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Abstract 

We study four systems where individual units come together to display a range of collective 

behavior. First, we consider a physical system of phase oscillators on a network that expands the 

Kuramoto model to include oscillator-network interactions and the presence of noise: using a 

Hebbian-like learning rule, oscillators that synchronize in turn strengthen their connections to each 

other. We find that the average degree of connectivity strongly affects rates of flipping between 

aligned and anti-aligned states, and that this result persists to the case of complex networks. 

Turning to a fully multi-player, multi-strategy evolutionary dynamics model of cooperating 

bacteria that change who they give resources to and take resources from, we find several regimes 

that give rise to high levels of collective structure in the resulting networks. In this setting, we also 

explore the conditions in which an intervention that affects cooperation itself (e.g. “seeding the 

network with defectors”) can lead to wiping out an infection. We find a non-monotonic connection 

between the percent of disabled cooperation and cure rate, suggesting that in some regimes a limited 

perturbation can lead to total population collapse. 

At a larger scale, we study how the locomotor system recovers after amputation in fruit flies. 

Through experiment and a theoretical model of multi-legged motion controlled by neural oscillators, 

we find that proprioception plays a role in the ability of flies to control leg forces appropriately to 

recover from a large initial turning bias induced by the injury. 
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Finally, at the human scale, we consider a social network in a traditional society in Africa to 

understand how social ties lead to group formation for collective action (stealth raids). We identify 

critical and distinct roles for both leadership (important for catalyzing a group) and friendship 

(important for final composition). We conclude with prospects for future work. 
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“Nature does nothing uselessly.” 
- Aristotle, Politics 

1 
Introduction 

Motivation  

Much of the rich behavior observed in the real world arises as a consequence of a number of 

similar units interacting in a structured way. One need not look far for examples. In this work, I will 

reference a number of related scientific studies, thus playing a role in a citation network where 

“units” are papers (or scientists) and interactions are citations of prior papers. This network, which 

exhibits surprisingly regular statistical properties (Newman, 2001), represents the “scientific 

tradition” and can help both track and predict the evolution of research. On social networks, where 

agents are people and interactions are structured by e.g. friendship (Rapoport and Horvath, 1961), 

marriage (Padgett and Ansell, 1993), or being on the same corporate board (Davis and Greve, 1997), 

we find that there are predictable patterns of behavioral spread that in some instances lead to new 

norms or otherwise affect society at a large scale. For example, Davis and Greve found that practices 

such as “golden parachutes” in corporations spread from board to board until they became a new 

norm. And, it is now well-established that friendship ties up to three degrees affect our health, from 

directly influencing friends, to indirectly influencing friends-of-friends and friends-of-friends-of-
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friends to quit smoking (Christakis and Fowler, 2007) to nudging them towards harmful eating 

behaviors that show themselves on a large scale in the “obesity epidemic” of recent years (Christakis 

and Fowler, 2008). 

Likewise, there has been great theoretical and practical interest in physical and biological 

networks. One particularly exciting area of research is the organization of the brain. Here, the units 

are neurons and the connections are synapses. The first animal to have its neural wiring diagram 

(“connectome”) completely explored was C. elegans (White et al., 1986). Despite having only 302 

neurons (almost completely invariant across animals) and roughly 7000 synapses, these worms 

exhibit a range of complex behavior in addition to crawling (Wen et al., 2012; Paoletti and 

Mahadevan, 2014), such as sensing and reacting to e.g. heat (Garrity et al., 2010) and light (Ward et 

al., 2008), etc. At the same time, the incredible complexity of human behavior is governed by 

massive neural networks that have on the order of 1010 neurons (Herculano-Houzel, 2009). 

While there has been a surge of research in collective dynamics on physical, biological, and 

social networks (for a classic broad overview, see (Newman, 2010)), an area that has been relatively 

underexplored is that of feedback between agents and network structure. Recently, biological and 

social network motivations have provided the need to consider activity-dependent interactions. The 

idea is easy to state: the underlying network dictates who interacts with whom, but specific 

interactions today change the strength of the interaction tomorrow; in other words, the network can 

itself changes depending on the interactions of the agents. Despite its seeming simplicity, this line of 

thinking holds great promise for moving towards more accurate modeling of many network-based 

phenomena because, in reality, networks grow and evolve in response to the activities that are 

occurring on them. For example, it is now known that changes in connections between neurons are 

related to the relative times between firing or the synchronization between them (Caporale and Dan, 
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2008; Stam et al., 2010). Even in the classical examples of synchronization in well-mixed clapping 

audiences (which can be viewed as an all-to-all network) (Néda et al., 2000), electromechanical 

oscillator systems (Landa and Duboshinsky, 1989), and circadian rhythms (Saper et al., 2005), one 

can discern that the coupling changes as a function of the current state of the system. 

This work is organized as follows. We begin by introducing a twist to a classic example of a 

simple physical system that exhibits interesting collective dynamics (synchronization), the Kuramoto 

model (Kuramoto, 1984). Here, the units are phase oscillators, and the interaction consists of 

slowing down faster neighbors and speeding up slower neighbors. We investigate a generalized 

version of the model that introduces Hebb-like couplings (Hebb, 1949) that evolve according to a 

stochastic differential equation on various topologies. Using numerical simulations, we show that 

even with identical oscillators, there is a regime in the nearest-neighbor coupling topologies and 

complex network topologies where oscillators flip between in-phase and anti-phase states relative to 

their neighbors. Phase diagrams show the transition probabilities as a function of the noise strength 

and rate of evolution of network coupling, and we build a minimal theoretical model to understand 

these transitions. 

In neural networks, this corresponds to having neurons which fire together to wire together 

(slowly). At the scale of brain regions, similar models have been put forward for studying regimes of 

cortical activity (background, resting-state, and epileptiform) (Sadilek and Thurner, 2015). And, in 

social phenomena, this may correspond to the ties between people changing based on the behavior 

of the people themselves (Yi et al., 2013); this general mechanism of network assortment has been 

proposed as a general mechanism for sustaining cooperation in structured populations (van Veelen 

et al., 2012). 
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In the next chapter, we apply dynamic networks and an evolutionary dynamics perspective 

to ask how interdependence evolves. Starting with Darwin, biologists have asked how populations 

evolve from a low fitness state that is evolutionarily stable to a high fitness state that is not. 

Specifically, there has been enduring interest in the emergence of cooperation and multicellularity 

where the fitness of individuals often appears in conflict with that of the population. Theories of 

social evolution and evolutionary game theory have produced a number of fruitful results employing 

single-strategy two-body framework (where the two-body condition can be interpreted more 

broadly, such as “agent-society” in the case of public goods games). These studies provide insight 

into how altruistic and cooperative behavior can emerge to maximize the fitness of the group 

despite the apparent fitness advantage of cheating individuals, and a general overview can be found 

in e.g. (Nowak, 2006; Perc et al., 2013), with a more experimental view on human cooperation in 

particular in e.g. (Rand and Nowak, 2013). In the context of the evolution of cooperation, these 

models typically investigate the outcome of repeated runs of the prisoner’s dilemma between pairs 

of agents that have two strategies, cheating and cooperating, or of public goods games where 

cheating is interpreted as contributing less to society than your fair share, and cooperation is 

contributing at least your fair share. Variants of such models include using structured interactions, 

coupled populations, coevolution, stored reputation, punishment, and preferential or random 

partner choosing (West et al., 2006; Gross and Blasius, 2008; Roca et al., 2009; Perc and Szolnoki, 

2010; Wu et al., 2010; Rand et al., 2011; Isakov and Rand, 2012; Perc et al., 2013; Wang et al., 2013; 

Roithmayr et al., 2015). 

However, real life is more complicated in a number of ways. First, many actual games are 

massively multi-player (Connor, 2010; Archetti and Scheuring, 2012; Gokhale and Traulsen, 2014). 

The fitness of an organism may depend on its simultaneous relationship with multiple players. 

Second, biology allows for a much larger variety of internal states beyond cooperating or defecting. 
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For example, the genetic make-up of an organism may be suitable for cooperation with only an 

exclusive few, while some organisms may be incapable of defecting or cooperating all together. 

Third, real social evolution leads to highly organized dependence structures beyond the 

homogeneous mixtures or aggregates of cooperator-defector states that are often seen in 

evolutionary game models. From biochemical to societal scales, life organizes itself in highly 

complex arrangements of cliques, communities, cycles, and hierarchies. 

So, we extend the traditional view by considering a multi-player, multi-state evolutionary 

game, in which the fitness of an agent is determined by its relationship to an arbitrary number of 

other agents. These changing dependences (agent strategies) form an evolving network structure. We 

show that populations organize themselves in one of four distinct phases of interdependence 

depending on one parameter, selection strength. We find that some of these phases involve the 

formation of specialized large-scale structures. But, cooperation in this manner is not always a 

universally desirable outcome. For instance, bacteria cooperating to make biofilms create interesting, 

complex, and (unfortunately) more antibiotic-resistant structures that cause many serious and hard 

to treat infections (Costerton et al., 1999). Thus, we also explore how manipulating some agents’ 

strategies through an external perturbation (disrupting cooperation in a limited way) affects the 

whole network structure and identify parameters where the whole network is likely to collapse. 

In our next study, we explore a system with a smaller number of units, but where each is of 

greater complexity: the locomotor system of a fruit fly. In a world where locomotion is critical for 

survival and reproduction for most animal species, a wide range of motor strategies are present: 

walking, swimming, crawling, gliding, and flying (Dickinson et al., 2000). Of course, the specific 

behavioral details of movement vary wildly even in the case of a specific modality such as legged 

locomotion, as seen in bipeds (Vaughan, 2003), quadrupeds (Alexander, 1984), various hexapods 



6 
 

(Cruse, 1976; Full and Tu, 1991; Grabowska et al., 2012; Mendes et al., 2013; Couzin-Fuchs et al., 

2015), and octopods (Blichkan and Full, 1987). Even when the number of limbs is held constant the 

pattern of limb placement during locomotion (gait) can vary greatly within and between species, as 

reviewed in (Holmes et al., 2006) and (Borgmann and Buschges, 2015). One common thread in the 

study of locomotion is the importance of proprioception, the ability to sense (e.g. via stretch 

receptors) the relative position of moving body parts. The importance of proprioception in 

locomotion has been shown in a suite of experimental and theoretical studies across many animals, 

including cats (Lam and Pearson, 2001), mice (Akay et al., 2014; Takeoka et al., 2014), insects 

(Bässler, 1977; Bässler et al., 2007; Borgmann et al., 2009; Mendes et al., 2013), sea slugs (Jahan-

Parwar and Fredman, 1978), and nematodes (Wen et al., 2012; Paoletti and Mahadevan, 2014). 

In a natural setting, it is common for an organism to suffer injury to the appendages 

mediating locomotion over its lifetime. We combine these ideas and investigate the role of 

proprioception in recovery from injury in fruit flies, using Drosophila melanogaster as a model organism 

due to the rich collection of genetic and transgenic tools available in this species for mechanistic 

inquiry. In particular, we examine the recovery of walking following leg amputation. By analyzing 

video recordings, we find that whereas flies explore open arenas in a symmetric fashion pre-

amputation, foreleg amputation induces a strong turning bias away from the side of the injury 

immediately after the surgery. However, unbiased walking behavior returns over time in wild type 

flies, while recovery is significantly impaired in proprioceptive mutants even after 72 hours of 

observation. To identify the biomechanical basis of this locomotor impairment and recovery, we 

then examine individual leg motion (gait) at a fine scale. We also build a minimal mathematical 

model that links neurodynamics to body mechanics during walking. Combining our experimental 

results and the model shows that redistributing leg forces between the right and left side enables the 

observed recovery. 
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Altogether, our study suggests that proprioceptive input from the intact limbs plays a critical 

role in the behavioral plasticity associated with locomotor recovery after injury. In other words, the 

units (legs) have to change their individual behavior to achieve the desired result (unbiased walking) 

at the level of the whole fly, and the ability to correctly interpret how to tune the leg behavior likely 

comes at least in part from the sensory feedback loop provided by intact proprioception 

mechanisms. 

In our last study, we return to a larger network of very complex agents: humans. Intergroup 

violence is common, worldwide, and harmful; it has also played an important role in the evolution of 

human behavior. Global annual deaths from warfare, for example, range from 0.5 to 1 million, and 

this does not include non-fatal physical and mental injuries (Lozano et al., 2012). Despite this harm, 

warfare may have had an important role in the evolution of modern human behavior in part because 

it often requires solving a collective action problem (Kelly, 2005; Choi and Bowles, 2007; Bowles, 

2009). 

Our closest relatives the chimpanzees engage in behavior strikingly akin to human raiding 

parties where small groups seek to ambush and kill members of other chimpanzee groups (Wilson et 

al., 2014). And, many hunter-gatherer societies have small-scale warfare with neighboring groups. 

These conflicts consist primarily of surprise raids and ambushes in which members of the attacking 

groups are only infrequently killed or injured (Wrangham and Glowacki, 2012; Gat, 2015). Unlike 

modern state warfare, small-scale warfare occurs outside of formal institutions, such as militaries, 

and there are no explicit requirements for participation. Successful warriors commonly receive 

individual benefits, such as status or captives, but their contributions can also create group benefits 

including access to territory and rival reduction (Glowacki and Wrangham, 2013). The production of 

group-level benefits from warfare creates a collective action problem because participants engage in 
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personally costly activity that produces benefits shared by the entire group – including non-

participants (Mathew and Boyd, 2011; Glowacki and Wrangham, 2013). 

The ability to solve such collective action problems is an important factor in the success of 

our species. Understanding how groups solve risky collective action problems outside of formal 

institutions can yield fundamental insights into the origins of human prosociality and the emergence 

of group-functional behavior in humans. Yet, there is little naturalistic behavioral data on how small-

scale populations solve collective action problems (von Rueden et al., 2015). Individual differences 

have been hypothesized to promote costly cooperation across both humans and other primates 

(Modlmeier et al., 2014; McAuliffe et al., 2015; von Rueden et al., 2015; Barta, 2016). Recent 

theoretical work shows that heterogeneity within a group may increase within-group cooperation 

(Gavrilets, 2015) and contribute to group success, including in between-group competition 

(Gavrilets and Fortunato, 2014; Molleman et al., 2014). Studies with wild chimpanzees support the 

importance of individual differences in solving collective action problems. For example, a few 

“impact” chimpanzees show exceptional motivation to participate in boundary patrols and hunting 

(Gilby et al., 2008; Gilby et al., 2015). When chimpanzees hunt as a group, the presence of such 

highly motivated “impact individuals” who initiate group hunts appears to catalyze group hunting 

events by subverting prey defenses and lowering the costs of hunting to other chimpanzees (Gilby et 

al., 2015). Similar group dynamics with key individuals may be at work in other instances of 

collective action in animals suggesting the importance of individual differences in promoting risky 

collective action (Modlmeier et al., 2014; McAuliffe et al., 2015). However, data from human 

populations to inform these models is scarce. 

We study the formation of stealth-raiding parties in a group of East African nomadic 

pastoralists engaged in small-scale warfare. We collect personal characteristics and social 
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relationships, including mapping their social networks. We show that the initiation of raids depends 

on the presence of key individuals who participate in many raids, have more friends, and occupy 

more central positions in the network. However, raid participants are recruited from the whole 

population, not just from the friends of leaders. Moreover, non-leaders have a larger total impact on 

raid participation than leaders, in spite of the greater connectivity of leaders. In other words, group 

formation (and the decision-making for joining or not joining) is driven by more complicated 

processes than simple direct recruitment. Overall, we find that leaders matter more for raid initiation 

than for participant mobilization. Since different social positions in the network play different roles 

in the emergence and amplification of group formation for between-group violence, there are 

opportunities in future work for asking questions in the same spirit as our other studies: both about 

controlling violence in networks with targeted behavioral interventions and about how particular 

roles, such as leadership, arise in the context of networks evolving in response to the prior behavior 

of particular agents. Studying such questions will lend deeper insight into the dynamic world around 

us. 

Computation 

Simulations for Chapters 2 and 3 were performed in Matlab 2012a (The MathWorks Inc., 

2012). For Chapter 4, image analysis was implemented using Matlab 2012a with the Image 

Processing and Statistics Toolboxes. Scripts for determining locomotion turning bias, the calibration 

curve path simulation and the physical model simulation were also implemented in Matlab. All other 

analyses were performed using the statistical software R (R Foundation for Statistical Computing, 

2014). For Chapter 5, all analyses were performed in R. Network figures were generated using 

Cytoscape (Shannon et al., 2003). For Chapters 4 and 5, we used the following R packages for 

analysis and generating figures/tables: igraph, HMM, mixtools, vegan, lfe, plyr, ggplot2, R.matlab, 
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and stringr (package descriptions, including full author information, are available at: http://cran.r-

project.org/web/packages/). 
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“μηδέν άγαν [nothing in excess]” 
- Inscription on the Temple of Apollo at Delphi 

2 
Synchronization of Phase Oscillators on a Dynamic 

Network 

Introduction 

A fundamental question in studying self-organizing phenomena is determining what broad 

classes of conditions lead to which types of possible states of synchronization. From a mathematical 

point of view (Golubitsky et al., 2004; Golubitsky et al., 2005), symmetry considerations can provide 

some guidelines for possible equilibrium states, with certain limitations on the allowable types of 

systems. Perhaps one of the simplest general models of synchronization is the case of coupled phase 

oscillators. The framework of the eponymous model was analyzed and popularized by Y. Kuramoto 

and has since seen extensive study in physics, biology, game theory, and other disciplines as a 

stepping stone towards understanding more complex systems (Wiesenfeld et al., 1998; Mertens and 

Weaver, 2011; Yin et al., 2012; Timms and English, 2013). In the simplest case, the 𝑁 oscillators are 

described by 
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𝜙̇𝑖 = 𝜔𝑖 −
𝐾

𝑁
∑ sin(𝜙𝑖 − 𝜙𝑗)

𝑗∈𝑆𝑖

, 𝑖 = 1, … , 𝑁 (2.1) 

where 𝑆𝑖 is the set of neighbors of oscillator 𝑖, not including itself. Here 𝜙𝑖(𝑡) is the phase of 

oscillator 𝑖 at time 𝑡 and 𝜔𝑖 is its natural frequency. The coupling 𝐾 is usually assumed to be 

constant and positive, leading to attractive interactions: slower oscillators are sped up by their 

neighbors and faster oscillators are slowed down by their neighbors. 

This model acts as a springboard to a set of natural generalizations such as changing the 

connectivity topology 𝑆, drawing 𝜔𝑖 from various distributions, adding noise terms to the equation, 

and considering more general coupling functions (Acebrón et al., 2005). In order to better 

understand synchronization in such a physical system when taking into account agent-network 

interactions, we consider the case when the coupling strength obeys its own dynamics on a time-

scale which is slow compared to the phase dynamics of the oscillators (Aoki and Aoyagi, 2009; Yuan 

and Zhou, 2011; Skardal et al., 2014), in the spirit of a Hebbian network (Hebb, 1949). 

Model 

We started with a modified Kuramoto model where the slowly evolving coupling obeys the 

simplest expected symmetry laws and is affected by a noisy environment, more closely mimicking a 

real biological or social system. For simplicity, we assumed identical oscillators (∀𝑖 ∈ {1, … , 𝑁} 𝜔𝑖 =

𝜔) and rescaled natural frequencies by 𝜔. To ensure that each neighbor contributes a fraction 

proportional to the number of neighbors to the frequency of oscillator 𝑖, we let 𝛼 =
1

|𝑆𝑖|+1
; here the 

form of the denominator allow the oscillator to “affect itself”. The set of equations that describes 

this system is 
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𝜙̇𝑖 = 1 − 𝛼𝑖 ∑ 𝐾𝑖𝑗 sin(𝜙𝑖 − 𝜙𝑗)

𝑗∈𝑆𝑖

+ 𝜎1𝜁1;𝑖, 𝑖 = 1, … , 𝑁 (2.2) 

𝐾̇𝑖𝑗 = {
𝜖(−𝐾𝑖𝑗 + cos(𝜙𝑖 − 𝜙𝑗)) + 𝜎𝜁2;𝑖,𝑗 𝑗 ∈ 𝑆𝑖

0 Otherwise
 (2.3) 

The long time-scale 𝜏 ∼ 𝜖−1 ≫ 1 describes the slow evolution of the network coupling. We note 

that the symmetry of coupling with 𝐾𝑖𝑗 = 𝐾𝑗𝑖 is preserved by the given functional form. The noise 𝜁 

is Gaussian with 〈𝜁〉 = 0, 〈𝜁𝑖(𝑡)𝜁𝑗(𝑡′)〉 = 𝛿(𝑡 − 𝑡′)𝛿𝑖𝑗 and standard deviation 𝜎1, 𝜎, where 𝜎1 ≪ 1 

to prevent the system from locking when (𝜙𝑖 − 𝜙𝑗) ∈ {0, 𝜋}. Thus, the model is characterized by 

the two parameters 𝜖, 𝜎. In order to complete the model description, we specified a coupling 

topology. Initially, we considered a ring topology (Figure 2.1A) and a 2-dimensional nearest 

neighbor model with periodic boundary conditions (Figure 2.1D). 

Below, we relax the symmetry assumptions and discuss the case of a modified preferential 

attachment model (Barabási and Albert, 1999) whose mean mimics the properties of the 2-

dimensional lattice. For the ring, labeling oscillators by 𝑖 = 0, 1, … , 𝑁 − 1, the non-vanishing 

coupling variables are 𝐾𝑖,mod(𝑖±1,𝑁). This labeling carries over analogously to the 2-dimensional case 

by adding a second index to the oscillators to arrange them “on a grid”. From now on all subscripts 

are given modulo 𝑁, so oscillator 𝑖 connects to oscillators 𝑖 ± 1 for the ring and oscillator (𝑖, 𝑗) 

connects to (𝑖 ± 1, 𝑗) and (𝑖, 𝑗 ± 1) in the 2-dimensional case. Thus, |𝑆𝑖| = 2, 5 and 𝛼 =
1

3
,

1

5
 for 

the respective topologies. 
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Figure 2.1. Topology and dynamics of oscillators with nearest neighbor coupling in one and 
two dimensions. A. Illustration of ring topology – nodes (circles) with connecting lines are 

coupled. B. Order parameters 𝑂1 (blue) and 𝑂2 (red). 𝜖 = 0.1. C. 𝑂1 − 𝑂𝐾 (blue). 𝜖 = 0.1. The 
dashed lines encompass 90% of the data points on either side of 0. D. Illustration of 2-dimensional 

nearest neighbor topology with periodic boundary conditions. E. Order parameters 𝑂1 (blue) and 

𝑂2 (red). 𝜖 = 0.05. F. 𝑂1 − 𝑂𝐾 (blue). 𝜖 = 0.05. delineate 90% of the data points on either side of 

0. All parameters are 𝑁 = 100, 𝜎 = 0.20, 0.25 (top to bottom within panels); top row is for ring 

topology, bottom row is for 2-dimensional nearest neighbor topology; data starts at 𝑡 = 30 to 

remove transients. The system can maintain overall synchrony (high 𝑂2) even at small 𝜖 and large 𝜎. 

𝑂1 tends to move down in a slow step-wise fashion for lower 𝜎 at a fixed 𝜖, indicating the existence 

of relatively rare “discrete” events. At higher 𝜎, 𝑂1 drops very rapidly, so the oscillators quickly 

become arranged randomly in relative phase/anti-phase. 𝑂𝐾 tracks well with 𝑂1 – the difference 
looks randomly distributed around 0 and is within tight bounds. They are good mutual predictors 

even for relatively small 𝜖 and large 𝜎. 

Discussion 

We explored the system behavior by solving the stochastic Equations (2.2), (2.3) iteratively 

using the Euler-Maruyama method with scaled time-step Δ𝑡 = 0.1 for 105 steps, starting with initial 

conditions 𝐾𝑖𝑗 = 0 and 𝜙𝑖 = 0 for all 𝑖, 𝑗. Random initial conditions did not change any qualitative 

results. For all simulations, 𝑁 = 100 oscillators, approaching the thermodynamic limit. 

We found that a set of appropriate oscillator order parameters for the ring topology are 
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𝑂𝑚 =
1

𝑁
|∑ 𝑒𝑖𝑚(𝜙𝑗−𝜙𝑗−1)

𝑁

𝑗=1

| , 𝑚 = 1,2, (2.4) 

where 𝑖 = √(−1). Longer-range order parameters were also tried but were not as successful at 

capturing the results. Values of 𝑂2 close to unity imply that all oscillators are coherent, with 𝜙𝑗 −

𝜙𝑗−1 = {0, 𝜋}, while values of 𝑂1 close to unity imply that most oscillators are in phase, with 𝜙𝑗 =

𝜙𝑗−1 = 0. For the coupling coefficients, an order parameter that captures the link to the dynamics 

of the system of oscillators (in particular, to 𝑂1) is the simple expression 

𝑂𝑘 =
1

𝑁
|∑ 𝐾𝑖,𝑖−1

𝑁−1

𝑖=0

|. (2.5) 

Figure 2.1B shows three representative plots of the order parameters 𝑂𝑚=1,2 using 𝜖 = 0.1 

and 𝜎 = 0.20, 0.25 (top, bottom within the panel, respectively), starting at 𝑡 = 30 to remove the 

transient from the deterministic initial conditions. As 𝜎 increases, 𝑂2 remains near 1 but has a larger 

spread. Thus, the effect of noise on coupling is not to throw the system into disarray – there is still a 

sense of synchronization. However, as the noise 𝜎 increases, the coupling is more disordered and 

the oscillators can move from in-phase to anti-phase relations with their neighbors. Then, the 

oscillators switch between two possible discrete phases (a form of synchrony) but move between 

them incoherently. Of course, for very large 𝜎 (outside of the range shown), there is an uninteresting 

incoherent regime characterized by 𝑂2 decreasing significantly from unity. 

Figure 2.1C shows the difference |𝑂1 − 𝑂𝐾| for the same two sets of parameters. These 

order parameters remain within a relatively tight band – the dashed lines delineate the range for 90% 

of the data points. The fact that the lines are highly symmetric about 0 and have magnitude near 

±0.1 even in the high 𝜎 case suggests that 𝑂𝐾 tracks 𝑂1 very closely. 
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The order parameters generalize directly to the 2-dimensional case by adding a second index 

and changing the constant in front to the total number of couplings (number of unique connected 

pairs). Figure 2.1E-F show 𝑂𝑚=1,2 and 𝑂1 − 𝑂𝐾 in the 2-dimensional topology for 𝜎 = 0.20, 0.25 

(top and bottom within the panels, respectively). A similar pattern as in the ring topology emerges, 

where oscillators have a high relatively high overall synchrony and tend towards arranging in random 

phase/anti-phase relations in time. Again, 𝑂𝐾 follows 𝑂1 closely, as seen by tight bounds of the 

dashed black lines representing the cutoff for 90% of the positive and negative points. In fact, even 

though 𝜖 is lower (here, 𝜖 = 0.05, as compared to 𝜖 = 0.10 for the ring) and the 𝜎 is the same, the 

lines form a tighter band in the 2-dimensional nearest neighbor topology. This opens up the 

intriguing possibility of reasoning about the order parameter of the coupling strength, which is in 

general hard to observe, based on the more easily observable synchronization of the oscillators, 

especially in more realistic scenarios where a 2-dimensional structure provides a better model. 

To understand the temporal dynamics of synchronization, we examined the logarithm of the 

time required for 𝑂1 to “crash” (defined as first achieving a threshold value 0.1 of the initial value 

𝑂1(0) = 1) as a function of 𝜎 for representative values of 𝜖 in the ring and 2-dimensional 

topologies (Figure 2.2A-B). All results were averaged over 10 runs, and dashed lines correspond to 

the best fit. A value was not plotted if 𝑂1 did not reach 0.1 during the full simulation time. This 

suggests that for small 𝜎 oscillators switch between alignment and anti-alignment rarely, while for 

large 𝜎 switching is common. Guided by this intuition, we explored the possibility of distinct 

synchronization regimes in the system as a function of the noise strength 𝜎 and the rate of change 

of coupling 𝜖. 
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Figure 2.2. Time for desynchronization in 1-dimensional and 2-dimensional topologies as a 
function of noise strength for different values of the rate of change of coupling. A. Ring 

topology. B. 2-dimensional nearest neighbor topology. Time required for 𝑂1 to reach 10% of its 

starting value of 1 as a function of 𝜎 for various values of 𝜖 (logarithmic scale). The dashed vertical 

lines represent the point before which 𝑂1 did not reach 0.1 during the full simulation run-time. 

Non-vertical dashed lines are best fits. 𝑁 = 100, 𝜖 = 0.05, 0.07 (circle, square). The time to crash is 

close to exponential in 𝜎, indicating the existence of distinct regimes. Topologies with more 
connections take longer to crash for the same parameter values. 

Phase diagrams in the 𝜖 − 𝜎 plane indicate that the system can operate in two distinct 

regimes split approximately along a straight line in the ring (Figure 2.3A) and 2-dimensional 

topologies (Figure 2.3B). We define a flip to be an event where the difference of phases between 
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two neighbors changes from Δ𝜙 (mod 2𝜋) ∈ [0,
𝜋

3
] ∪ [

5𝜋

3
, 2𝜋] to Δ𝜙 (mod 2𝜋) ∈ [

2𝜋

3
,

4𝜋

3
] or vice 

versa. Contracting the bounds did not affect the results. Results were averaged over the number of 

pairs over 10 runs. In the “synchronous regime” (above the line in Figure 2.3), the oscillators 

achieve a steady state where after an initial fluctuation they choose to be in a phase relation of 0 or 𝜋 

with their neighbors, depending on the couplings, and freeze. However, for larger values of 𝜎 for a 

fixed 𝜖, they dynamically switch between in-phase and anti-phase relations with their neighbors. We 

call this the “flipping regime” (below the line). Aside from a fast transient, even in the flipping 

regime there is no “incoherent” motion – a particular oscillator 𝑖 simply changes from being closely 

synchronized with its neighbors to being anti-synchronized. Thus, the system maintains overall 

coherence while each oscillator can move between two states. For the ring topology, the black line is 

𝜖 = 0.9𝜎 − 0.085, while in the 2-dimensional case the line is 𝜖 = 0.5𝜎 − 0.05. The region 

corresponding to completely asynchronous, noise-dominated motion is not shown, although Figure 

2.1E shows that the system begins to approach that regime towards the bottom right of the phase 

diagram. It is interesting to note that the line in the 2-dimensional topology has a significantly 

smaller slope than in the 1-dimensional case. Indeed, in the limiting case of an all-to-all connection 

topology, no flips were observed on the time-scale of the simulation in this parameter regime. 

The oscillator behavior can be intuitively seen as follows: since they are identical and have 

fast dynamics compared to the coupling, they quickly arrange themselves into a steady state. When 

the coupling between neighbors changes such that the anti-phase state becomes more stable than 

the in-phase state (or vice versa), the relevant oscillators quickly rearrange themselves to the new 

state, resulting in a high 𝑂2. However, as the relative coupling strengths between an oscillator's 

neighbors shift more quickly, there are more flips between the two states the oscillator wants to 

adopt relative to its neighbors, leading to a lower 𝑂1. If 𝜎 is too large, the effects of neighbors are 
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dominated by noise and the system is thrown into incoherence. Further, if there are too many 

neighbors, in order to have flipping occur one needs to have the majority of oscillators flip at once 

(since otherwise the other majority will tend to prevent flipping). Thus, topologies with many 

neighbors lack the flipping regime. In other words, the flipping regime occurs in a special 

intermediate region and can be encapsulated as follows: there need to be few enough neighbors that 

their individual effects matter and the coupling between oscillators has to have sufficient noise to 

promote flipping but not so much that oscillators consistently have only random interactions and 

fall completely out of coherence. 

 

Figure 2.3. Phase diagrams for synchronization/desynchronization in 1-dimensional and 2-
dimensional nearest neighbor networks as a function of the noise strength and rate of 
change of coupling. A. Ring topology. B. Nearest neighbor topology. In both panels, color 
corresponds to the frequency of switching – blue is low, red is high. Values are per oscillator per 
unit time. Black lines correspond to the approximate division between the synchronized regime (no 

switching) and the dynamic (switching) regime. 𝑁 = 100. Two distinct regimes are visible: a 
synchronous regime above the line and a “flipping” regime below the line. 
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These observations naturally led to considering the case of topologies with structural 

randomness to better understand how spatial variation interacts with the temporally noisy dynamics, 

which is of paramount importance in neural systems (Mi et al., 2013). We used a modified 

preferential attachment model with a tuning parameter 𝑝: with probability 𝑝, a new node attaches 

randomly to one of the previous nodes, and otherwise it attaches to a previous node 𝑖 with 

probability 
𝑘𝑖

∑ 𝑘𝑗
𝑖−1
𝑗=1

, where 𝑘𝑖 denotes the degree of node 𝑖. 

Then, we added a “backbone” of a ring lattice to allow comparison with the 2-dimensional 

lattice. We considered three cases: each new node makes 𝑙 = 1, 2, 3 attachments to prior nodes. The 

case 𝑙 = 1 corresponds to a mean degree of approximately 4, as in the lattice case. The case 𝑙 = 2 

corresponds to a minimum of 4 neighbors (up to removal of duplicate links when adding the ring 

lattice backbone, which was negligible) with a mean degree of approximately 6. The degree 

distribution when 𝑙 = 3 has a mean of approximately 8. 

The phase diagrams for flipping times in 𝑝 − 𝜎 space are shown in Figure 2.4, considering 

flips only between neighbors along the ring, with 𝜖 = 0.05. While the results are seen to be 

independent of 𝑝, they are strongly dependent on 𝑙. For 𝑙 = 1, the flipping rates are generally of the 

same order of magnitude as in the 2-dimensional lattice, while for 𝑙 = 2 flipping begins at 𝜎 = 0.27 

and is of significantly smaller magnitude compared to the same 𝜎 when 𝑙 = 1. The flipping regime is 

almost extinguished when 𝑙 = 3 – flipping rates are on the order of 10-4. Thus, although spatial 

variability itself may not be usable as a valid method for the fine control of temporal dynamics, the 

synchronization of this system is highly robust to the underlying network topology and depends on 

the mean of the underlying degree distribution. This result is in line with the previous analysis where 

we found that the synchronization effects are only a function of local connectivity. Thus, even in the 
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case of high spatial variance where some nodes are highly connected (and hence are not expected to 

flip often), there are so few of these nodes compared to those of low degree (below the average, 

hence more likely to flip) that their effect on the macroscopic system behavior is largely negligible. 

However, increasing the minimum degree of all nodes makes all nodes less likely to flip, impacting 

the macroscopic behavior. This robustness result is interesting because it helps us understand the 

wide-spread appearance of synchronization in real-life networks, which can exhibit any number of 

interesting topologies that also have slowly varying coupling strengths. 

 

Figure 2.4. Phase diagram for synchronization/desynchronization in a random network with 
preferential attachment and different values of mean degree. Phase diagrams showing the 
number of times oscillators switch from an in-phase to an anti-phase state relative to their neighbors 

on the ring as a function of 𝜎, 𝑝 for three different values of 𝑙. Values are per oscillator per unit 

time. 𝑁 = 100, 𝜖 = 0.05. The amount of flipping is found to be independent of 𝑝 but highly 

dependent on 𝑙. When 𝑙 = 1 (same mean degree as the 2-dimensional lattice), the amount of 

flipping is approximately a factor of 2 less than in the 2-dimensional lattice. In the case where 𝑙 = 2 

(same minimum degree as the lattice, mean degree = 6), flipping is largely extinguished, and at 𝑙 = 3 

there is no consistent flipping even at the highest value of 𝜎 = 0.30. 

For an analytical perspective on the system dynamics as a function of 𝜖, we derived a useful 

approximation for 𝑂1(𝑡) based on the results of the numerical experiment. Since the order 

parameter for the coupling 𝑂𝐾 tracks 𝑂1, we estimate 𝑂1(𝑡) ∼ 𝑂𝐾(𝑡) =
1

𝑁
∑ 𝐾𝑖𝑗𝑖,𝑗 , dropping 
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absolute value signs from the definitions since they were only introduced into the order parameters 

for convenience. Summing Equation (2.3) over all neighbors 𝑖, 𝑗 yields 

∑𝐾̇𝑖𝑗 = 𝜖(−∑𝐾𝑖𝑗 + ∑ cos(𝜙𝑖 − 𝜙𝑗)) + ∑𝜎𝜁2;𝑖,𝑗 (2.6) 

Since 〈𝜁2;𝑖,𝑗〉 = 0, the last term vanishes in the large 𝑁 limit. Approximating sign(cos(𝜙𝑖 − 𝜙𝑗)) by 

sign(𝐾𝑖𝑗) (since synchronization between neighbors occurs on a faster time-scale than the change in 

coupling) yields 

𝑑

𝑑𝑡
∑𝐾𝑖𝑗 = −𝜖∑𝐾𝑖𝑗 + 𝜖∑sign(Kij) (2.7) 

In the no flipping regime, the two terms on the right hand side cancel as each 𝐾𝑖𝑗 settles into 

an average steady state of ±1. In the flipping regime, flips occur relatively rarely so the last term on 

the right hand side can be approximated as 𝜖𝛽, where 𝛽 is approximately constant and bounded by 

the number of couplings (number of unique oscillator pairs). The solution to this equation is 

∑𝐾𝑖𝑗 = 𝐶𝑒−𝜖𝑡 + 𝛽, where 𝐶 is determined by initial conditions. Indeed, the bottom graphs in 

Figure 2.1B, E show an approximately exponential decline in 𝑂1 towards a state where there is 

overall synchrony in the system but each set of neighbors may be aligned or anti-aligned. 

Conclusion 

Our study of two-way oscillator-network interactions points to a number of directions for 

future work. One area to explore is applying the model to experimentally observed topologies. It 

would be promising to look at the correspondence between the order parameters for the oscillators 

and the coupling strength with a view to reasoning about coupling strength from direct observations 

of e.g. neural networks. A local tie between coupling and the phase/anti-phase relation in the ring 

and 2-dimensional nearest neighbor topology is given by sign(𝐾𝑖,𝑖−1). In a typical run, this measure 
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correctly predicts the synchronization relation between two neighbors (sign(𝐾𝑖,𝑖−1) = ±1 when 

𝑖, 𝑖 − 1 are in in-phase and anti-phase states, respectively) approximately 90% of the time even for 

the extreme case 𝜖 = 0.05, 𝜎 = 0.30, and even more accurately farther away from the bottom right 

corner of Figure 2.3A-B. Another promising line of research is to consider the proposed model in 

the context of chimera states (Abrams and Strogatz, 2004; Abrams et al., 2008; Martens et al., 2013). 

Experimentally, it may be possible to test the phase diagram predictions with an electromechanical 

or laser model using feedback as the analogy to a strengthening or weakening coupling. 

Inspired by the idea of agent interactions changing a network structure, in the next chapter 

we turn to a model of an evolving, interdependent population. There, the network is directly defined 

by the (evolving) agent strategies themselves, and we will follow a similar methodology of 

characterizing different operating regimes. And, we will go further towards answering the question 

of control: how does a perturbation to the network in a given state affect the final outcome? 
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“He who thus considers things in their first growth and origin… will obtain the clearest view of them.” 
- Aristotle, Politics 

3 
Organization of an Evolving Interdependent 

Population 

Introduction 

Cooperative behavior, as exemplified by multicellular life, seems to have evolved at least 25 

times independently – once for plants, once or twice for animals, once for brown algae, and possibly 

several times for fungi, slime molds and red algae (Grosberg and Strathmann, 2007). On shorter 

time scales, the social composition of eukaryotes such as Saccharomyces cerevisiae, and biofilm-forming 

bacteria such as Pseudomonas aeruginosa can dramatically change in a brief period (Diggle et al., 2007; 

Gore et al., 2009; Jiricny et al., 2010; Ratcliff et al., 2012). In a related context, tumor formation is a 

rare example of the transition, taking place in the reverse direction, from a multicellular to an 

essentially unicellular lifestyle. Interestingly, cancer cells end up cooperating by collectively secreting 

angiogenic factors, and it seems possible, at least in principle, that there may even be cheaters (i.e. 

those who do not secrete the growth factors) among this collection of cooperating cheaters (Axelrod 

et al., 2006; Nagy et al., 2007). 
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Without compromising the simplicity and tractability offered by traditional evolutionary 

game theory, we built an evolutionary model in which the fitness of an agent is determined, not by 

the outcome of a two-player two-state game, but instead a multi-player multi-state one. Thus, the 

focus is not the typical cooperator–defector ratio in the population, but rather the large-scale 

structure of all exchanges. In other words, we considered the interdependence between agents or groups 

of agents within a genetically heterogeneous population. We asked how independent agents become 

interdependent through the simple laws of evolution, whether positive selection is a necessary or a 

sufficient condition for the formation of interdependence, what kinds of interdependent structures 

are stable/unstable, and how these structures and processes depend on evolutionary parameters. 

Accordingly, the present model offers a clear framework for classifying and categorizing 

different regimes of interdependence, as well as allowing for careful control of evolutionary 

parameters that may be influencing recent non-intuitive empirical outcomes (Kohler et al., 2010). 

We determined which kinds of external perturbations promote anti-sociality (e.g. in order to 

eradicate biofilms) and which other kinds can inhibit anti-sociality (e.g. as to suppress or reverse 

tumor growth) by simulating the introduction of selfish/altruistic strains into a population or the 

administration of anti-sociality/sociality promoting drugs. Finally, we evaluated the success rate of 

these evolutionary interventions as a function of the original population structure, drug dose, 

fraction of drug-resistant agents and reproduction speed of the target species. 

Model 

The multi-state multi-player game can be best visualized as a network of 𝑁 ≫ 1 agents 

connected by directional edges. An edge from A to B indicates that A contributes to the fitness 

of B at the cost of its own. Unlike the typical evolutionary game theoretic models where the state of 

a player i is binary (cooperator/cheater), here the player states 𝜓𝑖 are characterized by high-
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dimensional vectors, i.e. 𝜓𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑁} with 𝑥𝑗 ∈ {0, 1} indicating whether 𝑖 provides a 

fitness benefit to 𝑗. The evolutionary dynamics is governed by the following assumptions: 

1. The fitness 𝜔(𝑥𝑖) of a node i is assumed to be a monotonically increasing function of 

received net benefit 𝑥𝑖 = 𝑏𝑛𝑖,𝑖𝑛 − 𝑐𝑛𝑖,𝑜𝑢𝑡, where 𝑛𝑖,𝑖𝑛 and 𝑛𝑖,𝑜𝑢𝑡 are the number of 

incoming and outgoing edges for node 𝑖, respectively. The parameter 𝛽 =
𝑏

𝑐
 quantifies 

the benefit of an edge (to the receiver) relative to its cost (to the provider). 

2. Every generation, the 𝑟 most fit nodes produce offspring that replace the 𝑟 least-fit 

nodes. Reproduction preserves all edge relationships of the parent, i.e. parents and 

offspring connect to the same agents. 

3. There is a small mutation probability 𝑝 per generation with which edges are 

added/removed randomly. 

A schematic of the model is shown in Figure 3.1. The model has four parameters, kept 

constant throughout the course of evolution: population size 𝑁, mutation probability 𝑝, number 

selected for replacement 𝑟, and the relative benefit 𝛽. For every run, we tracked the total number of 

edges 𝐸(𝑡) as a function of generation number 𝑡. 𝐸(𝑡) is a measure of the interdependence of the 

population as well as the average fitness (the latter follows from 〈𝜔〉 =  ∑
𝜔𝑖

𝑁
=

(𝛽−1)𝐸(𝑡)

𝑁𝑖 , which can 

be positive or negative depending on the value of β). In addition, we studied the community 

structures and genetic composition within the population, which are defined in terms of the 

connectivity matrix 𝐶 of the network. Here, 𝐶𝑖𝑗 = 1 if j depends on i and 𝐶𝑖𝑗 = 0 otherwise, 

represented by black and white pixels, respectively, in array plots. Simulations were run for 𝑁 =

200, with the relevant number of degrees of freedom being the number of edge slots 𝑁2 = 4 ×

104. This ensured that the evolutionary transitions are not accidental fluctuations. 

http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F1
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F1
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Figure 3.1. Schematic of the evolutionary dynamics model. A. Selection step. The fitness of a 

node 𝜔(𝑥𝑖) is a monotonically increasing function of edge influx 𝑥𝑖 = 𝑏𝑛𝑖,𝑖𝑛 − 𝑐𝑛𝑖,𝑜𝑢𝑡, 

where 𝑛𝑖,𝑖𝑛 and 𝑛𝑖,𝑜𝑢𝑡 are the number of in and out edges for node 𝑖. B. Reproduction step. The 

𝑟 fittest nodes replace the 𝑟 least fit nodes. Reproduction preserves all in/out relationships of the 
parent. C. Mutation step. A small number of edges are randomly added/removed every generation, 

with probability 𝑝 ≪ 1. 
 

Results 

The evolutionary dynamics and final interdependence states depend on the values of 𝛽 and 

relative selection pressure 
𝑟

𝑚
, where 𝑚 = 𝑁2𝑝 is the expected number of mutations per generation 

(which is equal to the number of mutants if 𝑝 ≪ 1). The parameter space can be divided into four 

regimes: neutral constructive (𝑟 ≪ 𝑚, 𝛽 > 1), selective constructive (𝑂[𝑟] ∼ 𝑂[𝑚], 𝛽 > 1), neutral 

destructive (𝑟 ≪ 𝑚, 𝛽 < 1), and selective destructive (𝑂[𝑟] ∼ 𝑂[𝑚], 𝛽 < 1). In all cases, the 

formation of an edge is beneficial for one of the nodes and deleterious for the other. As the value 

of 𝛽 determines the change in average fitness per edge, 
𝑑〈𝜔〉

𝑑𝑡
=

𝑐(𝛽−1)

𝑁
, one may intuitively 

expect 𝐸(𝑡) to decrease for β <  1 and increase for β >  1 as long as selection strength is finite. 

However, we will see that this expectation will not always be satisfied, particularly when 𝛽 > 1. 

First, consider the straightforward case of 𝛽 < 1. Here the formation of an edge is more 

deleterious to its originator than beneficial to its target, and the fitness of the population changes 
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by 𝑏 − 𝑐 < 0 per edge. Thus, in the long run, only if the selection is weak (𝑟 ≪ 𝑚) can such 

deleterious edges accumulate, and a random interdependence network forms with 𝐸 =
𝑁2

2
. As 

expected, increasing 
𝑟

𝑚
 causes the network to become sparse and fragmented, and all structure 

vanishes as 𝑂[𝑟] ∼ 𝑂[𝑚]. 

Now, let us consider the constructive regime 𝛽 > 1, which produces distinct phases of 

complexity (Figure 3.2A-F). The long-term behavior of 𝐸(𝑡), which can be viewed as a proxy for 

average fitness as well as for interdependence and complexity, depends non-monotonically on 

selective pressure. For small values of 
𝑟

𝑚
, the asymptotic value 𝐸(𝑡 → ∞) decreases with 

𝑟

𝑚
 (Figure 

3.2A-C). However, if selective pressure exceeds a critical point, there are sudden transitions between 

well-defined discrete levels (Figure 3.2D-F). As selective pressure is increased further, there are 

increasingly larger fluctuations around these levels. 

 

Figure 3.2. Regimes of constructive evolution for different values of selection strength. A. 

Number of edges 𝐸(𝑡) as a function of time 𝑡. Mutation probability is kept constant such that 

𝑁2𝑝 = 20. The dashed straight lines indicate the stable number of edges corresponding to an 

integer number 𝑘 of equal-sized bunches, 𝐸 = 𝑁2(1 − 1/𝑘). 𝑁 = 200, 𝛽 = 1.01. The dashed 

curved line is the outcome of the fully neutral simulation. In this panel, 𝑟 = 2 (slowest 

reproduction). B. 𝑟 = 4. C. 𝑟 = 9. D. 𝑟 = 10. E. 𝑟 = 15. F. 𝑟 = 100. 
 

http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
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These asymptotic states can be described in more detail by connectivity matrices (Figure 

3.3A) and phylogenetic trees (Figure 3.3B) for varying levels of 
𝑟

𝑚
. The phylogenetic trees were 

obtained by quantifying the similarity distance 𝐷𝑖𝑗 = ∑ |𝐶𝑖𝑘 − 𝐶𝑗𝑘| + ∑ |𝐶𝑘𝑖 − 𝐶𝑘𝑗|𝑘𝑘  between all 

pairs of nodes 𝑖 and 𝑗. In other words, if 𝑖 and 𝑗 receive from and provide to the same nodes, they 

are considered to be genetically related, consistent with the reproduction rule (compare Figure 3.1). 

 

Figure 3.3. Interdependence and genetic composition in the constructive regime for 
different values of selection strength. A. Connectivity matrices for different selection strengths. 

Selection strength 𝑟 = 0, 2, 4, 15, 100 (left to right). The connectivity matrix element 𝐶𝑖𝑗 is marked 

by black if individual 𝑖 provides fitness to 𝑗, and left white if there is no exchange. For all panels 

𝑁 = 200, 𝑁2𝑝 = 20, 𝛽 = 1.01. There is a dramatic difference in the final organization of the 

population depending on 𝑟. There is an onset of “bunch” (anti-community) formation even in the 
weak selection limit (compare first two panels). The number and definition of bunches increases 
with higher selection strength (fourth panel). In the strong selection limit bunches compete with 
each other, leading to size heterogeneity (fifth panel). B. Phylogenetic trees corresponding to the 
connectivity matrices. Tree linkages are formed according to smallest inter-cluster dissimilarity 

defined by the 𝐿1 norm. 

While the destructive 𝛽 < 1 regime produces either random or sparse networks, the 

constructive regime 𝛽 > 1 can be summarized in terms of a sequence of complex phases governed 

by the value of 
𝑟

𝑚
 (Figure 3.4): a transition from cooperation to competition between individuals 

(Figure 3.2A-C) is followed by unstable interactions between individuals and “bunches” (Figure 

3.2D), followed by a transition from cooperation to competition between “bunches” (Figure 3.2E-

http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F3
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F3
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F3
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F1
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F1
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F4
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F4
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F2
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F). We define a bunch to be the opposite of a graph theoretical community; a group of nodes that 

form denser connections towards other groups, than they do within (compare the last two panels 

in Figure 3.3). Dense outwards connections and sparse intra-connections are the key qualitative 

characteristic of a highly specialized system. For example, nearly all energy spent by a heart muscle 

cell is directed at serving other tissues. The same holds true in a specialized society, e.g. a lawyer 

spends more of his time defending non-lawyers. The interdependence structures seen in the last two 

panels of Figure 3.3 conform to these biological and social examples of specialization. 

 

Figure 3.4. Phases of interdependence as a function of selection strength and benefit. A. 

Phase diagram showing the asymptotic dependence number 𝐸 (left panel), and the same phase 
diagram traversed in the horizontal direction (right panel). Since some of the phases are highly 

http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F3
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F3
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F3
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F3


31 
 

Figure 3.4 (Continued) dynamic, 𝐸 is taken to be the minimum number of dependences in a large 
time-window in the long-time limit. B. Phase diagram showing bunch modularity (left panel), 

defined by exchanging 0 and 1 in the connectivity matrix and determining community modularity, 
and the same phase diagram traversed in the horizontal direction (right panel). 
 

Next, we moved towards an understanding of the control and manipulation of the evolution of 

interdependence, which is now experimentally possible (albeit with mixed success) in biomedical and 

ecological settings. For example, the sociality of P. aeruginosa can be manipulated by drugs that 

suppress a microbe’s production of a common good (iron scavenging siderophores). As the 

microbes that are resistant to the drug will altruistically continue to produce the expensive 

siderophores, they are taken over by their selfish counterparts affected by the drug (Diggle et al., 

2007; Sandoz et al., 2007; Mellbye and Schuster, 2011). As a result, the iron-deficient population can 

be easily annihilated by the host’s immune system (Boyle et al., 2013). Note that the evolutionary 

fate of the drug-resistant group would have been the opposite, had the drug been an antibiotic 

instead of a quorum blocker. On the other hand, there have also been experiments yielding 

the opposite outcome, where the drug aggravates the infection instead of impairing it, presumably by 

levelling the relative advantage of cheaters (Kohler et al., 2010). We used our model to quantify 

these mixed outcomes. Social evolution is complex, and its manipulation and control requires a 

detailed quantitative understanding of the evolutionary outcomes of varying initial states and system 

parameters. 

To manipulate the sociality of a highly interdependent population, we started with an initial 

network that has a given community structure, selected a fraction 𝜂 of the population and blocked a 

fraction 𝛾 of their outgoing connections of those that are selected. Following this perturbation, we 

tracked the evolution of the network to see if the perturbation would cause the entire population to 

lose all connections (which, for 𝛽 > 1, amounts to minimal fitness). If 𝐸(𝑡) dropped to and 

remained at zero we counted it as a success, and we determined the fraction of successes for every 
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parameter value. If 𝜂 ≪ 1, the perturbation can be interpreted as an external introduction of a new 

strain/species, or a novel mutation which introduces a very small number of selfish individuals in 

the population. If 𝜂 ≃ 1, the perturbation can be interpreted as a drug or event that affects nearly 

everyone, such as the quorum blocker discussed earlier. Accordingly, the quantity 𝛾 can be 

interpreted as the dose of the drug, or the degree of “selfishness” of the newly introduced 

species/strain. Figure 3.5A-B show the dependence of success as a function of 𝜂 (empty versus 

closed plot markers correspond to 𝜂 = 2%, 98%), initial population structure 𝑘 (quantifying the 

number of bunches), and 𝛾 in fast- and slow-reproducing species, respectively. 

It is important to distinguish between two very different mechanisms that can bring a 

population back to its pre-perturbed state. The first is determined by the time required for 

interdependence to evolve anew from 𝐸 = 0. The original factors causing the establishment of 

cooperation in the first place is present regardless of the perturbation, and the effect of even the 

strongest drug (𝜂 = 1, 𝛾 = 1) is to simply reset the evolutionary clock. The second mechanism is 

evolution through the repopulation of the drug-resistant fraction, which happens much faster, on 

reproductive time scales. To clearly distinguish between these two mechanisms, we set 𝑝 = 0 

in Figure 3.5; using a non-zero 𝑝 scales down all the success rates but does not otherwise change the 

qualitative dependence on 𝜂, 𝛾, or 𝑘. 

We observed a number of interesting features in the response of the population to external 

perturbations. For 𝜂 ≃ 1, there is a non-monotonic dependence of success rate to 𝛽 for populations 

with few bunches: for slow reproducing populations a moderate dose works as well as, or better 

than, a strong one. For larger numbers of bunches, and faster reproduction rates the non-

monotonicity vanishes: the stronger the dose, the better the outcome. A second remarkable 

outcome was the degree to which a few individuals can make a difference: targeting 𝜂 = 2% of the 

http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F5
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F5
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F5
http://rsif.royalsocietypublishing.org.ezp-prod1.hul.harvard.edu/content/12/108/20150044#F5
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population is as effective as targeting 𝜂 = 98% of the population provided the drug has a high 

enough dose. This is because few selfish individuals, as is the case in tumors or invasive species, can 

devastate an entire population. Finally, we observed a very strong dependence of the success rate on 

the initial community structure. With increasing 𝑘 and 𝑟, this difference vanishes. 

 

Figure 3.5. Manipulation and control of social evolution. A. Slow reproduction case (𝑟 = 15). 

For both panels, 𝜂 = 2% (empty markers) and 𝜂 = 98% (filled markers) of the nodes in the 

population (𝑁 = 200) are marked as susceptible to perturbation. The horizontal axis shows the 

proportion 𝛾 of the out edges that are blocked in the susceptible population. The vertical axis shows 
the probability that the initially cooperating population collapses into a weak, non-cooperating one 

(i.e. to 𝐸 = 0). Here, 𝑝 = 0 to distinguish between the spread of the resistant subpopulation 𝜂 and 

novel mutations that occur after the perturbation (increasing 𝑝 does not change the qualitative 
behavior). The dashed curve shows that even a small number of anti-social individuals are damaging 
to the whole population and suggests treatments where individual cells are targeted. The strong 

dependence of annihilation probability on 𝑘 for small 𝑘 might explain why quorum blockers are 

effective against some biofilms forming bacteria but not others. Interestingly, for 𝑘 =
2, 𝑃(𝛾 = 0.5) is higher than 𝑃(𝛾 = 0.95), suggesting that for small number of cooperative 
bunches smaller perturbations may be more effective than larger ones. The effect of the drug 
strongly depends on the community structure for slow reproducing species. B. Fast reproduction 

case (𝑟 = 60). Here, the effect of the drug is less dependent on the number of bunches in the 
starting population. 
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Discussion 

The phase diagram for the evolution of interdependence is shown in Figure 3.4 and 

compactly summarizes the results. Figure 3.4A shows the number of dependences, while Figure 

3.4B quantifies their structure through “bunch modularity”. We define the latter by exchanging 1 ↔

0 in the connectivity matrix and determining the community modularity. In the following, the 

regimes of interdependence are labeled with the letters A-D: regimes A and B refer to cooperation 

and competition between individuals, while regimes C and D refer to cooperation and competition 

between bunches, respectively. 

Cooperation between individuals 

In the neutral regime (𝑟 ≪ 𝑚), additions and deletions of edges are equally likely. Thus, if 

the population starts fully independent, 𝐸(𝑡) increases until the network is fully randomized with 
𝑁2

2
. 

This increase is statistically irreversible and is analogous to the scenario described in (Stoltzfus, 1999; 

Gray et al., 2010; Vural et al., 2014). In the neutral regime, individuals have high fitness due to the 

benefits of indirect reciprocity; interdependence emerges not due to higher fitness but simply due to 

higher likelihood. Figure 3.1A shows the dynamics and final outcome of nearly neutral evolution. 

Despite following a similar trajectory to fully neutral evolution (𝐸(𝑡) ∼ 𝑁2(1 − 𝑒−2𝑝𝑁𝑡), indicated 

by the dashed curve in Figure 3.2A-F), the connectivity matrix shows the onset of community 

formation; the interdependence structure and genetic composition of the population is far from 

random (compare Figure 3.3A-B). 

As the selection strength is increased (𝑟 < 𝑚 but not 𝑟 ≪ 𝑚), the fluctuations in 𝐸(𝑡) are 

amplified. This is caused by the random formation of nodes for which the number of in-edges are 

different than out-edges. However, the system is self-stabilizing (Figure 3.2A-B); e.g. when the fit 

defectors reproduce, they typically replace their unfit providers, which in turn reduces their own 
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fitness. Consequently, they are taken over by the fair and fit nodes that dominate the 𝑟 ≪ 𝑚 

population. In Figure 3.3A-B (third subpanels), two large reciprocating groups can be distinguished. 

They are taken advantage by smaller-scale opportunistic sub-populations. It is also possible to see a 

smaller sub-cooperative group sustaining itself within a larger cooperative group. 

Competition between individuals 

As 𝑟 approaches 𝑟𝑐 ∼
𝑚

2
 from below, the fluctuations in 𝐸(𝑡) become comparable to 𝐸(𝑡) 

itself. Here the selective competition is just high enough to allow for small cooperative communities 

to form and grow at a rate much higher than random chance, but also high enough for cheaters to 

spread over their providers in one step, beyond recovery (Figure 3.1C). Although regimes A and B 

have similar destabilizing factors, their re-stabilization is very different. The drops in 𝐸(𝑡) in regime 

A can recover through re-population, over time-scales approximately 
1

𝑟
. By contrast, regime B exhibits 

system-size losses from which the only way to recover is re-mutation, over longer time scales 

determined by approximately 
1

𝑚2, as the smallest cooperative group requires two mutations. 

Comparing A to B reveals that higher selection strength in this case leads to lower fitness; 

had one mixed the stronger selected population B with the weaker selected one A, the former would 

be driven to extinction. The behavior of B is similar to that expected in a classical prisoner’s 

dilemma, which emerges from the model as a special case – survival of the fittest produces the 

globally least-fit outcome. 

Formation of specialized bunches 

As 𝑟 is increased above the critical point 𝑟𝑐 ∼
𝑚

2
 higher-level structures start to form. While 

the connectivity matrix 𝐶 is sparse and random for 𝑟 just below 𝑟𝑐, metastable bunches begin to 
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form at 𝑟 > 𝑟𝑐, the number and stability of which increases with 𝑟. The sudden jump in the edge 

number in Figure 3.2D-E is analogous to that found in (Jain and Krishna, 2001). 

For a very large window of selection strength 𝑂[𝑚] ∼ 𝑟 < 𝑂[𝑁], the system can only 

maintain certain discrete values of 𝐸. These are the stable configurations corresponding to an integer 

number of equal-sized bunches (𝑘) given by the relation 𝐸𝑘 = 𝑁2 (1 −
1

𝑘
) , 𝑘 = 0, 1, … , 𝑘𝑚𝑎𝑥 

(Figure 3.2D). The maximum number of bunches 𝑘𝑚𝑎𝑥 is determined by the mutation rate, 𝑘𝑚𝑎𝑥 ∼

𝑁

𝑚
 (i.e. so that in steady state there is one mutation per bunch per time step). However, we have 

observed 𝑘 transiently increasing to 50% higher than this value. Note that the degree of 

interdependence (and hence the average fitness) in the strong selection limit well exceeds that in the 

weak selection limit. 

It is interesting that in the limit 𝑟, 𝑚 ∼ 1, structures more complex than bunches can form. 

These include hierarchies (smaller bunches within a bunch), cycles (3 or more groups providing to 

one other), and hierarchies of cycles (cycles within a cycle). In this limit, the dynamics of 𝐸(𝑡) still 

exhibit discrete steps similar to Figure 3.2E, but with more possible metastable plateaus 

corresponding to unequal-sized matrix blocks. 

Competition between bunches 

With increasing 𝑟 the fluctuation in the number of edges around the stable 𝑘 starts 

increasing, and there is destructive competition similar to that near the phase boundary of B; 

however, now the competition is between the bunches rather than the individuals, which creates 

significant size differences between them. These fluctuations can lead to one bunch replacing 

another, causing 𝐸𝑘 to make large transitions between different values of 𝑘. Despite the apparent 

noise (Figure 3.2F) the dependence structure remains in a highly ordered state with high reciprocity 
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(Figure 3.3A-B, fifth panel). As 𝑟 is increased further, the competition between bunches causes 

fluctuations comparable to the size of bunches, i.e. a small bunch can increase in size by spreading 

over others until another metastable structure re-evolves. 

Conclusion 

We constructed a simple model that allowed us to study the coevolution of self-replicating 

interdependent structures, and reported multiple evolutionary transitions as 𝛽 and 𝑟 were varied. 

This model is quite general and has few assumptions – the fitness function is only assumed to be an 

arbitrary increasing function of 𝑥 and there are only two relevant parameters governing the 

dynamics (selection strength 
𝑟

𝑚
 and relative benefit 

𝑏

𝑐
). The population size 𝑁 does not make a 

qualitative difference as long as both 𝑁𝑝, 𝑟 ≪ 𝑁. Furthermore, the value 𝛽 does not make a 

qualitative difference apart from whether it is larger or smaller than unity, and 

no quantitative difference if |1 − 𝛽| <
1

𝑁
. Unlike the typical simplified models of evolutionary game 

theory, we did not assume that an individual’s behavior is the same towards all others (although 

some individuals can end up in a state where they give to all and receive from all). In this respect, the 

states allowed in this work are a generalization of the two-state models common in the literature. 

Thus, we hope that this model can serve as a guiding framework for understanding the emergence 

of sociality. 

Even in this simple case, we observed a number of surprising phenomena. First, even the 

weakest selection strengths (𝑚 ≫ 𝑟) can produce interdependence structures that are far from 

random. Thus, assumptions regarding “random interdependence” invoked by neutral evolutionary 

arguments may be too strong (Stoltzfus, 1999; Gray et al., 2010; Vural et al., 2014). Second, we 

observed the natural emergence of specialized bunches and multi-scale structures from the simple 
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laws of evolutionary dynamics. As we probed the response of the system to various selection 

strengths, we saw regimes of random interdependence, competition between nodes, cooperation 

between nodes (bunches), and competition between bunches. 

Thirdly, we found that the regime 𝛽 > 1, 𝑟 > 0 does not itself guarantee complex 

interdependence. There exists a “dead zone” within the constructive regime (Figure 3.2C) due to 

competition between agents. This non-monotonic dependence of 𝐸 on selection strength can have 

important implications in medicine. For example, biofilm populations may be induced into a less 

virulent non-cooperative state by decreasing the selective pressure, so that a cooperative film 

behaving as Figure 3.2E evolves into an intermediate non-cooperative state behaving as Figure 3.2C. 

This may be experimentally verified in P. aeruginosa by increasing the available iron while keeping 

their population constant by limiting their carbon source. 

Another interesting result was the observation of a non-monotonic connection between the 

dose of anti-social drugs and the successful annihilation of cooperativeness. Indeed, the model 

exhibits a “contagion” effect which allows the manipulation of a few individuals to have population-

wide effects. It has been noted that introducing several selfish mutants (or using an anti-social drug 

effective on a few individuals) may be far more effective than manipulating an entire population 

(Kohler et al., 2010) and is consistent with experimental observations (Diggle et al., 2007; Sandoz et 

al., 2007; Mellbye and Schuster, 2011). 

Finally, when mutation rate was set to zero, we observed that the behavior of 𝐸(𝑡) 

resembles that of classical population dynamics. The dynamics between providers and receivers 

becomes qualitatively similar to that between the predators and prey of a system like Lotka-Volterra. 

If the initial condition is a randomized connectivity matrix and 𝑝 = 0, 𝐸(𝑡) commonly tends to a 

fixed value and oscillates around it. 
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Owing to its generality and applicability, this model has room for many natural extensions. 

For example, the distribution of parameters and fitness functions in a more realistic model could 

include spatial, temporal, and individual heterogeneity. For instance, if we conceptualize the fitness 

as resources such as food, a more appropriate fitness model could be a concave function rather than 

a linear function to account for saturation. Further, the quantities 𝑝, 𝑏, and 𝑐 can be dynamic as they 

are themselves, to an extent, subject to evolutionary forces. This can lead to an interesting set of 

potential future studies exploring connections between interdependence and evolvability/efficiency. 

Another factor not taken into account here is the possibility of the change in population size due to 

statistical fluctuations (e.g. due to a time-dependent energy input, or infection/predation). Such 

natural extensions could be appropriate to address systems in ecology, structured biological 

population, and provide insight into complicated social trends. 

Moving from large evolutionary networks with multiple simple agents to a smaller system 

with more complicated units, in the next chapter we focus on the adaptation of the fruit fly 

locomotor system to injury. In particular, we combine experimental results and modeling to 

determine that proprioception (that is, feedback to the legs from the environment with which they 

interact) plays an important part in the ability to tune agent (leg) dynamics in order to recover from a 

turning bias observed immediately after leg amputation. 
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“Natural forces within us are the true healers of disease.” 
- Hippocrates 

4 
Recovery of Locomotion After Injury in Drosophila  

Introduction 

Given the varied environment in which organisms move, injury to locomotor systems is very 

common in nature. Therefore, it is not surprising that animals will often prioritize leg safety in 

locomotor strategies (Birn-Jeffery et al., 2014). However, damage can be unavoidable; if locomotor 

systems were not robust to damage, or were incapable of plasticity, limb injury would pose an 

insurmountable challenge to survival. In humans, a number of studies have shown that damage to 

the control mechanism (e.g. spinal cord injury) can be overcome to an extent by training using 

manually assisted signals to the limbs which reorganize the spinal network and allow it to adapt 

(Harkema, 2001; Dietz et al., 2009). Plasticity leading to locomotor recovery after spinal cord injury 

is seen in animal models such as rats as well (Ballerman and Fouad, 2006). After direct injury or 

amputation of a limb itself, animals (including mammals) can recover mobility over time 

(Kirpensteijn et al., 1999) – indeed, three-legged dogs and cats walking and even running are familiar 

images. In humans, a number of medical interventions such as prosthetic limbs after amputation or 

reconstructive surgery (Bosse et al., 2002) can help patients recover mobility. Thus, the locomotor 
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system is remarkably robust. Moreover, the idea of plasticity after limb injury is not limited to the 

animal world: even in engineered systems such as legged robots, instilling the ability to recover 

locomotion after injury is an active research topic (Christensen et al., 2013; Cully et al., 2015). 

We ask the questions of (a) whether and (b) how the recovery of locomotion takes place 

after a significant biomechanical injury (leg amputation) in fruit flies. While many walking 

parameters have been characterized for freely walking Drosophila (Strauss and Heisenberg, 1990; 

Mendes et al., 2013; Berman et al., 2014), fewer studies have considered recovery of walking after 

injury. A notable exception is (Wosnitza et al., 2013) – even immediately after amputation of a fly’s 

hind leg, these authors observed several important changes in an amputated fly’s behavior that 

allowed it to continue walking but at a slower speed and with a shift in leg stepping patterns (gait 

coordination). Whereas here we examine both the immediate effects of injury as well as recovery in 

locomotion over time, Wosnitza et al. focused on behavior immediately after hind leg amputation. 

Intriguingly, a study where fly walking was impeded by adding weights to the body (Mendes et al., 

2014) found evidence for adaptation of step parameters over time to maintain coordinated walking, 

as well as increased sensitivity to load and other locomotor defects in proprioceptive mutants. These 

observations beg for the exploration of recovery after amputation over longer times. 

Therefore, we examined the immediate and days-long recovery of walking behavior after leg 

amputation in Drosophila melanogaster. By using video recording before and after injury, we show that 

amputation impairs exploratory locomotion, i.e. the paths followed in an open arena. Specifically, 

amputation of the right foreleg induces a counter-clockwise bias to exploratory locomotion. 

Interestingly, unbiased locomotion recovers well over time in wild type flies, but this recovery is 

significantly hampered in proprioceptive mutants. To understand how this might happen, we start 

by considering individual leg motion (gaits), quantifying them from high speed video of walking flies 
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before, immediately after, and for several days after amputation. Typically, gaits in hexapods are 

categorized into three distinct patterns, “tripod”, “tetrapod”, and “wave” or “non-canonical” 

(Hughes, 1952). The tripod gait is considered to be the alternating movement of two groups of three 

legs, with the legs in each group simultaneous taking off. These groups are traditionally defined as 

legs (135)(246) – with groups separated by parentheses and leg numbering as in Figure 4.1A. 

 

Figure 4.1. Amputation protocol and schematic of walking bias parameters. A. Amputation 
protocol: the right foreleg is removed between mid-femur and the femur-tibia joint. The given leg 
numbering is used throughout the paper. B. Schematic of analysis parameters used in constructing 

histograms of walking bias and calculating 𝜇. The value of θ − δ characterizes the degree of 
clockwise/counter-clockwise behavior. 
 

The tetrapod gait consists of three groups of two moving legs each, with the legs again 

taking off simultaneously. Here, the groups can be arranged as either (15)(26)(34) or (24)(35)(16), 

due to a left-right symmetry. In a traditional wave gait, the legs proceed forward along a side before 

switching to the next side, as in (3)(2)(1)(6)(5)(4), though a number of sources such as (Kain et al., 
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2013; Mendes et al., 2013) label gaits only as “tripod,” “tetrapod” or “non-canonical”. In reality, 

strict boundaries between gaits are not always well-defined. 

We observed all of these gaits in our video analysis and found that injury resulted in 

permanent changes to their relative frequency during walking. This presents a puzzle: if injury 

permanently alters gaits, what mechanism explains the recovery in exploratory locomotion turning 

bias? Using a neuromechanical model strongly informed by experimental data, we show that 

amputated flies may redistribute the forces applied by the legs to enable the observed recovery in the 

absence of gait recovery, suggesting that a consequence of proprioceptive defects is the inability to 

precisely control leg forces. Altogether, combining behavioral observations and gait analysis of 

normal and proprioception deficient flies with a physical model provides us with a mechanistic 

description of recovery of locomotion after injury in Drosophila. 

Materials and methods 

Fly strains and care 

Flies were housed on modified Caltech medium in temperature controlled incubators on a 

12-h/12-h light/dark cycle. Flies mutant for nanchung and inactive were procured from the 

Bloomington Drosophila Stock Center (nan36a BDSC #24902 and iav3621 BDSC #24768; 

Bloomington, IN, USA). Canton-S was our wild type strain. Flies were 4-8 days post-eclosion when 

experiments began. All experimental flies were female. 

Centroid tracking in open arenas 

Three-by-three arrays of 5.08 cm (2 inch) diameter arenas were fabricated from clear acrylic 

cut with a laser engraver. 10 cm high walls between neighboring arenas were frosted with a random 

orbital sander to prevent flies from viewing each other. Four-day-old wing-clipped flies were placed 
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into the arenas and allowed to walk freely for 2 hours. Arenas were uniformly illuminated from 

below by an array of LEDs covered by a diffuser fabricated from two sheets of 0.64 cm (1/4 inch) 

thick clear acrylic frosted on both sides by sanding. Arenas were imaged from above by 2MP digital 

cameras and the X-Y position of individual flies’ centroids were identified and tracked by custom 

software written in LabView. The next day, the right foreleg was amputated within the femur and 

flies were tested again 1 hour, 24 hours, 48 hours and 72 hours post-injury. More proximal 

amputation resulted in higher mortality. More distal amputation risked leaving the animal with 

enough leg to support itself. The direction of motion was inferred as the angle between centroids of 

successive frames. In order to characterize turning bias, we considered the tangential component of 

the velocity (𝜃 − 𝛿) relative to the center of the arena (Figure 4.1B). To exclude edge artifacts, data 

collected within 80% of the radius of the arena was analyzed. 

Gait experiments 

Single, lidded, circular arenas were fabricated from acrylic. Individual four-day-old females of 

wild type (N = 56), inactive (N = 17), and nanchung (N = 15) were placed inside and the camera was 

refocused on a region roughly 2 cm x 3 cm. Wings were not clipped for gait experiments. Arenas 

were illuminated as in centroid tracking experiments and video was collected at 60 Hz using FlyCap 

software. The data collected from each trial consisted of two videos per fly, taken when the fly was 

performing a quick, straight run segment (subjectively assessed during data collection). In post-

processing, the faster and straighter of the two videos was chosen for analysis. Both videos were 

rejected if the straight run segment had fewer than 3 full strides uninterrupted by pauses or large 

angular reorientations. Several animals perished over the course of the experiment. The five time-

points had N = 56, 52, 52, 50, 51 (wild type), N = 17, 17, 16, 16, 16 (inactive), and N = 14, 13, 15, 15, 

14 (nanchung). Before each assay, flies were anesthetized with CO2 and then allowed at least 45 
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minutes of recovery. On the first experimental day, each fly performed two assays. First, a pre-

amputation assay was performed. Flies were subsequently anesthetized and amputated. On 

subsequent days (day 1, day 2, and day 3 post-amputation) each fly performed one assay. 

Statistics 

For between-group (wild type to mutant) parameter comparisons, P-values at corresponding 

time-points were found by unpaired t-tests with Welch’s correction to the degrees of freedom. 

Change within-groups was assessed by regression on time post-amputation using all available data 

for each time-point, with P-values corresponding to an F-test against the null hypothesis that the 

slope is not significantly different from zero. 

Gait video analysis 

Video analysis was performed in several steps (schematized in Figure 4.2). Movies were first 

temporally cropped to encompass the full straight run and exclude all other frames. The cropped 

movie was then run through a semi-automated tracking algorithm to determine the fly centroid and 

the endpoints of the legs (Figure 4.3). We then reviewed every frame and either accepted the 

automatic recommendation or hand-corrected the leg endpoints. Then, an algorithm automatically 

sorted legs by calculating the angle between the centroid to head vector and the centroid to leg 

vector. 

Finally, we binarized leg motions into “swing” (off the ground) and “stance” (on the ground) 

for determining gaits. To choose the motion threshold, we noted that apparent motion in the end 

position of a leg has two components: true leg motion and experimenter/measurement error when 

clicking on leg endpoints. We used a Gaussian mixture model to decompose the observed 

distribution of leg motion into these components and chose a threshold of 8 pixels/frame (Figure 
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4.4). We also excluded frames that indicate four legs moving (<1%) from analysis.  

 

Figure 4.2. Video analysis process. Starting with an 8-bit grayscale movie, we perform an 
automatic rough temporal crop to remove the frames before the fly appears. Then, a fine-grained 
crop is performed by manually looking at still frames and determining the first and last frames that 
constitute the run. Then, we run the movie through an automatic tracking algorithm (Figure 4.3) and 
perform hand verification/correction on each frame. The final result is a movie with all leg positions 
tracked. 
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Figure 4.3. Automatic tracking algorithm logic flow chart. The algorithm takes a grayscale 
movie and applies the Otsu method (Otsu, 1979) to quickly find a preliminary threshold for 
converting the frames to binary images. It then sets a maximum and minimum threshold based on 
the preliminary threshold. Using the most aggressive threshold to remove all “non-body” points 
(including legs), we find the centroid of the body and the major axis by fitting an ellipse. Front/back 
symmetry is broken by computing centroid motion and choosing the head as the extremal point on 
the axis in the direction of centroid motion. Then, we use a dynamic thresholding approach by 
sweeping through the acceptable threshold values from maximum (least aggressive) to minimum 
(most aggressive) and automatically identifying the connected component (CC) of interest as the one 
containing the centroid. The acceptance criterion is based on the number of pixels retained in the 
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Figure 4.3 (Continued) CC with the fly being reasonably close to what is expected of a fly 
(acceptable parameter values were found through testing). Once the threshold is set, we keep only 
the CC containing the fly centroid. We then use what we term “dynamic masking” to find leg 
endpoints. The major axis becomes the first mask (the pixels are removed) and we count the 
number of CC. Until the number of connected components is equal to the required number of legs 
(6 legs pre-amputation, 5 legs post-amputation), expand the mask by adding the closest parallel axis 
to the central axis at either end of the current mask and recalculate. That is, remove more and more 
of the fly body in “slices” parallel to the major axis until the appropriate number of connected 
components remains. Then, calculate the minimum geodesic distance from the mask to all points 
within each CC. The leg endpoints are chosen to be the pixels with the maximal distance measure on 
each connected component (if several pixels share the same distance within one connected 
component, choose randomly). This algorithm can yield accuracies greater than 95%, but only with 
high resolution images. In the case of our camera, the algorithm tracked <10% of frames (i.e. all 5 or 
6 legs) sufficiently accurately, so most frames were hand-corrected. 
 
 
 

 

Figure 4.4. Histogram of frame-to-frame leg velocities with a Gaussian mixture model 
overlay. Frame-to-frame leg motion based on semi-automated video tracking appears to be bimodal 
and composed of two components: experimental tracking error and true motion. We used a 
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Figure 4.4 (Continued) Gaussian mixture model with two underlying distributions to fit the data. 
The left distribution (red) corresponds to tracking error, the right (green) to true motion. We chose a 
threshold of 8 pixels/frame to distinguish real motion from measurement errors below the 3 SD 
mark of the left distribution (mean = 0.51, SD = 2.70). 
 

Hidden Markov Model 

A Hidden Markov Model (Baum and Petrie, 1966) assumes unobserved (“hidden”) internal 

states for a system (e.g. gait), each of which results in emitting a measured signal from a set (e.g. 

number of observed legs moving) with some probability. While a common way of characterizing 

gaits is by consider the number of legs moving simultaneously in each frame (Kain et al., 2013; 

Mendes et al., 2013), this methodology has several weaknesses, including potentially introducing 

artifacts due to imaging (misclassifying gaits due to imperfect simultaneity in take-off) that require 

smoothing (Figure 4.5). 

 

Figure 4.5. Canonical tripod gait with frame-by-frame annotation. Canonical tripod gait plot 
from (Strauss and Heisenberg, 1990). Black indicates legs in swing phase, white legs in stance phase. 
Using frame-by-frame annotation as in (Kain et al., 2013) leads to frames with greater than and 
fewer than 3 legs moving, which requires smoothing (Mendes et al., 2013). An HMM provides an 
algorithmic way to smooth gait annotations. 
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Figure 4.6A shows an example of annotated movie frames. These can also be visualized in 

stride-stance plots (Figure 4.6B) that show the legs in stance (white) and swing (blue) as a function 

of time (compare the top panel of Figure 4.6B and Figure 4.5). Instead, we used an HMM-based 

approach. We used 3 hidden states (1-leg, 2-leg, and 3-leg gaits) and four observed states (0-3 legs 

moving). A schematic of the HMM with emission and transition probabilities for wild type flies pre-

amputation is shown in Figure 4.6C. To fit the parameters of this model, we used the Baum-Welch 

algorithm. 

 

Figure 4.6. Example of gait and schematic of Hidden Markov Model (HMM). A. Example of 
a fly with legs moving in alternating tripod gait. Blue circles indicate that a leg will remain stationary 
in the next frame. B. Examples of stride-stance plots for a wild type fly at pre-amputation (top), 
immediately post-amputation (middle), and three days post-amputation (bottom). Frames are on the 
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Figure 4.6 (Continued) horizontal axis and legs are on the vertical axis. White indicates that a leg is 
in swing in that frame, blue indicates that a leg is in stance, and gray indicates amputated legs. The 
top panel shows a typical tripod gait. On day 0 post-amputation, there is a mix of non-canonical gait 
as well as potentially remnants of tetrapod and tripod. On day 3 post-amputation, a clearer tetrapod-
like pattern emerges. C. A schematic of the HMM used to determine gaits. Three hidden states (1-
leg, 2-leg, 3-leg gaits) each have a probability of emitting frames with 0, 1, 2, or 3 legs in swing phase. 
Weights correspond to probabilities for wild type flies pre-amputation. See Figure 4.7 for transition 
probabilities. 
 

First, we aggregated all fly information by strain, stratifying into pre- and post-amputation 

and found emission probabilities. Then, we obtained transition probabilities for each strain and day 

(Figure 4.7). Finally, to obtain gaits, we fit internal states using the Viterbi algorithm as follows. At 

each step through the chain, the algorithm has stored the probability of being in every hidden state 

at the previous step, having come along the likeliest path so far. It then calculates the probability of 

being in each hidden state at the current step given the probabilities of being in each hidden state at 

the previous step (using the transition probability) and the observed value at the current step (using 

the emission probability of the observation), and remembers the hidden state that is most likely 

from this set of options. This state is appended to the likeliest path. The process repeats until the 

end of the chain, creating the full likeliest path through the hidden states. For a high-level 

introduction to HMMs with an application to biology, see (Eddy, 1996). 

 



52 
 

 

Figure 4.7. Transition probabilities between gaits by strain by day from the HMM. Numbers 
with gray background correspond to gait type (that is, “1 to 2” means “1-leg gait to 2-leg gait”). 
Error bars are ±1 SEM. 
 

We verified the results of the HMM on a frame-by-frame analysis (Figure 4.8) of leg motion 

in the pre-amputation data. While the boundaries between “canonical” gaits even in intact animals 

are not always sharp, a frame-by-frame analysis of the most frequent pattern of leg striding during 3-

leg gaits pre-amputation was the standard alternating tripod (135)(246) and the most frequent 

patterns of 2-leg and 1-leg gaits correspond respectively to traditional tetrapod and wave patterns 

(Figure 4.9). We found qualitative consistency between the methods: more frames (5%) were labeled 

tripod by the HMM overall than with the traditional approach, as expected, and 83% of frames 

agreed on tripod labeling with a frame-by-frame approach; more importantly, 15% of frames with 2 

legs moving and 10% of frames with 1 leg moving were labeled tripod. Also intuitively, the state 

transition probabilities from 1-leg, 2-leg, and 3-leg gaits to the 3-leg gait from the HMM were high, 

suggesting that this gait was both more common and more persistent when it occurred (Figure 4.7). 

This is not surprising, since we selected for fast locomotor bouts and higher speed is associated with 

greater persistence of an alternating tripod (Strauss and Heisenberg, 1990; Mendes et al., 2013). A 
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comparison of statistical significance of post-amputation trends also yielded similar results to frame-

by-frame analysis (Figure 4.8). 

 

Figure 4.8. Gait frequency with frame-by-frame analysis. Frequency of 1, 2, 3-leg gaits from 
frame-by-frame analysis of moving legs (rather than HMM analysis). We see a qualitatively similar 
pattern to Figure 4.15A. A statistical analysis reveals that, as in the case of the HMM, there is no 
significant difference in any gaits over time post-amputation for either inactive or nanchung (P > 0.168 
for the slope in all conditions, F-test). In wild type flies, while both the HMM and the frame-by-
frame analysis do not show significant change of the 3-leg gait over time (P > 0.072 for both) and 
both show a statistically significant increase in 2-leg gait over time (P < 0.008 for both), the HMM 
suggests a significant decrease in the 1-leg gait (P = 0.004), while statistical significance is absent in 
the frame-by-frame analysis (P = 0.222).  
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Figure 4.9. Frequency of specific leg patterns in a frame-by-frame analysis. Six-digit label 
indicates which legs are moving. Digits are ordered the same way as the legs in Figure 4.1A from 
bottom to top. A 1 represents leg in swing phase while a 0 represents leg in stance phase. E.g. 
101010 indicates that legs 1, 3 and 5 are in swing phase and legs 2, 4 and 6 are in stance phase – an 
instance of alternating tripod gait. The dashed line is a visual guide at 5%. We see that largely 
canonical gaits are exhibited pre-amputation. 
 

Neuromechanical model 

Complementing the experiment, we also built a neuromechanical model that takes into 

account body motion, leg motion, and a neural controller (see Figure 4.10A for a schematic, with 

capital letter variables corresponding to the body, n represents neural modules, and other lowercase 
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letters represent the legs, and indices run from 1: 6. Without loss of generality, we let module 1, 

corresponding to the front left leg, be the “clock” relative to which all other leg phases were 

measured. When a module is excited beyond a threshold, it drives its corresponding leg to lift off the 

ground (enter swing phase). Legs relax quickly (relative to the excitation duration) to their respective 

forward-most position relative to the body. When the module activity drops below the threshold, 

the leg is placed down on the substrate and exerts force on the body until the next neuronal 

excitation lifts the leg. Body dynamics obey Newton’s laws. 

 

Figure 4.10. Schematic of neuromechanical model of walking. A. Schematic of the theoretical 
model. Data was used to fit all relevant parameters except leg forces (Table 4.1), which were fit 
through an optimization procedure. A central pattern generator sends a signal to the excitable 
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Figure 4.10 (Continued) system (neuronal module). Once the neuron reaches a threshold, it fires 
and the leg that it controls lifts up and follows its own dynamics relative to the body to prepare for 
the next step. When the neuron drops below the threshold, the leg exerts forces on the body, which 

undergoes Newtonian dynamics in (𝑥, 𝑦, 𝜃). A joint parameter, coupling back to the neural system, 
prevents infinite stretch. A full stride occurs when all 6 legs (5 in the amputated case) and the central 
pattern generator repeats its pattern. B. Schematic showing model notation corresponding 
Equations (4.1)-(4.9), and Table 4.1. A signal from the central pattern generator (located in the fly’s 
ventral nerve cord in the thorax) to one limb is shown in the inset and mediates the neuronal 
dynamics that control that limb. 
 

Following the notation used in Table 4.1 and Figure 4.10B, we can then write the governing 

equations coupling the neurodynamics to the body and limb mechanics, as 

𝑀𝑋̈ = (∑ 𝑓𝑖𝑥

6

𝑖=1

) − 𝐵1𝑋̇ (4.1) 

𝑀𝑌̈ = (∑ 𝑓𝑖𝑦

6

𝑖=1

) − 𝐵1𝑌̇  (4.2) 

𝐼Θ̈ = (∑ 𝑚𝑖

6

𝑖=1

) − 𝐵2Θ̇ (4.3) 

[
𝑥𝑖

∗

𝑦𝑖
∗] = 𝑅Θ ([

𝜆𝑖𝑙𝑖
∗ cos(𝜃𝑖

∗)

𝑙𝑖
∗ sin(𝜃𝑖

∗)
] + [

𝑝𝑖𝑥

𝑝𝑖𝑦
]) + [

𝑋
𝑌

] (4.4) 

𝜏𝐿𝑥̇𝑖 = (𝑥𝑖
∗ − 𝑥𝑖)𝐻(𝑛̂ − 𝑛𝑖) (4.5) 

𝜏𝐿𝑦̇𝑖 = (𝑦𝑖
∗ − 𝑦𝑖)𝐻(𝑛̂ − 𝑛𝑖) (4.6) 

[
𝑓𝑖𝑥

𝑓𝑖𝑦
] = 𝑅Θ [

0
𝑐𝑖

] 𝐻(𝑛𝑖 − 𝑛̂) (4.7) 

𝑚𝑖 = (𝑥𝑖 − 𝑋)𝑓𝑖𝑦 − 𝑓𝑖𝑥(𝑦𝑖 − 𝑌) (4.8) 

𝑛̇𝑖 =
1

𝜏𝑛
(−𝑛𝑖 − 𝑣𝑆(𝐻(𝑙𝑖 − (1 + 𝑠)𝑙𝑖

∗) + 𝐻(−𝑙𝑖 + (1 − 𝑠)𝑙𝑖
∗)) + 𝛼𝕀mod(𝜔𝑡−𝜙𝑖,1)>(1−𝛿𝑖) (4.9) 

where Equations (4.1)-(4.3) determine the location of the body center of mass and its orientation as 

a function of the leg forces and torques, Equation (4.4) determines the positions of the tips of the 

legs in terms of the location and orientation of the body, Equations (4.5), (4.6) characterize the over-
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damped dynamics of the legs as a function of the neuronal dynamics, Equations (4.7), (4.8) 

characterize the forces and torques exerted by the legs, and Equation (4.9) characterizes the neuronal 

dynamics controlling the legs. To ensure that the effective leg lengths did not exceed their total 

lengths and prevent unrealistic stances, we also imposed some physical length limits via feedback 

into neural excitation. 

Due to the number of legs and degrees of freedom, the model necessarily has a number of 

parameters. Of the 48 independent equation parameters, 13 were fit for each fly and day (mean ± 

SD for wild type pre-amputation): the excitation pulse frequency (𝜔) (11.4 ± 1.8 pulses/second), the 

proportion of time per stride that each leg spent in stance (𝛿𝑖=1:6) ([0.62, 0.70, 0.66, 0.65, 0.70, 0.68] 

± [0.07, 0.06, 0.06, 0.07, 0.06, 0.06]) and the phase of each leg relative to leg 1 (𝜙𝑖=1:6) ([0, 0.58, 

0.17, 0.48, 0.13, 0.60] ± [0, 0.07, 0.07, 0.06, 0.07, 0.09]). The other parameters were fixed from 

average values reported in the literature and observed in experiment. 

Table 4.1. Model symbols and descriptions. Gray background denotes variables, light yellow 
background represents mathematical functions, dark yellow background denotes parameters that set 
an overall scale/threshold, blue background denotes derived variables/parameters, light green 
background denotes parameters found from literature/experiment, red background denotes tuning 
parameters. Model units are given on the scale of the fly (b.l.u. = body length unit = 2.5 mm, b.m.u. 
= body mass unit = 0.25 mg, a.u. = arbitrary unit for threshold). Values reported for parameters that 

vary in the simulation (𝜔, 𝜙𝑖, 𝛿𝑖) are means for wild type flies pre-amputation. 
 

Symbol Description 
Initial Condition, 
Definition, Value 

𝑿, 𝒀 Center of mass position (𝑥, 𝑦 coordinates) 
𝑋(0) = 𝑌(0) = 0 

𝑋̇(0) = 𝑌̇(0) = 0 

𝜣 Body angle (from vertical) Θ(0) = Θ̇(0) = 0 

𝒙𝒊, 𝒚𝒊 Leg endpoint (𝑥, 𝑦 coordinates) 
𝑥𝑖(0) = 𝑥𝑖

∗ 

𝑦𝑖(0) = 𝑦𝑖
∗ 
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Table 4.1 (Continued) 

𝒏𝒊 Neuron activity 𝑛𝑖(0) = {
1, 𝑖 = 1,3,5

 0,  𝑖 = 2,4,6
 

𝒕 Time 0 s 

𝑯(𝒙) Heaviside function 𝐻(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

𝝀𝒊 Left/right index function 𝜆𝑖 = {
−1, 𝑖 ∈ {1,2,3}
1, 𝑖 ∈ {4,5,6}

 

𝑹𝜽 
Clockwise rotation matrix (𝜃 is positive in 
the counterclockwise direction) 

Rθ = (
cos (θ) sin(θ)

−sin(θ) cos(θ)
) 

𝕀𝑪 Indicator variable 𝕀𝑪 = {
1, 𝐶 = True
0, 𝐶 = False

 

𝑴 Mass 1 b.m.u. 

𝑳 Body length 1 b.l.u. 

𝝉𝑳 Leg relaxation time-scale 10 ms 

𝝉𝑵 Neuron relaxation time-scale 10 ms 

𝒗𝑺 
Neuron relaxation amplitude if stretch 
exceeds bounds 

1 a.u. 

𝒏̂ Neuron firing threshold 0.9 a.u. 

𝜶 
Neuron excitation amplitude when excited 
by the central pattern generator 

1 a.u. 

𝑰 Inertia 0.01 b.m.u. x b.l.u.2 

𝒎𝒊 Torque from leg 

 

𝑚𝑖 = (𝑥𝑖 − 𝑋)𝑓𝑖𝑦 − 𝑓𝑖𝑥(𝑦𝑖 − 𝑌) 
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Table 4.1 (Continued) 

𝒇𝒊𝒙, 𝒇𝒊𝒚 Force from leg 𝑖 in the 𝑥, 𝑦 direction 

 

[
𝑓𝑖𝑥

𝑓𝑖𝑦
] = 𝑅Θ [

0
𝑐𝑖

] H(𝑛𝑖 − 𝑛̂) 

 

𝒍𝒊
∗ Relaxed leg length (relative to body) 𝑙𝑖

∗ = {
0.59, 𝑖 = 1,4
0.66,  𝑖 = 2,5
0.42,  𝑖 = 3,6

 

𝜽𝒊
∗ Relaxed leg angle (relative to body) 𝜃𝑖

∗ = {
1.19,  𝑖 = 1,4
0.33, 𝑖 = 2,5

−0.69,  𝑖 = 3,6
 

𝒍𝒊 Leg length 𝑙𝑖 = |[
𝑥𝑖

𝑦𝑖
] − (𝑅𝜃 [

𝑝𝑖𝑥

𝑝𝑖𝑦
] + [

𝑋
𝑌

])| 

𝑾 Body width 0.34 b.l.u. 

𝑩𝟏 
Translational damping. Body is in over-
damped regime 

1.5 b.m.u./s 

𝑩𝟐 
Rotational damping. Body is in over-
damped regime 

1.5 b.m.u. x b.l.u2/s 

𝒑𝒊𝒙, 𝒑𝒊𝒚 
Position of leg-body attachment point (𝑥, 𝑦 
coordinates) 

𝑝𝑖𝑥(0) = 𝜆𝑖 ∗ 0.05 
 

𝑝𝑖𝑦(0) = {
0.20,  𝑖 = 1,4

0,  𝑖 = 2,5
−0.11, 𝑖 = 3,6

 

𝒙𝒊
∗, 𝒚𝒊

∗ 
Relaxed leg endpoint position (𝑥, 𝑦 
coordinates) 

𝑥𝑖
∗(0) = 𝜆𝑖 {

0.27, 𝑖 = 1,4
0.67,  𝑖 = 2,5
0.37,  𝑖 = 3,6

 

 

𝑦𝑖
∗(0) = {

0.75, 𝑖 = 1,4
0.21,  𝑖 = 2,5

−0.37,  𝑖 = 3,6
 

𝒔 Maximum stretch ratio (“physical joint”) 2 

𝝎 Excitation pulse frequency 11.4 strides/s 

𝜹𝒊 Proportion of time leg is down per stride [0.62, 0.70, 0.66, 0.65, 0.70, 0.68] 
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Table 4.1 (Continued) 

𝝓𝒊 
Excitation pulse phase relative to 𝜙1 (when 
leg is lifted) 

[0, 0.58, 0.17, 0.48, 0.13, 0.60] 

𝒄𝒊 Force magnitude optimization 

 

We used this model to simulate multiple strides with a first-order method for numerical 

simulation with a step size ℎ = 0.001. After a short transient (2-3 strides), the walking behavior 

converged to a steady state and generated a speed of approximately 0.65 body lengths/stride, 

consistent with published results (Wosnitza et al., 2013) and our own measurements. As in 

experimental observations, flies with right foreleg amputation have a counter-clockwise locomotor 

angular bias. 

Angular bias-turning bias calibration 

In order to convert model angular bias output to experimentally observed turning bias in the 

arena, we built a calibration curve. We simulated simple rules for walking flies in an arena: start at a 

random place in the arena facing in a random direction. Move at a constant speed in the chosen 

direction. At each step 𝑘, choose a new direction using a local rule: 𝜙𝑘 = 𝜙𝑘−1 + 𝜙′, where 

𝜙′~𝑁(𝛽, Δ). Here, 𝛽 is the angular bias (the horizontal axis of the calibration curve) and 𝛥 is 

random heading drift (the standard deviation of the normal distribution). If a wall collision occurs, 

choose a new heading by masking out the original heading distribution (disallowing angles that 

would result in a wall collision) and renormalizing. If this would cause a machine precision error, 

choose the new heading to be the angle between the current position and the center (𝜃) modified by 

± (
𝜋

2
+ 𝜀), where 𝜀 is a small parameter and the negative sign is chosen with probability 

|𝜃+
𝜋

2
−𝜙𝑘−1|

𝜋
, 

with the numerator lying in the range (0, 𝜋). The paths formed by this procedure qualitatively mimic 
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those of real flies. As in the calculation of 𝜇 – the weighted average (𝜃 − 𝛿) Figure 4.1B) – from our 

experimental arena data, we calculated 𝜇 from simulated paths by only examining behavior when the 

fly is within a distance 0.8𝑅𝑎 from the arena center, where 𝑅𝑎 is the arena radius. 

To build the calibration curve, we first matched heading drift by fitting simulated 𝜃 − 𝛿 

histograms at a fixed bias 𝛽 = 0 to the corresponding wild type pre-amputation histogram from 

experiment and minimized least square error. Since the fitted heading drift (𝛥 = 0.035) did not give 

a large enough dynamic range for 𝜇 to recapture all experimental results, we shifted it to be as close 

as possible to the fit while capturing the necessary dynamic range (𝛥 = 0.029). The paths generated 

by this compromise heading drift value are still qualitatively reasonable (Figure 4.11). Finally, we 

built the curve (Figure 4.12) by sweeping 𝛽 and plotting 𝜇 (averaged over 50 runs, each run 

consisting of 104 simulation steps). Fitting a quadratic function gives an excellent fit over the range 

of interest (R2 = 0.999). We used the analytical expression for the fit as the final calibration curve. 

 

Figure 4.11. Random walk simulation path examples. A. Typical simulated paths (left panel): 
angular bias = 0, (right panel): angular bias = 0.03. Blue indicates a clockwise path segment and red 
indicates a counterclockwise segment. Thus, tuning the angular bias parameter allows us to mimic 
the turning bias imparted by amputation. 
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Figure 4.12. Calibration curve for converting between model output (angular bias) and arena 
locomotion turning bias (µ). Heading drift was chosen to be closest to a best fit to pre-amputation 
wild type turning bias histogram data (with bias = 0 in the simulation) while permitting the necessary 
dynamic range for µ. The blue curve is average value over 50 runs for each value of angular bias. 
The red curve is a quadratic line of best fit (R2 = 0.999). 
 

Optimization 

The optimization goal was to find a set of leg forces acting on a fly with averaged parameters 

to match the experimental 𝜇 from the calibration curve (for each of the three strains and each day 

determined separately). We ran the model to 5 strides (to steady state) and took the angular bias in 

the last stride to calculate the energy of the proposed solution. We ran a simulated annealing 

optimization procedure (Kirkpatrick Jr et al., 1983) using a normalized annealing schedule with 

initial temperature 𝑇1 = 1, an annealing interval of 𝐼𝑎 = 75 steps, and a multiplicative cooling factor 

𝐶𝑎 = 0.9. A full simulation was run without re-heating to 𝑁𝑎 = 1.5 × 103 steps, which was found 

to be sufficient to consistently converge. At each step 𝑘, the number of forces that were changed for 

the proposal was ⌈3𝑇𝑘⌉. Starting with 𝑐𝑖 = 0.25 on each leg, we allowed the forces on the left side 

to change (allowing all forces to change leads to similar results but takes longer to converge): 
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𝑐𝑖
𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 = 𝑐𝑖

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑢, where 𝑢 ~ 𝑈(−𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝜏𝑚, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝜏𝑚) and 𝜏𝑚 is a parameter that 

makes the proposal distribution tighter. Proposals for each leg were constrained to lie in the interval 

𝑓𝑎 = [0.1,0.25] (again for faster convergence – in practice, the average optimal forces on the left 

side were not even close to the lower bound even for the lowest target 𝜇).The energy of a proposed 

solution was the distance between the absolute values of the target bias given the real 𝜇 (from the 

calibration curve) and the angular bias as calculated from model output (angle difference during the 

last stride/distance moved during the last stride). The acceptance probability was a Boltzmann 

function with normalized energy and a multiplicative “convergence factor” 𝛾: 𝑝 =

𝑒
−

𝛾(𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . Symbols used in the calibration curve procedure and simulated annealing are 

summarized in Table 4.2. 

Table 4.2. Calibration curve and simulated annealing symbols and descriptions. Green 
background is for symbols used in calibration curve simulation and blue background is for symbols 
used in simulated annealing. 

Symbol Description Value 

𝑵𝒓 Number of runs 50 

𝑵𝒄 Number of simulation steps 104 

𝝓 Heading direction varies 

𝜷 Heading bias varies 

𝜟 Heading drift 0.029 

𝑹𝒂
 Arena radius 10.2 cm 

𝑵𝒂 Number of steps in annealing 1.5×103 

𝑰𝒂 Annealing interval 75 

𝑪𝒂 Cooling factor 0.9 
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Table 4.2 (Continued) 

𝑻 Temperature varies 

𝒇𝒂 Proposal interval [0.1, 0.25] 

𝝉𝒎 Proposal tuning parameter 0.15 

𝑬 Energy of solution varies 

𝜸 Acceptance tuning parameter 5 

𝒑 Acceptance probability 
𝑒

−
𝛾(𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑−𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡  

 

Results 

Proprioception mediates locomotor recovery after injury 

First, we investigated path-level behavior of adult Drosophila before and after amputation of 

the right foreleg. Individual flies were allowed to explore circular arenas for 2 hours, and the X-Y 

positions of their centroids were tracked and recorded. Approximately 24 hours later, the right 

foreleg was amputated and flies were recorded in the arena 1 hour, 24 hours, 48 hours and 72 hours 

post-injury (all sample sizes were between 9 and 30). Visual inspection of characteristic paths of wild 

type flies (Figure 4.13A) suggests that injury caused behavior to change from 1) paths composed of 

roughly equal portions of clockwise and counterclockwise segments to 2) highly biased, slow walking 

in the direction opposite to the leg that was removed immediately post-amputation and then 3) back 

to a largely unbiased walk three days post-amputation. 

To provide a quantitative characterization of locomotor bias, we measured the “mu score” 

(Buchanan et al., 2015): the weighted average direction (𝜇) of the tangential component of the 

velocity relative to the center of the arena (Figure 4.1B). The vast majority of paths were around the 
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edges of the arena rather than directly inwards or outwards. Consequently, 𝜇 is largely invariant 

across spatial scales used in its calculation (i.e. the frame rate or mean interval used to determine 

direction of motion) within a broad range (Figure 4.14), suggesting that it is a robust measure of 

bias. 

 

Figure 4.13. Turn bias recovery analysis. A. Representative sample fly paths over time (top 
panel). Gray is pre-amputation, yellow is day 0 post-amputation, green is day 3 post-amputation. 
Paths divided into segments of equal length (bottom panel), and aligned to start all in the same 
direction (arrow). The strong turning bias immediately post-amputation is evident. B. Histograms of 
turning behavior. Inset numbers indicate average μ value. Histogram symmetry about the center 
indicates unbiased behavior and µ values close to 0. Shaded regions indicate ±1 SEM (9 < N < 30 
for all experimental groups). From a bootstrapping analysis, we find that the distribution for wild 
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Figure 4.13 (Continued) type flies is not significantly different between pre-amputation and day 3 
post-amputation (P = 0.372), while the distributions are significantly different between pre-
amputation and all post-amputation days in inactive and nanchung (P < 0.001). Stars indicate 
significance levels, here and elsewhere: *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
 
 

 

Figure 4.14. The µ score is broadly scale invariant. Calculation of 𝜇 at different effective frame rate 

(number of points used) from simulated fly paths on an arena. 𝛥 = 0.029, 𝛽 ∈ [−0.03,0.03], 𝑁 =
100 runs per point. Errors are ±1 SEM We find that 𝜇 is largely invariant over an order of 
magnitude difference in frame rate sampling. 
 

A score of 𝜇 = 0 corresponds to perfectly unbiased locomotion (flies moving clockwise and 

counterclockwise to the same extent) while -1 < 𝜇 < 0 corresponds to an overall counterclockwise 

bias and 0 < 𝜇 < 1 corresponds to an overall clockwise bias. For wild type animals, we find that on 

average they start unbiased before amputation (𝜇 = -0.006), develop a very strong bias immediately 

post-amputation (𝜇 = -0.410), and steadily recover towards an unbiased state over the next three 

days (𝜇 = -0.031) (Figure 4.13B). To compare 𝜇 values pre- and post-amputation, we performed a 

bootstrapping analysis, generating 105 (𝜃 − 𝛿) histograms resampled from each strain’s respective 
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pre-amputation histogram and calculating 𝜇. We computed 5×105 experimental resamples, drawing 

random subsets with sizes matching the sample sizes of the post-amputation experiments of those µ 

values (9 < N < 30 for all experimental groups). The number of instances (𝑘) out of 5×105 in which 

the pre-amputation distribution produced average 𝜇 values as or more extreme than observed in the 

post-amputation experiments was recorded. To be conservative in our estimation of the P-value, the 

upper bound on P at which 𝑘 instances would be expected with probability greater than 0.025 was 

used prior to a P-value correction for 12 multiple comparisons using the formula 𝑃∗ = 1 −

(1 − 𝑃)12. The difference in pre- and post-amputation distribution is not statistically significant 

after three days (P = 0.372). 

We next sought to further characterize the mechanosensory basis of motor recovery. Since 

proprioception allows the fly to learn about the stretch and location of its limbs and thus control 

them and the forces they exert, we hypothesized that disrupting proprioceptive feedback would 

hinder a fly’s ability to adapt its locomotor behavior post-injury. The TRPV ion channels Inactive 

and Nanchung are co-expressed in the proprioceptive organs of the fly, including the chordotonal 

organs of the femur, tarsi, and antenna. It is known that they are required for wild type locomotion 

and hearing (Kim et al., 2003; Gong et al., 2004). As with wild type animals, flies mutant for inactive 

(iav3621) exhibited little clockwise/counterclockwise bias while exploring the arena pre-amputation (𝜇 

= -0.026), and biased walking immediately following injury (𝜇 = -0.247). However, unlike wild type 

animals, iav3621 flies failed to recover close to their baseline (𝜇 = -0.129 after three days). In nanchung 

mutants (nan36a), the recovery failure is even more pronounced (𝜇 = -0.250 after three days). For 

both inactive and nanchung mutants, the distribution on day 3 was still significantly different from pre-

amputation (P < 0.001). In nanchung mutants, we observed a larger bias in the days following 

amputation than immediately post-amputation, with the bias on day 3 post-amputation being the 
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same as that on day 1 post-amputation. Overall, while mutants did not exhibit as large a bias as wild 

type flies immediately post-amputation, their turning bias persisted for the entire duration observed, 

in contrast to wild type. Together, the behavior of the wild type and mutants before and after 

amputation implicate proprioception as important for recovery. How this happens requires a 

detailed analysis at the level of individual legs. 

Injury alters gait permanently 

In order to gain insight into the biomechanical processes underlying recovery, we turned to a 

finer-grained analysis of leg motion. We recorded video of flies walking before amputation, followed 

by recordings 1 hour, 24 hours, 48 hours, and 72 hours after amputation. For the gait data, we 

analyzed 50 ≤ N ≤ 56 (wild type), 16 ≤ N ≤ 17 (inactive), and 13 ≤ N ≤ 15 (nanchung) walking bouts 

at each time-point, with the slight variation due to fly death or post-processing rejection of runs. 

Instead of measuring locomotion across entire circular arenas, we captured bouts of fast, straight 

walking through the middle of arenas at 60 Hz. Using custom semi-automated leg-detection 

software we recorded the position of all 6 (or 5 post-amputation) legs frame-by-frame. Figure 4.6A 

shows annotated frames of a fly moving in a typical (135)(246) tripod gait. Figure 4.6B shows stride-

stance plots to visualize leg positions on the ground (white) and off the ground (blue) as a function 

of time. The pre-amputation stride-stance plot is an example of a typical tripod pattern. Immediately 

post-amputation, we see a non-canonical gait with what may be residual hints of tripod or tetrapod 

gait. On day 3 post-amputation we see an apparent tetrapod-like gait. 

One way of characterizing gaits is on a frame-by-frame basis by considering the number of 

legs that are concurrently in swing phase (Kain et al., 2013; Mendes et al., 2013). However, this 

approach is not always satisfactory for several reasons (Wosnitza et al., 2013). Experimentally, since 

in reality swinging different legs is not done exactly simultaneously, there can be error introduced by 

imaging, which requires smoothing (Mendes et al., 2013). Second, from the point of view of more 
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faithfully capturing the underlying processes, a frame-by-frame analysis does not treat gaits as 

persistent behavioral states. It is also not immediately apparent how to apply the standard gait 

categorization rules to flies with 5 legs, as many prior states become highly degenerate. Therefore, to 

estimate the frequency of internal gait states, we assigned a gait label to each movie frame that is not 

based on the observed pattern set of legs in swing phase in that exact frame, but is instead the state 

of a Hidden Markov Model (HMM). This captures the spirit of gaits as persistent internal states 

which have respective probabilities of showing 1, 2 or 3 legs moving simultaneously, and is an 

algorithmic alternative to hand-tuning windows. To avoid ambiguity, we refer to these hidden states 

as “3-leg”, “2-leg”, and “1-leg” gaits, without distinguishing between which groups of legs move 

(though as seen in Figure 4.9, the predominant 3-leg motions pre-amputation correspond to 

canonical tripod and 2-leg motions to canonical tetrapod).  

This allowed us to consider the relative frequencies of 1-leg, 2-leg, and 3-leg gaits (Figure 

4.15A). In all three genotypes – wild type, inactive, and nanchung – we observed that the 3-leg gait 

frequency drops dramatically from pre-amputation to immediately post-amputation. In all three 

genotypes 3-leg gait frequency did not have a significant change over the post-amputation period (P 

> 0.060, F-test), remaining near 0. Interestingly, wild type flies showed some gait plasticity (there 

was a significant increase post-amputation in the frequency of 2-leg gait, P = 0.003), whereas both 2-

leg gait and 1-leg gait did not change discernibly over the three-day period in either inactive or 

nanchung (P > 0.647 for all conditions). For all strains, speed immediately post-amputation decreased 

relative to the pre-amputation value (by 34% for wild type, 14% for inactive, and 56% for nanchung). 

While there was an upward trend in wild type and nanchung flies over three days, speed did not return 

close to baseline at the end of the three-day period for any of the strains (Figure 4.15B). 
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Figure 4.15. Analysis of parameters that may lead to recovery of unbiased turning. A. 
Frequencies of gaits for wild type, inactive, and nanchung mutants found from the HMM. N ≥ 50 (wild 
type), N ≥ 16 (inactive), and N ≥ 13 (nanchung) across all time-points. The frequency of 3-leg gait 
decreases from pre-amputation and does not recover significantly for any strain post-amputation (P 
> 0.060, F-test). Wild type flies exhibit some post-amputation gait plasticity, in contrast to the 
mutant strains. These results are correlated with walking speed. Individual dots on the post-
amputation day lines for inactive and nanchung show significance levels of comparing gait frequency to 
the corresponding wild type time-point (unpaired t-test with Welch’s correction). B. Speed by strain 
by day relative to pre-amputation value. Speed never recovers to the pre-amputation value, but wild 
type has a statistically significant upward slope (P = 0.001, F-test) which is not present in inactive (P 
= 0.741) or nanchung (P = 0.116). C. Ratio of right side average to left side average of various 
measures (leg distance moved per stride, proportion of time legs spend in on the ground, and leg 
distance from centroid at placement). The mean distance of the legs from the body centroid, at step 
placement, becomes lopsided (splayed to the left) after amputation for wild type and inactive, though 
it recovers significantly post-amputation for inactive (P = 0.017, F-test) and not wild type (P = 0.182). 
In nanchung mutants, it does not change from baseline. The mean distance moved by the tarsi on 
each side per stride and the proportion of time a leg is down in stance on the right side vs. the left 
side does not show significant recovery for any strain (P > 0.188). 
 

Leg coordination pattern is correlated with walking speed, and hence the lack of recovery 

seen in both walking speed and gait may be related. Wild type flies walking at higher speeds tend to 
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use more legs (Wosnitza et al., 2013) and we found that this general pattern persists post-

amputation. Interestingly, we found that the proportions of the number of legs swinging versus 

speed do not change significantly over the three-day period following amputation (the 95% 

confidence intervals overlap at nearly all points) (Figure 4.16). 

Overall, as with 2-leg gait, walking speed shows a significant upward trend for wild type (P = 

0.001, F-test) and not inactive (P = 0.741) or nanchung (P = 0.116). However, neither of these 

phenomena recapitulates the pattern seen in turn bias recovery. For instance, both wild type and 

inactive mutants exhibited a predominant proportion of 2-leg gait three days post-amputation (even 

though inactive mutants continue to have a turn bias), and the speed-coordination relationship 

remains largely the same at all days post-amputation for wild type. Thus, the mechanism of turning 

bias recovery could also lie elsewhere. 

 

Figure 4.16. Relative gait frequency by speed range. Proportion of each gait within a speed bin 
(bin width = 1 body length/second) for wild type flies pre-amputation, 0 hours, and 72 hours post-
amputation (three left panels; solid colors = mean, transparent white overlay = 95% confidence 
interval), and a separate overlay of 95% confidence intervals on the boundaries of coordination 
patterns for the three days (right panel; gray = pre-amputation, yellow = 0 hours, green = 72 hours 
post-amputation). Bins were only analyzed that had ≥ 5 data points. Pre-amputation, higher speeds 
correspond to a dominant 3-leg gait, and lower speeds to larger proportions of 2-leg and 1-leg gaits. 
The speed-coordination pattern does not change significantly over the three-day period post-
amputation (confidence intervals overlap at nearly all points throughout the speed range). 
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Many leg parameters vary little through amputation and recovery 

Turning back to the frame-by-frame analysis, we searched for other leg parameters (Figure 

4.15C) that displayed dynamics matching those of turning bias, i.e. those responding to amputation 

in all genotypes (with a larger effect in wild type), and largely recovering by day 3 (relative to 1 hour 

post-amputation) in the direction of pre-amputation levels only in wild type animals. 

We found that the mean distance of the legs from the body centroid, at step placement, becomes 

lopsided (splayed to the left) after amputation and fails to change discernibly for wild type (P = 

0.182, F-test) but not inactive (P = 0.017). In the case of nanchung mutants, it does not change 

significantly from pre-amputation. The average distance moved by the tarsi on each side per stride 

does not change discernibly for any strain (P > 0.188). Similarly, the proportion of time a leg is 

down in stance on the right side vs. the left side stays essentially constant for all strains (P > 0.221) 

through the three-day period. Thus, none of these parameters on its own follows the qualitative 

pattern of turn bias recovery. However, it remains a possibility that the changes in a combination of 

these parameters in the action of walking could collectively explain turn bias recovery. To examine 

this, we now turn to a neuromechanical model of fly walking. If the virtual fly’s turn bias follows the 

experimental turn bias pattern after fitting parameters from experiment, they may be sufficient to 

explain turn bias recovery. 

Neuromechanical modeling implicates force modulation in recovery 

The model framework (Figure 4.10A) featured three essential components: the brain which 

controls the legs, the body, and interaction with the environment mediated by the forces applied by 

the legs. We treated the neural component as a central pattern generator with 6 neuronal modules 

(one per leg) – see (Ijspeert, 2008) for an overview. We fit geometric and kinematic parameters with 

values reported in the literature (e.g. Mendes et al., 2013) and observed in our experiments (i.e. 
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Figure 4.15C), leaving only leg forces as free fitting parameters. The neuronal modules send a signal 

to the legs after reaching a threshold, which causes the legs to respond by exerting forces on the 

ground, so that the body moves according to the forces and torques it feels from the legs. This 

motion drives sensorimotor proprioceptive feedback to the neuronal module and the cycle repeats. 

In order to compare the angular velocity output of the model (angular bias) to the arena 

locomotion turning bias, we determined a calibration curve (Figure 4.12). To do so, we used a 

simple arena path simulation that had angular bias as a tunable parameter and also captured realistic 

arena-scale behavior (Figure 4.11). 

When we ran the model using all empirical parameters but held the force applied by each leg 

constant, all three genotypes exhibited no recovery in turn bias post-amputation (Figure 4.17A). If 

anything, all three lines exhibited increased bias with time, implying that the parameters we have 

measured so far are insufficient to explain recovery. Therefore, we examined whether force 

modulation would allow the model to exhibit turn bias recovery. 

A Monte Carlo optimization approach allowed us to find a ratio of leg forces between right 

and left legs which yielded the appropriate angular bias. We did this for each strain and day using 

averages of the measured parameters. For example, to determine the leg forces needed to generate 

the locomotor turning bias observed in nanchung flies on day 2 post-amputation, we supplied the 

average time between strides, proportion of time each leg is down per stride, and leg phases, as 

measured directly from the corresponding video recordings. Leg forces that yielded 𝜇 values 

matching experimental values were then determined over the course of recovery. 

This approach was able to recapitulate the overall trajectory of fly locomotor behavior in 

response to injury (mean discrepancy < 1%) (Figure 4.17A). By tuning the leg forces, the strong 

turning bias induced immediately after amputation could be undone. Thus, modulation of force 
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appears to be sufficient to recapitulate turn bias recovery. As there was no recovery in its absence, 

the model suggests that force modulation may be necessary for turn bias recovery. 

 

Figure 4.17. Model results show that tuning leg forces can capture the recovery profile. A. 

Turning bias (𝜇) determined from angular bias of simulated flies without and with force modulation 
using the turn bias-angular bias calibration curve. With force held constant (black lines) the model 
predicts that there would be no recovery of turn bias towards baseline from immediately post-
amputation to day 3 post-amputation for all strains. With force tuning optimized to match observed 
recovery on a fly simulated with averaged parameters for each experimental group (orange lines), the 
experimental recovery profile (red lines as visual guide) can be recapitulated for all strains. Error bars 
are ±1 SEM. B. Force change required in each leg separately to fit the recovery profile. The dashed 
line is a visual guide indicating no force change. Means describe average total force exerted on the 
right side compared to the left side. The middle leg (red) requires the least change to fit a target 
recovery profile, followed by the hind (yellow) and front leg (blue). The recovery towards baseline is 
statistically significant for all legs in wild type (P < 0.038, F-test). In mutants, the slope is 
significantly positive only for the front leg of inactive (P < 0.001). Based on single-leg comparison, 
wild type flies tune force more than mutants over time to obtain a larger recovery effect. 
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Figure 4.17B shows the ratio of total leg forces on the right and left sides that yield simulated 

locomotion matching observed turn bias values, when the force parameter (𝑐𝑖∈{1,2,3}) is swept 

linearly exclusively in one leg at a time (across all 5 legs, there are many combinations of force 

modulation that succeed.) The model suggests that the middle and hind legs require smaller force 

changes than the front leg to achieve a particular directional bias profile, and that this change is 

larger in wild type flies over the course of recovery. The recovery was significant for all legs in wild 

type (P < 0.03, F-test), though the modulation required in the middle legs to achieve turn bias 

recovery was markedly smaller than the front and hind legs, while among mutants, the recovery was 

only significant and positive for the front leg in inactive (P < 0.001), suggesting that wild type flies 

modulate force more significantly to achieve recovery. 

Discussion 

We see that wild type flies initially spend equal portions of time exploring in clockwise and 

counter-clockwise directions (Figure 4.13B). After amputation of the right foreleg, they exhibit a 

strong counter-clockwise bias. However, after three days, their behavior is largely unbiased. By 

contrast, inactive mutants recover approximately half-way from the maximum bias post-amputation 

and nanchung mutants do not recover at all. Moving from a behavioral assay to a gait analysis, we also 

considered the motion of individual legs. While the 3-leg gait never completely vanishes (either in 

the wild type or in the mutants), it is nonetheless marginalized starting immediately post-amputation 

and does not recover over three days even as turning bias does. Intriguingly, wild type flies appear to 

exhibit changing gait behavior post-amputation, with a significant increase in 2-leg gait and decrease 

in 1-leg gait, while the probability of using 3-leg gait remains unchanged. The probabilities of using 

1-leg, 2-leg, and 3-leg gaits do not change significantly over time in mutants, though inactive appears 
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to favor a 2-leg gait immediately post-amputation while nanchung favors the 1-leg gait. This suggested 

that gait learning and recovery may be tied to proprioception. 

The simple fact of a predominant 2-leg gait at the end of the experiment is unlikely to 

explain the observed recovery. After all, both wild type and inactive exhibit a similar predominant 

proportion of 2-leg gait three days after recovery (the difference is not significant; P = 0.217), and 

indeed the inactive mutants reach it first. Further, as we saw in the model, unbiased walking could not 

be achieved without force modulation; phase modulation alone was insufficient. 

We then considered measures of several other parameters on a leg-by-leg basis, but found 

that they were insufficient to explain turn bias recovery. In some insects, it is known that different 

legs may play different roles in locomotion. For instance, in cockroaches, front legs are used more 

for steering and hind legs more for propulsion (Mu and Ritzmann, 2005). However, even for wild 

type flies, the difference in the remaining front leg distance from the centroid between 1 hour and 

72 hours post amputation was <1%, suggesting that leg placement alone cannot account for the 

observed changes in walking direction during recovery. While several potential parameters of 

interests such as the average distance legs moved per stride and the proportion of time spent in the 

air during a stride are likely to be relevant, examining both individual leg and comparisons between 

the right and left side averages for all of these parameters did not yield a satisfactory explanation for 

the observed recovery of turning bias in walking; for instance, none showed the same qualitative 

pattern as Figure 4.13B. However, it remained a possibility that the small differences in these 

parameters could, in combination, explain turn bias recovery. 

To test this, we developed a minimal Newtonian physical model for leg and body motion. 

After fitting all parameters from experiments, we were left with one tuning parameter: force. 

Holding force constant at pre-amputation levels yielded no turn bias recovery (Figure 4.17A). 

Tuning the forces exerted on each leg through a Monte Carlo optimization procedure to match the 



77 
 

average angular bias of flies within each experimental group, we found that we were able to 

recapitulate observed turning bias scores. Tuning force in the middle legs had the largest effect on 

turning bias. Therefore, the model suggests that force modulation appears to be necessary and 

sufficient to explain turn bias recovery, given the measured values of all other biophysical 

parameters and gait patterns. Our findings imply a space of leg force modulation solutions. Many 

combinations of force modulation across all 5 legs can balance average forces between the left and 

right sides of the animal, and flies likely change forces in all their legs as part of recovery. The front 

leg might be a special case due to having no contralateral leg to act against. It may be possible for a 

real fly to modulate the force from that leg with little constraint (e.g. by largely unloading it to 

become more “four-legged,” thereby restoring symmetry). 

This suggests that the coordination of forces exerted by each leg is a general mechanism 

which an animal can control to achieve unbiased walking. Second, this observation posits a fine-

grained behavioral manifestation of proprioceptive defects. A number of studies have shown that 

deciphering forces and proprioceptive feedback are important in generating stable patterns/gaits 

(Pearson, 1972; Ridgel et al., 2000; Zill et al., 2004; Fuchs et al., 2012) (for a review from a modeling 

perspective see (Holmes et al., 2006); for a review with a more biological perspective, see 

(Delcomyn, 2004)) and may “directly influence [central pattern generators] and motoneurons to 

maintain phase relations in a decentralized, peripheral manner” (Holmes et al., 2006) through 

feedback. Proprioception has also been implicated in walking direction in e.g. stick insects (Akay et 

al., 2007). Equally important has been an exploration of the interplay of proprioception and recovery 

in motor control in various insects. For example, Page and Matheson considered locusts and found 

a shift in limb movements intended for scratching after a surgery-induced decrease in 

proprioception, followed by recovery to pre-surgery values over the course of a week (Page and 

Matheson, 2009); Buschges and Pearson discovered that the removal of wing proprioceptors in 
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locusts led to a decreased recovery of the flight motor pattern after wing injury (Buschges and 

Pearson, 1991; Buschges et al., 1992). Our study points to proprioception as a critical player in 

mediating orientation profile plasticity by determining how well an animal can control the individual 

forces it exerts. In other words, perhaps a proprioception-defective fly “wants” to exert more force 

on the right-hand side to counteract the effect of an amputated leg, but it cannot sense exactly how 

much force it is actually applying and is therefore doomed to continue making the same ineffectual 

exertions. 

We note that the TRP channel mutants we considered have defects in various sensory 

structures, including all chordotonal organs across the body. The most relevant ones to this study 

are likely the legs, but it is possible other organs are involved, such as those between the abdominal 

segments. These possibilities could potentially be resolved using the Drosophila transgenic toolkit by, 

for example, using intersectional genetics to target iav- or nan-expressing neurons only in the leg. 

Inducible promoters could be used to compare the injury response of animals with inhibited 

chordotonal neurons to those with normal neuronal activity, while holding genotype constant. This 

would provide an advantage over the mutant approach, which might be confounded by other 

differences in genetic background. 

Other proprioceptive organs than the chordotonal organs could be involved as well. For 

example, the campaniform sensilla (Zill et al., 2004) are known to measure force within the cuticle 

and could be part of post-injury force modulation. Chordotonal organs, by contrast, are generally 

considered to be stretch rather than force sensors, but if the nervous system encodes the mass of the 

animal, the information encoded by a dedicated stretch sensor could be used to compute force. 

Specifically, stretch-sensitive neurons that encode position, could stimulate a sequence of high-pass 

filtered (i.e. rapidly adapting) downstream neurons, which can readily compute signal derivatives. 

Multiplying the activity of these downstream neurons by the encoded mass value would produce a 
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neural code for force downstream of chordotonal organs. More directly, it has been experimentally 

observed in stick insects that the afferent projections of different proprioceptive organs (including 

the femoral chordotonal organs and campaniform sensilla) can interact by exerting presynaptic 

inhibition on each other (Stein and Schmitz, 1999). This phenomenon appears to be conserved in 

the Pancrustacea as the chordotonal neurons of crayfish impart presynaptic afferent depolarization 

on sensory neurons innervating touch-sensitive bristles on swimming limbs, but only at speeds 

matching those of locomotion (Newland et al., 1996). Thus, even if the chordotonal dendrites 

encode only position, the chordotonal neurons could encode force by virtue of their interaction with 

campaniform neurons. 

Conclusion 

This study points to a number of avenues for future work. One important direction is a 

closer experimental analysis of the effects of the proprioceptive defects on locomotion. A natural 

question is “how much does each part of the neuronal circuit lead to recovery failure?” In this 

context, one could consider the effect of stum, which is critical for transduction of mechanical 

stimuli in a subpopulation of proprioceptive neurons responsible for sensing joint angles (Desai et 

al., 2014) and nompC, which is required to have virtually any mechanosensory signaling such as a 

response to changing joint angles (Chadha et al., 2015). Another direction is performing similar 

experiments e.g. in larger hexapods (where forces are easier to measure) or tetrapods. It may also be 

interesting to better characterize coordination patterns (gaits) in animals after surgery. 

From a modeling perspective, an interesting extension would be to define a neural network 

with dynamic connections between neuronal modules in place of a fixed phase, duration, and force. 

That is, one could treat the neuronal modules as oscillators which are explicitly coupled to each 

other and self-tune their phase or amplitude. Then, one could ask what simple rules could allow the 



80 
 

system to self-tune for recovery after injury (for the case of adaptive networks in a coupled oscillator 

system, see e.g. (Aoki and Aoyagi, 2011; Isakov and Mahadevan, 2014)). Another extension would 

be to incorporate “reflexes and preflexes” (Kukillaya et al., 2009; Proctor and Holmes, 2010) to 

understand what role these play in recovery. Finally, we can ask whether a simple force-balance rule 

can be used in robots such as those suggested in (Schilling et al., 2013; Cully et al., 2015), thereby 

encouraging “robotic recovery from injury” and allowing better performance in the field. 

In the next chapter, we transition to the human scale and study collective behavior mediated 

by a social, rather than a physical, network. There, we study data from a society of agro-pastoralists 

in Africa to understand how social ties and individual characteristics such as leadership determine 

group formation for stealth raids (a form of collective action). 
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“For a friend with an understanding heart is worth no less than a brother.” 
- Homer, Odyssey 

5 
Leadership and Friendship in Intergroup Violence 

Introduction 

Intergroup violence is widespread in social animals, including humans. Yet, most studies of 

intergroup violence in small-scale populations have focused on the mortality rate and demographic 

effects of warfare, not the social precursors (Beckerman et al., 2009; Chagnon, 1988; Hill et al., 2007; 

Wiessner and Pupu, 2012). However, some prior research indicates that social organization may be 

an important factor in individual participation. Among the Yanomamö horticulturalists of Venezuela 

and Brazil, men who participated together in a killing during a raid were likely to live together and 

exchange marriage partners later in life (Macfarlan et al., 2014). This suggests that humans can use 

intergroup conflict strategically to advance subsequent relationships among participants. However, 

because this study did not analyze data on raiding party composition or social networks, inferences 

about the social processes contributing to conflict events are limited.  

Here, we explore the role of individual differences and social networks in the emergence of 

collective violence among the Nyangatom, a group of nomadic pastoralists inhabiting a remote 

region along the border of South Sudan and Ethiopia (Glowacki and Wrangham, 2015). Intergroup 
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conflict among the Nyangatom is decentralized, occurring outside of formal institutions such as 

military units or governments, and resembles the dynamics of simple warfare in other small-scale 

societies.  

 Many Nyangatom live in mobile cattle camps containing between 10 and 100 persons, and 

the population and number of these camps are not fixed. Depending in part on the season, camps 

may disband with residents forming new camps, or they may aggregate and form larger groupings. 

The Nyangatom also have semi-permanent villages with dynamic membership, and movement 

between camps and villages is common. Livestock have a central place in the culture and diet of the 

Nyangatom and are necessary for many social exchanges, including marriage. In order to marry, a 

male is required to provide the family of the bride with bridewealth, often 30 to 60 cattle but 

sometimes as many as 100 cattle. Therefore, livestock are highly sought after, and violent conflict 

with other groups in order to obtain them is common (Mathew and Boyd, 2011; Glowacki and 

Wrangham, 2015). 

The most common type of intergroup conflict event for the Nyangatom is the “stealth raid” 

(sing. Emojirimónu), which is usually conducted by a small group of young to middle-aged men who 

usually attempt to seize livestock and attack enemies from other nearby ethnic groups and then 

escape unharmed. Similar to warfare among hunter-gatherers, stealth raids sometimes yield fatalities 

for members of enemy groups, but casualties among the raiding party are unusual since raiders seek 

low-risk opportunities to attack. In addition to livestock, successful raiders receive also social 

benefits, such as status and public praise, and men who have killed an enemy commonly receive a 

warrior name and honorific scars. The dynamics of Nyangatom violence against outgroups is similar 

to the processes of raids in other small-scale societies (Mathew and Boyd, 2011; Wrangham and 

Glowacki, 2012).  
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Stealth raids generally begin with one or two individuals who take a leadership role and 

attempt to recruit other participants, a process that can take several days. Raiding parties can also 

emerge when large groups of young men are congregated, such as during a ceremony. Individuals 

are not compelled to join a raiding party; many young men elect not to join and there are no formal 

sanctions for cowardice, desertion, or failure to participate (Glowacki and Wrangham, 2015). 

Leaders often take a more active role in the raid, such as acting as a scout, selecting the site of the 

raid, or developing tactics; they may also direct the division of loot after a successful raid.  

 We collected conflict histories and data on raiding co-participation over a three-year period 

among all age-appropriate Nyangatom men residing in the study area (N = 91). We also mapped the 

social networks of this population at one point in time using a gift allocation task where participants 

were asked to make anonymous allocations to other men. Together, these data allow us to explore 

the role of individual variation and the influence of social networks in the formation of raiding 

parties engaged in risky collective action. 

Materials and methods 

Our data were collected as part of an ongoing ethnographic study of the Nyangatom in 

which one of the researchers (Luke Glowacki) resided in the study area intermittently between 2009 

and 2012. We used semi-structured interviews to collect information regarding intergroup conflict 

events that occurred between the Nyangatom and their neighbors, including the Turkana, 

Dassanetch, and Suri, and we established that 39 stealth raids were initiated by the study population 

in the area of research between June 2009 and December 2012. We identified 91 men residing in the 

study area who were of the appropriate age to participate in stealth raids (approximately 18 to 45 

years old). These 91 men form the study population and we conducted interviews with each of these 

individuals collecting data on their conflict history and identifying co-participants. 
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Co-participants were identified by name or photos and composition was validated through 

peer reports. The presence of a raider on a raiding party was determined by an individual’s 

participation in the raiding party for any portion of it; we did not measure desertion, and some 

individuals may have ceased their participation during the actual raid because they were afraid or for 

other reasons. Leadership was ascertained by cross-validated personal accounts elicited by questions 

about whether any person was a leader of the raid using two Nyangatom terms for leader (sing. 

Ekarikon; sing. Eketamunan). 

We also performed a comprehensive, sociocentric network study of the entire population of 

raiding-age Nyangatom males (N = 91). In order to measure friendship ties within this group, we 

employed a gift task modeled on prior work with the Hadza hunter-gathers of Tanzania (Apicella et 

al., 2012) in which the Nyangatom subjects were asked to identify other study participants to whom 

they would like to give a gift of candy. Giving a gift is an important measure of friendship in most 

societies. We chose candy as the allocation currency because of its practical ease and because 

Nyangatom value it. Subjects were presented with three pieces of candy and shown photo sheets 

containing the facial portraits of study participants to whom an anonymous allocation could be given. 

They were asked to indicate the three persons that they would like to receive the gift of candy and 

told they would not be identified as the donor (and recipients did not know who gave them the gift 

either). All 91 subjects (100%) participated, yielding a total of 273 social ties within this group and 

distributions occurred only after all participants completed the task. We also measured a variety of 

attributes of the study participants including height, weight, and estimates of paternal wealth. 

 In order to explore associations between raid characteristics and raid participation, we 

evaluated linear regression models that estimated the association between an individual’s decision to 

join a particular raid and various raid characteristics. The basic model is 
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𝐸[𝑌𝑖𝑟] = 𝜃𝑖 + 𝛾𝑟 + 𝛽𝑥𝑖𝑟 , (5.1) 

where the dependent variable 𝑌𝑖𝑟 = 1 if person 𝑖 joins raids 𝑟, and 𝑌𝑖𝑟 = 0 otherwise, 𝑥𝑖𝑟 is a vector 

of characteristics for participant 𝑖 and raid 𝑟, 𝛽 is a vector of coefficients that indicate the degree of 

association with each characteristic, and 𝜃𝑖 and 𝛾𝑟 are individual and raid fixed effects, respectively. 

We report results of the linear model for more intuitive interpretation. The results are consistent in 

both sign and magnitude when compared to Generalized Linear Models (GLMs). See Appendix A 

for a description of supplemental methods. 

Results 

A total of 39 raids occurred during the study period, averaging approximately one every 5 

weeks. Each raiding foray typically lasted several days and raids were generally non-overlapping in 

time. Raiding parties averaged 6.8 participants (SD = 3.4) (Figure 5.1A) and 86% of the men (78/91) 

participated in at least one raid (mean = 2.9 raids, SD = 3.3), but 14% of the population did not 

participate in any raids. Roughly 80% of the raids resulted in the capture of livestock, and raiders 

averaged 4 head per successful raid (including cattle, goats, and donkeys). 

 We measured a variety of attributes of the study population (N = 91) including height (mean 

= 175.4 cm, SD = 6.4), weight (mean = 58.5 kg, SD = 6.5), paternal wealth, and siblings in the 

sample (mean = 1 male sibling, SD = 1.3). Measured individual-level characteristics were associated 

with raid participation in bivariate models without controls – including the number of siblings, 

height, weight, and the number of livestock owned by the raider’s father (paternal wealth). However, 

none of these egocentric characteristics remain significant in multivariate models and they do not 

appear independently relevant to whether a person went on a raid. 

Five of the 91 men in the study were identifed as being a raid leader, and all raids included at 

least one of these leaders (see Figure 5.1B which shows a “bipartite” network of the 39 raids, with 
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the five individuals identified as leaders on any raid marked in red). We conducted a minimal set 

analysis to independently identify leaders using raid participation data alone. This analysis attempted 

to identify the smallest group of individuals at least one of whom participated in every raid. The 

procedure successfully identified all five individuals who were named as leaders on any raid by 

participants themselves. These five individuals also participated in significantly more raids than 

expected due to chance (all P ≪ 0.001), as determined by a procedure where we randomly re-assign 

the identities of those who participated in each raid while keeping the distribution of raid 

participation fixed. These results are consistent with emic accounts indicating that leaders have an 

important role in the initiation and formation of raiding parties.  

 

Figure 5.1. Overview of data on raid participation and the social network. A. Distribution of 
stealth raid sizes over a total of 39 raids. The dashed red line shows the mean. B. Bipartite 
participant-raid network. Top nodes represent people; bottom nodes represent raids. Red nodes 
denote leaders. Each raid has at least one leader. Red lines indicate connections of leaders to raids, 
and blue lines indicate connections of everyone else. Green dots are individuals who do not raid. C. 
Degree distribution (cumulative frequency) of the friendship network (red) and the average 
distribution of 103 random networks with the same number of nodes and edges (green). The real 
distribution does not differ significantly from a random graph. D. Participant-leader raid relation 
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Figure 5.1 (Continued) network. A leader (bottom) is connected to an alter if the alter went on a 
raid with the leader. Red dots are leaders and green dots are individuals who do not raid. Red lines 
denote leaders co-raiding with other leader alters. 
 

We mapped the social network of all raiding-age Nyangatom men using a task where 

participants made anonymous gift allocations to other subjects (Figure 5.2). The mean number of 

incoming friendship nominations (in-degree) was 3 (SD = 2.7), and the range was 0 to 13. Although 

in-degree is associated with both paternal wealth and number of siblings, the strongest predictor of 

the number of friendship nominations is leadership status. Leaders have significantly more friends 

than non-leaders (5.2 vs. 2.4, P = 0.01). Leaders also score significantly higher on a measure of 

network centrality, even when controlling for in-degree (P = 0.04). This suggests that leaders not 

only have more friends, but also that their friends tend to be more popular, meaning leaders also 

have more friends of friends as well (as is visible in Figure 5.2). Figure 5.3 combines both gift-giving 

and co-raiding ties into one diagram. 

 

Figure 5.2. Nyangatom social network. Network of friendship ties in Nyangatom society 
determined using gift allocation task. Those who did not participate in any raids (non-participants) 
are shown in green, those who participated in at least one raid (participants) are shown in blue, and 
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Figure 5.2 (Continued) identified leaders are shown in red. Node size is proportional to raid 
participation (number of raids in which an individual participated). Dark gray arrows indicate 
reciprocal, two-way friendship ties, and light gray arrows are one-way ties. 
 

 

Figure 5.3. Nyangatom social network with co-raiding ties. Network of friendship ties in 
Nyangatom society determined using gift allocation task. Those who did not participate in any raids 
(non-participants) are shown in green, those who participated in at least one raid (participants) are 
shown in blue, and identified leaders are shown in red. Node size is proportional to raid 
participation (number of raids in which an individual participated). Dark gray arrows indicate 
reciprocal, two-way friendship ties, and light gray arrows are one-way ties. Dashed red lines indicate 
co-raiding. 
 

We explored the ways the Nyangatom social network is similar to certain other social 

networks by measuring a comprehensive set of statistics (Apicella et al., 2012). While the cumulative 

degree distribution (Figure 5.1C) does not differ significantly from an Erdos-Renyi random network 

with the same number of vertices and edges (P = 0.76), a number of other important properties are 

shared with non-random social networks. Reciprocity (the probability that participant B names 
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participant A as a friend given that participant A names participant B) is significantly higher in the 

Nyangatom network (reciprocity = 0.37) than in a random network (P ≪ 0.001); that is, there are 

significantly more two-way friendship ties in the real network than a random network. Transitivity 

(the probability that two of a participant’s friends are friends with one another) is also significantly 

higher in the Nyangatom network than a random network (0.17, P < 0.001). Finally, there is also 

stronger homophily (the tendency of people with similar characteristics to have social ties with one 

another) by age (0.88, P < 0.001) and by degree (0.10, P = 0.04) compared to a random network. 

 Social network structure is relevant to the composition of raiding parties. Individuals with 

more social connections (i.e., higher degree) tend to go on more raids, even when we exclude leaders 

from the analysis (Figure 5.4A). Each additional social connection is associated with an increase of 

0.45 raids (SE = 0.17, P = 0.01) in the expected number of raids in which a subject participates. 

Regression models that include in-degree, height, weight, wealth, and number of siblings show that 

social relationship “capital” is more strongly associated with raid participation than physical or 

material capital. Our measure of network in-degree is the only variable that survives various model 

specifications. 

However, the emergence and composition of particular raiding parties is more nuanced than 

leaders simply being linked by friendship ties to other raid participants. We used regression analysis 

to evaluate the decision to join an individual raid, examining how this decision is associated with the 

total number of other people who join the raid, the number of one’s friends who participate, and the 

number of other leaders who participate. In these models, we treated each individual’s decision to 

participate in each raid as the dependent variable, and we assessed how the presence of other 

participants was associated with the probability that a person would join the raid. To control for 

unobserved characteristics of individuals (e.g., their attitudes towards violence or risk, as well as 
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other personality factors) and of raids (e.g., the distance to the raid target or the anticipated value of 

the raided items), we included fixed effects for both individuals and raids in the model. 

 

Figure 5.4. Probability of joining a raid depends on social ties. A. Number of times people 
joined raids as a function of social in-degree. Regression lines are shown for the full population 
(gray) (R2 = 0.32) and excluding the leaders (black) (R2 = 0.42). In all panels, people who 
participated in no raids are green, non-leader participants are blue, and leaders are red. B. Increase in 
probability of joining a raid based on geodesic social distance to leaders and to non-leader friends. 
Lines denote one standard error of the estimate. The large positive coefficients on first-degree 
connections show that direct non-leader friends are more motivating than leader friends, and both 
are significant. The negative coefficient on second-degree connections provides evidence against 
cascade formation beyond 1 degree in raiding party formation. Motivation did not spread 
significantly to third degree friends. 
 

The presence of both leaders and friends was significant for the composition of the raiding 

party. Subjects were more likely to join a raid if they had a direct friendship to the leader of that raid 

(6.8%, SE = 2.4%). There was no effect for being friends of friends with the leader (social distance 

2) or friends of friends of friends (social distance 3) on the probability of joining a raid (Figure 5.4B). 

This suggests that leaders mobilize their direct friendship contacts to join raids. However, leaders are 

less effective at mobilizing their direct friends than non-leaders. Each non-leader friend who 

participated in a raid increased the likelihood that the subject joined the raiding party (19.2%, SE = 
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1.4%). The effect of being friends with a co-raider who is not a leader on joining a particular raid is 

significantly higher than the boost in probability associated with being friends of a leader of a 

particular raid (P ≪ 0.001). We found no evidence that kinship influences raiding party composition 

because siblings were not more (or less) likely than chance to raid with each other (P = 0.23). 

We tested whether leaders, who are better connected to the network, matter more than non-

leaders for overall raid composition. Using a model where we regress total participation by a 

person’s friends on a person’s decision to join, their leadership status, and an interaction variable 

that indicates the effect of leadership on total mobilization, we find that significantly more people 

join the raid when a non-leader joins than compared to a leader (P = 0.008). In other words, the key 

motivating factor to join a raid once a raid is initiated is not the presence of specific leaders but 

rather the presence of a non-leader friend who joined the raid. 

Discussion 

Here, we have analyzed co-participation in group-level conflict in a small-scale society that is 

relevant to understanding how risky collective action problems involving violence in humans are 

solved. We find that there is significant inter-individual variation in raiding participation. Most men 

participated in at least one raid, but 14% did not participate in any raids and five individuals 

participated in more than ten raids. The initiation of raiding parties appears to depend on the 

presence of key individuals (leaders) who function as nucleation sites for raids and attract other 

participants. Leaders may alter the costs and benefits for others either by reducing the costs of the 

raid (recruitment and scouting) to other participants or by exerting social pressure on others to join 

(King et al., 2009; Glowacki and von Rueden, 2015).  

We found no effect of kinship in raiding party composition, suggesting alternative 

mechanisms for participation in conflict besides kin selection. This is similar to behavioral data on 
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collective action in chimpanzees engaged in collective hunting and border patrols where there is no 

indication that kinship influences the likelihood or effectiveness of such collective action 

(Langergraber et al., 2007).  

The most important determinate of raiding party composition was social network structure, 

even when controlling for individual differences in the tendency to join raids. Leaders recruit co-

raiders from both within and outside their social networks. Because leaders have larger social 

networks than non-leaders, they have a larger possible pool of co-raiders to draw from. However, 

we found the surprising result that co-raiders who are not leaders are more effective than leaders at 

recruiting on a per-individual basis: individuals are more likely to join raids when they are direct 

friends of a raider who is not the leader. This suggests that once a leader recruits co-raiders, these 

co-raiders in turn have a critical role in the composition of raids by encouraging members of their 

social network to join that the leader may not be connected to. 

 Our findings are especially notable because we did not uncover reports of formal 

sanctioning for non-participants although the withdrawal of a friendship tie may be a form of 

sanction (Rand et al., 2011). This is consistent with our finding that, overall in our population, and 

excluding leaders, the number of friendship ties is associated with raiding participation. Work in 

another setting suggests that co-participation in violence may result in subsequent formation of 

social bonds (Macfarlan et al., 2014), and men have also been observed to enlist in the army with 

their friends, or even been encouraged to do so, in state-sponsored wars (Viterna, 2006).  

We are unable to exclude the possibility that friendships formed as a result of participating in 

a raid together, rather than friendships driving co-participation. However, we think friendship is a 

primary mechanism that contributes to co-participation rather than being a consequence of co-

participation. Among East African pastoralist societies, young men engage in many collective 

activities together, such as herding and ceremonies, creating opportunities to meet other members of 
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their age group. As a result, they form very tightly bound cliques early in adolescence that are an 

important part of the social life of Nyangatom society. Because raids are risky and commonly 

accompanied by nervousness and fear, we expect that individuals would choose to raid with their 

friends, rather than people they are not well acquainted with. Rather than acting as a mechanism to 

generate friendships, raids may instead act to solidify and deepen friendships. This expectation is 

supported by our data on differential recruitment between leaders and non-leaders. If friendships 

that resulted from co-raiding were the primary determinate of our network data, leaders would be 

expected to recruit primarily from their social network. Instead, we find leaders co-raid with many 

individuals outside their immediate social network. Yet, non-leaders are more likely to raid with 

persons they are friends with, even if they are also friends with a leader of a raid. Nonetheless, we 

cannot exclude the possibility that some friendships formed as result of co-raiding; future research 

should include repeated measures of network structure to ascertain the extent to which collective 

violence directed at out-groups shapes the social network of the in-group.  

Our results are consistent with research in other populations on the importance of networks 

in the promotion of violence. Friendships are a well-known predictor of joining state-sponsored 

warfare (Viterna, 2006). A recent analysis of participants in the Rwandan genocide showed that 

perpetrators had larger networks and were more likely to have connections to other perpetrators 

than non-perpetrators (McDoom, 2013). Similarly, in the Paris Commune, preexisting networks 

were important in supporting revolutionary mobilization (Gould, 1991). 

The importance of key individuals in the initiation of raiding parties is consistent with a 

growing body of theoretical and empirical research on the role of individual variation in collective 

action. Modeling work shows that within-group heterogeneity may affect group performance 

(Gavrilets and Fortunato, 2014; Molleman et al., 2014, Gavrilets, 2015; Henrich et al., 2015), which 

suggests an important role for key individuals who may alter the costs and benefits of others so that 
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costly cooperation is favored. Empirical work in non-humans demonstrates the role of individual 

differences in promoting collective action. For example, among wild chimpanzees, a few individuals 

act as “impact males” whose presence catalyzes the group to engage in high-risk activity such as 

hunting or conducting boundary patrols (Gilby et al., 2008; Gilby et al., 2015). Impact males are 

more likely to initiate group hunts and the removal of an impact male results in lower hunting rates 

for the group (Gilby et al., 2015). Among captive chimpanzees, the success of solving more complex 

collective action problems is also sensitive to the presence of particular individuals in the group 

(Schneider et al., 2012). 

Other social and group-living species have similar dynamics. Ring-tailed lemurs, for instance, 

have extensive inter-individual variation in their tendency to participate in territorial conflicts, with a 

few individuals initiating the majority of conflict (Nunn and Deaner, 2004), while among black 

howler monkeys, social groups are usually led by one “habitual leader” who initiates group 

movements and has the highest centrality among group members (van Belle et al., 2013). Similarly, 

collective group movement among both bottlenose dolphins (Lewis et al., 2011) and killer whales 

(Brent et al., 2015) commonly occurs with specific individuals functioning as leaders of the group 

during movement. Finally, experimentally manipulating spider colonies through the introduction of 

just a single bold individual produced pronounced group-level effects by increasing aggressive group 

foraging (Pruitt and Pinter-Wollman, 2015). These studies, combined with the data we present here, 

suggest that risky collective action may be sensitive to the presence of individuals who initiate group 

activity – though the mechanism by which this occurs is still not fully understood (Gavrilets, 2015; 

McAuliffe et al., 2015), and the social dynamics by which such actions spread within a group have 

not been explored using detailed network models. 
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Conclusion 

In sum, we find that key individuals functioning as leaders are important for raid initiation. 

However, social network structure matters substantially to the actual composition of raiding party. 

While leaders recruit from within and outside their social network, the key factor for group 

composition appears to the presence of a co-raider that a raider is connected to via a direct 

friendship tie. To the extent that Nyangatom raiding behavior is relevant to other domains of 

collective action in humans and other primates, we have identified an important amplifying effect: a 

handful of motivated individuals, with distinctive network positions, coupled with a wider group of 

reinforcing individuals embedded within a network, can lead to population-level risky and violent 

behavior directed at other groups. 

One direction for future research is studying the relevance of these results in other types of 

non-institutionalized violence, such as urban gangs (Papachristos, 2009), localized insurgencies 

(Viterna, 2006; Johnson et al., 2011), or revolutionary protests (Gould, 1991). Many types of 

violence do not depend solely on the desires and actions of individuals or even dyads, and instead 

may at least partially emerge and be supported by the very social structure in which all individuals are 

embedded. 

These observations suggest two things with respect to the prospect of managing violence. 

On the positive side, attenuating the impact of a leader may prevent the original nucleation of the 

violence. Yet, on the negative side, once violence starts, people are likely to join from throughout 

the whole population, and so, once instigated, violence has a wide-reaching effect on the society. 

Further studies could be combined with modeling to address the question of whether it is possible 

to encourage peace through targeted interventions (Isakov et al., 2016). A related area that would be 

amenable to both modeling and observation (e.g. through extended longitudinal study) is 

understanding the emergence of leaders over time. That is, as a new generation is growing up, what 
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role does social structure play in determining who will become an impact individual, and how does 

that itself affect the formation of the social network? 
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“Knowledge of the fact differs from knowledge of the reason for the fact.” 
- Aristotle, Posterior Analytics 

6 
Conclusion 

In this work, we have examined collective dynamics as they arise in a spectrum of systems 

across varying levels of agent complexity and agent-network interactions. We began with looking at 

one of the simplest physical models of interacting units, coupled phase oscillators, on a relatively 

simple set of networks (1-dimension rings, 2-dimensional lattices, and a modified scale-free model). 

Adding in a mechanism to make the underlying network dynamic (that is, allowing the strength of 

inter-agent connections to vary) by coupling it to the actions of the oscillators themselves, we 

characterized distinct regimes as a function of noise at the oscillator level and the time-scale, 

including those that can sustain oscillator flipping between aligned and anti-aligned states. We also 

characterized how these regimes depend on the structure of the underlying topology, namely on the 

average degree of the network. 

Then, we built a model of a system of evolving agents where the agents’ strategies directly 

define the network structure. The rules themselves are very simple: an agent can either take 

resources, give resources, or be disconnected from another agent, an individuals’ fitness is 

proportional to the net resource intake, and the fittest individuals reproduce their relationships (up 

to mutation). Nonetheless, even with this small set of parameters, the network evolution was 
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remarkably complex – depending on the ratio of benefits to costs and on reproduction and mutation 

rates, the long-term population structure could be noise-dominated (random edges), collapse 

completely, or form a number of stable communities. Interestingly, starting with stable communities, 

we found that an intervention that disrupts cooperation in a small proportion of agents can lead to 

wide-spread population collapse, and the magnitude of this effect was highly non-linear in the 

disruptive power of the intervention. Even with just 2% of agents being susceptible to disruption, 

and with approximately half of their outgoing ties blocked, the probability of the whole population 

being unable to spontaneously recover was over 50%. This provides additional insight into the 

possibility of using evolution to e.g. help treat “cooperative bacteria” that are currently hard to treat 

with antibiotics. 

After studying simple agents, we moved towards systems where the individual rules are 

significantly more complex. First, we looked at the locomotor system of fruit flies. Initially, adult 

flies spend approximately equal time walking clockwise and counterclockwise. Immediately after the 

amputation of the front right leg, flies display a striking turn bias in the counterclockwise direction. 

But, while wild type flies can recover to an unbiased turning state within three days after the injury, 

those with genetic mutations that disrupt proprioception do not show this significant recovery. 

Through a combination of experiments and modeling, we examined fly behavior both on the level 

of the whole fly and on the level of individual legs (6 units initially, then 5 after amputation). Of 

course, the units (legs) work together to produce the observed behavior of the fly body. We 

described how many walking parameters change over time in both wild type and mutant flies, and 

found that proprioception (feedback about leg stretch) plays an important role in allowing the force 

tuning necessary to achieve unbiased behavior. 

Finally, we considered a larger network with very complex agents: a social network in a 

traditional population in Africa, the Nyangatom. We analyzed the problem of collective decision-
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making in the context of raiding: what influences the composition of a group that will go on a 

stealth raid? There, we uncovered that both a leadership quality and friendship ties play significant 

and distinct roles. Leaders are necessary to initiate raids, but the final group structure is primarily 

determined by friendship ties. Practically, further research can lead to developing and studying the 

effect of interventions in promoting positive behavioral change at scale. It would likewise be 

interesting to understand the dynamics of how leadership arises over time (that is, have the network 

and the agents be dynamic). 

Overall, the major theme of these studies and the proposed future work is both simple and 

elegant. It is well-known that having a collection of individuals that talk to each other, from simple 

oscillators changing their phases to be in tune with their neighbors to humans gathering to 

participate in collective action, leads to a range of phenomena. At the same time, it is important to 

understand that the effects of talking to each other can in turn change the way the agents interact, 

creating a feedback loop. That is, the underlying network structure of interactions influences, and is 

in turn influenced by, the interactions themselves. This way of thinking leads to substantially more 

realistic models that hope to explain the fascinating wealth of behaviors observed in real life, from 

the formation of the neural connections to the social organizations that define us.  
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Appendix A 

Supplemental methods and results for Chapter 5 

Study population 

The Nyangatom number approximately 21,000 and live along the Ethiopian and South 

Sudanese border in and adjacent to the Lower Omo Valley of Ethiopia. Research was conducted in a 

border area along the Nyangatom-Turkana frontier to the north of the Kibish River and west of the 

Kuraz Mountains. 

The population structure of the Nyangatom is dynamic. Many Nyangatom reside in mobile 

villages. These villages may exist for several weeks or longer before disbanding or relocating. 

Sometimes, members of multiple camps or villages may join together to form a larger village or 

larger villages may break up into smaller villages. A particular village composition usually results 

from considerations for providing suitable resources for livestock as well as to maximize security. 

There are also semi-permanent villages in settled areas, but the population is highly dynamic. 

Individuals commonly move between these villages and the mobile villages. Young men are 

generally not attached to any one village for their primary residence, but instead are attached to the 

livestock owned by their father or other paternal relatives. They change their residence based on the 

movements of these livestock.  

 The Nyangatom are organized into territorial sections (pl. ngiteala). Membership provides 

culturally recognized rights to resources in a certain areas of Nyangatom territory. Thus, men living 

in a specific area generally share membership in common territorial sections. Although individuals 

may change their residence multiple times a year, they usually do so within a constrained area of 

Nyangatom territory and revisit the same areas seasonally.  
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Because of the complex residence dynamics of the Nyangatom in the study area, conducting 

an analysis of village residence was impractical. Rather, we identified individuals who resided at least 

seasonally in the study area and were the appropriate age to participate in stealth raids. Men who are 

elders (sing. Ekasukout) do not participate in stealth raids. Although we lack data on their ages, elders 

are estimated to be above 45 years of age. We also exclude young men below the ages of 

approximately 18 because they usually do not participate in stealth raids. We identified our sample 

(N = 91) by their membership in culturally specific age groups where men are deemed old enough to 

engage in activities such as cattle herding and raiding but not having become elders. 

These individuals are expected to be familiar with each other for several reasons. First, the 

dynamic residence structure ensures that individuals may have resided with each other in the same 

village. Second, when resources allow, multiple herds of livestock graze together in grazing areas. 

This usually occurs after the rainy season but can occur at other times as well. In these cases, men 

from many villages herd together providing collective defense. Finally, there are many ceremonial 

engagements in which men from throughout the area come together during which ceremonies are 

performed and animals slaughtered and communally consumed. These ceremonial activities allow 

men from the study population to spend time together on a semi-regular basis.  

Male subjects had facial photographs taken for identification purposes. Each subject was 

assigned a unique identification number that was used to match the photograph to the subject. 

Photographs were compiled onto two photo sheets measuring approximately 30 cm x 35 cm each, 

containing 42 and 49 photographs. Each photograph measured approximately 3 by 5 cm. The photo 

sheets (supplemented by individual photographs) were used to allow participants to make visual 

identification of other study participants.  
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Study participants were compensated with local currency (approximately US$0.25 to 

US$1.00), tea, or sugar for their participation in study elements. A translator was used for most of 

the semi-structured interviews and interviews would proceed by the researcher presenting the 

question to the translator who would ask the question and then translate the answer back to the 

researcher. The researcher who resided with the Nyangatom (Luke Glowacki) is competent in the 

local language, allowing him to directly ask interview questions or follow-up questions if the 

subject’s answers were not clear.  

Because the field researcher was based at the fieldsite for an extended period of time, data 

collection occurred throughout the duration of the study and multiple interviews were conducted 

with study participants. Interviews were frequently conducted with the subject alone. However, due 

to the open nature of the society, subjects would sometimes be joined by their friends or relatives. 

Subject comprehension and accuracy was validated in the field by employing consistency checks 

within and between interviews. These involved asking participants to repeat their answers to 

questions to test for consistency with their previous answers. 

Conflict landscape  

The threat of conflict is a daily feature of life for those living in the study area. The 

Nyangatom have ongoing conflict with several of the neighboring populations. The conflicts involve 

the use of automatic weapons, including Kalashnikovs that were introduced in the late 1980s and are 

used throughout the region. Similar to other pastoralist groups in the region, the Nyangatom 

conduct stealth raids that involve a small number of young men who attempt to capture livestock by 

stealth. Our data focus on these small raids, ethnographically most similar to those among 

evolutionary relevant groups such as mobile foragers.  
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Stealth raids have a very low mortality rate because raiders seek to seize livestock using 

ambush and stealth and do so only when there is very little risk to themselves. If they cannot find an 

opportunity with low risk, they will generally abandon their plans. In some cases, dehydration may 

cause death on raids, but no such instances occurred during the study. During the research period, 

no subjects were killed or wounded from their participation in a stealth raid.  

Stealth raids usually have informal leadership. This usually occurs when an individual decides 

to initiate a stealth raid and he may then spend several days recruiting other individuals to join him. 

In some cases, he may visit the village of his desired co-raiders over a period of several days to 

convince them to go. In other cases, stealth raids emerge after age group events in which large 

cohorts of men from the same age group are congregated.  

During the study period, no commercial or political elements to the conflict were observed 

or described for the motivations of participating in conflict; thus, the circumstances under study 

seem appropriate as an ethnographic example of small-scale non-state warfare. 

Conflict history data 

Conflict is a regular feature of Nyangatom life and talked about openly. It is common for 

individuals to publicly recount their participation or the participation of their peers. Conflict data 

was obtained through interviews with study participants about their participation in intergroup 

conflict events. Co-participants were identified by name or by the use of the facial photograph 

sheets if the researcher was not aware of the co-participants. Composition was validated through 

peer reports with other participants allowing confirmation of membership for each raiding party 

(there were no disagreements about raid party membership). In a few cases, the researcher was 

unable to confirm co-participant identity, usually because they were not members of the study 
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population. These individuals were coded as non-subjects and no information was obtained about 

them.  

Leaders were identified through interview questions with raid participants about whether any 

person was a leader on a particular raid the subject participated in using one of the two words for 

leader (sing. Ekarikon; sing. Eketamunan). Leadership was validated by reports from more than one 

raid participant not including the leader himself. This resulted in the identification of 5 leaders on 19 

of the 39 raids. There were six additional cases where three of these five individuals were indicated 

as being more than a mere participant in raids in which they were not named as a “leader,” either by 

contributing tactical advice or selecting the location of the raid. However, because they were not 

identified with the locally used referents for leaders, we excluded these six cases.  

We do not present specific individual contributions to raids, incidents of defection, or the 

outcome of the raids. Instead, we focus here on the presence or absence of any individual from the 

subject population in each raid. 

Other data 

We collected a variety of other individual-level data on study participants, including height, 

weight, number of siblings, and paternal wealth. This information is summarized in Table A.1. 

Anthropometry 

Body weight (kg) and height (cm) were measured in the field for all available subjects. 

Weight was measured using an electronic scale and height with a stadiometer. Fifteen subjects were 

unavailable during the anthropometric data collection and are excluded from such analyses. 
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Sibling relationships 

Sibling relationships were collected as part of the demographic and genealogical data 

collection for the study population. They were elicited through interviews with subjects, in which 

they were asked to identify their siblings and whether any of their siblings were among the subjects 

on the photo sheets. 

Paternal wealth rankings 

Among the Nyangatom, men who are not elders seldom own more than a few head of 

livestock themselves. Rather, livestock is generally owned by elder male family members. Thus, 

measures of individual wealth are not culturally appropriate for the men in our sample. We used 

measures of paternal wealth to explore the relationship between the wealth of a raider’s father and 

raiding party composition. Paternal wealth rankings were obtained for a subset of the study 

participants (N = 42). These scores were generated from a ranking task in which elder men (raters) – 

who were not in this sample – were asked to sort facial photographs of subjects into three piles 

based on the relative wealth of the father. They were initially asked to identify any men featured in 

the photographs that they did not know. If they could identify all the individuals in the photographs, 

they were then asked to look at the photographs and determine whether they knew the father of the 

individual in the photograph. Six elders successfully identified all subjects and their fathers and 

provided the rankings of paternal wealth.  

Raters were instructed that they would sort the photographs into three piles based on 

information about the fathers of the individual featured in the photograph. They were told that in 

one pile they were to place the photographs of the men who had the wealthiest fathers. They were 

then told that a second pile was for the men whose fathers had the least wealth. The final pile was 
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situated between the wealthiest and the least wealthy and raters were instructed to place the 

photographs of the men who were between the wealthiest and least wealthy into this pile.  

Each individual was ranked 6 times. Each time a subject was placed in the wealthiest pile 

they received a score of 3; each time they were placed in the middle pile they received a score of 2; 

and each time they were placed in the least wealthy pile they received a score of 1. The maximum 

any subject could receive as a wealth ranking was a score of 18 and the minimum a score of 6. 

Friendship network data 

Subjects were asked to participate in a gift allocation task that was used to generate the 

friendship network. During this task, subjects were presented with three pieces of candy. Because 

the population has only minimal access to a market economy, novelty food items, such as candy, are 

valued. Study participants were presented with the two photo sheets containing the photographs of 

all 91 study participants. They were asked to make anonymous allocations to three individuals who 

they desired to receive candy and whose picture was featured on the photo sheets. They were told to 

do so by placing a piece of candy on the photograph of the subject. Self-allocations and multiple 

allocations to the same subject were not allowed. Subjects were informed that these allocations 

would be made at the conclusion of the study but that the identity of the donor would remain 

anonymous. These allocations were used to generate the friendship network data. Distribution of 

the candy based on the gift allocations was conducted after the completion of this study element.  

We counted the number of times each person was nominated as a friend in the friendship 

network; this simple measure is called in-degree. We also used the nominations to map the full 

friendship network, and to calculate other social network measures. 
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Characterizing whether raid participation is due to chance 

First, we identify whether raid participation is due purely to chance using two methods: a 

chi-square test on simulated data and a permutation test. For the chi-square test, we have the null 

hypothesis 𝐻0 that people are drawn uniformly, i.e. that the probability of drawing person 𝑖 is the 

same as the probability of drawing person 𝑗, for 𝑖, 𝑗 ∈ {1, … ,91}. 

The alternate hypothesis 𝐻1 is that not all people have the same probability of being drawn 

for a raid. We calculate the probability (under the null hypothesis of uniformity) of person 𝑖 being 

drawn in raid 𝑟, where raid 𝑟 has the observed number of participants 𝑛𝑟. We find that 

𝑃(person 𝑖 being drawn in raid 𝑟) =
(91−1

nr−1
)

(91
𝑛𝑟

)
=

𝑛𝑟

91
, and summing over all raids yields the expected 

number of observations 

𝐸𝑖 = ∑
𝑛𝑟

𝑁

39

𝑟=1

 (A.1) 

and hence the chi-square statistic 

𝜒2 = ∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

91

𝑖=1

 (A.2) 

Performing the chi-square test allows us to reject the null hypothesis (P ≪ 0.001). We cross-

validated this approach using a permutation test with synthetic data. A data set was generated to 

have the same number of participants in each raid (to account for different costs and benefits 

associated with each) but with people having equal probability of being chosen in a raid. Here, the 

null hypothesis 𝐻0 is that the two data sets come from the same distribution, and the alternate 

hypothesis 𝐻1 is that the two data sets do not come from the same distribution. We pool the data, 

permute the observations, split into two groups of the same sizes as the original, and calculate the 
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statistic of interest from this new data. The simulation was run 106 times to obtain the null 

distribution of the statistic. As a natural statistic of interest we choose 

𝑆 =  ∑
|Δ𝑂𝑖|

91
,

91

𝑖=1

 (A.3) 

where 𝛥𝑂𝑖 is the difference of the total number of observations of person i among the two groups. 

Comparing with the original statistic using the observed group and the initial synthetic data, we find 

that P ≪ 0.001, which is sufficient to reject the null hypothesis. Therefore, we conclude that raid 

participation is not simply due to chance. 

Identifying leaders algorithmically from the raid participation data 

We find a minimal set of raiders that account for participation in all raids. To facilitate this, we 

use a simple algorithm to establish an upper bound: 

1. Calculate the number of raids in which each person participated 

2. Find the person who participated in the most raids 

3. Mark the raids in which he participated and remove those raids 

4. Repeat from step 1 until all raids have been removed 

We find that the five ethnographically identified leaders form precisely such a set (see Figure 5.1B, 

which shows that every raid has at least one leader identified in this manner).  

To test that this is a minimal set, we reduce the search space and enumerate all possibilities 

in the search for a four-person (smaller) set, 𝑀. We used a counting argument to reduce the search 

space. Suppose no ethnographically identified leaders are present in 𝑀. Then, the four most active 

allowed participants only participated a total of 26 times (7 + 7 + 6 + 6). Even if they joined 

completely disjoint raids, this is not sufficient to account for all 39 raids. Therefore, at least one 
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leader must be present in 𝑀. If exactly one leader is present, the same argument shows that the 

maximum possible number of raids accounted for is 36. This simple argument shows that at least 

two ethnographically identified leaders must be present in the proposed set 𝑀. We enumerate all the 

allowed possibilities and do not find such a set, so we conclude that the ethnographically identified 

leaders indeed form a minimal set.  

This analysis also suggests that raid participation data alone would have helped us to identify 

the leaders that were identified via questions about leadership. 

Friendship network structure 

While direct comparisons of network datasets are difficult due to different contexts, 

different ways of ascertaining social connections, and structural differences themselves (e.g., 

differing network sizes, differing numbers of edges), some comparison of statistics is still 

informative. In the main text, we present measures of reciprocity, transitivity, and homophily 

(assortativity) based on degree and age, and discuss the characteristic ways that the Nyangatom 

social network resembles and differs from simulated random networks and other network data 

published previously. We find that the degree distribution of the Nyangatom social network was not 

significantly different from an Erdos-Renyi random network with an identical number of nodes and 

edges, though the other properties were different in a way similar to several modern networks; in 

particular, reciprocity, transitivity, and degree assortativity were significantly larger than in random 

networks, consistent with measures given in prior work (Apicella et al., 2012). As there are multiple 

related definitions for these measures used in the literature, here we provide formulas for the way 

our calculations were performed. 
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Reciprocity (the probability that person 𝑖 is nominated as a friend by person 𝑗 given that 

person 𝑗 is nominated by person 𝑖) was measured as the proportion of mutual connections. That is, 

given connectivity matrix 𝐴, 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦 =
∑ 𝐴𝑖𝑗𝐴𝑖𝑗

𝑇
𝑖,𝑗

∑ 𝐴𝑖𝑗𝑖,𝑗
 (A.4) 

Transitivity (the likelihood that two of a person’s friends are themselves friends) is calculated 

as a global network parameter, i.e., the ratio of connected triples to the total number of possible 

connected triples in the graph. 

To calculate homophily (the probability of nodes with similar characteristics being connected), 

we first assign values of interest to the nodes (e.g. degree, age group). Let 𝑒𝑖𝑗 be the fraction of 

edges connecting nodes of type 𝑖 and 𝑗, let 𝑞𝑖
(1)

= ∑ 𝑒𝑖𝑗𝑗 , 𝑞𝑖
(2)

= ∑ 𝑒𝑗𝑖𝑗 , and let 𝜎(1), 𝜎(2) be the 

standard deviations of 𝑞𝑖
(1)

,  𝑞𝑖
(2)

, respectively. Then, we calculate homophily as 

𝐻𝑜𝑚𝑜𝑝ℎ𝑖𝑙𝑦 =
∑ 𝑗𝑘(𝑒𝑗𝑘 − 𝑞𝑗

(1)
𝑞𝑘

(2)
)𝑗,𝑘

σ(1)𝜎(2)
 (A.5) 

Eigenvector centrality assumes that the centrality of a given individual is an increasing function 

of the centralities of all the individuals to whom he or she is connected. While this is an intuitive way 

to think about which subjects might be better connected, it yields a practical problem: how do we 

simultaneously estimate the centrality of all subjects in the network? Let 𝑎𝑖𝑗 = 1 if subjects 𝑖 and 𝑗 

have a social connection and 𝑎𝑖𝑗 = 0 if they do not. Furthermore, let 𝑥 be a vector of centrality 

scores so that each subject’s centrality 𝑥𝑗 is proportional to the sum of the centralities of the subjects 

to whom they are connected: 𝜆𝑥𝑖 = 𝑎1𝑖𝑥1 + ⋯ + 𝑎𝑛𝑖𝑥𝑛. This yields 𝑛 equations, which can be 

represented as 𝜆𝑥 = 𝐴𝑇𝑥. The vector of centralities 𝑥 can now be computed since it is an 
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eigenvector with the eigenvalue 𝜆. Although there are 𝑛 nonzero solutions to this set of equations, 

in symmetric matrices, the eigenvector corresponding to the principal eigenvalue is used because it 

maximizes the accuracy with which the associated eigenvector can reproduce the original social 

network. To be sure of reaching a solution, we symmetrized all asymmetric relationships in the 

observed network (i.e., we assumed all friendship ties were mutual). 

Social distance has an unusual relationship in the results for non-leader friends (Figure 5.4B). 

After controlling for friend participation, each friend of friend who participates in a raid actually 

decreases the likelihood a subject will join by 1.6% (SE = 0.6%, P = 0.006). This suggests that people 

just outside of a person’s direct social network may slightly de-motivate participation in raids; weak 

ties are apparently not useful for recruiting, and may even be somewhat detrimental. The 

significance of these associations survives models with various controls. 

Modeling individual characteristics  

In this section, we describe methods to explore what individual characteristics are associated 

with raid participation, leadership, and network in-degree.  

Table A.2-Table A.7 show linear regressions that measure the association between raid 

participation and various individual characteristics. The basic model is 

𝐸[𝑌𝑖] = 𝛼 + 𝛽𝑥𝑖, (A.6) 

where the dependent variable 𝑌𝑖 is the total number of raids in which person 𝑖 participated, 𝑥𝑖 is a 

vector of individual characteristics for participant 𝑖, and 𝛽 is a vector of coefficients that indicate the 

degree of association with each characteristic. The specific independent variables are height (cm), 

weight (kg), number of siblings (paternal or maternal), and paternal wealth (only measured for N = 

42 people). Models are calculated for the full population (left side of tables) and for the subset of the 
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population who are not leaders (right side of tables). Only the significance of in-degree (net of 

sibling contributions, which are measured separately) remains for both the full population and the 

population that does not include leaders when all individual characteristics are allowed. These 

models suggest that social information is important for raid participation levels than individual 

characteristics. We used OLS regression to estimate these models, but count models yielded similar 

results. 

Table A.8-Table A.12 show a similar set of models, but the dependent variable 𝑌𝑖 is the in-

degree of person 𝑖 (net of siblings). Siblings, paternal wealth, and leadership status individually 

appear to be significantly associated with raid participation in both the full population and the subset 

of the population that does not include leaders. 

Finally, Table A.13 shows a similar model, but the dependent variable 𝑌𝑖 is the eigenvector 

centrality of person 𝑖 (net of siblings). This regression shows that even when controlling for the 

number of direct contacts, leaders tend to have higher centrality, suggesting that leaders not only 

have more friends, but their friends are more popular and they have more friends of friends as well. 

Models with raid and social information and fixed effects 

In this section, we describe methods to explore associations between raid characteristics and 

raid participation. 

Table A.14-Table A.20 show linear regressions that measure the association between an 

individual’s decision to join a particular raid and various raid characteristics. The basic model is 

𝐸[𝑌𝑖𝑟] = 𝛼 + 𝜃𝑖 + 𝛾𝑟 + 𝛽𝑥𝑖𝑟 , (A.7) 

where the dependent variable 𝑌𝑖𝑟 = 1 if person 𝑖 joins raids 𝑟, and 𝑌𝑖𝑟 = 0 otherwise, 𝛼 is a 

constant (dropped if fixed effects are included), 𝑥𝑖𝑟 is a vector of characteristics for participant 𝑖 and 
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raid 𝑟, 𝛽 is a vector of coefficients that indicate the degree of association with each characteristic, 

and 𝜃𝑖 and 𝛾𝑟 are individual and raid fixed effects, respectively.  

Fixed effects are included to control for variation in stable characteristics across individuals 

(e.g., are some individuals inherently more likely to join raids?) and across raids (e.g., are some raids 

inherently more important?). This approach effectively controls for all possible stable individual and 

raid characteristics. For example, it ensures that personal differences that may impact the tendency 

of a person to engage in risky behavior or differences that may impact the importance of a raid are 

not driving the results. Additionally, since there are multiple (and probably correlated) observations 

for both raids and individuals, we adjust standard errors by clustering them on both raids and 

individuals using multiway clustering (Cameron et al., 2011).  

Table A.14 and Table A.15 show regressions of raid participation on the total number of 

leaders and non-leaders who joined the raid. Although Table A.14 suggests that the number of non-

leaders participating is significantly associated with the decision to join, when we control for 

individual fixed effects in Table A.15, the association ceases to be significant. Since neither the 

number of leaders nor the number of non-leaders survives both specifications, we turn to models 

based on participation by friends rather than total participation. 

Table A.16-Table A.18 show regressions of raid participation on social aspects of raid 

composition. Table A.18 shows the strictest specification with both raid and individual fixed effects. 

As discussed in the main text, the number of first-degree leaders, first-degree friends, and second-

degree friends on a raid are all significantly associated with raid participation, and these results 

survive multiple model specifications and strong controls for fixed individual and raid 

characteristics. 
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Table A.19 shows a regression of raid participation on the number of siblings also in the raid 

with and without individual or raid fixed effects. Only in the model without fixed effects is the 

number of siblings significant. For completeness, we consider the prior (full) model with siblings 

separated out. 

Table A.20 shows a regression of raid participation on the social aspects of raid composition 

(as in Table A.18) with the further inclusion of the number of siblings who participated on raids. We 

again find that leaders of distance 1, friends of distance 1, and friends of distance 2 are significant, 

while the number of siblings on raids (net of leader and non-leader friends of distance 1, 2, and 3) is 

not significant. This again suggests that it is friends, not siblings that matter for the emergence of 

violence. 

Finally, Table A.21 shows a model that regresses the number of non-leader friends who join 

a raid on a person’s own decision to join the raid (1 = joined), their leadership status (1 = leader), 

and an interaction of the two. The results suggest that leaders who join raids actually mobilize 

significantly fewer individuals to join than non-leaders, and this is in spite of the fact that leaders 

tend to have more friends as shown in Table A.12. 

 Table A.22 shows a model that regresses a person’s own decision to join a raid upon the 

number of leaders and non-leader friends, both net of siblings, who join a raid. These results 

support the hypothesis that a friendship relationship is more important than a family (sibling) 

relationship in deciding to join raids. Again, net of siblings, the first-degree friendship effect is by far 

the largest determinant for joining raids. 

To further test the hypothesis that it is friendship ties, and not family ties, that are important, 

we performed a permutation test of which raids individuals join, keeping the number per raid and 

the total number of raids participated in by each individual constant, and we asked what percentage 
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of raids have any sibling pairs. We find that the observed value lies near the center of the 

distribution of the permuted values, suggesting that siblings do not raid in pairs more frequently 

than chance, in line with the regression analysis. 
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Table A.1. Individual level summary statistics. 

Variable Mean SD Min Max 

Height (cm) 175.4 6.36 160 196 

Weight (kg) 58.5 6.46 42 71 

Number of Siblings 1.0 1.34 0 5 

Paternal Wealth 12.3 3.47 6 18 

In-Degree (Number of Friendship Nominations) 3.0 2.67 0 13 
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Table A.2. Regression of total participation on height. OLS regression of total number of times 
a person participated in raids on height. 

 

Dependent Variable: 

 Number of Times 
Participated in Raids 

(Full Population) 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Height (cm) 0.036 0.059 0.537 -0.033  0.039 0.397 

Intercept -3.414 10.318 0.742 8.144 6.785 0.234 

R2  0.005   0.010  

N  76   72  
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Table A.3. Regression of total participation on weight. OLS regression of total number of times 
a person participated in raids on weight. 

 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Full Population) 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Weight (kg) 0.120 0.056 0.036 0.010  0.036  0.773 

Intercept -4.039 3.313 0.227 1.761 2.084  0.401 

R2  0.058   0.001  

N  76   72  
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Table A.4. Regression of total participation on number of siblings. OLS regression of total 
number of times a person participated in raids on the number of siblings. Both paternal and 
maternal siblings are counted. 

 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Full Population) 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Siblings (#) 0.696  0.248  0.006 0.397  0.144  0.007 

Intercept 2.230  0.414  0.000 1.900  0.231  0.000 

R2  0.081   0.083  

N  91   86  
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Table A.5. Regression of total participation on paternal wealth. OLS regression of total 
number of times a person participated in raids on paternal wealth. 

 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Full Population) 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Paternal Wealth 0.350  0.116 0.004 0.163  0.079  0.046 

Intercept -1.631 1.476  0.276 0.212 0.989  0.832 

R2  0.186   0.100  

N  42   40  
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Table A.6. Regression of total participation on social network degree. OLS regression of total 
number of times a person participated in raids on in-degree (net of siblings) in the gift-giving 
network. 

 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Full Population) 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

In-Degree (Non-
Sibling Friends) 

0.766 0.120 0.000 0.495 0.064 0.000 

Intercept 0.989 0.417  0.020 1.099  0.213  0.000 

R2  0.315   0.416  

N  91   86  
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Table A.7. Regression of Total Participation on Individual Characteristics. OLS regression of 
total number of times a person participated in raids on height, weight, number of siblings, paternal 
wealth, and in-degree (net of siblings). 

 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Full Population) 

Dependent Variable: 

Number of Times 
Participated in Raids 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Height (cm) 0.181 0.077 0.026 0.034 0.067 0.613 

Weight (kg) 0.097 0.072 0.191 0.105 0.052 0.056 

Siblings (#) 0.160 0.278 0.570 -0.228 0.214 0.296 

Paternal Wealth 0.282 0.122 0.028 0.168 0.091 0.076 

In-Degree (Non-
Sibling Friends) 

0.453 0.170 0.012 0.338 0.124 0.011 

Intercept -40.121 11.777 0.002 -12.690 10.729 0.247 

R2  0.577   0.434  

N  36   34  
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Table A.8. Regression of network in-degree (net of siblings) on height. 

 

Dependent Variable: 

In-degree 

(Full Population) 

Dependent Variable: 

In-degree 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Height (kg) -0.041 0.045 0.366 -0.74 0.050 0.138 

Intercept 9.864 7.927 0.217 15.519 8.677 0.078 

R2  0.011   0.031  

N  76   72  
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Table A.9. Regression of network in-degree (net of siblings) on weight.  

 

Dependent Variable: 

In-degree 

(Full Population) 

Dependent Variable: 

In-degree 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Weight (kg) 0.003  0.045  0.945 -0.026 0.046 0.576 

Intercept 2.478  2.630  0.349 4.018 2.689 0.140 

R2  0.000   0.004  

N  76   72  
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Table A.10. Regression of network in-degree (net of siblings) on number of siblings. 

 

Dependent Variable: 

In-degree 

(Full Population) 

Dependent Variable: 

In-degree 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Siblings (#) 0.711 0.174 0.000 0.664  0.182 0.000 

Intercept 1.820  0.290 0.000 1.750 0.293 0.000 

R2  0.158   0.137  

N  91   86  
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Table A.11. Regression of network in-degree (net of siblings) on paternal wealth. 

 

Dependent Variable: 

In-degree 

(Full Population) 

Dependent Variable: 

In-degree 

(Non-Leaders Only) 

 Coef. SE P Coef. SE P 

Paternal Wealth 0.286 0.098 0.006 0.254 0.104 0.019 

Intercept -0.997 1.256 0.432 -0.659  1.299 0.615 

R2  0.175   0.136  

N  42   40  
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Table A.12. Regression of network in-degree (net of siblings) on leadership status. 

 
Dependent Variable: 

In-Degree 

 Coef. SE P 

Leadership Status 2.816 1.065 0.010 

Intercept 2.384 0.250 0.000 

R2  0.073  

N  91  
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Table A.13. Regression of eigenvector centrality on number of siblings, network in-degree 
(net of siblings), and leadership status. 

 
Dependent Variable: 

Eigenvector Centrality 

 Coef. SE P 

Siblings (#) 0.011 0.003 0.001 

In-Degree 0.014 0.014 0.000 

Leadership Status 0.038 0.018 0.044 

Intercept 0.040 0.006 0.000 

R2  0.564  

N  91  
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Table A.14. Regression of raid participation on general raid composition. OLS regression of 
raid participation on raid composition, with multiway clustering of standard errors on participant 
and raid. Measures of raid composition exclude the participant (in other words, how many other 
leaders and non-leaders joined the raid?). 

 
Dependent Variable: 

Raid Participation 

 Coef. SE P 

# Leaders on Raid -0.002 0.006 0.690 

# Non-Leaders on Raid 0.006 0.003 0.035 

Intercept 0.048 0.015 0.001 

Individual Fixed Effects  NO  

Raid Fixed Effects  NO  

R2  0.004  

N  3549  
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Table A.15. Regression of raid participation on general raid composition with individual 
fixed effects. OLS regression of raid participation on raid composition, with multiway clustering of 
standard errors on participant and raid. The model includes fixed effects (not shown) for individuals. 
Measures of raid composition exclude the participant (in other words, how many other leaders and 
non-leaders joined the raid?). 

 
Dependent Variable: 

Raid Participation 

 Coef. SE P 

# Leaders on Raid 0.004 0.005 0.430 

# Non-Leaders on Raid 0.006 0.003 0.051 

Individual Fixed Effects  YES  

Raid Fixed Effects  NO  

R2  0.104  

N  3549  
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Table A.16. Regression of raid participation on number of non-leader friends who join the 
raid. OLS regression of raid participation on the total number of non-leader friends at social 
distance 1, 2, and 3 who join the raid, with multiway clustering of standard errors on participant and 
raid. 

 
Dependent Variable: 

Raid Participation 

Dependent Variable: 

Raid Participation 

Dependent Variable: 

Raid Participation 

 Coef. SE P Coef. SE P Coef. SE P 

# Non-Leader Friends 
on Raid (Distance 1) 

0.192 0.014 0.000 0.192 0.015 0.000 0.191 0.015 0.000 

# Non-Leader Friends 
of Friends on Raid 
(Distance 2) 

   –0.001 0.006 0.888 0.001 0.006 0.859 

# Non-Leader Friends 
of Friends of Friends on 
Raid (Distance 3) 

      -0.005 0.003 0.060 

Intercept 0.014 0.006 0.023 0.014 0.004 0.001 0.021 0.004 0.000 

Individual Fixed Effects  NO   NO   NO  

Raid Fixed Effects  NO   NO   NO  

R2  0.218   0.218   0.219  

N  3549   3549   3549  
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Table A.17. Regression of raid participation on social aspects of raid composition (leaders 
up to distance 3). OLS regression of raid participation on social aspects of raid composition – the 
total number of leaders at social distance 1, distance 1 and 2, and distance 1, 2, and 3 on raid, with 
multiway clustering of standard errors on participant and raid. 

 
Dependent Variable: 

Raid Participation 

Dependent Variable: 

Raid Participation 

Dependent Variable: 

Raid Participation 

 Coef. SE P Coef. SE P Coef. SE P 

# Leader Friends on Raid 
(Distance 1) 

0.140  0.022  0.000 0.140  0.022  0.000 0.143  0.022  0.000 

# Leader Friends on Raid 
(Distance 2) 

--- --- --- 0.008  0.009  0.403  0.009  0.009  0.337 

# Leader Friends on Raid 
(Distance 3) 

--- --- --- --- --- --- 0.013  0.008  0.118  

Intercept 0.055 0.007 0.000 0.051 0.009 0.000 0.042 0.009 0.000 

Individual Fixed Effects  NO   NO   NO  

Raid Fixed Effects  NO   NO   NO  

R2  0.040   0.040   0.041  

N  3549   3549   3549  
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Table A.18. Regression of raid participation on social aspects of raid composition (leaders 
and friends up to distance 3) with individual and raid fixed effects. OLS regression of raid 
participation on social aspects of raid composition – the total number of leaders and non-leader 
friends at social distance 1, 2, and 3 on raid, with multiway clustering of standard errors on 
participant and raid. The model includes fixed effects (not shown) for both individuals and raids. 

 
Dependent Variable: 

Raid Participation 

 Coef. SE P 

# Leader Friends on Raid 
(Distance 1) 

0.068 0.024 0.005 

# Leader Friends on Raid 
(Distance 2) 

-0.022 0.020 0.286 

# Leader Friends on Raid 
(Distance 3) 

-0.010 0.019 0.576 

# Non-Leader Friends on Raid 
(Distance 1) 

0.189 0.017 0.000 

# Non-Leader Friends of 
Friends on Raid (Distance 2) 

-0.016 0.006 0.007 

# Non-Leader Friends of 
Friends of Friends on Raid 
(Distance 3) 

-0.009 0.005 0.064 

Individual Fixed Effects  YES  

Raid Fixed Effects  YES  

R2  0.309  

N  3549  
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Table A.19. Regression of raid participation on number of siblings in raid with and without 
fixed effects. OLS regression of raid participation on the number of siblings participating in a raid, 
with multiway clustering of standard errors on participant and raid. Both paternal and maternal 
siblings are counted. The models in the middle and the right of the table include fixed effects (not 
shown) for individuals and for raids, respectively. 

 
Dependent Variable: 

Raid Participation 

Dependent Variable: 

Raid Participation 

Dependent Variable: 

Raid Participation 

 Coef. SE P Coef. SE P Coef. SE P 

# Siblings on Raid 0.045 0.021 0.032 0.028 0.022 0.207 0.033 0.021 0.122 

Intercept 0.070 0.009 0.000 --- --- --- --- --- --- 

Individual Fixed Effects  NO   YES   NO  

Raid Fixed Effects  NO   NO   YES  

R2  0.004   0.101   0.021  

N  3549  
 

3549   3549  
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Table A.20. Regression of raid participation on social aspects of raid composition and 
siblings with individual and raid fixed effects. OLS regression of raid participation on social 
aspects of raid composition – the total number of leaders and non-leader friends at social distance 1, 
2, and 3 on raid, as well as siblings (net leaders and non-leader friends at social distance 1, 2, and 3), 
with multiway clustering of standard errors on participant and raid. The model includes fixed effects 
(not shown) for both individuals and raids. 

 
Dependent Variable: 

Raid Participation 

 Coef. SE P 

# Leader Friends on Raid 
(Distance 1) 

0.067 0.024 0.005 

# Leader Friends on Raid 
(Distance 2) 

-0.022 0.020 0.282 

# Leader Friends on Raid 
(Distance 3) 

-0.011 0.019 0.564 

# Non-Leader Friends on Raid 
(Distance 1) 

0.189 0.017 0.000 

# Non-Leader Friends on Raid 
(Distance 2) 

-0.016 0.006 0.007 

# Non-Leader Friends on Raid 
(Distance 3) 

-0.009 0.005 0.056 

# Siblings on Raid (Net Non-
Leader Friends and Leaders at 
Distance 1,2,3) 

-0.067 0.056 0.229 

Individual Fixed Effects  YES  

Raid Fixed Effects  YES  

R2  0.310  

N  3549  
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Table A.21. Regression of number of non-leader friends on raid on whether a person joins 
the raid and their leadership status. OLS regression of number of non-leader friends on a raid on 
an indicator variable of whether a person joins the raid, leadership status, and the interaction of the 
indicators with raid fixed effects (not shown) and multiway clustering on individuals and raids. 

 

Dependent Variable: 

Number of Non-Leader Friends 

On Raid 

 Coef. SE P 

Person Joins Raid 1.216 0.130 0.000 

Leadership Status 0.056 0.056 0.316 

Person Joining Raid × 
Leadership Status 

-0.585 0.221 0.008 

Individual Fixed Effects  NO  

Raid Fixed Effects  YES  

R2  0.275  

N  3549  
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Table A.22. Regression of raid participation on social aspects of raid composition (net of 
siblings) with individual and raid fixed effects. OLS regression of raid participation on social 
aspects of raid composition – the total number of leaders and non-leader friends at social distance 1, 
2, and 3 on raid (net leaders and non-leader friends at social distance 1, 2, and 3), both social 
relationships net of siblings, clustering standard errors on each participant and raid. The model 
includes fixed effects (not shown) for both individuals and raids. 

 
Dependent Variable: 

Raid Participation 

 Coef. SE P 

Number of Siblings on Raid  0.009 0.020 0.642 

Number of Non-Sibling 
Leaders on Raid (Distance 1) 

0.084 0.026 0.002 

Number of Non-Sibling 
Leaders on Raid (Distance 2) 

-0.019 0.020 0.331 

Number of Non-Sibling 
Leaders on Raid (Distance 3) 

-0.009 0.018 0.631 

Number of Non-Sibling, Non-
Leader Friends on Raid 
(Distance 1) 

0.202 0.017 0.000 

Number of Non-Sibling, Non-
Leader Friends on Raid 
(Distance 2) 

-0.014 0.006 0.013 

Number of Non-Sibling, Non-
Leader Friends on Raid 
(Distance 3) 

-0.010 0.004 0.022 

Individual Fixed Effects  YES  

Raid Fixed Effects  YES  

Residual  0.316  

N  3549  

 


