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On the Framed Singular Instanton Floer Homology from Higher Rank Bundles

Abstract

In this thesis we study the framed singular instanton Floer homology defined by by

Kronheimer and Mrowka in [12]. Given a 3-manifold Y with a link K and δ ∈ H2(Y,Z)

satisfying a non-integral condition, they define the singular instanton Floer homology group

IN(Y,K, δ) by counting singular flat PSU(N)-connections with fixed holonomy around K.

Take a point x ∈ Y \K, classical point class operators µi(x) of degree 2i on IN(Y,K, δ) can

be defined as in the original Floer theory defined by smooth connections. In the singular

instanton Floer homology group IN∗ (Y,K, δ), there is a special degree 2 operator µ(σ) for

σ ∈ K. We study this new operator and obtain a universal relation between this operator

and the point class operators µi(x). After restricted to the reduced framed Floer homology

F ĪN∗ (Y,K), these point classes operators µi(x) become constant numbers related to the

PSU(N)-Donaldson invariants of four-torus T 4. Then the universal relation becomes a

characteristic polynomial for the operator µ(σ) so that we can understand the eigenvalues

of µ(σ) and decompose the Floer homology as eigenspaces.
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1 Introduction

The classical Donaldson theory is based the SU(2)-bundles (or more generally U(2)-bundles)

. By studying the moduli spaces of anti-self-dual connections of SU(2) bundles, Donaldson

defines his polynomial invariants for closed 4-manifolds. There is also the correspond-

ing Floer theory which be thought as a generalization of Donaldson theory when we are

working with manifolds with boundaries. The SU(N)-Donaldson invariants are defined

by Kronheimer in [7] and the corresponding Floer theory is developed by Kronheimer and

Mrowka in [12]. In [12] they develop the Floer theory based on singular connections with

fixed holonomy around a codimension 2 submanifold. We generalize some properties of the

SU(2)-Donaldson invariants in [8] to the higher rank case and also study the effect on the

corresponding Floer theory.

Take a triple (Y,K, δ) we denote the singular instanton Floer homology group by

IN(Y,K, δ). It carries a relative Z/(2N) grading. For any point x ∈ Y \K we have the

point class operator µi(x) of degree 2i which does not depend on the choice of the point

x. We also have an operator µ(σ) (or just denote it by σ) of degree 2 for any σ ∈ K. This

operator only depends on the choice of component of K where σ lies. We obtain a universal

relation between these operators. When we are working with the reduced framed singular

Floer homology F Ī(Y,K), it has the following simple form

σN +mN,2σ
N−2 + · · ·+mN,N = (1 + (−1)N) id (1.1)

where mN,i are rational numbers. Based on this formula we can understand the eigenvalues

of σ and obtain a decomposition of the Floer homology group.

Our motivation to study this operator comes from the Khovanov-Rozansky homology.

Given a knot or link K in S3, there is the Khovanov-Rozansky homology KRN(K) [6] which
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is a bi-graded Q vector space. For each component e of K, there is a degree 2 operator Xe on

KRN(K) that satisfies XN
e = 0. This structure is similar to the σ-operator in the singular

instanton Floer homology of K. The definition of Khovanov-Rozansky homology is based

on the technique of matrix factorization. Khovanov-Rozansky homology is defined not only

for knots or links but also for graphs with trivalent singularities. For a planar trivalent

diagram (we will call it planar web) Γ we have the dimension of KRN(Γ) = Q{MOY states}

is equal to the number of MOY states, where MOY states [18] are certain labeling of the

edges of the diagram.

In Khovanov and Rozansky’s definition, a potential is chosen in order to define the

matrix factorizations. The potential used is xN+1 (so the derivative is (N + 1)xN) and

this choice of potential leads to the vanishing of XN
e . By perturbing the potential, Gornik

[4] defines a variant of Khovanov-Rozansky homology. The potential used by Gornik is

xN+1 − (N + 1)βNx (the derivative is (N + 1)(xN − βN) with roots βξl where ξ = e2πi/N).

Gornik’s homology for planar webs is isomorphic to Khovanov-Rozansky’s homology. But

for links it only depends on the number of componens. For each component e we have

an operator Xe on Gornik’s homology G(L) and all these operators commute and satisfy

XN
e − βN = 0. G(K) can be decomposed as the direct sum of all the common eigenspaces

of these operators with each eigenspace of exactly dimension 1. So G(K) ∼= CN |L| . By

filtering the chain complex used to define G(K), the lower degree term (N + 1)βNx of the

potential is killed so the original KR(K) appears. In this way Gornik shows that there is

a spectral sequence whose E2 page is KR(K) and abuts to G(K). This is generalized by

Wu [20] to any potential whose derivative has N distinct roots.

After being generalized to the case of webs, conjecturally the reduced singular instanton

Floer homology for planar web is also isomorhphic to the Khovanov-Rozansky homology

with a perturbed potential (
∫
xN +mN,2x

N−2 + · · ·+mN,N − (1 + (−1)N)). This should be
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the first step the obtain a similar spectral sequence from Khovanov-Rozansky homology.

This thesis is organized as follows. In Sections 2 and 3 we review some background on

the Donaldson invariants from higher rank bundles and the moduli space of singular anti-

self-dual connections. In Section 4 we obtain the universal relation over closed 4-manifolds

but with undetermined universal constants. In order to determine these constants, in

Section 5 we calculate concrete examples of Donaldson invariants from singualr instantons

by the correspondence between singular instantons and stable parabolic bundles. In Section

6 we adapt the unversal relation from the closed manifolds to the relative case: a relation

between operators on the Floer homology. After restricted to the reduced framed Floer

homology F ĪN∗ (Y,K), these point classes operators µi(x) become constant numbers related

to the SU(N)-Donaldson invariants of four-torus T 4. In Section 7 we construct the moduli

space of stable bundles over an abelian surface as well as the universal bundles based some

work of Mukai. By Donaldson’s theorem this is the same as the moduli space of instantons.

So we can use these moduli spaces to calculate the Donaldson invariants. More precisely we

can reduce the calculation to some calculation over Hilbert scheme of points in an abelian

surface. We are able to obtain a complete answer when N = 3. Finally in Section 8 we do

some calculation for unknots and unlinks.

2 Construct the invariants

Let P be a U(N) bundle over a 4-manifold X and R∗ be the configuration space of all

irreducible connections with a fixed determinant connection. The universal U(N) bundle

P over X ×R∗ may not always exit, but the universal PU(N) bundle adP always exists.

Taking the pontryagin classes of the adjoint bundle suP and use the slant product we can
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obtain homology classes over the configuration space

µi : Hj(X,Q)→ H4i−j(R∗,Q)

α 7→ pi(suP)/α

If the moduli space of anti-self-dual connections is regular, compact and contains no

reducibles, we can take the cup product of these classes and pair it with the fundamental

class of the moduli space to define the polynomial invariants. In general the moduli space

may not be compact. So we need to take the geometrical representatives of some mutiples

of these classes and deal with the bubbles very carefully to obtain a compact intersection

with the moduli space. This is contained in [3] and [7]. But there is some defect in this

definition: it does not work for pi when i ≥ N . Here we try to modify this definition to

make it work for our purpose. For simplicity we only want to focus on the point classes.

First notice that we have the fibration

BZN → BSU(N)→ BPU(N)

Since the rational cohomology of BZN is same as a point, the rational cohomologies of

BSU(N) and BPU(N) are isomorphic. This means if we are working with cohomology with

rational coefficients the any characteristic classes we can define for PSU(N) bundles must

be a polynomial in c̄2, · · · , c̄N which correspond to the Chern classes of SU(N) bundles.

In particular the Pontryagin classes of suP are combinations of c̄i’s.

If we want to define the polynomial invariants we also need to construct the geometrical

representatives. We know how to construct the geometrical representatives of Chern classes

of a complex vector bundle. If our PU(N) bundle comes from a SU(N) bundle, then we can
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take the associated bundle E of the standard representation of SU(N). We have ci(E) = c̄i.

In general the PU(N) bundle may not come from a SU(N) bundle so E may not exist. But

we can consider the tensor product of N copies of the standard representation of SU(N)

which descends to a representation of PU(N). We denote the associated bundle of this

representation by H. We have

Proposition 2.1. The classes c̄2, · · · , c̄N can be expressed as rational polynomials in c2(H), · · · cN(H)

.

Proof. Consider the universal case: let F and G be the universal principal bundle over

BSU(N) and BPU(N) respectively.

F −−−→ Gy y
BSU(N) −−−→ BPU(N)

Take the standard representation of SU(N) and denote the associated bundle by E.

Since tensor product of N copies of the standard representation of SU(N) descends to a

representation of PU(N), denote the associated bundle by H we have the pullback diagram

E⊗N −−−→ Hy y
BSU(N) −−−→ BPU(N)

From

ch(E⊗N) = ch(E)N

we know the Chern characters of E⊗N and E can determine each other. The first N Chern

classes and the first N terms of Chern characters determine each other. So we have the first

N Chern classes of E⊗N determine the Chern classes of E. Now by the pullback diagram
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and the naturality of Chern classes ci(H) (0 < i ≤ N) can generate the cohomology ring

of BPU(N).

Now we can use the geometrical representatives of ci(H) (0 < i ≤ N) to define the

polynomial invariants. The good thing is that the degree of cN(H) is smaller than 4N so

the counting argument still works for this case which guarantees the compactness of the

intersection.

3 Moduli space of singular instantons

Let X be a 4-manifold and Σ be an embedded surface in X. Let E be a SU(N) bundle

over X. E|Σ will be reduced to a S(U(1) × · · · × U(N − 1) We want to consider singular

SU(N)-connections which is smooth over X\Σ and have asymptotic holonomy

exp(−2πi diag(λ,− λ

N − 1
, · · · ,− λ

N − 1
)) (3.1)

around Σ where 0 < λ < (N − 1)/N . When λ = (N − 1)/N the holonomy is e2πi/N id. In

this case, passing to PU(N) we will obtain smooth connections.

The complete theory is developed in [12]. Here we restate some useful results in [12].

Let EΣ = L ⊕ F be the S(U(1) × U(N)) reduction where L is a U(1) bundle. We call

k = c2(E)[X] the instanton number and l = −c1(L)[Σ] the monopole number. The formal

dimension of the moduli space of gauge-equivalence classes of ASD connections is

dimMλ
k.l = 4Nk + 2Nl − (N2 − 1)(1− b1 + b+) + (N − 1)χ(Σ) (3.2)
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We also have the energy formula

Energy(A) = 2

∫
X\Σ
− tr(∗ adFA ∧ adFA)

= 32π2N(k +
N

N − 1
(λl − 1

2
λ2Σ.Σ))

We may also need to consider the U(N) bundle case. In this case let E be a U(N)

bundle over X and E|Σ = L ⊕ F be a U(1) × U(N − 1) reduction. Now the instanton

number is defined as

k = − 1

2N
p1(adE)

= c2(E)− N − 1

2N
c1(E)2

where adE is the adjoint PU(N) bundle associated with E. And the monopole number is

defined as

l =
1

N
c1(E)[Σ]− c1(L)[Σ] (3.3)

In the U(N) bundle case we need to fix the holonomy of the conections around Σ to

be some h such that the projection of h into PU(N) is the same as the projection into

PU(N) of the holonomy in the SU(N) case. The gauge group G we use consists of gauge

transformations of determinant 1 and respects the decomposition E|Σ = L ⊕ F along Σ.

The moduli space of singular instantons consist of gauge equivalent classes of projective

ASD connections with fixed holonomy around Σ and fixed determinant. The dimension

formula and the energy formula still works in this case.
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3.1 Compactness and bubbles

Now we want to restate the compactness result in [12] we need. Let [An] be a sequence

of gauge-equivalence classes of ASD connections in Mλ
k,l. According to Propositon 2.9 in

[12] there is an element [A∞] in Mλ
k′,l′ and a finite set of points x ⊂ X such that over X\x

we can find isomorphisms gn : E ′|X\x → E so that g∗n(An) converges to A∞ on compact

subsets of X\x. For each x ∈ x we can assign numbers kx and lx which satisfies

• k = k′ +
∑

x∈x kx

• l = l′ +
∑

x∈x lx

• If x /∈ Σ, then kx > 0 and lx = 0. If x ∈ Σ, then Mλ
kx,lx

(S4, S2) is not empty.

By Proposition 2.10 in [12] we must have kx ≥ 0 and kx + lx ≥ 0.

From this dimension formula we can deduce the difference of the formal dimension

between Mλ
k,l and Mλ

k′,l′ is as least 2N . The extreme case only happens when there is only

one bundle point x ∈ Σ with kx = 1, lx = −1 or kx = 0, lx = 1.

4 A relation between point classes

4.1 Technical assumptions

Now we need to talk about the metric we use to define the moduli spaces. To define the

invariants we can use the smooth metric over X. We also want to introduce the cone-like

metrics which is modeled on

du2 + dv2 + dr2 + (
1

ν2
)r2dθ2
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near Σ. This metric has a cone angle 2π/ν where ν ≥ 1 is a real number. When ν

is an integer then the metric is a orbifold metric. By a standard cobordism argument

[[10], Theorem 2.13], it can be shown that the invariants do not depend on the choice of

the holonomy parameter λ. Later we also need to use the gluing theorem to study the

boundary of the moduli space. For this purpose we can take some integer v and also some

special holonomy parameter λ so that the singular connections are orbifold connections:

locally lifted to a branched ν cover the connections become smooth connections. In this case

the usual gluing theorem still works. Another case is that we take ν to be a large enough

integer so that we still have the ”Fredholm package“ so that we can still use the gluing

result. Notice that in this case there is no restriction on λ: we don’t require the connections

to be orbifold connections [[12], Section 2.8]. In this case by a standard cobordism argument

[[10], Theorem 2.13], it can be shown that the invariants do not depend on the choice of

the holonomy parameter λ.

In order to define the invariant, we need to avoid the reducibles. We will assume

b+(X) ≥ 2. We can achieve the non-integral condition in Proposition 2.19 in [12] by

choosing some special parameter λ so that for a generic path of metrics there are no

reducibles in the moduli space. Another way to avoid the reducibles is to use the trick in

Section 7(iv) in [7]: blow up X at a point p /∈ Σ to obtain a new manifold

X̃ = X]C̄P 2

and replace E by Ẽ such that c1(Ẽ) = c1(E)+e and c2(Ẽ) = c2(E) where e is the Poincaré

dual of the exceptional class. In this case the non-integral condition is always satisfied so

we can define the invariants for X̃ and use the blow-up formula to obtain a definition for

invariants for X.

9



By a generic holonomy perturbation [7] [12], all the moduli spaces will become regular.

We will keep assuming this when defining invariants.

4.2 Defining the invariants

By taking points away from Σ we can still define the point classes c̄i/x in the singular

connection case. In this case we have a 2-dimensional point class which does not appear

in the non-singular case. The gauge group we use fixes the determinant of E and respects

the decomposition E|Σ = L ⊕ F . So along Σ we have a PS(U(1) × U(N)) reduction S of

adP. If in some good case the U(N) bundle exists and the U(1)× U(N − 1) reduction P′

also exists, we can use L to denote the U(1) component of P′, then define a 2-dimensional

point class

ε = −c1(L)/[σ] ∈ H2(R∗)

In the general case, we can still define this characteristic class for PS(U(1) × U(N))

bundle in the same way as in Section 2. Take a special representation of U(1)×U(N − 1):

the tensor product of N copies of the standard action of the U(1) factor. We can use this

to representation to construct a associated line bundle of K and use the first Chern class

of this line bundle to obtain the geometrical representative.

4.3 A universal relation

If we have a SU(N) bundle M which decomposes as V ⊕N where V is a line bundle, then

we have

cN(V ∗ ⊗M) = cN(M) + c1(V ∗)cN−1(M) + · · ·+ c1(V ∗)N (4.1)

= 0 (4.2)
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According to the definition of c̄i and ε we have

c̄N(adPx) + εcN−1(adPx) + · · ·+ εN = 0 (4.3)

in H∗(R∗)

Let σ ∈ Σ and (B,D) be a standard neighbourhood pair in (X,Σ). Let R∗,λσ be

the configuration space of irreducible singular connections in (B,D). We can use the

representation described above to obtain a line bundle K. Let

Mλ
k,l → R∗,λσ

be the restriction map. Take a generic section of K and denote the zeros by Vσ then Mλ
k,l∩Vσ

will be the Poincaré dual of Nε.

Let {σi} be different points on Σ, {ui} be embedded surfaces in generic positions (for

simplicity we also suppose they are away from Σ). Suppose the total degree of the classes

and the dimension of Mk,l coincide then we can define the invariants

qk,l(σ1, · · · , σm, xc̄p , · · · , xc̄q , u1, · · · , us) ∈ Q (4.4)

by counting the number of points in Mk,l ∩ Vσ1 ∩ · · · ∩ Vus where Vui represents c̄2/ui, then

divide the it by some factor associated to the representatives since when we define the

representatives we may need to take some multiple of the original classes. The geometrical

representatives are chosen to make all the possible intersections transversal. We should

also notice that we don’t construct the geometrical representatives Vx,c̄j for c̄j/x actually.

Instead we should represent c̄j/x by a rational polynomial of some actual representatives

of cj(H)/xi in Section 2(we take diffrent point xi for every appearance of cj(H). In the
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definition we should think Vxi,c̄i as a rational polynomial of Vxi,cj(H) and use Vxi,cj(H) to get

the actual intersection. (4.4) only depends on the homology classes not on the choices of

points and surfaces, sometimes we will just write σm without specifying m different points

on Σ. The standard counting argument guarantees the compactness of the intersection.

Let z = u1u2 · · · us be the formal product of embedded surfaces and Vz denote the

intersection of Vuis. If M ∩ Vz is compact and has dimension 2N , then by (4.3) we have

qk,l((xc̄N + σxc̄N−1
+ · · · σN)z) = 〈c̄N(adPx) + εcN−1(adPx) + · · ·+ εN , [M ∩ Vz]〉

= 0

In general this formula is not true since the moduli space may not be compact. We

need to consider the contribution from the bubbles carefully. The N = 2 case is already

studied in [8]. We focus on the N > 2 case

Proposition 4.1. Under the above assumption we have a formula

qk,l((xc̄N + σxc̄N−1
+ · · · σN)z) = m1qk,l−1(z) +m2qk−1,l+1(z) (4.5)

where m1 and m2 are some constants which only depend on N .

Proof. We want to know what happens when Vz is not compact. Let [An] be a sequence

of gauge-equivalence classes of connections in M ∩ Vz. Suppose [An] weakly converge to a

connection A∞ ∈ Mk′,l′ ∩ Vz. There is at most 1 bundle point: otherwise it’s easy to show

A∞ lie in an intersection a negative dimensional by dimension-counting which contradicts

our transversality assumption.

Now we denote the bubble point by x∞. If x∞ lie in X\Σ then it touches at most 2

surfaces ui, uj. A∞ ∈ Mk′,l′ ∩ Vz′ where z′ is the formal product of surfaces in z except
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ui, uj. Mk′,l′ ∩ Vz′ has negative dimension hence empty. So the bubble x∞ must lie on Σ.

There are only 2 possible cases: (k′, l′) = (k, l − 1) or (k − 1, l + 1). And in both cases

we have A∞ ∈Mk′,l′ ∩Vz whose dimension is zero therefore consists of finitely many points.

By adding these possible pairs (A∞, x∞) we can obtain a compactified space Mk,l ∩ Vz. If

x ∈ X\Σ the point class c̄i/x can be extend to this compactified space because we have

well-defined restriction map

Mk,l ∩ Vz → R∗x

Take a point σi ∈ Σ. Then we can get a extended restriction map

Mk,l ∩ Vz\{(A∞, σ)|σ /∈ B(σ)} → R∗σi

where B(σ) is the neighborhood of σi we use to define R∗σi . We can pull back the line

bundle K which is used to define the 2-dimensional point class and try to extend it to

Mk,l ∩ Vz. To do this we need to understand the neighborhood of (A∞, σi).

Lemma 4.2. Let λ = (N − 1)/2N and take a cone-line metric with cone-angle 2π/ν over

(S4, S2). Then we have Mλ
0,1(S4, S2) and Mλ

1,−1(S4, S2) are isomorphic to R2 × R+ where

the R2-factor means the “center” and the R+-factor means the “scaling”. Any two elements

in Mλ
0,1(S4, S2) (or Mλ

1,−1(S4, S2)) differ by translations and re-scaling.

If we take an SU(2) singular instanton A ∈ Mλ′
0,1(S4, S2)rank=2 where λ′ = N

2(N−1)
λ, a

rank SU(N) singular instanton in Mλ
0,1(S4, S2) can be constructed by the following steps:

• Firstly twist A by a flat complex line bundle over S4\S2 with holonomy around S2

exp(−2πiλ′)
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to obtain a U(2) singular connection A′ with asymptotic holonomy around S2

diag(exp(−4πiλ′), 1).

• Then use the standard inclusion U(2)→ U(N) to obtain a U(N) singular connection

A′′ with asymptotic holonomy around S2

diag(exp(−4πiλ′), 1, · · · , 1) = diag(exp(−2πi
N

N − 1
λ), 1, · · · , 1).

• Finally twist A′′ by the flat complex line bundle with honolomy

exp 2πi
λ

(N − 1)
.

Then we obtain a SU(N) singular instanton Ã in Mλ
0,1(S4, S2) around S2.

Based on the lemma all the other singular instantons can be obtained by translation and

re-scaling of Ã. From the construction it is easy to see that the stabilizer of Ã is

StabÃ
∼= {diag(α, α,B) ∈ S(U(1)× U(N − 1))|α ∈ C, B ∈ U(N − 2)}.

There is a similar construction for Mλ
1,−1(S4, S2).

A neighborhood of (A∞, σi) comes from grafting connections in Mλ
0,1(S4, S2) orMλ

1,−1(S4, S2)

to A∞. The gluing parameter S(U(1)× U(N − 1))/ StabA is isomorphic to S2n−3.

So we have

Nbh(A∞, σi) ∩Mk,l ∩ Vz ∼= S2N−3 × (0, 1)×D2

14



where S2N−3 is the gluing parameter, (0, 1) is the scaling and D2 ⊂ Σ is the center.

Nbh(A∞, σi) ∼= cone(S2N−3)×D2 ∼= D2N

The boundary of the neighborhood is S2N−1. Any line bundle over S2N−1 must be trivial so

K can be extended to Mk,l ∩ Vz. This extended line bundle does not depend on the choice

of σi since for any 2 points on Σ we can connect them by a path and get a one-parameter

family of line bundles.

Now we can use the first Chern class of the extended K and c̄i/x over Mk,l ∩ Vz to

calculate the left-hand side of (4.5).

Over Mk,l ∩Vz the universal bundle adPσ is reduced to a P (U(1)×U(N − 1) bundle S.

If this reduction can be extended to the whole Mk,l ∩ Vz then by (4.1) the left-hand side of

(4.5) is zero. The obstruction for the extension is the homotopy class of

φ : ∂Nbh(A∞, σi)→ O|∂Nbh(A∞,σi)

where O is the associated PU(N)/(P (U(1) × U(N − 1))) ∼= CPN−1 bundle of adP. φ is

determined by the reduction S. This obstruction can be described by an integer (since

π2N−1(CPN−1) = Z) and the contribution m from different A∞ ∈ Mk,l−1 (or Mk−1,l+1)

should be the same since the neighborhood comes from the grafting Mλ
0,1(S4, S2) (or

Mλ
1,−1(S4, S2)) to A∞.

Proof. Proof of the lemma. This can be read directly from the description of the moduli

space M0,1 by Murari [17] in or see the remark after Theorem 2.13 in [12]. Alternatively

we can argue as the following.

To prove the lemma we first need to understand the smooth instantons over S4.Let
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E be a SU(2) bundle over S4 with c2[S4] = 1. Then the moduli space of anti-self-dual

connections is isomorphic to R+ × R4 where R4 means the center of the curvature in R4

and R+ means the scaling of the connection. Because of Unlenbeck’s theorem of removable

singularity there is no difference between ASD connections over S4 and R4. Fix one ASD

connection over R4 , we can get any other ASD connection up to a gauge transform of

instanton number 1 by translate and re-scale the fixed connection. If we are working with

a SU(N) bundle, any ASD connection of instanton number 1 is reducible and reduced to

a SU(2) bundle by Theorem 8.4 in [1].

Take λ = (N − 1)/(2Nν). After lifting the singular instantons to a branched ν-cover

(R4,R2) → (R4,R2) ( branched along R2 ), it becomes a regular 1-instanton centered in

R2. The instanton number is calculated by the energy formula (3.3) So the instanton

comes from an SU(2)-instanton centered in R2. Therefore any two of them only differ by

translation and re-scaling. For a general λ because moduli space with different parameters

are isomorphic (Corollary 2.14 in [12]), the same result holds.

Remarks. The assumption that z is a product of surface classes defined by c̄2/u for u

away from Σ is not necessary. We can take z as the product of surface classes defined by

c̄i/u , point classes for x ∈ X\Σ, points classes for σ ∈ Σ and also curve classes defined by

c1(L)/α where α ⊂ Σ.

5 Calculation of the universal coefficients

Since the two universal coefficients m1,m2 do not depend on the choice of the manifold X,

we can calculate concrete examples to determine m1,m2.

We will show that m1 = 1 and m2 = (−1)N . The basic technique is the correspon-

dence between singular instantons and stable parabolic bundles over a Kähler pair (X,Σ)

16



described in the appendix. In our case stable parabolic bundle is a pair (E,L) where E is

a holomorphic bundle over X, L is a subline bundle of E|Σ. When we take the holonomy

parameter small enough then the stability of the parabolic bundle (E,L) is same as the

stability of the holomorphic bundle E. In general the moduli space of parabolic bundles is

more complicated than the moduli space of stable bundles. But we can take some special

topological data so that the stable bundle E lies in a zero dimensional moduli space. Then

the only problem is to classifying the sunline bundle of E|Σ. Based on this strategy, we use

the pairs (CP 2,CP 1) and (Σ1 × Σ2, {p} × Σ2) to get the answer.

5.1 First attempt: using the pair (CP 2,CP 1)

Our first attempt to mimic the proof in [8]. Even though CP 2 does not satisfies our

requirement b+ ≥ 2 to avoid reducibles for a generic path of metrics, it is still safe for this

special case: there are no reducibles for any choice of metric in this case. Equip CP 2 with

a Kähelr metric with a cone-like singularity along CP 1 with cone angle 2π/ν. We also take

the holonomy parameter λ to be a rational number a/b where b(N − 1) divides ν, then we

have the moduli space of irreducible singular ASD connections is the same as the moduli

space of stable parabolic bundles of the form (E,L,−a/(b(N − 1)), a/b). We take a small

enough λ so that the stability of (E,L,−a/(b(N − 1)), a/b) is the same as the stability of

E. In this case, to understand the moduli space of stable bundles is just to understand the

the moduli space of stable bundles and classify the subline bundles along CP 1.

In general, the moduli space of stable bundles is not easy to understand. For our

parabolic bundles we also need to understand the subline bunles over CP 1, so it should

be even more complicated. But the basic idea is to choose some particular topoloical

data so that the moduli space of stable bundles is a 0-dimensional space: just finite many
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points. Then the only thing we need to do is to understand the subline bundle. In [8], the

tangent bundle of CP 2 is used. We need to use higher rank stable bundles which lie in

zero-dimensional moduli spaces. Unfortunately, we may not find such kind of bundles for

all ranks.

There is a criterion in Chapter 16 of [13] which can be used to determine whether there

is a stable bundle E with given (c1, c2, rank = N) lying in a zero-dimensional moduli space.

From the dimension formula

dimRMc1,c2,N = 4Nc2 − 2(N − 1)c2
1 + 2(N2 − 1)

we obtain N(2c2 +N)− (N − 1)c2
1 = 1 so the rank N and c1 must be coprime. If there is

such a bundle E , it muse be unique: if not, suppose we can find another stable bundle F ,

then we have

χ(E∨ ⊗ F ) = χ(E∨ ⊗ E) = h0(E∨ ⊗ E)− h1((E∨ ⊗ E)) + h2(E∨ ⊗ E) = 1

where h0(E∨⊗E) = 1 because E is stable, h1(E∨⊗E) = dim(Mc1,c2,N) = 0, h2(E∨⊗E) =

h0(E∨ ⊗ E(−3)) = 0 by Serre duality.

Next we need to understand the restriction E|CP 1 in order to understand the subline

bundle. According to Proposition 17.2.1 in [13], E|CP 1 is rigid: E|CP 1
∼=

⊕N
i=1OCP 1(ai)

where |ai − aj| ≤ 1 for any 1 ≤ i, j ≤ N . By tensoring with a line bundle, we may assume

0 < m = c1(E)[CP 1] < N . We have

E|CP 1 = O(1)⊕m ⊕O⊕N−k

Now we take c1(L) = 1 (so the monopole number is c1(E)/N − c1(L) = k/N − 1), we need
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to understand the subline bundle of E|CP 1 with degree 0. This is the same as understanding

the embedding of O(1) into E|CP 1 . We have

Hom(O(1),O(1)⊕m ⊕O⊕N−m) ∼= Cm

So the moduli space Mk,m/N−1 is just CPm−1.

Pick a point σ ∈ CP 1, then we have Mk,m/N−1 → P(Eσ) is an isomorphism. And the

universal line bundle Lσ coincides with the pullback of the tautological line bundle over

P(Eσ). So the point class ε = c1(L∗σ) is the hyperplane class in Mk,m/N−1
∼= CPm−1. We

conclude

qk,m/N−1(σm−1) = 〈εm−1, [CPm−1]〉 = 1

Next we want to increase the monopole number by 1 and understand the moduli space

Mm/N . In this case, the subline bundle L has c1 = 0. It suffices to consider the embeddding

of O into O(1)⊕m ⊕O⊕N−k.

Hom(O,O(1)⊕m ⊕O⊕N−m) ∼= CN+m

However, the situation here is different from the previous case because not every non-zero

map will give us a subline bundle: some non-zero maps in the hom set may have zeros. A

map from O to O(1)⊕m ⊕O⊕N−m can be denoted by (f1, · · · , fm, g1, · · · , gN−m) where f ′is

are sections of O(1) and g′js are sections of O. Such a map has a zero if and only if gi = 0

for all i and f ′is only differ by scalars. If we fix the zero p ∈ CP 1, then to obtain the map

with a (unique) zero p is just to obtain a non-zero map O(p)→ O(1)⊕m. This means these
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maps are parameterized by CPm−1 × CP 1. So we have

Mk,m/N
∼= CPN+m−1\CPm−1 × CP 1

Actually CPN+m−1 coincides with the Uhlenbeck compactification of Mk,m/N . Take a

point (a, p) ∈ CPm−1×CP 1, then a corresponds to a point in the lower dimensional moduli

space Mk,m/N−1 and p is the bubble point.

Take M +m− 1 points p1, · · · , pN+m−1 ∈ CP 1, the universal subline bundle restricted

to point pi is denoted by Lpi . Lpi → Mk,m/N is the restriction of O(−1) over CPN+m−1.

It can be extend to the compactified moduli away from ideal connections with a bubble at

pi: CPN+m−1 − CPm−1 × {pi}. This is also done in the proof of Proposition 4.1. Finally

this line bundle can be extended uniquely to CPN+m−1: just as O(−1). Based on this, the

polynomial invariant is just

qk,m/N(σN+m−1) = 〈cM+m−1
1 (L∗), [CPN+m−1]〉 = 1

Here we only talk about the point classes defined by points in CP 1. For a point x ∈

CP 2\CP 1 , the point classes defined by x must be zero since the bundle E is fixed in our

case. The moduli space Mk−1,1+m/N is empty because E already lie in a zero-dimensional

moduli space Mk so that Mk−1 must have negative dimension hence empty. In summary,

we obtain

• qk,m/N(σm−1(xc̄N + σxc̄N−1
+ · · · σN)) = 1.

• qk,m/N−1(σm−1) = 1.

• qk−1,1+m/N(σm−1) = 0
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Now we can conclude that m1 = 1 for any rank N for which we can find non-empty

zero dimensional moduli space of stable bundles.

5.2 Flip symmetry and the calculation of m2

Now suppose we are working with a general Kähler pair (X,Σ) (not only the pair (CP 2,CP 1).

In the rank 2 case, a flip symmetry between different moduli spaces is used to obtain m2

[8]. More precisely, there is an isomorphism

Φ : Mλ
k,l →M

1/2−λ
k′,l′

where

k′ = k + l − 1

4
Σ.Σ, l′ =

1

2
Σ.Σ− l.

Suppose (E,L) ∈Mk,l and (E ′, L′) ∈Mk′,l′ , we have

c1(E ′) = c1(E)− [Σ]

From the parabolic bundle viewpoint, this isomorphism can be described as the following:

E ′ is defined by the short exact sequence

0→ E ′ → E → i∗(E|Σ/L)→ 0

where i : Σ → X is the inclusion map. Using i to pull back this short exact sequence, we

lose the left exactness and obtain L′ by the long exact sequence

0→ L′ → E ′|Σ → E|Σ → i∗i∗(E|Σ/L)→ 0
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This definition also works for the higher rank case. If we start from a stable parabolic

bundle (E,L, a, b) where rankE = N and rankL = m. Then it is easy to check that

(E ′, L′, b−m/N, a+ (N −m)/N) is also a stable parabolic bundle. We have

rankL′ = N −m

c1(E ′) = c1(E)− (N −m)[Σ]

ch2(E ′) = ch2(E)− c1(E|Σ/L)[Σ] +
N −m

2
Σ.Σ

c1(L) + c1(L′) + (N −m)Σ.Σ = c1(E)[Σ]

The monopole numbers are

l =
rankL

N
c1(E)[Σ]− c1(L)[Σ], l′ =

rankL′

N
c1(E ′)[Σ]− c1(L′)[Σ]

Based on these formulas, we obtain

k′ = k + l − m(N −m)

2N
Σ.Σ, l + l′ =

m(N −m)

N
Σ.Σ

Notice that the formulas for instanton numbers and monopole numbers are symmetric: if

we switch (k, l) with (k′, l′), we obtain the same formula. This is because the construction

is symmetrical: if we apply the construction to (E ′, L′) we will obtain (E,L) up to a twist

by a line bundle.

Even though we focus on the case rankL = 1 as we have discussed in Secion 3, but in

this calculation we have to take into consideration another case: rankL = N −1. The only
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difference is just to choose a different holonomy around Σ:

exp(−2πi diag(
λ

N − 1
, · · · , λ

N − 1
,−λ)) (5.1)

We also have the 1-1 correspondence between singular ASD connections and stable parabolic

bundles. But now we have rankL = N−1 instead of 1. If we take the holonomy parameter

small enough, then a stable parabolic bundle is just a stable bundle E ′ and a rank N − 1

subbundle L of E|Σ. Or equivalently, a quotient line bundle F of E|Σ. If we apply the flip

symmetry to (E,F ), we can get a parabolic bundle (E ′, L′). From the exact sequences used

to define the flip symmetry, it can be seen that we have a canonical isomorphism between

F and L⊗OX [−Σ].

Now we come back to the (CP 2,CP 1) case. A unique stable bundle E is taken as in

the previous subsection. This time we want to understand the quotient line bundle instead

of subline bundle. The discussion is almost the same. Now we are going to use the same

notation as in the previous subsection. Take F = O we get a moduli space isomorphic

to CPN−m. Denote this space by M̃k′,l′−1 Take F = O(1) we get an non-compact moduli

space and a compactification defined by P(Hom(E|CP 1 ,O)) ∼= CP 2N−m−1. This space can

be identified to the Uhlenbeck compactification as before. Denote this space by ¯̃Mk′,l′ .

After applying the flip symmetry, we obtain two moduli spaces M̄k,l and Mk′−1,l′+1. We

also have Mk′,l′−1
∼= M̃k′−1,l+1 =. Now we can do the calculation of Donaldson invariants.

The only difference to the calculation before is that F is a quotient line bundle. Therefore

σ is the negative hyperplane class. In summary, we obtain

• qk′,l′(σ
m−1(xc̄N + σxc̄N−1

+ · · · σN)) = (−1)2N−m−1.

• qk′−1,l′+1(σN−m−1) = (−1)N−m−1.
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• qk′,l′−1(σN−m−1) = 0

So we conclude that m2 = (−1)N for any rank N for which we can find non-empty zero

dimensional moduli space of stable bundles.

5.3 Calculation of m1 and m2 for all ranks

The defect of the previous argument is that it does not work for all ranks. Now we will

use a different example to do the calculation. Let C1 and C2 be two elliptic curves. Now

we take (X,Σ) = (C1×C2, {p}×C2). Take c2(E) = 0, c1(E) = [C1×{p2}] where p2 ∈ C2.

The moduli space of ASD connections with these c1 and c2 is easy to understand: since

the instanton number k = 0 in this case, the moduli space consist of (projectively) flat

connections. From the stable bundle point of view, it can be described as the following:

Let E → C2 be the unique stable bundle of rank N and determinant OC2(p2) over C2 (see

[A]), then we have

M0 = {L� E|L ∈ Pic0(C1), L⊗N = 0}

So we have N2 points in this moduli space. In order to understand the moduli space of

parabolic bundles, we need to study the subline bundle of E over Σ ∼= C2. Now we denote

the unique stable bundle (with fixed determinant) over Σ of rank i by Ei so E = EN .

We have a recursive construction of these bundles. We set E1 = (p2). E2 is the unique

non-trivial extension

0→ O → E2 → E1 → 0

Since dim Ext1(O(p2),O) = dim Ext0(O,O(p2)), the extension is unique. If Ei is the unique

stable bundle of rank i, then we have

H1(Σ, Ei) ∼= Ext1(O, Ei) ∼= (Ext0(Ei,O))∨ = 0
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where the last equality comes from the stability of Ei. Now dimH0(Σ, Ei) = χ(Ei) = 1 by

Riemann-Roch formula, Ei+1 is the non-trvial extension

0→ O → Ei+1 → Ei → 0

From the construction we see there is a unique subbundle of E isomorphic to O since

dim Hom(O, E) = 1. Actually for any line bundle ξ ∈ Pic0(Σ),

dim Hom(ξ, E) = dim Hom(O, E ⊗ ξ−1) = 1

because E⊗ξ−1 is also a stable bundle ( with a different determinant). From this discussion,

we conclude

M0,1/N
∼= Pic0(Σ)×M0

It is enough for us to focus on one component of the moduli space, which is just a copy of

Pic0(Σ).

We also want to understand the moduli space M0,1+1/N . By Riemann-Roch formula

and the stability of E, we have

dim Hom(O(−p), E) = N + 1

If a map O(−p)→ E has no zero then it gives a subbundle of E. It may have at most 1 zero

because of the stability of E. Suppose the zero is point q ∈ Σ, then a map O(p)→ E with

z zero at q is the same as a bundle map O(q− p)→ E. Notice that the map O(q− p)→ E

is unique up to scalar and this subline bundle is an element in M0,1/N . Let P−1 be the
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Poincaré line bundle over Pic−1(Σ)× Σ, one component of M0,1+1/N is an open subset of

Y = P(πΣ,∗H om(P−1, π
∗
ΣE))

where πΣ : Pic−1(Σ)× Σ→ Pic−1(Σ) is the projection and H om is the sheaf hom fuctor.

Y is a CPN bundle over Pic−1(Σ). By cohomology and base change, it is easy to see the

fiber over a line bundle O(−p) ∈ Pic−1(Σ) is P(Hom(O(−p), E)). From the description

above we see a point in Y −M0,1+1/N corresponds to a pair (ξ, q) ∈M0,1/N × Σ. So Y can

be identified with the Uhlenbeck compactification of M0,1+1/N .

Now we can calculate the Donaldson invariants. This time we want to use curve classes

in the moduli spaces defined by embedded curves in Σ. The universal subline bundle L

over Pic0(Σ)× Σ restricted to each slice {ξ} × Σ is isomorphic to ξ (here we view Pic0(Σ)

as a component of M0,1/N). So there is a line bundle F over Pic0(Σ) so that

L ∼= π∗Pic0(Σ)F ⊗P

Actually F can be calculated very precisely by cohomology and base change and projection

formula:

F ∼= πPic0(Σ),∗H om(P, π∗ΣE)

Let α, β be two embedded curves in Σ which intersect transversally at exactly 1 point.

Then we have
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q0,1/N(αβ) = N2〈c1(L)/α · c1(L)/β,Pic0(Σ)〉

= N2〈c1(P)/α · c1(P)/β,Pic0(Σ)〉

= N2

Now we want to calculate q0,1+1/N(σNαβ). We focus on the case N ≥ 3. Then there is

no need to choose geometrical representatives for c1/α and c1/β, because after cut down

the moduli by σ1, · · · , σN , the 2-dimensional space is already compact by the standard

counting argument. So we can take the integration of c1/α · c1/β over this 2-dimensional

space honestly without using geometrical representatives to doing the intersection. Let π be

the composition of M0,1+1/N → Y → Pic−1(Σ). Let L→M0,1+1/N be the universal subline

bundle. We have the restriction of L to each slice {s}×Σ is isomorphic to π(x) ∈ Pic−1(Σ).

Therefore

L ∼= F ⊗ (π × idΣ)∗P−1

where F is a line bundle over M0,1+1/N . When we are calculating the slant product of c1(L)

and a curve in Σ we can ignore F . So c1(L)/α · c1(L)/β is the pullback of c1(P−1)/α ·

c1(P−1)/β, which is the pullback of a single point, say O(−p). Now we obtain a subspace

of M0,1+1/N which is isomorphic to

P(Hom(O(−p), E))\{maps with a zero} ∼= CPN\Σ

The compactification of this space is just CPN . Now the situation is the almost same as

27



that in the previous subsections. σ will give the hyperplane class in CPN . We obtain

q0,1+1/N(σNαβ) = N2

Notice that M0,1+1/N has N2 components. Compare this with q0,1/N(αβ) we obtain m1 = 1.

Like what we do in the previous subsection, we can study the quotient line bundle and then

take the flip symmetry to study the dual case. The argument can be done with almost no

change, we obtain m2 = (−1)N .

6 An operator on the framed instanton Floer homol-

ogy group

We have studied the point classes for a closed 4-manifold. Now we want to turn to the

3-manifold case. The complete theory is developed in [12]. Given a 3-manifold Y , an

embedded knot or link K in Y , a complex line bundle δ, if the non-integral condition in

[12] is satisfied then there is a well-defined Floer homology group

I∗(Y,K)δ

where we still the singular U(N) connections with specified holonomy in Section 3 and

δ is the determinant of the U(N) bundle over Y . We should also require the holonomy

parameter λ = (N−1)/(2N) to achieve the monotone condition. In [12] for any pair (Y,K)

the framed instanton Floer homology group is defined as

FIN∗ (Y,K) = I∗(Y ]T 3, K)δ
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where c1(δ) is the Poincaré dual of S1 × {point} ⊂ S1 × T 2 = T 3. FIN has a relative

grading by Z/2N .

Now the point classes σ and c̄i in the 4-manifold case become operators on the Floer

homology groups of degree 2 and 2i. The relation (4.5) becomes

σN + xc̄2σ
N−2 + · · ·+ xc̄N = (1 + (−1)N) id (6.1)

In order to make these operators well-defined we should work with the Floer homology

groups with rational coefficients since the operators are not integral.

Notice that we keep using gauge transformations of determinant 1 in our theory. But

we may use more general U(N) bundle automorphisms which do not fix the determinant.

This leads to non-trivial actions on the Floer homology groups. Such a gauge trans-

formation (mod out determinant 1 gauge group) corresponds uniquely to an element in

H1(Y ]T 3,Z/N). In particular, if we take the subgroup of H1(Y ]T 3,Z/N) consisting of

elements which are only non-zero only on S1 × {point} ⊂ S1 × T 2 = T 3, then we get a

Z/N -action on the framed Floer homology groups and the generator s of Z/N is a degree 4

map on FIN∗ (Y,K). More precisely we have an action on the Floer chain complex and the

homology of the quotient chain complex is defined as the reduced framed Floer homology

group F̄ IN∗ (Y,K). Since we are working with rational coefficients, it’s not hard to see

that the quotient chain complex is isomorphic to the invariant sub-chain complex and the

reduced homology group is isomorphic to the invariant subgroup.

We want to study action of the point classes on F̄ IN∗ (Y,K). We have IN(T 3)δ = ZN . In

this case we have a relative Z/4N grading since these is no embedded link. The generators

of C∗(T
3)δ are flat connections α0, α1, · · · , αN−1 of degree 0, 4, · · · 4(N − 1). Z/N gives a

transitive action on these generators. From this we know that the action of c̄i on IN(T 3)δ
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is always 0 whenever i is odd since the relative grading of any two generators differ by a

multiple of 4. We have

c̄2j(αk) = mN,2jαk+j

where mN,2j only depends on j and N not on k because the point class action commutes

with the Z/N action. mN,j can be calculated from the higher rank polynomial invariants

of T 4. For example we have mN,2 = N .

Consider the product cobordism (Y ]T 3, K) × [−1, 1]. Take T 2 ↪→ Y ]T 3 × {0} which

can also be thought as {p} × T 2 ⊂ S1 × T 2 = T 3. Now we can consider a new cobordism

(Y ]T 3, K)× [−1, 1]\N(T 2)

Apply IN∗ to this cobordism we can get a map

f : FIN∗ (Y,K)⊗ IN∗ (T 3)δ → FIN∗ (Y,K)

We also have

f(a⊗ α0) = a

f(a⊗ sb) = sf(a⊗ b)

f(a⊗ c̄ib) = c̄if(a⊗ b)

where s denote the generator of Z/N . If we take b =
∑
αi in the last equality we can

deduce that c̄i|F̄ I = mN,i id.

Now we can state the theorem

Theorem 6.1. If we identify F̄ IN∗ (Y,K) as the Z/N invariant subgroup of FIN∗ (Y,K),
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then c̄i|F̄ I = mN,i id for some rational number mN,i. So the relation between σ and c̄i

becomes

σN +mN,2σ
N−2 + · · ·+mN,N = (1 + (−1)N) id (6.2)

where mN,2 = N and mN,i = 0 whenever i is odd. In particular when N = 3 we have

σ3 + 3σ = 0.

We can give an alternative definition of F̄ IN∗ (Y,K) based our understanding of the

action of c̄2. We define

F̄ IN∗ (Y,K) := FIN∗ (Y,K)c̄2,N

where the right hand side means the eigenspace of c̄2 associated to eigenvalue N . Here we

have to work in the C coefficients in order to obtain the eigenspace decomposition.

7 Calculation of the coefficients mN,i

Instanton Floer homology has the features of a topological quantum field theory. We can

use this to relate mN,i to the Donaldson invariants for a 4-torus. For example, we have

c̄2(αk) = mN,2αk+1

We can use the bundle automorphism gs corresponds to s ∈ Z/N to glue to two ends of

T 3 × [−1, 1] and get a U(N) bundle over a 4-torus. Since s maps αi to αi+1, the “shifted”

trace (NmN,2) of the operator c̄2 should be equal to the Donaldson invariants over the

4-torus defined by evaluating the point class c̄2 over a 4 dimensional moduli space. But

there is a subtle issue on the choice of gauge group in this process which is addressed in

Section 5.2 of [11] for the rank N = 2 case. The same discussion shows that after we add
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a additional factor N in front of the “shifted” trace, we will get

q(xc̄2) = N2mN,2

According to Donaldson-Uhlenbeck-Yau’s result, we have a one-to-one correspondence

between anti-self-dual connections and stable bundles over a Kähler manifold. So we can

use stable bundles to calculate the Donaldson invariants. Next we will use Fourier-Mukai

transform to construct stable bundles over an abelian surface.

7.1 Fourier-Mukai transform

In Mukai’s paper [15] he defined the Fourier-Mukai transform which is an equivalence of

the derived categories of an abelian variety and its dual abelian varieties. Here we want

want to use this tool to construct stabel bundles over a 4-torus and calculate the higher

rank Donaldson invariants of a 4-torus. Here we will summarize some results we need in

Mukai’s paper.

Let X and Y be two varieties, F be a coherent sheaf over X×Y . We have the following

functor:

SF : Coh(X)→ Coh(Y )

E 7→ πY ∗(F ⊗ π∗XE)

where Coh(X) and Coh(Y ) are the categories of coherent sheaves over X and Y . πX and

πY are projections from X × Y to X and Y .

Now let’s take X to be an abelian variety and Y to be the dual abelian variety X̂.

Let E be the normalized Poincaré line bundle P over X × X̂. We hope that SF gives

an equivalence of categories so that we can use it to construct the sheaves on one alebian

32



variety from the sheaves on the other one. Unfortunately this is not true in general. But

it is true if we pass it to the derived categories. Let

FM : D(X)→ D(X̂)

be the derived functor induced by S . Similarly we can define Ŝ to be

ŜF : Coh(X̂)→ Coh(X)

E 7→ πX∗(P ⊗ π∗X̂E)

We denote the corresponding derived functor by F̂M .

Theorem 7.1 (Mukai,1981). We have the following isomorphisms of functors:

FM ◦ F̂M ∼= (−idX̂)∗[−g]

F̂M ◦ FM ∼= (−idX)∗[−g]

where g = dimCX and [−g] means ”shift towards the right”.

Now we know D(X) and D(X̂) are equivalent. So we can try to use this equivalence to

construct sheaves. In the derived category, objects are quasi-isomorphic classes of cochain

complexes. Let F be an object in D(X), we use FM i(F ) to denote the i-th cohomology

group of FM(F ). If we start from a sheaf over X, we will get a cochain complex of sheaves

after the Fourier-Mukai transform. But if FM i(F ) = 0 for all i 6= k, the we say F has

weak index k. If H i(F ⊗Pξ) = 0 for all i 6= k and all ξ ∈ X̂ ,then we say F has index k.

33



If F has index k, then we denote FMk(F ) by F̂ . This gives us a equivalence of categories:

̂: WI(X)→ WI(X̂)

where WI(X) and WI(X̂) denote the subcategories of sheaves with weak indexes. We also

call this functor Fourier-Mukai transform. We summarize the properties as follows:

1 i(F ) + i(F̂ ) = g where i means the weak index.

2
ˆ̂
F ∼= (−1X)∗F

3 Exti(F,G) ∼= Exti+i(F )−i(G)(F̂ , Ĝ)

4 χ(F̂ ) = (−1)i(F ) rank(F )

rank(F̂ ) = (−1)i(F )χ(F )

5 F̂ ⊗Pξ
∼= τ ∗ξ F̂

τ̂ ∗xF
∼= F̂ ⊗P−x where τ is the translation map.

7.2 Construct stable bundles

Let C be a curve with genus g greater or equal to 2. Let X be the Jacobian of C. Let

j : C → X be the embedding of C into X which is only well-defined up to a translation in

X. j also induces an isomorphism on the first homology groups. Take a line bundle L over

C with degL > 2g − 2. We have

H i(X, j∗L⊗Pξ) ∼= H i(C,L⊗Pξ) = 0

where i > 1.
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We also have

H1(X, j∗L⊗Pξ) ∼= H1(C,L⊗Pξ) ∼= H1(C,KC ⊗ (L⊗Pξ)
ˇ )ˇ∼= 0

The second equality is because of the Riemann-Roch formula. The last equality is because

deg(L⊗Pξ)
ˇ< 0.

Now we know j∗L has index 0. Its Fourier-Mukai transform E = ĵ∗L is a vector bundle

such that

1. i(E) = g.

2. rankE = χ(L) = d+ 1− g .

3. χ(E) = (−1)g rank j∗L = 0.

Consider the map C× X̂ → X× X̂. The pullback of the Poincaré line bundle P is just

the Poincaré line bundle over C × X̂. Here X̂ can also be thought as the Jacobian of C

(The Jacobian of a curve is principally polarized so it is isomorphic to its dual). We have

E = πX̂∗(π
∗
CL⊗P)

Let {ai}1≤i≤2g be a basis of H1(C,Z) = H1(X,Z) with the standard intersection form

(〈ai, ai+g〉 = 1, 〈ai, aj〉 = 0 if j 6= i± g). Let {αi}1≤i≤2g be the corresponding dual basis for

H1(X̂,Z) so that we have

c1(P) =

2g∑
i=1

ai ` αi

By Index Theorem, we have

ch(E) = ch(L⊗P) Td(C)/[C]
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From this we can get

c1(E) = −
g∑
i=1

αi ` αi+g

We will take [ω] =
∑g

i=1 αi ` αi+g as the Kähler class used to defined the degree and

the slope stability. We also assume the Picard number of X̂ is 1. Therefore the first Chern

class of any coherent sheaf must be a multiple of c1(E) (or equivalently a multiple of [ω].

We have

Proposition 7.2. E is stable.

Proof. Suppose E is not stable. Then we can find a stable (torsion free) sheaf F so that

rankF < rankE, there is a non-zero regular map from F to E and

degF

rankF
≥ degE

rankE

From this we can deduce degF ≥ 0. Now there are two possible cases:

Case 1 : rankF = 1.

In this case, F and detF are isomorphic away from a codimension 2 subvariety of X̂

since F is torsionfree. So we have a non-zero regular map from detF to E on the open

subset where F and detF are isomorphic. Since the complement has codimension 2, this

map can be extended to the whole X̂.

If deg detF = degF > 0, then c1(F ) must be a positive multiple of [ω]. detF is a

positive line bundle so by Kodaira vanishing’s theorem we have H i(X̂, detF ⊗Px) = 0 for

all i > 0. This means detF has index 0. Now we can apply Property 3 of Fourier-Mukai
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transfrom and get

Hom(detF,E) = Ext0(detF,E)

∼= Exti(detF )−i(E)(d̂etF , Ê)

∼= Ext−g(d̂etF , Ê)

∼= 0

So we get a contradiction: there is no non-zero map from detF to E.

If deg detF = degF = 0, then we must have detF = Px for some x ∈ X. Px has

index g and the Fourier-Mukai transform is C(x) for some x ∈ X(the skyscraper sheaf at

x). Apply Property 3 of Fourier-Mukai transform we get

HomX̂(Px, E) ∼= HomX(C(x), j∗L)

∼= HomC(j∗C(x), L)

∼= 0

The last equality is correct no matter whether x ∈ C.

Case 2 : rankF > 1.

In this case, we have

Hg(F ⊗Px) ∼= Extg(P−x, F )

∼= Ext0(F,P−x)
ˇ

∼= Hom(F,P−x)
ˇ

∼= 0
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where the second equality is the Serre duality and the last equality is because if the stability

of F . From this we can conclude that H i(F̂M(F )) = RiπX∗(F ⊗P) = 0 for all i ≥ g. So

F̂M(F ) is isomorphic to a cochain complex

0→ F0 → F1 → · · · → Fg−1 → 0

in D(X). We also have F̂M(E) ∼= (−1)∗X(j∗L)[−g]. Now we have

Hom(F,E) ∼= HomD(X)(FM(F ), FM(E)) ∼= 0

which is a contradiction.

7.3 Connectedness of moduli spaces

We have the following result

Proposition 7.3. Suppose X is a K3 surface, an abelian surface, or a projective plane.

Fix Chern classes c1 = α, c2 = m and rank N , we use M to denote the the moduli space

of stable bundles with these fixed topological data. We have M is always regular. If M

contains a connected compact component M0 such that the universal stable bundle over M0

exists, then we have M = M0.

Proof. Let E be a stable bundle in the moduli space M . By Serre’s duality, we have

H0(X,K ⊗ End0(E)) ∼= (H2(X,End0(E)))∨

where End0(E) means the traceless endomorphism bundle. If X is a K3 surface or an

abelian surface, then K is trivial. Therefore H0(X,K ⊗ End0(E)) = H0(X,End0(E))
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because of the stability of E. If X is CP 2, then K = O(−3). In this case the injec-

tion O(−3) ⊗ End0(E) → O ⊗ End0(E) induces an injection H0(X,K ⊗ End0(E)) →

H0(X,End0(E)) = 0. In call these cases the obstruction space H2(X,End0(E)) is zero. So

M is always regular. The dimension of M is

dimCM = H1(X,End(E)) = 2− χ(End(E))

Now suppose M is not connected. Let M0 be a connected component of M and take

F ∈ M\M0. We use V to denote the universal stable bundle over M0 × X. Because of

stability, a homomorphism between two stable bundles is either 0 or an isomorphism. So

we have H0(X,F∨ ⊗ Vm) = 0 for any m ∈ M0. We also have H2(X,F∨ ⊗ Vm) = 0 by

Serre’s duality. Therefore by cohomology and base change we obtain a vector bundle of

rank −χ(End(E)) ≥ 0 over M0:

U = R1πM0,∗(F
∨ ⊗ V).

Because the rank is smaller than dimCM = l, we have cl(U) = 0. On the other hand,

we can take a bundle E0 parameterized by a point m0 ∈ M0 (i.e E0
∼= Vm0 . We consider

the family E∨0 ⊗ V. We have H0(X,E∨0 ⊗ Vm)) = H2(X,E∨0 ⊗ Vm) = 0 for all m 6= m0.

dimH1(X,E∨0 ⊗Vm)) = l−2 when m 6= m0 but the dimension jumps at m = m0. Another

way to understand this is to use the the family of elliptic operators D over X

Dm = ∂̄Vm ⊕ ∂̄∗Vm
: Ω0,0(E∨0 ⊗ Vm)⊕ Ω0,2(E∨0 ⊗ Vm)→ Ω0,1(E∨0 ⊗ Vm)

parameterized by M0. We have kerDm = H0(X,E∨0 ⊗ Vm) ⊕ H2(X,E∨0 ⊗ Vm) and

cokerDm = H1(X,E∨0 ⊗ Vm). The Chern classes of the index bundle of D can be cal-
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culated by Atiyah-Singer index theorem, which only depends on the topology of E0 and

Vm not the holomorphic structure. Therefore if we replace E0 by E in the definition of D

to obtain another family of operators D′, we have c(− indD) = c(− indD′) = c(U). We

will show that cl(− indD) = ±1 to obtain a contradiction by an argument used in Lemma

6.11 of [9].

We can patch up the vector spaces Ω0,0(E∨0 ⊗Vm)⊕Ω0,2(E∨0 ⊗Vm) and Ω0,1(E∨0 ⊗Vm) to

obtain two vector bundles A and B of infinite rank over M0 respectively. Then D : A→ B

is a fiber-wise linear map. Dm is injective whenever m 6= m0 and kerDm0 = H0(X,E∨0 ⊗

E0)⊕H2(X,E∨0 ⊗ E0) ∼= C⊕ C. There is no obstruction to extend the two 1-dimensional

subspace to two trivial subline bundles C1 and C2 and make A = C1⊕C2⊕C where C is a

complement subbundle of infinite rank. Now D : C → B is injective so that N = B/D(C)

is a bundle of rank l and N |m0 = H1(X,E∨0 ⊗ E0). We have

indD = −(N − C1 − C2).

In particular cl(− indD) = cl(N). On the other hand D : C1 → N gives us a global section

of N which vanishes at s single point m0. The only thing left is to show that this zero is

transversal to the zero section. It is not hard to see that the tangent map of this section

in the fiber direction is

Tm0M0 → Hom(C1|m0 , Nm0)

H1(X,EndE0)→ Hom(H0(X,EndE0), H1(X,EndE0))

a 7→ (b 7→ ba)

This is an isomorphism. So m0 is a transversal zero. We have the top Chern class cl(N) =
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±1.

Some remarks:

• The stability of E is first proved by Umemura [19]. Here we give a different proof

based on Fourier-Mukai transform.

• By translation and tensoring with line bundles we can get a family of stable bundles.

When g = 2 this gives us a component of the moduli space. Because of the connect-

edness of the moduli space we just prove, we conclude that we obtain all the stable

bundles by translation and tensoring with line bundles. Actually it is shown directly

by Mukai [15] that all the stable bundles are from this construction.

• When we prove the stability of E, we only use the fact that the −c1(E) is the smallest

positive integral class and j∗L has index 0. c1(E) only depends on the homology class

of C. So we can also take another C ′ ⊂ X which may be singular but has the same

homology class as C. To guarantee j∗L has index 0, it suffices to take an ample enough

line bundle L′ over C ′. So we can get a family of stable bundles parameterized by

pairs (C ′, L′).

• Instead of working on the Picard variety of a curve, we can start with an abelian

surface of Picard number 1. Choose any curve (possibly singular) C which generates

the Neron-Severi group and an ample enough line bundle over C, we can obtain a

stable bundle over the dual surface by Fourier-Mukai transform. Based on this we

can also obtain a family of stable bundle and the dimension of this family is equal to

the dimension of the moduli space of stable bundles with fixed topological data.
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7.4 Caculation of the Donaldson invariants

By Donaldson’s theorem, we know we have a one-to-one correspondence between rank N

stable bundles with fixed determinant and PSU(U) anti-self-dual connections. We can

use this to calculate the Donaldson invariants of a 4-torus. The Donaldson invariants only

depend on the differentiable structure, so we can take any abelian variety we want. We

will take the torus to be dual X̂ of the Jacobian variety X of a genus 2 complex algebraic

curve and require that the Picard number of X is 1. In this case, we have proved that

the Fourier-Mukai transform of j∗L is a stable bundle and any other stable bundle with

the same topological data as E must differ from E by a translation and tensoring with a

line bundle. Let’s use M to denote the moduli space of stable bundles. Now we have an

isomorphism

F : X × X̂ →M

(x, ξ) 7→ τ ∗ξE ⊗Px

We also have the determinant map det(τ ∗ξE⊗Px) = τ ∗ξ detE⊗P⊗N
x whereN = d+1−g.

The general dimension formula for PSU(N) ASD connection is

dim = 4N(c2(E)− N − 1

2N
c2

1(E))− (N2 − 1)(b0 − b1 + b+)

In our case,

dim = 4N(c2(E)− N − 1

2N
c2

1(E))[X̂]

= 4N(−ch2(E) +
1

N
c2

1(E))[X̂]

= 4N(−χ(E)) + 2c2
1(E)[X̂]

= 4
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where the third equality comes from Hirzebruch-Riemann-Roch formula.

After we fix the determinant, we will get a 4-dimensional subspace which coincides with

our dimension formula. But this is not enough, we still need to check the regularity of our

moduli space:

H2(X̂,End0 E) ∼= H0(X̂,End0 E) ∼= 0

where the first isomorphism follows from the Serre duality and the second isomorhism

follows from the stabiliy of E.

By [5], we have the following isomrphism

φ : X̂ → ˆ̂
X = X

ξ 7→ τ ∗ξ detE ⊗ (detE)−1

To fix the determinant, we can require φ(ξ) +Nx = 0 where we use the group structure

of X. We have the following short exact sequence

0 // X
f // X̂ ×X g // X // 0

where f(x) = (−Nφ−1(x), x) and g(ξ, x) = φ(ξ)+Nx is the determinant map. So we know

the moduli space M 0 of ASD connections is isomorphic to X.

Now we can construct the universal bundle over M 0 × X̂ = X × X̂. Consider the map

h : X × X̂ → X̂

(x, ξ) 7→ ξ −Nφ−1(x)
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Let E = h∗E ⊗Pˇ. We have

E|{x}×X̂ ∼= τ ∗−Nφ(x)E ⊗Px
∼= F ◦ f(x)

So E is the universal bundle. Now we want to evaluate the point class over the moduli

space, which is defined as

q(ξ) = − 1

2N
p1(E|X×{ξ})[X]

h|X×{ξ} is a map of deg N4, so we have

q(ξ) = N4(− 1

2N
p1(E)[X̂])

= N4(−ch2(E) +
1

2N
c2

1(E))[X̂])

= N3

Now we can conclude that mN,2 = N .

7.5 Higher dimensional moduli space

We can use the same idea to calculate mN,i for a general i. But now we need a higher

dimensional moduli space to do the calculation. In [16] Mukai constructs a 4N + 8 (real)

dimensional moduli space of stable sheaves. The moduli space is isomorphic to

X̂ ×X [N+1]

where X [N+1] is the Hilbert scheme of N+1 points and X is a principally polarized abelian

surface. More precisely, given a ideal sheaf I of N + 1 point, take a ample line bundle L
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with holomorphic Euler number 1. the

Î ⊗ L

is a stable sheaf and all the stable sheaves with the same topological data come from this

construction. We denote this moduli space of stable sheaves by M̄1. Here M1 means the

moduli space of stable bundles which is a open subset of M̄1. The universal stable sheaf can

be constructed in this case. We can try to use this to calculate the Donaldson invariants

for the point classes c̄i. One issue is that this is the moduli space of stable sheaves: there

are some non-locally free stable sheaves. This is a compactification of the moduli space

of stable bundles which is different with the Uhlenbeck compactification. But we can still

compare the two different compactifications. I will prove that when N is large this moduli

space can still be used to calculate the Donaldson invariants.

7.5.1 Construction of the universal sheaf

Let L be a fixed principal polarization of X, I ∈ X [N+1] be an ideal sheaf. Then we have

1. i(I ⊗ L) = 1 hence i(Î ⊗ L) = 1.

2. χ(I ⊗ L) = −N hence rank(Î ⊗ L) = N by Property 4 of Fourier-Mukai transform.

3. c1(Î ⊗ L) = α1 ` α3 + α2 ` α4 by Index Theorem.

We have the following pullback diagram

X [N+1] × X̂ ×X × X̂
π

��

m13 // X [N+1] ×X × X̂

π′
��

X [N+1] × X̂ × X̂ m // X [N+1] × X̂
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where m13 is the product of the addition map X̂ × X̂ → X̂ and the identity map on

X [N+1] ×X, m is the product of the addition map X̂ × X̂ → X̂ and the identity map on

X [N+1], π and π′ are projections.

Let P21 be the Poincaré line bundle over the product of X and the first copy of X̂, P23

be the Poincaré line bundle over the product of X and the second copy of X̂, IN+1 be the

universal ideal sheaf over X [N+1] ×X. We can obtain a sheaf L⊗ IN+1 ⊗P21 ⊗P23 over

X [N+1] × X̂ ×X × X̂. By cohomology and base change, Riπ∗(L⊗ IN+1 ⊗P21 ⊗P23) = 0

when i > 1 and R1π∗(L⊗ IN+1 ⊗P21 ⊗P23) = 0 gives the universal stable sheaf.

Notice that we have

L⊗ IN+1 ⊗P21 ⊗P23
∼= m∗13(L⊗ IN+1 ⊗P)

m is a smooth map hence flat, so we have

Riπ∗(m
∗
13(L⊗ IN+1 ⊗P)) = m∗Riπ′∗(L⊗ IN+1 ⊗P)

Let ON+1 be the structure sheaf of the universal subscheme of XN+1 ×X, we have the

following exact sequence of sheaves over X [N+1] ×X

0→ IN+1 → OX[N+1]×X → ON+1 → 0

Pullback to X [N+1] ×X × X̂ and tensor with L⊗P, we get

0→ IN+1 ⊗ L⊗P → L⊗P → ON+1 ⊗ L⊗P → 0
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Apply the pushforward π′∗, we get

0→ π′∗(IN+1 ⊗ L⊗P)→ π′∗(L⊗P)→ π′∗(IN+1 ⊗ L⊗P)→ R1π′∗(L⊗ IN+1 ⊗P)→ 0

For a generic choice of ideal sheaf I ∈ X [N+1], we get H0(X, I⊗L⊗ξ) = 0, so by cohomology

and base change, π′∗(IN+1⊗L⊗P) is a torsion sheaf (generically zero). π′∗(L⊗P) is a line

bundle, so we conclude that π′∗(IN+1 ⊗ L ⊗P) is 0. We can use Grothendieck-Riemann-

Roch theorem is calculate the Chern character of R1π′∗(L⊗ IN+1 ⊗P). From now on we

will denote this universal sheaf by F.

7.5.2 Comparison between the Gieseker compactification and Uhlenbeck com-

pactification

For a generic choice ideal sheaf I ∈ X [N+1], Î ⊗ L is a stable bundle. But it may be the

case that Î ⊗ L is not locally free (but still torsion-free and stable). Let E = Î ⊗ L be such

a sheaf. E is locally free away from finitely many points in X since it is torsion-free. The

double dual ˇ̌E is self-reflexive hence locally free over away from a codimension 3 subvariety.

Since we are working on an abelian surface, ˇ̌E is locally free over X. Since ˇ̌E and E are

isomorphic away from finitely many points, they have the same c1 and E has a smaller c2

(because ˇ̌E/E is supported a zero dimensional subspace). According to Proposition 5.4 in

[16], ˇ̌E/E must have length 1 hence is a skyscraper sheaf Op for some point in X̂. We have

a short exact sequence

0→ E → ˇ̌E → Op → 0 (7.1)

It is easy to see that ˇ̌E is also stable. Therefore the dual ˇ̌E lie in the (complex) 4-dimensional

moduli space M of stable bundles in Section 7.4. On the other hand, start with a stable

bundle F ∈M , take a point p ∈ X̂ and a non-zero map f from F to Op, then kernel of F
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is a stable non-locally free sheaf with the same topology as E. Now we can conclude that

the complement of locally free sheaves in M̄1 is a CPN−1 bundle over M × X̂.

To obtain the moduli space of instantons, we need to fix the determinant line bundle of

the stable bundles. After fix the determinant, we obtain a condimension 1 submanifold M̄ 0
1

of M̄1. For the non-locally free part, we have det(E) = det( ˇ̌E). After fix the determinant,

we get a CPN−1 bundle over M 0
0 × X̂.

M 0
1 is isomorphic to the moduli space of instantons and we have a compactification

M̄ 0
1 of it by adding non-locally free stable sheaves. Notice that because c1(E) is a prime

cohomology class, there is no strictly semi-stable sheaf in our case. On the other hand,

we have the Uhlenbeck compactification of M 0
1 which is used to define the Donaldson

invariants. We denote the Uhlenbeck compactification by UC(M 0
1 ). We have

UC(M 0
1 ) = M 0

o tM 0
0 × X̂

where X̂ denotes the bubbles. There is a canonical map from M̄ 0
1 to UC(M 0

1 ). It maps a

non-locally free sheaf E with the exact sequence (7.1) to (E∨∨∨, p)

We will show that even though the two compactifications are not exactly the same,

under certain conditions we can still use M̄ 0
1 and the universal sheaf over it to calculate

the Donaldson invariants.

Lemma 7.4. Let d1, d2, · · · , dl be a sequence of point classes defined by normalized Chern

classes c̄i1 , · · · , c̄i2 , · · · , c̄il. Let Vi be geometric representatives for di used in Section 4.2.

Suppose
∑

i deg di = 4N + 4 and we can find a subset z ⊂ {1, 2, · · · , l} such that

1. M 0
1 ∩ Vz is compact where Vz =

⋂
i∈z Vi.
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2.
∑

i∈z deg di < 2(N − 1) then we have

q(d1d2 · · · dl) = ]M 0
1 ∩ V1 ∩ · · · ∩ Vl = 〈c̄i1(F)c̄i2(F) · · · c̄il(F), [M̄ 0

1 ]〉

Remarks Here we only focus on point classes but the equality holds for any classes which

come from the slant product of Chern classes of the universal bundle and any homology

class in X̂. This proposition allow us to calculate the Donaldson invariants by M 0
1 even

though this is not the ordinary compactification used in the definiton.

Proof. The proof is merely an elementary cohomology argument. Since we only care about

point classes, we take an arbitrary point p ∈ X̂ and restrict the universal sheaf F to

M̄ 0
1 ×{p}. For simplicity we will just write M̄ 0

1 . We have the following long exact sequence

· · · → H i(M̄ 0
1 ,M

0
1 )→ H i(M̄ 0

1 )→ H i(M 0
1 )→ H i+1(M̄ 0

1 ,M
0
1 )→ · · ·

Denote the complement of M 0
1 by S, it is a submanifold of real codimension 2(N − 1).

Then by excision, we have

H i(M̄ 0
1 ,M

0
1 ) ∼= H i(N(S), ∂N(S))

By Thom isomorphism, H i(N(S), ∂N(S)) = H i−2(N−1)(S) = 0 whenever i < 2(N − 1).

Combine this with the long exact sequence we obtain H i(M̄ 0
1 ,M

0
1 )→ H i(M̄ 0

1 ) is injective

when i < 2(N − 1). M 0
1 ∩ Vz is the Poincaré dual of dz =

∑
j∈z dj in M 0

1 . Because of the

injectiveness we just obtain, it is also the Poincaré dual of `j∈z c̄j(F) in M̄ 0
1 . So we have
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q(d1d2 · · · dl) = 〈`j /∈z dj, [M 0
1 ∩ Vz]〉

= 〈`j /∈z c̄j(F), [M 0
1 ∩ Vz]〉

= 〈c̄i1(F)c̄i2(F) · · · c̄il(F), [M̄ 0
1 ]〉

By a standard counting argument, when d1, d2, d3 are 4-dimensional point classes, M 0
1 ∩

V{1,2,3} is compact. To achieve Condition 2 we take N ≥ 8. Now we conclude that when

N ≥ 8

〈c̄2
N+1−i(F)c̄2i(F), [M 0

1 ]〉 = NN+3−imN,2i

This allows us the calculate mN,2i by working on the Hilbert scheme of points. A lot of

work has been done by algebraic geometricians on the Chern characters of the universal

sheaves. Meanwhile there is a complete description for the cohomology ring of the Hilbert

schemes of points in [14]. Even though I have not obtained a complete answer for the

coefficients. Based on these know results, the calculation is a realistic task.

8 Calculation for unknots and unlinks

We know that the operator σ satisfies a universal formula. But it may still have 0 as

an eigenvalue. We will show that σ is not a nilpotent operator for unknot in S3. Here

we want to use the notation and construction in Section 5.3. Since we have a complete

understanding of the moduli space M0,1/N and the universal subline bundle L, it is easy to
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calculate

q0,1/N(σ) = −N2

Apply Proposition 4.1, we obtain

q0,1+1/N(σN+1) = −N2

Consider T 3 ∼= {x} × S1 × C2 ↪→ S1 × S1 × C2 = X. Also assume the S1 in the definition

of T 3 does not contain p1 where p1 × C2 = Σ. We may assume T 3 is close to Σ so that we

can deform a small part of Σ a little bit to make the intersection T 3 and Σ be an unknot.

Locally the intersection looks like R3 ∼= {0}×R3 ⊂ R4 intersects a cone in R3×{0} ⊂ R4.

If we cut X along this T 3, we will obtain a cobordism (T 3 × I, Σ̌) from an unknot to

another unknot. Here Σ̌ means we cut Σ along a small null-homotopic circle and obtain

a union of a closed disk and a genus 1 surface with boundary. If we glue the product

cobordism (T 3× I, U × I) (U is the unknot) to (T 3× I, Σ̌), we will obtain the original pair

(X,Σ). The calculation of Donaldson invariants q0,1+1/N(σN+1) is equivalent to calculate

the action of σN+1 on FIN∗ (U) (for knots and links in S3 we will omit S3 when writing the

Floer homology group for simplicity) and IN∗ (T 3 × I, Σ̌) then apply a pairing formula.

From this we conclude that σN+1 on FIN∗ (U) is non-zero. FIN∗ (U) ∼= CN2
is calculated

in [12]. We have the following decomposition

FIN∗ (U) ∼=
N−1⊕
i=0

FIN∗ (U)c̄2,Nξi

where ξ = e2πi/N . Each copy FIN∗ (U)c̄2,Nξi is isomorphic to CN and carries a action by

σ since c̄2 and σ commute. Therefore from σN 6= 0 we obtain σ is not nilpotent as an

operator on FIN∗ (U).
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Now suppose N is odd. FIN∗ (U) is a Z/2N graded vector space with a set of generators

all of even degrees. Suppose α is a generator and σN(α) 6= 0, then we have

σN(
N−1∑
i=0

(c̄2/N)iα) = σN(
N−1∑
i=0

siα) =
N−1∑
i=0

siσN(α) 6= 0

The sum is non-zero because all terms have different degrees. We have
∑N−1

i=0 (c̄2/N)iα ∈

F̄ IN∗ (U) = FIN∗ (U)c̄2,N ⊂ FIN∗ (U). Therefore σ on F̄ IN∗ (U) is not nilpotent. To summa-

rize,

Proposition 8.1. Let U be the unknot in S3, then we have σ is not a nilpotent operator

on FIN∗ (U). When N is odd, σ is not a nilpotent operator on F̄ IN∗ (U). When N = 3, we

have decomposition

F̄ IN∗ (U) = F̄ IN∗ (U)σ,−
√

3i ⊕ F̄ IN∗ (U)σ,0 ⊕ F̄ IN∗ (U)σ,
√

3i

where the three spaces are the three 1 dimensional eigenspaces of σ.

Proof. The only thing left is the discussion for the N = 3 case. When N = 3, then σ3+3σ =

0. Since σ is not nilpotent, it must have non-zero eigenvalues. Our Floer homology can

be defined over Q, so the characteristic polynomial of σ is a rational polynomial. This

means
√

3i and −
√

3i must appear as σ’s eigenvalues in pairs. We conclude that σ is

diagonalizable and the three eigenvalues for σ are
√

3i, 0,−
√

3i.

Let (Y1, L1) and (Y2, L2) be two pair of links, we have the following result

Proposition 8.2. For each component of a link, there is a σ operator. We have the

following isomorphism

F̄ IN∗ (Y1]Y2, L1 t L2) ∼= F̄ IN∗ (Y1, L1)⊗ F̄ IN∗ (Y2, L2)
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Moreover, the σ operators from different component of the links respect this isomorphism.

Proof. The proof is an application of the excision formula due to Floer [2]. Take T1 = T 2 ⊂

S1 × T 2 = T 3 be a torus away from L1 in Y1]T
3, take T2 = T 2 ⊂ S1 × T 2 = T 3 be a torus

away from L2 in Y2]T
3. Cut (T 3, L1) along T1 and (T 3, L2) along T2 and glue them with

the correct orientation, we will obtain (Y1]Y2]T
3, L1 t L2). In [2], they need the fact that

the SO(3) instanton Floer homology of T 3 is 1-dimensional to do the proof. The only new

ingredient we need to apply the proof in [2] is that

IN∗ (T 3)δ,c̄2,N = C

There is no change in the other part of the proof in [2]. The isomorphism is given by certain

cobordism, so the σ operators’ action respects the isomorphism.

As an application, we can obtain

Proposition 8.3. Let L be an unlink in S3 with k components. So we have k operators

σ1, · · · σk. Then F̄ I3
∗ (L) = C3k is a direct sum of the common eigenspace of these operators.

For each choice of eigenvalues, the dimension of the common eigenspace is 1.

APPENDIX

A Parabolic bundles and singular instantons

Here we are trying to generalize the discussion in Section 8 of [9] to bundles of rank

greater than 2. More precisely, we want to discuss the relation among singular connections,

orbifold bundles and parabolic bundles.
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A.1 Parabolic bundles

Let (X,Σ) be a pair such that X is a Kähler manifold and Σ is an embedded (complex)

curve. A parabolic bundle over such a pair has the following data:

• A holomorphic vector bundle G over X.

• A filtration of G|Σ: G1 ⊇ G2 ⊇ · · · ⊇ Gl where G1 = G|Σ and Gi is a proper

subbundle of Gi−1.

• An increasing sequence of weights −1 < i1 < i2 < · · · < il < 1 with il − i1 < 1.

lj = rankGj − rankGj+1 is called the multiplicity of ij.

Let ω be the Kähler form, we can define the degree of such a parabolic bundle as

degG = 〈c1(G), [ω]〉+ (
∑
k

lkik)〈[Σ], [ω]〉

Let (G, {Gs}, (i1, · · · , il)) and (F, {Fd}, (j1, · · · , jm)) be two parabolic bundles, a parabolic

map f is a map from G to F and whenever f(Gs) ⊆ Fd and f(Gs) 6⊆ Fd+1 we must have

is ≤ jd.

We call a parabolic bundle G stable if for any parabolic map from F to G where F

has rank smaller than G and f is injective as a sheaf map we always have deg F/ rankF <

degG/ rankG.

A.2 Orbifold bundles

We want to use the same definition of complex orbifold (X,Σ) as in [9]. For each point of

Σ there is a neighbourhood U such that the orbifold structure is given by

φ : Ũ/Zν ∼= U
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where Zν acts on Ũ with fixed points homeomorphic to U∩Σ under the map φ. For any two

such charts U1 and U2 we have transition function only well-defined up to the action of Zν

on the overlap. For any 3 charts the transition functions satisfies the cocycle condition up

to the action of Zν . Similarly we can also define the orbifold sheaf which is Zν-equivariant

over Ũ and the transition isomorphism is only well-defined up to the action of Zν . OX

denote the structure sheaf of X.

For any orbifold sheaf F we can take the Zν-invariant sections to get a ordinary sheaf

µ(F ). In particular OX̄ = µ(OX) gives us a complex structure to the underlying topological

space of X. We denote this complex manifold by X̄.

Another example is the orbifold sheaf O(b) of meromorphic functions with poles only

along Σ. We may think this orbifold sheaf as “O(bΣ̃)”. We have

µ(O(b)) ∼= OX̄(mΣ)

where a− ν ≤ mν < a.

Locally free orbifold sheaves is locally characterized by weights (mod ν) of the action

of the generator of Zν on the fiber. O(a) has weight a.

We define a functor

E → Ē = µ(E ⊗O(ν))

Given a orbifold bundle E over X of weights (a1, a2, · · · , al) ( −ν < a1 ≤ · · · ≤ al < ν

and al − a1 < ν) and rank l we can define a parabolic bundle over (X̄,Σ) as follows:

• Ē is the bundle over X̄.

• First we define a filtration F1 ⊇ F2 ⊇ · · · ⊇ Fl by F1 = G|Σ and Fi = Im(µ(E ⊗

O(−ai)) → Ē). Notice that O(−ai) is a subsheaf of O(ν) so we have a map µ(E ⊗
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O(−ai)) → Ē. This is not a strictly decreasing filtration, but we can always extract

a strictly decreasing filtration E1 ⊇ · · · ⊇ Em from F1 ⊇ · · · ⊇ Fl and a strictly

increasing sequence of weights (b1, · · · , bm) from (a1, · · · , al).

• The weights for this parabolic bundle is defined as (b1/ν, b2/ν, · · · , bm/ν).

On the other hand, the inverse construction also exits. Given a parabolic bundle of

weights (a1/ν, a2/ν, · · · , al/ν), we can reconstruct an orbifold bundle following the argu-

ment in [10]. It is also easy to see that our construction and its inverse is functorial. The

same argument in [9] can also be used to show that this construction preserves the degree.

So it also preserves the stability.

Now we can come back to the singular connections. Let X̄ be a Kähler manifold with

cone-like singularity along Σ with cone angle 2π/ν.

Proposition A.1. we have one-to-one correspondence between any two of the following

three

• Irreducible (projectively) anti-self-dual connections with the following holonomy around

Σ:

exp(−2πi diag(λ1, · · · , λ1, λ2, · · · , λ2, · · · , λm, · · · , λm))

where 1 > λ1 > λ2 > · · · > λm > −1 and λ1 − λm < 1. We also assume λi = ci/ν

where ci ∈ Z.

• Stable orbifold bundles with weights (cm, · · · , cm, cm−1 · · · , cm−1, · · · , c1, · · · , c1).

• Stable parabolic bundles (E,E1 ⊃ E2 ⊇ · · · ⊇ Em) with weights (cm/ν, cm−1/ν, · · · , c1/ν)

where rankEi − rankEi+1 is equal to the multiplicity of λm+1−i.
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