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Modeling rare protein-coding variation to identify mutation-intolerant genes with 

application to disease 

 

Abstract 

Sequencing exomes—the 1% of the genome that codes for proteins—has 

increased the rate at which the genetic basis of a patient’s disease is determined. 

Unfortunately, when a patient does not carry a well-established pathogenic variant, it is 

extremely challenging to establish which of the tens of thousands of variants identified 

in that individual is contributing to their disease. In these situations, variants must be 

prioritized to make further investigation more manageable. In this thesis, we have 

focused on creating statistical frameworks and models to aid in the interpretation of rare 

variants and towards establishing gene-level metrics for variant prioritization. 

We developed a sensitive and specific workflow to detect newly arising (de novo) 

variants from exome sequencing data of parent-child trios, and created a sequence-

context based mutational. This mutational model was the basis of a rigorous statistical 

framework to evaluate the significance of de novo variant burden not only globally, but 

also per gene. When we applied this framework to de novo variants identified in patients 

with an autism spectrum disorder, we found a global excess of de novo loss-of-function 

variants as well as two genes that harbored significantly more de novo loss-of-function 

variants than expected. 
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We also used the mutational model to predict the expected number of rare (minor 

allele frequency < 0.1%) variants in exome sequencing datasets of reference 

individuals. We found a significant depletion of missense and loss-of-function variants in 

a subset of genes, indicating that these genes are under strong evolutionary constraint. 

Specifically, we identified 3,230 genes that are intolerant of loss-of-function variation 

and that set of genes is enriched for established dominant and haploinsufficient disease 

genes. Similarly, we searched for regions within genes that were intolerant of missense 

variation. The most missense depleted 15% of the exome contains 83% of reported 

pathogenic variants found in haploinsufficient disease genes that cause severe disease. 

Additionally, both gene-level and region-level constraint metrics highlight a set of de 

novo variants from patients with a neurodevelopmental disorder that are more likely to 

be pathogenic, supporting the utility of these metrics when interpreting rare variants 

within the context of disease. 
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Overview 

A primary goal of medical genetics is to associate genetic variants with risk of 

disease. This goal is impeded by a variety of complicating factors, such as the vast 

amount of genetic variation found in each individual1 and the fact that such variation can 

impact as much sequence as whole chromosomes to as little as single bases. 

Additionally, the genetic basis of human diseases varies in the complexity of its 

architecture: some diseases are monogenic and caused by high impact variants. These 

disorders are for the most part rare, and the one-to-one relationship between disease 

and disruption of a single gene often allows for identification of the risk locus in a small 

number of families. When the relevant gene has been identified, then specific variants 

can be established as pathogenic and screened for in new patients. 

Common diseases, however, have a far more complex genetic architecture and 

typically involve variants spread across the genome, each of which has a small effect on 

the phenotype (polygenicity). The polygenicity of common diseases makes it much 

more challenging to identify specific genetic risk factors; association analyses often 

require tens of thousands of affected and unaffected individuals (e.g. >36,000 cases 

with schizophrenia and >113,000 controls)2. The small average effect size of any 

identified risk-contributing variant does not typically permit the nomination of a primary 

causal event. 

Even when studying a disease that may be influenced by stronger acting 

variants, determining the specific variant or set of variants that are contributing to a 

patient’s disease is challenging, particularly when the patient does not carry a well-

established genetic risk factor. Unfortunately for these types of activities, each individual 
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harbors tens of thousands of variants (single base to larger structural changes). 

Focusing in on those variants that alter the coding sequence leaves thousands to 

examine, even if only considering alleles that are rare in the general population. 

Therefore, it is critical to be able to prioritize variants that are more likely to be 

contributing to disease. A primary focus on this thesis has been to establish methods to 

aid such prioritization. 

 

Tying genetic variation to disease 

It has long been observed that the frequency of some diseases in families is 

associated with the family members’ degree of relatedness, which suggests that the 

disease has a genetic component. A measure of the degree to which inherited genetic 

variation is contributing to disease is referred to as heritability3. More specifically, 

heritability is the amount of phenotypic variability that can be explained by inherited 

genetic variation. Estimates of heritability can come from many sources, but one of the 

classical approaches is to compare the concordance of the disease in monozygotic 

twins versus the concordance seen in dizygotic twins4. Since monozygotic twins share 

nearly 100% of their genetic material and dizygotic twins only ~50%, a highly heritable 

trait would be expected to have a much higher concordance rate in monozygotic twins. 

Of note, most traits are influenced by both genetic and environmental factors; 

comparing concordance in twins is designed to control for most of the environmental 

influence. 

Heritability, however, does not provide information about specific loci that are 

contributing to disease etiology. In order to find risk loci, researchers have taken a 
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variety of approaches, limited partially by available technology. One of the earliest 

approaches that could be used to identify risk loci was linkage mapping5-8. Linkage 

mapping relied on collecting families with many affected and unaffected members. To 

map, sites across the genome were used as marks of all variation nearby and the 

segregation of these markers in the family were compared to the segregation of the 

disease. Markers near areas of the genome that contribute to disease should therefore 

follow the inheritance of the disease. Linkage mapping is best suited to diseases that 

are caused by large effect variants that occur in a small number of genes, which makes 

the technology poorly suited for complex trait association. 

For diseases caused by many loci of small effect, genome-wide association 

studies (GWAS)6,9,10 are performed to find the contributing variants. In GWAS, sites of a 

common variation in the population are treated as markers of nearby variation, much 

like linkage mapping. However, instead of using families, GWAS use large numbers of 

unrelated affected and unaffected individuals and search for variants that are seen more 

often in the affected than unaffected individuals. Given that these loci individually have a 

small impact on risk, they are still seen commonly in unaffected individuals. GWAS are 

also affected by the polygenicity of a disease; for those diseases with many contributing 

loci, very large cohorts of affected and unaffected individuals are needed to identify 

specific risk variants. 

There are diseases that have a strong genetic component, but whose 

contributing variants would be difficult to find in either linkage or association studies. 

These are disorders that are not often passed on because they are extremely severe 

and affected individuals either do not survive to maturity or do not have children of their 
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own. These diseases are therefore often influenced by newly arising (de novo) alleles. 

An example of such a disease is Hutchinson-Gilford progeria syndrome, a rare disorder 

in which affected individuals show signs of early aging, such as hair loss and 

scleroderma11. It is caused by de novo missense variants in LMNA with the most 

common risk allele leading to the activation of a cryptic splice site and creation of a 

truncated protein product of the impacted gene copy12. These alleles are never passed 

on from an affected individual to their child because individuals with progeria die at an 

average age of 1311. 

 

De novo variation and disease 

Beyond examples like Hutchinson-Gilford progeria, de novo variation can also 

contribute to diseases that are not always lethal in childhood. Achondroplasia, a form of 

dwarfism, is caused by heterozygous (only one copy of the gene being affected) 

disruptions of FGFR313,14. While the disease and risk allele can be inherited from an 

affected parent, most cases are caused by a de novo event15. 

It was noted in the early 1900s that sporadic cases of achondroplasia occurred 

more often in the last-born child16 and it was later shown that a higher rate of 

achondroplasia is specifically associated with advanced paternal age15,17; a similar trend 

has been seen for other disorders as well18. Overwhelmingly, the causal allele was 

paternal in origin; in the case of achondroplasia, all 40 cases tested by Wilkin and 

colleagues were on the paternally inherited chromosome19. These results indicated not 

only that there is a higher mutation rate in males, but suggested that the number of 

mutations increases as the father ages. Germline mutations are introduced during DNA 
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replication in mitosis and the first half of meiosis. The female germline has 22 rounds of 

mitosis and 1 round of meiosis during development to produce an egg18,20. The male 

germline, however, undergoes far more mitotic divisions owing to lifelong sperm 

production, thereby having more opportunities to mutate. Additionally, the number of 

replication cycles affecting a particular sperm is higher for older males. It has been 

estimated that a 20-year old male has had approximately 150 rounds of replication 

where a 40-year old has had 61018,20. The increased number of mitotic divisions in the 

male germline, however, does not fully explain the increased rate of sporadic 

achondroplasia among the children of older fathers21. 

De novo variation also contributes to more complex disorders, such as 

schizophrenia and autism spectrum disorder, where no single de novo allele is likely to 

lead to a patient’s disease. As these disorders involve a large number of contributing 

loci, it is more challenging to define the role de novo variation plays. In particular, 

determining which de novo variants, if any, are contributing is complicated by non-

disease associated de novo variants: every individual is expected to carry 70-100 de 

novo variants across their genome22-26. Since the de novo variant signal is likely to be 

spread across many genes, studying de novo variation in these disorders requires 

careful consideration of the mutation rate. 

 

The role of sequencing technology 

Linkage and association studies rely on the ability to determine the allele at a 

specific locus, but historically a relatively limited number of loci were measured because 

sequencing and genotyping were slow and expensive. The advent of massively parallel 
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sequencing technologies opened the door to quickly and affordably interrogate variation 

at many locations and as small as single base changes. 

Whole genome sequencing within families successfully identified risk loci for 

Charcot-Marie-Tooth27 and severe hypercholesterolemia28, but in both cases the risk 

loci resided in the exome – the 1% of the genome that codes for proteins. Since 

understanding the effects of non-coding variation remains a major challenge to the field, 

much of the sequence data produced in these studies is considered uninterpretable. 

The creation of exome-capture kits allowed researchers to sequence only coding 

segments, which is faster and cheaper than sequencing the whole genome, thereby 

accelerating the discovery of protein-coding disease-associated variation29,30. 

Early successes of exome sequencing studies came from rare, severe, and likely 

monogenic disorders, such as Kabuki syndrome31, Schinzel-Giedion syndrome32, and 

Miller syndrome33. In the case of Kabuki syndrome, the nonsynonymous variants in 

KMT2B (previously known as MLL2) that were considered causal were often de novo in 

the affected individual31. These early studies proved that sequencing technology is 

especially critical for identifying de novo variation. 

 

Using evolutionary conservation to prioritize variants 

When analyzing the thousands of protein-coding variants within a patient, it is 

critical to prioritize variants for further investigation. One way to do so is to focus on 

variants that occur in genes that have been buffered against mutation across 

evolutionary time. The Human34 and Mouse35 Genome Projects – whose aims were to 

create reference genomes for the species – allowed large-scale comparisons of genetic 
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sequence in between species. The similarity (conservation) of sequence between 

humans and mice was first used to aid in the annotation of the genomes: highly 

conserved sequences were considered likely to be functional elements. Sequence 

homology, therefore, helped define coding and regulatory sequences within both 

species34,35. The level of conservation of sequence between species has become a 

common metric to indicate the importance of the sequence. Particularly, once gene 

annotations were defined, a plethora of tools were built to leverage sequence homology 

to predict the likely deleteriousness of specific variants (e.g. SIFT36, GERP37, 

Polyphen238). 

Additionally, reference sequences of various species, and the identification of 

polymorphisms within the species, allowed estimation of evolutionary selection 

pressures on genes (both positive and negative). The classical approaches rely on 

comparing the rates of nonsynonymous and synonymous substitutions (e.g. dN/dS, 

Ka/Ks)
39-43. These methods were also used to measure the strength of the selection, 

often given as a selective coefficient (s) where s = 0 indicates neutrality and s = 1 

lethality44-46. 

While successful at identifying genes under the influence of weak negative 

selection (selective coefficient [s] < 10-3), these methods rely on the observation of 

variation within the population. Severely deleterious alleles (s > 10-2), however, will 

never become polymorphisms within a population. As modeled by Zuk et al47, when s ≥ 

10-2) the combined allele frequency of variants with that selective coefficient is 

approximately 0.0001, independent of the demographic history of the population studied 

(Figure 1.1, reproduced from the paper). These simulations reinforce that alleles that 



	 9 

contribute to traits which greatly reduce fecundity (reproductive rate) will never become 

common enough in the population to be included in conservation-based metrics. 

 

 
 
Figure 1.1. The relationship between combined allele frequency and selective 
coefficient (s) for various demographic models. As s increases, indicating stronger 
negative selection against those allele, the combined allele frequency of all variants with 
that s becomes smaller. This is supplementary Figure 1 from Zuk et al47.  
 

In order to determine how likely a variant, especially a de novo variant, seen in a 

patient is likely to be, we needed a measure of deleteriousness that captured larger 

values of s. In this thesis, we propose using the depletion of nonsynonymous variation 

within the human population as a reflection of the deleteriousness of variants that arise 
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within the gene. We are aided by recent large-scale sequencing efforts of reference 

populations, which provide power to determine significant depletion of variation. 

 

Genetic basis of autism spectrum disorder 

Autism spectrum disorders (ASDs) are a set of severe neurodevelopmental 

disorders that arise early in childhood and are characterized by impaired social 

interactions and communication, as well as restricted interests and repetitive behaviors. 

It has been recently estimated that the prevalence of ASDs in the United States is over 

1%, with a notable excess of male cases48. The biological bases of ASDs are currently 

unknown. 

ASDs are a class of disorders unlikely to show a strong evolutionary signature 

due to the strength of selection against the disorder. One way to measure how strongly 

selection is acting on a particular disease is to investigate the reproductive rate 

(fecundity) of affected individuals. In a study of a birth cohort in Sweden, Power and 

colleagues found that patients with ASD had dramatically reduced fecundity: male 

patients had 75% fewer children than their unaffected relatives, indicating very strong 

selective constraint (high s). Females showed a similar, but less severe, pattern 

(fecundity ratio 0.48)49. 

Various studies have established that there is a substantial genetic component to 

ASD risk. Estimates of the heritability of ASD are typically between 60 and 80%, 

indicating a large genetic component50. Unfortunately, research to find the genetic basis 

of ASDs has not been particularly successful. 
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Early linkage mapping efforts in ASD identified a very limited set of risk loci due 

to the highly polygenic and heterogeneous nature of ASD risk. Since linkage mapping 

works best for disorders caused by large-effect variants that fall into a small number of 

genes, linkage mapping successfully identified the causal loci for syndromic forms of 

ASDs, such as Fragile X syndrome51 and Rett syndrome52. While linkage also identified 

a few universally accepted risk loci (NLGN353, NLGN4X53, NRXN154, and SHANK355), it 

mostly lead to long lists of candidate genes, whose association to ASD did not replicate 

in subsequent studies. Similarly, multiple GWAS of ASD did not report significant 

results, or found loci that never replicated56-58. The association studies were limited 

small sample size in conjunction with the fact that each risk variant has a very small 

effect on phenotype. This limitation will be overcome when large enough samples are 

aggregated and jointly analyzed. 

The most successful early studies of the genetic basis of ASD were those that 

found associated copy number variants (CNVs)59-64. Researchers identified several 

CNVs that were strongly associated with risk for ASD (listed in Table 1.1), such as 

duplications and deletions in the 16p11.2 region59,60,64,65. These CNVs had larger effect 

sizes than are typically found for variants identified via GWAS and were often de novo 

in the affected individual59,60,62-64. Given the reduced fecundity of individuals with ASDs, 

it is not surprising that large effect variants are often de novo: these variants cannot be 

maintained in the population for multiple generations. 
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Table 1.1. Recurrent de novo copy number variants associated with autism spectrum 
disorder (ASD). The “Del vs Dup” column lists whether duplications, deletions, or both in 
the locus are associated with ASD. Size is given in megabase pairs (Mbp). Both the 
size of the region and the number of genes are approximate. 
 
 

Region Size (Mbp) Genes Del vs Dup References 
1q21.1 1.3 14 Both Sanders 201162 

7q11.23 1.4 22 Duplication Levy 201159; Sanders 201162 

15q11.2-13.1 4.9 12 Duplication 
Levy 201159; Marshall 200860; 
Pinto 201061; Sanders 201162; 

Sebat 200763 

15q13.2-13.3 1.5 6 Both Marshall 200860; Sanders 
201162; Sebat 200763 

16p11.2 0.6 25 Both 
Levy 201159; Marshall 200860; 
Pinto 201061; Sanders 201162; 
Sebat 200763; Weiss 200864 

22q11.2 2.5 56 Both Marshall 200860; Pinto 201061; 
Sanders 201162 

 
 

In light of these successes and the availability of exome sequencing data, our 

group began to study de novo single nucleotide (SNV) and insertions and deletions 

(indels) in ASD cases. A previous publication had sequenced 20 parent-child trios, but 

could not implicate any specific gene or pathway in ASD etiology66, an unsurprising 

result given the high polygenicity and locus heterogeneity of ASDs. As described in 

Chapter 3 and many subsequent publications67-73, it took analyzing many more trios to 

identify a significant, but minor50, role of de novo variation in ASD. 

 

Summary 

The ability to sequence patient genomes has allowed researchers to study 

variation with base-pair resolution. Sequencing, however, identifies thousands upon 

thousands of variants that need to be filtered in order to find those that may be 
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contributing to a patient’s disease. For this thesis, we wanted to create methods and 

tools that could be used to aid in such prioritization of variants. 

We first determined a way to sensitively and specifically identify de novo variants 

from family sequencing studies (Chapter 2). In order to properly analyze these results, 

we created a mutational model and statistical framework to rigorously evaluate 

excesses of such variation that may be observed in a patient population (Chapter 3). In 

particular, we established an important, but modest, role for de novo loss-of-function—

and to a lesser extent missense—variation in ASD. 

Given the modest enrichment of de novo variation in ASD cases, we needed a 

way to identify those variants that were more likely to be contributing. We used the 

mutational model we created to identify genes that are intolerant of nonsynonymous 

variation. In particular, using a large exome sequencing data set, we found 3,230 genes 

that appear to be extremely loss-of-function intolerant to the point of near 

haploinsufficiency – meaning that heterozygous loss-of-function variants in these genes 

should cause disease (Chapter 4). These highly loss-of-function intolerant genes 

contain the majority of the signal for de novo loss-of-function variants found in ASD 

cases as well as cases with other neurodevelopmental disorders. 

We also hoped to explain the modest excess of missense variation in ASD cases 

by searching for specifically missense constrained regions within genes. Using the 

intolerance to missense variation, as well as variant level predictors of deleteriousness, 

we created a score to predict how likely a missense variant is to be deleterious and 

show that is separates signal from noise in the de novo missense variant results from 

ASD cases (Chapter 5). 
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In summary, we have developed tools and metrics to better interrogate exome 

sequencing data and applied them to substantially clarify the role of rare variation in 

ASD risk. These approaches have been adopted by the broader community to both 

inform rare variant discovery and patient exome interpretation. 
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Identifying and characterizing de novo variation 
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Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism 
spectrum disorders. Nature 485, 242-245 (2012). 

De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in 
autism. Nature 515, 209-15 (2014). 
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Motivation 

A natural property of DNA is that it spontaneously mutates, which leads to the 

creation of new alleles. The mutation rate of single nucleotides is quite low, but still 

large enough to expect that any individual will carry 70-100 newly arising (de novo) 

single nucleotide alleles not present in the somatic genome of either parent, with 

roughly one of these de novo alleles falling into exomic sequence (the 1% of the 

genome that encodes protein)1-5. 

While it has been established that there is a large genetic component to autism 

spectrum disorder (ASD), both linkage and association studies had limited success 

identifying risk loci. Some of the most fruitful studies came from examining large copy 

number variants (CNVs)6-11. Researchers identified several CNVs that were strongly 

associated with risk for ASD, many of which were de novo in the affected child. 

Unfortunately, these CNVs are large and contain many genes, complicating studies to 

decipher the underlying biology. As an example, the most-reported CNVs tied to ASD 

are deletions in the 16p11.2 region, which span roughly 500-600 kilobases and contain 

25 genes7,8,10,12. Understanding how these ASD-associated CNVs contribute to disease 

is further complicated by both incomplete penetrance and associations to other 

neurodevelopmental disorders8,10,11,13. All together, these CNVs account for less than 

3% of the heritability of ASD, indicating that there is much more to find14. 

The development of exome-capture kits, in combination with the falling costs of 

sequencing DNA, allowed the study of de novo single nucleotide variants (SNVs) and 

small insertions and deletions (indels) found in coding sequence15. De novo SNVs in 

single genes have been tied to a number of rare, severe, and likely monogenic 
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disorders16,17. There were also a few studies of de novo variation in more complex traits, 

such as schizophrenia, with less success implicating specific risk genes18,19. 

Subsequently, our group and others began to sequence parent-child families 

(known as trios) to define the role of de novo variation in ASD and discover genes or 

pathways associated with disease risk. While in theory identifying de novo variation 

should be straight forward—finding alleles in the child that neither parent has—it is 

complicated by such occurrences being rare and looking like genotyping or sample 

tracking errors. We therefore needed to establish specific and sensitive quality 

thresholds to determine trustworthy candidate de novo events. 

 

Data generation 

Identifying de novo variation requires genetic information, specifically sequencing 

data, from both parents and their child (a trio). Our earliest work was with the Autism 

Consortium, a Boston-based group of collaborators, which collected whole blood or cell 

lines from 96 trios. DNA was extracted and sheared into 200-300 base long fragments, 

which were then end-repaired, adenylated, and had adaptor oligonucleotides ligated in 

preparation for sequencing. PCR amplification with primers specific to the adaptor 

oligonucleotides was performed to enrich for fragments with attached adaptors. Exons 

were captured using Agilent 38Mb SureSelect v2. After capture, a round of ligation-

mediated PCR was performed to increase the quantity of DNA available for sequencing. 

All libraries were sequenced using an Illumina HiSeq 2000 instrument. The data were 

processed with the Picard software, which uses base quality score recalibration and 

local realignment at known indels20 and Burrows-Wheeler Aligner (BWA)21 to map reads 
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to hg19. Variants were called using the Genome Analysis Toolkit (GATK) software for 

all trios jointly20,22. The resulting output was a standard Variant Call Format (VCF) file 

containing genotypes for sequenced members of the trios at positions where at least 

one individual in the data set had a non-reference allele. All sequencing was performed 

at the Broad Institute. 

 

Key parameters to identify de novo variants 

We created a Python script to identify candidate de novo variants from 

sequencing data with two required inputs: a GATK-generated VCF file that contains the 

variant information and a family relation file—often referred to as a pedigree file—that 

describes sample relatedness. Our first requirement was that variants passed all of the 

standard quality filters of the genotyper (here, the GATK Unified Genotyper), which was 

indicated by a PASS in the FILTER field of the VCF. Of the high quality sites, we 

focused on those where a child had a heterozygous genotype and both parents were 

homozygous reference. Given the small size of the original data set (n = 96 trios), we 

assumed that any site where the alternative allele was seen in another individual in the 

data set was likely to not be a true de novo and therefore removed such sites from 

further consideration23. This assumption was later dropped (discussed below). 

We then sought to remove miscalled genotypes by imposing a threshold on the 

observed allele balance (the percentage of non-reference, or alternative, reads). Since 

the child should be heterozygous for the alternative allele, roughly 50% of all 

sequencing reads at the site in the child should have the alternative allele. There is a 

slight reference bias—it is easier to capture sequences with the reference allele than 
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the alternative—as well as normal sampling error. Given these two properties, we 

allowed the child’s allele balance to be as low as 30%. Additionally, we wanted to avoid 

the possibility of a missed heterozygous genotype in the parents and required that their 

allele balance be no greater than 5%. Instances where genotypes that appear to 

indicate a de novo event, but fail these expected allele balances, can arise from poor 

read mapping or biases in data generation but may still lead to confident genotyping 

calls if the site has high sequencing depth. We also removed sites where the child’s 

read depth was < 10% of the total depth of reads in both parents, which was meant to 

remove instances where the child may have been poorly sequenced or, less likely, had 

a deletion at the site. 

We next explored filtering variants based on the Phred-scaled likelihood (PL) of 

the data conditional on the genotype calls. The PL represents −10 ∗ !"#!"(!), where p 

is the likelihood ratio of each genotype. In the case of a site with a single alternative 

allele, a PL is provided for each genotype: PL(AA) for the homozygous reference, 

PL(AB) for the heterozygote, and PL(BB) for homozygous alternative. The most likely 

genotype is assigned a PL score of 0 and all others are scaled relative to the most likely 

genotype. Therefore, a PL of 30 corresponds to the genotype in question being a 

thousand times less likely to be the true genotype than the reported most likely 

genotype. To determine an appropriate PL filter, we set a threshold of T and required 

sites to have a PL ≥ T for the child’s homozygous reference genotype—PL(AA)—and 

for the parents’ heterozygous genotypes—PL(AB). The relationship between T and the 

number of retained de novo events is depicted in Figure 2.1. As the genotypes become 

increasingly confident (greater PLs), the number of de novo events drops until 
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plateauing at a PL of ~20-3023. We therefore set 30 as our required threshold, T, when 

evaluating de novo events. 

 

 
 

Figure 2.1. The relationship between the genotype likelihood threshold (Phred Score) 
used and the number of de novo variants found in 96 trios. 
 

We sought to validate some of the identified de novo variants to support our 

choice of thresholds. Overall, nearly 95% of variants were confirmed to be de novo 

using an alternative sequencing technology, indicating high specificity23. To insure 

sensitivity of the PL threshold, we also attempted to validate variants that had a PL in 

between 20 and 30: all four of these variants failed to validate. Further investigation 

indicated that the most likely culprit for a falsely identified de novo event was missing a 

heterozygous genotype in one of the parents due to under-sampling the alternative 

allele, often because of low depth of sequencing. 
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After settling on the filtering parameters, we found 161 coding de novo variants in 

175 ASD trios (the additional 78 were sequenced at other centers)23. The number of de 

novo variants per trio matched a Poisson distribution (Table 2.1). We also observed the 

expected relationship between variant deleteriousness and the number of alternative 

alleles observed in the data set (Table 2.2). More common alternative alleles, as a 

class, have a lower percentage of nonsynonymous variants. In addition, these more 

common alternative alleles have lower percentages of missense variants that are 

predicted to be damaging by Polyphen224, a program that estimates variant deleterious 

using conservation of the amino acid across species and whether the change is 

predicted to destroy important structural features of the protein, among other features. 

 

Table 2.1. The number of de novo single nucleotide events per trio compared to the 
expected number of such events. We are including only single nucleotide variants 
(SNVs) and not insertions and deletions. The expected number of trios with a given 
number of de novo variants was determined by the Poisson with a lambda of 0.92, the 
median number of de novo events per trio. 
 

Events per trio Observed de novo SNVs Expected de novo SNVs 
0 71 69.7 
1 62 64.2 
2 28 29.5 
3 10 9.1 
4 2 2.1 
5 1 0.4 
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Table 2.2. The percentage of variants by mutation type for ASD cases and their 
parents. Only single nucleotide variants are included. Singletons (alternative allele seen 
once in the data set), doubletons (alternative allele seen twice in the data set), and 
variants where the alternative allele was seen ≥ 3 times in the data set were only those 
variants found in the 192 parents of the original 96 trios. 
 

Type of mutation De novo Singletons Doubletons ≥ 3 
Synonymous 31.1% 39.3% 43.8% 50.8% 
Missense 62.7 59.5 55.4 48.8 
Nonsense 6.2 1.2 0.8 0.4 
PolyPhen-2 missense classification 
Benign 35.0% 46.6% 51.3% 63.4% 
Possibly damaging 21.0 18.8 17.7 15.1 
Probably damaging 44.0 34.7 31.0 21.4 

 

Population frequency aware de novo identification 

Our early work only considered de novo variants that were singletons, where the 

alternative allele is seen only once in the data set. Of course, it is possible for a true de 

novo event to arise at a site that has been mutated in another individual, an occurrence 

that becomes increasingly likely as the sample size of the data set increases. The logic 

behind our original choice to only consider singletons was that a de novo variant should 

be a private event and unlikely to be seen in another individual, especially given the 

limited sample size at the beginning of the study. 

When we dropped the requirement that any de novo variant had to be a 

singleton, we found that many of the additional events identified had low read depth in 

all three members of the trio or borderline allele balances, indicating that there was 

likely under-calling of a heterozygous genotype in one of the parents. 

We therefore had to refine our filters and thresholds to have strong confidence in 

variants that were seen in another individual in the dataset, or as a standing variant in 

the population, but appeared de novo in a trio. As before, we first identified candidate de 
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novo variants at the highest quality (PASSing) sites as defined by a standard GATK 

pipeline where the child is called heterozygous and the parents both reference 

homozygotes. We maintained our requirement that the proportion of alternate allele 

reads was no more than 5% in each parent, but allowed the child to have as few as 

20% alternate allele reads. We also removed variants where the depth of sequence 

coverage in the child was less than 10% of the total depth of the two parents. However, 

we dropped the PL requirement from 30 to 20 since we were adding other filters to 

produce confident de novo variant calls (discussed below). 

The major error mode of falsely called de novo events is when one parent is truly 

heterozygous, but has been incorrectly called homozygous reference due to under-

sampling of the alternative allele. We therefore implemented a novel algorithm that uses 

population and sample allele frequency information to provide a Bayesian probability 

estimate that an apparent de novo variant constitutes a true de novo, as opposed to a 

missed heterozygous call in the parent. 

While the PL information from the parents provides an accurate picture of the 

probability of the data given the genotype, the prior probability of a heterozygous 

genotype must be derived from population data. To calculate this, we conservatively 

take the maximum allele frequency from two sources: the extensively curated National 

Heart, Lung, and Blood Institute’s Exome Sequence Project reference database and the 

sequenced population sample from which the trio is drawn. Including both data sets 

permits use of both the accuracy that comes from the size of well-curated reference but 

insures against false low frequency estimates should there be an occasional variant 

missed in the reference resource but present in many copies in the current data. The 
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probability of a site being present in a parent but absent from the reference data and all 

other samples in our data is simply the average number of singleton sites unique to an 

individual (~100) divided by the exome target size in base pairs, whereas the prior 

probability of a de novo mutation is the mean number of de novo variants (~1) divided 

by the same exome size in base pairs. 

The probabilities of the two hypotheses are then calculated using Bayes’ theorem 

and the relative probability, 

 ! !" !"#" =  ! !"#$ !" !"#"  !"#")
! !"#$ !" !"#"  !"#")!! !"##$% !!" !" !"#$%!  !"#") , 

is reported as the probability of de novo variant. Sites for which P(de novo) was 

estimated to be greater than 0.99 were considered high quality sites and constitute the 

set of variants included in all analyses. We also combined P(de novo) with the allele 

balance of the variant and its allele count in the data set to assign it to one of three 

categories: high, medium, and low likelihood of validating as a true de novo event. 

We applied the improved version of the de novo identification script to the exome 

sequencing data from 1,474 trios where the child was diagnosed with ASD as part of 

the Autism Sequencing Consortium25. Extensive validation of sites via Sanger 

sequencing was performed and found that only three out of 200 high quality sites (both 

SNVs and indels) were inherited, confirming the validity of the P(de novo) > 0.99 

estimate (Table 2.3). Additionally, we tested 56 sites that were considered to have a 

medium likelihood of validating: 30 (53.6%) of these were confirmed to be de novo. 

These results further supported the validity of the probability estimate. As these variants 

constituted a small but significantly real category (estimated to add ~2% true events), 

they were included in all analysis of the de novo variants. 
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Table 2.3. Validation of de novo variants by their likelihood of validating. No validation 
was attempted for variants that fell into the low likelihood of validating category. 
 

Likelihood of 
validating 

Number of 
variants tested 

Variants 
validated (%) 

Confirmed de 
novo variants (%) 

High 200 196 (98.0%) 193 (97.5%) 
Medium 56 36 (64.3%) 30 (53.6%) 
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Kaitlin Samocha: method design, data analyses (exceptions below), writing 

Mark Daly: method design, writing, overall guidance 
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Abstract 

Spontaneously arising (de novo) variants play an important role in medical 

genetics. For diseases with extensive locus heterogeneity – such as autism spectrum 

disorders (ASDs) – the signal from de novo variants is distributed across many genes, 

making it difficult to distinguish disease-relevant variants from background variation. We 

provide a statistical framework for the analysis of de novo variant excesses per gene 

and gene set by calibrating a model of de novo mutation. We applied this framework to 

de novo variants collected from 1,078 ASD trios and – while affirming a significant role 

for loss-of-function variants – found no excess of de novo loss-of-function variants in 

cases with IQ above 100, suggesting that the role of de novo variants in ASD may 

reside in fundamental neurodevelopmental processes. We also used our model to 

identify ~1,000 genes that are significantly lacking functional coding variation in non-

ASD samples and are enriched for de novo loss-of-function variants identified in ASD 

cases. 

 

Introduction 

Exome sequencing has allowed for the identification of de novo (newly arising) 

events and has already been effectively put to use in identifying causal variants in rare, 

mendelian diseases. In the case of Kabuki syndrome, the observation of a de novo 

variant in KMT2D (previously MLL2) in 9 out of the10 patients strongly implicated the 

loss of KMT2D function as causal1. The conclusion that KMT2D is important in Kabuki 

syndrome etiology based on the de novo variant findings relies upon the unlikely 

accumulation of independent and infrequently occurring events in the vast majority of 
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these unrelated cases. By contrast, de novo variants (DNVs) play a smaller role in the 

pathogenesis of heritable complex traits, such as autism spectrum disorders (ASDs), 

and associated DNVs are spread across multiple genes. These differences in the 

etiologic architecture of complex traits make the task of identifying “causal” genes 

considerably more challenging. For example, recent exome sequencing studies 

demonstrated a significant excess of de novo loss-of-function (LoF) variants in ASD 

cases, but lacked the ability to directly implicate more than a very few genes2-6. 

The main complicating factor for interpreting the number of observed DNVs for a 

particular gene is the background rate of de novo mutation, which can vary greatly 

between genes. As more individuals are sequenced, multiple DNVs will inevitably be 

observed in the same gene by chance. However, if de novo variation plays a role in a 

given disease, then we would expect to find that genes associated to disease should 

contain more DNVs than expected by chance. 

Here, we develop a statistical model of de novo mutation in order to evaluate the 

findings from exome sequencing data. With this model, we establish a statistical 

framework to evaluate the rate of DNVs not only on a per-gene basis (in a frequentist 

manner analogous to common genome-wide association analysis), but also globally and 

by gene set. We further use this model to predict the expected amount of rare standing 

variation per gene and to detect those genes that are significantly and specifically 

deficient in functional variation, likely reflecting processes of selective constraint. 

Consequently, since selection has reduced standing functional variation in these genes, 

it is reasonable to hypothesize that mutations in these genes are more likely to be 

deleterious.  
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We used the mutational model along with our list of highly constrained genes to 

evaluate the relationship between de novo variation and ASDs. Most of the families 

employed in these analyses were included in a set of previous studies of de novo 

variation, which reported an overall excess of de novo LoF variants in ASD cases, as 

well as multiple DNVs in specific genes2-5. We build on those studies to examine the 

aggregate rates of DNVs, the excess of multiply mutated genes, and the overlap of 

DNVs with gene sets, which highlights the complex relationship between intellectual 

functioning and the genetic architecture of ASD. 

 

Results 

Basis of the mutational model 

Accurate estimation of the expected rate of de novo mutation in a gene requires 

a precise estimate of each gene’s mutability. While gene length is an obvious factor in a 

gene’s mutability, local sequence context is also a well-known source of mutation rate 

differences7. Accordingly, we extended a previous model of de novo mutation based on 

sequence context and developed gene-specific probabilities for different types of 

mutation: synonymous, missense, nonsense, essential splice site, and frameshift (see 

Materials and Methods; Figure 3.1)3. Underscoring the importance of the sequence 

context factors in the model, this genome-wide rate yields an expected mutation rate of 

1.67x10-8 per base per generation for the exome alone. Using counts of rare (minor 

allele frequency < 0.001) synonymous variants identified in the National Heart, Lung, 

and Blood Institute’s (NHLBI’s) Exome Sequencing Project (ESP), we found that our 
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per-gene probabilities of mutation were significantly more correlated (r = 0.940) with 

these counts than gene length alone p < 10-16; Materials and Methods). 

Having established accurate per-gene probabilities of mutation, we could then 

investigate the rates and distribution of DNVs found in sequencing studies. Specifically, 

we wished to systematically assess a) whether cases had genome-wide excesses of 

certain functional categories of de novo variation; b) whether individual genes could be 

associated via de novo variation with genome-wide statistical significance; c) whether 

specific sets of genes collectively showed significant enrichment of de novo variants 

and d) whether there were genome-wide excesses of genes with multiple de novo 

variants. Below we demonstrate the utility of the statistical framework in addressing all 

of these questions with respect to recently generated family exome sequencing for 

autism and intellectual disability. 
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Figure 3.1. An outline of the steps used in the model of de novo mutation probability. A 
graphic illustration of the steps taken to determine the per-gene probabilities of 
mutation. A mutation rate table was created from intergenic single nucleotide 
polymorphisms (SNPs) from the 1000 Genomes Project. This mutation rate table was 
then applied to every coding base and the bases of conserved splice site to create a 
gene specific probability of mutation, split by mutation type. 
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Identifying genes under selective constraint 

There has been a long standing interest in identifying genes in the human 

genome that are sensitive to mutational changes, as these genes would be the most 

likely to contribute to disease. Recent work made use of the ESP data to create a metric 

evaluating the proportion of common functional variation in each gene, thereby 

identifying genes that appeared to be intolerant of mutation8. Along these lines, we 

correlated our calculated per-gene probabilities of mutation with the observed counts of 

rare missense variants in the ESP data set. In contrast to the high consistency between 

predicted synonymous mutation rates and observed synonymous counts (expected if 

the category is under no specific selection), we observed a significant number of genes 

with severe deficit of missense variants compared to the expectation generated from 

predicted mutation rates (p < 10-16). Such a deficit is consistent with strong evolutionary 

constraint: when damaging mutations arise, they are quickly removed from the 

population by purifying selection. To avoid erroneously identified constrained genes, we 

removed 134 genes with either significantly elevated or depressed synonymous and 

nonsynonymous rates (both p < 0.001; Materials and Methods). 

Comparing both the synonymous and missense predictions of our model to the 

ESP data set, we identified a list of excessively constrained genes (missense Z score > 

3.09; corresponding to p < 0.001) that represented roughly 5% of all genes. A high 

proportion of the most significantly constrained genes (missense constraint p < 10-6) 

were associated with autosomal or X-linked dominant, largely sporadic, mendelian 

disease entries listed in the Online Mendelian Inheritance in Man database (OMIM; n = 

27/86). By contrast, a set of genes for which the missense constraint was very close to 
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expectation (n = 111, -0.01 < Z < 0.01) had only two de novo or dominant disease 

inheritance entries in OMIM, a number significantly different from that for the highly 

constrained set (p < 10-8). For the 86 most highly constrained genes, no autosomal 

recessive mendelian disorders have been documented. However, 11 of the 111 genes 

with average levels of constraint have been identified as causal in autosomal recessive 

mendelian disorders. The significant excess of recessive disease-causing genes in the 

middle part of the distribution in comparison to the constrained set (p < 0.003) 

underscores the idea that recessive inheritance models do not induce strong constraint. 

 

Mutation rates for ASD and intellectual disability 

We applied the model to two primary data sets: published results from ASD 

sequencing studies2-6 with a collection of additional unpublished ASD trios, and 

published results from patients with severe intellectual disability9,10. Table 3.1a shows 

the comparison between the predicted number of variants per exome and the observed 

data from the 1,078 ASD cases as well as 343 sequenced unaffected siblings2-6. The 

model’s predictions match the observed data for the unaffected siblings well, but the 

cases show a significant excess of de novo LoF variants consistent with the findings of 

the individual sequencing studies (p = 2.05x10-7). Using our model to simulate null DNV 

sets, we found that there are significantly more genes with two or more de novo LoF 

variants than would be expected by chance (p < 0.001, 6 observed when less than one 

was expected; Table 3.1b. Importantly, while we do not observe a global excess of de 

novo missense variants, we do observe an excess of genes with two or more functional 

(LoF or missense) de novo variants (observed 48 such genes when the average 
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expected is 27; p < 0.001) and genes with two or more de novo missense variants alone 

(observed 33 such genes when average expectation was 21, p = 0.007 for missense, 

Table 3.1b). No such excess of genes containing multiple DNVs was seen in the 

unaffected siblings (Table 3.1b). Of note, our framework also supports the assessment 

of many other weightings and combinations of alleles – such as missense variants only 

(optimal for pure gain-of-function disease models), predicted damaging missense 

variants only, and exact probability estimates for specific combinations of LoF and 

missense variants - than those shown above.  

 

Table 3.1. Evaluation of the rates of de novo variants in ASD cases and unaffected 
siblings. The observed and expected rate of variants by type per exome for unaffected 
siblings2 and ASD cases2-6 (a). (b) The number of genes with multiple de novo variants 
in unaffected siblings and ASD cases across studies. The average number of expected 
genes with multiple de novo variants was determined by simulation. LoF = Loss-of-
function. DNVs = de novo variants. For (a), a two-tailed test was performed for 
synonymous and missense; a one-tailed test for loss-of-function. 
 
a) Genome-wide excesses of mutational events 

 Unaffected Siblings 

Mutation Type Observed events 
per exome 

Expected events 
per exome p-value 

Synonymous 0.21 0.27 0.0218 
Missense 0.61 0.62 0.8189 

Loss-of-Function 0.09 0.09 0.4508 
n = 343      

 
 ASD Cases 

Mutation Type 
Observed 

events 
per exome 

Expected events 
per exome p-value 

Synonymous 0.25 0.27 0.1065 
Missense 0.64 0.62 0.5721 

Loss-of-Function 0.13 0.09 2.05x10-7 
n = 1,078      
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Table 3.1 (Continued) 
b) Genome-wide excesses of multiply hit genes 

 Unaffected Siblings 

Mutation Type Observed genes with 
2+ DNVs 

Average expected 
genes with 2+ DNVs p-value 

Synonymous 0 0.5 1.0 
Missense 5 2.5 0.1049 

Loss-of-Function 0 0.04 1.0 
LoF+missense 6 3 0.0779 

n = 343  

 ASD Cases 

Mutation Type Observed genes with 
2+ DNVs 

Average expected 
genes with 2+ DNVs p-value 

Synonymous 4 3.8 0.5186 
Missense 33 21.4 0.0070 

Loss-of-Function 6 0.5 < 0.001 
LoF+missense 48 27.2 < 0.001 

n = 1,078 
 

Table 3.2 lists all of the genes that have two or more de novo missense or LoF 

variants across the 1,078 ASD subjects. A conservative significance threshold of 1x10-6 

was used, correcting for 18,271 genes and two tests. Considering this set of 1,078 trios 

as a single experiment, two genes (DYRK1A and SCN2A) exceeded this conservative 

genome-wide significance threshold for more de novo LoF variants than predicted. 

SCN2A also had significantly more functional de novo variants than expected. CHD8, 

with three de novo LoF variants and one missense, was very close to the significance 

threshold in these studies (p = 1.76x10-6 for LoF; p = 3.20x10-5 for functional). However, 

a recent targeted sequencing study found 7 additional CHD8 de novo LoF variants in 

ASD cases11. This brought the total number of de novo LoF variants in CHD8 to 10, 

which was highly significant (p = 8.38x10-20 when accounting for the total number of 

trios – 2,750 – examined in the combination of the targeted and exome-wide study). 
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These results offer the encouraging point that, as with genome-wide association studies 

(GWAS), larger collaborative exome efforts for trios will define unambiguous risk 

factors. It is important to note, however, that not all genes with a large number of de 

novo variants in them had significant p-values. For example, TTN had four missense 

DNVs in ASD cases, but a p-value that is not even nominally significant due to the 

enormous size of the gene (p = 0.18). Even having two de novo LoF variants was on 

occasion not enough to provide compelling significance (POGZ, two frameshifts, p = 

8.93x10-5). In comparison, none of the genes found to contain multiple DNVs in the 

unaffected siblings crossed the significance threshold (Table 3.3). 
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Table 3.2. Significance of genes with multiple de novo variants (DNVs) in autism 
spectrum disorder (ASD) cases. Loss-of-function (LoF) mutations include nonsense, 
frameshift, and splice site-disrupting mutations. “# LoF Expected” refers to the expected 
number of de novo LoF variants based on the probability of mutation for the gene as 
determined by our model. The genome-wide significance threshold is 1x10-6. “.” = no 
data available. 
 

Gene # LoF # Missense # DNVs 
Expected p-value Test 

DYRK1A 3 0 0.0072 6.15x10-8 LoF 
SCN2A 3 2 0.0177 9.20x10-7 LoF 
CHD8 3 1 0.0221 1.76x10-6 LoF 

KATNAL2 2 0 0.0049 1.19x10-5 LoF 
POGZ 2 0 0.0134 8.93x10-5 LoF 

ARID1B 2 0 0.0178 1.57x10-4 LoF 
SCN2A 3 2 0.1334 3.15x10-7 LoF+mis 
CHD8 3 1 0.1724 3.20x10-5 LoF+mis 

SUV420H1 1 2 0.0602 3.48x10-5 LoF+mis 
PLEKHA8 0 2 0.0302 4.46x10-4 LoF+mis 
TUBA1A 0 2 0.0338 5.59x10-4 LoF+mis 

SLCO1C1 0 2 0.0394 7.55x10-4 LoF+mis 
NTNG1 0 2 0.0413 8.29x10-4 LoF+mis 

TSNARE1 0 2 0.0498 1.20x10-3 LoF+mis 
TBR1 1 1 0.0541 1.41x10-3 LoF+mis 

MEGF11 0 2 0.0552 1.47x10-3 LoF+mis 
KRBA1 0 2 0.0642 1.98x10-3 LoF+mis 
SRBD1 0 2 0.0645 1.99x10-3 LoF+mis 

KIRREL3 0 2 0.0652 2.03x10-3 LoF+mis 
NR3C2 1 1 0.0655 2.05x10-3 LoF+mis 
UBE3C 0 2 0.0775 2.85x10-3 LoF+mis 
AGAP2 0 2 0.0825 3.22x10-3 LoF+mis 
ABCA13 0 3 0.2890 3.24x10-3 LoF+mis 
ADCY5 0 2 0.1098 5.61x10-3 LoF+mis 

KIAA0182 0 2 0.1114 5.76x10-3 LoF+mis 
ZNF423 0 2 0.1131 5.94x10-3 LoF+mis 



	

	 45 

Table 3.2 (Continued) 
 

Gene # LoF # Missense # DNVs 
Expected p-value Test 

ZNF638 1 1 0.1212 6.78x10-3 LoF+mis 
SCN1A 0 2 0.1352 8.36x10-3 LoF+mis 
LAMB2 0 2 0.1604 1.16x10-2 LoF+mis 
MYO7B 0 2 0.1616 1.17x10-2 LoF+mis 

KIAA0100 1 1 0.1619 1.18x10-2 LoF+mis 
PLXNB1 1 1 0.1718 1.32x10-2 LoF+mis 

CACNA1D 0 2 0.1732 1.34x10-2 LoF+mis 
ZFYVE26 1 1 0.1753 1.37x10-2 LoF+mis 

SBF1 0 2 0.1808 1.45x10-2 LoF+mis 
BRCA2 0 2 0.1928 1.64x10-2 LoF+mis 
TRIO 0 2 0.2374 2.41x10-2 LoF+mis 

ALMS1 0 2 0.2422 2.50x10-2 LoF+mis 
RELN 1 1 0.2429 2.51x10-2 LoF+mis 
ANK2 1 1 0.2591 2.83x10-2 LoF+mis 
MLL3 1 1 0.3159 4.05x10-2 LoF+mis 

DNAH5 1 1 0.3219 4.19x10-2 LoF+mis 
FAT1 0 2 0.3343 4.49x10-2 LoF+mis 

GPR98 0 2 0.3761 5.53x10-2 LoF+mis 
AHNAK2 0 2 0.4172 6.62x10-2 LoF+mis 
SYNE1 0 2 0.5931 1.20x10-1 LoF+mis 

TTN 0 4 2.1947 1.80x10-1 LoF+mis 
MUC5AC 0 2 . . LoF+mis 

RFX8 0 2 . . LoF+mis 
EFCAB8 0 2 . . LoF+mis 
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Table 3.3. Significance of specific genes with multiple de novo variants (DNVs) in 
unaffected siblings. Loss-of-function (LoF) mutations include nonsense, frameshift, and 
splice site-disrupting mutations. “# LoF Expected” refers to the expected number of de 
novo LoF variants based on the probability of mutation for the gene as determined by 
our model. The genome-wide significance threshold is 1x10-6. “.” = no data available. 
 

Gene # LoF # Missense # DNVs 
Expected p-value Test 

CSNK1G3 1 1 0.0098 4.78x10-5 LoF+mis 
UGT2B4 0 2 0.0102 5.12x10-5 LoF+mis 
USP34 0 2 0.0717 2.45x10-3 LoF+mis 

AHNAK2 0 2 0.1327 8.07x10-3 LoF+mis 
SYNE2 0 2 0.1369 8.56x10-3 LoF+mis 

TTN 0 2 0.6983 1.55x10-1 LoF+mis 
 

These analyses were also applied to the results from the sequencing studies of 

moderate to severe (IQ < 60) intellectual disability9,10 (n = 151). Intellectual disability, 

like ASD, showed a significant excess of LoF DNVs (p = 6.49x10-7; Table 3.4a). Even 

with a much smaller sample size there were genes with significantly more LoF and 

functional DNVs than predicted by the model (Table 3.4c). The intellectual disability 

data also have significantly more genes with multiple de novo missense, LoF, and 

functional variants than predicted (p = 0.009 for missense, p < 0.001 for LoF and 

functional; Table 3.4b). 
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Table 3.4. Evaluation of the rates of de novo variants in cases with intellectual disability. 
(a) The observed and expected rate of variants by type per exome for cases of 
intellectual disability (ID, n = 151 families)9,10. A two-tailed test was performed for 
synonymous and missense; a one-tailed test for loss-of-function. (b) The number of 
genes with multiple de novo variants in intellectual disability cases across studies. The 
average number of expected genes with multiple de novo variants was determined by 
simulation. (c) Genes with multiple functional de novo variants in the ID cases9,10. LoF 
variants include nonsense, frameshift, and splice site-disrupting events. The genome-
wide significance threshold is 1x10-6. The number of variants is either compared to the 
expected number for LoF only or for both LoF and missense, as indicated by the “# 
DNVs Expected” and “Test” columns. LoF = Loss-of-function. DNVs = de novo variants. 
 
a) Genome-wide excesses of mutational events 
 

Mutation Type Observed events 
per exome 

Expected events 
per exome p-value 

Synonymous 0.19 0.27 0.0267 
Missense 0.70 0.62 0.2380 

Loss-of-Function 0.24 0.09 6.49x10-7 
 

b) Genome-wide excesses of multiply hit genes 
 

Mutation Type Observed genes 
with 2+ DNVs 

Average expected 
genes with 2+ DNVs p-value 

Synonymous 1 0.09 0.0879 
Missense 3 0.5 0.0090 

LoF 2 0.01 < 0.001 
LoF+missense 6 0.6 < 0.001 

 
c) Genes with multiple de novo missense and loss-of-function variants 
 

Gene # LoF #Missense # DNVs 
Expected p-value Test 

SYNGAP1 3 0 0.0017 8.15x10-10 LoF 
SCN2A 3 1 0.0025 2.56x10-9 LoF 
SCN2A 3 1 0.0187 5.01x10-9 LoF+mis 
STXBP1 1 2 0.0071 5.87x10-8 LoF+mis 

TCF4 0 2 0.0069 2.39x10-5 LoF+mis 
GRIN2A 0 2 0.0162 1.34x10-4 LoF+mis 

TRIO 0 2 0.0333 5.60x10-4 LoF+mis 
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In our ASD sample, we then investigated the rate of de novo events as a function 

of IQ; roughly 80% of this sample had an IQ assessment attempted. We found that the 

rate of de novo LoF mutation in ASD cases with a measured IQ above average was no 

different than expectation (IQ ≥ 100; n = 229; 0.08 de novo LoF variants per exome 

compared to expected 0.09, p = 0.59). By contrast, the rate in the rest of the sample 

was substantially higher than expectation (n = 572; rate of 0.17 de novo LoF variants 

per exome, p = 1.17x10-10). Furthermore, when directly compared (rather than to our 

expectation), these two groups were significantly different from each other, confirming a 

difference in genetic architecture among ASDs as a function of IQ (Table 3.5a-b, p < 

0.001). These conclusions are unchanged in separate analyses of nonverbal and verbal 

IQ as well as full scale IQ (Table 3.5c). 
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Table 3.5. Investigating the rate of de novo mutation as a function of IQ. (a) The 
observed and expected rate of de novo variants by mutation class for the autism 
spectrum disorder cases with full scale IQ ≥ 100. (b) The observed and expected rate of 
de novo variants by mutation class for the autism spectrum disorder cases that did not 
have a full scale IQ above 100. (c) The observed rate of de novo loss-of-function (LoF) 
mutations split by verbal IQ and nonverbal IQ. For (a) and (b), a two-tailed test was 
performed for synonymous and missense; a one-tailed test for loss-of-function. 
 
a) Full Scale IQ scored above 100 (n = 229) 
 

Mutation Type Observed events 
per exome 

Expected events 
per exome 

p-value 

Synonymous 0.24 0.27 0.2346 
Missense 0.66 0.62 0.4736 

Loss-of-Function 0.08 0.09 0.5867 
 
b) Full Scale IQ not scored above 100 (n = 572) 
 

Mutation Type Observed events 
per exome 

Expected events 
per exome 

p-value 

Synonymous 0.22 0.27 0.0123 
Missense 0.62 0.62 0.9946 

Loss-of-Function 0.17 0.09 1.17x10-10 
 
c) IQ comparisons split between verbal and nonverbal IQ 
 

Phenotypic Group Number of 
samples 

Observed de novo LoF 
events per exome p-value 

Verbal IQ ≥ 100 242 0.10 0.1903 
Verbal IQ not scored 

above 100 712 0.15 2.43x10-8 

Nonverbal IQ ≥ 100 276 0.09 0.4829 
Nonverbal IQ not scored 

above 100 678 0.16 1.09x10-9 
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Gene set enrichment 

Given the significant global excess of de novo LoF variants in ASD cases, we 

wanted to evaluate whether the set of genes harboring de novo LoF variants had 

significant overlap with several sets of genes proposed as relevant to autism or 

describing biochemical pathways. We used the probabilities of mutation to determine 

the fraction of LoF variants expected to fall into the given gene set. We then used the 

binomial distribution to evaluate the number of observed LoF variants overlapping the 

set compared to the established expectation. When we applied this analysis to a set of 

112 genes reported as disrupted in individuals with ASD or autistic features, we 

observed no enrichment of de novo LoF variants (Figure 3.2, “Betancur”)12. By contrast, 

we applied this analysis to a recent study of 842 genes found to interact with the Fragile 

X mental retardation protein (FMRP) in vivo and found a highly significant overlap (2.3-

fold enrichment, p < 0.0001, Figure 3.2)2,13. This enrichment with the targets of FMRP 

held even when we removed the de novo variants identified in the Iossifov et al study 

that initially reported an enrichment of de novo variants in ASD cases with FMRP-

associated genes (2.5-fold enrichment, p < 0.0001)2. 
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Figure 3.2. The expected and observed fraction of genes with a de novo variant in 
cases and controls for four gene sets of interest. ASD cases (n = 1,078), unaffected 
controls (n = 647), and intellectual disability (ID; n = 151) cases were sequenced across 
various studies2-6,9,10. “Betancur” refers to a set of genes reported as disrupted in 
individuals with ASD or autistic features; of the 112 on the list, we could evaluate 11112. 
“FMRP” refers to the genes whose mRNAs are bound and regulated by the Fragile X 

0!
0.05!

0.1!
0.15!

0.2!
0.25!

0.3!
0.35!

0.4!
0.45!

0.5!

Betancur 
(111 genes)!

FMRP (827 
genes)!

Constrained 
(1003 
genes)!

Constrained 
FMRP (294 

genes)!

Fr
ac

tio
n 

of
 G

en
es

 w
ith

 a
 D

e 
N

ov
o 

Lo
ss

-o
f-F

un
ct

io
n 

M
ut

at
io

n 
!

Expected!
Unaffected!
ASD!
ID!

*!

**!
**!

**!

**!

**!

**!

**!

0!

0.05!

0.1!

0.15!

0.2!

0.25!

0.3!

0.35!

Betancur 
(111 genes)!

FMRP (827 
genes)!

Constrained 
(1003 
genes)!

Constrained 
FMRP (294 

genes)!

Fr
ac

tio
n 

of
 G

en
es

 w
ith

 a
 D

e 
N

ov
o 

M
is

se
ns

e 
M

ut
at

io
n!

Expected!
Unaffected!
ASD!
ID!

**! **!

**!

0!

0.02!

0.04!

0.06!

0.08!

0.1!

0.12!

Betancur 
(111 genes)!

FMRP (827 
genes)!

Constrained 
(1003 
genes)!

Constrained 
FMRP (294 

genes)!

Fr
ac

tio
n 

of
 G

en
es

 w
ith

 D
e 

N
ov

o 
Sy

no
ny

m
ou

s 
M

ut
at

io
n!

Expected!
Unaffected!
ASD!
ID!

a) Loss-of-function 

b) Missense 

c) Synonymous 



	

	 52 

Figure 3.2 (Continued) Mental Retardation Protein (FMRP), as identified by Darnell 
and colleagues13. The “constrained” category is a set of 1,003 genes that we defined as 
significantly lacking rare missense variation, indicating intolerance to mutation. The 
targets of FMRP that are also considered constrained by our metric make up the 
“Constrained FMRP” category. Loss-of-function variants are presented in (a); missense 
in (b) and synonymous in (c). * indicates p < 0.01; ** indicates p < 10-4. 
 

We then evaluated the group of individuals from the ASD studies who had a de 

novo LoF variant in one of the targets of FMRP. On average, these cases were 

enriched for having a measured IQ < 100 (Fisher’s exact p = 4.01x10-4; Table 3.6 as 

well as significantly reduced male:female ratio (p = 0.02; Table 3.7) as compared to the 

remaining sequenced cases (Materials and Methods). These individuals represent 

about 3% of the total sample, when at most a 1% overlap would be expected. The 

estimated odds ratio (OR) of de novo LoF variants in the set of FMRP target genes was 

around 6, very similar to the OR estimated for large CNVs that disrupt multiple genes14. 

In addition, the OR for the published cases of moderate to severe intellectual disability 

noted above (IQ < 60; not ascertained for ASDs) having a de novo LoF event in the set 

of FMRP targets was roughly 10. 
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Table 3.6. The number (and percentage) of individuals that have an IQ ≥ 100 or an IQ 
not scored above 100 split by whether they contain a de novo loss-of-function variant in 
a target of FMRP (FMRP-I) or not (“Rest of Cases”). In (a), individuals who started an 
IQ test but were not given an IQ score are included. Only individuals with IQ scores are 
included in (b). 
 
a) IQ Attempted but unscored individuals included 
 

 FMRP-I Rest of Cases 
IQ ≥ 100 1 (3%) 254 (31%) 

IQ not above100  29 (97%) 575 (69%) 
 

Fisher’s exact p-value = 4.01x10-4 

 
b) Only scored individuals 
 

 FMRP-I Rest of Cases 
IQ ≥ 100 1 (5%) 254 (35%) 

IQ not above100  20 (95%) 469 (65%) 
 

Fisher’s exact p-value = 0.0021 
 

Table 3.7. The number (and percentage) of individuals that are male and female split by 
containing a de novo loss-of-function mutation in a target of FMRP (FMRP-I) or not 
(“Rest of Cases”). 
 

 FMRP-I Rest of Cases 
Male 19 (63%) 658 (80%) 

Female 11 (37%) 163 (20%) 
 

Chi-square p-value = 0.02 
 

The same analysis was applied to the list of de novo LoF variants from 

unaffected siblings of ASD cases and additional control individuals (n = 647)2,4,5,15. 

There was a significant enrichment when evaluating the overlap with the set of autism 

related genes (p = 0.0095, Figure 3.2). However, no significance was observed for the 

overlap with the in vivo targets of FMRP. The de novo LoF variants from the intellectual 
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disability individuals, on the other hand, were significant for both sets (p < 10-4 for both 

sets; Figure 3.2). Even the de novo missense variants found in the intellectual disability 

cases showed significant overlap with both sets under study (p = 0.02 for autism-related 

genes, p < 0.0001 for the targets of FMRP, Figure 3.2). 

 

Evaluating constrained genes 

We further applied the enrichment analysis to our set of constrained genes and 

found that they contained more de novo LoF variants than expected by chance (2.3-fold 

enrichment, p < 0.0001, Figure 3.2). A greater fold enrichment was observed when 

focusing on the subset of constrained genes that were also identified in the FMRP study 

(3.0-fold enrichment, p < 0.0001, Figure 3.2)13. We note that the FMRP targets have a 

significant overlap with the constrained set of genes (odds ratio = 1.29, p < 0.0001), 

which is consistent with the report that the targets of FMRP are under greater purifying 

selection than expected2. All enrichments were demonstrated to be independent of 

gene size (Materials and Methods). 

The genes that contained a de novo missense or LoF variant in the cases of 

intellectual disability also showed a significant enrichment for both the constrained gene 

set and the set of constrained targets of FMRP (p < 0.0001 for all lists). In comparison, 

no enrichment was found with either set and the list of genes that had a de novo LoF 

variant in unaffected siblings and control individuals. 

In addition to treating constraint as a dichotomous trait, we also evaluated the 

missense Z score for each of the genes with a de novo LoF variant. We found that the 
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distribution of missense Z scores for genes with a de novo LoF variant in unaffected 

individuals was no different from the overall distribution of scores (Wilcoxon p = 0.8325; 

Figure 3.3). By contrast, both the genes with a de novo LoF variant in ASD and 

intellectual disability cases had values significantly shifted towards high constraint 

(Wilcoxon p < 10-6 for both). Furthermore, we compared the distribution of Z scores 

among each of the three groups. Both the ASD and intellectual disability distributions 

were significantly different from the distribution of missense Z scores for unaffected 

individuals (p = 0.0148 and 0.0012, respectively). The intellectual disability missense Z 

scores were also significantly higher than the ASD values (p = 0.0319). 

 

 

Figure 3.3. The distribution of missense Z scores and Z scores of genes containing de 
novo loss-of-function variants identified in unaffected individuals, autism spectrum 
disorder (ASD) cases, and intellectual disability cases. (a) The distribution of missense 
Z scores. The red line indicates a Z score of 3.09, or the threshold for inclusion into the 
set of 1,003 constrained genes. (b) The missense Z scores for genes containing de 
novo LoF in unaffected individuals, ASD cases, and intellectual disability cases2-6,9,10,15. 
Black bars indicate the mean Z score of each group: 0.94, 1.68, and 2.46 for unaffected 

Figure 2!
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Figure 3.3 (Continued) individuals, ASD cases, and intellectual disability cases, 
respectively. While the missense Z scores of the de novo LoF variants found in 
unaffected siblings matched the overall distribution (Wilcoxon p = 0.8325, n.s. = not 
significant), de novo LoF variants found in both ASD and intellectual disability cases 
were significantly shifted towards more extreme constraint values (p < 10-6 for both). All 
p-values for deviation from the overall distribution are listed on the right side of the 
figure. In addition, the distribution of missense Z scores fore each of the three de novo 
lists were all individually significant at p < 0.05. 
 

When evaluating the ASD cases split by IQ group, we found no enrichment of de 

novo LoF-containing genes with either constrained genes and targets of FMRP in the 

group with IQ ≥ 100 (p > 0.5 for both sets of genes) but very strong enrichment in the 

set with IQ < 100 (p < 0.0001 for both sets of genes). These results underscore that 

phenotypically distinct subsets of ASD cases may have significantly different 

contributions from de novo variation. 

 

Comparison of constraint metric with existing methods 

Identifying constrained genes by comparing observed nonsynonymous sites to 

expectation is conceptually similar to the traditional approach of detecting selective 

pressure by comparing observed nonsynonymous sites to observed synonymous sites 

(e.g. dN/dS) that has been used extensively. Our approach should in principle achieve 

greater statistical power to detect constrained genes; comparison of an observation to 

expectation is statistically more powerful than contrasting that observation with a 

generally smaller second observation – the number of observed synonymous variants. 

In order to investigate this claim, we identified genes that had significant evidence for 

selective constraint using the dN/dS metric (i.e. their ratio of synonymous and 
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nonsynonymous sites deviated from the genome-wide average at p < 0.001, Materials 

and Methods). There were only 377 of these genes, over half of which overlapped with 

the constrained gene list defined by our method (n = 1,003; overlap 237 genes). The 

genes identified as significantly constrained by only our metric (the top 10 of which 

include RYR2, KMT2A (MLL), KMT2D (MLL2), and SYNGAP1) are still significantly 

enriched for known causes of autosomal and X-linked dominant forms of mendelian 

disease (p = 5x10-4). We therefore conclude that the model-based approach to 

identifying constrained genes adds substantial power to traditional approaches. The 

importance of this increased power to detect constraint in further articulated in the ASD 

and intellectual disability analyses below. 

Several groups have previously published approaches, and specific gene sets 

from them, that are also aimed at identifying genes under excessive purifying selection 

or generally intolerant of functional mutation. Bustamante et al16 expanded on the 

McDonald-Kreitman framework17 contrasting fixed differences in the primate lineage to 

polymorphic differences in humans to identify a set of genes under weak negative 

selection, while more recently Petrovski et al8 utilized the excess of rare versus 

common missense variation within humans to flag genes intolerant of functional 

variation. We found a reasonable correlation between our metric of constraint and 

Petrovski’s Residual Variation Intolerance Score (RVIS8; Figure 3.4). A comparison of 

these approaches as applied to prioritization of known haploinsufficient genes as well as 

the autism de novo LoF variants described here are provided in the Materials and 

Methods and demonstrates that the two human-only approaches (constraint and RVIS) 

perform better on these tasks of identifying medical genetic lesions of severe effect in 
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modern humans (Table 3.8). Intriguingly, both of these other approaches utilize 

independent information from each other and from our approach (which uses the 

absence of rare functional variation versus expectation within humans), raising the 

potential that composite scores employing all three sources of information pointing to 

which genes are most sensitive to heterozygous mutation could add further value. 

 

 

Figure 3.4. Correlation between the constraint score and RVIS. The constraint scores 
(missense Z scores) determined by our method and residual variation intolerance score 
from Petrovski et al 8 have a Pearson correlation of -0.35. The black line shows the 
linear regression between the two metrics. 
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Table 3.8. Comparison of the predictive ability of different sets of constrained genes for 
known haploinsufficient genes and those disrupted by a de novo LoF mutation in ASD 
patients. In (a), the ability of both constraint scores and lists of constrained genes were 
tested for their ability to predict known haploinsufficient genes, as listed in OMIM. The 
quantitative scores (constraint and RVIS8) were used in a linear regression with gene 
size added as a covariate. The gene lists (constrained, top 5.5% most intolerant genes 
using RVIS8, and the genes identified in Bustamante et al16) were evaluated with a 
logistic regression with gene size as a covariate. In (b), the three gene lists were 
evaluated for their enrichment of de novo LoF mutations identified in ASD patients. To 
do this, the expected fraction of constrained genes to contain one of these de novo 
mutations was determined and then used to establish the fold enrichment and 
significance of the observed fraction. 
 
a) Linear and logistic regressions 
 

  Quantitative Scores 
  List-Based 

 

  Constraint 
score RVIS  Top 

Constrained 
Top 
RVIS Bustamante 

OMIM 
Haplo-

insufficiency 

t-
value 10.011 -9.561 OR 4.909 5.490 1.307 

p-
value < 10-16 < 10-16 p-

value < 10-16 < 10-16 0.191 

 

b) Enrichment of genes with those containing a de novo LoF in ASD patients 
 

  Top 
Constrained Top RVIS Bustamante 

ASD de novo 
LoF 

Fold enrichment 2.282 1.904 0.836 
p-value 3.58x10-6 5.36x10-5 0.718 

 

Discussion 

We have developed a framework for evaluating excesses of de novo variants 

identified through exome sequencing. Even though this framework can be leveraged to 

evaluate excesses of variants study-wide and in gene sets, the key focus is to evaluate 

the significance for individual genes. Given the small number of observed de novo 

events per gene, simple case-control comparisons cannot achieve any meaningful level 
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of significance. For example, observing three de novo loss-of-function variants in a 

small gene in 1,000 case trios is perhaps quite compelling, especially if no such variants 

were identified in 1,000 control trios. However, a simple three to zero case/control 

comparison in this situation would yield no compelling statistical evidence (one-tailed p 

= 0.125). Incidence of such extremely rare events, however, can be evaluated if the 

expected rate of such events is known. Sequencing large numbers of control trios to 

gather empirical rate estimates on a per-gene basis that are accurate is infeasible and 

inefficient. The calibrated model and statistical approach described here can achieve a 

close approximation of this ideal. Our method, therefore, offers the ability to evaluate 

the rate of rare variation in individual genes in situations where burden tests would fail. 

Other groups have developed similar statistical frameworks11,18 – notably, the 

Epi4k consortium18 used the same base model we begin with3 to interpret event rates. 

Our model, however, has two primary strengths. First, our model of de novo mutation 

incorporates additional factors beyond sequence context that affect mutation rate. Both 

the depth of coverage – how many sequence reads were present on average – for each 

base and the regional divergence around the gene between humans and macaques 

independently and significantly improve the predictive value of our model (Materials and 

Methods). Second, given the high correlation between the number of rare synonymous 

variants in ESP and the probability of a synonymous mutation determined by our full 

model, we have a metric to evaluate the extent to which genes in the human genome 

show evidence of selective constraint. The list of 1,003 genes that we define as 

constrained contains an enrichment of genes known to cause severe human disease – 

an observation analogous to that recently made in using empirical comparison of 
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common and rare rates of functional variation to evaluate intolerance8. In fact, site count 

deficits and site frequency shifts each contribute independent information to the 

definition of constraint and can in principle be combined in a composite test. 

The results of our metric were compared to both the scores created by Petrovski 

and colleagues8 and loci identified as under negative selection by Bustamante et al 16 . 

Overall, our metric and the residual variation intolerance scores defined by the Petrovski 

worked similarly well, reinforcing the benefits that could come from combining the two 

approaches. It is unsurprising that these methods outperform the evolutionary ones on 

the specific matter of genes intolerant to heterozygous mutation. Evolutionary methods 

examining differences between polymorphism and fixed differences, which are more 

sensitive to weaker negative selection, require that mutations be tolerated well enough 

to become polymorphic in the first place. By contrast, approaches measuring the 

complete absence of variation will pick up the most strongly intolerant genes. 

Ideally, we can conceptualize defining two metrics of genic constraint, one based 

on missense variants and the other based on LoF variants. With only 6,503 individuals 

in ESP, we are underpowered to determine significant deviations for most genes with 

respect to loss-of-function variants. As sample size increases, our ability to calculate 

constraint improves. For example, if the sample size were to increase by an order of 

magnitude, we would be able to evaluate approximately 66% of genes using LoF 

variants. We therefore view the constrained gene list as a work in progress, to be 

updated when larger exome sequencing data sets become available. 

Applying our statistical framework to de novo variants from 1,078 ASD cases 

reveals that, while there is no global excess in de novo missense variants, there are 
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significantly more genes that contained multiple de novo missense variants than 

expected. We also see significant overlap between the list of genes with a de novo LoF 

in ASD cases and the set of constrained genes that we defined. In addition, there is a 

significant overlap between the genes with a de novo LoF variant and the targets of 

FMRP, as reported in Iossifov et al2. All of the significant signals in ASD – the global 

excess of de novo LoF variants, the excess of genes with multiple functional de novo 

variants, the overlap between the de novo LoF genes and both constrained genes and 

the targets of FMRP – are not found in the subset of ASD cases with IQ ≥ 100. The lack 

of signal in the IQ ≥ 100 indicates that genetic architecture among ASDs varies as a 

function of IQ. Overall, the probabilities of mutation defined by our full model and list of 

constrained genes can be used to critically evaluate the observed DNVs from 

sequencing studies and aid in the identification of variants and genes that play a 

significant role in disease. 

 

Materials and Methods 

De novo variant information 

Published de novo variants were collected for both autism spectrum disorders 

(ASD)2-6 and severe intellectual disability9,10. Updated de novo calls were provided from 

two of the ASD studies3,5. Details about sample collection, sequencing, and variant 

processing can be found in the separate studies. 
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Additional sequencing 

Exome sequencing of the additional families (n = 129) was performed at the 

Broad Institute. Exons were captured using the Agilent 38Mb SureSelect v2. After 

capture, a round of ligation-mediated PCR was performed to increase the quantity of 

DNA available for sequencing. All libraries were sequenced using an 

IlluminaHiSeq2000. Data were processed with Picard (http://picard. sourceforge.net/), 

which uses base quality-score recalibration and local realignment at known indels19 and 

BWA20 for mapping reads to hg19. SNPs were called using GATK for all trios jointly19,21. 

The variable sites that we have considered in analysis are restricted to those that pass 

GATK standard filters. From this set of variants, we identified putative de novo variants 

and validated them as previously described3. Autism Consortium samples (n = 78 trios) 

were collected in Boston under IRB approval from Harvard Medical School, 

Massachusetts General Hospital, Children’s Hospital Boston, Tufts-NEMC, Boston 

University Medical Center with ADI and ADOS assessment. Finnish autism samples (n 

= 51 trios) were collected under IRB approval at University of Helsinki with ADI and 

ADOS assessment and consented for autism research only. In both studies, all 

participants gave written informed consent, though as autism is classified as a 

childhood disorder, many subjects are children with informed consent provided by 

parents or guardians. 

 

Mutational model 

We wanted to create an accurate model of de novo mutation for each gene. The 

steps involved in the creation of the model are outlined in Figure 3.1. Briefly, we 
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determined the probability of a given base mutating into one of the three other possible 

bases as well as the coding impact of each possible mutation. We added probabilities 

across a gene to create per-gene probabilities of all mutation types under study: 

synonymous, missense, nonsense, and splice site. 

The first, and most important, step of making a model based on sequence 

context is to establish the mutability of a given base. Krawczak and colleagues 

determined that the best context for determining the mutability of a single base is to 

include both the 5’ and 3’ bases22. Following the lead of other groups, we took this 

trinucleotide context as sufficient for determining mutability23. We used 1000 Genomes 

intergenic regions that are orthologous between humans and chimps as the basis for 

our mutation rate table. Across the sequence, we tallied the number of observations for 

each of the 64 possible trinucleotides and, for each SNP, considered the chimp allele to 

be ancestral and determined the trinucleotide (XY1Z) to trinucleotide (XY2Z) change that 

occurred. To determine the probability of a given trinucleotide mutating, we divided the 

number of mutations in that trinucleotide context by the number of occurrences of the 

trinucleotide. This probability is adjusted by a proportionality constant, λ, that gives the 

mutation rate of that trinucleotide for a single generation. The mutation rate for the given 

nucleotide is then proportionally divided between the three possible trinucleotides to 

which it could mutate. In the end, we have a mutation rate table that contains the 

probability of any of the 192 possible mutations. 

We then use the mutation rate table and the sequence context to determine the 

per-gene probability of mutation based on the sequence of the gene. For a given base 

in the gene, the trinucleotide sequence context is determined. The probability of the 
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middle base mutating to one of the three other bases is queried in the mutation rate 

table and the type of change it would create is determined. The probability of mutation is 

added to a running total for the type of mutation it would cause. This is repeated for the 

two other possible mutations for every coding base in the gene as well as the bases in 

the conserved splice sites for all genes in the genome. In the end, there is a per-gene 

probability of each type of mutation under study: synonymous, missense, nonsense, 

and splice site. We determine the probability of a frameshift mutation by multiplying the 

probability of a nonsense mutation by 1.25, the relative rate of singleton frameshift to 

singleton nonsense mutations found in exome sequencing data from roughly 2,000 ASD 

cases and controls. 

 

Adjustments to the model 

In order to evaluate the predictive value of the model of de novo mutation 

probability, we extracted the number of synonymous singletons – seen only once in the 

data set – found in each gene from the National Heart, Lung and Blood Institute’s 

Exome Sequencing Project (ESP). The number of these singletons in each gene was 

correlated to both gene length and the probability of synonymous mutation determined 

by our model. While gene length alone showed a high correlation with the number of 

synonymous singletons (0.835), the probability of a synonymous mutation was 

significantly higher (0.854, p < 10-16) 
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Depth adjustment 

We first investigated the role that depth of coverage could have on the 

predictions of mutation rates. The ability to call a de novo event is dependent on how 

well sequenced the location of the event is. Therefore, bases that are not covered at all 

should not contribute to the overall probability of mutation for the gene. In order to 

account for differences in sequencing coverage, we created a way to determine what 

fraction of a base’s mutation probabilities should be added to the total for the gene 

based on the coverage. For each base, we looked up the number of trios in which all 

members had 10x coverage or greater and used that number to determine the 

appropriate discount. For bases with almost all trios having 10x coverage, the 

probability of mutation was not adjusted. However, as the number of trios with 10x 

coverage dropped, the probability of mutation was multiplied by an adjustment factor in 

between 0.9 and 1. To determine the endpoints of the adjustment, we compared the 

ratio of the observed number of synonymous singletons to the overall probability of a 

synonymous mutation for a high confidence set of bases to sets of bases with fewer 

trios passing at 10x. The depth adjusted probabilities of synonymous mutation showed 

a significantly greater correlation to the number of synonymous singletons in the ESP 

data set when compared to gene length alone (0.891, p < 10-16). 

 

Divergence adjustment 

Divergence between humans and other primates is known to correlate with the 

relative number of SNPs in large regions24. We postulated that local divergence rates 

could be added to the model as a regional term that captured the local deviation from 
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the base mutation rate. We used human-macaque divergence information to determine 

the divergence score – defined as the number of divergent sites over screened sites for 

the region containing the gene as well as 1 MB upstream and downstream – for each 

gene. We used linear models to determine the best equation to adjust the per-gene 

probabilities of mutation to incorporate the divergence score. In the end, the probability 

of mutation is adjusted slightly for the divergence score. For genes with no divergence 

information, the average divergence score is used. This, however, lead to a global 

increase in the predicted rate of mutation, so all probabilities of mutation were modified 

so that the sum of all probabilities after divergence adjustment was equal to the sum of 

probabilities from before the adjustment. This adjustment of predictions significantly 

increased the correlation with the synonymous singletons in the ESP data (0.910, p < 

10-16). 

 

Replication timing adjustment 

Replication timing has also been associated with overall mutation rate, with later 

replicating DNA having a higher rate of mutation25. We used replication timing Z scores 

from Koren et al to create a replication timing score for each gene26. The replication 

timing score is defined as the average replication timing score across the length of the 

gene. The replication timing score was used in linear models. It did significantly add to 

the mutational model (p = 0.005), but had a very slight overall effect. Further 

investigation revealed that the model was predicting more synonymous changes as the 

average replication Z score increased, and thereby was already accounting for the 



	

	 68 

adjustments that the replication score was adding. We did not include the replication 

timing adjustment in any further analyses. 

 

Using rare variants instead of singletons 

To increase power for our definition of constrained genes, we extracted the 

number of rare (minor allele frequency < 0.01%) synonymous variants found in each 

gene in the ESP data set. The correlation between the number of rare synonymous 

variants and the gene length was 0.880; the probability of synonymous mutation as 

defined by our full model and the number of rare synonymous variants was 0.940. Due 

to the stochastic nature of small counts in the ESP data set, the maximum correlation 

we could achieve is 0.975, indicating that our model captured ~66% of the remaining 

correlation that we could achieve above gene length. 

 

Definition of constrained genes 

A traditional approach to identifying genes that appear to be under constraint is 

to compare the ratio of nonsynonymous to synonymous substitutions (known as the 

Ka/Ks or dN/ds). Given that the correlation between the probability of a synonymous 

mutation and the number of rare synonymous variants in a gene was high, we wanted 

to use our model to predict the number of rare missense variants as a way to evaluate 

genes under constraint in an approach similar to the Ka/Ks. We determined the expected 

number of variants by fitting a linear model based on the probability of mutation and the 

observed number of synonymous variants. The autosomes were fit separately from the 
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X chromosome. The equations were applied using the probability of a missense 

mutation to create an expected number of rare missense variants in the ESP dataset. 

For both synonymous and missense variants, we created a signed Z score of the chi-

squared deviation of observation from expectation. Negative values indicate more 

variants than expected, while positive values are tied to fewer variants observed than 

expected. 

In order to define the set of genes that appeared to be under excessive 

constraint, we used three filters: (1) the predicted number of rare synonymous variants 

should be 5 or greater, (2) the observed number of rare synonymous variants should 

not be significantly lower than expectation (p > 0.001), and (3) the observed number of 

missense singletons should be significantly lower than expectation (p < 0.001). The 

reason for restricting to genes with 5 or more expected synonymous singletons is so 

that true deviations from expectation can be separated from deviations caused by 

sampling problems. Using these filters, we identified 1,003 genes—which represent 

roughly 5% of the genes in the genome—that appeared to be under excessive 

constraint. 

The genes in the constrained gene list are enriched for entries in the OMIM 

database, especially for entries associated with mental retardation and retinitis 

pigmentosa. 31% of the top 86 constrained genes – for which the observed number of 

missense rare variants is significant at p < 10-6 – have entries in the Online Mendelian 

Inheritance in Man (OMIM) database with dominant or de novo inheritance patterns. 

None of them have recessive inheritance entries in OMIM. A comparison set was made 

to 111 genes for which the missense observations fell very closely around prediction    
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(-0.01 < Z < 0.01). This set of genes had 2 OMIM entries (1.8%) with dominant or de 

novo inheritance and 11 (10%) with recessive inheritance. 

 

Removing potential false positive constrained genes 

In order to identify genes that appeared to be significantly constrained, we used 

our probabilities of mutation to predict the expected amount of synonymous and 

nonsynonymous variation in the NHLBI’s ESP data. Those genes that had the expected 

amount of synonymous variation, but were significantly (p < 0.001) deficient for 

missense variation were labeled as constrained. To ensure that genes were not 

nominated as being constrained erroneously, we excluded from all analyses 134 genes 

where the observed synonymous and nonsynonymous rates were both significantly 

elevated or significantly depressed (both p < 0.001). Upon inspection, this list contained 

a number of genes that contained an internal duplication (e.g. FLG), a nearby 

pseudogene (e.g. AHNAK2), and a number of cases where recent duplications and/or 

annotation errors have led to the same sequence being assigned to two genes (e.g. 

SLX1A and SLX1B). These are all scenarios where standard exome processing 

pipelines systematically under-call variation – reads are unmapped due to uncertainty of 

which gene to assign them to – or overcall false variants owing to read misplacement. 

This further suggests that a byproduct of this analysis framework is the identification of 

a residual set of challenging genes for current exome sequencing pipelines. 
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Evaluating the global excesses of de novo variants 

To compare the observed rate of de novo variants by mutation type to the 

expected rate, we summed the total probability of the given type of mutation and 

adjusted for the number of individuals in the study. Poisson distribution probabilities 

were invoked to determine the significance of the observation. 

 

Number of genes with multiple de novo variants 

Even though there is a global excess in LoF variants in the ASD cases, the signal 

was spread over many genes, making it hard to determine which specific genes may be 

contributing to the etiology of ASD. One way to prioritize genes would be to focus on 

those genes that contain multiple de novo variants; we wanted to evaluate whether 

there was an excess of such genes. To do so, we simulated de novo events by 

extracting each gene’s probability of mutation and then randomly drew the expected 

number of de novo variants based on weight (the probability). Using these simulations, 

we could determine an empirical p-value for the observed number of genes with multiple 

de novo variants. Results are presented in Table 3.1b for the unaffected siblings and 

ASD cases, and in Table 3.4b for intellectual disability cases. The “LoF+missense” 

category uses the combined probability of a LoF and missense mutation to evaluate 

genes that show two or more de novo mutations that are LoF, missense, or both. The 

lowest possible p-value is 0.001 since 1,000 simulations were run. 
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Single genes with multiple de novo variants 

Since we generated a per-gene probability of de novo mutation, we can directly 

evaluate genes that contain multiple de novo variants for significance. To do so, each 

gene’s probability of mutation is extracted and the predicted number of de novo variants 

by mutation type is determined by adjusting for the number of individuals in the study. 

The observed and expected numbers of de novo variants are compared and the 

Poisson is invoked to determine significance. We perform two comparisons: the LoF 

mutations alone and the LoF and missense mutations together. The first comparison is 

only made for those genes that contain multiple LoF de novo mutations; the second is 

performed for genes that have a combination of missense and LoF de novo mutations. 

Here, we have set the significance threshold at 10-6 since it conservatively accounts for 

both the number of genes under study and the number of tests using the Bonferroni 

correction. 

 

Global de novo mutation rates separated by IQ group 

Due to the significant role of de novo variation in intellectual disability, we wanted 

to investigate the overall rates of mutations for those ASD cases without intellectual 

impairments. Several intelligence tests were used to assess proband IQ across testing 

sites. The IQ analyses presented here include individuals whose IQ was measured 

using one of four standardized, commonly used tests to evaluate intelligence in children: 

the WISC-IV27, the WASI28, the WPPSI-III (preschool and primary school age)29, and 

the DAS (early years and school age)30. These tests provide comparable assessments 

of full scale intelligence, using both verbal and nonverbal assessments31. Children who 
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did not complete one of these four tests (n = 95, 10.0%) were treated as missing without 

attempt. Probands who are missing IQ without attempt include those who were given an 

IQ test that does not assess intelligence comparably (n = 78, 8.2%), specifically the 

Mullen Scales of Early Learning or the Leiter International performance scale, which are 

strongly weighted towards nonverbal assessment32,33. 

We had access to phenotypic information for 954 of the sequenced probands. Of 

these, 859 had taken an IQ test that could be compared to other tests. We removed 

those individuals that had a 30-point or greater difference between their verbal and 

nonverbal IQs to avoid inclusion of excess measurement error or learning disabilities. 

Verbal and nonverbal IQ were correlated strongly with each other (r = 0.70, p < 0.0001) 

as well as with the full scale IQ score (verbal IQ: r = 0.89, p < 0.0001; nonverbal IQ: r = 

0.93, p < 0.0001). We separated the remaining 801 probands into those with and 

without measured IQs above statistical average. It is common for individuals affected 

with ASDs to be unable to complete or be scored on an IQ test; this was the case for 

14.3% (n = 115) of probands for whom a test was attempted in the Simons sample. In 

the Simons Simplex Collection, probands who attempted to complete an eligible IQ test, 

but did receive a score, had significantly lower scores on the Vineland Scales of 

Adaptive Behavior (IQ test scored mean = 76.0, IQ test not scored mean = 60.3; t = 

15.9, p < 0.0001). A Vineland composite standard score of 60 reflects adaptive behavior 

(overall functioning and self care skills) scores nearly three standard deviations below 

the mean, or approximately in the lowest 1% of the general population, controlling for 

age. As the inability to complete an IQ test is associated with case severity, we were 

specifically interested in estimating the de novo rate among individuals with both IQ 
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above the general population mean and the behavioral capability to complete an IQ 

test—both indicators of higher functioning ASDs. The observed and expected de novo 

variants per exome are listed in Table 3.5a-b. The individuals with full scale IQ ≥ 100 

matched expectation for de novo variants per exome. Those individuals without 

measured IQs over 100, on the other hand, showed a global excess in de novo LoF 

variants. The results were similar when verbal and nonverbal IQ were analyzed 

separately (Table 3.5c). There was no excess of de novo LOF mutation in individuals 

with verbal (p = 0.19) or nonverbal (p = 0.48) IQ greater than 100. 

 

Overlap between gene sets of interest and de novo containing genes 

A number of gene sets have been proposed as relevant to autism or descriptive 

of an ASD biochemical pathway. Given the global excess of de novo LoF variants, we 

wanted to evaluate whether or not the list of genes that contain such mutations overlap 

more than expected with several of the proposed gene sets. 

In order to determine the significance of any observed overlap between a gene 

set of interest and the list of genes that contain de novo variants, we first determine the 

total probability of mutation for all genes on the gene set of interest. The set total is 

compared to the total probability of mutation for all genes. This percentage becomes the 

expected overlap of de novo variants with the gene set. Using the expected overlap and 

the number of variants on the de novo list, we evaluate the observed overlap between 

the de novo list and the gene set of interest by invoking the binomial. All p-values are 

one-tailed. The de novo variant list is broken down by mutation type (LoF, missense, 

and synonymous), as are the probabilities of mutation for the gene set of interest. 
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We evaluated the overlap between three de novo lists and four separate gene 

sets of interest (Figure 3.2). The gene sets of interest are a set of genes reported as 

disrupted in individuals with ASD or autistic features (Betancur)12, the set of targets of 

FMRP identified by Darnell and colleagues (FMRP)13, the set of significantly constrained 

genes that we defined earlier (Constrained), and the set of FMRP targets that are also 

constrained (Constrained FMRP). Significance was conservatively set at 0.01.  

 

Phenotype of individuals with de novo LoF mutations in FMRP targets 

Across the 1,078 individuals with ASD, there were 35 de novo LoF variants in 

targets of FMRP spread across 34 individuals (referred to as FMRP-I here)13. For those 

individuals for which we had access to phenotypic information, we extracted IQ and sex. 

We found that the FMRP-I group had significantly fewer individuals with IQ ≥ 100 than 

the rest of the sample set (Table 3.6a, Fisher’s exact p = 4.01x10-4). As before, 

individuals who started an IQ test but were not given an IQ score due to being severely 

impaired are included in the IQ < 100 group. To ensure that the association was not 

driven by those probands with attempted but missing IQ values, we also tested the 

association using only those individuals with estimated full scale IQ scores (Table 3.6b, 

Fisher’s exact p = 0.0021). The FMRP-I group also had a reduced male bias. Where the 

whole set of individuals is ~80% male, the FMRP-I group is only ~59%, which is a 

significant difference (Table 3.7, Chi-square p = 0.02). 
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Comparing the power of our constraint method to that of NS:S ratio 

The ratio of nonsynonymous (NS) substitutions per NS site to synonymous (S) 

substitutions per S site in a gene has been often used to determine if that gene has 

evidence of selection acting on it. A high NS:S ratio would indicate positive selection, 

while a low NS:S ratio would be evidence for purifying selection. Theoretically, our 

method of comparing observed NS variants to expectation should achieve greater 

statistical power than the NS:S comparison. To support this claim, we used the number 

of NS and S rare variants (minor allele frequency < 0.1%) found in the NHLBI’s Exome 

Sequencing Project (ESP) dataset and determined each gene’s deviation in terms of 

their ratio of S to NS sites compared to the genome-wide average. 

We removed the 134 genes where the observed synonymous and 

nonsynonymous rates were both significantly elevated or significantly depressed from 

expectation as determined by our model (both p < 0.001). These poorly sequenced or 

mapped genes – as mentioned in the main text – were also removed from our analysis 

to define constrained genes. We then identified the remaining genes that were as 

deviant from the genome-wide average as the constrained genes we defined with our 

model were from expectation (p < 0.001). Compared to the 1,003 genes defined as 

constrained by our model, this approach only identified 377 genes that showed 

evidence of purifying selection, 237 (~63%) of which were also identified as constrained 

by our method. Included in the 766 genes considered constrained only by our metric 

were a number of genes – the top ten of which include RYR2, KMT2A (MLL), KMT2D 

(MLL2), and SYNGAP1 – that have already been established as causes of autosomal or 

X-linked dominant forms of Mendelian disease (OMIM enrichment p = 5 x 10-4). 
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Since our metric was able to identify more genes that showed evidence of 

selective constraint, and especially since some of those are known to be causes of 

Mendelian disease, we conclude that our method of identifying constrained genes adds 

substantial power to the traditional approach and is an appropriate metric. 

 

Comparison of constrained genes to the RVIS metric 

Recently, Petrovski et al published a similar method to search for genes that 

appeared to be intolerant of mutations8. Their method evaluates the shift in the allele 

frequency spectrum of variants identified in genes in the ESP dataset to identify genes 

that have more rare variation. Specifically, the number of common nonsynonymous 

variants found in each gene was regressed against the total number of variants to 

determine the intolerance score. Genes with an unusually high ratio of rare to common 

variation are more likely to be intolerant of mutations and are assigned a lower residual 

variation intolerance score (RVIS). This approach is orthogonal to our metric of 

constraint since we search for a deficiency of rare nonsynonymous variation. 

We took the intersection between the two datasets to compare our metric with 

the scores provided in Petrovski et al8. This process eliminated some of the genes 

considered constrained by our metric, leaving 827 genes. Their score yielded a similar 

number of constrained genes (n = 842), which were defined as those genes with a 

residual variation intolerance score in the top 5%. 231 genes were considered 

constrained by both metrics, which is far greater than expected (0.25%, ~41 genes). 

Using a Wilcoxon rank-sum test, we found that the genes defined as constrained by our 

metric had significantly lower (more intolerant) RVIS values (p < 10-16). Similarly, the 
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genes with the top 5% RVIS had significantly higher constraint scores (Wilcoxon rank-

sum, p < 10-16). We found a correlation of -0.35 between the two scores of constraint, 

which is illustrated in Figure 3.4. 

 

Confirming the association between constraint and de novo variants 

The power to determine if a gene is significantly constrained relies on gene size. 

As mentioned above, genes where we predicted fewer than 5 rare synonymous variants 

had to be removed. In order to confirm that the association we found between constraint 

and the de novo LoF variants identified in ASD patients, we first investigated the 

relationship between constraint and the de novo variants found in unaffected 

individuals. As depicted in Figure 3.2a, we found no enrichment of de novo LoF 

variants from unaffected individuals in constrained genes. Additionally, we included 

gene length as a covariate while performing regressions of ASD de novo LoF genes on 

constraint and found that the association remained. We also took the largest 10% of 

genes and performed the regression again; constraint was still significant, but the gene 

length – when included as a covariate – showed no association. 

Our method of determining constraint generates the number of rare missense 

variants that are expected to be in each gene. As an alternative metric to constraint, we 

also evaluated the fraction of missense variation that was not seen, a metric that is 

completely independent of gene size. We found that, in a linear regression, the fraction 

of missing missense variation was significantly able to predict whether a gene was 

haploinsufficient (p = 2.13x10-12). 
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For our final analyses to confirm that our enrichment analysis was not biased 

towards bigger genes, we created a list of the largest 5% of genes and queried the de 

novo loss-of-function variants identified in unaffected individuals. We expect that there 

should be no significant relationship between de novo LoF variants in unaffected 

individuals and these large genes. When we use a simple logistic regression to explain 

the de novo LoF genes in unaffected individuals, we find an odds ratio (OR) of about 

5.5, which describes a highly significant enrichment of big genes. Our method of 

determining enrichment, however, accounts for the expected mutation rate of each gene 

– thereby inherently incorporating gene size – and shows this set of mutations is not 

actually “enriched” at all (p = 0.425; fold enrichment/OR = 1.1). These de novo LoF 

mutations in unaffected individuals are occurring in exactly the chance proportion they 

should be in larger genes. We therefore conclude that the enrichment analysis central to 

our interpretation of ASD events is not affected by gene lists being non-random with 

respect to size. 

 

Comparison of three different metrics of constraint 

Our metric is one way of searching for genes that appear to be relatively 

intolerant of mutations in the human population. One approach is the residual variation 

intolerance score (RVIS) created by Petrovski and colleagues8, which evaluates the 

relative excess of rare variants to common ones in genes. Since Petrovski et al did not 

define a list of intolerant genes in their paper, we defined such a list by taking the top 

5.5% most intolerant genes according to their metric. 5.5% was selected since that is 

the percentage of genes that we define as constrained using our metric. An additional 



	

	 80 

alternative comes from Bustamante et al, who used both fixed and polymorphic 

synonymous and nonsynonymous sites to find genes that appear to be affected by 

selection, including 813 loci that appeared to be under negative selection16. 

We sought to compare both our constraint score and list of constrained genes 

with the results of these other approaches. To do this, we focused on the ability to 

predict known haploinsufficient genes (as defined in OMIM) and the enrichment of these 

genes with de novo LoF mutations identified in ASD patients. Our results are 

summarized in Table 3.8. For the quantitative metrics (our constraint score and the 

RVIS metric), we performed a linear regression between haploinsufficient genes and the 

score with gene size as a covariate. While both metrics have significant predictive 

ability, our constraint score outperforms RVIS slightly (t-value = 10.011 for constraint,    

-9.561 for RVIS). For the list-based comparison, we used a logistic regression with gene 

length as a covariate. In this comparison, the top 5.5% intolerant genes according to 

RVIS had an odds ratio (OR) of ~5.5, while the constrained gene set that we defined 

had an OR of 4.9, both of which were significant. The genes identified by Bustamante 

and colleagues showed no significance (Table 3.8a). 

We also evaluated the fraction of these different sets of constrained genes that 

contained a de novo LoF in ASD cases. Our method, as explained above, determines 

the fraction of constrained genes that are expected to contain a de novo mutation by 

chance. We then evaluate the observed fraction and can determine both the fold 

enrichment and significance. When we evaluated the three previously mentioned lists of 

genes – our constrained, top 5.5% intolerant genes using RVIS8, and the loci identified 

by Bustamante16 – we found that our list of constrained genes had the greatest fold 
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enrichment of genes that contained a de novo LoF in ASD cases (p = 3.58x10-6; Table 

3.11b). The top 5.5% of genes identified using RVIS also performed well (fold 

enrichment of 1.9, p = 5.36x10-5), but the loci from Bustamante et al showed no 

significant enrichment. 
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Chapter 4 

Leveraging large reference populations to identify functionally constrained genes 
 

 

 

 

Work presented in this chapter will be published as part of: 

Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. 
Under review. 
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Abstract 

Large-scale exome sequencing efforts of reference populations have greatly 

improved both clinical and functional interpretation of genetic variation. We analyzed the 

variation identified in 60,706 individuals included in the Exome Aggregation Consortium 

(ExAC) dataset to identify genes under strong selective constraint. Of particular interest 

is the set of 3,230 genes that are significantly depleted of loss-of-function variation. 

These constrained genes are enriched for established haploinsufficient and dominant 

disease genes, and represent core biological processes (e.g. spliceosome and 

proteasome). However, only 28% have been associated with a human disease 

phenotype; those that have not yet been associated promise to be a fruitful set to further 

investigate both within the clinic and in functional studies. 

 

Introduction 

One of the major challenges within the field of human genetics is determining 

which variant, or set of variants, is associated to disease. High-throughput DNA 

sequencing technologies have aided this effort by allowing researchers to investigate 

nearly all single nucleotide and small insertion and deletion (indel) variants within an 

individual’s genome or exome (the 1% of the genome that codes for proteins). 

Unfortunately, each individual harbors tens of thousands of variants and examining 

each of these variants would be a long and laborious task. 

To make the task of associating variation to disease, it is critical to be able to 

prioritize variants and define a subset for further analysis. There are many variant-level 

prioritization tools1-3, but we have found that using gene’s intolerance of 
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nonsynonymous variation can also aid in variant interpretation4,5. Identifying these 

constrained genes depends on the availability of exome sequencing datasets of large 

reference populations. While both the 1000 Genomes Project6 and the National Heart, 

Lung and Blood Institute’s Exome Sequence Project7 publically released the protein-

coding variation from thousands of individuals (n = 2,504 and 6,503, respectively), the 

size of these datasets restricted researcher’s ability to identify genes that are intolerant 

of loss-of-function variation. 

Here, we describe using the Exome Aggregation Consortium (ExAC), which is an 

order of magnitude larger than previously released datasets (n = 60,706), to evaluate 

missense and loss-of-function constraint. 

 

Results 

The deep ascertainment of rare variation in the Exome Aggregation Consortium 

(ExAC) allows us to infer the extent of selection against variant categories on a per-

gene basis by examining the proportion of variation that is missing compared to 

expectations under random mutation. Conceptually similar approaches have been 

applied to smaller exome datasets4,5 but have been underpowered, particularly when 

analyzing the depletion of loss-of-function (LoF) variants. We compared the observed 

number of rare (minor allele frequency [MAF] < 0.1%) variants per gene to an expected 

number derived from a selection neutral, sequence-context based mutational model5 

(Chapter 3). The model performs well in predicting the number of synonymous variants, 

which should be under minimal selection, per gene (r = 0.98; Figure 4.1). 
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a) Synonymous     b) Missense 

 
 
c) Loss-of-function 

 
 
Figure 4.1. The correlation between observed and expected variant counts for 
synonymous (a), missense (b), and loss-of-function (c) variants. The line shows a 
perfect correlation (slope = 1). Axes have been trimmed to remove TTN. 
 

We quantified deviation from expectation with a Z score5, which for synonymous 

variants is centered at zero, but is significantly shifted towards higher values (greater 

constraint) for both missense and LoF (Wilcoxon p < 10-50 for both; Figure 4.2). The 

genes on the X chromosome are significantly more constrained than those on the 
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autosomes for missense (p < 10-7) and loss-of-function (p < 10-50). The high correlation 

between the observed and expected number of synonymous variants on the X 

chromosome (r = 0.97 versus 0.98 for autosomes) indicates that this difference in 

constraint is not due to a calibration issue. To reduce confounding by coding sequence 

length for LoFs, we developed an expectation-maximization algorithm (see Materials 

and Methods) using the observed and expected LoF counts within each gene to 

separate genes into three categories: null (tolerant of homozygous LoFs), recessive 

(tolerant only of heterozygous LoFs), and haploinsufficient (intolerant of homozygous 

LoFs). This metric – the probability of being loss-of-function intolerant (pLI) – separates 

genes of sufficient length into LoF intolerant (pLI ≥ 0.9, n = 3,230) or LoF tolerant (pLI ≤ 

0.1, n = 10,374) categories. pLI is less correlated with coding sequence length (r = 0.17 

as compared to 0.57 for the LoF Z score), outperforms the LoF Z score as an 

intolerance metric (discussed more in Materials and Methods), and reveals the 

expected contrast between gene lists (Figure 4.3). 

Additionally, pLI is positively correlated with a gene product’s number of physical 

interaction partners (p < 10-41). The most constrained pathways (highest median pLI for 

the genes in the pathway) are core biological processes (spliceosome, ribosome, and 

proteasome components; Kolmogorov-Smirnov [KS] test p < 10-6 for all) while olfactory 

receptors are among the least constrained pathways (KS test p < 10-16), demonstrated 

in Figure 4.3 and consistent with previous work8-12. 
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Figure 4.2. The distribution of Z scores for synonymous (gray), missense (orange), and 
loss-of-function (red) for 18,225 genes. This measure of departure of number of variants 
from expectation is normally distributed for synonymous variants, but right-shifted 
(higher constraint) for missense and loss-of-function variants, indicating that more 
genes are intolerant to these classes of variation. 

 

Critically, we note that LoF-intolerant genes include virtually all known severe 

haploinsufficient human disease genes (Figure 4.3), but that 72% of these genes have 

not yet been assigned a human disease phenotype despite clear evidence for extreme 

selective constraint. Many of these genes (79%) specifically do not have a disease-

associated variant in ClinVar13 (a database that collects evidence for pathogenicity of 

variants). We note that this extreme constraint does not necessarily reflect a lethal 

disease, but is likely to point to genes where heterozygous loss-of-function confers 

some non-trivial survival or reproductive disadvantage. 

 

−5 0 5 10

Z Score

Synonymous
Missense
Loss−of−Function



	

	 92 

 
 
Figure 4.3. The proportion of genes in gene sets that are very likely intolerant of loss-of-
function variation. pLI close to one indicates extreme intolerance to loss-of-function 
variation; we therefore take pLI ≥ 0.9 as the cut-off for extreme loss-of-function 
intolerance. The black error bars indicate a 95% confidence interval. olfactory = 
olfactory receptor genes (n = 371); recessive = recessive disease genes from Blekhman 
and Berg (n = 1,183); all (n = 18,225); dominant = dominant disease genes from 
Blekhman and Berg (n = 709); mouse hom = genes that are lethal in mice when both 
copies are knocked out (n = 2,760); essential = genes that are essential in cell culture 
as curated by Hart et al 2014 (n = 285); mouse het = genes that are lethal in mice when 
one copy is knocked out (n = 387); mild HI = haploinsufficient genes that cause a mild 
disease (n = 59); mouse cond = genes that are lethal in mice when conditionally 
knocked out in adult mice (n = 402); moderate HI = haploinsufficient genes that cause 
moderately severe disease (n = 77); severe HI = haploinsufficient genes that cause 
severe disease (n = 44). 
 

fraction of genes with pLI >= 0.9
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

olfactory

recessive

all

dominant

mouse hom

essential

mouse het

mild HI

mouse cond

moderate HI

severe HI



	

	 93 

The most highly constrained missense (top 25% missense Z scores) and LoF 

(pLI ≥0.9) genes show higher expression levels and broader tissue expression than the 

least constrained genes14 (Figure 4.4). These most highly constrained genes are also 

depleted for eQTLs (p < 10-9 for missense and LoF; Figure 4.5a), yet are enriched 

within genome-wide significant trait-associated loci (χ2 p < 10-14, Figure 4.5b). 

Intuitively, genes intolerant of LoF variation are dosage sensitive: natural selection does 

not tolerate a 50% deficit in expression due to the loss of single allele. Unsurprisingly, 

these genes are also depleted of common genetic variants that have a large enough 

effect on expression to be detected as eQTLs with current limited sample sizes. 

However, smaller changes in the expression of these genes, through weaker eQTLs or 

functional variants, are more likely to contribute to medically relevant phenotypes. 
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a) Median gene expression across all tissues for bins of constraint 
 

 
 
b) Number of tissues where the gene is expressed for bins of constraint 
 

 
 
Figure 4.4. Expression patterns of genes for bins of constraint. For synonymous and 
missense Z, the bins are: bottom quartile (< 25%), two middle quartiles grouped 
together, and top quartile (> 75%). For pLI: pLI ≤ 0.1, 0.1 < pLI < 0.9, and pLI ≥ 0.9. 
Note pLI is the metric used for loss-of-function (LoF) intolerance. (a) The median gene 
expression, in log2(RPKM), across all tissues for bins of constraint. (b) The relationship 
between constraint and the number of tissues in which a gene is expressed at an RPKM 
> 0.1. Synonymous Z scores show no correlation with the number of tissues in which a 
gene is expressed, but the least missense- and LoF-constrained genes tend to be 
expressed in fewer tissues. Thick black bars indicate the first to third quartiles, with the 
white circle marking the median. 
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a) Enrichment of eQTLs    b) Enrichment of GWAS loci 
 

 
 
Figure 4.5. Signals of eQTL and GWAS loci enrichment for constraint bins. For 
synonymous and missense Z, the bins are: bottom quartile (< 25%), two middle 
quartiles grouped together, and top quartile (> 75%). For pLI: pLI ≤ 0.1, 0.1 < pLI < 0.9, 
and pLI ≥ 0.9. (a) The proportion of eGenes (a gene with a significant eQTL at a false 
discovery rate [FDR] of 5%) found in whole blood samples from GTEx14 for each 
constraint bin. Highly missense- and LoF-constrained genes are less likely to have 
eQTLs as the average gene. No relationship between synonymous genes and eQTLs is 
observed. (b) Enriched of GWAS loci downloaded from the Catalog15 for each constraint 
bin. Highly missense- and LoF-constrained genes are more likely to be adjacent to 
GWAS signals than the average gene, but no relationship is seen for synonymous Z 
bins. Shaded regions around the lines indicate 95% confidence intervals. 
 

Discussion 

The large sample size of the ExAC dataset provided the opportunity to analyze 

the sensitivity of human genes to nonsynonymous variation. While previous sample 

sizes have been adequately powered for the assessment of gene-level intolerance to 

missense variation4,5, ExAC provides for the first time sufficient power to investigate 

genic intolerance to loss-of-function (LoF) variants. 

We created pLI—the probability of being loss-of-function intolerant—to identify 

highly LoF constrained genes and highlighted 3,230 that were significantly depleted of 
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LoF variation. Comparing pLI to the LoF Z score revealed that pLI was better able to 

predict haploinsufficient genes and had a greater enrichment of de novo LoFs identified 

in 3,982 cases with an autism spectrum disorder16,17. We also compared pLI to a 

previous metric developed to predict haploinsufficient genes called p(HI)18. Our metric 

was able to identify twice as many genes at same cut off as p(HI)—indicating increased 

sensitivity of our metric—but a larger proportion of the genes in the high p(HI) tail are 

considered likely haploinsufficient by both metrics. The subset of genes that are 

considered likely haploinsufficient (≥ 0.8) by both metrics shows the greatest enrichment 

of ClinGen haploinsufficient genes when compared to genes uniquely flagged by each 

metric. Therefore, there would be benefit in combining the two metrics in a future 

measure of haploinsufficiency. 

The 3,230 severely LoF constrained genes represent core biological processes 

and include many dominant and haploinsufficient disease genes. The established 

disease genes, however, do not explain the majority of the highly LoF-intolerant genes; 

only 28% of genes with a pLI ≥ 0.9 have a human disease phenotype listed in OMIM or 

ClinVar13. Further investigation will likely reveal genes that, when disrupted, cause 

embryonic lethality as well as additional disease genes that have yet to be tied to 

specific phenotypes. These results suggest that this set of genes will be able to aid in 

the interpretation of genetic variation identified in patients. 
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Materials and Methods 

Establishing the expected number of variants per gene 

Probabilities of a mutation 

Our metrics to evaluate a gene’s intolerance to variation—their level of 

constraint—rely on comparing the observed variant counts to an expectation. In order to 

determine the expected number of variants per gene, we modified a previous method 

described in detail in Chapter 3. We used the mutation rate table created for Samocha 

et al5 to determine the probability of mutation, split by mutational class (synonymous, 

missense, nonsense, and splice site), for each exon in the canonical transcript. As 

before, we adjusted the probabilities of mutation for regional divergence between 

humans and macaques. Two major changes were made between the previous version 

of the method and the one used in this paper: (1) we now used GENCODE v19 

annotations for transcripts instead of Refseq and (2) the expected number of variants, 

and not the probability of mutation, is adjusted for depth of sequencing coverage (see 

below). Here, we focused on the canonical transcript as defined by Ensembl v75 for 

each protein-coding gene and drop all transcripts that do not begin with a methionine, 

end with a stop codon, or whose length are not divisible by three. After all of these 

filters, there were 19,620 canonical transcripts that are used in all following analyses. 

 

Determining the depth of coverage correction 

We used the Exome Aggregation Consortium (ExAC; n = 60,706) dataset and 

extracted the number of rare (minor allele frequency < 0.1%) single nucleotide variants 

for every exon of the canonical transcripts. These variants were assigned functional 
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classes (synonymous, missense, nonsense, and splice site) based on the amino acid 

change or position in the splice site. We then needed a way to account for the depth of 

sequencing coverage since regions that are poorly sequenced will, by definition, have 

fewer variants than expected. To do this, we determined the median depth of coverage 

for each exon. Given that synonymous variants are most likely to be free of extreme 

negative selection, we focused on those variants. Using only those exons with a median 

depth ≥ 50, which we consider to be well sequenced, we regressed the number of rare 

synonymous variants on the probability of a synonymous mutation to determine the 

appropriate formula to predict the number of expected synonymous variants. This 

formula was applied to all exons (regardless of depth). To find the appropriate way to 

correct for sequencing coverage, we grouped exons by depth (bins of 2) and 

determined the sums of all observed and expected synonymous variants in these 

exons. The sum of observed synonymous variants divided by the sum of expected 

variants had a logarithmic relationship between depth bins of 0 and 50, where it then 

plateaued at ~1 (Figure 4.6). We fit the curve to determine the appropriate depth of 

coverage correction for exons with a median depth between 1 and 50. 

 !"#$ℎ !"#$%&'" !"#$% =  
!"#!$%!& !"#$%,!"#$%& !"#$ℎ ≥ 50

!"#!$%!& !"#$% ∗ (0.089 + 0.217 ∗ ln !"#$%& !"#$ℎ , 1 ≤  !"#$%& !"#$ℎ < 50 
0.089 ∗ !"#!$%!& !"#$%,!"#$%& !"#$ℎ < 1
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Figure 4.6. The relationship between the median depth of exons and the sum of all 
observed synonymous variants in those exons divided by the sum of all expected 
synonymous variants. 
 

Expected number of variants 

To determine the depth-corrected expected number of variants per exon, we 

used those exons with a median depth ≥ 50 and regressed the number of rare 

synonymous variants on the probability of a synonymous mutation. These regressions 

were done separately for the autosomes with the pseudo-autosomal regions (PAR) of 

the X chromosome, the non-PAR regions of the X chromosome, and the Y 

chromosome. The resulting formulas were used to predict the depth-uncorrected 

expected number of synonymous, missense, and loss-of-function variants (LoFs; 

nonsense and splice site) variants for all exons. The correlation between the observed 

and depth-uncorrected expected number of synonymous variants per exon was 0.8360. 
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We then corrected these expected numbers by the above equation and observed an 

increased correlation between observed and depth-corrected expected synonymous 

variants (r = 0.9283). Note that from this point forward, the expected number of variants 

always refers to the depth-corrected counts. 

 

Creation of the constraint metric 

Determining Z scores of the deviation of observation from expectation 

We created a signed Z score to establish the significance of the deviation of 

observed variant counts per gene from expectation as in Chapter 3 with minor 

modifications. To start, we sum all exon level variant counts across canonical 

transcripts. Here, the observed count is the number of unique variants with a VQSLOD 

≥ -2.632 and 123 or fewer alternative alleles (minor allele frequency cut off of ~0.1%). If 

an exon had a median depth < 1, the variant counts for that exon were not included in 

the total for the transcript. We then removed all transcripts where no variants were 

observed. For the remaining 18,466 transcripts, we calculated the chi-squared value for 

the deviation of observation from expectation for each mutational class: synonymous, 

missense, and loss-of-function (LoF). The square root of these values is multiplied by -1 

if the number of observed variants is greater than expectation (or 1 if observed counts 

are smaller than expected) to create the Z score. 

A critical next step is to correct the scores so that the synonymous Z scores 

followed an approximately normal distribution. For the synonymous Z scores, we used a 

subset of transcripts whose synonymous Z scores fell in between -5 and 5. All 

synonymous Z scores were divided by the standard deviation of this outlier-removed 
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subset to create the corrected Z scores. A slightly different approach was used for 

missense and LoF Z scores. We took all transcripts with a missense Z score between -5 

and 0 and combined them with those same Z scores multiplied by -1 (to create a 

mirrored distribution). All missense Z scores were divided by the standard deviation of 

the mirrored distribution to create the corrected missense Z scores. The same 

procedure was applied to the LoF Z scores. 

 

Removing outliers 

We then used these corrected Z scores to define outlier transcripts—specifically 

those with significantly elevated synonymous and missense counts or significantly 

depleted synonymous and missense counts. These outliers were defined as transcripts 

with a synonymous Z < -3.71 and a missense Z < -3.09 or transcripts with a 

synonymous Z > 3.71 and a missense Z > 3.09. These filters removed a total of 241 

transcripts, leaving 18,225 for all further analyses. The distribution of the synonymous, 

missense, and LoF Z scores are depicted in Figure 4.2. Note that a Z score of ~3.09 is 

equivalent to a p-value of 10-3 and is considered the significance threshold when 

splitting transcripts into constrained and unconstrained classes. 

 

Correlation of observed and expected counts 

For the set of 18,225 cleaned transcripts, the correlation between the number of 

observed rare (minor allele frequency < 0.1%) synonymous variants and the expected 

number of variants given the above model is 0.9776. This correlation is higher than 

simply regressing the observed synonymous variants against number of coding bases 
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in the gene (r = 0.9201), or the probability of a synonymous mutation (r = 0.9349). This 

relationship between observed and expected mutation counts can be seen for 

synonymous, missense, and LoF variants in Figure 4.1. 

 
Power of the Z score analyses 

To achieve a Z score of 3.09 (a p-value equivalent of 10-3), the number of 

expected variants would need to be a minimum of 10. Following this criterion, 99.5% of 

transcripts could be evaluated for missense constraint. However, only 11,437 transcripts 

(62.8%) were mutable enough to have 10 or more expected LoFs in the ExAC dataset 

(see below). 

 

Z score distributions for gene lists 

We next investigated the synonymous, missense, and LoF Z score distributions 

for the following gene lists: autosomal recessive19,20, autosomal dominant19,20, essential 

in cell culture21, ClinGen haploinsufficient, FMRP interactors22, and olfactory 

receptors23. For the synonymous Z scores (Figure 4.7), most gene lists match the 

distribution of the full set of canonical transcripts (median Z = 0.05). The only notable 

exception is the list of olfactory receptors, which show 118% of the expected 

synonymous variation (Wilcoxon p < 10-46). 
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Figure 4.7. Distribution of synonymous Z scores for gene sets. Wilcoxon p-value for 
difference from the full distribution, the number of genes in the set, and the percentage 
of expected variation observed are reported on the right. 
 

Across all canonical transcripts, ~89% of all missense variation is observed and 

the median missense Z score is 0.51. As a note, higher (more positive) Z scores 

indicate increased selective constraint, while negative Z scores are given for transcripts 

where more variation was seen than expected. All of the gene sets tested significantly 

differ from the overall distribution (Figure 4.8) with the recessive genes and olfactory 

receptors showing slightly lower missense Z scores. The rest of the gene sets have 

significantly higher missense Z scores (Wilcoxon p < 10-28). 
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Figure 4.8. Distribution of missense Z scores for gene sets. Wilcoxon p-value for 
difference from the full distribution, the number of genes in the set, and the percentage 
of expected variation observed are reported on the right. 
 

The LoF Z scores have the most skewed distributions (Figure 4.9). Overall, only 

39% of the expected loss-of-function variation is observed, giving the full set of 

canonical transcripts a median LoF Z score of 1.97. The Z scores for the autosomal 

recessive genes match the overall distribution fairly closely (Wilcoxon p = 0.02, median 

= 2.09). The olfactory receptors, as before, have significantly lower LoF Z scores 

(Wilcoxon p < 10-50, median = 0.16), but unlike with synonymous and missense do not 

have more loss-of-function variation than expected (95% observed). 
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Figure 4.9. Distribution of loss-of-function Z scores for gene sets. Wilcoxon p-value for 
difference from the full distribution, the number of genes in the set, and the percentage 
of expected variation observed are reported on the right. 
 

Creation of a new loss-of-function constraint score 

The LoF Z score is correlated with gene length 

The Z scores were created to evaluate the significance of the deviation of 

observed counts from expectation. Given this, it is sensitive to differences in power. For 

example, a gene with 0 observed variants would require ~10-11 expected variants to 

pass a significance threshold of 10-3 (Z score of 3.09). The expected number of variants 

per gene is based on the length and mutability of the transcript. Since the probability of 

having a loss-of-function mutation is small (roughly an order of magnitude less than the 

probability of a missense mutation), only 63% of the canonical transcripts are expected 

to have 10 or more LoFs in the ExAC dataset (59% if expecting 11 LoFs). 
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Due to this reliance on mutability, it is unsurprising that the LoF Z score is 

correlated with the coding length of the transcript (r = 0.5697; Figure 4.10a). This 

correlation is not seen for the missense Z score (r = 0.0566; Figure 4.10b). Therefore, 

larger transcripts will have more significant LoF deviations (and Z scores) than smaller 

transcripts and some transcripts that are truly intolerant of loss-of-function variation will 

be too small to achieve statistical significance. These results motivated the search for a 

better metric to capture LoF constraint (discussed below). 
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a) Loss-of-function 

 
 
b) Missense 
 

 
 
Figure 4.10. The correlation between the length of the gene and the Z score. (a) The 
correlation for the loss-of-function Z score. The Pearson’s r between the two is 0.5697. 
(b) The correlation for the missense Z score. The Pearson’s r between the two is 
0.0566. The black line shows the linear relationship. Axes have been trimmed to 
remove TTN. 
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Evaluating the ratio of missing loss-of-function variation 

A natural metric to evaluate intolerance to loss-of-function variation is the amount 

of expected variation that was not observed. Truly intolerant transcripts should be 

missing most of the expected variation, which is independent of the length of the 

transcript. We defined the ratio of missing variation as one minus the quotient of the 

observed counts divided by the expected counts. 

The correlation between the length of the transcript and the ratio of missing loss-

of-function variation is 0.1561 (Figure 4.11). The distributions of the ratio of missing 

synonymous, missense, and loss-of-function variation are depicted in Figure 4.12a. The 

majority of transcripts fall between 0 and 1 for the ratio of missing LoF variation, where 

1 means the transcript is completely devoid of LoF variation. Both the synonymous and 

missense distributions shift towards transcripts having more of their expected variation. 

 

 
 

Figure 4.11. The relationship between gene length and the ratio of missing loss-of-
function variation. The Pearson’s r between the two is 0.1561. The x-axis was trimmed 
to remove TTN and the y-axis was cut at -1.5 (out of -4) to show pattern of the data. 
 



	

	 109 

a) Distribution of the ratio of missing expected variation for synonymous, missense, and 
loss-of-function 
 

 
 

b) The ratio of missing loss-of-function variation for gene lists 
 

 
 

Figure 4.12. Distributions of the ratio of missing variation. Note that 1 means there were 
no variants observed and negative values indicate more variation observed than 
expected. (a) The distribution of the ratio of missing expected variation for synonymous, 
missense, and loss-of-function. The x-axis has been trimmed at -8 (out of -18) to 
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Figure 4.12 (Continued) highlight the patterns of the data. (b) The ratio of missing loss-
of-function variation for gene sets. The median ratio of missing loss-of-function variation 
for all genes is indicated by the dashed red line. The x-axis has been trimmed at -2 (out 
of -5) to highlight the patterns of the data. 
 

The ratio of missing LoF variation is depicted for the gene lists used above in 

Figure 4.12b. All gene sets are significantly different from the set of all canonical 

transcripts (referred to as “All genes” in the figure; Wilcoxon p < 10-10 for all). Autosomal 

recessive genes and olfactory receptors have slightly more of their expected LoF 

variation than the set of all transcripts. The rest of the gene sets are significantly more 

depleted for the expected LoF variation than the full set of transcripts. The most striking 

signal comes from the haploinsufficient genes, none of which have more LoF variation 

than expected. 

 

Creation of pLI 

One of the main goals of this work was to identify genes that are intolerant of 

loss-of-function variation. Given the continuous nature of the ratio of missing loss-of-

function variation, it is slightly challenging to do this. To address this challenge, we 

estimated the probability of being loss-of-function intolerant (pLI) using the expectation-

maximization (EM) algorithm. 

The underlying premise of this analysis is to assign genes to one of three natural 

categories with respect to sensitivity to loss-of-function variation: null (where loss-of-

function variation – heterozygous or homozygous - is completely tolerated by natural 

selection), recessive (where heterozygous LoFs are tolerated but homozygous LoFs are 

not), and haploinsufficient (where heterozygous LoFs are not tolerated). We assume 
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tolerant (null) genes would have the expected amount of LoF variation and then took the 

empirical mean observed/expected rate of LoF variation for recessive disease genes 

(0.463) and severe haploinsufficient genes (0.089) to represent the average outcome of 

the homozygous and heterozygous intolerant scenarios respectively. These values (1.0, 

0.463, 0.089) are then used as a three-state model to which we fit the 

observed/expected LoF variant rate of each gene via the following analysis. 

Let ! ∶= (!!"## ,!!"# ,!!") represent the proportion of all genes that fall into each 

of the three proposed categories: null, recessive, and haploinsufficient. 

Let λNull, λRec, and λHI denote the expected amount of loss-of-function depletion in 

each of the three categories. Based on the observed depletion of LoF variation in the 

autosomal recessive19,20 and ClinGen dosage sensitivity gene sets, we use: 

	 λNull	=	1	

	 λRec	=	0.463	

	 λHI	=	0.089	

For each gene i, we model the observed data (LoF counts) as a function of the 

unobserved class labels (Zi) as follows: 

 !!  | ! ~ !"#(!!"## ,!!"# ,!!") 

 !"#!  | !!  ~ !"#$(!!!!) 

Here, LoFi represents the observed number of LoFs in gene i and N is sample 

size, such that !!!! is the expected number of loss-of-function variants in a gene 

belonging to class Zi in the ExAC data. Our goal is to find the maximum-likelihood 

estimate (MLE) for π (the mixing weights of the three gene classes), and to use this 
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estimate to obtain an Empirical Bayes maximum a posteriori (MAP) estimate for Zi – the 

probability of gene assignment to each category – for all genes i=1…M.  

We use an expectation-maximization (EM) algorithm to find the MLE for π and Zi, 

treating π as the parameters and the Zi as the latent variables. We initialize the EM 

algorithm by setting !! = (1 3 , 1 3 , 1 3). 

In the E-step, we evaluate the distribution of the latent variables (Zi) given the 

values of the parameters (π) from the previous iteration. The E-step is 

! !!  | !! , !"#! = !"#$ !"#!   !!!!)!!
!"#$ !"#!   !!!!)!!!

,	

where !"#$ denotes the Poisson likelihood. In the M-step, we update the parameters π 

with a new expectation taken under the distribution of the latent variables (Zi) computed 

in the M step. The update is 

!!"# ∶=  ! !!  | !"#!,!!"# /!"#$#%
!

 

We repeat these steps until the convergence criteria are met (!!" changes by 

less than 0.001 from one iteration to the next). 

When the EM has converged, the final mixing weights are used to determine 

each gene’s probability of belonging to each of the categories (null, recessive, 

haploinsufficient). 

 !!,!"## = !"#$ !"#!   !"!"##) 

 !!,!"# = !"#$ !"#!  !"!"#) 

 !!,!" = !"#$ !"#!   !"!") 
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The final metric, pLI (the probability of being loss-of-function intolerant): 

!"# = !!,!"
!!
	

The closer pLI is to 1, the more likely the transcript is loss-of-function intolerant. 

The overall distribution of pLI is fairly bimodal, with most genes looking either tolerant or 

intolerant of loss-of-function variation (Figure 4.13a, right panel). Additionally, pLI is only 

modestly correlated with transcript length (r = 0.1668; Figure 4.13b). However, we find 

that the most highly LoF-intolerant genes (pLI ≥ 0.9) are significantly longer than all 

genes (Wilcoxon p < 10-50; Figure 4.14a). The least intolerant genes are also 

significantly—but to a lesser extent—larger than all genes (Wilcoxon p < 10-3; Figure 

4.14b). 
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a) Distributions of pNull, pRec, and pLI 
 

 
 

b) Relationship between transcript coding length and pLI 
 

 
 

Figure 4.13. Properties of pNull, pRec, and pLI. (a) The distribution of pNull, pRec, and 
pLI across all transcripts. The distribution is roughly bimodal for each. (b) The 
relationship between pLI and the number of coding bases in each gene. The Pearson’s 
r is 0.1668. 
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a) Highly loss-of-function intolerant genes (pLI ≥ 0.9) 
 

 
 
b) Least loss-of-function intolerant genes (pLI ≤ 0.1) 

 

 
 

Figure 4.14. The distribution of gene length (bp) for all genes and those genes with high 
and low pLI values versus all genes. (a) The highly LoF intolerant genes (pLI ≥ 0.9) are 
significantly longer than all genes (Wilcoxon p < 10-50). (b) The least LoF intolerant 
genes (pLI ≤ 0.1) are slightly significantly longer than all genes (Wilcoxon p = 5 x 10-4). 

 

0 1000 2000 3000 4000 5000 6000

Gene length (bp)

All genes
pLI >= 0.9

0 1000 2000 3000 4000 5000 6000

Gene length (bp)

All genes
pLI <= 0.1



	

	 116 

In order to additionally confirm that the pLI metric was free of confounding with 

gene length, we compare the gene size distribution of genes with a pLI ≥ 0.99 versus 

genes that had the pLI equivalent for falling into the recessive category (pRec) ≥ 0.99. 

pRec is determined by the equation below: 

!"#$ = !!,!"#
!!
	

We find no significant difference in the distribution of gene length between genes 

with pLI ≥ 0.99 (n = 1,803) and genes with pRec ≥ 0.99 (n = 1,145; p = 0.3032; depicted 

in Figure 4.15). 

 

 
 
Figure 4.15.  The distribution of gene length for high pLI and pRec genes. There is no 
significant difference between gene length (in base pairs [bp]) for genes with pLI ≥ 0.99 
or pRec ≥ 0.99 (p = 0.3032). 
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We also show that longer genes are, in general, more depleted of LoF variation 

(observed/expected), which can explain the enrichment of long genes in the set of 

genes with pLI ≥ 0.9. There is a relationship between deciles of gene length (bins of 

increasing gene length) and the observed depletion of LoFs in that bin: longer genes 

(deciles closer to 1) have a significantly lower rate of observed/expected (p < 10-50; 

Figure 4.16). 

 

 
 
Figure 4.16. The relationship between deciles of gene length and the amount of 
expected variation observed. Longer genes (higher decile numbers) have a significantly 
lower rate of observed/expected loss-of-function (LoF) variation (p < 10-50). 
 

Given that the X chromosome is hemizygous in males, we expect that genes on 

the X would be more constrained than those on autosomes. As expected, we find the 
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the autosomes for missense and loss-of-function (synonymous p = 0.0223; missense p 
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= 4.43x10-8; loss-of-function p = 2.50x10-75). The high correlation between the observed 

and expected number of synonymous variants on the X chromosome (r = 0.9677 vs 

0.9777 for autosomes) indicates that this difference in constraint is not due to a 

calibration issue. 

We find that 3,230 (17.7%) of genes are confidently considered extremely loss-

of-function intolerant since their pLI is 0.9 or greater. Similarly, there are 3,463 (19.0%) 

and 1,226 (6.7%) genes with pRec or pNull ≥ 0.9, respectively. pRec and pNull also 

show fairly bimodal distributions (Figure 4.13, middle and left panels, respectively). As 

a warning, while we consider pLI to be a valuable metric to identify genes that appear 

haploinsufficient, we caution against using pRec as a similar metric for recessive 

disease genes. An appropriate recessive disease gene metric would benefit from 

including information about the site frequency spectrum of variants observed in the 

gene, among other properties. 

 

Comparison to a previous haploinsufficiency metric: p(HI) 

Our metric to evaluate loss-of-function intolerance was designed to identify 

genes that are intolerant of heterozygous loss-of-function variants, which would mean 

that these genes are likely acting via haploinsufficiency. Previously, Huang et al (2010) 

designed p(HI)—the probability of being haploinsufficient18—to determine how likely 

each gene was to be haploinsufficient. Huang and colleagues made this metric by using 

properties of established haploinsufficient and haplosufficient genes to train a predictive 

model. The properties included in the final model were “dN/dS between human and 
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macaque, promoter sequence, embryonic expression and network proximity to known 

HI [haploinsufficient] genes”18. 

In order to compare pLI and Huang’s p(HI), we took the 18,064 genes that had 

values for both metrics. Since p(HI) was trained on a set of haploinsufficient genes, we 

removed 64 genes that were part of their training data set and considered to be 

haploinsufficient by ClinGen’s Dosage Sensitivity Map, which left 18,000 genes for 

analysis. While there are 3,175 genes in this set with pLI ≥ 0.9, there are only 613 with 

p(HI) ≥ 0.9. For this reason, we dropped the cut-off to 0.8, giving 3,878 genes for pLI 

and 1,061 for p(HI). 

Within the 18,000 genes, 148 are considered haploinsufficient by ClinGen, 109 of 

which have a pLI ≥ 0.8. By contrast, only 51 of the 148 haploinsufficient genes have a 

p(HI) ≥ 0.8, and 80% of those (n = 41) also have pLI ≥ 0.8. Our metric identifies twice as 

many genes at the same cut off, but a larger proportion of the genes in the high p(HI) 

tail are considered likely haploinsufficient by both metrics. 

Table 4.1a and b depict the breakdown of all genes and ClinGen 

haploinsufficient genes, respectively, by their pLI and p(HI) values. We took those data 

and found the enrichment of ClinGen haploinsufficient genes in the high pLI and p(HI) 

tails by setting as baseline the fraction of ClinGen haploinsufficient genes with pLI and 

p(HI) < 0.8 compared to all genes in that category (n = 29 and 13,681, respectively). 

The fraction of each other category was compared to this baseline to determine the 

enrichment of genes that fall into each of the other categories (pLI < 0.8 and p(HI) ≥ 0.8, 

etc.) and is shown in Table 4.1c.  Genes uniquely flagged by both metrics have similar 
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enrichments (10 for pLI versus 10.8 for p(HI)). The real enrichment, however, is found in 

the subset of genes that are considered likely haploinsufficient (≥ 0.8) by both metrics. 

 

Table 4.1. Probability of Loss of Function (pLI) and Probability of Haploinsufficient ( 
p(HI)) counts for all genes and ClinGen. The breakdown of all genes (a) and ClinGen 
haploinsufficient genes (b) by their pLI and p(HI) values. (c) The enrichment of ClinGen 
haploinsufficient genes that fall into the high pLI and p(HI) tails when taking the fraction 
of ClinGen genes with pLI and p(HI) < 0.8 compared to all genes. 
 
a) Breakdown of all genes (n = 18,000) by their pLI and p(HI) values 
 

 p(HI) < 0.8 p(HI) ≥ 0.8 

pLI < 0.8 13681 441 

pLI ≥ 0.8 3258 620 
 
b. Breakdown of ClinGen haploinsufficient genes (n = 148) by their pLI and p(HI) values 
 

 p(HI) < 0.8 p(HI) ≥ 0.8 

pLI < 0.8 29 10 

pLI ≥ 0.8 68 41 
 
c. Enrichment of ClinGen haploinsufficient genes in each pLI and p(HI) category 
 

 p(HI) < 0.8 p(HI) ≥ 0.8 

pLI < 0.8 1.0 10.8 

pLI ≥ 0.8 10.0 31.6 
 

Evaluating loss-of-function constraint metrics 

To determine which of the three protein-truncating constraint metrics (LoF Z, ratio 

of missing LoF variation, and pLI) is the most useful to use as a general LoF intolerance 

measure, we perform two tests: (1) the ability to predict known haploinsufficient genes 

and (2) enrichment of de novo LoFs found in autism spectrum disorder cases. 
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We perform a logistic regression using the three LoF constraint metrics to predict 

inclusion in the ClinGen haploinsufficient gene list. For all regressions, transcript length 

is included as a covariate. pLI has the highest Z-value (14.314), reflecting a more 

significant ability to predict haploinsufficient genes. The Z-value for LoF Z is 11.307 and 

is 12.164 for the ratio of missing protein-truncating variation. 

For the enrichment of de novo LoFs, we use the published de novo variants from 

3,982 cases with autism and 2,078 controls16,17 and a previously described method that 

controls for the mutability of each gene (see Chapter 3)5. In brief, the probability of 

mutation (for a specific mutation type) is summed across all genes in a gene set and 

compared to the total probability of mutation (of the same type) for all genes. That 

fraction becomes the expected fraction of genes in the gene set that should harbor a de 

novo variant of the same type. We evaluate the observed overlap between the de novo 

list and the gene set of interest by invoking the binomial. 

Since this method requires an established gene set, we took genes with pLI ≥ 0.9 

(n = 3,230) and matched the set size using the genes with the highest LoF Z scores and 

ratio of missing LoF variation. While the fold enrichment is greatest for the ratio of 

missing LoF variation (enrichment = 1.9, p < 10-21), pLI still outperforms the LoF Z score 

(Table 4.2). No significant enrichments are seen when using the control de novo LoFs 

(fold enrichments between 0.81 and 0.91). 
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Table 4.2. The enrichment of de novo loss-of-function variants (LoFs) from autism 
cases with the top loss-of-function intolerant genes as defined by LoF Z, the ratio of 
missing LoF variation, and pLI. 
 

 LoF Z > 3.891 
(n = 3,230) 

Ratio missing LoFs  > 0.9061 
(n = 3,230) 

pLI ≥ 0.9 
(n = 3,230) 

LoF fold enrichment 1.3656 1.9224 1.6290 

p-value 5.07x10-12 5.12x10-22 8.31x10-20 
 

Applications of pLI 

Given pLI’s superior performance in predicting haploinsufficient genes and 

clearer interpretability than the ratio of missing LoF variation, we chose to use pLI as 

our main metric of LoF intolerance. 

Established haploinsufficient genes are enriched in the high pLI tail (pLI ≥ 0.9, χ2 

p < 10-50; Figure 4.3). Of note, the enrichment in pLI stratifies with the severity of the 

disease caused by the haploinsufficient genes with increasingly severe phenotypes 

showing increased enrichment in the highly LoF-intolerant genes (manually curated 

from the ClinGen dosage sensitivity list). Critically, we note that LoF-intolerant genes 

include virtually all known severe haploinsufficient human disease genes (Figure 4.3), 

but that 79% of these genes do not have a disease-associated variant listed in ClinVar13 

despite the clear evidence for extreme selective constraint. 

The targets of FMRP22 are also strongly enriched in the high pLI tail (pLI ≥ 0.9, χ2 

p < 10-50; Figure 4.3). Dominant disease genes19,20 and those essential in cell culture21, 

however, are more evenly split between the two categories, but still enriched for pLI ≥ 

0.9 (χ2 p < 10-30 and p < 10-23, respectively). Olfactory receptors23 and recessive 

disease genes19,20 have low pLI scores overall, indicating that these sets are not likely 
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haploinsufficient. These results do not mean that recessive genes are not important to 

disease, but that they can on average tolerate a heterozygous LoF. 

We also studied three gene lists that correspond to genes found in mice: those 

genes that are lethal as homozygous knock outs, genes that are lethal as heterozygous 

knock outs, and genes that are lethal when conditionally knocked out in adult mice 

(mouse gene lists were provided by Joanne Berghout from JAX). As depicted in Figure 

4.3, the conditional lethal genes are the most enriched in the most LoF-intolerant genes, 

followed by the heterozygous lethal, and then the homozygous lethal genes. 

 

Gene expression and eQTLs 

To further understand the characteristics of constrained genes we investigate the 

association of the synonymous Z score, missense Z score, and pLI with various gene 

expression and regulation metrics utilizing the multi-tissue gene expression data from 

the Genotype-Tissue Expression (GTEx) project14 (GTEx Analysis V4, dbGaP 

Accession phs000424.v4.p1) spanning 53 tissue types sampled from 212 post-mortem 

donors downloaded from the GTEx portal (http://www.gtexportal.org) on July 29, 2015. 

The medians of log2-transformed RPKM values for each tissue are correlated 

with the constraint scores after excluding sex chromosomal transcripts and transcripts 

not expressed in the given tissue (i.e. median RPKM = 0). Given the high correlation in 

gene expression between the various brain regions sampled in GTEx, a composite 

measure for brain expression is created by taking the median expression values for 

each gene across these eleven brain tissue types (only one of the duplicate 

measurements for each cerebellum and cortex was included). This composite brain 



	

	 124 

expression measure is used instead of the individual brain regions when the per-gene 

median and maximum expression values across all tissues are calculated and similarly 

when the total number of tissues a given gene is expressed in is determined, therefore 

giving 41 as the maximum number of tissues in which a gene can be detected. 

Consistently in each tissue, gene expression level is strongly and positively 

correlated with missense Z score and pLI, a result that is further strengthened after 

accounting for gene coding sequence length. The association with synonymous Z 

score, however, is non-significant or considerably subtler. Similar patterns of 

association are observed for the median and maximum gene expression across tissues 

(median gene expression is depicted in Figure 4.4a). Also, the total number of tissues a 

gene is expressed in is positively correlated with missense Z score and pLI at different 

RPKM cutoffs (Figure 4.4b; Figure 4.17). 

 

 
 

Figure 4.17. The relationship between constraint and tissue expression at different 
RPKM cutoffs for constraint bins. For synonymous and missense Z, the bins are: bottom 
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Figure 4.17 (Continued) quartile (< 25%), two middle quartiles grouped together, and 
top quartile (> 75%). For pLI: pLI ≤ 0.1, 0.1 < pLI < 0.9, and pLI ≥ 0.9. 

 

The relationship between the constraint scores and gene regulatory variation 

detected in the GTEx dataset is investigated in the 13 tissues with the largest sample 

sizes (expression and genotype data available for >60 individuals) that were included in 

the GTEx V4 eQTL analyses (Adipose – Subcutaneous, Artery - Aorta, Artery – Tibial, 

Esophagus - Mucosa, Esophagus - Muscularis, Heart - Left Ventricle, Lung, Muscle – 

Skeletal, Nerve – Tibial, Skin - Sun Exposed (Lower leg), Stomach, Thyroid and Whole 

Blood). The eQTL analysis follows the steps described in detail in the GTEx pilot phase 

manuscript14. 

Dividing the analyzed transcripts into three subsets based on their constraint 

scores (for Z: bottom quartile (<25%), the two middle quartiles grouped, top quartile 

(>75%); for pLI: pLI ≤ 0.1, 0.1 < pLI < 0.9, pLI ≥0.9), we calculate the proportion of 

eGenes, i.e. a gene with a significant eQTL (FDR 5%), out of all genes included in the 

eQTL analysis (expressed in at least ten individuals at >0.1 RPKM) in each of the 

constraint subsets for each of the 13 tissues and for synonymous, missense and LoF 

constraint scores separately. The power for eQTL discovery varies widely from tissue to 

tissue given the sample sizes per tissue, which range from 74 (Artery - Aorta) to 168 

(Whole Blood). Independent of the total number of eGenes discovered, in each tissue, 

the most missense and loss-of-function constrained group of genes are significantly 

depleted of eGenes compared to the least constrained group (e.g. in skeletal muscle, p 

< 10-24 for pLI ). Such pattern is not seen when grouping the genes based on their 

constraint for synonymous variation. To have a metric comparable between tissues, we 
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further normalize these eGene proportions by the total number of eGenes discovered in 

each tissue. Figure 4.5a shows the average proportion of eGenes in whole blood 

clearly demonstrating both the depletion (59.57% of the average for pLI) of eGenes 

among the most and enrichment (125.11% of the average for pLI) among the least 

missense and loss-of-function constrained genes. 

 

Enrichment of GWAS signals 

Next we investigate the same synonymous Z score, missense Z score, and pLI in 

the Genome-wide Association Studies (GWAS) Catalog15 for the closest gene to signal; 

see Gene List table below) [Hindorff et al, Accessed 02/04/2015]. We filter results to 

include only those GWAS signals that had been reported with a p < 5.0x10-8. In order to 

categorize GWAS results by ontologies, we only include those signals that have been 

mapped in the “Experimental Factor Ontology” (EFO, http://www.ebi.ac.uk/efo). We find 

2,792 unique genes that have been listed in the Catalog and for which we have Z 

scores and pLI.   

As performed in previous analyses, we divide variants by functional categories: 

synonymous, missense and loss-of-function, and each category was further divided in 

three constraint groups: Lowest (0 - 25% quantile for Z; pLI ≤ 0.1), Middle (25 – 75% 

quantile for Z; 0.1 < pLI < 0.9) and Highest (75 – 100% quantile for Z; pLI ≥ 0.9). Then 

we estimate the enrichment of genes in the GWAS catalogue as: 

  !! =  !! ∗ ! 

 !! =  
!"#$!

!"#$ 

 ! =  ! !"#$ 
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where: 

Pq is the proportion of GWAS genes in the quantile q 

and S is a scaling factor (number of evaluated genes divided by number of GWAS hits) 

The standard error for the proportions are similarly scaled: 

  !" =  !! !! !!
!!

∗  ! 

 

We estimate the significance of the difference in the number of GWAS loci of 

highest versus the lowest constraint scores using a χ2 test. 

While only the loss-of-function category shows a clear and significant difference 

between the highest and the lowest constraint scores, we note a pattern in the 

missense category where the less constrained genes have higher, albeit not significant, 

proportion of GWAS hits than the middle category (Figure 4.5b).  

To better characterize this pattern we divide the GWAS hits by major EFO 

categories: Cancer, Cardiovascular, Digestive, Immune, Metabolic, Nervous, Response 

to drug, Body measure and Others, and compare the least constrained genes versus 

the middle category as well as the most constrained genes versus the middle category 

(Figure 4.18). Again, we see that on average, GWAS hits are enriched in the most LoF 

constrained genes and depleted in the least constrained. In this sub-analysis we also 

identify an enrichment of Cardiovascular, Metabolic, and body measurement GWAS hits 

in the most missense constrained genes, while these categories with enrichments were 

non-significant in least missense constraint genes. 
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Figure 4.18. The odds ratio of being a GWAS hit for each Experimental Factor Ontology 
trait for the most constrained genes versus the middle bin. For synonymous and 
missense Z, the bins are: bottom quartile (< 25%), two middle quartiles grouped 
together, and top quartile (> 75%). For pLI: pLI ≤ 0.1, 0.1 < pLI < 0.9, and pLI ≥ 0.9. 

 

Networks and pathway analysis 

To better understand the set of genes considered intolerant of loss-of-function 

variation, we use the STRING database24 to obtain a network of experimentally 
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supported protein-protein physical interactions. The network consists of 14,160 genes 

(nodes) and 712,137 physical interactions (edges). For each gene, we compute the 

number of neighbors it has in the network (degree of the node), which corresponds to 

the number of interaction partners its encoded protein has. We run a linear regression 

between the pLI score of a gene and its number of interaction partners and find that 

genes with more partners are more likely to have high pLI scores (t-test p < 10-41). A 

weaker positive correlation is found between the number of interaction partners and the 

missense Z score of a gene (t-test p < 10-8). A weak negative correlation is observed 

between the number of partners and the synonymous Z score (t-test p < 10-6).  

The list of 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

were obtained from Broad Institute GSEA. Each pathway is represented by the list of 

pLI scores for each of the genes in the pathway. For each pathway, we compute the 

Kolmogorov-Smirnov (KS) statistic between its list of pLI scores and the pLI scores of all 

the genes to quantify the enrichment or depletion of pLI for this pathway. Fifty-eight 

pathways show significant deviations in pLI from the rest of the genes at multiple-testing 

adjusted p-value of 10-7 (Table 4.3). 

 

  



	

	 130 

Table 4.3. 58 KEGG pathways that show significant deviations in pLI. 
 

Pathway name p-value Median pLI 
Number 

of 
genes 

Fraction of 
genes with 
duplication 

KEGG_ACUTE_MYELOID_LEUKEMIA 1.13E-12 0.966868135 55 0.090909091 
KEGG_SPLICEOSOME 3.22E-24 0.962186023 119 0.042016807 
KEGG_ADHERENS_JUNCTION 9.98E-16 0.954642795 72 0.041666667 
KEGG_PROSTATE_CANCER 4.65E-17 0.953884196 88 0.045454545 
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 2.39E-12 0.953566812 74 0.067567568 
KEGG_ENDOMETRIAL_CANCER 2.22E-09 0.945932366 50 0.04 
KEGG_PROTEASOME 4.46E-07 0.939368296 44 0.068181818 
KEGG_NON_SMALL_CELL_LUNG_CANCER 6.81E-11 0.937024402 53 0.056603774 
KEGG_LONG_TERM_POTENTIATION 1.38E-09 0.934189798 69 0.115942029 
KEGG_RENAL_CELL_CARCINOMA 9.26E-15 0.934189798 69 0.043478261 
KEGG_CHRONIC_MYELOID_LEUKEMIA 8.58E-16 0.927847096 72 0.069444444 
KEGG_PANCREATIC_CANCER 1.93E-12 0.914702778 69 0.057971014 
KEGG_GLIOMA 3.49E-14 0.912772901 65 0.107692308 
KEGG_SMALL_CELL_LUNG_CANCER 1.95E-10 0.912222953 83 0.108433735 
KEGG_THYROID_CANCER 4.84E-06 0.907173398 28 0.035714286 
KEGG_MTOR_SIGNALING_PATHWAY 1.08E-06 0.898304164 51 0.019607843 
KEGG_WNT_SIGNALING_PATHWAY 5.43E-20 0.894082823 142 0.077464789 
KEGG_AXON_GUIDANCE 3.44E-15 0.889436552 125 0.168 
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 4.10E-17 0.879812545 132 0.060606061 
KEGG_MELANOMA 2.06E-10 0.86533156 69 0.057971014 
KEGG_ERBB_SIGNALING_PATHWAY 1.54E-12 0.855133233 86 0.046511628 
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 4.18E-18 0.833673302 124 0.10483871 
KEGG_GAP_JUNCTION 1.50E-07 0.832476903 86 0.174418605 
KEGG_COLORECTAL_CANCER 1.96E-11 0.82592172 60 0.033333333 
KEGG_PATHWAYS_IN_CANCER 4.59E-31 0.817693684 315 0.082539683 
KEGG_RIBOSOME 3.00E-22 0.791160924 86 0.046511628 
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 2.49E-10 0.787536053 94 0.106382979 
KEGG_TGF_BETA_SIGNALING_PATHWAY 3.23E-09 0.774529936 83 0.120481928 
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 5.22E-11 0.774064994 106 0.075471698 
KEGG_MAPK_SIGNALING_PATHWAY 1.11E-20 0.726173344 257 0.062256809 
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 2.92E-14 0.702854984 209 0.081339713 
KEGG_HEDGEHOG_SIGNALING_PATHWAY 6.08E-06 0.68038415 55 0.163636364 
KEGG_BASAL_CELL_CARCINOMA 3.18E-06 0.68038415 51 0.117647059 
KEGG_PROGESTERONE_MEDIATED_OOCYTE 
_MATURATION 1.04E-08 0.657005772 84 0.107142857 

KEGG_ENDOCYTOSIS 3.16E-11 0.656574472 175 0.08 
KEGG_ALDOSTERONE_REGULATED_SODIUM 
_REABSORPTION 5.41E-06 0.641391597 41 0.146341463 

KEGG_OOCYTE_MEIOSIS 6.30E-10 0.634553384 110 0.045454545 
KEGG_FOCAL_ADHESION 1.84E-12 0.629287802 196 0.12755102 
KEGG_CELL_CYCLE 1.18E-10 0.618667023 122 0.024590164 
KEGG_MELANOGENESIS 5.89E-07 0.596680215 97 0.18556701 
KEGG_CHEMOKINE_SIGNALING_PATHWAY 3.53E-14 0.42745098 185 0.210810811 
KEGG_CARDIAC_MUSCLE_CONTRACTION 9.89E-06 0.324238693 71 0.070422535 
KEGG_HUNTINGTONS_DISEASE 2.45E-07 0.301784519 170 0.070588235 
KEGG_ALZHEIMERS_DISEASE 1.36E-06 0.218440721 155 0.096774194 
KEGG_CYTOKINE_CYTOKINE_RECEPTOR 
_INTERACTION 8.60E-06 0.09785415 257 0.249027237 

 
  



	

	 131 

Table 4.3 (Continued).	
	

pathway name p-value median pLI 
number 

of 
genes 

fraction of 
genes with 
duplication 

KEGG_OLFACTORY_TRANSDUCTION 4.42E-17 0.005113489 376 0.909574468 
KEGG_ARACHIDONIC_ACID_METABOLISM 2.04E-06 2.36E-05 58 0.431034483 
KEGG_STEROID_HORMONE_BIOSYNTHESIS 3.81E-07 3.67E-06 54 0.685185185 
KEGG_METABOLISM_OF_XENOBIOTICS_BY 
_CYTOCHROME_P450 9.30E-10 3.49E-06 69 0.753623188 

KEGG_PENTOSE_AND_GLUCURONATE 
_INTERCONVERSIONS 7.42E-09 2.34E-06 27 0.703703704 

KEGG_DRUG_METABOLISM_CYTOCHROME_P450 1.64E-09 9.11E-07 71 0.774647887 
KEGG_RETINOL_METABOLISM 9.25E-12 2.93E-07 63 0.714285714 
KEGG_DRUG_METABOLISM_OTHER_ENZYMES 2.12E-09 2.93E-07 51 0.588235294 
KEGG_LINOLEIC_ACID_METABOLISM 1.37E-06 2.82E-07 29 0.586206897 
KEGG_OTHER_GLYCAN_DEGRADATION 8.57E-06 2.77E-07 16 0 
KEGG_ABC_TRANSPORTERS 1.65E-07 4.44E-08 44 0.272727273 
KEGG_ASCORBATE_AND_ALDARATE 
_METABOLISM 1.51E-08 3.50E-08 25 0.8 

KEGG_STARCH_AND_SUCROSE_METABOLISM 4.60E-09 3.06E-08 50 0.52 
 
 

For each pathway, we quantify the degree of its redundancy by computing the 

fraction of its genes with a duplication in the human genome25. Among the highly 

constrained pathways (highest median pLI for the genes in the pathway) are core 

biological processes (spliceosome, ribosome, and proteasome components; KS test p < 

10-6 for all) while olfactory receptors are among the least constrained pathways (KS test 

p < 10-16). More surprisingly, we identify multiple metabolic pathways, such as starch 

and sucrose metabolism (KS test p < 10-9), as being highly unconstrained. Members of 

these pathways are also likely to have paralogous genes in the human genome. 
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Abstract 

The identification of constrained genes has already proven useful when 

analyzing genetic variation, particularly within a clinical context. Treating the whole gene 

as a unit does not take advantage of the known function of elements within the gene, 

but was necessary when using smaller exome sequencing datasets. The size of the 

recently released Exome Aggregation Consortium (ExAC; n = 60,706 individuals) now 

permits the evaluation of constraint of regions within genes. Loss-of-function variants 

typically have the same effect no matter where they occur in the gene, but the 

deleteriousness of missense variants varies depending both on the location of the 

variant in the gene and the specific amino acid substitution. In this work, we use the 

ExAC dataset to identify patterns of regional missense constraint within genes and 

show that these constrained regions are enriched for both established pathogenic 

variants and de novo missense variants found in patients with a neurodevelopmental 

disorder. We additionally created a metric—which includes information about local 

missense depletion and amino acid substitution deleteriousness among other 

features—to aid in the prioritization of missense variants. Compared to multiple other 

metrics, it is the best predictor of missense variant pathogenicity and will ultimately 

improve variant interpretation of clinical exomes. 

 

Introduction 

The availability of large-scale exome sequencing datasets has provided the 

opportunity to better understand patterns and rates of variation within the human 

population. These resources permit the identification of genetic sequences that are 



	

	 137 

intolerant of nonsynonymous variation (constrained) and therefore more likely to be 

associated to disease. One signature of strong selective constraint is the depletion of 

nonsynonymous variation within reference populations of individuals. There is also a 

shift in the allele frequency spectrum of the remaining variants to increasingly rare 

variation. Both signatures have previously been evaluated in a set of 6,503 individuals 

from the National Heart, Lung and Blood Institute’s Exome Sequencing Project (ESP)1 

to identify genes that are significantly missense constrained (Chapter 3)2,3. More 

recently, similar methods have been applied to the Exome Aggregation Consortium 

dataset (n = 60,706) and found genes intolerant of loss-of-function variation (Chapter 4). 

The constrained genes identified in all studies were enriched for known disease genes 

and harbored significantly more de novo loss-of-function variants identified in cases with 

severe neurodevelopmental disorders, establishing their medical relevance. 

Identifying constrained genes has already proven to be useful in the 

interpretation of patient variation4. However, it is well known that missense variants can 

have dramatically different effects, depending on where they occur in the gene and the 

specific amino acid substitution. While the ESP dataset was not well powered to 

evaluate missense intolerance of sub-genic regions, the ExAC dataset permits such 

investigations. Determining a domain’s intolerance to variation would highlight the 

functional components that are most sensitive to perturbation. Unfortunately, protein 

domain information is not known for all genes. We therefore use the exon as a basis to 

evaluate regional patterns of missense constraint within genes so that the method may 

be applied globally. In this work, we describe a method to perform this analysis and find 

that 15% of genes show evidence of variability in missense constraint. 
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We also sought to use the depletion of missense variation in the region where a 

variant resides to aid in variant interpretation. There are many tools to predict the 

deleteriousness of missense variants5-7 and to evaluate specific amino acid 

substitutions8,9. We create a score that measures the increased deleteriousness of 

amino acid substitutions when they occur in missense-constrained regions. We then 

combine information from orthogonal deleteriousness into one metric (MPC), which 

outperforms all other metrics at separating pathogenic and benign missense variants. 

To evaluate the usefulness of our metric outside of established disease-

associated variants, we study newly arising (de novo) missense variants identified in 

cases with a neurodevelopmental disorder. Over the last 5 years, there have been 

many large-scale sequencing projects of parent-child trios to evaluate the role of de 

novo variation and identify genes and pathways relevant to disease etiology. These 

studies have focused primarily on neurodevelopmental disorders, such as intellectual 

disability10,11, developmental delay12, and epileptic encephalopathy13. These studies 

have established an important, but modest, role of de novo variation in these diseases. 

The largest excesses were seen for de novo loss-of-function variation, which have 

become the main focus for follow up research. However, there is also a significant 

enrichment of de novo missense variants in these patients, but it is modest (1.2 fold), 

indicating that a subset of the variants are disease-related but the majority are not. We 

find that the most missense constrained genes and regions contain nearly all of the 

excess of de novo missense variation in the neurodevelopmental cases and additionally 

show that MPC promises to be a powerful way to prioritize missense variants. 
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Results 

Searching for regional missense constraint within transcripts 

We used a set of 18,225 transcripts (see Materials and Methods for transcript 

filtering) and, for every exon, extracted rare (minor allele frequency [MAF] < 0.1%) 

missense variants from the Exome Aggregation Consortium (ExAC; n = 60,706) dataset 

and predicted the expected number as described previously (Chapters 3 and 4)3. 

To define regions within transcripts that were specifically missense constrained, 

we applied a likelihood ratio test to determine the break in between neighboring exons 

that most significantly (by χ2) splits the transcript into two regions with varying levels of 

missense depletion. If the largest (most significant) χ2 was above our significance 

threshold (≥ 10.8; p < 10-3), we then similarly searched for a way to continue to split the 

transcript into regions until the best χ2 fell below our significance threshold. If the 

transcript did not have strong enough evidence to be split into two regions, we tested 

two breaks at a time to recover transcripts that have a depleted region in the middle. We 

only accepted the two-break model if the χ2 was 13.8 (p < 10-4) or larger. The method is 

depicted in Figure 5.1. 

Applying this method to 18,225 transcripts, we found evidence of regional 

differences in missense depletion in 2,671 transcripts (14.7%) with 1,700 having one 

significant break (being split into 2 segments), 919 with 3 breaks, and 52 with three or 

more breaks (Table 5.1). 
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Figure 5.1. Visual of the method to find regional constraint within transcripts. The 
example transcript has four exons. First, all possible breaks in between exons are 
tested and the χ2 are collected. If the largest χ2 ≥ 10.8 (p < ~10-3), the method searches 
for a second significant break while keeping the first break set (here, the break between 
exons B and C). This process continues until the largest χ2 obtained is less than 10.8 
and, at that point, the last significant model is kept. If a transcript does not have 
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Figure 5.1 (Continued) evidence of a significant single break, the method searches for 
two breaks at a time. If the largest χ2 ≥ 13.8 (p < ~10-4), then that two break model is 
kept as the result. Otherwise, the transcript is considered to have no evidence of 
regional missense constraint. 
 

Table 5.1. Distribution of significant breaks for all canonical transcripts. 
 

Number of breaks Number of transcripts Percentage of transcripts 
0 15,554 85.3 
1 1,700 9.3 
2 919 5.0 
3 35 0.2 
4 14 0.1 
5 2 < 0.1 
6 1 < 0.1 

 

 We plotted the fraction of expected variation observed (γ) for all full transcripts 

and the regions of transcripts that were split by our method (Figure 5.2). While most 

transcripts and regions of transcripts have the expected amount of missense variation, 

there is an excess of missense-depleted regions, particularly when γ < 0.8. All coding 

sequence above 0.8 does not appear to be missense constrained, so we focus our 

future analyses on those transcripts and regions with γ < 0.8. Within the missense 

constrained transcripts and regions, we further subdivided into four quartiles: [0-0.2], 

(0.2-0.4], (0.4-0.6], and (0.6-0.8]. 
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Figure 5.2. The distribution of the fraction of expected missense variation observed 
(observed/expected, also referred to as γ) for all transcripts and regions of transcripts. 
The dashed black line represents the mirror of the distribution above one. The solid red 
line indicates the threshold between likely missense constrained regions (γ ≤ 0.8) and 
regions that show no evidence of regional missense constraint (γ > 0.8). The dashed 
gray lines demarcate the γ quartiles used in later analyses: [0-0.2], (0.2-0.4], (0.4-0.6], 
and (0.6-0.8]. 
 

ClinVar variants and regional depletion 

Given that the transcripts and regions with γ ≤ 0.8 are depleted of missense 

variation, we hypothesized that they would be enriched of disease-associated missense 

variants. We therefore extracted pathogenic variants from ClinVar14 to evaluate any 

potential enrichments. Since our method is focused on finding regions that are intolerant 

of heterozygous missense variants, we selected only those variants that disrupt 

haploinsufficient genes known to cause severe disease (n = 440 variants). 
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While the missense-constrained regions (γ ≤ 0.8) represent about a third of all 

coding bases, they contain the great majority of the pathogenic ClinVar variants (2.7 

fold enriched; p < 10-50; Table 5.2). However, almost all of this enrichment is found in 

those transcripts and regions that have γ ≤ 0.6: 82.7% of ClinVar variants vs 15.6% of 

coding bases (5.3 fold enriched; p < 10-50). These data indicate that the transcripts and 

regions in between 0.6 and 0.8 have a similar signature as the missense unconstrained 

transcripts and regions and are therefore less likely to harbor pathogenic variation that 

causes severe disease when disrupted. 

 

Table 5.2. Shown for each bin of missense depletion is the count (N) and percentage 
(%) of coding base pairs (in megabase pairs [Mbp]), pathogenic or likely pathogenic 
variants from ClinVar14 in haploinsufficient genes that cause severe disease (ClinVar). 
The range of missense depletion (fraction of expected missense variation observed) is 
provided in the first column (γ). 
 

γ (obs/exp) N Mbp % Mbp N ClinVar % ClinVar 

[0, 0.2] 0.7 2.21% 25 5.68% 
(0.2, 0.4] 1.4 4.34 141 32.05 

(0.4, 0.6] 2.9 9.06 198 45.00 

(0.6, 0.8] 5.1 15.97 8 1.82 

> 0.8 22.0 68.42 68 15.45 
 

Of the 44 severe haploinsufficient genes, 24 (55%) have evidence of regional 

variability in missense constraint, and of this subset 18 (75%) contain both 

unconstrained and constrained regions. As an example, the first 9 exons of CDKL5 

have only 25% of their expected variation (χ2 = 52.5), but the last 11 have 81% (χ2 = 

6.4). ClinVar lists 43 pathogenic or likely pathogenic missense variants in CDKL5, 39 

(91%) of which are found in the constrained regions (Figure 5.3). Three of the 
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remaining variants are in the first 50 base pairs (bp) of exon 10 and lie in the kinase 

domain that extends 66 bp into that exon. 

 

 
 
Figure 5.3. Distribution of ClinVar14 pathogenic and likely pathogenic variants in 
CDKL5. Variants are indicated with a star. 91% of the variants (39/43) fall into the first 9 
exons, which are significantly constrained (gamma = 0.25, χ2 = 52.5). The constrained 
region is marked with a bar. 
 

Using regional constraint to interpret de novo variation 

The ClinVar variants have been established as pathogenic, but we wanted to test 

if our regional missense depletion results of the regions could aid in prioritization of 

variants identified in patients. We chose to study de novo missense variants from cases 

with a neurodevelopmental disorder (n = 1,640)10-13 due to the significant, but modest, 

excess of de novo missense variants in these cases (1.2 fold enriched; p = 2.3x10-11; 

Table 5.3). The de novo missense variants from 2,078 unaffected siblings of autism 

cases were used as controls15,16. 
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Table 5.3. Counts, fold enrichment, and significance of de novo variants. The observed 
counts (Obs), expected counts (Exp), fold enrichment (Fold), and p-value for 
synonymous (Syn), missense (Mis), and loss-of-function (LoF; nonsense, essential 
splice site, and frameshift) variants are presented for control trios15,16, developmental 
delay (DDD)12, intellectual disability (ID)10,11, epileptic encephalopathy (EE)13, and all 
neurodevelopmental cases (a combination of DDD, ID, and EE; all neuro). 
 
  Control DDD ID EE All neuro 

 N trios 2078 1133 151 356 1640 

Sy
n 

Obs 506 263 28 89 380 
Exp 582.68 317.70 42.34 99.82 459.87 
Fold 0.8684 0.8278 0.6613 0.8916 0.8263 
p-value 0.0013 0.0018 0.0254 0.3007 0.0001 

M
is

 Obs 1215 868 106 278 1252 
Exp 1308.86 713.64 95.11 224.23 1032.98 
Fold 0.9283 1.2163 1.1145 1.2398 1.2120 
p-value 0.0046 1.23x10-8 0.1437 0.0003 2.30x10-11 

Lo
F 

Obs 184 233 36 59 328 
Exp 181.71 99.07 13.20 31.13 143.41 
Fold 1.0126 2.3518 2.7265 1.8953 2.2872 
p-value 0.5868 1.91x10-30 1.69x10-7 5.57x10-6 8.05x10-40 

 

As depicted in Figure 5.4, the distribution of control de novo missense variants 

between bins of missense depletion follows the distribution seen for coding base pairs. 

For example, 71.4% of the control variants are in regions with γ > 0.8, which represent 

68.4% of all coding bases. By contrast, the de novo missense variants identified in 

patients with a neurodevelopmental disorder are enriched in the most missense-

depleted regions. This is seen most strongly, as for the ClinVar variants, in regions with 

γ ≤ 0.6 (2 fold enriched, p < 10-17). 
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Figure 5.4. Fraction of base pairs and variants for each constraint bin. Shown for each 
bin of missense depletion (e.g. γ > 0.8) is the fraction of coding base pairs (base pairs), 
de novo missense variants from 2,078 control trios (control dn mis)15,16, de novo 
missense variants from 1,640 cases with a neurodevelopmental disorder (neurodev dn 
mis)10-13, and pathogenic or likely pathogenic missense variants from ClinVar14 in 
haploinsufficient genes that cause severe disease (severe HI variants). Lighter blues 
indicate greater missense depletion. 
 

We then compared the rate of de novo missense variants in cases to the rate in 

controls across missense constraint bins. If a region or transcript is tolerant of missense 

variation, we expect it to have the same rate of de novo variation in cases as in controls, 

reflecting the background rate of mutation (1:1). However, if the region is intolerant of 

missense variation—and therefore more likely to be associated to disease—we expect 
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to find a higher rate of de novo variants found in cases compared to the rate in controls 

(>1:1). As expected, the least missense-constrained bin (γ > 0.8) is indistinguishable 

from one (Figure 5.5; Table 5.4). While the most depleted two bins (γ ≤ 0.4) show a 

much higher rate of de novo missense variants in cases than in controls (OR > 4.5), 

there is no difference in the fourth bin (0.6 < γ ≤ 0.8). Regions and genes with more 

modest missense depletion (0.4 < γ ≤ 0.6) have an intermediate OR of 2.3, supporting 

that there is power is using the quantitative depletion of missense variation and not 

solely a threshold. 

 

 
 

Figure 5.5. Comparison of the rate of case de novo missense variants to control de 
novo missense variants by bins of missense depletion. The case variants come from 
1,640 trios with a neurodevelopmental disorder10-13 and the control variants were 
identified in 2,078 control trios15,16. The dashed gray line indicates a ratio of one. 95% 
confidence intervals are depicted around each point estimate. 
 

  

● ●

●

● ●

Missense constraint bins

R
at

e 
ca

se
:c

on
tro

l d
e 

no
vo

 m
is

se
ns

e

<= 0.2 0.2−0.4 0.4−0.6 0.6−0.8 > 0.8

1

2

3

4

5

6

7

8



	

	 148 

Table 5.4. Shown for each bin of missense depletion is the count (N) and percentage 
(%) of coding base pairs (in megabase pairs [Mbp]) for de novo missense variants 
found in 1,640 trios with a neurodevelopmental disorder (case dn)10-13 and those from 
2,078 control trios (control dn)15,16. The last column (C:C dn rate) provides the ratio of 
the neurodevelopmental case to control de novo missense rate. The first column lists 
the range of missense depletion (fraction of expected missense variation observed; γ). 
 
γ (obs/exp) N Mbp % bp N case 

dn 
% case 

dn 
N control 

dn 
% control 

dn 
C:C 

dn rate 
(0, 0.2] 0.7 2.21% 52 4.33% 14 1.19% 4.5877 

(0.2, 0.4] 1.4 4.34 146 12.16 38 3.23 4.8215 

(0.4, 0.6] 2.9 9.06 170 14.15 94 7.99 2.2861 

(0.6, 0.8] 5.1 15.97 163 13.57 190 16.16 1.0875 

> 0.8 22.0 68.42 670 55.79 840 71.43 1.0179 
 

Combining the three most depleted bins together (γ ≤ 0.6), there are 0.21 de 

novo missense variants per case exome and only 0.05 per control exome. However, 

this enrichment disappears when γ > 0.6 (0.51 events per case exome versus 0.50 in 

controls). It is important to note, however, that a majority (56%) of the de novo variants 

found in cases are in transcripts and regions are not considered missense constrained 

(γ > 0.8). These analyses have refined the signal of de novo variant enrichment and 

have shrunk the number of candidate pathogenic variants from 1,201 to 368. 

Taken together, these analyses indicate that the signal for both established 

pathogenic variants as well as the excess of de novo missense variants in cases with a 

neurodevelopmental disorder can be found in those transcripts and regions with 60% or 

less of their expected missense variation. 
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Measuring the increased deleteriousness of amino acid substitutions 

While the gene or region disrupted by a missense variant is important to 

consider, it is also critical to consider the specific type of amino acid substitution that 

occurred. Major changes in the physiochemical properties of the side chain are 

expected to have larger effects on the protein than more subtle changes. The 

deleteriousness of these changes has been quantified in a variety of metrics, the two 

most common of which are BLOSUM9 and Grantham8. Here, we postulated that there 

may be specific amino acid substitutions that are preferentially eliminated when they 

occur in the most missense depleted regions of the exome. 

To measure the increased deleteriousness of amino acid substitutions when they 

occur in the constrained regions of the exome, we tabulated all possible amino acid-to-

amino acid substitutions that could occur in the exome via a single nucleotide mutation 

as well as the number observed in ExAC (with MAF < 0.1%). The rate of possible 

substitutions observed was determined for constrained (γ ≤ 0.8) and unconstrained (γ > 

0.8) regions separately; in almost all instances, we observed a higher rate in the 

unconstrained regions, including for synonymous variants. The fold difference between 

the rate in the unconstrained and constrained regions clusters for synonymous changes 

around one and is in the 2.5-3 range for nonsense, with missense values falling 

primarily in between the two (Figure 5.6). 
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Figure 5.6. The fold difference between the rate of possible amino acid substitutions 
observed in unconstrained versus constrained regions. All possible amino acid 
substitutions that could be created by a single nucleotide mutation were tallied for 
unconstrained (γ > 0.8) and constrained (γ ≤ 0.8) regions of the exome. The observed 
rate of the possible substitutions was calculated and the fold difference between that 
observed in the unconstrained regions versus the constrained regions is plotted. 
Synonymous substitutions are in gray; missense in orange; and nonsense in red. The 
dashed lines indicate the median of the fold differences for all synonymous substitutions 
(gray) and nonsense substitutions (red). 
 

We used the normalized fold difference of missense substitutions (“missense 

badness”) as a measure of the increased deleteriousness of amino acid substitutions 

when they occur in constrained genes and regions. As expected, this score has a high 

correlation with BLOSUM and Grantham scores (r = -0.6327 and 0.5255, respectively; 

Figure 5.7). Interestingly, we find that leucine to isoleucine substitutions are not among 

the most tolerant amino acid substitutions based on missense badness (missense 

badness = 0.42) even though the two are isoforms of each other. By contrast, both the 

BLOSUM and Grantham scores for this substitution indicate tolerance of the substitution 

(BLOSUM = 2; Grantham = 5). On the other side, serine to leucine substitutions—which 
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is a change from a hydrophilic to a hydrophobic side chain—are considered deleterious 

by BLOSUM (-2) and Grantham (145), but not by missense badness (0.20). Further 

investigation into these differences may reveal properties of the constrained transcripts 

and regions. 

 

a) BLOSUM      b) Grantham scores 

  

Figure 5.7. The correlations between missense badness and other metrics of amino 
acid substitution deleteriousness. Missense badness shows a high correlation to both 
BLOSUM (r = -0.6327, a) and Grantham scores (r = 0.5255, b). 
 

Combining variant level deleteriousness scores 

We wanted to determine which variant deleteriousness metric, or combination of 

metrics, was best at differentiating benign from pathogenic missense variants. We 

selected missense variants with a MAF > 1% in ExAC as our benign set (n = 93,238 

variants) and used the ClinVar missense variants found in haploinsufficient genes that 

cause severe disease as our set of pathogenic variants (n = 1,674). The metrics we 

compared were: missense depletion of the region in which the variant was found (γ), 
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missense badness, Polyphen25, BLOSUM9, and Grantham scores8. Using logistic 

regressions, we found that the best predictor of missense deleteriousness was the 

missense depletion (γ) of the region in which the variant was located (Table 5.5). 

 

Table 5.5. Comparing the ability of various metrics to differentiate between benign and 
pathogenic variants. Logistic regressions were performed to determine which score 
could best separate benign from pathogenic missense variants. Missense variants in 
ExAC with a MAF > 1% were considered benign (n = 93,238). Pathogenic variants were 
those missense variants in ClinVar that were found in haploinsufficient genes that cause 
severe disease (n = 1,674). Lower AIC indicates a better predictor. 
 

Score AIC 
Missense depletion (γ) 13967.06 
Polyphen2 14615.62 
Missense badness 15218.00 
Grantham 15233.18 
BLOSUM 15239.38 

 

The metrics can provide complementary information, so we sought to create a 

composite predictor. Given that γ was by far the best score, we tested nested models 

and found that both missense badness and Polyphen2 significantly added to the 

composite predictor, but that neither BLOSUM nor Grantham did. Therefore, the best 

model included γ, missense badness, and Polyphen2 (Table 5.6), and we take the 

predictions as our final score, known as MPC. 
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Table 5.6. The models tested combining missense depletion (obs_exp), missense 
badness (mis_badndess), and Polyphen2 (polyphen2). Note that when BLOSUM is 
added back, the predictor works less well. 
 

Model AIC 
obs_exp + mis_badness + polyphen2 13286 
obs_exp * mis_badness * polyphen2 13174 
obs_exp + mis_badness + obs_exp:mis_badness + polyphen2 + 
obs_exp:polyphen2 

13172 

obs_exp + mis_badness + obs_exp:mis_badness + polyphen2 + 
obs_exp:polyphen2 + blosum 

13176 

 
 

Using MPC to evaluate the deleteriousness of de novo variants 

We tested the usefulness of MPC by analyzing the de novo variants from cases 

with a neurodevelopmental disorder10-13 and from controls15,16. The number of benign 

variants limits the range of MPC from 0 to 5, with increasing large numbers indicating 

increased deleteriousness. The distribution of MPC for the control de novo variants is 

made primarily of scores below 1 (Figure 5.8a). The MPC distribution for the de novo 

missense variants identified in cases with a neurodevelopmental disorder, on the other 

hand, appears to be made of two distributions: one following the distribution of the 

control de novo variants and the other with a peak at an MPC of 2 (Figure 5.8b), 

reinforcing that these variants are a mix of signal and noise. 
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a) MPC distribution for control de novo missense variants 
 

 
 
b) MPC distribution for de novo missense variants found in cases 
 

 
 
Figure 5.8. The MPC distributions for de novo variants in cases and controls. The MPC 
scores for the 1,254 de novo missense variants identified in control trios (a) and the 
MPC scores for the 1,234 de novo missense variants found in cases with a 
neurodevelopmental disorder (b). 
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Discussion 

We have developed a method to locate regions within genes that are specifically 

intolerant of missense variation. Across all genes, 15% have evidence of regional 

variability in missense constraint, most of which are only split into two regions. We find 

that the genes and regions that have 60% of less of their expected missense variation—

while only representing a small fraction of all coding sequence—contain 85% of 

pathogenic variants14 in haploinsufficient genes known to cause severe disease. These 

genes and regions also contain nearly all of the excess of de novo missense variation 

that is seen in cases with a neurodevelopmental disorder10-13. 

Ideally, constraint would be calculated per base, but even the ExAC dataset is 

not large enough to provide sufficient power to do this. We therefore need to aggregate 

variant counts. While there are many options, we chose to aggregate counts across 

exons. Aggregating across protein domains would potentially be more informative 

functionally, but domain information is unfortunately unavailable for many genes. Since 

exons are natural biological units transferred between transcripts and are available for 

all genes, we believe they are currently the best option. 

Moving forward, it will be important to not only include protein domain information 

but to consider non-linear sequences. Binding pockets are critical aspects of proteins, 

but are made up of amino acids scattered across the gene. Other 3D structural aspects 

of the protein (internal versus external residues, etc.) would also be important to 

consider when evaluating variant deleteriousness. Therefore, future work would greatly 

benefit from being able to evaluate disparate amino acids. 
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Since the missense constrained regions are depleted of variation due to selective 

pressures, we proposed that including information about the local missense depletion 

could improve variant deleteriousness metrics. We first created a measure of the 

increased deleteriousness of amino acid substitutions when they occur in missense 

constrained genes and regions, which outperformed similar amino acid substitution 

matrices (BLOSUM9 and Grantham8) at separating pathogenic14 from benign variants. 

The best predictor of variant deleteriousness, however, was the combination of regional 

missense constraint, the amino acid substitution score we developed (missense 

badness), and Polyphen25. The MPC scores—the joint metric—for the de novo 

missense variants from neurodevelopmental cases10-13 appeared to be a mixture of two 

distributions (benign and pathogenic), which matches what would be expected given the 

modest enrichment of such variants in the cases. 

We predict that MPC will be most informative for those variants that are found in 

regions with intermediate missense depletion (40-60% of expected variation) since this 

set of variants has a lower signal to noise ratio than the variants found in the more 

missense depleted genes and regions. We also hope to test MPC on the de novo 

missense variants from 3,982 cases with an autism spectrum disorder (ASD)15,16. We 

previously found a relationship between the IQ of an ASD case and the rate of de novo 

loss-of-function variants, with lower IQ individuals having a higher rate3,17. We recently 

discovered a similar relationship with IQ for de novo missense variants that were 

predicted to be damaging by Polyphen25 and fell into one of the 1,003 missense 

constrained genes discussed in Chapter 318.  
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As the number of sequenced individuals increases in reference datasets such as 

ExAC, we will be able to further refine our analyses of regional constraint. Additionally, 

the aggregation of whole genome sequencing data from reference populations will allow 

similar analyses of noncoding regions and promises to empirically highlight genetic 

regions intolerant of variation. The knowledge gained from our work and similar studies 

will continue to improve our ability to interpret genetic variation and, therefore, 

understanding of the genetic basis of disease. 

 

Materials	and	Methods	

Transcript and exon definitions 

In order to have one representative transcript for each gene, we used the 

canonical GENCODE (v19) transcript as defined by Ensembl 75, for protein-coding 

genes. We removed transcripts that lacked a methionine at the start of the coding 

sequence, a stop codon at the end of coding sequence, or were indivisible by three, 

which left 19,621 transcripts. Additionally, 795 transcripts that had zero observed 

variants—when dropping counts in exons with a median depth < 1 (explained below)—

were removed, leaving 18,466 transcripts for analysis. The exon boundaries were 

defined by UCSC’s annotation for GENCODE v19 (downloaded on June 16th, 2014). 

 

Observed variant counts 

We consider intolerance to loss-of-function variation to primarily be a property of 

a gene. We therefore searched for regional constraint to missense variation alone. To 

obtain the observed number of missense variants per exon, we extracted variants from 
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the Exome Aggregation Consortium’s dataset (ExAC; n = 60,706) that met the following 

criteria: 

(1) Defined as a missense change by the predicted amino acid substitution. 

Variants that would be considered “initiator_codon_variants” and “stop_lost” 

by annotation programs such as VEP19 are therefore included in the total. 

(2) Caused by a single nucleotide change. 

(3) Had an adjusted allele count ≤ 123, corresponding to a minor allele frequency 

(MAF) < 0.1%. The adjusted allele count only includes individuals with a 

depth (DP) ≥ 10 and a genotype quality (GQ) ≥ 20. 

(4) Had a VQSLOD ≥ -2.632. 

Due to the VQSLOD threshold, variants were not required to have a PASS in their 

FILTER column. The observed counts represent the unique number of qualifying 

variants and not the aggregate allele count of all qualifying variants within the exon. 

 

Expected variant counts 

Expected missense variant counts were determined as described in Chapter 4. 

Briefly, we used a model of mutation based on sequence context and corrected for 

regional divergence between humans and macaques to define the probability of a 

mutation per exon in all canonical transcripts (as discussed in Chapters 3 and 4)3. We 

used exons with a median depth ≥ 50 and regressed the number of rare, synonymous 

variants on the probability of a synonymous mutation. Note that regressions were run 

separately for the autosomes with the pseudo-autosomal regions (PAR) of the X 

chromosome, the non-PAR regions of the X chromosome, and the Y chromosome. The 
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expectations produced by these regressions were then corrected for the median depth 

of coverage of the exon using the following equation: 

!"#$ℎ !"#$%&'" !"#$% =  
!"#!$%!& !"#$%,!"#$%& !"#$ℎ ≥ 50

!"#!$%!& !"#$% ∗ (0.089 + 0.217 ∗ ln !"#$%& !"#$ℎ , 1 ≤  !"#$%& !"#$ℎ < 50 
0.089 ∗ !"#!$%!& !"#$%,!"#$%& !"#$ℎ < 1

 

As mentioned above, for exons with a median depth < 1, we set both the observed and 

expected counts to 0. 

 

Likelihood ratio tests to define regional constraint 

Using the observed and expected counts for the 18,466 canonical transcripts, we 

searched for significant breaks between exons that would split the transcript into two or 

more regions with varying levels of missense depletion. We chose to use exons in these 

analyses for three main reasons: (1) the size of ExAC does not allow for base pair 

resolution so we must aggregate variant counts; (2) exons are a natural biological unit 

which are transferred between transcripts; (3) protein domain information, while ideal, is 

missing for many genes and we wanted an approach that would be applicable to all 

genes. 

We assume that observed counts should follow a Poisson distribution around the 

expected number. We defined the null model—no regional variability in missense 

depletion—as the model where the overall fraction of expected missense variation 

observed (!) for the transcript is used as the expectation for all segments. We then 

employed a likelihood ratio test to compare the null model with an alternative model 

where expectation was ! for each specific segment. Given that the alternative model 

should always have a better fit than the null, we require a χ2 above a given threshold to 

establish significance. 
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We used the following general formula to determine the significance of a break 

that would split a transcript into segments A and B: 

!! = !"#$ !"#!, !"#! ∗ ! ∗ !"#$(!"#! , !"#! ∗ !) 

!! = !"#$ !"#!, !"#! ∗ !! ∗ !"#$(!"#! , !"#! ∗ !!) 

!! = 2(!"#(!!)− log (!!)) 

Where ! is the fraction of expected variation observed across all segments in the 

transcript; !"#! is the observed number of missense variants in segment A; !"#! is the 

expected number of variants in segment A; !! is the fraction of expected variation 

observed only for segment A; !"#! is the observed number of missense variants in 

segment B; !"#! is the expected number of variants in segment B; !! is the fraction of 

expected variation observed only for segment B; and !"#$ denotes the Poisson 

likelihood. 

For the purposes of this method, all exons or sections with more observed 

variants than expected were assigned ! = 1 since we were looking for variation in 

missense depletion. In addition, exons or sections with zero observed variants were 

considered to have one variant to prevent ! = 0. 

We first searched for a single break in between exons that would significantly (χ2 

≥ 10.8, p < ~10-3) better model the transcript’s data than the null model. If multiple 

significant breaks between exons were found, we took the best break as defined by the 

χ2 value. If a significant break was found, we searched for a second break. This process 

was repeated until the best break between exons did not significantly improve on the 

model (χ2 < 10.8). If a transcript had no significant single break, we searched for two 

breaks at a time, requiring a χ2 ≥ 13.8 (p < ~10-4) to indicate significance. Those 
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transcripts with χ2 < 13.8 were considered to show no evidence of regional variability in 

missense depletion, and were left intact. The general process is depicted in Figure 5.1. 

 
Excess of missense depleted coding sequence 

For all coding segments (both full transcripts and the regions of transcripts), we 

plotted the fraction of expected variation observed (γ; Figure 5.2). There is a peak at 

one, indicating that most transcripts and regions have the expected amount of missense 

variation. We expect that natural stochasticity in counts will lead to a distribution of γ 

around 1. Even given this, we see an excess of transcripts and regions that are 

depleted of missense variation. To aid in visualization, we took the distribution of 

transcripts and regions above one and mirrored it (displayed as a dashed line). The 

excess of transcripts and regions with low γ over the mirrored distribution occurs when γ 

< 0.8, particularly below 0.6. We therefore took 0.8 as an arbitrary cut-off between 

regions that are likely missense constrained (γ ≤ 0.8) and those that have no evidence 

of missense constraint (γ > 0.8). Within the missense constrained regions and 

transcripts, we further subdivided into four quartiles: [0-0.2], (0.2-0.4], (0.4-0.6], and 

(0.6-0.8]. 

 

ClinVar pathogenic variants 

To test if the genes and regions we identified as missense constrained were 

enriched for established disease-associated variants, we extracted variants from the 

July 9, 2015 release of ClinVar14 that were labeled as “pathogenic” and “likely 

pathogenic”. We specifically focus on those missense variants that fell into a set of 44 

haploinsufficient genes that cause severe disease (n = 440 variants). The 
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haploinsufficient genes were those with sufficient evidence for dosage pathogenicity 

(level 3) as determined by the ClinGen Dosage Sensitivity Map 

(www.ncbi.nlm.nih.gov/projects/dbvar/clingen/; downloaded on May 5, 2015); the 

severity of disease caused by variants in the genes was manually curated. 

 

De novo variants from cases with a neurodevelopmental 

Over the last five years, there have been a large number of exome sequencing 

studies, particularly of neurodevelopmental disorders. We collected the de novo variants 

found in 151 trios with intellectual disability10,11, 1,133 with developmental delay12, and 

356 with an epileptic encephalopathy13. In these studies, there is a large excess of de 

novo loss-of-function variants (> 2 fold enriched; Table 5.3) but also a significant, but 

more modest, excess of de novo missense variants (1.1-1.3 fold enriched). The modest 

enrichment indicates that there is a set of variants contributing to disease (signal), but 

many neutral variants (noise). De novo variants from the unaffected siblings of autism 

cases were used as controls (n = 2,078)15,16. 

 

Confidence intervals around the ratio of case:control de novo variant rates 

 We compared the rate of de novo missense variants in cases compared to the 

rate in controls for the five constraint bins. To determine confidence intervals around the 

point estimates of the ratio of de novo variant rates, we took the natural logarithm of the 

point estimate 

! =  !! !!
!! !!

   , 

and found the standard error 
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!" log ! =  (!! − !!) !!
!!

+ (!! − !!) !!!!
 

using the delta method. The upper and lower bounds are then transformed back to 

obtain the 95% confidence interval 

! exp ±1.96!" !"# !    , 

where !! is the number of case de novo variants; !! is the number of case trios; !! is 

the number of control de novo variants; and !!is the number of control trios. 

 

Creation of missense badness 

We created a metric (missense badness) of the increased deleteriousness of 

specific amino acid substitutions when they occur in constrained regions to identify 

those substitutions that are preferentially eliminated when they occur in missense 

depleted sequence. We identified all possible amino acid-to-amino acid substitutions 

that could occur via a single nucleotide mutation and then tallied the number of these 

substitutions in ExAC with a MAF < 0.1%. The observed and possible were then split by 

whether they occurred in a gene or regions with γ ≤ 0.8 (constrained) or γ > 0.8 

(unconstrained) and we determined the rate of possible substitutions observed for both 

groups. While we observed a higher rate of possible substitutions observed in the 

unconstrained regions, we noticed that synonymous changes in isoleucine and those in 

phenylalanine did not follow this pattern. 

We used the median fold difference of all synonymous substitutions as a floor 

(set to 0) and the median of all nonsense substitutions as a ceiling (set to 1) and 

normalized the missense fold differences to create missense badness. We find a high 
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correlation between missense badness and other amino acid substitution matrices (r = -

0.6327 for BLOSUM and 0.5255 for Grantham scores (Figure 5.7). 

 

Creation of MPC, a composite missense deleteriousness score 

We used logistic regressions to determine which of five deleteriousness metrics 

was best at separating benign from pathogenic missense variants. The metrics we 

compared were the missense depletion of the region in which the variant was found (γ), 

missense badness, Polyphen25, BLOSUM9, and Grantham scores8. Our benign variants 

were missense variants with a MAF > 1% in ExAC (n = 93,238 variants). The 

pathogenic variants were ClinVar14 missense variants found in haploinsufficient genes 

that cause severe disease (n = 1,674). The best single predictor of missense 

deleteriousness was the missense depletion (γ) of the region in which the variant was 

located (Table 5.5). 

As the metrics provide complementary information, we used nested models to 

determine the best composite score starting with missense depletion (γ). Missense 

badness and Polyphen2 significantly added to the composite predictor, but BLOSUM 

and Grantham did not. We therefore tested the combination of the three significant 

metrics and all possible interactions between them. The best model included all three 

scores and the interaction between γ and missense badness as well as the interaction 

between γ and Polyphen2 (Table 5.6). 

We used the best regression to predict scores for all benign and pathogenic 

variants. In order to make more easily interpretable numbers, we transformed the raw 

score (RS) 
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−!"#!"
!!"#$%# <  !"

!!"#$%#
   , 

where !!"#$%# is the number of benign variants with a raw score less than RS and 

!!"#$%# is the total number of benign variants. We refer to the final composite score as 

MPC. Since there are ~91k benign variants that had information for all three metrics, the 

highest MPC is ~5. 

MPC contains three mostly orthogonal pieces of information for each missense 

variant: the missense depletion (γ) of the region in which the variant is found; the 

deleteriousness of the specific amino acid substitution; and the Polyphen2 score, which 

incorporates multiple lines of evidence (phylogenetic, structural, etc.) to determine 

deleteriousness of the variant. 
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The main goal of this thesis was to develop methods and tools to better 

understand rare protein-coding variation, especially within the context of interpreting 

such variation in disease. To that aim, we built a pipeline to robustly identify de novo 

variants from sequencing data; created a sequence-context based model of mutation; 

identified genes that were intolerant of missense and loss-of-function variation; and 

found regions of missense intolerance within genes. 

 

Summary of results 

Identifying de novo variation 

In the study of de novo variation, it is especially important to be confident in the 

genotype calls of all members of the parent-child trio. As described in Chapter 2, we 

determined a set of key parameters to consider when identifying de novo variation: (1) 

the genotype likelihoods provided by the genotyping software, (2) the relative number of 

reference and non-reference sequencing reads, and (3) the depth of sequencing 

coverage. The second parameter was particularly critical as we found that the most 

likely explanation for a falsely called “de novo” variant was missing a heterozygous 

genotype in one of the parents. 

As an additional improvement to our de novo identification pipeline, we used the 

allele frequency in a reference population of a potential de novo variant to compare the 

probability that the variant was truly de novo versus the probability of missing a 

heterozygous genotype in one of the parents. The probability of being a true de novo 

variant, in combination with the aforementioned parameters, was used to separate 

variants into three categories in terms of the likelihood of validating as de novo. We 
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found that the class with the strongest evidence of being de novo had a high rate of 

molecular validation (97.3% for single nucleotide changes and 92.3% for indels1; Table 

2.3). Our final workflow is a sensitive and specific method to identify de novo variation 

from sequencing data of trios. 

 

Creating a mutational model 

We created a sequence-context based mutational model in order to rigorously 

evaluate the observed burden of de novo variants within cases with an autism spectrum 

disorder (ASD; Chapter 3). We first created a mutation rate table using intergenic single 

nucleotide polymorphisms (SNPs) from the 1000 Genomes Project2 and applied it to the 

coding region of the genome to create a per gene probability of mutation, which we split 

by mutational class. The raw probabilities of mutation were corrected for only two 

factors: the depth of coverage at the site and the regional divergence between humans 

and macaques. The final probabilities of mutation formed the basis of a statistical 

framework to evaluate de novo variant burden globally, for sets of genes, and on a per-

gene basis. 

 We also used the mutational model to predict the expected number of rare (minor 

allele frequency (MAF) < 0.1%) variants in the National Heart, Lung and Blood 

Institute’s Exome Sequencing Project (ESP; n = 6,503)3. The high correlation between 

the observed and expected number of rare synonymous variants per gene (r = 0.940) 

supported that predictions of both missense and loss-of-function variants would also be 

accurate. We created a signed Z score to evaluate any deviation of observed from 

expected counts. While we were underpowered to analyze loss-of-function variation, we 
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found 1,003 genes that were significantly depleted of the expected amount of missense 

variation (missense Z score > 3.09). Given that the model is selection neutral, these 

deficits are consistent with evolutionary constraint. These constrained genes were 

enriched for established dominant and haploinsufficient disease genes. 

We then used the statistical framework to analyze the de novo variants identified 

in 1,078 trios where the child had an autism spectrum disorder (ASD)4-8. We found both 

a global excess of de novo loss-of-function variants (1.57 fold enriched; p = 2.1x10-7; 

Table 3.1a) and far more transcripts harboring loss-of-function variants than expected 

(p < 0.001). An important aspect of our model was to determine the significance of 

burden within single genes: in this dataset, we found two genes (DYRK1A and SCN2A) 

had more de novo loss-of-function variants than expected at a significance threshold of 

10-6 (Table 3.2). The targets of FMRP9 and the missense constrained genes defined 

above were two gene sets that were significantly enriched for de novo loss-of-function 

variation in ASD cases (>2 fold; p < 10-4 for both). By contrast, the de novo variants 

from 343 unaffected siblings had no significant enrichments in any category. 

All analyses were repeated using the de novo variants found in 151 trios with 

intellectual disability10,11. The global enrichment of de novo loss-of-function variants was 

greater for intellectual disability (0.24 de novo loss-of-function events per exome; p = 

6.5x10-7; Table 3.4a) and, even though there were fewer cases, there were three genes 

with a significant burden of de novo loss-of-function and missense variants (Table 

3.4c). Given these results, we separated the ASD samples with IQ ≥ 100 from the rest 

of the cases. All of the significant signals in ASD—global enrichment of de novo loss-of-

function variants, excess of genes with multiple such variants, and the enrichment of 
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such variants in the targets of FMRP and constrained genes—were not observed for the 

ASD cases with IQ ≥ 100, indicating that the genetic architecture of ASD varies between 

low and high IQ cases. 

Finally, we found that the distributions of missense Z scores of genes harboring a 

de novo loss-of-function variant in ASD or intellectual disability cases were significantly 

shifted towards higher constraint (Wilcoxon p < 10-6 for both; Figure 3.3). The 

distribution for genes with a de novo loss-of-function variant in an unaffected individual 

was no different from the overall distribution of missense Z scores. Together, these 

results indicated a significant role of de novo loss-of-function variation in ASD etiology, 

and that the constrained genes we identified were medically relevant. 

 

Identifying genes intolerant of loss-of-function variation 

The Exome Aggregation Consortium (ExAC) dataset, which contains protein-

coding variation for 60,706 reference individuals, provided us the opportunity to 

investigate loss-of-function constraint (Chapter 4) and intolerance to missense variation 

within transcripts (Chapter 5). To identify constrained genes using the ExAC dataset, we 

slightly modified the mutational model to incorporate an empirically defined, and ExAC-

specific, depth of coverage adjustment. While the Z score was well powered for 

studying missense constraint, the loss-of-function Z score was highly correlated with the 

number of coding bases in a transcript (r = 0.5697; Figure 4.10a). We therefore created 

pLI—the probability of being loss-of-function intolerant—which identified 3,230 genes 

that are extremely depleted of loss-of-function variation (pLI ≥ 0.9). Established 

haploinsufficient disease genes are enriched in the high pLI tail, as are dominant 
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disease genes12,13, and genes found to be essential in cell culture14 (χ2 p < 10-50, 10-30, 

and 10-23, respectively; Figure 4.3). 

The most loss-of-function intolerant genes compromise core biological 

processes, such as members of the spliceosome and proteasome complexes. The 

missense Z score and pLI also show a relationship with the number of protein-protein 

interaction partners associated with the gene: those genes with many protein-protein 

interaction partners are more likely to be constrained (t-test p < 10-8 for missense Z and 

p < 10-41 for pLI). Additionally, we found that the most highly constrained missense and 

loss-of-function genes are expressed at higher levels and in more tissues, are depleted 

of eQTLs15, and are enriched for GWAS loci16. 

 

Searching for patterns of missense constraint within genes 

The size of the ExAC dataset also allowed us to investigate patterns of regional 

missense constraint within genes given the large expected number of missense variants 

per genes (average 170; median 127). We used the observed and expected missense 

variant counts per exon and applied a nested likelihood ratio test to identify significant 

breaks in between exons that split the gene into regions with varying levels of missense 

depletion. Overall, 2,738 genes (14.8%) had evidence of regional missense constraint 

with the majority of these being split into only two regions (Table 5.1). 

Across all genes and regions of genes, those with 60% of less of their expected 

missense variation contained the majority (85%) of the ClinVar17 pathogenic variants in 

severe haploinsufficient disease genes. These regions were also enriched for de novo 

missense variants in cases with a neurodevelopmental disorder10,11,18,19, but not for de 
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novo variants found in control individuals1,20 (Figure 5.4). The importance of these 

regions was further supported by the fact that the rate of de novo missense variants in 

cases with a neurodevelopmental is significantly higher than the rate seen in controls 

(2-4 fold enriched; Figure 5.5). Overall, we find 0.22 de novo missense variants per 

case exome and 0.07 per control exome in these missense-depleted regions. By 

contrast, all other regions show no difference in the number of events per exome (0.51 

for cases compared to 0.50 in controls). 

We used the total number of observed and possible amino acid substitutions in 

constrained and unconstrained regions to create missense badness, a measure of the 

increased deleteriousness of specific amino acid substitutions when they occur in the 

constrained regions of the exome. Missense badness is correlated with both BLOSUM21 

and Grantham22 scores (r = -0.6327 and 0.5255, respectively; Figure 5.7) and was able 

to separate pathogenic variants from ClinVar17 from benign variants (MAF > 1% in 

ExAC) better than the two other metrics. 

The most accurate single predictor of whether a variant was pathogenic or 

benign, however, was the missense depletion of the region. Given that missense 

badness and missense depletion are capturing orthogonal pieces of information, we 

chose to find the best combination of a number of scores. The best joint metric included 

missense depletion, Polyphen2 score23, and missense badness. MPC worked better 

than all other single metrics or combinations at separating pathogenic and benign 

missense variants. 
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Improvements and future directions 

Better processing of challenging variants 

Our de novo variant identification workflow has proven to be both sensitive and 

specific, but it currently does not process sites with more than three alleles (one 

reference and two non-reference). As more individuals are sequenced and included in 

the same datasets, the number of multi-allelic sites will increase and therefore the script 

should be updated. We are also limited by the quality of variants provided by the 

genotyping software. In particular, variant calls on the Y chromosome as well as indels 

could be much improved. Therefore, our de novo results are less reliable for both 

chromosome Y variants and indels. 

 

Accounting for indels and methylation status of CpG sites 

Our inability to reliably identify indels in sequencing data has also limited the 

field’s ability to model indel mutation rates. A major limitation of the mutational model 

used throughout this thesis is that it lacks the ability to predict the expected number of 

indels—specifically frameshift variants—per gene. In order to study frameshift variants 

in our de novo data, we estimated the rate based on the rate of nonsense variants. 

While this estimate was useful for the de novo variant studies, we knew it was not 

accurate enough to predict the expected number of frameshift variants in reference 

populations such as ExAC, and thus we had to exclude all frameshift variants from our 

calculations of loss-of-function constraint. 

While our mutational model accurately predicts the number of rare synonymous 

variants per transcript in ExAC (r = 0.9776), we are also aware that there are other 
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improvements that could be made to the mutational model itself. Two other factors that 

could influence mutation rate that we did not incorporate into the mutational model are 

the methylation status of CpG sites in the male germline and the effects of transcription-

coupled repair (TCR). Cytosines in CpG dinucleotides are sometimes methylated and 

can then deaminate, leading to a C>T (G>A) transition. Transitions at methylated CpGs 

occur at a much higher rate than all other mutations, including transitions at 

unmethylated CpGs. Our model of mutation could therefore be improved by splitting 

CpGs by their methylation status in the male germline (where de novo variants are most 

likely to arise) and using separate mutation rates for the two types. 

Another potential improvement to the model would be accounting for TCR, which 

is a DNA damage repair mechanism that corrects mutations on the template strand of 

transcribed genes via nucleotide excision. A signature of TCR is strand asymmetry for 

mutations, which is especially prominent when studying transitions that result from CpG 

methylation and then deamination24. Our early investigations into TCR indicated that it 

did not have a large influence on the predictions of our model, but strand asymmetry 

has been seen in de novo variants from whole genome sequencing25, indicating that it 

may be important to revisit. 

 

Probabilities of mutation for further split by mutational class 

It would be useful to have the probabilities of mutation per gene split by more 

than simply mutation type. As an example, we could split the probability of a missense 

mutation by the three Polyphen223 categories (benign, possibly damaging, and probably 

damaging). We would specifically like to have the breakdown of high confidence versus 
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low confidence loss-of-function variants, as defined by LOFTEE 

(http://www.github.com/konradjk/loftee). This work is currently underway and will 

hopefully be released with the second release of the ExAC dataset. 

 

Incorporating allele frequency information for loss-of-function constraint 

The next wave of the ExAC dataset is predicted to have nearly 100,000 

individuals as part of the reference population (D.G. MacArthur, personal 

communication) and would provide greatly increased power to detect constrained 

genes. For pLI, there are 4,621 (25%) transcripts that have a pLI between 0.1 and 0.9 

that we consider to be uninterpretable due to their low expected loss-of-function counts 

(mean of 11.47; median of 8.25). Incorporating information from LOFTEE and removing 

low confidence variants, such as those that occur in the last 5% of a transcript, would 

also improve our loss-of-function constraint analyses. Additionally, a few of our high pLI 

genes have common (MAF > 0.1%) loss-of-function variants. A future improvement to 

the method may also include the combined allele frequency of all loss-of-function 

variants in the transcript. The largest drawback of this potential addition would be 

adding in common variants that appear to be loss-of-function, but do not have the 

predicted effect on the protein. This issue may be mitigated, in part, by only using high 

confidence LOFTEE variants. 

 

Moving regional constraint beyond exon boundaries 

We have many more analyses planned for the regional missense constraint 

work. We know that our method to search for regional constraint is limited by exon 



	

	 178 

boundaries. As depicted in Figure 5.3, 39 of the 43 pathogenic missense variants from 

ClinVar17 in CDKL5 are found in exons 1-9, which we considered constrained. While 

one of the remaining variants falls in the middle of the unconstrained exons (10-20), 

there are three pathogenic variants that lie within 50 base pairs of the beginning of exon 

10, which is part of the unconstrained region in CDKL5, and are all within the kinase 

domain that extends 66 base pairs into that exon. We will be updating our method to 

detect regional constraint so that, once it finds a significant break in between two exons, 

we search amino acid by amino acid in the two nearby exons to find the best way to 

split the gene. 

We are also working on a way to search for constraint of non-linear sequences. 

The current sample size of ExAC does not permit the evaluation of constraint on single 

bases and would require many to be combined to achieve the necessary power. 

However, the non-linear approach would allow us to interrogate constraint of 3D 

structural features of the protein, such as the amino acids in binding pockets. 

 

Continued testing of MPC 

Finally, our score of missense deleteriousness, MPC, that accounts for regional 

missense depletion, Polyphen223, and missense badness still needs to be tested 

against other variant prioritization tools, such as CADD26. We would also like to test how 

well it separates pathogenic from benign variants specifically in regions that have 40-

60% of their expected missense variation. This is an interesting set of coding 

sequences to investigate since it contains a lower signal to noise ratio than sequence 

with < 40% of its expected missense variation. 
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Final thoughts 

Throughout this thesis, we have sought to understand the rate and distribution of 

rare protein-coding variants. Our sequence-context based mutational model proved 

useful both to analyze the burden of de novo variation in trio sequencing studies and to 

identify genes and regions within genes that are intolerant of nonsynonymous variation. 

Overall, we have established methods to prioritize medically relevant variation with the 

goal of separating it from the vast amounts of relatively neutral variants also identified in 

sequencing studies. 

The tools and metrics we created have become widely adopted within the field. 

The de novo identification pipeline and framework to rigorously evaluate de novo 

variation have been used in studies of schizophrenia, congenital heart disease27, and in 

the children of testicular cancer survivors28, among others. Beyond de novo studies, the 

probabilities of mutation we generated are being used outside of the context of de novo 

variation29,30 and the missense Z scores created from the ESP dataset are being 

applied as a metric of genic intolerance to variation31-33. Finally, the constraint and pLI 

scores are available on the ExAC web browser (http://www.exac.broadinstitute.org) and 

for free download in order to aid the community in variant prioritization. 
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Explanation of the appendix 

Given that work presented in Chapters 2 and 3 have already been published, I 

have included the final versions of the main articles in this appendix. Their respective 

supplements can be found online. 
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