in the long-lived strains, whereas those
involved in “organic acid biosynthetic process”, “amino acid biosynthesis”, and “cofactor binding”
were expressed at relatively low levels. Compared with the pathways we identified above, the genes
involved in oxidative phosphorylation and aerobic respiration did not emerge as top hits, and there
were not as many proteins related to mitochondria among these 6 strains. This is likely because all of
these strains prefer fermentation over aerobic respiration (Figure 5.3B), and they already share similar
mitochondrial composition profiles (Figure 5.8B). Among the strains designated as YJM are clinical
isolates and their adaptation to longevity appears to be different from other strains. For example,
YJMO975 and YIM981 are long-lived, but their mitochondrial patterns are similar to the short-lived
strains. Perhaps, their longevity is based on lineage-specific features that are not shared by other long-
lived isolates. Nevertheless, among the long-lived strains we observed lower levels of expression of
genes and proteins involved in biosynthetic processes (most of which were cytoplasmic), in
agreement with our observations based on the 22 strains. This suggests that long lifespan can also

arise without substantially altering the mitochondrial composition, although the reduction in

biosynthesis seems to be a common feature.
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DISCUSSION

Availability of high quality genome sequence of Saccharomyces cerevisiae has made yeast an
attractive model for dissecting complex traits associated with various phenotypes. Comparative
genomics across multiple natural yeast isolates enabled the identification of extensive natural genetic
variation at the nucleotide polymorphism (SNP) level and the elucidation of genotype to phenotype
relation in several traits (Liti and Louis, 2012). Here, we ask: can similar strategies be applied to
understand the common determinants of aging and longevity?

Using high throughput omics data, we examined 22 yeast natural isolates, which were found
to vary over 10 fold in RLS. These isolates occupy diverse ecological niches and face different
evolutionary pressures, so their natural lifespan variation must be encoded in their respective
genomes. However, it has been challenging to characterize the cumulative effect of multiple alleles on
a phenotype, especially if the underlying process involves a complex gene network. Alternatively, one
may look at variation in transcriptome and proteome and correlate them and the associated pathways
with the phenotypic traits, since the genotypic variation should be reflected in the expression variation
in order to create the associated phenotypic differences (Brem et al., 2005).

To identify a link between transcript variation and lifespan, we performed phylogenetic
regression and identified genes correlating with RLS, some of which were previously implicated in
longevity regulation. Our pathway analysis showed that the long-lived strains tend to up-regulate
oxidative phosphorylation, aerobic respiration, and ion transport; and down-regulate transcription,
splicing, glycolysis and various biosynthetic processes, most notably amino acid synthesis. In
particular, the variation in mitochondrial respiratory composition of these strains agrees well with
their differences in lifespan. Mitochondria are at the heart of cellular metabolism and energy
production, and increased mitochondrial respiratory capacity has been linked to longevity (Bonawitz
et al., 2007; Pan and Shadel, 2009). We hypothesize that many of these natural isolates reside in the
environments with low fermentable carbon sources, so that they undergo diauxic shift and metabolize
respiratory carbon sources. Shifting from fermentable (glucose) to respiratory carbon sources is

known to extend both replicative and chronological lifespan in yeast (Delaney et al., 2011).
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Genetic variation responsible for lifespan differences may also affect metabolite levels and
morphology. Among the examined metabolites, glutamine and asparagine showed strong negative
correlation with RLS, which is consistent with the known inhibition of TOR activity and extension of
chronological lifespan by removing glutamine or asparagine from yeast media (Powers et al., 2006)
and extension of RLS by treating cells with methionine sulfoximine (Kaeberlein et al., 2005). In terms
of cell morphology, a number of nuclear features such as brightness, roundness and distance to bud tip
showed significant negative correlation with RLS, whereas “fitness in nucleus C” correlated
positively with longevity. Interestingly, longer-lived strains tend to possess smaller mother cell
volume (Figure 5.9), indicative of a potential compromise between mother cell size and lifespan, as
has been previously observed for long-lived cells treated with ibuprofen (He et al., 2014). In
agreement, inverse correlation between cell size and lifespan has been observed in yeast previously
(Yang et al., 2011). Thus, here too, natural changes in a phenotype can be linked with longevity

interventions and maybe used as aging biomarkers.
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It should be noted that our method is limited to identifying the genetic and metabolic
processes that show concerted changes in relation to longevity across these 22 strains, which are more
likely to be generalizable and do not depend on single or a few strains. On the other hand, an
exceptionally long-lived or short-lived strain can also have arisen due to certain strain-specific
changes that are not shared by other isolates, and such changes may be missed by our method.
Comparison among the 6 related long-lived and short-lived strains suggests there may be more than
one way to achieve long lifespan, and it will be useful to examine strains across different evolutionary
distances to identify the common features.

To our knowledge, this is the first report that analyzes inter-strain natural diversity of RLS at
the population level using high throughput data. Natural isolates occupying diverse ecological niches
may face different selection pressures and have evolved to adjust their gene expression, metabolism,
longevity, and reproduction to ensure survival and propagation (Spor et al., 2009). While evolution
can sometimes provide different solutions to the same challenge (Romano et al., 2010), our data
suggest a consistent set of genes and pathways are responsible for modulating the lifespan trait across
a broad diversity of wild yeast isolates.

Finally, it has been unclear whether the previous findings of various longevity regulator genes
identified in the laboratory setting could be translated to the natural environment. A possibility is that
these lifespan-extending interventions come at the expense of fitness. For example, many longest-
lived C. elegans laboratory mutants tend to develop and move slowly and often show reduced
fecundity, so they will probably be eliminated quickly for lack of competitive advantage in the wild.
Consistent with this, 65% of long lived single gene deletion mutants in yeast demonstrated
significantly reduced fitness compared to isogenic wild type cells (Delaney et al., 2011). Our results
show that natural changes in lifespan need not compromise fitness, as longer-lived yeast isolates are
presumably well adapted to their respective ecological niches. In addition, our analysis is unbiased
with regard to the genes and pathways involved in lifespan control and supports a possibility that
multiple correlates cumulatively contribute to the longevity phenotypes. Specifically, we found that
the ability of yeast cells to rely more heavily on respiration and repress their anabolic programs, even

under conditions of glucose excess, are among the key adaptations that lead to increased lifespan.
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Importantly, since CR and TOR signaling are also known to extend lifespan by activating respiration
and inhibiting biosynthetic processes, these data show that natural plasticity of yeast lifespan is
shaped by pathways that both impose little cost on fitness and are amenable to dietary intervention.
Thus, environment may be a trigger for changes associated with increased lifespan that are then fixed

in the genomes.
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EXPERIMENTAL PROCEDURES

Yeast strains

Diploid natural isolates of S. cerevisiae were obtained from the Sanger Institute and are
summarized in Table 5.1. These strains are well-characterized (Bergstrom et al., 2014; Liti et al.,
2009). The diploid laboratory strain BY4743 was purchased from ATCC.
Replicative lifespan assay

For each strain, cells were freshly grown on YPD plates prior to dissections. Several colonies
were streaked onto new YPD plates using pipette tips. After overnight growth, 40-50 dividing cells
were lined up. Newborn daughter cells were chosen for RLS assays after the first division using a
micromanipulator. Plates were incubated at 30 °C between dissections and left at 4 °C during night.
All RLS assays were performed in standard YPD plates with 2% glucose as previously described
(Steffen et al., 2009). For each natural isolate, at least two independent assays were performed. Each
assay contained 20-40 mother cells.
Phenotypic data

Growth rates were determined using a Bioscreen C MBR machine by analysis of optical
density in the OD420.580 range as previously described in combination with the YODA Software
package (Olsen et al., 2010). The data on transcripts, peptides, metabolites and morphology were
downloaded from Yeast Resource Center (http://www.yeastrc.org/g2p/download.do). Values
corresponding to the 22 strains were extracted; metabolite data were not available for 378604 X.
Metabolites with missing values in more than one strain (other than 378604X) were discarded; the
remaining missing values (6 out of 107 metabolites) were imputed based on 10 nearest neighbors. For
comparison across the phenotypic data, the values were standardized across the strain by setting mean
= 0 and standard deviation = 1. In addition, for genes represented by multiple peptides, we calculated
the mean standardized values to perform the regression.
Principal component analysis (PCA)

PCA was performed on standardized values using R package “stats” (R Development Core

Team, 2013). To identify the underlying pathways, the factors in each of the first three principal
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components (PCs) were ranked by their contributions, and pathway enrichment analysis was
performed on the top 10% factors using DAVID after correcting for background.
Phylogenetic regression by generalized least square

See Chapter 2. The cut-off for top hits was p value <0.05 in at least two RLS measurements.
Relative coverage of mitochondrial DNA

Genomic reads of strains examined in our study were downloaded from Yeast Resource
Center and mapped to reference genome of Saccharomyces cerevisiae strain S288c. The average
coverage per base across the chromosomes (excluding positions 45,000 to 50,000 of chromosome
XII) was calculated using R package “ShortRead” for each strain. The relative coverage of
mitochondrial DNA was expressed as the ratio of per-base coverage of mitochondrial DNA to per-
base coverage of chromosomes.

Differential expression between long-lived and short-lived groups.

Six closely related strains were grouped into long-lived (YJM981, YJIM975, DBVPG1373)
and short-lived (YIJIM978, NCY361, YS2). Differential expressions of the phenotypic data were
calculated using R package “limma” (R Development Core Team, 2013).

Mitochondrial protein expression

Logarithmically growing cells (5 ml and ODgoo=0.6) were harvested and incubated in 150 pl
extraction buffer (1.85 mM NaOH and 2% B-mercaptoethanol) on ice for 10 min. Then, 150 pl of
50% TCA (trichloroacetic acid) was added and incubated for 30 min on ice. After incubation, the cells
were pelleted and supernatant aspirated. After 30 min of air drying, the pellets were heated at 60°C in
SDS loading buffer and 4 pl of each sample was analyzed by SDS-PAGE. To examine the expression
of a mitochondrial protein, Western blotting was carried out with antibodies against mitochondrial
outer membrane protein Porl (Abcam). The membranes were stripped and developed with antibodies

against phosphoglycerate kinase (Pgk1) (Life technologies) as an internal loading control.
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ABSTRACT

Lifespan varies dramatically among species, but the biological basis is not well understood.
Previous studies in model organisms revealed the importance of nutrient sensing, mTOR,
NAD/sirtuins and insulin/IGF1 signaling in lifespan control. By studying the life history traits and
transcriptomes of 14 Drosophila species differing more than 6 fold in lifespan, we explored
expression divergence across these flies and identified genes and processes that correlate with
longevity. These longevity signatures suggested that longer-lived flies up-regulate fatty acid
metabolism, down-regulate neuronal system development and activin signaling, and alter dynamics of
RNA splicing. Interestingly, there was significant overlap between the genes correlating with natural
lifespan and those found to influence lifespan in model organisms. Moreover, these gene expression
patterns resembled those of flies under dietary restriction and several other lifespan-extending
interventions. The data suggest that natural variation in longevity across species can be represented by

gene expression patterns and is achieved via pathways amenable to dietary intervention.
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INTRODUCTION

Since the early 20" century, fruit flies have remained a vital tool in cell biology, genetics,
development, and evolution. While the best known early example is probably the use of Drosophila
melanogaster by Thomas H. Morgan to elucidate the chromosomal theory of inheritance, other
species such as D. pseudoobscura and D. virilis have long been used to study evolution and speciation
(Markow and O'Grady, 2007). The entire genus Drosophila contains over 2000 described species that
occupy diverse ecological niches such as forests, deserts, and cosmopolitan areas (Markow and
O'Grady, 2005; Schnebel and Grossfield, 1983). With the recent completion of full genome sequences
of 12 Drosophila species (Clark et al., 2007), researchers are able to explore various aspects of their
biology in much greater depth. Examination across multiple evolutionarily related lineages can reveal
insights on the unique biology of flies, as well as new themes and biological mechanisms that apply
across diverse life forms.

Given their relatively short life cycle, fruit flies are particularly suitable for studying
longevity and aging. Under laboratory settings, the lifespan of D. melanogaster has been successfully
increased by genetic manipulations (Clancy et al., 2001; Hwangbo et al., 2004; Kapabhi et al., 2004;
Lin et al., 1998; Orr and Sohal, 1994; Parkes et al., 1998; Sun et al., 2002; Tatar et al., 2001), dietary
interventions (Chapman and Partridge, 1996; Grandison et al., 2009; Lee et al., 2014; Magwere et al.,
2004; Mair et al., 2003; Min and Tatar, 2006), and pharmacological treatments (Bjedov et al., 2010;
Danilov et al., 2013; Wang et al., 2013). These findings are similar to those reported in other model
organisms and highlight the important role of nutrient sensing, mTOR, NAD/sirtuins, insulin/IGF1
signaling pathways and other systems in lifespan control (Fontana et al., 2010; He et al., 2014).

Lifespan, weight, time to maturity and other life history traits naturally differ across various
Drosophila species as the result of millions of years of natural selection, drift and adaptation. Since
the divergence from a common ancestor, Drosophila lifespan has increased along certain lineages but
decreased in others (Schnebel and Grossfield, 1983), indicating that longevity can be modulated in
both directions on the evolutionary time scale. The heritability and stability of species lifespan across

generations indicates a genetic basis for the longevity determinant(s). Furthermore, the species
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naturally differing in lifespan are fit and well adapted to thrive in their respective ecological niches,
whereas many long-lived model organisms produced in the laboratory setting by genetic or dietary
interventions are often less robust, suggesting that nature has managed to modulate longevity without
compromising fitness.

By identifying the genes whose expression levels correlate with lifespan across the
Drosophila lineage, one may obtain clues about the pathways involved and ultimately the
mechanisms through which nature modulates longevity. Such gene expression patterns may also be
compared with known lifespan-extension strategies to identify commonality in their effects. Here, we
used 14 Drosophila species spanning 5 taxonomical groups and more than 30 million years of
evolution, examining their lifespan, body mass, development time, and gene expression profiles. We
explored the relationships among various life-history traits, identified the pathways that diverged
significantly across these species, and observed the role of stabilizing selection in gene expression
variation. We also identified the genes and pathways with significant positive or negative correlation
to longevity, after taking into account the influence of phylogeny and body mass differences. Finally,
we analyzed our list of genes against previously published lifespan extension data, offering various

insights into regulation of longevity.
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RESULT

Life history traits in Drosophila

The 14 species surveyed in this study fall into two subgenera, Drosophila and Sophophora,
which diverged ~30 million years ago (Figure 6.1, Table 6.1). Subgenus Drosophila is represented by
D. virilis and D. mojavensis, which together form the virilis-repleta radiation (Markow and O'Grady,
2007). Within subgenus Sophophora, D. melanogaster and eight related species belong to the
melanogaster species group, whereas the other two species groups (saltans and willistoni) are
represented by one to two members. The flies within the melanogaster species group can be classified
further into melanogaster subgroup and other subgroups (Figure 6.1).

We first characterized lifespan, body mass, and developmental time of these flies. D. virilis
was morphologically distinct, largest in size (almost 2 grams), and longest-lived (mean lifespan: male
52.8 days; female 62.3 days), whereas D. sechellia, D. yakuba, and D. bipectinata were among the
shortest-lived (mean lifespan 8-16 days) and relatively small (0.5-0.8 grams) (Figure 6.2A and Table
6.1). For most of the other species, the mean lifespan ranged between 20 and 40 days, consistent with
the literature records (Schnebel and Grossfield, 1983). Within each species, female flies were also
generally larger in size than male flies (Table 6.1). When their body weights were plotted against
median lifespan on log-scale, a strong positive correlation was observed (Figure 6.2B; Pearson
correlation coefficient=0.59, p value=8.7x10*). Furthermore, longer-lived species also developed
more slowly (Figure 6.2C), suggesting the relationship between longevity and various life history
traits previously observed in mammals and birds (Fushan et al., 2015; Speakman, 2005) also applies

across the Drosophila species.
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Figure 6.1. Drosophila species surveyed in the current study. The species are coloured by
taxonomical grouping (abbreviations of species names shown in parentheses). The tree is based on
amino acid sequences of orthologs and calibrated using previous estimates (Russo et al., 1995).

Images of flies (all males) were obtained from Flybase (copyright: Nicolas Gompel).
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Figure 6.2. Life history traits of examined species.

(A) Mean lifespan. Error bars indicate 95% confidence intervals (C.1.) by Kaplan-Meier method.
(B) Adult weight and (C) developmental time correlate positively with median lifespan. Each

point represents one species.
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Gene expression variation reflects evolutionary relationships

To examine the expression variation underlying the differences in life history traits, we
subjected young adult male flies of each species to whole body RNA sequencing. After normalization
across species and filtering out genes with low expression, log-RPKM values were calculated for
6510 gene ortholog sets to represent the expression levels. Overall, the expression profiles were
similar to one another, with Spearman correlation coefficients of species pairs ranging between 0.68
and 0.90.

To determine whether the evolutionary relationship of these species could be recapitulated by
their expression variation, gene expression phylograms were constructed using a distance matrix of 1
minus Spearman correlation coefficients and the neighbor-joining method (Brawand et al., 2011;
Clark et al., 2007). The resulting topology was largely consistent with their phylogeny (Figure 6.3A).
For example, there was a clear separation between subgenera Drosophila and Sophophora; all 9
species of the group melanogaster fell under a single clade; and the 2 species of the saltans group also
clustered with each other. Most of the nodes received strong support in bootstrapping, indicating the
segregation pattern was evident in many genes. However, D. biarmipes was placed within the
subgroup melanogaster, which might reflect variation in biological sampling or actual deviation from
phylogeny.

Principal Component Analysis also showed that the species clustered according to their
lineages (Figure 6.3B), with the first three principal components (PCs) accounting for 45% of the total
variance. To identify the biological processes that diverge significantly across these species, the genes
were ranked by their contributions to each PC and pathway enrichment analysis was performed on the
top 5% candidates in the first three PCs using DAVID (Huang da et al., 2009a, b). The enriched
KEGG and GO terms in the PC1 included “oxidative phosphorylation” (KEGG), “respiratory electron
transport chain” (Biological Processes), “NADH dehydrogenase activity” (Molecular Function),
“ribosomal subunits” (Cellular Compartment), “structural constituent of ribosome” (MF), and
“microtubule-based process” (BP). In PC2, we observed enrichment of “regulation of transcription”

(BP), “positive regulation of biosynthetic process” (BP), “transcription factor complex” (CC), and
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“ovarian follicle cell development” (BP). In PC3, “vitamin binding” (MF), “glycine, serine and
threonine metabolism” (KEGG), “cellular amino acid biosynthetic process” (BP) and “oligopeptide
transport” (BP) were enriched. The results suggest that the physiological, morphological, and life
history diversities among these species may be attributed to their differences in transcription,

translation, mitochondrial functions, and metabolic processes.
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Figure 6.3. Gene expression reflects evolutionary relationships.

(A) Phylogram constructed based on gene expression. D. virilis was used as out-group.
Reliability of the branching pattern was assessed by 1000-time bootstrap across the genes
(bootstrap values next to the nodes; green: >0.9; yellow: 0.6-0.9).

(B) Principal Component Analysis. Proportion of variance explained by each principal
component (PC) is indicated in parentheses.

(C) Gene expression divergence reaches a plateau. Each triangle represents a pair of species. The
red curve represents the best-fit line based on the model previously described (Bedford and Hartl,
2009), with the following parameters: selection parameter 0=0.11 (95% C.1.: 0.10-0.11); drift
parameter 6°=0.22 (95% C.I.: 0.21-0.24) (Experimental Procedures). Orange curves represent the
best-fit lines when each individual species was removed, one at a time (o ranged between 0.08 and
0.14).

(D) Amino acid substitutions per site increase faster in Drosophila than in mammals. Amino
acid substitutions per site between species pairs were calculated based on concatenated, gap-free

alignment of orthologs.
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Expression variation is best described by stabilizing selection

Since both life history traits and gene expression patterns are shaped by forces of evolution,
we next examined the evolutionary models underlying expression variation across these species. In
the absence of selective pressure, variation between a pair of species is expected to increase linearly
with divergence time and can be modeled by a Brownian Motion (BM) process (Felsenstein, 1985).
This has been observed for transcription of many genes in mammals (especially among primates),
supporting a neutral model of evolution (Brawand et al., 2011; Khaitovich et al., 2004). However,
while the genetic variation also increases with divergence time in Drosophila, previous studies based
on genomes and transcriptomes observed that a large fraction of the genes in fruit flies were likely
subjected to stabilizing selection (Bedford and Hartl, 2009; Clark et al., 2007; Kalinka et al., 2010;
Rifkin et al., 2003). In particular, the increase in gene expression divergence between species pairs
eventually reaches a plateau (Bedford and Hartl, 2009), which may be better described by Orstein-
Uhlenbeck (OU) process (Butler and King, 2004; Martins and Hansen, 1997).

In agreement, we observed a non-linear relationship with a plateau phase when plotting the
average expression variances of the Drosophila species pairs against their divergence time (Figure
6.3C). Fitting the data with a previously published equation (Bedford and Hartl, 2009) (Experimental
Procedures), we confirmed the selection parameter a was significantly greater than 0 (0=0.11; 95%
confidence interval: 0.10-0.11), and the observed relationship did not depend on any particular
species (o ranged between 0.08 and 0.14 when each species was removed, one at a time). Data
simulation also suggested that this trajectory resembled the pattern produced under an OU model
more than that produced under a BM model, or it could be a mixture of both models with greater
contribution from OU (Figure 6.4A). For comparison, a similar analysis was performed using the
brain and liver data of 9 mammalian species (Brawand et al., 2011), but the plateau feature was not as
strong (Figures 6.4B and 6.4C). Importantly, in Drosophila the average expression variance became
saturated for species pairs that diverged more than 30 million years ago, yet in mammals the
saturation was not evident among species that diverged within the last 100 million years. Indeed,

when amino acid substitutions per site between species pairs were plotted against divergence time,
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Drosophila produced a much steeper slope than the mammals (Figure 6.3D). This likely reflects the
notion that the evolutionary divergence covered by the genus Drosophila equals or exceeds that of the
entire mammalian radiation, probably due to the short generation time of fruit flies (Clark et al., 2007,
Stark et al., 2007).

To examine the evolutionary models at the individual gene level, phylogenetic signals were
measured using two metrics, Pagel’s A (Pagel, 1999) and Blomberg’s K (Blomberg et al., 2003).
These metrics are usually high for genes that follow BM model, but can be weakened by processes
such as stabilizing selection. We found that the phylogenetic signals were low for many genes (Figure
6.4D; median values: A=0.03, K=0.41), suggesting most of the variations observed were not fully
accounted for by the BM model. In addition, when we compared the goodness of fit of individual
gene expression under BM model against OU models with up to three optima (Butler and King, 2004;
Kalinka et al., 2010), we found over 85% of the genes fitted better with one of the OU models than
with the BM model (Figures 6.4E and 6.4F), similar to the percentage previously observed (Kalinka et
al., 2010). Together, these data suggest that stabilizing selection likely plays an important role in
influencing the gene expression patterns in Drosophila and may also affect the evolution of life

history traits.
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Figure 6.4. Expression divergence and evolutionary model.

(A) Simulation under Orstein-Uhlenbeck (OU) and Brownian Motion (BM) models. Data were
simulated for 6000 genes using the phylogenetic tree in Figure 6.1, as well as the a (for OU only)
and &2 (for both BM and OU) values estimated in Figure 6.3C.

Average expression variance in (B) brain and (C) liver of 9 mammalian species. The species are
human, gorilla, bonobo, chimpanzee, orangutan, macaque, mouse, opossum, and platypus. Estimated
parameters: (B) a<107°(95% C.1.: 10°-107), 6*=0.0092 (95% C.1.: 0.0091-0.0092); (C) a<107(95%
C.1.: 10°-107), 6*=0.0087 (95% C.1.: 0.0086-0.0087). Red lines indicate the best-fit lines using all
the species. Orange lines indicate the best-fit lines when one of the species is excluded.

(D) Pagel’s 1 and Blomberg’s K were small in many genes. Right side of the dotted lines indicates
the genes with strong phylogenetic signals (i.e. Pagel’s A > 0.9 or Blomberg’s K > 1).

(E) Gene expression fitted by OU models with up to 3 optima. The phylogenetic tree is the same
as Figure 1, with the tip labels omitted.

(F) Percentage of genes best fitted by each of the models. The goodness of fit of the models was

determined by likelihood ratio test.

172



Gene expression and longevity

To identify the genes that correlate with species longevity, the phylogenetic generalized least
squares approach was employed to adjust for the evolutionary relationship (Felsenstein, 1985;
Freckleton et al., 2002; Grafen, 1989; Martins and Garland, 1991) (Chapter 2). Regression was
performed between expression values and male median lifespan (“ML”), or male median lifespan
with adult weight as covariant (“ML-aw”). Inclusion of adult weight in the equation accounted for the
potential influence of body mass. Different models of trait evolution were tested and the best-fit
model was then selected based on maximal likelihood (Experimental Procedures). Given that D.
virilis was much larger in size and longer-lived than the other species, we also performed regression
after excluding the D. virilis data. In addition, we examined the data after introducing 10% variation
to the median lifespan values to account for possible inaccuracy in measurements (Experimental
Procedures).

For regression with ML, we found 383 out of the 6510 genes with significant regression slope
(p value < 0.05), among which 195 were in positive correlation and 188 were in negative correlation.
85% of them were unaffected by the introduction of variation in lifespan measurement, and 73% still
remained significant when D. virilis was excluded. When the effect of body mass was accounted for
(ML-aw), we obtained a shorter list of 172 top genes, with 80 in positive and 92 in negative
correlation. Over 77% and 82% of these genes remained statistically significant after introducing
variation and excluding D. virilis, respectively (Table 6.2).

To understand the biological pathways represented by these genes, enrichment analysis was
performed using DAVID separately for those with positive and negative correlation, after adjusting
for the full list of orthologs as background. Among those with positive correlation with ML, the top
annotation clusters consisted of GO terms related to lipid synthesis and metabolism, including
“organic acid biosynthetic process” (BP), “fatty acid metabolic process” (BP), “fatty acid beta-
oxidation” (BP), and “lipid particle” (CC). Another group of genes were related to cofactors, such as
“cofactor metabolic process” (BP), “cofactor biosynthetic process” (BP), “iron ion binding” (MF),

“tetrapyrrole binding” (MF), and “heme binding” (MF). KEGG pathways “glyoxylate and
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dicarboxylate metabolism” and “limonene and pinene degradation” were also enriched. When the
influence of body mass was removed, there were fewer top genes and the enriched terms included
“aspartate oxidase activity” (MF) and “disaccharide biosynthetic process” (BP) (Table 6.2). On the
other hand, for genes with negative correlation to ML, significant enrichment was observed for
several developmental processes, especially those related to the nervous system. The top terms
included “neuron recognition” (BP), “synaptic transmission” (BP), “cell projection morphogenesis”
(BP), “salivary gland development” (BP), and “visual behaviour” (BP). In addition, gene expression
and post-translational modification of proteins were implicated, such as “protein-DNA complex”
(CC), “DNA binding” (MF), “protein amino acid phosphorylation” (BP), and “protein kinase activity
(MF). After accounting for body mass, enrichment was still observed for the developmental and
behavioural processes, including “neuron recognition” (BP), “cell recognition” (BP), “axongenesis”
(BP), “regulation of synapse structure and activity” (BP), and “response to light stimulus” (BP).
Additionally, a number of the top genes were involved in “RNA processing” (BP), “nucleotide
binding” (MF), “ATP binding” (MF), and “cellular macromolecular complex assembly” (BP),
suggesting the potential regulation of alternative splicing (Table 6.2).

We visualized protein-protein interactions among top hits using STRING (Jensen et al.,
2009) and found the network significantly enriched in interactions (p value =3.9x10°'3; Figure 6.5).
Among the genes positively correlating with lifespan, those found in lipid metabolic processes or lipid
particles clustered together (Figure 6.5). For example, Thiolase, Acox57D-d (acyl-CoenzymeA
oxidase at 57D distal), and CG6543 (enoyl-CoA hydratase) are involved in fatty acid beta-oxidation,
and two of them (Thiolase and CG6543) code for mitochondrial matrix proteins (St Pierre et al.,
2014). Taz and CG4585 are also involved in the metabolism of phospholipids. Several studies in
Drosophila reported links between fatty acid oxidation and longevity control: flies overexpressing
genes involved in beta-oxidation were longer-lived and more resistant to oxidative stress induced by
paraquat treatment (Lee et al., 2012), while knockout of Thiolase significantly shortened lifespan
(Kishita et al., 2012). Another smaller cluster consisted of genes implicated in cofactor binding and
metabolism of small organic molecules, including Dhfr (dihydrofolate reductase), CG18003

(glycolate oxidase), Upgo (uroporphyrinogen decarboxylase), CG5854 (contains an NAD(P)-binding
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domain), and CG31673 (glyoxylate reductase activity). In addition, some of the top genes were
previously found to influence longevity in flies. For example, cyclin-dependent kinase Cdk5 requires
an activating subunit (p35) for its full biological function, and flies with p35 mutation had
significantly shortened lifespan and age-dependent loss of motor function (Connell-Crowley et al.,
2007). Another gene was Gclm, which codes for the modulatory subunit of glutamate-cysteine ligase
(GCL), the rate-limiting enzyme in de novo glutathione biosynthesis. Global overexpression of GCLm
in flies extended the mean lifespan by 24%, and neuronal overexpression of the catalytic subunit
(GCLc) increased mean and maximum lifespans by up to 50% (Orr et al., 2005).

Many genes negatively correlating with lifespan were involved in nervous system
development (Figure 6.5). Among them were several cell surface receptors and signaling molecules,
such as Fas2, which codes for a cell adhesion protein Fasciclin 2 that interacts with semaphorine
(Smad) and connectin to regulate axon fasciculation (Yu et al., 2000); babo, which codes for a type I
activin receptor and regulates cell proliferation by stimulating Smad2-dependent pathways (Brummel
et al., 1999); and shark, which codes for SH2 ankyrin repeat tyrosine-protein kinase and is required
for dorsal closure during development (Fernandez et al., 2000). Also present were component of gap
junction (ogre) and TGF-beta receptor (tkv). Down-regulation of activin signaling by forkhead
transcription factor (FOXO) in muscle tissues of flies has been shown to improve muscle
performance, reduce secretion of insulin peptides from brain, and extend lifespan (Bai et al., 2013).
Flies with babo knockdown in muscle lived about 20% longer than wild type, and pathway analysis of
FOXO gene targets revealed enrichment of processes involved in post-embryonic development,
neuron differentiation, axongenesis, and regulation of transcription and growth (Bai et al., 2013),
similar to the terms we observed here (Table 6.2). The low expression levels of development genes
(especially those related to neuronal control) among the longer-lived species were consistent with
their slower growth rates (Figure 6.2C). A study in mammals also revealed a significant negative
correlation between species maturity time and amino acid levels in brain, whereas the relationship was
not as strong in non-neuronal organs (Ma et al.). Another cluster included several genes affecting
RNA polyadenylation (cleavage and polyadenylation specificity factor Cpsf160 and Cpsf73) and RNA

splicing (e.g. CG6841, CG10333, CG6686, Ars2, CG7564, and [(2)35Df) (St Pierre et al., 2014).
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Many of them were also involved in the nervous system development, as alternative splicing has very

important roles in modulating neuronal maturation and functions (Li et al., 2007).
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Figure 6.5. Protein-protein interaction network among the top hits correlating with median
lifespan. The interaction network is based on STRING database (evidence view). Genes without

interacting partners are omitted.

Table 6.2. (see attached Excel file) Genes with significant correlation to median lifespan (ML)
and median lifespan with adult weight as covariant (ML-aw). “Best.Model” indicates the best-fit
regression model; “Benjamini” indicates the p value adjustment for multiple testing (Benjamini and
Hochberg, 1995); “p.val (excl D.virilis)” indicates the p values excluding the D. virilis data; “p.val
(Variation 25 percentile)” and “p.val (Variation 75 percentile)” indicate the 25" and 75" percentile p
values after adding +£10% variation to the median lifespan data. Enrichment analysis was performed

using DAVID, separately for genes with positive and negative correlations.
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Changes in gene expression drive changes in species lifespan

Natural changes in gene expression observed across Drosophila may be related to both the
direction of changes in these genes in response to changes in diet and environment, and the
consequences of genetic manipulations in these genes in laboratory setting. To examine these
possibilities, we searched GenAge and GenDR databases (de Magalhaes et al., 2009; Plank et al.,
2012) to test if any of our longevity signature genes had been experimentally confirmed for
association with aging or dietary restriction in yeast, flies, worms, and mice. Specifically, we checked
whether the direction of correlation was in agreement with the longevity effects revealed by the
experiments, i.e. genes showing positive correlation in our list should have pro-longevity and those
showing negative correlation should be anti-longevity effects. Among the ML gene list, 18 genes
were found in the database and 14 of them were in the expected direction of correlation; whereas for
ML-aw, 4 out of the 6 genes had the expected direction (Table 6.3). Among these genes, all
correlations in flies were in the correct direction; inconsistencies primarily involved the data in
worms. However, even with these cross-species differences, the overall result was statistically
significant (binomial p value = 0.011).

We further compared our top genes against published microarray experiments in flies, in
which changes in longevity were induced by dietary or genetic interventions (Table 6.4). Treatments
included dietary restriction in different strains of D. melanogaster, overexpression of Sir2, mutation in
OvoD] (to repress egg maturation in females), knockdown of tumor suppressor p53, and ablation of
corpora allata (the endocrine gland that generates juvenile hormone). Again, we checked whether the
direction of correlation of our top genes was consistent with the up- or down-regulation observed in
these studies. The data indicated that the top genes in ML and ML-aw both showed significant
similarity to the lifespan-modification treatments (Table 6.4). Simulation confirmed that these results
could not have arisen by chance. The data suggest that there are commonalities between the
mechanisms that nature employs to vary lifespan across species, and those that have been

experimentally verified to influence longevity in model organisms.
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DISCUSSION

Fruit flies have contributed significantly to our understanding of genetics and developmental
biology and remain a vital tool in the studies on aging and longevity. While most experiments in the
aging field have been conducted using single species, we hypothesized that the comparative analysis
of closely related species with varying natural lifespan may offer unbiased information on longevity
mechanisms. By studying life history traits and transcriptomes of 14 Drosophila species, we identified
the pathways that diverge across these species and confirmed the role of stabilizing selection in
influencing their expression patterns. Similar to mammals and birds, fruit flies exhibit the typical
positive correlation among longevity, body mass, and development time. By identifying the genes that
correlate with longevity across these species, we found that longer-lived species up-regulate genes
involved in lipid metabolism and down-regulate those involved in neuronal system development and
activin signaling. The dynamics of RNA polyadenylation and splicing also differed across the species.
Interestingly, some genes that showed significant association with longevity in our study were also
found to influence lifespan in other model organisms and showed the same direction of change as
lifespan extension experiments in flies. The results suggest that the natural variation of lifespan across
closely related species under the forces of evolution may have been achieved via pathways that are
also influenced by dietary restriction or other interventions. The data suggest that our approach offers
an unbiased way to uncover genes and processes whose changes lead to changes in lifespan. More
generally, the findings suggest the molecular mechanisms by which nature alters species longevity.
Finally, our data may serve as a starting point for experimental analysis of genes, processes, diets and
pharmacologic interventions that mimic natural changes in lifespan, thereby exhibiting longevity

modification effects.
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EXPERIMENTAL PROCEDURES

Fly stocks and husbandry

14 Drosophila species, D. ananassae, D. austrosaltans, D. biarmipes, D. bipectinata, D.
erecta, D. kikkawai, D. melanogaster, D. mojavensis, D. saltans, D. sechellia, D. simulans, D. virilis,
D. willistoni, and D. yakuba, were purchased from UC San Diego Stock Center (La Jolla, CA, USA)
(Table 6.1). Flies were maintained on corn meal food (85.7 g corn meal ‘Aunt Jemina’ (The Quaker
Oats Company, Chicago, IL, USA), 50 ml golden A unsulfured molasses (Groeb Farms Inc, Onsted,
MI, USA), 71.4 g Torula yeast (MP Biomedicals, Solon, OH, USA), 2.86 g p-hydroxybenzoic acid
methyl ester (Sigma), 6.4 g agar (MoorAgar Inc, Loomis, CA, USA) and 5.7 ml propionic acid
(Sigma) per litre water) and kept in a temperature-controlled incubator at 25 °C with 12-h light/dark
cycle and ~60% humidity. Newly emerged flies were collected within 18 h at 18 °C, transferred to
fresh corn meal food at density of 35 animals per vial, and allowed to mate for 1-2 days. Three-day-
old mated flies were collected using CO», sorted by sex and then transferred to cages in the
temperature-controlled incubator. Experimental flies were held on the designed diet and transferred to
fresh vials without anaesthesia every 3 days. Dead flies were removed by aspiration and counted.
Survival analyses were performed using R package “survival” (Kaplan and Meier, 1958; Therneau,
2014).
RNA sequencing

Three-day-old male flies were placed in vials on the corn meal diet for 12 days, with three
replica vials for each species. Fresh food was supplied every 3 days and dead flies were removed by
aspiration. After 12 days, those flies were subject to total RNA extraction. RNA sequencing libraries
were constructed using the Illumina mRNA-Seq Prep Kit and oligo(dT) magnetic beads were used to
purify polyA containing mRNA molecules. mRNA was further fragmented and randomly primed
during the first strand synthesis by reverse transcription and followed by second-strand synthesis with
DNA polymerase I to create double-stranded cDNA fragments. Double stranded cDNA was subjected
to end repair by Klenow and T4 DNA polymerases and A-tailed by Klenow lacking exonuclease

activity. Ligation to Illumina Paired-End Sequencing adapters, size selection by gel electrophoresis
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and then PCR amplification completed library preparation. The 200 bp paired-end libraries were
sequenced using [llumina HiSeq according to the manufacturer's protocol.
Ortholog set identification

Ortholog sets across the species were identified by reciprocal best hits in BLAST. Briefly, we
downloaded the genomes and annotation files for the species from Ensembl and NCBI and extracted
all coding sequences (“Species CDS”). The genomes of D. austrosaltans and D. saltans were based
on our unpublished data. As reference we extracted the longest open reading frame for each gene in
D. melanogaster (“Dmel ORF”), after excluding those with multiple paralogs (i.e. genes with over
80% identity over 70% of length) or highly repetitive sequences. Mega BLAST (Morgulis et al.,
2008) was performed to obtain reciprocal best hits between Dmel ORF and Species CDS. An ortholog
set was declared if the orthologs were present in all 14 species. We confirmed our list had over 90%
overlap with the curated ortholog list on Flybase (St Pierre et al., 2014) (which covered 9 of our
species). To improve the quality of ortholog sequences, Trinity (Grabherr et al., 2011) was also used
to de novo assemble transcriptomes from RNA-seq data. Poorly annotated Species CDS (e.g. those
without proper start or stop codons) were replaced by Trinity transcripts where applicable and we
ensured that the final list of orthologs contained at least 20% conserved blocks in multiple sequence
alignment. The final ortholog sequences were mapped back to their respective genomes with
GMAP(Wu and Watanabe, 2005) to generate customized GFF (General Feature Format) files.
Data processing

RNA-seq reads alignment was performed using TopHat (Trapnell et al., 2009) and read
counting was performed using featureCounts (Liao et al., 2014). Ortholog sets with low expression
(i.e. less than 3 counts in 3 or more species) were removed and counts were normalised by total
library sizes with Trimmed Mean of M-values correction. The final list consisted of 6510 ortholog
sets. The normalised counts were then converted to reads per kilobase per million mapped reads
(PRKM) values and natural log transformed. For cross-species comparison, log-RPKM values of each
ortholog set were standardised by setting mean as 0 and standard deviation as 1. Q-Q plot and
Shapiro-Wilk test confirmed that normalcy was a valid assumption for 88% of the ortholog sets on

log-scale.
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Divergence time and phylogram

Drosophila species divergence time was estimated based on previous estimates and ortholog
amino acid sequences. Briefly, ortholog sequences were aligned with Clustal Omega v1.2.0 (Sievers
et al., 2011) and concatenated gap-free with Gblocks v0.91 (Castresana, 2000). The tree was
constructed using neighbour-joining method (Saitou and Nei, 1987) in Mega 6.06 (Tamura et al.,
2013) and calibrated using estimates of divergence time in the literature (Russo et al., 1995). The
Drosophila expression phylogram was based on a distance matrix of 1 minus Spearman correlation
coefficient and constructed by neighbour-joining method using R package “ape” (Paradis et al., 2004).
Reliability of the branching pattern was assessed by 1000-time bootstrap across the genes. For the
mammalian dataset (Brawand et al., 2011), the amino acid sequence alignments of 8 mammalian
species (human, gorilla, chimpanzee, orangutan, macaque, mouse, opossum, and platypus; sequences
for bonobo not available) were extracted from the 46-way multiple alignment in UCSC genome
browser (Kuhn et al., 2013). Species divergence time was based on TimeTree database (Hedges et al.,
20006).
Principal Component Analysis (PCA) and heat maps

PCA was performed on standardized expression values using R package “stats” (R
Development Core Team, 2013). To identify the underlying pathways, the genes in each of the first
three principal components (PCs) were ranked by their contributions and pathway enrichment analysis
was performed on the top 300 (about 5%) genes in each PC using DAVID (Huang da et al., 2009a, b)
after correcting for background. To generate the heat map, the genes (columns) were ordered by
contributions and the species (rows) were ordered by projection values.
Expression divergence

Expression divergence was measured as average expression variance in standardized

expression values across all ortholog sets between species pairs. The points were fitted by the model
2
previously described (Bedford and Hartl, 2009): y = ;—a (1 — e~2%%), where x represents divergence

time, y represents expression divergence, a represents strength of selection, and o2 represents

strength of drift. It can be shown that (in the case of a pure BM model): lir‘r(lJ y = o2x. Optimal values
a—>
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of parameters were estimated by least squares method. Confidence intervals (C.1.) were estimated by
1000-time bootstrap. To test robustness of the relationship, individual species were removed one at a
time and the remaining species were then subjected to the same analysis.
Regression by generalized least square

See Chapter 2. The cut-off for top hits was p value < 0.05.
Test for robustness

To confirm the robustness of the results, two methods were used. First, regression was
performed by leaving out D. virilis (the most long-lived species) and computing p values using the
remaining species. Second, median lifespan of species was randomly varied by +£10% (on log scale)
and then used to compute regression p values. Simulation was performed 1000 times for each gene
and the 25" and 75" percentiles of the p values were determined. This method imitated potential
inaccuracy in our lifespan measurements.
Comparison with GenAge/GenDR database and microarray data

Our gene list was examined against GenAge/GenDR databases (de Magalhdes et al., 2009;
Plank et al., 2012) to determine how the longevity effects reported in model organisms relate to our
gene dataset. To analyze microarray datasets, data were downloaded from Gene Expression Omnibus
(GEO) database. Relevant comparisons of treatment versus control were selected and differentially
expressed (DE) genes were identified using R package “limma” (Smyth, 2005). These DE genes were
then compared with our list of top hits to determine if the direction of correlation was consistent. Two
methods were employed to calculate p values. The first relied on binomial distribution, counting the
number of match (i.e. same direction of correlation) and the number of mis-match (i.e. opposite
direction of correlation), assuming equal probability of obtaining a match and a mismatch by chance.
The second method relied on simulation, where the direction of correlation in our top list was shuftled
randomly and compared with microarray experiments to calculate p values (by binomial distribution);
this procedure was repeated 1000 times to generate an empirical distribution. The original p value was

then compared to the empirical distribution. Both methods produced very similar results.
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Chapter 7  Rodent Fibroblasts

——big brown bat (E. fuscus)

—little brown bat (M. lucifugus)
guinea pig (C. porcellus)

porcupine (C. porcellus)

chinchilla (C. lanigera)

chipmunk (7. striatus)

— red squirrel (S. vulgaris)

— fox squirrel (S. niger)

gerbil (M. unguiculatus)

—— African grass rat (A. niloticus)

mouse (M. musculus)

meadow vole (M. pennsylvanicus)

—I—— cotton rat (S. hispidus)

—— white-footed mouse (P. leucopus)

—— deer mouse (P. maniculatus)

This chapter is based on the following manuscript:

Siming Ma, Akhil Upneja, Andrei Seluanov, Vera Gorbunova, Clary B. Clish, Richard A. Miller,
Vadim N. Gladyshev. Cell culture-based profiling across mammals reveals DNA repair and

metabolism as determinants of species longevity. Manuscript under preparation.



ABSTRACT

The natural species lifespan across mammals differs by more than 100-fold, but the molecular
signatures associated with such longevity differences are not yet fully understood. Cross-species
analyses are also hampered by the inability to conduct these studies under controlled experimental
settings. Here, we analyzed primary skin fibroblasts isolated from 16 species of mammals and
maintained under identical conditions in cell culture. We further developed a pipeline for obtaining
species-specific ortholog sequences, profiled gene expression by RNA sequencing and small
molecules by metabolite profiling, and identified genes and metabolites correlating with species
longevity. We found that cells from long-lived species up-regulate genes involved in DNA repair and
glucose metabolism, down-regulate proteolysis and protein transport, and show high levels of amino
acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The study
suggests that fibroblast profiling captures differences in longevity across mammals at the level of

global gene expression and metabolism and reveals pathways that may define these differences.
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INTRODUCTION

The maximum lifespan of mammalian species differs by more than 100-fold, ranging from ~2
years in shrews to >200 years in bowhead whales (Tacutu et al., 2013). While it has long been
observed that maximum lifespan tends to correlative positively with body mass and time to maturity,
but negatively with growth rate, mass-specific metabolic rate, and number of offspring (Peters, 1986;
Sacher, 1959; Western, 1979), the underlying molecular basis is only starting to be understood.

One way to study the control of longevity is to identify genes, pathways, and interventions
capable of extending lifespan or delaying aging phenotypes in experimental animals. Studies using
model organisms have uncovered several important conditions, such as knockout of insulin-like
growth factor 1 (IGF-1) receptor (Friedman and Johnson, 1988; Holzenberger et al., 2003; Tatar et al.,
2001), inhibition of mechanistic target of rapamycin (mTOR) (Harrison et al., 2009; Kenyon, 2010;
Miller et al., 2014), mutation in growth hormone (GH) receptor (Coschigano et al., 2000), ablation of
anterior pituitary (e.g. Snell dwarf mice) (Flurkey et al., 2002), augmentation of sirtuin family
proteins functions (Chang and Guarente, 2013; Gomes et al., 2013; Mouchiroud et al., 2013; Wood et
al., 2004), and restriction of dietary calorie intake (Guarente and Kenyon, 2000; Heilbronn and
Ravussin, 2003; McCay et al., 1935; Weindruch et al., 1986). While many of these genes and
pathways have been verified in yeast, flies, worms, and mice, the comparisons largely involve
treatment and control groups of the same species, and the extent to which they explain the longevity
variations across different species is unclear. For example, do the long-lived species have metabolic
profiles resembling calorie restriction? Do they suppress IGF-1 or growth hormone signaling
compared with the shorter-lived species? More generally, how the evolutionary strategies of longevity
relate to the experimental strategies that extend lifespan in model organisms?

To begin address these questions, a popular approach has been to compare exceptionally
long-lived species with closely related species characterized by more common lifespan, identifying
features associated with exceptional longevity. Examples include amino acid changes in Uncoupling
Protein 1 (UCP1) and production of high-molecular-mass hyaluronan in the naked mole rat (Kim et

al., 2011; Tian et al., 2013); unique sequence changes in IGF1 and GH receptors in Brandt’s bat (Seim
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et al., 2013); gene gain and loss associated with DNA repair, cell-cycle regulation, and cancer, as well
as alteration in insulin signaling in the bowhead whale (Keane et al., 2015; Seim et al., 2014); and
duplication of the p53 gene in elephants (Abegglen et al., 2015). Again, it is important to ascertain
whether these mechanisms are unique characteristics of certain exceptionally long-lived species, or
they can also be extended to account for the general lifespan variation (Partridge and Gems, 2002).

An extension of this approach has been cross-species analyses in a larger scale. For example,
several biochemical studies across multiple mammalian and bird species identified some features
correlating with species lifespan. Thus, longevity of fibroblasts and erythrocytes in vitro (Rohme,
1981), poly (ADP-ribose) polymerase activity (Grube and Biirkle, 1992), and rate of DNA repair
(Cortopassi and Wang, 1996) were found to be positively correlated with longevity, whereas
mitochondrial membrane and liver fatty acid peroxidizability index (Pamplona et al., 2000; Pamplona
et al., 1998), rate of telomere shortening (Haussmann et al., 2003), and oxidative damage to DNA and
mitochondrial DNA (Adelman et al., 1988; Barja and Herrero, 2000) showed negative correlation.
Recently, the advent of high throughput RNA sequencing (RNAseq) and mass spectrometry
technologies has enabled the quantification of whole transcriptomes (Fushan et al., 2015),
metabolomes (Ma et al., 2015b), and ionomes (Ma et al., 2015a), across multiple species and organs.
These studies revealed the complex transcriptomic and metabolic landscape across different organs
and species, as well as some overlaps with the changes observed in the long-lived mutants created in
laboratory (Ma et al., 2015b).

In this regard, while molecular profiling of mammals at the level of tissues may better
represent the underlying biology, profiling in cell culture represents more defined experimental
conditions and allows further manipulation to alter the identified molecular phenotypes. In this study,
we examined the transcriptomes and metabolomes of primary skin fibroblasts across 16 species of
mammals, to identify the molecular patterns associated with species longevity. We report that the
genes involved in DNA repair and glucose metabolism were up-regulated in the longer-lived species,
whereas proteolysis and protein translocation activities were suppressed. In terms of metabolites, the

longer-lived species had higher levels of amino acids, but lower levels of lyosphosphatidylcholine and
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lysophosphatidylethanolamine. Thus, molecular insights into longevity may indeed come from

defined cell culture systems in mammals.

RESULTS

Longevity trait variation among the species

To identify the molecular signatures associating with differences in longevity, we obtained
primary skin fibroblasts from 13 species of rodents, and supplemented them with fibroblasts of 2
species of bats and 1 species of shrew which served as outgroups (Figure 7.1). These animals
represented 3 taxonomic orders (Rodentia, Chiroptera, and Soricomorpha) and were characterized by
a wide range of maximum lifespan (ML; from 2.2 years in shrew to 34.0 years in little brown bat) and
adult weight (AW; from 10 g in little brown bat to 20 kg in beaver) (Figure 7.1, Table 7.1.). Female
time to maturity (FTM) was included as an additional longevity trait, as it might be less prone to
reporting bias than ML (Spearman correlation coefficient between ML and FTM was 0.87). In
addition, since both ML and FTM increase with AW, we calculated the body mass adjusted residuals
(i.e. MLres and FTMres), to represent the ratio between the observed longevity and the expected
longevity based on body mass (Ma et al., 2015b; Tacutu et al., 2013). For instance, the little brown bat
is small in size but exceptionally long-lived (Brunet-Rossinni, 2004), hence its positive logl0 MLres

value (Figure 7.1).
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Figure 7.1. Phylogenetic relationship among species used in the study.

The tree was constructed using Neighbor-Joining method based on nucleotide sequences. Shrew
was used as the out-group. Gerbil was collected for metabolite data only and mouse was included
as reference. The species are colored by taxonomic order. Adult Weight (AW), Maximum Lifespan
(ML), Female Time to Maturity (FTM), Maximum Lifespan Residual (MLres), and Female Time to

Maturity Residual (FTMres) of these species are displayed in log10 scale.
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Gene expression by RNA sequencing

We profiled gene expression by RNAseq on 28 samples representing 15 species, with 12-28
million reads per sample and read length of 50 or 100 nucleotides (Table 7.2). Since only 5 of the
species had publicly available genomes, it posed some challenges for cross-species analysis. Reliable
reference sequences (e.g. genome or transcriptome) are crucial for accurate RNAseq read alignment
and read counting, and aligning reads to the genome of a related species is often far from ideal: only
13% of the reads of African grass rat could be uniquely mapped to the mouse genome (even though
both species belong to the same Family Muridae), and the alignment rate was even lower for the red
squirrel (about 5%). Furthermore, while the gene orthology information for many well-studied
animals can be obtained from public databases (Blanchette et al., 2004; Remm et al., 2001; Vilella et
al., 2009), such information is very limited or unavailable for the less common species.

To address these issues, we developed a pipeline to obtain species-specific ortholog sets
(Figure 7.2A, Experimental Procedures). First, we defined a set of mouse reference sequences based
on Ensembl by selecting the longest transcript per gene and removing highly repetitive or highly
similar sequences. Then, from the raw RNAseq reads, the transcriptome was assembled de novo for
each species. To identify the ortholog sets, BLAST was used to find reciprocal best hits between the
assembled transcriptome (and published genome, if available) and the mouse reference (Altschul et
al., 1997; Camacho et al., 2009; Tatusov et al., 1997). The reciprocal best hits were then trimmed
down to open reading frame (OREF, i.e. coding sequence flanked by start and stop codons) and the
quality of the ortholog sets was assessed by multiple sequence alignment.

With respect to the mouse reference sequences, the median nucleotide sequence identity for
our ortholog sets ranged from 83.2% (shrew) to 95.0% (African grass rat), and protein sequence
identity from 88.0% (little brown bat) to 96.8% (African grass rat) (Figure 7.2B), consistent with the
evolutionary distance of the species to mouse. The read alignment rates to our ortholog sets were also
largely consistent across samples (Figure 7.2C), and we observed no significant differences between
the species with publicly available genomes and those without. For those with publicly available

genomes, the read counts using the complete genome also agreed well with the read counts using our
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ortholog sets (Pearson correlation coefficient 0.95-0.98 for log10 counts; Table 7.2). For a number of

sequences with poor coverage, consensus sequences of closely related species were used instead

(Figure 7.3A); this did not significantly affect the results (Figure 7.3B). After data filtering and

normalization (Experimental Procedures), the expression of 9389 gene orthologs were reliably

detected across the 28 samples.

Table 7.2. RNA sequencing and read mapping. The read mapping statistics were based on STAR.

For those species with publically available genomes, the reads were also aligned to the full genomes

for mapping rate comparison.

Average | Aligned to | Aligned to | Read counts
Sample ID LCEl read ortholog complete correlation
ST length sets genome (mean)
Shrew.1 13,936,898 97 43.7% n/a n/a
BigBrownBat.1 20,591,634 97 42.1% 84.9% 0.968
LittleBrownBat.1 14,475,085 97 42.7% 77.4% 0.933
LittleBrownBat.2 16,713,612 97 41.1% 77.6% 0.931
GuineaPig.1 17,244,791 97 41.6% 86.5% 0.965
GuineaPig.2 22,611,505 195 37.8% 89.1% 0.972
Porcupine. 1 16,797,544 97 37.0% n/a n/a
Porcupine.2 15,861,088 97 19.7% n/a n/a
Chinchilla.1 22,077,329 195 45.3% 90.1% 0.983
Chipmunk.1 16,203,627 97 24.6% n/a n/a
RedSquirrel.1A Technical | 37,526,540 195 42.1% n/a n/a
RedSquirrel. 1B Replicates | 23,118,578 195 48.5% n/a n/a
RedSquirrel.2 14,929,276 97 46.6% n/a n/a
FoxSquirrel. 1 14,759,305 97 47.4% n/a n/a
FoxSquirrel.2 12,470,932 97 21.9% n/a n/a
Beaver.1 12,907,469 97 34.9% n/a n/a
Beaver.2 17,404,650 97 39.2% n/a n/a
AfricanGrassRat. 1 27,700,912 196 50.3% n/a n/a
MeadowVole.1 15,904,868 97 33.8% n/a n/a
CottonRat.1 18,164,822 97 44.7% n/a n/a
WhiteFootedMouse. 1 14,953,087 97 43.3% n/a n/a
DeerMouse. 1 17,338,832 97 47.8% 85.8% 0.954
DeerMouse.2A Technical | 16,152,677 97 38.0% 81.8% 0.948
DeerMouse.2B Replicates | 18,526,425 97 38.5% 81.2% 0.952
DeerMouse.3A 18,696,359 97 42.9% 84.8% 0.950
DeerMouse.4 21,536,475 195 50.2% 90.6% 0.965
DeerMouse.5 18,726,959 97 41.5% 82.4% 0.949
DeerMouse.6 15,027,631 97 40.5% 83.2% 0.952
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Figure 7.2. Cross-species analysis of gene expression in cultured skin fibroblasts.

(A) Pipeline to obtain the species-specific ortholog sets and expression values. See Experimental
Procedures for a more detailed description of the methodology.

(B) Sequence identity of ortholog sets compared to mouse. Nucleotide and amino acid sequence
identity of the ortholog sets in each species was compared to mouse reference (mouse was set as
100%). The ortholog sequences were based on de novo assembled transcriptomes, as well as NCBI
genomes (if available; indicated by “#”). The box plot shows the distribution across the 9389 gene
orthologs, with the central bars indicating median values.

(C) Read alignment rates for mapping to complete genomes and ortholog sets. Percent of total
reads that could be uniquely aligned to the complete genomes (if available, indicated by “#”; shaded
bars) or to the ortholog sets are shown. Error bars refer to standard error of mean. Number of samples

(biological and technical replicates) per species is indicated in parenthesis.
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Figure 7.2 (Continued)
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Figure 7.3. Genes filled up with consensus sequences.
(A) Percentage of ortholog sets filled up using consensus. The horizontal axis indicates the
percentage of sequence length filled up by consensus. For example, 74% of the ortholog sets did
not require filling up or were filled up < 10% of the sequence length. 5% of the ortholog sets were
filled up 90% - 100% of the sequence length.
(B) Standardized expression values of ortholog sets filled up using consensus. Within each

ortholog set, the expression values were standardized to mean = 0 and standard deviation = 1.
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Gene expression patterns in fibroblasts follow phylogeny

To assess gene expression patterns across species, we first performed Principal Component
Analysis and projected the data on the first 3 Principal Components (Figure 7.4A). Samples
segregated predominantly by taxonomic relationship. For example, the species belonging to the sub-
orders Sciuromorpha (chipmunk, red squirrel, and fox squirrel), Hystricomorpha (guinea pig,
porcupine, and chinchilla), and Myomorpha (African grass rat, meadow vole, cotton rate, white-
footed mouse, and deer mouse) separated clearly from one another (Figure 7.4A). Furthermore, when
we constructed a phylogram using the expression values, the topology was also similar to the tree
based on nucleotide sequences (Figure 7.4B), suggesting the expression patterns are influenced by
phylogeny. In addition, the biological and technical replicates of the respective species clustered
together, confirming that the within-species variation was generally smaller than the cross-species

variation (Ma et al., 2015b).

203



Figure 7.4. Gene expression variation and correlation with longevity.

(A) Projection of the first 3 Principal Components (PCs) in Principal Component Analysis.
Values in parenthesis indicate percentage of variance explained by each of the PCs. Points are
colored by taxonomic order (same color scheme as in Figure 7.1)

(B) Gene expression phylogram. Color of the nodes indicates the result of 1000 times
bootstrap.

(C) Overlap of genes associating with Adult Weight and indicated longevity traits. AW:
Adult Weight; ML: Maximum Lifespan; FTM: Female Time to Maturity; MLres: Maximum
Lifespan Residual; FTMres: Female Time to Maturity Residual.

(D) Heat map showing expression patterns of the top enrichment pathways. Species are

arranged in the order of increasing longevity (the four longevity traits are scaled between 0 and

1).
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Figure 7.4 (Continued)

A GuineaPi§2

GuineaPig.1
Parcupine.
Porcupine.1
.
< Chinchilla.1e
8 CCuqnﬁa[,3WhiteFootedMouse.1
o) AfricanGrasgRat. 1 DeerMouse.3A
A BigBrownBat.1é WEadoW cﬂé‘.‘l't"'lgéé? ouse.
= UittleBrownBat.2, .'DrerMouse.1 ..Dggrngggg_Qé\
< o LitleBrownBal1 @ iDeeMouse.4 T peeriouse.5
= O Chipeiunk.1
E FoxSquirrel.2¢”
s} irrel 1@
g i be
6 o RedSquirrel. 1A®
© 97 RedSquirrel.1B
=
‘? T T T
-0.4 -0.2 0.0 0.2
Component 1 (16.8%)
B BigBrownBat.1
_i E LittleBrownBat.1
LittleBrownBat.2
Porcupine.1
Porcupine.2
GuineaPig.1
i GuineaPig.2
o Chinchilla.1
Chipmunk.1
RedSquirrel. 1A
RedSquirrel.1B
RedSquirrel.2
FoxSquirrel.1
FoxSquirrel.2
Q
MeadowVole.1
AfricanGrassRat.1
CottonRat.1
WhiteFootedMouse. 1
DeerMouse.1
DeerMouse.3A
Bootstrap DeerMouse.4
values DeerMouse.2A
0 =09 DeerMouse.2B
005-09 DeerMouse.5
® <05 DeerMouse.6
ML+FTM+MLres+FTMres
C ML FTM

FTMres

MLres %@l

205

D
T L =

oooodl=a0

Mres]  _ eemooooel]D
Fives] e mooocool

Paositive Correlation

FTM |

nucleotide
binding

chromo-
some ———

organization

e ———
—_——e.

glucose e — E

metabolic IEZ ___-E

process ———— =

Negative Correlation

proteolysis

protein
transport/
localization
regulation
of
transcrip-
tion
R
2 F L EYLODOOX T U 5LE®
Prx oo S%a TSEE >Emm
_|:|:>:noo:uﬁE'5:|mg-|:|:
n o2 88==2 cfco L3z 2
20 2T g E =00 - D 0O
8328835635 234
wgg‘aﬁ‘ &L o O
= 0 £ Em
E o -
< =
-25 0 25 é

scaled expression



Expression of many genes correlates with longevity traits

To identify genes with significant correlation with longevity, we performed regression by
generalized least squares between the gene expression values and AW, as well as the four longevity
traits (ML, FTM, MLres, and FTMres). The phylogenetic relationship of the species was incorporated
in the variance-covariance matrix and four different trait evolutionary models were tested to select the
best models based on maximum likelihood (Experimental Procedures) (Lavin et al., 2008; Ma et al.,
2015b). A two-step verification procedure was applied to assess robustness of the results, as
previously described (Ma et al., 2015b). Briefly, in the first step, regression was performed by
excluding the species with the largest residue error (e.g. a potential outlier) to report the regression
slope p value (“p value.robust”); in the second step, regression was repeated by excluding each
species, one at a time, to report the maximal (i.e. least significant) p value (“p value.max”), to ensure
the overall relationship did not depend on any single species. The respective False Discovery Rates
(i.e. “q value.robust” and “q value.max”) were also computed.

We qualified as top hits those genes meeting both criteria of p value.robust <0.01 (~11%
FDR) and p value.max < 0.05. The numbers of top hits were 669 for AW, 796 for ML, 822 for FTM,
493 for MLres, and 782 for FTMres, with roughly equal proportions in positive and negative
correlations. There was significant overlap among the top hits identified by the four longevity traits
(Figure 7.4C). For most of the top hits, the directions of correlation were also consistent across the
four longevity traits (even for those that failed to reach statistical significance). Therefore, our
procedure was able to identify a core set of longevity-associated genes that behaved consistently
across the life history traits, and minor inaccuracy in the reported lifespan data was unlikely to affect
the overall results. On the other hand, the overlap with the hits identified by AW was much smaller
(Figure 7.4C), suggesting the observed correlations were not driven mainly by body mass differences.
For the 820 top hits supported by two or more longevity traits, we performed pathway enrichment
analysis using DAVID (Table 7.3) (Huang da et al., 2009a, b) and visualized the results using heat

map (Figure 7.4D) and STRING (Figure 7.5) (Jensen et al., 2009).
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Table 7.3. Pathway enrichment analysis of the genes with significant correlation with the longevity traits.

The genes were supported by at least 2 longevity traits (p value.robust < 0.01 and p value.max < 0.05). Pathway

enrichment was performed using DAVID. Only selected pathways are shown here. GO (BP): Gene Ontology

(Biological Process). SP/PIR: SwissProt and Protein Information Resource.

Cluster No. 1

Alg;?:;g?“ Enriched Terms and Genes (N;g;l:: p value
GO (BP): adenyl nucleotide binding 50 [3.52x10*
GO (BP): nucleotide binding 64 [7.06x10*
Positive cly, Atad?2, Atp2b4, Cdk2, Cdk20, Chd7, Chekl, Chkb, Cpsf7, D2hgdh, Dgkq, Dhx58, Dock®6,
Correlation  |Erollb, Etnkl, Fastkd5, Fn3krp, Gnail, Gukl, Hkl, Hmgcr, Hnrnpd, Hyoul, Insr, Madd,

Map4k5, Mastl, Mikl, Mov10, Msh6, Mx2, Nadsynl, Oplah, Pdkl, Pfkp, Phka2, Phkg2, Pkmytl,
\Pms2, Pnkp, Ppp2r4, Prkarlb, Qrsll, Rbml10, Rbm15b, Rbm38, Rhot2, Rnasel, Rps6ka2, Sacs,

\Sirt3, Slirp, Smarcal, Smarca$, Srsf9, Stk19, Stk36, Tbrg4, Tesk2, Thnsll, Tial, Top3a, Trpm4,
Ttf2, Tyk2, Vps4a, Ythdc?2

Positive
Correlation

Cluster No. 2

SP/PIR: DNA damage 13 [8.37x10*
SP/PIR: DNA repair 11 3.66x107
GO (BP): cellular response to stress 15  }4.55x1072

\Bnip3, C170rf70, Chekl, Dtx3l, Erccl, Errfil, Fancg, Hifla, Mapkbp 1, Msh6, Myd88, Pms2,
\Pnkp, Prdx3, Prpfl19, Pttgl, Rifl, Rnasehl, Slx4, Tdp2, Terfl, Tinf2, Top3a, Wrap53

Positive
Correlation

Cluster No. 3

SP/PIR: chromatin regulator 11 [7.41x10*

GO (BP): chromosome organization 17 [1.13x10?

\Bnip3, Cenph, Chd7, Dtx3l, Erccl, Hdac2, Jadel, Kdm5d, Kmt2c, Pttgl, Rcorl, Rrp8,
Smarcal, Smarca5, Smyd3, Terfl, Tinf2, Wdr5, Wrap53

Positive
Correlation

Cluster No. 5

GO (BP): glucose metabolic process 11 [7.34x10*
GO (BP): hexose metabolic process 11 3.01x103
GO (BP): generation of precursor metabolites and energy 14 [3.52x107

ldh5al, Atp6v0dl, Atp6v0e2, Erollb, Fadsl, Gbel, Gpil, Hkl, Ndufa8, Pdkl, Pfkp, Phka2,
\Phkb, Phkg2, Sdhaf3, Tpil

Negative
Correlation

Cluster No. 1

GO (BP): modification-dependent protein catabolic process 26  [3.81x107
SP/PIR: ubiquitin conjugation pathway 25  [1.33x10*
GO (BP): proteolysis 36 [1.83x107

Udamts2, Agtpbpl, Anapc4, Atgl0, Atg4a, Atg7, Btbdl, Ctsl, Ctsz, Dcafl10, Ddal, Dpp$,
\Fbxl17, FbxI20, Fbxol8, Fbxw2, Kemfl, Mapllc3b, Med8, Mmp2, Mycbp2, Omal, PcskS5,
\Pgpepl, Pmepal, Ppp2r5c, Radl8, Rfwd2, Rnfl4, Rnf2, Rnf6, Sumo3, Tpp2, Ube2b, Ube2vl,
Ufinl, Vhl

Negative
Correlation

Cluster No. 2

GO (BP): protein localization 38 14.86x107

GO (BP): protein transport 34 [1.08x10°

Ugapl, Akap7, Ap3dl, Atgl0, Atg4a, Atg7, Bax, Cavl, Clpx, Cnihl, Col4a3bp, Cry2, Dirc2,
Ergic2, Fdxl1l, Fkbpl5, Gabarapl2, Gdi2, Gm10273, Goltlb, Hspa9, Ifi46, Ipo4, Kiflbp,
\Kpna4, Laptm4a, Lrp4, mt-Nd4, Mtchl, Ndell, Ndufbll, Necapl, Ppp3ca, Rabi8, Rab2a,
\IRab6a, Rhotl, Sarla, Sec22a, Sec31a, Sec62, Slc25al2, Slc29al, Slc33al, Slc35a4, Snx12,
Snx13, Stx17, Timm8al, Tomm6, Trappc6b, Trp53, Tsgl01, Vps36, Vps53, Ywha,

Negative
Correlation

Cluster No. 4

GO (BP): regulation of transcription 73 2.07x10°

SP/PIR: transcription regulation 55 P.45x10*

ctl6a, Ak6, Anp32a, Anp32e, Atf6b, Bckdha, Bmil, Ccdc59, Cd3eap, Cdc5l, Cggbpl, CIk2,
Cnbp, Cops7a, Crtc3, Cry2, Csrp2, Ebnalbp2, Ehmt2, Elk4, Ergic2, Fbxol8, Fiplll, Fosb,
\Foxo3, Gatad2b, Gid8, Gmcll, Gtf2hl, Gtf2h2, Gtf2h5, Harbil, Hlx, Hmgal-rsi, Hnrnpab,
\Hnrnpf, Ift57, Ing2, Ints4, Ipo4, Jund, KIf11, KIf2, Kif4, KIf9, Kpna4, Mafb, Mapkl, Mdm4,
Med16, Medl7, Med31, Med8, Mef2a, Mettl§, Mmp?2, Mnt, Morf412, Mtal, Mtdh, Mxd|l,
Mycbp2, Nabp2, Ncor2, Neol, Nfe2l2, Nrld2, Papd4, Parp2, Phf12, Phlppl, Pkig, Pomp,
\Pop5, PpplrS, Ppp2r5c, Ppp3ca, Ptbpl, R3hdm4, Rabl8, Radl8, Rbbp4, Rfwd2, Rnfl4, Rnf2,
IRnf6, Rps6ka4, Rrsl, Sap30l, Savi, Scoc, Sfimbt1, Sin3b, Snrk, Sqstm1, Srpk2, Ssbpl, Tepl,
Tgfbr3, Trim35, Trip6, Trp53, Tsgl01, Ube2b, Ube2vl, Ubtf, Ufml, Vhi, Vps36, Wiz, Xrcc),

Yeatsd, Zbtb14, Zfp414, Zfp637. Zfp655, Zfp710, Zfp821
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Figure 7.5. Interaction network among the top hits in (A) positive and (B) negative
correlation with longevity. The lines represent interaction based on “evidence view” of STRING

database. Selected gene names are colored based on the enriched pathways (see Table 7.3).
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Genes showing positive correlation with lifespan

Genes showing positive correlation were enriched for pathways that included “nucleotide
binding”, “DNA repair”, “chromosome organization”, and “glucose metabolic process” (Table 7.3,
Figure 7.4D). “DNA repair” genes included DNA mismatch repair (Msh6, Pms2), nucleotide excision
repair (Erccl, Pnkp), Fanconi anemia-associated DNA damage response network (C170rf70, Fancg),
and protection of telomeres (Rif1, Terf1, Tinf2). The products of checkpoint kinase Chekl and
anaphase promoting complex substrate Pttg/ were regulators of cell cycle.

Among other genes, Hifla encodes the alpha subunit of hypoxia-inducible factor 1 (HIF-1), a
key transcription factor in mediating the metabolic responses to hypoxia, whereas Prdx3 encodes
mitochondrial peroxiredoxin that regulates redox homeostasis. In particular, Pnkp (Figure 7.6A),
Prdx3, and Rifl reached statistical significance in all four longevity traits. Consistent with the
findings, over-expression of 4if-1 in C. elegans was shown to promote longevity (Zhang et al., 2009),
whereas deletion of rif1 and msh6 in yeast (Austriaco and Guarente, 1997; Laschober et al., 2010),
knockout of prdx3 in C. elegans (Ha et al., 2006), and disruption of Erccl in mouse (Weeda et al.,
1997) were all detrimental and led to decreased lifespan. Several previous studies also suggested that
long-lived species generally had enhanced DNA repair capacity (Cortopassi and Wang, 1996), higher
poly (ADP-ribose) polymerase activity (Grube and Biirkle, 1992), up-regulation of genes in base-
excision repair and superoxide metabolic process (Fushan et al., 2015), as well as reduced free radical
production (Perez-Campo et al., 1998), reduced oxidant generation (Sohal et al., 1995), and less
oxidative damage to nuclear DNA (Adelman et al., 1988) and mitochondrial DNA (Barja and Herrero,
2000), although the degree of contribution towards the observed differences in lifespan varied and had
potential confounding effects (Debrabant et al., 2014; Montgomery et al., 2012; Promislow, 1994).

“Glucose metabolic process” included gene products of hexokinase Hkl, glucose phosphate
isomerase Gpil, triose phosphate isomerase 7pil, phosphofructose kinase Pfkp, and pyruvate
dehydrogenase kinase (Pdkl) which are involved in glycolysis/gluconeogenesis, glucan branching
enzyme (encoded by Gbel) and several phosphorylase kinases (encoded by Phka?2, Phkb, Phkg?2),

which regulate the metabolism of glycogen. In addition, the genes coding for NAD synthetase
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(Nadsynl), which is involved in converting nicotinate adenine dinucleotide (NaAD) to nicotinamide
adenine dinucleotide (NAD), also showed positive correlation with all four longevity traits (Figure
7.6B). Previously, it was observed that NAD" levels declined with age and affected SIRT1 functions,
whereas supplementation with NAD" precursors reversed the aging phenotypes in mouse muscle
(Gomes et al., 2013) and overexpression of SIRT1 in mouse brain could protect against aging-
dependent circadian changes (Chang and Guarente, 2013). Calorie restriction also increases the
NAD*/NADH ratio in yeast (Lin et al., 2004). As our study did not directly quantify the
NAD'/NADH ratio, it remains to be seen how high Nadsynl expression in long-lived species affects

these metabolites.
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Figure 7.6. Selected genes with significant correlation with longevity.

(A) Pnkp and (B) Nadsynl show positive correlation with the longevity traits. (C) Trp53, (D)
Bax, (E) Mapkl, and (F) Jund show negative correlation with the longevity traits. In each plot,
the vertical axis indicates the average logl0 expression value; the horizontal axis indicates the
log10 longevity traits (ML: Maximum Lifespan; FTM: Female Time to Maturity; MLres:
Maximum Lifespan Residual; FTMres: Female Time to Maturity Residual); the numbers in
parenthesis indicate p value.robust; the labeled species is the one with the largest residual error
(which was removed to calculate p value.robust). Error bars indicate standard error of mean. Points

are colored by taxonomic group (same color scheme as in Figure 7.1).
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Expression of genes showing negative correlation with lifespan

With regard to the top hits showing negative correlation, the major enriched pathways
included “proteolysis”, “protein transport/localization”, and “regulation of transcription” (Table 7.3,
Figure 7.4D). For “proteolysis”, we observed relatively low expression of genes coding for E2
ubiquitin-conjugating enzyme (Ube2b, Ube2v1), E3 ubiquitin-protein ligase (Radl8, Mycbp?2),
ubiquitin-like modifier (Sumo3, Ufinl), as well as several proteins containing RING finger domain
(Rnf2, Rnf6, Rnfl4, Rfwd2) or F-box domain (Fbx/17, FbxI20, Fbxol8, Fbxw2), both of which are
known to be involved in the ubiquitination pathway. Also, low expression was observed for the genes
encoding autophagy related proteins (4Atg4a, Atg7, Atgl0) and lysosomal cysteine proteinases (Cts/,
Ctsz). Genes implicated in “protein transport/localization” included several vesicle trafficking proteins
(Sec22a, Sec31a, Sec62, Goltlb), mitochondrial membrane translocases (Timm&al, Tommo6), and
nuclear transport receptors (Ilpo4, Kpna4). As for “regulation of transcription”, we observed down-
regulation of genes coding for mediator complex subunits (Med8, Med16, Medl7, Med31), zinc finger
proteins (Zfp414, Zfp655, Zfp637, Zfp710, Zfp82 1), Kruppel-like factors (Kif2, Kif4, KIf9, Kifl 1) and
members of the MYC/MAX/MAD network of transcription factors (Mxd1, Mnt). Interestingly, the
tumor suppressor TP53 (encoded by 7rp53) and its regulator MDM4 (encoded by Mdm4), apoptosis
regulator BAX (encoded by Bax), transcription activator of apoptosis FOXO3 (encoded by Foxo3),
transforming growth factor beta (TGF-f) receptor (encoded by Tgfbr3), mitogen-activated protein
(MAP) kinase (encoded by Mapkl), and transcription factor JunD (encoded by Jund) were all lower
in longer-lived species (Figures 7.6C-F).

Overall, the results suggested that fibroblasts of longer-lived species had lower protein
degradation, lower protein transport activities, and subdued signaling for growth and apoptosis. The
link between proteolysis/autophagy and aging has been proposed by a number of authors, as generally
the proteolytic functions decline and oxidized proteins increase with age, and autophagy genes are
required for the lifespan extension effects of Insulin/IGF-1 signaling and dietary restriction
(Chondrogianni and Gonos, 2008; Hansen et al., 2008; Kenyon, 2010; Kevei and Hoppe, 2014; Low,

2011; Melendez et al., 2003; Rubinsztein et al., 2011; Starke-Reed and Oliver, 1989; Vernace et al.,

212



2007). Activation of proteasome or autophagy has also been shown to extend lifespan in C. elegans
(Chondrogianni et al., 2015; Ghazi et al., 2007), yeast (Kruegel et al., 2011), and flies (Simonsen et
al., 2008). Immunoproteasome and proteasome activity was also elevated in the livers of long-lived
Snell dwarf mice and in mice exposed to drugs known to extend lifespan (Pickering et al., 2015). On
the other hand, our results suggest that across the species with natural lifespan variations, the longer-
lived animals actually have lower expression levels of genes involved in proteolysis and autophagy,
and of the tumor suppressor TP53. While our study examined only mRNA levels and disregarded
potential differences in protein levels, coding sequences, and enzymatic activities, one could speculate
that the naturally long-lived species need less protein degradation, perhaps due to lower damage
generation or more efficient repair mechanisms. In fact, in a study examining gene expression in
mammalian organs (Fushan et al., 2015), down-regulation of the ubiquitin ligase complex was

observed in the liver of longer-lived species.
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Metabolites correlating with longevity traits

For 12 of the rodent species, we also profiled metabolites (Townsend et al., 2013).
After data filtering and normalization, 144 water soluble metabolites and 82 lipids were
reliably detected across 22 biological samples. Principal Component Analysis (Figure 7.7A)
and the phylogram based on metabolite levels (Figure 7.7B) both indicated that the metabolic
profiles of these species, like gene expression, segregated according to phylogeny, although
the patterns were less clear-cut than those based on the RNAseq dataset. This might be partly
due to the much fewer metabolites detected compared to the genes (226 metabolites vs. 9389
genes), but the degree of deviation from phylogeny might also depend on tissue origin (Ma et
al., 2015b). Nevertheless, the biological and technical replicates clustered together (Figure
7.7B), suggesting the within-species variation was relatively small.

To identify metabolites with significant correlation with longevity traits, we also
applied the phylogenetic regression method described above. Since there were fewer species
for the metabolite dataset, the statistical power was weaker than the gene expression dataset.
At the cut-off of p value.robust <0.01 (~11% FDR) and p value.max < 0.05, 12 metabolites
showed significant correlation with AW, 24 metabolites with ML, 18 metabolites with FTM,
16 metabolites with MLres, 17 metabolites with FTMres, and 22 of these metabolites were
supported by 2 or more longevity traits (Figure 7.7C). Pathway analysis revealed enrichment
of “common amino acids” among the top hits with positive correlation, and
“glycerophospholipids” among the top hits with negative correlation. In particular,
tryptophan, glutamate, leucine, arginine, lysine, and histamine showed positive correlation
with multiple longevity traits; so did a number of nucleotides/nucleosides including ADP,
GDP, and adenosine. This stands in contrast with the observation that the longer-lived
mammalian species tend to have lower levels of amino acids in their brains (Ma et al.,

2015b). On the other hand, a number of lysophosphatidylchonline (LPC; e.g. C16:0 LPC,
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C18:0 LPC, C18:1 LPC) and lysophosphatidylethanolamine (LPE; e.g. C20:4 LPE, C22:6
LPE) showed negative correlation (Figure 7.7D), which were consistent with the previous
report of low LPC and LPE in long-lived mammals (Ma et al., 2015b). LPC levels were also
previously reported to decrease with age but maintained in mice under caloric restriction (De
Guzman et al., 2013). LPC and LPE are generated by phospholipase-dependent hydrolysis of
phosphatidylcholine and phosphatidylethanolamine, respectively. Elevated phospholipase A2
(PLAZ2) activity can lead to inflammatory response and is linked to coronary artery disease in
humans (Rosenson and Stafforini, 2012). If we relaxed the cut-off criteria to p value.robust <
0.05, the patterns of positive correlation with amino acids and negative correlation with LPC

and LPE were still supported across multiple longevity traits (Table 7.4).
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Figure 7.7. Metabolite variation and correlation with longevity.

(A) Projection of the first 3 Principal Components (PCs) in Principal Component Analysis.
Values in parenthesis indicate percent of variance explained by each of the PCs.

(B) Metabolite phylogram. Color of the nodes indicates the result of 1000 times bootstrap.

(C) Overlap of metabolites associating with Adult Weight and longevity traits.

(D) Selected metabolites with significant correlation with longevity.
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Table 7.4. Top hits identified by 2 or more longevity traits, using cut-off of p value.robust <

0.05. The p value.robust against each of the four longevity traits (ML, FTM, MLres, and FTMres) as

well as adult weight (AW) are shown.

Metabolite AW ML FTM MLres FTMres
valine 3.40E-02 2.32E-02 | 3.45E-02 | 5.95E-02 | 4.86E-02
C36.1.PC 5.52E-02 4.68E-02 | 2.11E-02 1.08E-01 3.77E-02
lactose 4.16E-02 2.06E-02 | 2.63E-02 | 8.61E-02 1.01E-01
lactate 3.87E-02 1.91E-02 1.91E-02 1.05E-01 5.75E-02
histidine 1.32E-01 5.21E-02 | 4.90E-02 1.75E-02 | 2.22E-02
X2.hydroxyglutarate 2.38E-01 9.81E-02 | 5.34E-02 1.72E-02 | 2.42E-02
ADMA.SDMA 6.25E-02 1.77E-02 | 4.95E-02 1.36E-02 | 4.65E-02
acetylcholine 5.82E-03 1.28E-02 | 4.64E-02 1.95E-01 1.99E-01
C34.2.PC -1.53E-01 1.26E-01 1.94E-02 | 2.74E-01 1.27E-02
trimethylamine.N.oxide 1.82E-01 3.05E-02 | 2.31E-02 | 2.34E-02 1.27E-02
phenylalanine 8.50E-02 1.27E-02 | 2.18E-02 1.29E-02 | 2.25E-02
UDP 2.57E-01 4.82E-02 1.04E-01 1.24E-02 | 5.99E-02
NMMA 2.24E-02 4.04E-02 1.89E-02 1.74E-02 1.19E-02
oxalate 1.75E-02 1.12E-02 1.18E-02 | 2.68E-02 | 3.14E-02
cotinine 1.12E-01 1.15E-02 | 5.88E-02 1.02E-02 | 4.07E-02
C32.2.PC -2.81E-01 | 2.51E-01 3.00E-02 1.65E-01 9.37E-03
hippurate 1.50E-01 1.70E-02 | 8.03E-02 | 9.15E-03 1.03E-01
methionine 1.10E-02 7.87E-03 | 2.47E-02 1.90E-02 | 5.75E-02
CDP 6.62E-02 7.62E-03 | 2.65E-02 1.41E-02 | 2.23E-02
tryptophan 1.29E-01 6.71E-03 | 6.45E-03 1.78E-02 1.74E-02
kynurenine 2.91E-02 8.41E-02 | 6.11E-03 | 2.50E-01 3.52E-02
creatine 6.35E-02 8.83E-03 | 9.80E-02 | 5.64E-03 1.22E-01
tyrosine 3.13E-02 1.28E-02 | 4.06E-02 | 4.56E-03 1.13E-01
proline 7.77E-03 4.26E-03 1.52E-02 1.34E-02 | 3.81E-02
glutamate 2.35E-02 4.13E-03 | 2.44E-02 | 8.22E-03 | 5.31E-03
leucine 1.09E-02 4.65E-03 | 3.70E-03 | 3.49E-02 1.02E-02
arginine 1.78E-02 3.94E-03 | 2.97E-03 1.38E-02 | 4.33E-03
histamine 4.02E-02 2.93E-03 | 4.61E-03 | 4.90E-03 | 8.47E-03
C34.3.PC -1.85E-01 1.70E-01 3.30E-02 | 3.82E-02 | 2.52E-03
sarcosine 8.57E-02 1.73E-02 1.02E-01 | 2.49E-03 1.06E-01
C34.2.DAG -5.30E-02 | 2.23E-01 3.03E-02 | 7.34E-02 1.43E-03
ADP 5.95E-02 1.57E-03 | 7.51E-03 1.43E-03 | 3.35E-03
pyroglutamic.acid 1.87E-02 1.22E-03 1.51E-02 1.30E-02 | 2.79E-01
lysine 1.88E-04 1.77E-03 1.06E-03 | 7.04E-02 | 9.22E-03

GDP 4.53E-01 4.55E-03 1.55E-02 | 3.68E-04 | 3.11E-03
sorbitol 2.53E-02 3.22E-02 | 2.26E-03 | 2.23E-03 | 2.69E-04
adenosine 9.69E-02 4.04E-03 | 8.61E-04 | 4.12E-03 | 2.31E-04
X3.phosphoglycerate -7.79E-01 | -8.37E-03 | -3.49E-02 | -1.57E-04 | -5.21E-03
C16.0.LPC -5.44E-03 | -7.79E-04 | -1.83E-04 | -1.15E-02 | -7.16E-03
C20.4.LPE -1.30E-02 | -4.99E-04 | -6.90E-04 | -2.21E-03 | -1.09E-03
alpha.glycerophosphate -5.34E-01 | -8.13E-02 | -7.55E-03 | -5.47E-04 | -1.61E-03
X2.deoxycytidine -7.02E-03 | -6.22E-04 | -5.75E-04 | -1.89E-03 | -1.30E-03
malondialdehyde -9.58E-03 | -7.66E-04 | -7.59E-03 | -5.23E-03 | -6.23E-02
cytidine -1.98E-04 | -1.46E-03 | -1.70E-03 | -1.05E-01 | -1.68E-01
C36.4.PC.B -1.81E-02 | -2.35E-03 | -7.29E-03 | -4.80E-03 | -2.02E-02
C36.4.PC.A -3.73E-01 | -7.46E-02 | -1.65E-02 | -8.33E-02 | -3.32E-03
X2.aminoadipate -7.94E-02 | -4.49E-02 | -3.54E-03 | -3.82E-01 | -1.09E-02
C18.1.LPC -9.03E-03 | -4.39E-03 | -6.89E-03 | -4.05E-01 | -5.88E-02
C22.6.LPE -4.15E-02 | -2.23E-02 | -4.87E-03 | -7.04E-02 | -5.09E-03
C18.0.LPC -5.06E-02 | -2.69E-02 | -6.30E-03 | -6.26E-02 | -6.02E-03
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Table 7.4 (Continued)

Metabolite AW ML FTM MLres FTMres
C18.0.SM -4.41E-03 | -8.57E-03 | -7.48E-03 | -3.16E-01 | -3.19E-02
kynurenine.vs.tryptophan -3.45E-02 | -9.08E-03 | 2.16E-02 | -6.06E-02 | 5.54E-02
C18.2.LPC -4.00E-02 | -3.18E-02 | -1.26E-02 | -5.89E-02 | -1.04E-02
putrescine -1.57E-01 | -1.30E-01 | -1.85E-02 | -6.68E-02 | -1.12E-02

dCMP -1.32E-02 | -1.18E-02 | -3.08E-02 | -5.34E-02 | -8.54E-02
X4.pyridoxate -2.83E-02 | -7.87E-02 | -1.32E-02 | -1.43E-01 | -2.39E-02
Cl6.carnitine -9.17E-02 | -2.64E-02 | -5.50E-02 | -1.54E-02 | -4.94E-02
glycocholate -1.28E-02 | -1.62E-02 | -3.80E-02 | -1.02E-01 | -1.29E-01
X3.methyladipate.pimelate -2.08E-01 | -5.84E-02 | -3.41E-02 | -3.04E-02 | -1.80E-02
C5.carnitine -1.53E-01 | -2.02E-02 | -2.42E-02 | -1.83E-02 | -2.09E-02
cystathionine -4.40E-02 | -4.16E-02 | -2.22E-02 | -1.48E-01 | -4.57E-02
C16.0.LPE -5.08E-02 | -2.62E-02 | -3.87E-02 | -2.32E-01 | -1.23E-01
C20.4.LPC -7.02E-03 | -2.75E-02 | -2.67E-02 | -1.80E-01 | -5.59E-02
cytosine -6.78E-04 | -3.49E-02 | -2.90E-02 | -3.08E-01 | -2.87E-01
C22.6.LPC -2.66E-02 | -3.92E-02 | -3.12E-02 | -2.55E-01 | -9.34E-02
C38.5.PC -2.81E-03 | -4.05E-02 | -4.93E-02 | -2.45E-01 | -2.58E-01
C14.0.SM -4.41E-02 | -1.06E-01 | -4.30E-02 | -1.87E-01 | -4.81E-02
C52.6.TAG 5.06E-01 -1.99E-01 | -1.29E-01 | -4.93E-02 | -4.99E-02
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DISCUSSION

All mammals descended from the same common ancestor ~230 million years ago, and since
then they have undergone remarkable diversification in body size, metabolic rate, fertility, and
longevity, with the corresponding changes in the gene expression and metabolite landscape (Fushan et
al., 2015; Ma et al., 2015b). As fibroblasts can be obtained without sacrificing animals and can be
cultured under standardized conditions, it is of great interest to determine if their gene expression and
metabolite patterns represent lifespan across mammals. In addition, fibroblasts are amenable to
experimental manipulation. On the other hand, cross-species gene expression analyses are often
hampered by the lack of publicly available genomes and gene orthology information, especially for
those species not commonly studied. Using the primary fibroblasts from 16 species of rodents, bats,
and shrew, we developed a pipeline for generating species-specific ortholog sets, profiled gene
expression by RNAseq and the metabolites by mass spectrometry, and identified the molecular
features associated with the longevity traits.

Our pipeline can be easily extended for a larger number of species. We took an approach of
defining gene orthology based on reciprocal best hit in BLAST (Tatusov et al., 1997) and ignored the
issues of gene duplication and gene loss. We also filled up sequence fragments and missing sequences
using consensus of the other species, so as to avoid significant length differences within the ortholog
sets. While these steps unavoidably introduced inaccuracy within our species-specific ortholog
sequences, they did not significantly affect the read alignment result (Figures 7.2B-C, Figure 7.3) and
would be much preferred to aligning all the reads to a single reference species (e.g. mouse).

The gene expression findings revealed a clear segregation based on phylogeny (Figures 7.4A-
B), suggesting the evolutionary relationship significantly influenced the expression patterns. On the
other hand, the metabolite patterns were less clear-cut (Figures 7.7A-B), which might be attributed to
the fewer species and metabolites, and/or stronger environmental influences. Using phylogenetic
regression and the two-step verification procedure, we identified a list of genes and metabolites with
significant correlations to multiple longevity traits. Importantly, although many longevity traits

correlate positively with body mass, our lists of genes and metabolites were not driven primarily by
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adult weight differences (Figures 7.4C and 7.7C). In terms of gene expression, the pathways of
“nucleotide binding”, “DNA repair”, “chromosome organization”, and “glucose metabolic process”
were enriched among the genes with positive correlation with longevity, whereas “proteolysis”,
“protein transportation/localization” and “regulation of transcription” were enriched for the negative
correlation. A previous study on gene expression variation in mammalian organs also reported up-
regulation of “base excision repair”” and down-regulation of “ubiquitin ligase complex” among long-
lived species (Fushan et al., 2015), suggesting that some of the longevity signatures were also evident
in fibroblasts. Interestingly, proteolysis and autophagy functions of an organism generally decline
with age, and restoration of these functions have been shown effective in extending lifespan
(Chondrogianni et al., 2015; Ghazi et al., 2007; Kruegel et al., 2011; Simonsen et al., 2008).
Furthermore, genes coding for the tumor suppressor TP53, apoptosis regulator BAX, and several
growth and proliferation signaling pathways were all down-regulated in longer-lived species (Figure
7.6C-F). One possible interpretation may be that these species generate less damage and/or have
better repair mechanisms, so that the cells rely less on proteolysis, autophagy and apoptosis. In
agreement, previous studies reported enhanced DNA repair mechanism and reduced oxidative damage
in longer-lived species (Adelman et al., 1988; Cortopassi and Wang, 1996; Grube and Biirkle, 1992;
Perez-Campo et al., 1998; Sohal et al., 1995). The metabolite dataset, on the other hand, had weaker
statistical power due to the fewer species and samples. The pattern of low LPC and LPE among long-
lived species was consistent with previous reports, although the positive correlation between amino
acids and longevity was contrary to the observation based on mammalian brain tissues (De Guzman et
al., 2013; Ma et al., 2015b).

Overall, our study is consistent with the idea that gene expression, and to some degree
metabolite levels, in fibroblast cultures can uncover the cell states that correspond to longer life.
Apparently, these expression patterns are preserved when the intraorganismal environment is removed
and cells instead subjected to standardized cell culture conditions in the lab setting. This makes
fibroblasts a particularly attractive experimental system to examine and manipulate molecular
patterns, with gene expression (or a combination of gene expression and metabolite patterns) as a

readout. While our study represents an initial study, this approach can be extended to a larger group of
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species and samples, refining the molecular signatures and then manipulating them via genetic and
environmental manipulations. Ultimately, this should reveal the genetic basis for differences in
species longevity and lead to new strategies for targeting them, thereby shifting cells, and ultimately

organisms to the state of related longer-lived species.
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EXPERIMENTAL PROCEDURES

Sample collection and RNA sequencing

Primary skin fibroblast samples were collected from shrew (Blarina brevicauda), big brown
bat (Eptesicus fuscus), little brown bat (Myotis lucifugus), guinea pig (Cavia porcellus), porcupine
(Erethizon dorsatum), chinchilla (Chinchilla lanigera), chipmunk (Tamias striatus), fox squirrel
(Sciurus niger), red squirrel (Sciurus vulgaris), beaver (Castor canadensis), gerbil (Meriones
unguiculatus), African grass rat (Arvicanthis niloticus), meadow vole (Microtus pennsylvanicus),
cotton rat (Sigmodon hispidus), white-footed mouse (Peromyscus leucopus), and deer mouse
(Peromyscus maniculatus brandii). Biological replicates (i.e. tissues from different individuals) and
technical replicates were collected on selected species.

RNAseq libraries were prepared as previously described (Fushan et al., 2015). Paired end
sequencing was done on the [llumina HiSeq2000 platform generating approximately 30 to 75 million
reads per sample, with read length 50 or 100 nucleotides. The raw data were processed by Cutadapt
(Martin, 2011) to remove low quality reads.

Species specific ortholog sets and expression values

Reference genomes were publicly available for 5 species (Eptesicus fuscus, Myotis lucifugus,
Cavia porcellus, Chinchilla lanigera, Peromyscus maniculatus brandii). To ensure consistency across
the entire dataset, we developed the following pipeline to identify species-specific ortholog sets, map
the reads and obtain expression values.

Step 1: generate mouse reference. Based on the Mus musculus Ensembl genome and
annotation (release 78), the longest transcript was extracted for each protein-coding gene locus, after
confirming the presence of start and stop codons and the proper reading frame. Those transcripts
containing highly repetitive or highly similar sequences were identified and removed using BLAST
(at e-value cut-off 10°) (Camacho et al., 2009). This generated the Mouse Reference, representing the
coding sequences of 16,816 unique protein-coding genes.

Step 2: identify species-specific ortholog sets. For each species, the transcriptome was

assembled de novo from the RNAseq reads using Trinity (Grabherr et al., 2011). BLAST (with “dc-
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megablast” option) was performed between Mouse Reference and the assembled transcriptome (and
the published genome, if available) of each species to identify the reciprocal best hits (Tatusov et al.,
1997). The sequences were trimmed down to open reading frame (i.e. flanked by start and stop
codons) using Exonerate (Slater and Birney, 2005). Within each ortholog sets, multiple sequence
alignment was performed using MUSCLE (Edgar, 2004) and the percentage of sequence identity was
assessed by MView (Brown et al., 1998). For the sequence fragments or missing sequences due to
poor coverage, they were filled up using the consensus. We confirmed the filling up procedure did not
significantly affect the read counting results. 74% of the ortholog sets did not require filling up or
were filled up < 10% of the sequence length, whereas 5% of the ortholog sets were filled up 90% -
100% of the sequence length. When the expression values were standardized to mean = 0 and
standard deviation = 1 within each ortholog set, there was no significant bias against those ortholog
sets with high percentage of filling up.

Step 3: read mapping, counting, filtering and normalization. The RNAseq reads were mapped
to the species-specific ortholog sets using STAR (Dobin et al., 2013), with an average read alignment
rate of ~ 40%. As comparison, read mapping to publically available genomes achieved an average
alignment rate of ~85%. The lower alignment rate to the species-specific ortholog sets was likely due
to the exclusion of 5’ and 3’ untranslated regions, repetitive or highly similar sequences, and introns.
Nevertheless, the alignment rates were largely similar across the samples and species. Read counting
was performed by featureCounts (Liao et al., 2014) and those ortholog sets with too high counts (i.e.
read counts contributing to >5% of the total counts; 3 orthologs were removed this way) or too low
counts (i.e. < 10 counts in 4 or more samples) were discarded. The library sizes were then scaled by
trimmed mean of M-values (TMM) method, log10-transformed, and quantile-normalized. The final
expression set consisted of 9389 gene orthologs across 28 samples.

Metabolite profiling and data processing

The metabolite levels were quantified by mass spectrometry as previously described
(Townsend et al., 2013). From the raw metabolite measurements, we kept only those metabolite with
< 10% missing values. The raw values were normalized separately for the 3 collection modes (water

soluble positive ionization mode “HILIC-pos”, water soluble negative ionization mode “HILIC-neg”,
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and lipid mode “C8-pos”), first by the internal standards, and then by the total signals within each
mode. The data were then logl 0-transformed and quantile normalized. The final expression set
consisted of 226 metabolites across 22 samples.
Principal Component Analysis and Phylograms

Principal Component Analysis was performed on the standardized expression values or
metabolite values and the first 3 Principal Components were extracted. The phylograms were
constructed using neighbor joining method (Saitou and Nei, 1987), based on the distance matrix of 1
minus Pearson correlation coefficient of the standardized expression values or metabolite values. The
reliability of the branching patterns was assessed by 1000 times bootstrap.
Phylogenetic regression and two-step verification procedure

See Chapter 2, Phylogenetic Regression. To qualify as a top hit, we required a gene to have p
value.robust < 0.01 and p value.max < 0.05. For pathway enrichment purposes, we further required
that the genes were identified as a top hit in 2 or more longevity traits (ML, FTM, MLres or FTMres).
Pathway enrichment analysis and interaction network

For the genes, pathway enrichment analysis was performed using DAVID (Huang da et al.,
2009a, b). For those genes showing positive and negative correlation with longevity (supported by 2
or more longevity traits), we queried Gene Ontology (“GO Term”; Biological Process and Molecular
Functions only), SwissProt and Protein Information Resource (“SP PIR Keywords”), and Kyoto
Encyclopedia of Genes and Genomes (“KEGG Pathway”). STRING (Jensen et al., 2009) was used to
visualize the interaction network among the top hits. Selected nodes were highlighted based on the
enriched pathways. For the metabolites, pathway information was obtained from ConsensusPathDB
(Kamburov et al., 2009) and Human Metabolome Database (HMDB) (Wishart et al., 2013). For
ConsensusPathDB, only pathways with known KEGG IDs were incorporated. Analysis was
performed on pathways with at least 5 but less than 100 metabolites. Enrichment statistics was based
on a hypergeometric distribution. Odd ratios and expected counts were calculated as previously

described (Gentleman et al., 2013).
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Chapter 8 Mammalian Transcriptome

Previously, our laboratory carried out RNAseq-based gene expression analyses in brain,
kdiney, and liver of 33 mammalian species (Fushan et al., 2015). We have now analyzed additional
species and incorporated RNAseq data from databases, generating a gene expression dataset
consisting of 383 biological samples across brain, cerebellum, heart, kidney, liver, and testis in
chicken and 41 mammalian species. This chapter presents initial analyses of this dataset, revealing
insights into how Nature adjusts lifespan of mammals by altering gene expression in an organ-,

pathway- and gene-specific manner.

PRELIMINARY RESULTS AND DISCUSSION

Biological samples and RNA sequencing

We compiled RNAseq data for chicken (used as an out-group) and 41 mammalian species in
brain (37 species), kidney (37 species), liver (42 species), cerebellum (11 species), heart (14 species),
and testis (11 species). In this dataset, 48 samples were newly sequenced and 335 samples
corresponded to datasets previously published by us and other laboratories (Brawand et al., 2011;
Fushan et al., 2015; Merkin et al., 2012). Biological replicates (i.e. samples from multiple individuals
of a species) were available for most species. These mammals represent 12 taxonomic orders, over a
wide range of longevity-associated traits (e.g. adult weight ranged from 7.0 g in the Brandt’s bat to
100 tons in the bowhead whale; maximum lifespan ranged from 3.2 years in the shrew to 211 years in
the bowhead whale) (Tacutu et al., 2013) (Figure 8.1, Table 8.1). 29 of these species were represented
by publicly available genomes in NCBI or Ensembl, whereas the other 13 species required de novo
assembly of the transcriptomes. To ensure consistency of read alignment and counting across the
samples, a pipeline was developed to identify the sets of ortholog sequences in each species (Chapter
2, “Species Without Reference Genomes”). We confirmed that the read alignment rates to the
ortholog sets were consistent across the samples with and without complete genomes (Figure 8.2A),
and the Spearman correlation coefficients for the read counts from alignment to ortholog sets and

from alignment to complete genomes were > 0.95 for most of the samples (Figure 8.2A). For those
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species with Ensembl annotations for gene orthologs, 90-99% of our definition of ortholog sets agreed
with the Ensembl annotation (Chapter 2, Table 2.5). After data filtering and normalization, 13,784
genes were reliably detected across 383 samples. For cross-organ analysis, the expression values were
standardized to mean 0 and standard deviation 1. Mean values and standard errors were calculated

across biological replicates.

Chicken (G. gallus)

Taxonomic Orders
Il Aves

Monotremata/
B Didelphimorphia/
Diprotodontia

I Eulipotyphla
[0 Cetartiodactyla
O Chiroptera

[ Perissodactyla
O Carnivora

[ Lagomorpha
Il Scandentia

[l Primates

[ Rodentia

Platypus (O. anatinus)

{Opossum (M. domestica)
Sugar glider (P. breviceps)

—————— Shrew (S. murinus)
Hedgehog (E. europaeus)

Rabbit (O. cuniculus)

Tree shrew (T. belangeri)
Vervet (C. aethiops)

Baboon (P. anubis)

Rhesus monkey (M. fascicularis)
Macaque (M. mulatta)
Orangutan (P. abelii)

Gorilla (G. gorilla)
Human (H. sapiens)

Bonobo (P. pamscus)
Chimpanzee (P. troglodytes)

Guinea pig (C. porcellus)
E Damaraland mole rat (F. damarensis)
Naked mole rat (H. glaber)

Chipmunk (T. striatus)
Beaver (C. canadensis)

White-footed mouse (P. leucopus)
Hamster (M. auratus)

Gerbil (M. unguiculatus)

Spiny mouse (A. cahirinus)

Rat (R. norvegicus)

Mouse (M. musculus)

Figure 8.1. The 42 species examined in this study. The tree is based on nucleotide sequences and
constructed by neighbor joining method (Saitou and Nei, 1987). Chicken is used as the out-group.
The tips are colored by taxonomic orders. For simplicity, the same color is used for Monotremata

(platypus), Didelphimorphia (opossum), and Diprotodontia (sugar glider).

232



Table 8.1. 42 species and life history traits. Adult Weight (AW), Maximum Lifespan (ML) and
Female Time to Maturity (FTM) were obtained from AnAge database (Tacutu et al., 2013). Maximum
Lifespan Residuals (MLres) and Female Time to Maturity Residuals (FTMres) were computed using
the following allometric equations: MLres = ML/(4.88xAW®15%); FTMres = FTM/(78.1xAW®2!7),
The numbers of samples in brain (Br), cerebellum (Cb), heart (Ht), kidney (Kd), liver (Lv) and testis

(Ts) are shown.
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Table 8.1 (Continued)

620 €5°0 [4% 0y 081 4 9 9 € € 9 ENUSPOY BI[BUWEIA OSNON
70 (440 06 [94 O°LTT 0 € € 0 0 € BOUSPOY BI[BWWRA ey
€0 89°0 8¢ 6'S 0Cy 0 € 0 0 0 0 BOUSPOY BI[BWERN OSNONAUIAS
(140 89°0 (34 €9 819 0 € € 0 0 € ENUSPOY BI[BUWEIA 11195
140 6€°0 8 6'¢ 801 0 € € 0 0 € BIUSPOY BI[BWWEIA 19)sieH
870 10°1 €L 6L £'TC 0 € C 0 0 € ENUSPOY BI[BWWEIN OSTNOJAP3JO0JNYM
S6°0 SO'1 6€9 Y €T 0°05C°0C 0 4 0 0 0 [4 ENUIPOY BI[BWWERIA JoAedy
060 86°0 L8I S'6 968 0 4 [4 0 0 [4 BIUSPOY BI[BWWEIA Sunwdryy
S 89°¢ 8¢TC 0'1¢ €6t 0 4 4 0 0 4 BIUSPOY BI[BWWEIA JEYS[OINPIYEN
LTT 1671 [T GGl elel C 4 4 0 0 14 ENUSPOY BI[BWWEIN Je9]ONpUERIBUIE(]
1T°0 60 99 0°CI 1'6€9 0 € € 0 0 € ENUIPOY BI[BWWEIN s1deauInn
ey 9¢'C 9LE°¢ ¥'6S SE86' vy I (4 C 4 4 9 SojelLIJ BI[BWWEIA SdzuedwIy)
or'y £€C'C v61°€ 0°¢S 0°ST6'6€ I 4 C C 4 € SojelLIJ BI[BWWEIA oqouog
125 Yo'y SvL'y x4q! 0°S€0°C9 C 4 C 4 ! S Sojewd BI[BWWRIA Uetwny
LL'T S8'1 6C8'C 43S 0P8 6¢€l ! 4 C [4 4 [4 Sojetild BI[BWIURN B[JLI0D
96'C (444 S6ST 0°6S 0°SLY'¥9 0 4 C 4 ! C SojelLId BI[BUWEA uensueI(
£€CC 90°C 1€T°1 0°0¥ 0°S€T8 [4 4 C 4 4 € SojelLId BI[BWWEIA anbedeN
LET 60°C 8CC | 0'6¢ §T9¢9 0 9 S 0 9 0 Sojetilld BI[BWRN ASYUOIN SISO
1€¢C L'l 14! S'LE 0°000°ST 0 9 9 0 0 9 Syt BI[BWIURN uooqey
€0°C 891 v€0'T 8'0¢ 0°079°S 0 ! I 0 0 I SojelLId BI[BWWEIA PARA
LEO 10°1 06 I'TT 0°00C I ! I ! 0 I BIUSPUBDS BI[BWWEIA MIIYSIIL],
LL'T LSO 0€L 06 6°'L91'C 0 4 4 0 0 [4 e(dIOWOse ] BI[EWIRN NqQqey
90 60 S9¢ 981 0°0S0°TT 0 4 C 0 0 4 BIOATUIET) BI[BWIURN 198peyq
14! Cl'l 8LT'1 (43 0°0STYST 0 4 € 0 0 C BIOATUTET) BI[BWWEIA Teaq
LV'0 601 vLT 8'1¢ 687101 0 4 [4 0 0 [4 BIOATUTET) BI[BUWEA 300
90 L1 68¢ 0°0¢ 0°006°¢ 0 € € 0 0 € BIOATUIET) BI[EWIIRIN ie)
9L'0 0Ll 141 0°LS 0°000°00€ 0 € € 0 0 [4 BIAJOBPOSSLId] BI[BWIURIN 9SI0H
vC'9 01y 0L 0 9 9 0 0 € e13)doIrg) BI[BWWEA jegsipuelg
el STl 081 06 8¢l 0 € I 0 0 C e133doIry) BI[BUWEA 1egPIsONaqN L,
66’1 99°1 €LT 0¢lI el 0 € 0 0 0 0 ©13)doIIy ) BI[EWIRIN jequel|izelq
1570 69°0 8€L £9¢ 0°000°299 0 ! 0 ! 0 I B[A}OEPONIEI) BI[BWWEA BA
0¥'0 ¥$°0 8¥S 0°0¢ 0°00S'8¥S 0 4 14 [4 0 4 B[AJOBPOIIEIRD BI[BWIIRIN INe)
870 6L°0 901 8°0¢ 0°000°T9 0 4 C 0 0 C B[A}OEPONIEI) BI[BUWEA 180D
ell 160 0vLC 0°0¢ 0°000°00S°L 0 ! ! ! 0 ! B[AJOBPOIIEIRD BIEWIRIN S[BYMIUIA
€61 86°C [4F4 0 11T 0°000°000°001 0 € 4 0 0 0 B[A}OEPONIEI) BI[BUWEA S[BYMpeaymoyg
€0 160 1433 0°LT 0°000°S€1 0 4 C 0 0 C B[A}0BPONIEI) BI[BWERA 814
69°0 18°0 134 LTI SEIT 0 4 C 0 0 4 e[ydAjoding BI[EWWEBIA S0Y25paH
170 LEO 9¢ 43 L'6¢ 0 € 0 0 0 0 e[qdAjodinyg BI[BWERA Mg
SOl €L'1 9¢T 8'LI €6cCl 0 C C 0 0 [4 elu0p0ojoIdI(q BI[EWWEBIA IpIHIESNS
LSO 150 Cl I's 0501 C 4 C 4 4 C Tydrownyd[dapIq BI[BWERA wnssodQo
6%l 9¢'1 8¥S 9'Cc 0°0ST'1 C C C 4 4 C EJBUWLIOUOIN BI[EWWEBIA sndAje[d
0°0¢ 8'6LL C 4 C 4 4 C SOULIOJI[BD) SIAY UOYD
SOIALLA SITIN LA TN MV SL AT P JH qD 14 PpI0 SSE[D) JUIBN UOWwo?)

234



>

B Brain Cerebellum

T

o 100+ b
-
T 0 - -
0% o 60
S50 5 40 -
= C
£g m -
pE 8 2 =
gég _Eg 0 IH T - T T
© eart i
25 gg 100+ Kldney
=
3 > 30-% -
o
°© o 2 >0C TC OO x =0 ) t_ug 6
cogsz =3 @ OEEX 5OEEO R g - .
§358¢83 2828950 -F8Eatlo2i08i2s 25 ]
S >25C0 TLO0ERR5ccsL2EROoEFRe 2 -5 40 -
CmO JND ru>m 0 gO0F 08200 HEG-E = O x
aos ¢ o MESg MmeEEEE - .
Oags & 4 =0 ESEEs oI > oo 20
°% T = <0 EOEEO 2 = O c
@ 3 55 § & gg 07— T . .
2 z 25 100 Liver Testis
= E‘: . T
= oy 80 _
- 3]
- s 60+ 1
=
- o - 40
| & 204
0-

|
Species
Species

Replicates+ }-H]—|
11 1
Repllcates-}ll]%

% reads aligned to
genomes

O

Read counts
correlation
0.5
| ]
Chicken - I

Plat
0

1.0 0 20 40 60 80 100

0.0
L

Rat -—— E——
Mouse -——— ]
Spearman correaltion
between species
0.7 08 0.
1 1 1
|
1

0.6
!

ypus - E—
POSSUM - E——
Baboon -m—— ]
Hamster - ]

Hedgehog - S
.
<
.
a1
E
-
Rabbit - e

0.5

T T T T T T
Brain Cere- Heart Kidney Liver Testis
(©) bellm (6 ® © ®

Naked mole rat - — —

Rhesus monkey - — ——

Macaque - ————— —

Orangutan - ——————— e

Gorilla —

Human - —— ]

_ Bonobo - — ——

Chimpanzee - — e — — ) 3
Guinea pig - — ]

Damaraland mole rat - —— eeeseessssssmmn  Damaraland mole rat - ———

Figure 8.2. Data quality assessment

(A) Comparison of read alignment to ortholog sets and to genome. Percentage of reads for each
species aligned to the ortholog sets are shown (top). For species with complete genomes, the reads
were also aligned to the respective genomes (middle), and the average Spearman correlation
coefficient between the read counts of ortholog set alignment and the read counts of genome
alignment was calculated (bottom). See Table 2.5 for more details.

(B) Percentage of total variation explained by species and replicates. The box plots show the
results of ANOVA in each organ.

(C) Gene expression patterns are least conserved in testes. The pairwise Spearman correlation
coefficients between the species were calculated for each organ. Here, only six species were used:
bonobo, chicken, chimpanzee, gorilla, human, macaque, mouse, opossum, and platypus, because

data are available for these species in each of the organs.
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Segregation of samples by organ origin

Principal Component Analysis (PCA) revealed that the samples segregated predominantly by
their organ origin (Figure 8.3A). The cerebellum samples clustered closely with the brain (cortex)
samples, whereas the testis samples were distant from those of the other organs. Analysis of Variance
(ANOVA) confirmed that organ and species were the predominant sources of variation and together
accounted for 87% of the total variance, whereas variation among replicates accounted for only 13%.
Within individual organs, the variance due to species was 82-94% and due to replicates 6-18%
(Figure 8.2B). To determine how well the gene expression patterns were conserved across the species,
we calculated the Spearman correlation coefficients among the species in each organ, using the mean
expression values across the replicates. This revealed that the neural tissues such as brain and
cerebellum had high degree of conservation (Brawand et al., 2011; Fushan et al., 2015; Ma et al.,
2015b), whereas the expression patterns in testis were very diverse across the species (Figure 8.3B).
Similar results were obtained if we included only those species with data in all 6 organs (Figure 8.2C),
consistent with the notion that testis is a rapidly evolving tissue under the impact of sex-related

evolutionary forces (Brawand et al., 2011; Kaessmann, 2010; Khaitovich et al., 2006).
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Figure 8.3. Sample segregation and organ-specific expression patterns.

(A) Samples cluster by organ origin in Principal Component Analysis. The samples (biological
replicates treated as individual points) were projected on the first 3 Principal Components (PCs).
The number in the parenthesis indicates the percentage of total variance explained by each PC. The
points are colored by organ origin.

(B) Gene expression patterns are least conserved in testis. Pairwise Spearman correlation
coefficients between the species were calculated for each organ. The results are displayed in a box
plot. The numbers in the parenthesis indicate the number of species available in each organ.

(C) Heat map showing organ-specific expression patterns. The heat map shows 6,050 genes
significantly enriched or depleted in one organ relative to the others. Rows represent biological
samples and are colored by organ origin (the same color scheme as (A)). Columns represent the
genes with significant enrichment or depletion. Pathway enrichment analysis was performed on

selected genes. The top enriched terms are shown.
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Figure 8.3 (Continued)
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Organ-specific expression patterns

To check that the expression patterns of the organs were consistent with their biological
functions, we used Wilkoxon rank-sum test to identify 6,050 genes significantly enriched or depleted
(p value < 0.01) in one organ relative to the others. The results were visualized on a heat map and the
genes were analyzed for the enriched pathways (Figure 8.3C). In kidney, genes involved in ion
transport and sodium transport (e.g. genes coding for aquaporins and many solute carrier family
proteins) were overexpressed, consistent with its functions in ultra-filtration and selective
reabsorption. In liver, genes coding for proteins involved in steroid metabolism and detoxification
(e.g. hydroxysteroid dehydrogenases, cytochrome P450 family proteins, apolipoproteins), and in
complement and coagulation cascades (e.g. coagulation factors, complement components) were found
expressed at high levels, as these processes are largely liver-specific. Consistent with their high
energy demand, the heart exhibited high expression of genes related to mitochondria and oxidative
phosphorylation (e.g. those coding for mitochondrial H" transporting ATP synthase, different subunits
of NADH dehydrogenases, and several mitochondrial ribosomal proteins), as well as enzymes of the
tricarboxylic acid cycle. On the other hand, the brain and cerebellum specifically expressed genes
involved in synaptic transmission (e.g. those coding for cholinergic receptors, gamma-aminobutyric
acid (GABA) receptors, and glutamate receptors) and neuronal differentiation and development (e.g. a
number of homeobox proteins). The testes were unique for their high expression levels of genes
coding for cyclins, centrosomal proteins, and spermatogenesis-associated proteins, underlying their
roles in sexual reproduction. Overall, the organ-specific expression patterns were in-line with their
biological roles, and most of the samples clustered according to organ origin. The exceptions were the
samples from chicken and platypus, which clustered by species and away from the rest of the samples
(Figure 8.3C, the bottom rows of the heat map), probably due to their significant evolutionary

distance from the rest of the examined mammalian species.
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Genes associated with longevity

For the brain, kidney and liver samples, we performed phylogenetic regression by generalized
least squares (Chapter 2, “Phylogenetic Regression”) to identify the genes with significant association
with maximum lifespan (ML), female time to maturity (FTM), as well as the body-mass adjusted
maximum lifespan residual (MLres) and female time to maturity residual (FTMres). Four different
models of trait evolution were tested and the best models were selected by maximum likelihood
(Chapter 2, “Phylogenetic Regression”). A two-step verification procedure was also applied to assess
robustness of the data (Chapter 2, “Phylogenetic Regression™). Briefly, in the first step, the regression
slope p value (“p value.robust) was calculated by excluding species with the largest residue error
(e.g. a potential outlier); in the second step, regression was repeated by excluding each species, one at
a time, to report the maximal (i.e. least significant) p value (“p value.max”), so that the overall
relationship did not depend on any single species. The corresponding False Discovery Rates (i.e. “q
value.robust” and “q value.max”) were also computed. In each organ, the cut-off of p value.robust <
0.01 and p value.max < 0.05 was used to define the top hits (corresponding to ~ 8% false discovery
rate).

Across the organs, depending on the longevity trait, ~ 800-2,000 genes showed significant
correlation, with slightly more genes with negative correlation than with positive correlation (Table
8.2). Since ML and FTM correlate with each other (Pearson correlation coefficient 0.84), many of the
genes showed the same direction of correlation across all four longevity traits. To identify the
pathways represented by the top genes in each organ, we applied a stringent criterion of considering
only those genes with significant correlations to both ML and MLres, or to both FTM and FTMres
(Table 8.2), so that the results would not be due purely to body mass differences. To ensure the
overall consistency of the results, we also pooled together the top candidates from all 3 organs.
Pathway enrichment analysis revealed a number of common pathways across brain, kidney and liver,

as well as some organ-specific processes (Figure 8.4).
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Figure 8.4. Pathways with significant correlation to longevity traits.

(A) Enriched pathways for genes with positive (top, red) and negative (bottom, blue)
correlation to the longevity traits. The grid indicates the p values for enrichment analysis. Only p
value < 0.01 are shown in color. Green asterisks indicate false discovery rate < 0.1. Input genes
were those with significant correlation to both ML and MLres, or to both FTM and FTMres.

(B) Genes in the selected pathways. The grids showed the p value.robust for phylogenetic

regression against the longevity traits. Only p value.robust < 0.01 are shown in color.
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Table 8.2. Number of genes with significant correlation to longevity traits. Genes with significant

correlation to both ML and MLres, or to both FTM and FTMres, are selected for pathway enrichment

analysis.

. . . Brain Kidney Liver Combine 3 organs

Analysis Longevity trait Pos | Neg | Pos | Neg | Pos | Neg Pos Neg

ML 679 | 844 | 581 | 887 | 751 | 1098 N/A N/A

Phylogenetic FTM 1071 | 1393 | 673 | 983 | 1908 | 1308 N/A N/A

Regression MLres 355 | 424 | 460 | 684 | 374 | 570 N/A N/A

FTMres 690 | 838 | 673 | 907 | 548 | 808 N/A N/A

Pathway Both ML and MLres 157 | 225 | 187 | 352 | 197 | 337 472 746

Enrichment | Both FTM and FTMres | 393 | 527 | 293 | 472 | 325 | 507 869 1251

In terms of positive correlation, the most significant common pathways were “structural
constituent of ribosome” (enrichment p value = 2.67x10” in brain, 1.48x107 in kidney, 4.99x102 in
liver) and “translation” (p value = 2.80x107" in brain, 2.70x107 in kidney, 7.54x10% in liver),
consisting of ~40-50 ribosomal proteins (both large subunits; e.g. Rp/3, Rpl6, Rpl8, Rpl10a, Rpll1,
Rpli3, Rpli8a, Rpl22, Rpl23, Rpl24, Rpl26; Rpl28; Rpl30, Rpl31, Rpl32, Rpi35a, Rpl37, Rpl37a,
Rpl38, Rpl39; and small subunits, e.g. RpsS5, Rps9, Rpsll, Rpsl5, Rpsi5a, Rpsi16, Rps21, Rps27)
(Figure 8.5A) and mitochondrial ribosomal proteins (large subunits such as Mrpl20, Mrpl21, Mrpl27,
Mrpl37, Mrpl41, Mrpl43; and small subunits such as Mrps2, Mrpsil, Mrpsl2, Mrpsl5, Mrps24)
(Figure 8.5B). Ribosomal proteins are key components of ribosomes, the cellular machinery for
protein synthesis, and higher expression of ribosomal proteins may imply adjusted levels of protein
synthesis, larger amounts of ribosomes, and/or greater turn-over of ribosomes in the longer-lived
species. Interestingly, among the genes with negative correlation to longevity were those involved in
“ubiquitin-protein transferase activity” (p value = 6.87%10-4 in brain, 7.75%10-3 in kidney, 8.35x10-5
in liver) and “ubiquitin protein ligase activity” (p value = 3.92x10-6 in liver) (Figure 8.4). These
processes included a number of genes coding for ubiquitin protein ligases (e.g. Ube2a, Ube2gl,
Ube2k, Ube2s, Ube2w, Ube3b, Ube4a, Ube4b, Ubrl, Ubr3, Ubrd4, Ubr5, Smurf2), kelch-like proteins
(Klkl13, Klhl17, KIhi24, KIhi38), and ring finger proteins (March2, March5, March6, Rnf4, Rnf10,
Rnfi13, Rnfll15, Rnfl139, Rnfl144b) (Figure 8.5C), which are involved in protein degradation. In
addition, the genes involved in “base excision repair” (e.g. Oggl coding for 8-oxoguanine DNA-

glycosylase 1; Mpg coding for N-methylpurine-DNA glycosylase; Rpa2 coding for replication protein
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A2; Sirt6 coding for sirtuins 6) were up-regulated in liver of the long-lived species, whereas those in
“tricarboxylic acid cycle” (e.g. aconitase Acol, Aco2; isocitrate dehydrogenase Idhli, Idh2, Idh3a;
succinate dehydrogenase complex Sdha, Sdhb; succinate-CoA ligase Sucla2, Suclgl) were down-
regulated in kidney of these species (Figure 8.5D).

Together, the results suggested that, among the long-lived species, protein degradation
activities decreased whereas the transcription of ribosomal proteins increased. This stood in contrast
with a number of lifespan experiments in model organisms, wherein depletion of ribosomal proteins
was found to extend lifespan in yeast (Heeren et al., 2009; Steffen et al., 2008), and activation of
proteasome or autophagy could extended lifespan in C. elegans (Chondrogianni et al., 2015; Ghazi et
al., 2007), yeast (Kruegel et al., 2011), and fruit flies (Simonsen et al., 2008). On the other hand,
analysis of gene expression in primary fibroblasts of 15 species of rodents, bats, and shrew also found
that the levels of genes involved in ubiquitin-mediated protein degradation were lower in the long-
lived species than in the short-lived ones, whereas the genes involved in DNA repair were high in the
long-lived species (Chapter 7). Similar relationships were also observed in the previous gene
expression study involving a smaller subset of mammalian species (Fushan et al., 2015). Furthermore,
a recent study comparing gene expression in the muscle tissues of hibernating black bears and arctic
ground squirrels with the summer active animals revealed a similar signature of up-regulation of
ribosomal proteins and down-regulation of oxidation-reduction and glucose metabolism during
hibernation (Fedorov et al., 2014). While more data would be required to guide interpretation, one
might speculate that the longer-lived species exhibit lower levels of protein degradation, probably due
to higher accuracy of protein synthesis, lower level of damage, or better maintenance of the

translation machinery.
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Figure 8.5. Selected genes with significant correlation with longevity.

(A) Ribosomal protein large subunit Rp/30 and (B) mitochondrial ribosomal protein large
subunit Mrpi21 show positive correlation with the longevity traits. (C) E3 ubiquitin ligase
Smurf2 and (D) succinate dehydrogenase complex subunit Sdhb show negative correlation
with the longevity traits. In each plot, the vertical axis indicates the average logl0 expression
value in the organ; the horizontal axis indicates the log10 longevity traits (ML: Maximum Lifespan;
FTM: Female Time to Maturity; MLres: Maximum Lifespan Residual; FTMres: Female Time to
Maturity Residual); the numbers in parenthesis indicate p value.robust. The error bars indicate
standard error of mean. The points are colored by taxonomic group (same color scheme as in Figure

8.1).
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Gene expression and metabolic pathways

Previously, we performed metabolic profiling on a subset (26 species) of the species in this
study and reported a number of metabolites with signficant correlation with species longevity (Ma et
al., 2015a). In particular, we observed that the urate:allantoin ratio in kidney showed positive
correlation with the longevity traits, suggesting that the long-lived species had higher urate and/or
lower allantoin levels. Furthermore, the liver levels of two tryptophan degradation products,
kynurenine and anthranilic acid, as well as the kynurenine:tryptophan ratio and the anthranilic
acid:tryptophan ratio, showed negative correlation with longevity. Here, we related these metabolic
changes with gene expression patterns.

In mammals, urate is produced from the degradation of purines and is then converted to
allantoin by the enzyme uric acid oxidase (also known as uricase) and secreted into urine (Ngo and
Assimos, 2007) (Figure 8.6A). In humans and other hominoids, the gene coding for uric oxidase is a
pseudogene and urate is excreted instead (Oda et al., 2002; Wu et al., 1989; Wu et al., 1992). Our
analyses showed that the expression levels of Uox in liver correlated negatively with FTM and
FTMres (p value.robust = 5.26x1073 for FTM and 1.94x107 for FTMres; Figure 8.6A), and to a lesser
extent, with ML and MLres (p value.robust = 0.021 for ML and 0.013 for MLres). As expected, the
read counts in human, bonobo, orangutan, chimpanzee and gorilla were all much lower (~10-1000
times) than those of other primate species (including macaque, rhesus monkey, vervet, and baboon),
suggesting the gene (in the form of pseudogene) was not well transcribed among the hominoids.
Consistent with our previous observations (Ma et al., 2015a), Uox expression was also low in naked
mole rats and Damaraland mole rats (Figure 8.6A).

In terms of the tryptophan degradation products, we did not observe longevity correlation for
the genes coding for tryptophan 2,3-dioxygenase (TDO) and indoleamine 2.3-dioxygenase (IDO), the
enzymes that mediate the first step of degradation. On the other hand, quinolinic acid, which is at the
end of the degradation pathway, can be converted to nicotinamide adenine dinucleotide (NAD) via a
number of intermediates (Figure 8.6B). It was observed previously in mouse muscles that NAD"

levels declined with age and affected SIRT1 functions (which consumed NAD in deacetylation),
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whereas supplementation with nicotinamide mononucleotide (NaMN) reversed the aging phenotypes
(Gomes et al., 2013). Overexpression of SIRT1 in mouse brain could protect against aging-dependent
circadian changes (Chang and Guarente, 2013). Here, we observed that the gene expression levels of
Oprt (coding for quinolinic acid phosphoribosyltransferase) and Nadsyn! (coding for NAD synthetase
1) in brain correlated positively with FTM (p value.robust = 6.84x107 for Oprt and 4.58x107 for
Nadsynl; Figure 8.6B), but the correlations were generally weak with the other longevity traits and in
the other organs (NMNAT! did not show signficant correlation either). More data would be needed to

determine whether the species longevity variation was linked to NAD synthesis.
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Figure 8.6. Expression of genes in longevity-related metabolic pathways.

(A) Urate oxidase (Uox) expression in liver correlates negatively with longevity. The hominoids
are indicated (H: human; C: chimpanzee; O: orangutan; B: bonobo; G: gorilla). The points
representing naked mole rat (NMR), Damaraland mole rat (DMR) and beaver are indicated.

(B) Quinolinate phosphoribosyl transferase (Qprf) and NAD synthetase 1 (NadsynI) expression in brain

correlates positively with female time to maturity (FTM).
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Chapter 9  Conclusions

“Today is the oldest you 've ever been

)

and the youngest you'll ever be again.’

-- Eleanor Roosevelt

Photo credit: Dr. Alaattin Kaya.



SUMMARY OF MAIN FINDINGS

Since their decent from a common ancestor ~210 million years ago, mammals have
undergone remarkable diversification in body size, morphology, diet, habitat, reproduction strategies,
and lifespan. From the small shrews weighing under 2 grams and living about 3 years to the gigantic
bowhead whales weighing over 100 tons and surviving more than 2 centuries, evolution has acted like
a Master Scientist to bring about so many species with wide variation in their life history traits. Just as
much of our biology knowledge has come from studying different model organism mutants in the
laboratory, we may also be able to gain a better understanding of the control of lifespan by examining
natural variation across different species. Much of the prior effort was limited by technical constraints
and focused on a few traits across a small set of species. As the high throughput ‘omics approaches
have become technically accessible and cost-effective, we now have the opportunity to examine the
full transcriptomes, metabolomes, ionomes, and proteomes, across multiple organs and across a
significant number of species. This dissertation presents a few of such snapshots — they illustrate the
highly complex landscape of changes associated with species longevity (Table 9.1) and may inform
the future research with regard to the strategies for lifespan control. In addition, the organ- and
lineage-specific patterns of gene expression, metabolite, and element distribution were examined
(Tables 9.2 and 9.3) — some are consistent with known physiology of the tissues and animals, while
other patterns can offer new insights into various aspects of biology.

Moving from the short-lived mammals to the long-lived ones, the general trends of larger
body mass, longer female time to maturity, fewer offspring with better survival rates, reduced damage
generation, and enhanced repair and maintenance capacities are well known (Adelman et al., 1988;
Barja and Herrero, 2000; Cortopassi and Wang, 1996; Peters, 1986; Sacher, 1959; Western, 1979). In
our work, we identified the corresponding changes on the molecular levels, including higher
expression of genes involved in DNA repair (liver and fibroblast), up-regulation of ribosomal proteins
(brain and liver), down-regulation of protein ubiquitination pathways (brain, kidney, liver, and
fibroblast), lower expression of genes involved in apoptosis (fibroblast), and reduced levels of

oxidation-prone triacylglycerols with polyunsaturated fatty acid side chains (PUFA TAGs; kidney).
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Other molecular signatures previously implicated in aging and longevity studies, such as high

sphingomyelins (SM; brain, heart, kidney, and liver), high expression of NAD synthase 1 (NADSYNI)

(brain and fibroblast), low lysophosphatidylcholine (LPC; brain, heart, kidney) and

lysophosphatidylethanolamine (LPE; brain, kidney), low tryptophan degradation products (liver), and

high urate and low allantoin levels (brain, kidney, liver), were also observed (Capuron et al., 2011;

Cutler, 1984; De Marte and Enesco, 1986; Frick et al., 2004; Gonzalez-Covarrubias et al., 2013; Kaur

and Halliwell, 1990; Rosenson and Stafforini, 2012; Segall and Timiras, 1976). Overall, the patterns

suggest a set of coordinated changes across multiple organs and tissues, underlying the theme of

better maintenance and repair and less damage generation among the long-lived mammals. In terms of

the non-mammalian datasets, the Drosophila data highlighted the key roles of fatty acid metabolism

in lifespan variation, whereas the yeast data suggested that the replicative lifespan was influenced by

mitochondria composition rather than by mitochondria number. Furthermore, a number of these

longevity-associated genes in Drosophila were also shown in previous experiments to affect lifespan,

suggesting our method has the potential to identify new nodes of lifespan regulation.

Table 9.1. Summary of the molecular patterns and signatures associated with longevity.

Dataset Positive correlation with longevity Negative correlation with longevity

e 1 sphingomyelin (brain, heart, kidney, | ® | polyunsaturated triacylglycerols
liver) (kidney)

e 1 urate:allantoin ratio (kidney, liver) e | lysophosphatidylcholine (LPC;

brain, heart, kidney)
. e | lysophosphatidylethanolamine
11:/1/[:::3:) ill(l)ls; (LPE; brain, kidney)

e | amino acids (brain)

e | allantoin (brain, kidney, liver)

e | kynurenine:tryptophan ratio (liver)

e | anthranilic acid:tryptophan ratio
(liver)

e 71 sphingomyelin (liver) e | polyunsaturated triacylglycerols

e 1 methionine (brain) (liver)

Note:

Long-lived e Brain metabolites remain largely unchanged under caloric restriction (CR),
Mouse Models acarbose treatment (ACA), rapamycin treatment (RAP), and growth hormone
Metabolome receptor knock-out (GHRKO). Only Snell dwarf mice (Snell) exhibited significant
changes in brain.

e CR and ACA produced very similar changes in liver metabolites but were rather
different from the profiles of RAP and GHRKO. The profile of Snell shared
similarity with CR and ACA.

Mammalian e 1 zinc (kidney and 1.iver; effects likely | @ | selenium (liver; weak effects)
Tonome due to body mass dlfferegces)
e 7 cadmium (kidney and liver)
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Table 9.1. (Continued)

and Proteome

1 Pyruvate dehydrogenase complex
1 Complex 11T

1 Complex IV

T Mitochondrial ATP synthase

1 Mitochondrial ribosomal proteins

Dataset Positive correlation with longevity Negative correlation with longevity
e 1 organic acid biosynthetic process e | neuron recognition / axongenesis
e 1 fatty acid beta oxidation e | synaptic transmission
e 1 cofactor biosynthetic process e | DNA binding
e 1 glyoxylate and dicarboxylate e | protein kinase activity

Fly metabolism e | RNA processing
Transcriptome | Note:
18 of the genes correlating with maximum lifespan in fly were previously reported to
affect lifespan; 14 of them had the expected direction of correlation (i.e. pro-longevity
genes were expressed at high levels in long-lived Drosophila species; anti-longevity
genes were expressed at low levels in long-lived Drosophila species)
Gene expression: Metabolites:
e 1 oxidative phosphorylation / acrobic | ¢ | asparagine, glutamine, 2-octenoic
respiration / mitochondrial respiratory acid
chain
e 7 ion transport Gene expression:
e 1 hexose/glucose metabolic process e | protein targeting
e 1 actin binding e | transcription regulation
Yeast e | mRNA splicing/ ribonucleoprotein
Transcriptome | Mitochondrial composition: complex

e | cytoskeleton organization
e | nitrogen compound biosynthetic
process

Mitochondrial composition:

e | outer membrane translocases
e | mitochondrial chaperonine

e | metabolic enzymes

Gene expression:

e 1 adenyl nucleotide binding

e 7 DNA repair / DNA damage

e 1 chromatin regulator / chromosome

Gene expression:

e | proteolysis / ubiquitin conjugation
pathway

e | protein transport

Rodent . . .
Fibroblasts organization ' e | transcription regulation
e 7 glucose / hexose metabolic process
Metabolites:
Metabolites: e | glycerophospholipids (LPC, LPE)
e 7 amino acids
e 1 structural constituent of ribosome e | ubiquitin-protein transferase
(brain, kidney liver) activity (brain, kidney, liver)
e 1 translation (brain, kidney, liver) e | protein polyubiquitination (brain,
e 1 rRNA binding (brain, liver) liver)
e 7 RNA binding (kidney, liver) e | protein serine/threonine kinase
e 1 base-excision repair (liver) activity (brain, kidney)
e 1 negative regulation of apoptotic e | tricarboxylic acid cycle (kidney,
Mammalian process (liver) liver)
Transcriptome e | protein transport (kidney, liver)

e | voltage-gated potassium channel
activity (brain)

e | neuromuscular junction
development (brain)

e | potassium / calcium ion transport
(brain)

e | unfolded protein binding (kidney)
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Table 9.2. Organ-specific changes in metabolome, ionome, or transcriptome. Red upward arrows denote

relatively high level; blue downward arrows indicate relatively low level.

Table 9.3. Lineage specific changes or correlation patterns.

Organ Mammalian Metabolome Mammalian Ionome Mammalian Transcriptome
Metabolites diverge least
Brain 1 glycerophospholipids 1 potassium (K) 1 synaptic transmission
1 sphingomyelins 1 phosphorous (P) 1 neuron differentiation
1 neurotransmitters
Heart 1 acylcarnitines 1 oxidative phosphorylation
1 triacylglycerols 1 tricarboxylic acid cycle
1 lithium (Li)
. 1 most amino acids 1 SOdl.um (Na) 1 ion transport
Kidney . 1 calcium (Ca) .
| glutamine t selenium (Se) 1 sodium transport
1 cadmium (Cd)
I amino acids $ ilrl(())lll fggnum (Mo)
1 glycerophospholipids Y . .
t carbohydrates 1 manganese (Mn) 1 steroid metabolism
Liver 1 steroids 1 selenium (Se) 1 complement and coagulation
1 cadmium (Cd) cascades
1 sucrose / lactose 1 copper (Cu)
1 bile acid components opPp
1 zinc (Zn)
Metabolites diverge most
1 cell cycle
Testis 1 spermatogenesis

1 steroid metabolism
1 sexual reproduction

Dataset

Lineage specific changes / Correlation patterns

e | methionine sulfoxide in bats
Mammalian °
Metabolome °

| allantoin and | urate oxidase in African mole rats
Bile acid conjugation consistent with diet preference: carnivores prefer taurine-
conjugation; herbivores prefer glycine-conjugation

similar distribution patterns

Mammalian
Ionome

with their kidney and liver selenium levels.

e Divalent ions such as iron, molybdenum, manganese, nickel and cobalt have

Copper and zinc have similar distribution patterns

1 magnesium, 1 sulfur, 1 phosphorus, and 1 potassium in brain of rodents

| selenium in kidney and liver of African mole rats

The numbers of selenocysteine residues in selenoprotein P of the species agree

o oxidative phosphorylation
o ribosome biogenesis

o ribonucleoprotein complex
o protein synthesis

o translation regulation.

Yeast
Transcriptome
and Proteome

e Pathways that are differentially expressed across the yeast strains:

o oxidative phosphorylation

Fly o
Transcriptome o

structural constituents of ribosomes
transcription regulation
o amino acid biosynthesis.

e Pathways that are differentially expressed across the Drosophila species:

o electron transport chain, NADH dehydrogenase activity

e The expression divergence of the flies indicate strong stabilizing selection.

253




WITHIN-SPECIES VS. CROSS-SPECIES LIFESPAN VARIATIONS

In Chapter 1 of this dissertation, a distinction was made between the pathways underlying
lifespan extensions within single species and those underlying lifespan changes across different
species, and questions were raised regarding the extent of their overlap. With hindsight, this issue can
now start to be addressed.

Comparison with the metabolic profiles of the 5 long-lived mouse models suggested that a
number of changes (including high SMs and low PUFA TAGs) were common in both within-species
and cross-species lifespan variations. The up-regulation of DNA repair pathways among long-lived
mammals is also a key feature of some of the known within-species lifespan extension strategies. On
the other hand, several cross-species longevity signatures seem to contradict some of the established
paradigms of within-species lifespan extension. For example, autophagy is required for the lifespan
extension via dietary restriction and subdued IGF-1 signaling (Chondrogianni and Gonos, 2008;
Hansen et al., 2008; Kenyon, 2010; Kevei and Hoppe, 2014; Low, 2011; Melendez et al., 2003;
Rubinsztein et al., 2011; Starke-Reed and Oliver, 1989; Vernace et al., 2007) and activation of
proteasome or autophagy can extend lifespan in C. elegans, yeast, and flies (Chondrogianni et al.,
2015; Ghazi et al., 2007; Kruegel et al., 2011; Simonsen et al., 2008), yet the genes involved in
proteolysis and ubiquitination were found to be expressed at lower levels among long-lived species.
Depletion of ribosomal proteins in yeast has lifespan extension effect (Heeren et al., 2009; Steffen et
al., 2008), but the long-lived mammals also express high levels of ribosomal proteins. Based on these
results, it seems that there are indeed some overlaps between the within-species lifespan extension
pathways and the cross-species longevity signatures, but there are also clear differences in many other
aspects. Although up-regulation of genes involved in DNA repair pathways are observed in both
cases, more data will be needed to clarify whether they are brought about by the same mechanism. For
example, the up-regulation of DNA repair for within-species lifespan extension is likely controlled by
transcription factors such as FOXO (Tran et al., 2002) and is largely a temporary response to dietary
restriction or drug treatment, whereas the high expression of DNA repair genes in long-lived species

may be the result of more permanent changes (e.g. changes in promoter sequences).
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Importantly, the results here also suggest the various within-species lifespan extension
strategies may act through different molecular pathways and have different effects on the organs. The
metabolic profiles of the 5 long-lived mouse models reveal that caloric restriction and acarbose
treatment produce similar metabolic shifts, whereas rapamycin treatment, growth hormone receptor
knock-out, and Snell dwarf mice seem to affect different sets of metabolic pathways. It was
previously shown that caloric restriction could extend the lifespan of both wild-type mice and long-
lived Ames dwarf mice (Bartke et al., 2001), even though the gene expression changes were rather
divergent (Masternak et al., 2004), indicative of potentially different pathways of lifespan controls.
Furthermore, although there were extensive metabolic shifts in liver of the long-lived mouse models,
only the Snell dwarf mice (which have ablation of anterior pituitary) exhibited significant changes in
brain metabolite levels, suggesting the brain metabolites might be more stable and refractory to
fluctuation than the liver metabolites. At the moment, most of the gene expression and metabolite data
of lifespan extension strategies are reported independently by different research groups, often using
different animal models and in different organs and tissues. While some attempts were made to
perform meta-analysis on these datasets to identify the common features (de Magalhaes et al., 2009;
Swindell, 2007), it was rather difficult to distinguish the variations due to actual biological differences
of the various lifespan extension pathways, from those due to different genetic backgrounds and
experimental set ups. The organ context of the data was not sufficiently explored either. On the other
hand, by subjecting the mice of identical genetic background to different lifespan extension treatments
within the same experiment set up and collecting the data across multiple organs, we were able to
directly observe and compare the different biological effects of these treatments. In future, it will be
helpful to measure the gene expression profiles of these mouse models, so as to systematically assess
the extent of overlap among these lifespan extension pathways, as well as with the cross-species
longevity signatures.

Conceptually, it is possible, and even probable, that within-species lifespan extension and
cross-species lifespan variation are governed by different mechanisms: many of the changes observed
in within-species lifespan extension (e.g. up-regulation of anti-oxidant enzymes, up-regulation of

autophagy, suppression of anabolic metabolism and reproduction, and induction of stress responses)
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are suited for dealing with acute stress and short-term adversity, whereas the long-term, sustained
alteration of lifespan across species may involve other permanent and coordinated modifications.
Furthermore, many of the long-lived models produced in laboratory settings may not be fit to compete
in the wild, whereas the naturally long-lived species are well adapted to their respective ecological
niches. Furthermore, some of the cross-species trends may not apply to the within-species
comparison. While larger mammals are known to live longer than small mammals, within species
patterns are often opposite, e.g. smaller dogs live longer than large dogs, and dwarf mice live longer
than control mice. Therefore, the validity of these observations here may be dependent on the levels
of comparison, and further research efforts will be needed to determine where the line can be drawn.
It should be noted that the key pathways for within-species lifespan extension have been
experimentally validated in yeast, flies, worms, and mice, whereas the cross-species longevity
signatures identified here are yet verified (except the “natural evolutionary experiment” that gave rise
to these species). It cannot be excluded that the cross-species signatures represent such fundamental
re-wiring and re-programming of the biological systems that they will not be applicable within the

context of a single species, at least using the currently available methods.
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POTENTIAL PITFALLS

While the molecular patterns and signatures of longevity presented here satisfy stringent
statistical criteria, one should keep in mind of several potential pitfalls when interpreting the data.

First, all these relationships are based solely on correlation and do not prove causation. On the
one hand, there are consistent and coordinated changes in gene expression and metabolite profiles in
relation to longevity variation, and they are likely modulated by the same set of underlying forces and
factors. Some of these changes may be the result, and not the cause, of a long lifespan, though it is
often difficult to differentiate between the two. For example, we found that the levels of cadmium in
brain, heart, kidney and liver showed strong positive correlation with longevity, and the relationship
was not affected by differences in body mass. Since cadmium is a heavy metal, is toxic at high levels,
and plays no known biological functions in mammals, it is hard to perceive the potential longevity
benefit of high cadmium. Rather, the observation may simply reflect the passive accumulation of
cadmium from food intake, as the longer-lived mammals consume a greater amount of food over their
life time. Further experimental evidence will be required to pinpoint the causality.

Second, although the enrichment analyses provide useful summaries of the major pathways
related to longevity variation, more detailed and careful interpretation of the results will be needed to
fully delineate the principles governing lifespan regulation. For example, while “lipid metabolic
process” was shown to have positive correlation with Drosophila lifespan (Chapter 6), it is important
to differentiate the genes involved in fatty acid beta-oxidation from those involved in fatty acid
synthesis. Although as a group the PUFA TAGs showed significant negative correlation to longevity,
individually they have different biological functions depending on the numbers and positions of the
double bonds. While many ribosomal proteins showed positive correlation with longevity, it may be
useful to carefully examine and map the ribosomal proteins on the ribosome structure. If the identified
proteins are mostly in the external shell, then they may indicate improved accuracy of protein
synthesis. Beside the annotated pathways in the databases, the roles of the various metabolites should
also be viewed in terms of the respective organs and biological origins, as the same metabolite (e.g.

methionine) may also affect very diverse functions depending on organ and tissue. The levels of
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trimethylamine N-oxide (TMAO) in brain and heart showed positive correlation with longevity, but it
is also a product of gut microbiome, and such aspects deserve further exploration. Additionally,
epigenetic changes such as DNA methylation and histone modifications also show important age- and
longevity-related trends, but they are not yet reflected in the current datasets.

Third, the results should be viewed in the light of possible sample bias and variation. The
gene expression and metabolite data presented here are cross-sectional in nature: they represent a
snapshot measurement across various species at a single point in time. While they provide very useful
information on the cross-species variation, they cannot inform us on the within-species variation, e.g.
due to differences in fed or fasting state, diets, and genders. In many long-lived animal models, it has
been shown that the dietary restriction and other lifespan extension strategies are often more effective
in females than in males (Burger and Promislow, 2004; Magwere et al., 2004; Miller et al., 2014),
although the mammalian and fly data presented here came mostly from males. It was also pointed out
that the gene expression profiles of the primary fibroblasts might be confounded by culture
conditions, as the fibroblasts from the long-lived species might survive better in cell culture than those
from the short-lived species, and the observed expression patterns reflect more of the cellular states in
culture than the cellular states in vivo. As for the Drosophila dataset, the different species of flies were
fed a diet optimal for D. melanogaster, which might not be ideal for the non-conventional species.
While we have shown that the variation due to biological replicates within a species is generally much
smaller than the variation in the longevity traits across the species, it will be very informative to
collect more samples to formally assess the variation in gene expression and metabolites due to

differences in gender, diet, feeding state, and cell culture conditions.
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FUTURE DIRECTIONS

Overall, these studies provide the starting points for discovering and exploring new
mechanisms and paradigms of lifespan regulation. To experimentally apply these findings, one can
make use of the Transgenic RNA1 Project (TRiP) library of D. melanogaster to test the longevity
effects of knocking out specific genes of interest (Ni et al., 2008). The recently developed CRISPR-
Cas system can also be used to generate more stable deletion lines and ameliorate the off-target
effects of RNAi (Jinek et al., 2012; Sander and Joung, 2014). Most importantly, one may query the
Connectivity Map Database to identify small chemical molecules capable of producing the desired
molecular signatures (Lamb et al., 2006) and test their longevity effects on laboratory animals
(Calvert et al., 2016). A similar approach may involve genetic manipulations as well as screens. For
example, resemblance of the gene expression pattern resulting from gene knockout to our
evolutionary signature will suggest that this gene knockout is a candidate for lifespan extension. Due
to the inter-connected and systemic nature of lifespan regulation, one may need to simultaneously
perturb multiple pathways using a combination of gene manipulation and small pharmacological
molecules to bring about the optimal lifespan extension effects. As recently demonstrated in C.
elegans, targeting 3 network modules of dietary restriction simultaneously could produce
exceptionally long-lived animals (Hou et al., 2016).

At the moment, it is not known whether the different species follow the same trajectory of
aging (i.e. age at the same rate). For example, it was shown in C. elegans that interventions as diverse
as changes in diet, temperature, exposure to oxidative stress, and disruption of genes all altered
lifespan distributions by an apparent stretching or shrinking of time (Stroustrup et al., 2016). In
addition to the cross-sectional data presented here, one should also obtain longitudinal data from
animals of different ages, to assess the gene expression and metabolite changes from young to old and
determine whether they are related to the cross-species longevity signatures identified here. It will
also be useful to obtain samples from animals of different genders and feeding states, to formally
determine the degree of data variation. A number of studies in plants (Watanabe et al., 2007; White et

al., 2012) showed that when the same plant species were collected under different fertilizer treatments
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and environmental conditions, the concentrations of Ca, Zn, Mn and Mg were found to remain more
closely linked to phylogeny, but Cu and Fe varied more strongly with environmental factors,
suggesting different elements might be more or less responsive to external variations. Similarly, some
metabolites and genes in mammals may be more resistant to dietary and gender variation than others
and may therefore serve as more useful and stable longevity signatures.

As high throughput methods become increasingly accessible, we will likely see more and
more cross-species expression and metabolomics studies. These studies bring with them their own set
of unique challenges, including the phylogenetic relationship of samples and identification of accurate
ortholog sequences (often without the reference genomes available). The phylogenetic regression
method was originally developed by evolutionary biologists to study co-evolution of a few traits.
Here, we applied it on hundreds of metabolites and tens of thousands of genes, and although we
adjusted for false discovery rate using the conventional approach, more careful thoughts shall be
given to better understand the issue of multiple testing. Furthermore, the phylogenetic regression
method here assumes normal distribution (which was valid for ~80% of all genes and metabolites on
log scale), but other distribution models (e.g. negative binomial) may be more appropriate for
RNAseq data, so there will be much room for improvement of the phylogenetic regression model. In
terms of ortholog identification, we assembled our pipeline using a number of publicly available
software and packages. Development of a single tool, with scalable inputs, standardized outputs, and
more robust quality controls will significantly facilitate cross-species comparative studies.

Lastly, it will also be fruitful to obtain the gene expression profiles of various long-lived
mouse models, and examine them against each other as well as against the cross-species longevity
signatures identified here. It may be possible that the longevity signatures will be represented by
multiple dietary, pharmacological and/or genetic interventions, which again will suggest that such a
combination may result in lifespan extension. Ultimately, these approaches should lead to defining the
gene expression space (and similarly the metabolite space) that is associated with the most robust

longevity effects.
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