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Abstract

Sequencing exomes—the 1% of the genome that codes for proteins—has
increased the rate at which the genetic basis of a patient’s disease is determined.
Unfortunately, when a patient does not carry a well-established pathogenic variant, it is
extremely challenging to establish which of the tens of thousands of variants identified
in that individual is contributing to their disease. In these situations, variants must be
prioritized to make further investigation more manageabile. In this thesis, we have
focused on creating statistical frameworks and models to aid in the interpretation of rare
variants and towards establishing gene-level metrics for variant prioritization.

We developed a sensitive and specific workflow to detect newly arising (de novo)
variants from exome sequencing data of parent-child trios, and created a sequence-
context based mutational. This mutational model was the basis of a rigorous statistical
framework to evaluate the significance of de novo variant burden not only globally, but
also per gene. When we applied this framework to de novo variants identified in patients
with an autism spectrum disorder, we found a global excess of de novo loss-of-function
variants as well as two genes that harbored significantly more de novo loss-of-function

variants than expected.



We also used the mutational model to predict the expected number of rare (minor
allele frequency < 0.1%) variants in exome sequencing datasets of reference
individuals. We found a significant depletion of missense and loss-of-function variants in
a subset of genes, indicating that these genes are under strong evolutionary constraint.
Specifically, we identified 3,230 genes that are intolerant of loss-of-function variation
and that set of genes is enriched for established dominant and haploinsufficient disease
genes. Similarly, we searched for regions within genes that were intolerant of missense
variation. The most missense depleted 15% of the exome contains 83% of reported
pathogenic variants found in haploinsufficient disease genes that cause severe disease.
Additionally, both gene-level and region-level constraint metrics highlight a set of de
novo variants from patients with a neurodevelopmental disorder that are more likely to
be pathogenic, supporting the utility of these metrics when interpreting rare variants

within the context of disease.
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Chapter 1

Introduction



Overview

A primary goal of medical genetics is to associate genetic variants with risk of
disease. This goal is impeded by a variety of complicating factors, such as the vast
amount of genetic variation found in each individual' and the fact that such variation can
impact as much sequence as whole chromosomes to as little as single bases.
Additionally, the genetic basis of human diseases varies in the complexity of its
architecture: some diseases are monogenic and caused by high impact variants. These
disorders are for the most part rare, and the one-to-one relationship between disease
and disruption of a single gene often allows for identification of the risk locus in a small
number of families. When the relevant gene has been identified, then specific variants
can be established as pathogenic and screened for in new patients.

Common diseases, however, have a far more complex genetic architecture and
typically involve variants spread across the genome, each of which has a small effect on
the phenotype (polygenicity). The polygenicity of common diseases makes it much
more challenging to identify specific genetic risk factors; association analyses often
require tens of thousands of affected and unaffected individuals (e.g. >36,000 cases
with schizophrenia and >113,000 controls)?. The small average effect size of any
identified risk-contributing variant does not typically permit the nomination of a primary
causal event.

Even when studying a disease that may be influenced by stronger acting
variants, determining the specific variant or set of variants that are contributing to a
patient’s disease is challenging, particularly when the patient does not carry a well-

established genetic risk factor. Unfortunately for these types of activities, each individual



harbors tens of thousands of variants (single base to larger structural changes).
Focusing in on those variants that alter the coding sequence leaves thousands to
examine, even if only considering alleles that are rare in the general population.
Therefore, it is critical to be able to prioritize variants that are more likely to be
contributing to disease. A primary focus on this thesis has been to establish methods to

aid such prioritization.

Tying genetic variation to disease

It has long been observed that the frequency of some diseases in families is
associated with the family members’ degree of relatedness, which suggests that the
disease has a genetic component. A measure of the degree to which inherited genetic
variation is contributing to disease is referred to as heritability>. More specifically,
heritability is the amount of phenotypic variability that can be explained by inherited
genetic variation. Estimates of heritability can come from many sources, but one of the
classical approaches is to compare the concordance of the disease in monozygotic
twins versus the concordance seen in dizygotic twins®. Since monozygotic twins share
nearly 100% of their genetic material and dizygotic twins only ~50%, a highly heritable
trait would be expected to have a much higher concordance rate in monozygotic twins.
Of note, most traits are influenced by both genetic and environmental factors;
comparing concordance in twins is designed to control for most of the environmental
influence.

Heritability, however, does not provide information about specific loci that are

contributing to disease etiology. In order to find risk loci, researchers have taken a



variety of approaches, limited partially by available technology. One of the earliest
approaches that could be used to identify risk loci was linkage mapping®?®. Linkage
mapping relied on collecting families with many affected and unaffected members. To
map, sites across the genome were used as marks of all variation nearby and the
segregation of these markers in the family were compared to the segregation of the
disease. Markers near areas of the genome that contribute to disease should therefore
follow the inheritance of the disease. Linkage mapping is best suited to diseases that
are caused by large effect variants that occur in a small number of genes, which makes
the technology poorly suited for complex trait association.

For diseases caused by many loci of small effect, genome-wide association
studies (GWAS)®*'° are performed to find the contributing variants. In GWAS, sites of a
common variation in the population are treated as markers of nearby variation, much
like linkage mapping. However, instead of using families, GWAS use large numbers of
unrelated affected and unaffected individuals and search for variants that are seen more
often in the affected than unaffected individuals. Given that these loci individually have a
small impact on risk, they are still seen commonly in unaffected individuals. GWAS are
also affected by the polygenicity of a disease; for those diseases with many contributing
loci, very large cohorts of affected and unaffected individuals are needed to identify
specific risk variants.

There are diseases that have a strong genetic component, but whose
contributing variants would be difficult to find in either linkage or association studies.
These are disorders that are not often passed on because they are extremely severe

and affected individuals either do not survive to maturity or do not have children of their



own. These diseases are therefore often influenced by newly arising (de novo) alleles.
An example of such a disease is Hutchinson-Gilford progeria syndrome, a rare disorder
in which affected individuals show signs of early aging, such as hair loss and
scleroderma'. It is caused by de novo missense variants in LMNA with the most
common risk allele leading to the activation of a cryptic splice site and creation of a
truncated protein product of the impacted gene copy'?. These alleles are never passed
on from an affected individual to their child because individuals with progeria die at an

average age of 13",

De novo variation and disease

Beyond examples like Hutchinson-Gilford progeria, de novo variation can also
contribute to diseases that are not always lethal in childhood. Achondroplasia, a form of
dwarfism, is caused by heterozygous (only one copy of the gene being affected)
disruptions of FGFR3'*'*. While the disease and risk allele can be inherited from an
affected parent, most cases are caused by a de novo event'.

It was noted in the early 1900s that sporadic cases of achondroplasia occurred
more often in the last-born child'® and it was later shown that a higher rate of
achondroplasia is specifically associated with advanced paternal age''’; a similar trend
has been seen for other disorders as well'®. Overwhelmingly, the causal allele was
paternal in origin; in the case of achondroplasia, all 40 cases tested by Wilkin and
colleagues were on the paternally inherited chromosome'®. These results indicated not

only that there is a higher mutation rate in males, but suggested that the number of

mutations increases as the father ages. Germline mutations are introduced during DNA



replication in mitosis and the first half of meiosis. The female germline has 22 rounds of
mitosis and 1 round of meiosis during development to produce an egg'®%®. The male
germline, however, undergoes far more mitotic divisions owing to lifelong sperm
production, thereby having more opportunities to mutate. Additionally, the number of
replication cycles affecting a particular sperm is higher for older males. It has been
estimated that a 20-year old male has had approximately 150 rounds of replication
where a 40-year old has had 610'®?°. The increased number of mitotic divisions in the
male germline, however, does not fully explain the increased rate of sporadic
achondroplasia among the children of older fathers?”.

De novo variation also contributes to more complex disorders, such as
schizophrenia and autism spectrum disorder, where no single de novo allele is likely to
lead to a patient’s disease. As these disorders involve a large number of contributing
loci, it is more challenging to define the role de novo variation plays. In particular,
determining which de novo variants, if any, are contributing is complicated by non-
disease associated de novo variants: every individual is expected to carry 70-100 de
novo variants across their genome®*?. Since the de novo variant signal is likely to be
spread across many genes, studying de novo variation in these disorders requires

careful consideration of the mutation rate.

The role of sequencing technology
Linkage and association studies rely on the ability to determine the allele at a
specific locus, but historically a relatively limited number of loci were measured because

sequencing and genotyping were slow and expensive. The advent of massively parallel



sequencing technologies opened the door to quickly and affordably interrogate variation
at many locations and as small as single base changes.

Whole genome sequencing within families successfully identified risk loci for
Charcot-Marie-Tooth?” and severe hypercholesterolemia®®, but in both cases the risk
loci resided in the exome — the 1% of the genome that codes for proteins. Since
understanding the effects of non-coding variation remains a major challenge to the field,
much of the sequence data produced in these studies is considered uninterpretable.
The creation of exome-capture kits allowed researchers to sequence only coding
segments, which is faster and cheaper than sequencing the whole genome, thereby
accelerating the discovery of protein-coding disease-associated variation?**°.

Early successes of exome sequencing studies came from rare, severe, and likely
monogenic disorders, such as Kabuki syndrome®!, Schinzel-Giedion syndrome®, and
Miller syndrome™?. In the case of Kabuki syndrome, the nonsynonymous variants in
KMT2B (previously known as MLL?2) that were considered causal were often de novo in

|31

the affected individual® . These early studies proved that sequencing technology is

especially critical for identifying de novo variation.

Using evolutionary conservation to prioritize variants

When analyzing the thousands of protein-coding variants within a patient, it is
critical to prioritize variants for further investigation. One way to do so is to focus on
variants that occur in genes that have been buffered against mutation across
evolutionary time. The Human** and Mouse®® Genome Projects — whose aims were to

create reference genomes for the species — allowed large-scale comparisons of genetic



sequence in between species. The similarity (conservation) of sequence between
humans and mice was first used to aid in the annotation of the genomes: highly
conserved sequences were considered likely to be functional elements. Sequence
homology, therefore, helped define coding and regulatory sequences within both
species®°. The level of conservation of sequence between species has become a
common metric to indicate the importance of the sequence. Particularly, once gene
annotations were defined, a plethora of tools were built to leverage sequence homology
to predict the likely deleteriousness of specific variants (e.g. SIFT*®, GERP?,
Polyphen23®).

Additionally, reference sequences of various species, and the identification of
polymorphisms within the species, allowed estimation of evolutionary selection
pressures on genes (both positive and negative). The classical approaches rely on
comparing the rates of nonsynonymous and synonymous substitutions (e.g. dn/ds,
Ka/Ks)***. These methods were also used to measure the strength of the selection,
often given as a selective coefficient (s) where s = 0 indicates neutrality and s = 1
lethality***®.

While successful at identifying genes under the influence of weak negative
selection (selective coefficient [s] < 10), these methods rely on the observation of
variation within the population. Severely deleterious alleles (s > 10%), however, will
never become polymorphisms within a population. As modeled by Zuk et al*’, when s =
107?) the combined allele frequency of variants with that selective coefficient is
approximately 0.0001, independent of the demographic history of the population studied

(Figure 1.1, reproduced from the paper). These simulations reinforce that alleles that



contribute to traits which greatly reduce fecundity (reproductive rate) will never become

common enough in the population to be included in conservation-based metrics.
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Figure 1.1. The relationship between combined allele frequency and selective
coefficient (s) for various demographic models. As s increases, indicating stronger
negative selection against those allele, the combined allele frequency of all variants with
that s becomes smaller. This is supplementary Figure 1 from Zuk et al*’.

In order to determine how likely a variant, especially a de novo variant, seen in a
patient is likely to be, we needed a measure of deleteriousness that captured larger

values of s. In this thesis, we propose using the depletion of nonsynonymous variation

within the human population as a reflection of the deleteriousness of variants that arise



within the gene. We are aided by recent large-scale sequencing efforts of reference

populations, which provide power to determine significant depletion of variation.

Genetic basis of autism spectrum disorder

Autism spectrum disorders (ASDs) are a set of severe neurodevelopmental
disorders that arise early in childhood and are characterized by impaired social
interactions and communication, as well as restricted interests and repetitive behaviors.
It has been recently estimated that the prevalence of ASDs in the United States is over
1%, with a notable excess of male cases*®. The biological bases of ASDs are currently
unknown.

ASDs are a class of disorders unlikely to show a strong evolutionary signature
due to the strength of selection against the disorder. One way to measure how strongly
selection is acting on a particular disease is to investigate the reproductive rate
(fecundity) of affected individuals. In a study of a birth cohort in Sweden, Power and
colleagues found that patients with ASD had dramatically reduced fecundity: male
patients had 75% fewer children than their unaffected relatives, indicating very strong
selective constraint (high s). Females showed a similar, but less severe, pattern
(fecundity ratio 0.48)*°.

Various studies have established that there is a substantial genetic component to
ASD risk. Estimates of the heritability of ASD are typically between 60 and 80%,

t50

indicating a large genetic component™. Unfortunately, research to find the genetic basis

of ASDs has not been particularly successful.
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Early linkage mapping efforts in ASD identified a very limited set of risk loci due
to the highly polygenic and heterogeneous nature of ASD risk. Since linkage mapping
works best for disorders caused by large-effect variants that fall into a small number of
genes, linkage mapping successfully identified the causal loci for syndromic forms of
ASDs, such as Fragile X syndrome®" and Rett syndrome®2. While linkage also identified
a few universally accepted risk loci (NLGN3%, NLGN4X>*, NRXN1**, and SHANK3), it
mostly lead to long lists of candidate genes, whose association to ASD did not replicate
in subsequent studies. Similarly, multiple GWAS of ASD did not report significant
results, or found loci that never replicated®®°®. The association studies were limited
small sample size in conjunction with the fact that each risk variant has a very small
effect on phenotype. This limitation will be overcome when large enough samples are
aggregated and jointly analyzed.

The most successful early studies of the genetic basis of ASD were those that
found associated copy number variants (CNVs)**®*. Researchers identified several
CNVs that were strongly associated with risk for ASD (listed in Table 1.1), such as
duplications and deletions in the 16p11.2 region®*®%*° These CNVs had larger effect
sizes than are typically found for variants identified via GWAS and were often de novo
in the affected individual®®®%%*_Given the reduced fecundity of individuals with ASDs,
it is not surprising that large effect variants are often de novo: these variants cannot be

maintained in the population for multiple generations.
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Table 1.1. Recurrent de novo copy number variants associated with autism spectrum
disorder (ASD). The “Del vs Dup” column lists whether duplications, deletions, or both in
the locus are associated with ASD. Size is given in megabase pairs (Mbp). Both the
size of the region and the number of genes are approximate.

Region Size (Mbp) | Genes | Del vs Dup References
1921.1 1.3 14 Both Sanders 2011%?
7911.23 1.4 22 Duplication | Levy 2011%%; Sanders 2011°2
Levy 2011°% Marshall 2008°%;
15911.2-13.1 4.9 12 Duplication | Pinto 2010°%"; Sanders 2011°;
Sebat 2007°°

Marshall 2008%°: Sanders
2011%2: Sebat 2007

Levy 2011°% Marshall 2008°;
16p11.2 0.6 25 Both Pinto 2010°%"; Sanders 2011°%;
Sebat 2007°%3; Weiss 2008°%*
Marshall 2008°°; Pinto 2010°";
Sanders 20112

15913.2-13.3 1.5 6 Both

22q911.2 2.5 56 Both

In light of these successes and the availability of exome sequencing data, our
group began to study de novo single nucleotide (SNV) and insertions and deletions
(indels) in ASD cases. A previous publication had sequenced 20 parent-child trios, but
could not implicate any specific gene or pathway in ASD etiology®®, an unsurprising
result given the high polygenicity and locus heterogeneity of ASDs. As described in

67-73

Chapter 3 and many subsequent publications® ™", it took analyzing many more trios to

identify a significant, but minor®, role of de novo variation in ASD.

Summary
The ability to sequence patient genomes has allowed researchers to study
variation with base-pair resolution. Sequencing, however, identifies thousands upon

thousands of variants that need to be filtered in order to find those that may be

12



contributing to a patient’s disease. For this thesis, we wanted to create methods and
tools that could be used to aid in such prioritization of variants.

We first determined a way to sensitively and specifically identify de novo variants
from family sequencing studies (Chapter 2). In order to properly analyze these results,
we created a mutational model and statistical framework to rigorously evaluate
excesses of such variation that may be observed in a patient population (Chapter 3). In
particular, we established an important, but modest, role for de novo loss-of-function—
and to a lesser extent missense—variation in ASD.

Given the modest enrichment of de novo variation in ASD cases, we needed a
way to identify those variants that were more likely to be contributing. We used the
mutational model we created to identify genes that are intolerant of nonsynonymous
variation. In particular, using a large exome sequencing data set, we found 3,230 genes
that appear to be extremely loss-of-function intolerant to the point of near
haploinsufficiency — meaning that heterozygous loss-of-function variants in these genes
should cause disease (Chapter 4). These highly loss-of-function intolerant genes
contain the majority of the signal for de novo loss-of-function variants found in ASD
cases as well as cases with other neurodevelopmental disorders.

We also hoped to explain the modest excess of missense variation in ASD cases
by searching for specifically missense constrained regions within genes. Using the
intolerance to missense variation, as well as variant level predictors of deleteriousness,
we created a score to predict how likely a missense variant is to be deleterious and
show that is separates signal from noise in the de novo missense variant results from

ASD cases (Chapter 5).
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In summary, we have developed tools and metrics to better interrogate exome
sequencing data and applied them to substantially clarify the role of rare variation in
ASD risk. These approaches have been adopted by the broader community to both

inform rare variant discovery and patient exome interpretation.
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Chapter 2

Identifying and characterizing de novo variation

This chapter is based on methods reported in:

Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism
spectrum disorders. Nature 485, 242-245 (2012).

De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in
autism. Nature 515, 209-15 (2014).



Motivation

A natural property of DNA is that it spontaneously mutates, which leads to the
creation of new alleles. The mutation rate of single nucleotides is quite low, but still
large enough to expect that any individual will carry 70-100 newly arising (de novo)
single nucleotide alleles not present in the somatic genome of either parent, with
roughly one of these de novo alleles falling into exomic sequence (the 1% of the
genome that encodes protein)'>.

While it has been established that there is a large genetic component to autism
spectrum disorder (ASD), both linkage and association studies had limited success
identifying risk loci. Some of the most fruitful studies came from examining large copy
number variants (CNVs)®"". Researchers identified several CNVs that were strongly
associated with risk for ASD, many of which were de novo in the affected child.
Unfortunately, these CNVs are large and contain many genes, complicating studies to
decipher the underlying biology. As an example, the most-reported CNVs tied to ASD
are deletions in the 16p11.2 region, which span roughly 500-600 kilobases and contain
25 genes”®'%"2 Understanding how these ASD-associated CNVs contribute to disease
is further complicated by both incomplete penetrance and associations to other
neurodevelopmental disorders®'%'""3_All together, these CNVs account for less than
3% of the heritability of ASD, indicating that there is much more to find™.

The development of exome-capture kits, in combination with the falling costs of
sequencing DNA, allowed the study of de novo single nucleotide variants (SNVs) and
small insertions and deletions (indels) found in coding sequence'®. De novo SNVs in

single genes have been tied to a number of rare, severe, and likely monogenic
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disorders'®"". There were also a few studies of de novo variation in more complex traits,
such as schizophrenia, with less success implicating specific risk genes'®"?.
Subsequently, our group and others began to sequence parent-child families
(known as trios) to define the role of de novo variation in ASD and discover genes or
pathways associated with disease risk. While in theory identifying de novo variation
should be straight forward—finding alleles in the child that neither parent has—it is
complicated by such occurrences being rare and looking like genotyping or sample

tracking errors. We therefore needed to establish specific and sensitive quality

thresholds to determine trustworthy candidate de novo events.

Data generation

Identifying de novo variation requires genetic information, specifically sequencing
data, from both parents and their child (a trio). Our earliest work was with the Autism
Consortium, a Boston-based group of collaborators, which collected whole blood or cell
lines from 96 trios. DNA was extracted and sheared into 200-300 base long fragments,
which were then end-repaired, adenylated, and had adaptor oligonucleotides ligated in
preparation for sequencing. PCR amplification with primers specific to the adaptor
oligonucleotides was performed to enrich for fragments with attached adaptors. Exons
were captured using Agilent 38Mb SureSelect v2. After capture, a round of ligation-
mediated PCR was performed to increase the quantity of DNA available for sequencing.
All libraries were sequenced using an lllumina HiSeq 2000 instrument. The data were
processed with the Picard software, which uses base quality score recalibration and

local realignment at known indels?® and Burrows-Wheeler Aligner (BWA)?' to map reads
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to hg19. Variants were called using the Genome Analysis Toolkit (GATK) software for
all trios jointly?>?%. The resulting output was a standard Variant Call Format (VCF) file
containing genotypes for sequenced members of the trios at positions where at least
one individual in the data set had a non-reference allele. All sequencing was performed

at the Broad Institute.

Key parameters to identify de novo variants

We created a Python script to identify candidate de novo variants from
sequencing data with two required inputs: a GATK-generated VCF file that contains the
variant information and a family relation file—often referred to as a pedigree file—that
describes sample relatedness. Our first requirement was that variants passed all of the
standard quality filters of the genotyper (here, the GATK Unified Genotyper), which was
indicated by a PASS in the FILTER field of the VCF. Of the high quality sites, we
focused on those where a child had a heterozygous genotype and both parents were
homozygous reference. Given the small size of the original data set (n = 96 trios), we
assumed that any site where the alternative allele was seen in another individual in the
data set was likely to not be a true de novo and therefore removed such sites from
further consideration?®. This assumption was later dropped (discussed below).

We then sought to remove miscalled genotypes by imposing a threshold on the
observed allele balance (the percentage of non-reference, or alternative, reads). Since
the child should be heterozygous for the alternative allele, roughly 50% of all
sequencing reads at the site in the child should have the alternative allele. There is a

slight reference bias—it is easier to capture sequences with the reference allele than
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the alternative—as well as normal sampling error. Given these two properties, we
allowed the child’s allele balance to be as low as 30%. Additionally, we wanted to avoid
the possibility of a missed heterozygous genotype in the parents and required that their
allele balance be no greater than 5%. Instances where genotypes that appear to
indicate a de novo event, but fail these expected allele balances, can arise from poor
read mapping or biases in data generation but may still lead to confident genotyping
calls if the site has high sequencing depth. We also removed sites where the child’s
read depth was < 10% of the total depth of reads in both parents, which was meant to
remove instances where the child may have been poorly sequenced or, less likely, had
a deletion at the site.

We next explored filtering variants based on the Phred-scaled likelihood (PL) of
the data conditional on the genotype calls. The PL represents —10 * log,,(p), Wwhere p
is the likelihood ratio of each genotype. In the case of a site with a single alternative
allele, a PL is provided for each genotype: PL(AA) for the homozygous reference,
PL(AB) for the heterozygote, and PL(BB) for homozygous alternative. The most likely
genotype is assigned a PL score of 0 and all others are scaled relative to the most likely
genotype. Therefore, a PL of 30 corresponds to the genotype in question being a
thousand times less likely to be the true genotype than the reported most likely
genotype. To determine an appropriate PL filter, we set a threshold of T and required
sites to have a PL = T for the child’s homozygous reference genotype—PL(AA)—and
for the parents’ heterozygous genotypes—PL(AB). The relationship between T and the
number of retained de novo events is depicted in Figure 2.1. As the genotypes become

increasingly confident (greater PLs), the number of de novo events drops until
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plateauing at a PL of ~20-30%3. We therefore set 30 as our required threshold, T, when

evaluating de novo events.
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Figure 2.1. The relationship between the genotype likelihood threshold (Phred Score)
used and the number of de novo variants found in 96 trios.

We sought to validate some of the identified de novo variants to support our
choice of thresholds. Overall, nearly 95% of variants were confirmed to be de novo
using an alternative sequencing technology, indicating high specificity23. To insure
sensitivity of the PL threshold, we also attempted to validate variants that had a PL in
between 20 and 30: all four of these variants failed to validate. Further investigation
indicated that the most likely culprit for a falsely identified de novo event was missing a
heterozygous genotype in one of the parents due to under-sampling the alternative

allele, often because of low depth of sequencing.
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After settling on the filtering parameters, we found 161 coding de novo variants in
175 ASD trios (the additional 78 were sequenced at other centers)?®. The number of de
novo variants per trio matched a Poisson distribution (Table 2.1). We also observed the
expected relationship between variant deleteriousness and the number of alternative
alleles observed in the data set (Table 2.2). More common alternative alleles, as a
class, have a lower percentage of nonsynonymous variants. In addition, these more
common alternative alleles have lower percentages of missense variants that are
predicted to be damaging by Polyphen2?*, a program that estimates variant deleterious
using conservation of the amino acid across species and whether the change is

predicted to destroy important structural features of the protein, among other features.

Table 2.1. The number of de novo single nucleotide events per trio compared to the
expected number of such events. We are including only single nucleotide variants
(SNVs) and not insertions and deletions. The expected number of trios with a given
number of de novo variants was determined by the Poisson with a lambda of 0.92, the
median number of de novo events per trio.

Events per trio | Observed de novo SNVs | Expected de novo SNVs
0 71 69.7
1 62 64.2
2 28 29.5
3 10 9.1
4 2 2.1
5 1 0.4
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Table 2.2. The percentage of variants by mutation type for ASD cases and their
parents. Only single nucleotide variants are included. Singletons (alternative allele seen
once in the data set), doubletons (alternative allele seen twice in the data set), and
variants where the alternative allele was seen = 3 times in the data set were only those

variants found in the 192 parents of the original 96 trios.

Type of mutation De novo | Singletons | Doubletons 23
Synonymous 31.1% 39.3% 43.8% 50.8%
Missense 62.7 59.5 55.4 48.8
Nonsense 6.2 1.2 0.8 0.4
PolyPhen-2 missense classification

Benign 35.0% 46.6% 51.3% 63.4%
Possibly damaging 21.0 18.8 17.7 15.1
Probably damaging 44.0 34.7 31.0 21.4

Population frequency aware de novo identification

Our early work only considered de novo variants that were singletons, where the

alternative allele is seen only once in the data set. Of course, it is possible for a true de

novo event to arise at a site that has been mutated in another individual, an occurrence

that becomes increasingly likely as the sample size of the data set increases. The logic

behind our original choice to only consider singletons was that a de novo variant should

be a private event and unlikely to be seen in another individual, especially given the

limited sample size at the beginning of the study.

When we dropped the requirement that any de novo variant had to be a

singleton, we found that many of the additional events identified had low read depth in

all three members of the trio or borderline allele balances, indicating that there was

likely under-calling of a heterozygous genotype in one of the parents.

We therefore had to refine our filters and thresholds to have strong confidence in

variants that were seen in another individual in the dataset, or as a standing variant in

the population, but appeared de novo in a trio. As before, we first identified candidate de
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novo variants at the highest quality (PASSing) sites as defined by a standard GATK
pipeline where the child is called heterozygous and the parents both reference
homozygotes. We maintained our requirement that the proportion of alternate allele
reads was no more than 5% in each parent, but allowed the child to have as few as
20% alternate allele reads. We also removed variants where the depth of sequence
coverage in the child was less than 10% of the total depth of the two parents. However,
we dropped the PL requirement from 30 to 20 since we were adding other filters to
produce confident de novo variant calls (discussed below).

The major error mode of falsely called de novo events is when one parent is truly
heterozygous, but has been incorrectly called homozygous reference due to under-
sampling of the alternative allele. We therefore implemented a novel algorithm that uses
population and sample allele frequency information to provide a Bayesian probability
estimate that an apparent de novo variant constitutes a true de novo, as opposed to a
missed heterozygous call in the parent.

While the PL information from the parents provides an accurate picture of the
probability of the data given the genotype, the prior probability of a heterozygous
genotype must be derived from population data. To calculate this, we conservatively
take the maximum allele frequency from two sources: the extensively curated National
Heart, Lung, and Blood Institute’s Exome Sequence Project reference database and the
sequenced population sample from which the trio is drawn. Including both data sets
permits use of both the accuracy that comes from the size of well-curated reference but
insures against false low frequency estimates should there be an occasional variant

missed in the reference resource but present in many copies in the current data. The
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probability of a site being present in a parent but absent from the reference data and all
other samples in our data is simply the average number of singleton sites unique to an
individual (~100) divided by the exome target size in base pairs, whereas the prior
probability of a de novo mutation is the mean number of de novo variants (~1) divided
by the same exome size in base pairs.

The probabilities of the two hypotheses are then calculated using Bayes’ theorem

and the relative probability,

P(true de novo | data)

P(de novo) =

P(true de novo | data)+P(missed het in parent | data) ’

is reported as the probability of de novo variant. Sites for which P(de novo) was
estimated to be greater than 0.99 were considered high quality sites and constitute the
set of variants included in all analyses. We also combined P(de novo) with the allele
balance of the variant and its allele count in the data set to assign it to one of three
categories: high, medium, and low likelihood of validating as a true de novo event.

We applied the improved version of the de novo identification script to the exome
sequencing data from 1,474 trios where the child was diagnosed with ASD as part of
the Autism Sequencing Consortium®. Extensive validation of sites via Sanger
sequencing was performed and found that only three out of 200 high quality sites (both
SNVs and indels) were inherited, confirming the validity of the P(de novo) > 0.99
estimate (Table 2.3). Additionally, we tested 56 sites that were considered to have a
medium likelihood of validating: 30 (53.6%) of these were confirmed to be de novo.
These results further supported the validity of the probability estimate. As these variants
constituted a small but significantly real category (estimated to add ~2% true events),

they were included in all analysis of the de novo variants.
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Table 2.3. Validation of de novo variants by their likelihood of validating. No validation
was attempted for variants that fell into the low likelihood of validating category.

Likelihood of ‘ Number of ‘ Variants Confirmed de
validating variants tested validated (%) novo variants (%)
High ‘ 200 ‘ 196 (98.0%) ‘ 193 (97.5%)
Medium 56 36 (64.3%) 30 (53.6%)

Author contributions

Kaitlin Samocha: method design, data analyses (exceptions below), writing

Mark Daly: method design, writing, overall guidance

Benjamin Neale: Poisson analysis in Table 2.1 (“Expected de novo SNVs” column),
extracted and analyzed singleton, doubleton, and variants with = 3 alternative
alleles in Table 2.2, guidance, writing

Silvia De Rubeis: molecular validation listed in Table 2.3

Samples were provided by the Autism Consortium and Autism Sequencing Consortium
Principal investigators: Eric Boerwinkle, Joseph Buxbaum, Edwin Cook Jr, Mark
Daly, Bernie Devlin, Richard Gibbs, Michael Gill, Kathryn Roeder, Gerard
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Abstract

Spontaneously arising (de novo) variants play an important role in medical
genetics. For diseases with extensive locus heterogeneity — such as autism spectrum
disorders (ASDs) — the signal from de novo variants is distributed across many genes,
making it difficult to distinguish disease-relevant variants from background variation. We
provide a statistical framework for the analysis of de novo variant excesses per gene
and gene set by calibrating a model of de novo mutation. We applied this framework to
de novo variants collected from 1,078 ASD trios and — while affirming a significant role
for loss-of-function variants — found no excess of de novo loss-of-function variants in
cases with 1Q above 100, suggesting that the role of de novo variants in ASD may
reside in fundamental neurodevelopmental processes. We also used our model to
identify ~1,000 genes that are significantly lacking functional coding variation in non-
ASD samples and are enriched for de novo loss-of-function variants identified in ASD

cases.

Introduction

Exome sequencing has allowed for the identification of de novo (newly arising)
events and has already been effectively put to use in identifying causal variants in rare,
mendelian diseases. In the case of Kabuki syndrome, the observation of a de novo
variant in KMT2D (previously MLLZ2) in 9 out of the10 patients strongly implicated the
loss of KMT2D function as causal'. The conclusion that KMT2D is important in Kabuki
syndrome etiology based on the de novo variant findings relies upon the unlikely

accumulation of independent and infrequently occurring events in the vast majority of
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these unrelated cases. By contrast, de novo variants (DNVs) play a smaller role in the
pathogenesis of heritable complex traits, such as autism spectrum disorders (ASDs),
and associated DNVs are spread across multiple genes. These differences in the
etiologic architecture of complex traits make the task of identifying “causal” genes
considerably more challenging. For example, recent exome sequencing studies
demonstrated a significant excess of de novo loss-of-function (LoF) variants in ASD

cases, but lacked the ability to directly implicate more than a very few genes®®.

The main complicating factor for interpreting the number of observed DNVs for a
particular gene is the background rate of de novo mutation, which can vary greatly
between genes. As more individuals are sequenced, multiple DNVs will inevitably be
observed in the same gene by chance. However, if de novo variation plays a role in a
given disease, then we would expect to find that genes associated to disease should

contain more DNVs than expected by chance.

Here, we develop a statistical model of de novo mutation in order to evaluate the
findings from exome sequencing data. With this model, we establish a statistical
framework to evaluate the rate of DNVs not only on a per-gene basis (in a frequentist
manner analogous to common genome-wide association analysis), but also globally and
by gene set. We further use this model to predict the expected amount of rare standing
variation per gene and to detect those genes that are significantly and specifically
deficient in functional variation, likely reflecting processes of selective constraint.
Consequently, since selection has reduced standing functional variation in these genes,
it is reasonable to hypothesize that mutations in these genes are more likely to be

deleterious.
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We used the mutational model along with our list of highly constrained genes to
evaluate the relationship between de novo variation and ASDs. Most of the families
employed in these analyses were included in a set of previous studies of de novo
variation, which reported an overall excess of de novo LoF variants in ASD cases, as
well as multiple DNVs in specific genes®®. We build on those studies to examine the
aggregate rates of DNVs, the excess of multiply mutated genes, and the overlap of
DNVs with gene sets, which highlights the complex relationship between intellectual

functioning and the genetic architecture of ASD.

Results

Basis of the mutational model

Accurate estimation of the expected rate of de novo mutation in a gene requires
a precise estimate of each gene’s mutability. While gene length is an obvious factor in a
gene’s mutability, local sequence context is also a well-known source of mutation rate
differences’. Accordingly, we extended a previous model of de novo mutation based on
sequence context and developed gene-specific probabilities for different types of
mutation: synonymous, missense, nonsense, essential splice site, and frameshift (see
Materials and Methods; Figure 3.1)>. Underscoring the importance of the sequence
context factors in the model, this genome-wide rate yields an expected mutation rate of
1.67x10°® per base per generation for the exome alone. Using counts of rare (minor
allele frequency < 0.001) synonymous variants identified in the National Heart, Lung,

and Blood Institute’s (NHLBI's) Exome Sequencing Project (ESP), we found that our
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per-gene probabilities of mutation were significantly more correlated (r = 0.940) with

these counts than gene length alone p < 10™'°; Materials and Methods).

Having established accurate per-gene probabilities of mutation, we could then
investigate the rates and distribution of DNVs found in sequencing studies. Specifically,
we wished to systematically assess a) whether cases had genome-wide excesses of
certain functional categories of de novo variation; b) whether individual genes could be
associated via de novo variation with genome-wide statistical significance; c) whether
specific sets of genes collectively showed significant enrichment of de novo variants
and d) whether there were genome-wide excesses of genes with multiple de novo
variants. Below we demonstrate the utility of the statistical framework in addressing all
of these questions with respect to recently generated family exome sequencing for

autism and intellectual disability.
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1. Create a mutation rate table from intergenic SNPs for all possible trinucleotide to trinucleotide

changes
...ATQGGC[GG... Change Probability
...ATQGACTGG... AAA > ACA a

...CTCACCG[GA... AAA > AGA

..CTCACTGA... -

AAC > ACC d

...CQTAGCTAA... AAC > AGC e
f

...CATGGLCTAA... AAC = ATC

2. Use the sequence context to determine the probability of each base changing to each other base
for all bases in the coding region and those in the conserved splice site
3. Determine the outcome of each type of change on the amino acid coded for by the base

Tyr Gly

ACG AAG 7.3e-09 nonsense mutation

STOP

AGG 6.7e-09 nonsense mutation

TAG
STOP

ATG 1.2e-07 synonymous mutation

Tyr

4. Add up the probabilities for each outcome across a gene to create a probability per gene for
different types of mutations

Figure 3.1. An outline of the steps used in the model of de novo mutation probability. A
graphic illustration of the steps taken to determine the per-gene probabilities of
mutation. A mutation rate table was created from intergenic single nucleotide
polymorphisms (SNPs) from the 1000 Genomes Project. This mutation rate table was
then applied to every coding base and the bases of conserved splice site to create a
gene specific probability of mutation, split by mutation type.
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Identifying genes under selective constraint

There has been a long standing interest in identifying genes in the human
genome that are sensitive to mutational changes, as these genes would be the most
likely to contribute to disease. Recent work made use of the ESP data to create a metric
evaluating the proportion of common functional variation in each gene, thereby
identifying genes that appeared to be intolerant of mutation®. Along these lines, we
correlated our calculated per-gene probabilities of mutation with the observed counts of
rare missense variants in the ESP data set. In contrast to the high consistency between
predicted synonymous mutation rates and observed synonymous counts (expected if
the category is under no specific selection), we observed a significant number of genes
with severe deficit of missense variants compared to the expectation generated from
predicted mutation rates (p < 107°). Such a deficit is consistent with strong evolutionary
constraint: when damaging mutations arise, they are quickly removed from the
population by purifying selection. To avoid erroneously identified constrained genes, we
removed 134 genes with either significantly elevated or depressed synonymous and

nonsynonymous rates (both p < 0.001; Materials and Methods).

Comparing both the synonymous and missense predictions of our model to the
ESP data set, we identified a list of excessively constrained genes (missense Z score >
3.09; corresponding to p < 0.001) that represented roughly 5% of all genes. A high
proportion of the most significantly constrained genes (missense constraint p < 10°)
were associated with autosomal or X-linked dominant, largely sporadic, mendelian
disease entries listed in the Online Mendelian Inheritance in Man database (OMIM; n =

27/86). By contrast, a set of genes for which the missense constraint was very close to
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expectation (n = 111, -0.01 <Z < 0.01) had only two de novo or dominant disease
inheritance entries in OMIM, a number significantly different from that for the highly
constrained set (p < 10®). For the 86 most highly constrained genes, no autosomal
recessive mendelian disorders have been documented. However, 11 of the 111 genes
with average levels of constraint have been identified as causal in autosomal recessive
mendelian disorders. The significant excess of recessive disease-causing genes in the
middle part of the distribution in comparison to the constrained set (p < 0.003)

underscores the idea that recessive inheritance models do not induce strong constraint.

Mutation rates for ASD and intellectual disability

We applied the model to two primary data sets: published results from ASD
sequencing studies®® with a collection of additional unpublished ASD trios, and
published results from patients with severe intellectual disability®'?. Table 3.1a shows
the comparison between the predicted number of variants per exome and the observed
data from the 1,078 ASD cases as well as 343 sequenced unaffected siblings?®. The
model’s predictions match the observed data for the unaffected siblings well, but the
cases show a significant excess of de novo LoF variants consistent with the findings of
the individual sequencing studies (p = 2.05x10™). Using our model to simulate null DNV
sets, we found that there are significantly more genes with two or more de novo LoF
variants than would be expected by chance (p < 0.001, 6 observed when less than one
was expected; Table 3.1b. Importantly, while we do not observe a global excess of de
novo missense variants, we do observe an excess of genes with two or more functional

(LoF or missense) de novo variants (observed 48 such genes when the average
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expected is 27; p < 0.001) and genes with two or more de novo missense variants alone
(observed 33 such genes when average expectation was 21, p = 0.007 for missense,
Table 3.1b). No such excess of genes containing multiple DNVs was seen in the
unaffected siblings (Table 3.1b). Of note, our framework also supports the assessment
of many other weightings and combinations of alleles — such as missense variants only
(optimal for pure gain-of-function disease models), predicted damaging missense
variants only, and exact probability estimates for specific combinations of LoF and

missense variants - than those shown above.

Table 3.1. Evaluation of the rates of de novo variants in ASD cases and unaffected
siblings. The observed and expected rate of variants by type per exome for unaffected
siblings? and ASD cases®® (a). (b) The number of genes with multiple de novo variants
in unaffected siblings and ASD cases across studies. The average number of expected
genes with multiple de novo variants was determined by simulation. LoF = Loss-of-
function. DNVs = de novo variants. For (a), a two-tailed test was performed for
synonymous and missense; a one-tailed test for loss-of-function.

a) Genome-wide excesses of mutational events

Unaffected Siblings

Mutation Type Observed events Expected events p-value
per exome per exome
Synonymous 0.21 0.27 0.0218
Missense 0.61 0.62 0.8189
Loss-of-Function 0.09 0.09 0.4508
n =343
ASD Cases
Mutation T Observed Expected events |
utation Type events per exome p-value
per exome
Synonymous 0.25 0.27 0.1065
Missense 0.64 0.62 0.5721
Loss-of-Function 0.13 0.09 2.05x10”
n=1,078
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Table 3.1 (Continued)
b) Genome-wide excesses of multiply hit genes

Unaffected Siblings

. Observed genes with  Average expected
Mutation Type 2+ DNV genes with 22 DNVs P-value
Synonymous 0 0.5 1.0
Missense 5 2.5 0.1049
Loss-of-Function 0 0.04 1.0
LoF+missense 6 3 0.0779
n =343
ASD Cases
. Observed genes with  Average expected
Mutation Type 2+ DNV genes with 22 DNVs _P-value
Synonymous 4 3.8 0.5186
Missense 33 21.4 0.0070
Loss-of-Function 6 0.5 < 0.001
LoF+missense 48 27.2 < 0.001

n=1,078

Table 3.2 lists all of the genes that have two or more de novo missense or LoF
variants across the 1,078 ASD subjects. A conservative significance threshold of 1x10®
was used, correcting for 18,271 genes and two tests. Considering this set of 1,078 trios
as a single experiment, two genes (DYRK1A and SCN2A) exceeded this conservative
genome-wide significance threshold for more de novo LoF variants than predicted.
SCNZ2A also had significantly more functional de novo variants than expected. CHDS,
with three de novo LoF variants and one missense, was very close to the significance
threshold in these studies (p = 1.76x10° for LoF; p = 3.20x10™ for functional). However,
a recent targeted sequencing study found 7 additional CHD8 de novo LoF variants in
ASD cases'". This brought the total number of de novo LoF variants in CHD8 to 10,
which was highly significant (p = 8.38x10?° when accounting for the total number of

trios — 2,750 — examined in the combination of the targeted and exome-wide study).

42



These results offer the encouraging point that, as with genome-wide association studies
(GWAS), larger collaborative exome efforts for trios will define unambiguous risk
factors. It is important to note, however, that not all genes with a large number of de
novo variants in them had significant p-values. For example, TTN had four missense
DNVs in ASD cases, but a p-value that is not even nominally significant due to the
enormous size of the gene (p = 0.18). Even having two de novo LoF variants was on
occasion not enough to provide compelling significance (POGZ, two frameshifts, p =
8.93x107°). In comparison, none of the genes found to contain multiple DNVs in the

unaffected siblings crossed the significance threshold (Table 3.3).
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Table 3.2. Significance of genes with multiple de novo variants (DNVs) in autism
spectrum disorder (ASD) cases. Loss-of-function (LoF) mutations include nonsense,
frameshift, and splice site-disrupting mutations. “# LoF Expected” refers to the expected
number of de novo LoF variants based on the probability of mutation for the gene as
determined by our model. The genome-wide significance threshold is 1x10°. “.” = no
data available.

Gene # LoF | # Missense E#:ql)):c\t,: d p-value Test
DYRK1A 3 0 0.0072 | 6.15x10°® LoF
SCN2A 3 2 0.0177 | 9.20x10” LoF
CHD8 3 1 0.0221 1.76x10° LoF
KATNAL?2 2 0 0.0049 1.19x10 LoF
POGZ 2 0 0.0134 8.93x10° LoF
ARID1B 2 0 0.0178 1.57x10™ LoF
SCN2A 3 2 0.1334 | 3.15x107 | LoF+mis
CHD8 3 1 0.1724 | 3.20x10° | LoF+mis
SUV420H1 1 2 0.0602 | 3.48x10° | LoF+mis
PLEKHAS 0 2 0.0302 | 4.46x10" | LoF+mis
TUBA1A 0 2 0.0338 | 5.59x10* | LoF+mis
SLCO1C1 0 2 0.0394 | 7.55x10* | LoF+mis
NTNG1 0 2 0.0413 | 8.29x10" | LoF+mis
TSNARE1 0 2 0.0498 1.20x10° | LoF+mis
TBR1 1 1 0.0541 1.41x10° | LoF+mis
MEGF11 0 2 0.0552 1.47x10° | LoF+mis
KRBA1 0 2 0.0642 1.98x10° | LoF+mis
SRBD1 0 2 0.0645 | 1.99x10° | LoF+mis
KIRREL3 0 2 0.0652 | 2.03x10° | LoF+mis
NR3C2 1 1 0.0655 | 2.05x10° | LoF+mis
UBE3C 0 2 0.0775 | 2.85x10° | LoF+mis
AGAP2 0 2 0.0825 | 3.22x10° | LoF+mis
ABCA13 0 3 0.2890 | 3.24x10° | LoF+mis
ADCY5 0 2 0.1098 | 5.61x10° | LoF+mis
KIAA0182 0 2 0.1114 | 5.76x10° | LoF+mis
ZNF423 0 2 0.1131 5.94x10° | LoF+mis
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Table 3.2 (Continued)

Gene # LoF | # Missense Ei:)):c\t,: d p-value Test
ZNF638 1 1 0.1212 6.78x10° | LoF+mis
SCN1A 0 2 0.1352 8.36x10° | LoF+mis
LAMB2 0 2 0.1604 1.16x102 | LoF+mis
MYO7B 0 2 0.1616 1.17x102 | LoF+mis
KIAA0100 1 1 0.1619 1.18x102 | LoF+mis

PLXNB1 1 1 0.1718 1.32x102 | LoF+mis
CACNA1D 0 2 0.1732 1.34x102 | LoF+mis
ZFYVE26 1 1 0.1753 1.37x102 | LoF+mis

SBF1 0 2 0.1808 1.45x102 | LoF+mis
BRCA2 0 2 0.1928 1.64x10? | LoF+mis

TRIO 0 2 0.2374 2.41x10? | LoF+mis
ALMS1 0 2 0.2422 2.50x10? | LoF+mis

RELN 1 1 0.2429 2.51x10? | LoF+mis

ANK?2 1 1 0.2591 2.83x10? | LoF+mis

MLL3 1 1 0.3159 4.05x102 | LoF+mis
DNAH5 1 1 0.3219 4.19x102 | LoF+mis

FAT1 0 2 0.3343 4.49x102 | LoF+mis
GPR98 0 2 0.3761 5.53x102 | LoF+mis
AHNAK2 0 2 0.4172 6.62x102 | LoF+mis
SYNE1 0 2 0.5931 1.20x10™" | LoF+mis

TTN 0 4 2.1947 1.80x10™" | LoF+mis
MUCSAC 0 2 LoF+mis

RFX8 0 2 LoF+mis

EFCABS8 0 2 LoF+mis
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Table 3.3. Significance of specific genes with multiple de novo variants (DNVs) in
unaffected siblings. Loss-of-function (LoF) mutations include nonsense, frameshift, and
splice site-disrupting mutations. “# LoF Expected” refers to the expected number of de
novo LoF variants based on the probability of mutation for the gene as determined by

our model. The genome-wide significance threshold is 1x10®. “.” = no data available.

Gene # LoF | # Missense Eiggz\t,: d p-value Test

CSNK1G3 1 1 0.0098 4.78x10™ | LoF+mis

UGT2B4 0 2 0.0102 5.12x10° | LoF+mis

USP34 0 2 0.0717 | 2.45x10° | LoF+mis

AHNAK?2 0 2 0.1327 8.07x10° | LoF+mis

SYNE2 0 2 0.1369 8.56x10° | LoF+mis

TTN 0 2 0.6983 1.55x10™" | LoF+mis

These analyses were also applied to the results from the sequencing studies of
moderate to severe (IQ < 60) intellectual disability®'® (n = 151). Intellectual disability,
like ASD, showed a significant excess of LoF DNVs (p = 6.49x107; Table 3.4a). Even
with a much smaller sample size there were genes with significantly more LoF and
functional DNVs than predicted by the model (Table 3.4c). The intellectual disability
data also have significantly more genes with multiple de novo missense, LoF, and
functional variants than predicted (p = 0.009 for missense, p < 0.001 for LoF and

functional; Table 3.4b).
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Table 3.4. Evaluation of the rates of de novo variants in cases with intellectual disability.
(a) The observed and expected rate of variants by type per exome for cases of
intellectual disability (ID, n = 151 families)®'°. A two-tailed test was performed for
synonymous and missense; a one-tailed test for loss-of-function. (b) The number of
genes with multiple de novo variants in intellectual disability cases across studies. The
average number of expected genes with multiple de novo variants was determined by
simulation. (c) Genes with multiple functional de novo variants in the ID cases® . LoF
variants include nonsense, frameshift, and splice site-disrupting events. The genome-
wide significance threshold is 1x10®. The number of variants is either compared to the
expected number for LoF only or for both LoF and missense, as indicated by the “#
DNVs Expected” and “Test” columns. LoF = Loss-of-function. DNVs = de novo variants.

a) Genome-wide excesses of mutational events

Observed events  Expected events

Mutation Type ‘ per exome per exome p-value
Synonymous 0.19 0.27 0.0267
Missense 0.70 0.62 0.2380
Loss-of-Function 0.24 0.09 6.49x107
b) Genome-wide excesses of multiply hit genes
. Observed genes Average expected
Mutation Type | = 20" INVs genes with 2+ DNVs _ P-value
Synonymous 1 0.09 0.0879
Missense 3 0.5 0.0090
LoF 2 0.01 < 0.001
LoF+missense 6 0.6 < 0.001
c) Genes with multiple de novo missense and loss-of-function variants
Gene # LoF | #Missense Ei:)):c\t,: d p-value Test
SYNGAP1 3 0 0.0017 | 8.15x10™™ LoF
SCN2A 3 1 0.0025 | 2.56x107 LoF
SCN2A 3 1 0.0187 | 5.01x10®° | LoF+mis
STXBP1 1 2 0.0071 5.87x10% | LoF+mis
TCF4 0 2 0.0069 | 2.39x10° | LoF+mis
GRIN2A 0 2 0.0162 1.34x10* | LoF+mis
TRIO 0 2 0.0333 | 5.60x10* | LoF+mis
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In our ASD sample, we then investigated the rate of de novo events as a function
of 1Q; roughly 80% of this sample had an IQ assessment attempted. We found that the
rate of de novo LoF mutation in ASD cases with a measured 1Q above average was no
different than expectation (1Q 2 100; n = 229; 0.08 de novo LoF variants per exome
compared to expected 0.09, p = 0.59). By contrast, the rate in the rest of the sample
was substantially higher than expectation (n = 572; rate of 0.17 de novo LoF variants
per exome, p = 1.17x10'1°). Furthermore, when directly compared (rather than to our
expectation), these two groups were significantly different from each other, confirming a
difference in genetic architecture among ASDs as a function of 1Q (Table 3.5a-b, p <
0.001). These conclusions are unchanged in separate analyses of nonverbal and verbal

IQ as well as full scale |IQ (Table 3.5¢).
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Table 3.5. Investigating the rate of de novo mutation as a function of 1Q. (a) The
observed and expected rate of de novo variants by mutation class for the autism
spectrum disorder cases with full scale IQ = 100. (b) The observed and expected rate of
de novo variants by mutation class for the autism spectrum disorder cases that did not
have a full scale IQ above 100. (c) The observed rate of de novo loss-of-function (LoF)
mutations split by verbal IQ and nonverbal IQ. For (a) and (b), a two-tailed test was
performed for synonymous and missense; a one-tailed test for loss-of-function.

a) Full Scale 1Q scored above 100 (n = 229)

Mutation Type ‘ Observed events  Expected events p-value
per exome per exome
Synonymous 0.24 0.27 0.2346
Missense 0.66 0.62 0.4736
Loss-of-Function 0.08 0.09 0.5867
b) Full Scale 1Q not scored above 100 (n = 572)
Mutation Type ‘ Observed events Expected events p-value
per exome per exome
Synonymous 0.22 0.27 0.0123
Missense 0.62 0.62 0.9946
Loss-of-Function 0.17 0.09 1.17x107°
c¢) 1Q comparisons split between verbal and nonverbal 1Q
Phenotypic Group Number of | Observed de novo LoF p-value
samples events per exome
Verbal 1Q = 100 242 0.10 0.1903
Verbal IQ not scored -8
above 100 712 0.15 2.43x10
Nonverbal IQ = 100 276 0.09 0.4829
Nonverbal IQ not scored -9
above 100 678 0.16 1.09x10
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Gene set enrichment

Given the significant global excess of de novo LoF variants in ASD cases, we
wanted to evaluate whether the set of genes harboring de novo LoF variants had
significant overlap with several sets of genes proposed as relevant to autism or
describing biochemical pathways. We used the probabilities of mutation to determine
the fraction of LoF variants expected to fall into the given gene set. We then used the
binomial distribution to evaluate the number of observed LoF variants overlapping the
set compared to the established expectation. When we applied this analysis to a set of
112 genes reported as disrupted in individuals with ASD or autistic features, we
observed no enrichment of de novo LoF variants (Figure 3.2, “Betancur’)'?. By contrast,
we applied this analysis to a recent study of 842 genes found to interact with the Fragile
X mental retardation protein (FMRP) in vivo and found a highly significant overlap (2.3-
fold enrichment, p < 0.0001, Figure 3.2)>">. This enrichment with the targets of FMRP
held even when we removed the de novo variants identified in the lossifov et al study
that initially reported an enrichment of de novo variants in ASD cases with FMRP-

associated genes (2.5-fold enrichment, p < 0.0001)2.
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Figure 3.2. The expected and observed fraction of genes with a de novo variant in
cases and controls for four gene sets of interest. ASD cases (n = 1,078), unaffected
controls (n = 647), and intellectual disability (ID; n = 151) cases were sequenced across
various studies . “Betancur” refers to a set of genes reported as disrupted in
individuals with ASD or autistic features; of the 112 on the list, we could evaluate 1112,

‘FMRP” refers to the genes whose mRNAs are bound and regulated by the Fragile X



Figure 3.2 (Continued) Mental Retardation Protein (FMRP), as identified by Darnell
and colleagues’. The “constrained” category is a set of 1,003 genes that we defined as
significantly lacking rare missense variation, indicating intolerance to mutation. The
targets of FMRP that are also considered constrained by our metric make up the
“Constrained FMRP” category. Loss-of-function variants are presented in (a); missense
in (b) and synonymous in (c). * indicates p < 0.01; ** indicates p < 10

We then evaluated the group of individuals from the ASD studies who had a de
novo LoF variant in one of the targets of FMRP. On average, these cases were
enriched for having a measured 1Q < 100 (Fisher's exact p = 4.01x10™; Table 3.6 as
well as significantly reduced male:female ratio (p = 0.02; Table 3.7) as compared to the
remaining sequenced cases (Materials and Methods). These individuals represent
about 3% of the total sample, when at most a 1% overlap would be expected. The
estimated odds ratio (OR) of de novo LoF variants in the set of FMRP target genes was
around 6, very similar to the OR estimated for large CNVs that disrupt multiple genes”.
In addition, the OR for the published cases of moderate to severe intellectual disability
noted above (IQ < 60; not ascertained for ASDs) having a de novo LoF event in the set

of FMRP targets was roughly 10.
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Table 3.6. The number (and percentage) of individuals that have an 1Q = 100 or an 1Q
not scored above 100 split by whether they contain a de novo loss-of-function variant in
a target of FMRP (FMRP-I) or not (“Rest of Cases”). In (a), individuals who started an
|Q test but were not given an |Q score are included. Only individuals with 1Q scores are
included in (b).

a) 1Q Attempted but unscored individuals included

| FMRP-l | Rest of Cases
IQ = 100 ‘ 1 (3%) ‘ 254 (31%)

IQ not above100 | 29 (97%) | 575 (69%)
Fisher's exact p-value = 4.01x10*
b) Only scored individuals
| FMRP-l | Rest of Cases

IQ = 100 1(5%) 254 (35%)
IQ not above100 | 20 (95%) | 469 (65%)

Fisher's exact p-value = 0.0021

Table 3.7. The number (and percentage) of individuals that are male and female split by
containing a de novo loss-of-function mutation in a target of FMRP (FMRP-I) or not
(“Rest of Cases”).

| FMRP-l | Rest of Cases
Male ‘ 19 (63%) ‘ 658 (80%)
Female | 11 (37%) 163 (20%)

Chi-square p-value = 0.02

The same analysis was applied to the list of de novo LoF variants from
unaffected siblings of ASD cases and additional control individuals (n = 647)%*>°.
There was a significant enrichment when evaluating the overlap with the set of autism
related genes (p = 0.0095, Figure 3.2). However, no significance was observed for the

overlap with the in vivo targets of FMRP. The de novo LoF variants from the intellectual
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disability individuals, on the other hand, were significant for both sets (p < 10 for both
sets; Figure 3.2). Even the de novo missense variants found in the intellectual disability
cases showed significant overlap with both sets under study (p = 0.02 for autism-related

genes, p < 0.0001 for the targets of FMRP, Figure 3.2).

Evaluating constrained genes

We further applied the enrichment analysis to our set of constrained genes and
found that they contained more de novo LoF variants than expected by chance (2.3-fold
enrichment, p < 0.0001, Figure 3.2). A greater fold enrichment was observed when
focusing on the subset of constrained genes that were also identified in the FMRP study
(3.0-fold enrichment, p < 0.0001, Figure 3.2)". We note that the FMRP targets have a
significant overlap with the constrained set of genes (odds ratio = 1.29, p < 0.0001),
which is consistent with the report that the targets of FMRP are under greater purifying
selection than expected?. All enrichments were demonstrated to be independent of

gene size (Materials and Methods).

The genes that contained a de novo missense or LoF variant in the cases of
intellectual disability also showed a significant enrichment for both the constrained gene
set and the set of constrained targets of FMRP (p < 0.0001 for all lists). In comparison,
no enrichment was found with either set and the list of genes that had a de novo LoF

variant in unaffected siblings and control individuals.

In addition to treating constraint as a dichotomous trait, we also evaluated the

missense Z score for each of the genes with a de novo LoF variant. We found that the
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distribution of missense Z scores for genes with a de novo LoF variant in unaffected
individuals was no different from the overall distribution of scores (Wilcoxon p = 0.8325;
Figure 3.3). By contrast, both the genes with a de novo LoF variant in ASD and
intellectual disability cases had values significantly shifted towards high constraint
(Wilcoxon p < 107 for both). Furthermore, we compared the distribution of Z scores
among each of the three groups. Both the ASD and intellectual disability distributions
were significantly different from the distribution of missense Z scores for unaffected
individuals (p = 0.0148 and 0.0012, respectively). The intellectual disability missense Z

scores were also significantly higher than the ASD values (p = 0.0319).
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Figure 3.3. The distribution of missense Z scores and Z scores of genes containing de
novo loss-of-function variants identified in unaffected individuals, autism spectrum
disorder (ASD) cases, and intellectual disability cases. (a) The distribution of missense
Z scores. The red line indicates a Z score of 3.09, or the threshold for inclusion into the
set of 1,003 constrained genes. (b) The missense Z scores for genes containing de
novo LoF in unaffected individuals, ASD cases, and intellectual disability cases*®%%°,
Black bars indicate the mean Z score of each group: 0.94, 1.68, and 2.46 for unaffected
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Figure 3.3 (Continued) individuals, ASD cases, and intellectual disability cases,
respectively. While the missense Z scores of the de novo LoF variants found in
unaffected siblings matched the overall distribution (Wilcoxon p = 0.8325, n.s. = not
significant), de novo LoF variants found in both ASD and intellectual disability cases
were significantly shifted towards more extreme constraint values (p < 10 for both). All
p-values for deviation from the overall distribution are listed on the right side of the
figure. In addition, the distribution of missense Z scores fore each of the three de novo
lists were all individually significant at p < 0.05.

When evaluating the ASD cases split by 1Q group, we found no enrichment of de
novo LoF-containing genes with either constrained genes and targets of FMRP in the
group with IQ = 100 (p > 0.5 for both sets of genes) but very strong enrichment in the
set with 1Q < 100 (p < 0.0001 for both sets of genes). These results underscore that
phenotypically distinct subsets of ASD cases may have significantly different

contributions from de novo variation.

Comparison of constraint metric with existing methods

Identifying constrained genes by comparing observed nonsynonymous sites to
expectation is conceptually similar to the traditional approach of detecting selective
pressure by comparing observed nonsynonymous sites to observed synonymous sites
(e.g. dn/ds) that has been used extensively. Our approach should in principle achieve
greater statistical power to detect constrained genes; comparison of an observation to
expectation is statistically more powerful than contrasting that observation with a
generally smaller second observation — the number of observed synonymous variants.
In order to investigate this claim, we identified genes that had significant evidence for

selective constraint using the dy/ds metric (i.e. their ratio of synonymous and
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nonsynonymous sites deviated from the genome-wide average at p < 0.001, Materials
and Methods). There were only 377 of these genes, over half of which overlapped with
the constrained gene list defined by our method (n = 1,003; overlap 237 genes). The
genes identified as significantly constrained by only our metric (the top 10 of which
include RYR2, KMT2A (MLL), KMT2D (MLL2), and SYNGARP1) are still significantly
enriched for known causes of autosomal and X-linked dominant forms of mendelian
disease (p = 5x10™). We therefore conclude that the model-based approach to
identifying constrained genes adds substantial power to traditional approaches. The
importance of this increased power to detect constraint in further articulated in the ASD

and intellectual disability analyses below.

Several groups have previously published approaches, and specific gene sets
from them, that are also aimed at identifying genes under excessive purifying selection
or generally intolerant of functional mutation. Bustamante et al'® expanded on the
McDonald-Kreitman framework'” contrasting fixed differences in the primate lineage to
polymorphic differences in humans to identify a set of genes under weak negative
selection, while more recently Petrovski et al® utilized the excess of rare versus
common missense variation within humans to flag genes intolerant of functional
variation. We found a reasonable correlation between our metric of constraint and
Petrovski’s Residual Variation Intolerance Score (RVIS®; Figure 3.4). A comparison of
these approaches as applied to prioritization of known haploinsufficient genes as well as
the autism de novo LoF variants described here are provided in the Materials and
Methods and demonstrates that the two human-only approaches (constraint and RVIS)

perform better on these tasks of identifying medical genetic lesions of severe effect in
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modern humans (Table 3.8). Intriguingly, both of these other approaches utilize
independent information from each other and from our approach (which uses the
absence of rare functional variation versus expectation within humans), raising the
potential that composite scores employing all three sources of information pointing to

which genes are most sensitive to heterozygous mutation could add further value.

— correlation = -0.35
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Figure 3.4. Correlation between the constraint score and RVIS. The constraint scores
(missense Z scores) determined by our method and residual variation intolerance score
from Petrovski et al ® have a Pearson correlation of -0.35. The black line shows the
linear regression between the two metrics.
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Table 3.8. Comparison of the predictive ability of different sets of constrained genes for
known haploinsufficient genes and those disrupted by a de novo LoF mutation in ASD
patients. In (a), the ability of both constraint scores and lists of constrained genes were
tested for their ability to predict known haploinsufficient genes, as listed in OMIM. The
quantitative scores (constraint and RVIS®) were used in a linear regression with gene
size added as a covariate. The gene lists (constrained, top 5.5% most intolerant genes
using RVIS®, and the genes identified in Bustamante et al'®) were evaluated with a
logistic regression with gene size as a covariate. In (b), the three gene lists were
evaluated for their enrichment of de novo LoF mutations identified in ASD patients. To
do this, the expected fraction of constrained genes to contain one of these de novo
mutations was determined and then used to establish the fold enrichment and
significance of the observed fraction.

a) Linear and logistic regressions

Quantitative Scores List-Based
Constraint Top Top
score RVIS Constrained RVIS Bustamante
OMIM t 10.011 -9.561 | OR 4.909 5.490 1.307
value
Haplo-
insufficiency  p- | _qg16 | <qpte | P <107 <107 0.191
value value '

b) Enrichment of genes with those containing a de novo LoF in ASD patients

Top
Constrained Top RVIS Bustamante
ASD de novo Fold enrichment 2.282 1.904 0.836
LoF p-value 3.58x10° 5.36x107 0.718

Discussion

We have developed a framework for evaluating excesses of de novo variants
identified through exome sequencing. Even though this framework can be leveraged to
evaluate excesses of variants study-wide and in gene sets, the key focus is to evaluate
the significance for individual genes. Given the small number of observed de novo

events per gene, simple case-control comparisons cannot achieve any meaningful level
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of significance. For example, observing three de novo loss-of-function variants in a
small gene in 1,000 case trios is perhaps quite compelling, especially if no such variants
were identified in 1,000 control trios. However, a simple three to zero case/control
comparison in this situation would yield no compelling statistical evidence (one-tailed p
= 0.125). Incidence of such extremely rare events, however, can be evaluated if the
expected rate of such events is known. Sequencing large numbers of control trios to
gather empirical rate estimates on a per-gene basis that are accurate is infeasible and
inefficient. The calibrated model and statistical approach described here can achieve a
close approximation of this ideal. Our method, therefore, offers the ability to evaluate
the rate of rare variation in individual genes in situations where burden tests would fail.

Other groups have developed similar statistical frameworks'"'®

— notably, the
Epi4k consortium'® used the same base model we begin with® to interpret event rates.
Our model, however, has two primary strengths. First, our model of de novo mutation
incorporates additional factors beyond sequence context that affect mutation rate. Both
the depth of coverage — how many sequence reads were present on average — for each
base and the regional divergence around the gene between humans and macaques
independently and significantly improve the predictive value of our model (Materials and
Methods). Second, given the high correlation between the number of rare synonymous
variants in ESP and the probability of a synonymous mutation determined by our full
model, we have a metric to evaluate the extent to which genes in the human genome
show evidence of selective constraint. The list of 1,003 genes that we define as

constrained contains an enrichment of genes known to cause severe human disease —

an observation analogous to that recently made in using empirical comparison of
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common and rare rates of functional variation to evaluate intolerance®. In fact, site count
deficits and site frequency shifts each contribute independent information to the

definition of constraint and can in principle be combined in a composite test.

The results of our metric were compared to both the scores created by Petrovski
and colleagues® and loci identified as under negative selection by Bustamante et al '® .
Overall, our metric and the residual variation intolerance scores defined by the Petrovski
worked similarly well, reinforcing the benefits that could come from combining the two
approaches. It is unsurprising that these methods outperform the evolutionary ones on
the specific matter of genes intolerant to heterozygous mutation. Evolutionary methods
examining differences between polymorphism and fixed differences, which are more
sensitive to weaker negative selection, require that mutations be tolerated well enough
to become polymorphic in the first place. By contrast, approaches measuring the

complete absence of variation will pick up the most strongly intolerant genes.

Ideally, we can conceptualize defining two metrics of genic constraint, one based
on missense variants and the other based on LoF variants. With only 6,503 individuals
in ESP, we are underpowered to determine significant deviations for most genes with
respect to loss-of-function variants. As sample size increases, our ability to calculate
constraint improves. For example, if the sample size were to increase by an order of
magnitude, we would be able to evaluate approximately 66% of genes using LoF
variants. We therefore view the constrained gene list as a work in progress, to be

updated when larger exome sequencing data sets become available.

Applying our statistical framework to de novo variants from 1,078 ASD cases

reveals that, while there is no global excess in de novo missense variants, there are
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significantly more genes that contained multiple de novo missense variants than
expected. We also see significant overlap between the list of genes with a de novo LoF
in ASD cases and the set of constrained genes that we defined. In addition, there is a
significant overlap between the genes with a de novo LoF variant and the targets of
FMRP, as reported in lossifov et al’. All of the significant signals in ASD — the global
excess of de novo LoF variants, the excess of genes with multiple functional de novo
variants, the overlap between the de novo LoF genes and both constrained genes and
the targets of FMRP — are not found in the subset of ASD cases with IQ = 100. The lack
of signal in the IQ = 100 indicates that genetic architecture among ASDs varies as a
function of 1Q. Overall, the probabilities of mutation defined by our full model and list of
constrained genes can be used to critically evaluate the observed DNVs from
sequencing studies and aid in the identification of variants and genes that play a

significant role in disease.

Materials and Methods

De novo variant information

Published de novo variants were collected for both autism spectrum disorders
(ASD)*® and severe intellectual disability®'°. Updated de novo calls were provided from
two of the ASD studies®°. Details about sample collection, sequencing, and variant

processing can be found in the separate studies.
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Additional sequencing

Exome sequencing of the additional families (n = 129) was performed at the
Broad Institute. Exons were captured using the Agilent 38Mb SureSelect v2. After
capture, a round of ligation-mediated PCR was performed to increase the quantity of
DNA available for sequencing. All libraries were sequenced using an
llluminaHiSeq2000. Data were processed with Picard (http://picard. sourceforge.net/),
which uses base quality-score recalibration and local realignment at known indels® and
BWAZ? for mapping reads to hg19. SNPs were called using GATK for all trios jointly'®2".
The variable sites that we have considered in analysis are restricted to those that pass
GATK standard filters. From this set of variants, we identified putative de novo variants
and validated them as previously described®. Autism Consortium samples (n = 78 trios)
were collected in Boston under IRB approval from Harvard Medical School,
Massachusetts General Hospital, Children’s Hospital Boston, Tufts-NEMC, Boston
University Medical Center with ADI and ADOS assessment. Finnish autism samples (n
= 51 trios) were collected under IRB approval at University of Helsinki with ADI and
ADOS assessment and consented for autism research only. In both studies, all
participants gave written informed consent, though as autism is classified as a

childhood disorder, many subjects are children with informed consent provided by

parents or guardians.

Mutational model

We wanted to create an accurate model of de novo mutation for each gene. The

steps involved in the creation of the model are outlined in Figure 3.1. Briefly, we
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determined the probability of a given base mutating into one of the three other possible
bases as well as the coding impact of each possible mutation. We added probabilities
across a gene to create per-gene probabilities of all mutation types under study:

synonymous, missense, nonsense, and splice site.

The first, and most important, step of making a model based on sequence
context is to establish the mutability of a given base. Krawczak and colleagues
determined that the best context for determining the mutability of a single base is to
include both the 5" and 3’ bases?’. Following the lead of other groups, we took this
trinucleotide context as sufficient for determining mutability?®>. We used 1000 Genomes
intergenic regions that are orthologous between humans and chimps as the basis for
our mutation rate table. Across the sequence, we tallied the number of observations for
each of the 64 possible trinucleotides and, for each SNP, considered the chimp allele to
be ancestral and determined the trinucleotide (XY1Z) to trinucleotide (XY2Z) change that
occurred. To determine the probability of a given trinucleotide mutating, we divided the
number of mutations in that trinucleotide context by the number of occurrences of the
trinucleotide. This probability is adjusted by a proportionality constant, A, that gives the
mutation rate of that trinucleotide for a single generation. The mutation rate for the given
nucleotide is then proportionally divided between the three possible trinucleotides to
which it could mutate. In the end, we have a mutation rate table that contains the

probability of any of the 192 possible mutations.

We then use the mutation rate table and the sequence context to determine the
per-gene probability of mutation based on the sequence of the gene. For a given base

in the gene, the trinucleotide sequence context is determined. The probability of the
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middle base mutating to one of the three other bases is queried in the mutation rate
table and the type of change it would create is determined. The probability of mutation is
added to a running total for the type of mutation it would cause. This is repeated for the
two other possible mutations for every coding base in the gene as well as the bases in
the conserved splice sites for all genes in the genome. In the end, there is a per-gene
probability of each type of mutation under study: synonymous, missense, nonsense,
and splice site. We determine the probability of a frameshift mutation by multiplying the
probability of a nonsense mutation by 1.25, the relative rate of singleton frameshift to
singleton nonsense mutations found in exome sequencing data from roughly 2,000 ASD

cases and controls.

Adjustments to the model

In order to evaluate the predictive value of the model of de novo mutation
probability, we extracted the number of synonymous singletons — seen only once in the
data set — found in each gene from the National Heart, Lung and Blood Institute’s
Exome Sequencing Project (ESP). The number of these singletons in each gene was
correlated to both gene length and the probability of synonymous mutation determined
by our model. While gene length alone showed a high correlation with the number of
synonymous singletons (0.835), the probability of a synonymous mutation was

significantly higher (0.854, p < 107'°)
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Depth adjustment

We first investigated the role that depth of coverage could have on the
predictions of mutation rates. The ability to call a de novo event is dependent on how
well sequenced the location of the event is. Therefore, bases that are not covered at all
should not contribute to the overall probability of mutation for the gene. In order to
account for differences in sequencing coverage, we created a way to determine what
fraction of a base’s mutation probabilities should be added to the total for the gene
based on the coverage. For each base, we looked up the number of trios in which all
members had 10x coverage or greater and used that number to determine the
appropriate discount. For bases with almost all trios having 10x coverage, the
probability of mutation was not adjusted. However, as the number of trios with 10x
coverage dropped, the probability of mutation was multiplied by an adjustment factor in
between 0.9 and 1. To determine the endpoints of the adjustment, we compared the
ratio of the observed number of synonymous singletons to the overall probability of a
synonymous mutation for a high confidence set of bases to sets of bases with fewer
trios passing at 10x. The depth adjusted probabilities of synonymous mutation showed
a significantly greater correlation to the number of synonymous singletons in the ESP

data set when compared to gene length alone (0.891, p < 107°).

Divergence adjustment

Divergence between humans and other primates is known to correlate with the
relative number of SNPs in large regions®*. We postulated that local divergence rates

could be added to the model as a regional term that captured the local deviation from
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the base mutation rate. We used human-macaque divergence information to determine
the divergence score — defined as the number of divergent sites over screened sites for
the region containing the gene as well as 1 MB upstream and downstream — for each
gene. We used linear models to determine the best equation to adjust the per-gene
probabilities of mutation to incorporate the divergence score. In the end, the probability
of mutation is adjusted slightly for the divergence score. For genes with no divergence
information, the average divergence score is used. This, however, lead to a global
increase in the predicted rate of mutation, so all probabilities of mutation were modified
so that the sum of all probabilities after divergence adjustment was equal to the sum of
probabilities from before the adjustment. This adjustment of predictions significantly
increased the correlation with the synonymous singletons in the ESP data (0.910, p <

107).

Replication timing adjustment

Replication timing has also been associated with overall mutation rate, with later
replicating DNA having a higher rate of mutation®. We used replication timing Z scores
from Koren et al to create a replication timing score for each genezs. The replication
timing score is defined as the average replication timing score across the length of the
gene. The replication timing score was used in linear models. It did significantly add to
the mutational model (p = 0.005), but had a very slight overall effect. Further
investigation revealed that the model was predicting more synonymous changes as the

average replication Z score increased, and thereby was already accounting for the
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adjustments that the replication score was adding. We did not include the replication

timing adjustment in any further analyses.

Using rare variants instead of singletons

To increase power for our definition of constrained genes, we extracted the
number of rare (minor allele frequency < 0.01%) synonymous variants found in each
gene in the ESP data set. The correlation between the number of rare synonymous
variants and the gene length was 0.880; the probability of synonymous mutation as
defined by our full model and the number of rare synonymous variants was 0.940. Due
to the stochastic nature of small counts in the ESP data set, the maximum correlation
we could achieve is 0.975, indicating that our model captured ~66% of the remaining

correlation that we could achieve above gene length.

Definition of constrained genes

A traditional approach to identifying genes that appear to be under constraint is
to compare the ratio of nonsynonymous to synonymous substitutions (known as the
Ka/Ks or dn/ds). Given that the correlation between the probability of a synonymous
mutation and the number of rare synonymous variants in a gene was high, we wanted
to use our model to predict the number of rare missense variants as a way to evaluate
genes under constraint in an approach similar to the K,/Ks. We determined the expected
number of variants by fitting a linear model based on the probability of mutation and the

observed number of synonymous variants. The autosomes were fit separately from the
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X chromosome. The equations were applied using the probability of a missense
mutation to create an expected number of rare missense variants in the ESP dataset.
For both synonymous and missense variants, we created a signed Z score of the chi-
squared deviation of observation from expectation. Negative values indicate more
variants than expected, while positive values are tied to fewer variants observed than

expected.

In order to define the set of genes that appeared to be under excessive
constraint, we used three filters: (1) the predicted number of rare synonymous variants
should be 5 or greater, (2) the observed number of rare synonymous variants should
not be significantly lower than expectation (p > 0.001), and (3) the observed number of
missense singletons should be significantly lower than expectation (p < 0.001). The
reason for restricting to genes with 5 or more expected synonymous singletons is so
that true deviations from expectation can be separated from deviations caused by
sampling problems. Using these filters, we identified 1,003 genes—which represent
roughly 5% of the genes in the genome—that appeared to be under excessive

constraint.

The genes in the constrained gene list are enriched for entries in the OMIM
database, especially for entries associated with mental retardation and retinitis
pigmentosa. 31% of the top 86 constrained genes — for which the observed number of
missense rare variants is significant at p < 10° — have entries in the Online Mendelian
Inheritance in Man (OMIM) database with dominant or de novo inheritance patterns.
None of them have recessive inheritance entries in OMIM. A comparison set was made

to 111 genes for which the missense observations fell very closely around prediction
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(-0.01 <Z < 0.01). This set of genes had 2 OMIM entries (1.8%) with dominant or de

novo inheritance and 11 (10%) with recessive inheritance.

Removing potential false positive constrained genes

In order to identify genes that appeared to be significantly constrained, we used
our probabilities of mutation to predict the expected amount of synonymous and
nonsynonymous variation in the NHLBI's ESP data. Those genes that had the expected
amount of synonymous variation, but were significantly (p < 0.001) deficient for
missense variation were labeled as constrained. To ensure that genes were not
nominated as being constrained erroneously, we excluded from all analyses 134 genes
where the observed synonymous and nonsynonymous rates were both significantly
elevated or significantly depressed (both p < 0.001). Upon inspection, this list contained
a number of genes that contained an internal duplication (e.g. FLG), a nearby
pseudogene (e.g. AHNAK?Z), and a number of cases where recent duplications and/or
annotation errors have led to the same sequence being assigned to two genes (e.g.
SLX1A and SLX1B). These are all scenarios where standard exome processing
pipelines systematically under-call variation — reads are unmapped due to uncertainty of
which gene to assign them to — or overcall false variants owing to read misplacement.
This further suggests that a byproduct of this analysis framework is the identification of

a residual set of challenging genes for current exome sequencing pipelines.
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Evaluating the global excesses of de novo variants

To compare the observed rate of de novo variants by mutation type to the
expected rate, we summed the total probability of the given type of mutation and
adjusted for the number of individuals in the study. Poisson distribution probabilities

were invoked to determine the significance of the observation.

Number of genes with multiple de novo variants

Even though there is a global excess in LoF variants in the ASD cases, the signal
was spread over many genes, making it hard to determine which specific genes may be
contributing to the etiology of ASD. One way to prioritize genes would be to focus on
those genes that contain multiple de novo variants; we wanted to evaluate whether
there was an excess of such genes. To do so, we simulated de novo events by
extracting each gene’s probability of mutation and then randomly drew the expected
number of de novo variants based on weight (the probability). Using these simulations,
we could determine an empirical p-value for the observed number of genes with multiple
de novo variants. Results are presented in Table 3.1b for the unaffected siblings and
ASD cases, and in Table 3.4b for intellectual disability cases. The “LoF+missense”
category uses the combined probability of a LoF and missense mutation to evaluate
genes that show two or more de novo mutations that are LoF, missense, or both. The

lowest possible p-value is 0.001 since 1,000 simulations were run.
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Single genes with multiple de novo variants

Since we generated a per-gene probability of de novo mutation, we can directly
evaluate genes that contain multiple de novo variants for significance. To do so, each
gene’s probability of mutation is extracted and the predicted number of de novo variants
by mutation type is determined by adjusting for the number of individuals in the study.
The observed and expected numbers of de novo variants are compared and the
Poisson is invoked to determine significance. We perform two comparisons: the LoF
mutations alone and the LoF and missense mutations together. The first comparison is
only made for those genes that contain multiple LoF de novo mutations; the second is
performed for genes that have a combination of missense and LoF de novo mutations.
Here, we have set the significance threshold at 10 since it conservatively accounts for
both the number of genes under study and the number of tests using the Bonferroni

correction.

Global de novo mutation rates separated by IQ group

Due to the significant role of de novo variation in intellectual disability, we wanted
to investigate the overall rates of mutations for those ASD cases without intellectual
impairments. Several intelligence tests were used to assess proband IQ across testing
sites. The |Q analyses presented here include individuals whose 1Q was measured
using one of four standardized, commonly used tests to evaluate intelligence in children:
the WISC-IV?, the WASI?®, the WPPSI-IIl (preschool and primary school age)®, and
the DAS (early years and school age)®°. These tests provide comparable assessments

of full scale intelligence, using both verbal and nonverbal assessments®'. Children who
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did not complete one of these four tests (n = 95, 10.0%) were treated as missing without
attempt. Probands who are missing 1Q without attempt include those who were given an
|Q test that does not assess intelligence comparably (n = 78, 8.2%), specifically the

Mullen Scales of Early Learning or the Leiter International performance scale, which are

strongly weighted towards nonverbal assessment®*®.

We had access to phenotypic information for 954 of the sequenced probands. Of
these, 859 had taken an IQ test that could be compared to other tests. We removed
those individuals that had a 30-point or greater difference between their verbal and
nonverbal 1Qs to avoid inclusion of excess measurement error or learning disabilities.
Verbal and nonverbal 1Q were correlated strongly with each other (r = 0.70, p < 0.0001)
as well as with the full scale 1Q score (verbal 1Q: r = 0.89, p < 0.0001; nonverbal IQ: r =
0.93, p < 0.0001). We separated the remaining 801 probands into those with and
without measured IQs above statistical average. It is common for individuals affected
with ASDs to be unable to complete or be scored on an IQ test; this was the case for
14.3% (n = 115) of probands for whom a test was attempted in the Simons sample. In
the Simons Simplex Collection, probands who attempted to complete an eligible 1Q test,
but did receive a score, had significantly lower scores on the Vineland Scales of
Adaptive Behavior (1Q test scored mean = 76.0, 1Q test not scored mean = 60.3; t =
15.9, p < 0.0001). A Vineland composite standard score of 60 reflects adaptive behavior
(overall functioning and self care skills) scores nearly three standard deviations below
the mean, or approximately in the lowest 1% of the general population, controlling for
age. As the inability to complete an 1Q test is associated with case severity, we were

specifically interested in estimating the de novo rate among individuals with both 1Q
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above the general population mean and the behavioral capability to complete an 1Q
test—both indicators of higher functioning ASDs. The observed and expected de novo
variants per exome are listed in Table 3.5a-b. The individuals with full scale 1Q = 100
matched expectation for de novo variants per exome. Those individuals without
measured |Qs over 100, on the other hand, showed a global excess in de novo LoF
variants. The results were similar when verbal and nonverbal 1Q were analyzed
separately (Table 3.5¢). There was no excess of de novo LOF mutation in individuals

with verbal (p = 0.19) or nonverbal (p = 0.48) IQ greater than 100.

Overlap between gene sets of interest and de novo containing genes

A number of gene sets have been proposed as relevant to autism or descriptive
of an ASD biochemical pathway. Given the global excess of de novo LoF variants, we
wanted to evaluate whether or not the list of genes that contain such mutations overlap

more than expected with several of the proposed gene sets.

In order to determine the significance of any observed overlap between a gene
set of interest and the list of genes that contain de novo variants, we first determine the
total probability of mutation for all genes on the gene set of interest. The set total is
compared to the total probability of mutation for all genes. This percentage becomes the
expected overlap of de novo variants with the gene set. Using the expected overlap and
the number of variants on the de novo list, we evaluate the observed overlap between
the de novo list and the gene set of interest by invoking the binomial. All p-values are
one-tailed. The de novo variant list is broken down by mutation type (LoF, missense,

and synonymous), as are the probabilities of mutation for the gene set of interest.
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We evaluated the overlap between three de novo lists and four separate gene
sets of interest (Figure 3.2). The gene sets of interest are a set of genes reported as
disrupted in individuals with ASD or autistic features (Betancur)'?, the set of targets of
FMRP identified by Darnell and colleagues (FMRP)”, the set of significantly constrained
genes that we defined earlier (Constrained), and the set of FMRP targets that are also

constrained (Constrained FMRP). Significance was conservatively set at 0.01.

Phenotype of individuals with de novo LoF mutations in FMRP targets

Across the 1,078 individuals with ASD, there were 35 de novo LoF variants in
targets of FMRP spread across 34 individuals (referred to as FMRP-I here)'. For those
individuals for which we had access to phenotypic information, we extracted IQ and sex.
We found that the FMRP-I group had significantly fewer individuals with IQ = 100 than
the rest of the sample set (Table 3.6a, Fisher’s exact p = 4.01x10™). As before,
individuals who started an 1Q test but were not given an 1Q score due to being severely
impaired are included in the 1Q < 100 group. To ensure that the association was not
driven by those probands with attempted but missing 1Q values, we also tested the
association using only those individuals with estimated full scale 1Q scores (Table 3.6b,
Fisher’s exact p = 0.0021). The FMRP-I group also had a reduced male bias. Where the
whole set of individuals is ~80% male, the FMRP-I group is only ~59%, which is a

significant difference (Table 3.7, Chi-square p = 0.02).
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Comparing the power of our constraint method to that of NS:S ratio

The ratio of nonsynonymous (NS) substitutions per NS site to synonymous (S)
substitutions per S site in a gene has been often used to determine if that gene has
evidence of selection acting on it. A high NS:S ratio would indicate positive selection,
while a low NS:S ratio would be evidence for purifying selection. Theoretically, our
method of comparing observed NS variants to expectation should achieve greater
statistical power than the NS:S comparison. To support this claim, we used the number
of NS and S rare variants (minor allele frequency < 0.1%) found in the NHLBI's Exome
Sequencing Project (ESP) dataset and determined each gene’s deviation in terms of

their ratio of S to NS sites compared to the genome-wide average.

We removed the 134 genes where the observed synonymous and
nonsynonymous rates were both significantly elevated or significantly depressed from
expectation as determined by our model (both p < 0.001). These poorly sequenced or
mapped genes — as mentioned in the main text — were also removed from our analysis
to define constrained genes. We then identified the remaining genes that were as
deviant from the genome-wide average as the constrained genes we defined with our
model were from expectation (p < 0.001). Compared to the 1,003 genes defined as
constrained by our model, this approach only identified 377 genes that showed
evidence of purifying selection, 237 (~63%) of which were also identified as constrained
by our method. Included in the 766 genes considered constrained only by our metric
were a number of genes — the top ten of which include RYR2, KMT2A (MLL), KMT2D
(MLL2), and SYNGAP1 — that have already been established as causes of autosomal or

X-linked dominant forms of Mendelian disease (OMIM enrichment p = 5 x 10™).

76



Since our metric was able to identify more genes that showed evidence of
selective constraint, and especially since some of those are known to be causes of
Mendelian disease, we conclude that our method of identifying constrained genes adds

substantial power to the traditional approach and is an appropriate metric.

Comparison of constrained genes to the RVIS metric

Recently, Petrovski et al published a similar method to search for genes that
appeared to be intolerant of mutations®. Their method evaluates the shift in the allele
frequency spectrum of variants identified in genes in the ESP dataset to identify genes
that have more rare variation. Specifically, the number of common nonsynonymous
variants found in each gene was regressed against the total number of variants to
determine the intolerance score. Genes with an unusually high ratio of rare to common
variation are more likely to be intolerant of mutations and are assigned a lower residual
variation intolerance score (RVIS). This approach is orthogonal to our metric of

constraint since we search for a deficiency of rare nonsynonymous variation.

We took the intersection between the two datasets to compare our metric with
the scores provided in Petrovski et al®. This process eliminated some of the genes
considered constrained by our metric, leaving 827 genes. Their score yielded a similar
number of constrained genes (n = 842), which were defined as those genes with a
residual variation intolerance score in the top 5%. 231 genes were considered
constrained by both metrics, which is far greater than expected (0.25%, ~41 genes).
Using a Wilcoxon rank-sum test, we found that the genes defined as constrained by our

metric had significantly lower (more intolerant) RVIS values (p < 107'°). Similarly, the
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genes with the top 5% RVIS had significantly higher constraint scores (Wilcoxon rank-
sum, p < 107"®). We found a correlation of -0.35 between the two scores of constraint,

which is illustrated in Figure 3.4.

Confirming the association between constraint and de novo variants

The power to determine if a gene is significantly constrained relies on gene size.
As mentioned above, genes where we predicted fewer than 5 rare synonymous variants
had to be removed. In order to confirm that the association we found between constraint
and the de novo LoF variants identified in ASD patients, we first investigated the
relationship between constraint and the de novo variants found in unaffected
individuals. As depicted in Figure 3.2a, we found no enrichment of de novo LoF
variants from unaffected individuals in constrained genes. Additionally, we included
gene length as a covariate while performing regressions of ASD de novo LoF genes on
constraint and found that the association remained. We also took the largest 10% of
genes and performed the regression again; constraint was still significant, but the gene

length — when included as a covariate — showed no association.

Our method of determining constraint generates the number of rare missense
variants that are expected to be in each gene. As an alternative metric to constraint, we
also evaluated the fraction of missense variation that was not seen, a metric that is
completely independent of gene size. We found that, in a linear regression, the fraction
of missing missense variation was significantly able to predict whether a gene was

haploinsufficient (p = 2.13x107'?),
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For our final analyses to confirm that our enrichment analysis was not biased
towards bigger genes, we created a list of the largest 5% of genes and queried the de
novo loss-of-function variants identified in unaffected individuals. We expect that there
should be no significant relationship between de novo LoF variants in unaffected
individuals and these large genes. When we use a simple logistic regression to explain
the de novo LoF genes in unaffected individuals, we find an odds ratio (OR) of about
5.5, which describes a highly significant enrichment of big genes. Our method of
determining enrichment, however, accounts for the expected mutation rate of each gene
— thereby inherently incorporating gene size — and shows this set of mutations is not
actually “enriched” at all (p = 0.425; fold enrichment/OR = 1.1). These de novo LoF
mutations in unaffected individuals are occurring in exactly the chance proportion they
should be in larger genes. We therefore conclude that the enrichment analysis central to
our interpretation of ASD events is not affected by gene lists being non-random with

respect to size.

Comparison of three different metrics of constraint

Our metric is one way of searching for genes that appear to be relatively
intolerant of mutations in the human population. One approach is the residual variation
intolerance score (RVIS) created by Petrovski and colleagues®, which evaluates the
relative excess of rare variants to common ones in genes. Since Petrovski et al did not
define a list of intolerant genes in their paper, we defined such a list by taking the top
5.5% most intolerant genes according to their metric. 5.5% was selected since that is

the percentage of genes that we define as constrained using our metric. An additional
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alternative comes from Bustamante et al, who used both fixed and polymorphic
synonymous and nonsynonymous sites to find genes that appear to be affected by

selection, including 813 loci that appeared to be under negative selection'®.

We sought to compare both our constraint score and list of constrained genes
with the results of these other approaches. To do this, we focused on the ability to
predict known haploinsufficient genes (as defined in OMIM) and the enrichment of these
genes with de novo LoF mutations identified in ASD patients. Our results are
summarized in Table 3.8. For the quantitative metrics (our constraint score and the
RVIS metric), we performed a linear regression between haploinsufficient genes and the
score with gene size as a covariate. While both metrics have significant predictive
ability, our constraint score outperforms RVIS slightly (t-value = 10.011 for constraint,
-9.561 for RVIS). For the list-based comparison, we used a logistic regression with gene
length as a covariate. In this comparison, the top 5.5% intolerant genes according to
RVIS had an odds ratio (OR) of ~5.5, while the constrained gene set that we defined
had an OR of 4.9, both of which were significant. The genes identified by Bustamante

and colleagues showed no significance (Table 3.8a).

We also evaluated the fraction of these different sets of constrained genes that
contained a de novo LoF in ASD cases. Our method, as explained above, determines
the fraction of constrained genes that are expected to contain a de novo mutation by
chance. We then evaluate the observed fraction and can determine both the fold
enrichment and significance. When we evaluated the three previously mentioned lists of
genes — our constrained, top 5.5% intolerant genes using RVIS®, and the loci identified

by Bustamante'® — we found that our list of constrained genes had the greatest fold
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enrichment of genes that contained a de novo LoF in ASD cases (p = 3.58x10°®; Table
3.11b). The top 5.5% of genes identified using RVIS also performed well (fold
enrichment of 1.9, p = 5.36x10™), but the loci from Bustamante et al showed no

significant enrichment.

Author contributions

Kaitlin Samocha: conceived and designed mutational model and constraint methods,

performed all analyses not listed below, writing

Elise Robinson: analyses of autism samples split by verbal and nonverbal 1Q groups

(Table 3.5c), phenotype analysis of autism cases (Tables 3.6 and 3.7), writing

Jack Kosmicki: obtained 1Q information for autism samples and helped Elise with the 1Q

and phenotype analyses

Stephan Sanders: provided updated de novo calls from trios sequenced at Yale and

manuscript comments
Andrew Kirby: additional indel calling and manuscript comments
Swapan Mallick: provided table with divergent sites between humans and macaques
Lauren McGrath: gave suggestions for IQ analysis of autism samples
Christine Stevens, Stacey Gabriel, Mark DePristo: data processing and sample tracking

Aniko Sabo, Karola Rehnstréom, Dennis Wall, Daniel MacArthur, Shaun Purcell, Aarno

Palotie, Eric Boerwinkle, Joseph Buxbaum, Edwin Cook Jr, Richard Gibbs,

81



Gerard Schellenberg, James Suftcliffe, Bernie Devlin, Kathryn Roeder: provided

sequencing data and manuscript comments

Benjamin Neale: conceived and designed mutational model and constraint methods,

created the mutation rate table and depth of coverage file, writing

Mark Daly: conceived and designed mutational model and constraint methods, overall

guidance, writing

82



Bibliography

1.

10.

11.

12.

13.

14.

Ng, S.B. et al. Exome sequencing identifies MLL2 mutations as a cause of
Kabuki syndrome. Nature genetics 42, 790-3 (2010).

lossifov, I. et al. De Novo Gene Disruptions in Children on the Autistic Spectrum.
Neuron 74, 285-299 (2012).

Neale, B.M. et al. Patterns and rates of exonic de novo mutations in autism
spectrum disorders. Nature 485, 242-245 (2012).

O'Roak, B.J. et al. Sporadic autism exomes reveal a highly interconnected
protein network of de novo mutations. Nature 485, 246-250 (2012).

Sanders, S.J. et al. De novo mutations revealed by whole-exome sequencing are
strongly associated with autism. Nature 485, 237-241 (2012).

O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders
identifies severe de novo mutations. Nature genetics 43, 585-9 (2011).

Antonarakis, S.E. CpG Dinucleotides and Human Disorders. in eLS (John Wiley
& Sons, Ltd, 2006).

Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S. & Goldstein, D.B. Genic
Intolerance to Functional Variation and the Interpretation of Personal Genomes.
PLoS Genet 9, e1003709 (2013).

de Ligt, J. et al. Diagnostic Exome Sequencing in Persons with Severe
Intellectual Disability. New England Journal of Medicine 367, 1921-1929 (2012).

Rauch, A. et al. Range of genetic mutations associated with severe non-
syndromic sporadic intellectual disability: an exome sequencing study. The
Lancet 380, 1674-1682 (2012).

O'Roak, B.J. et al. Multiplex Targeted Sequencing Identifies Recurrently Mutated
Genes in Autism Spectrum Disorders. Science (2012).

Betancur, C. Etiological heterogeneity in autism spectrum disorders: More than
100 genetic and genomic disorders and still counting. Brain Research 1380, 42-
77 (2011).

Darnell, J.C. et al. FMRP Stalls Ribosomal Translocation on mRNAs Linked to
Synaptic Function and Autism. Cell 146, 247-261 (2011).

Sanders, S.J. et al. Multiple recurrent de novo CNVs, including duplications of

the 7q11.23 Williams syndrome region, are strongly associated with autism.
Neuron 70, 863-85 (2011).

83



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Xu, B. et al. De novo gene mutations highlight patterns of genetic and neural
complexity in schizophrenia. Nature genetics 44, 1365-1369 (2012).

Bustamante, C.D. et al. Natural selection on protein-coding genes in the human
genome. Nature 437, 1153-1157 (2005).

McDonald, J.H. & Kreitman, M. Adaptive protein evolution at the Adh locus in
Drosophila. Nature 351, 652-4 (1991).

Epi, K.C. & Epilepsy Phenome/Genome, P. De novo mutations in epileptic
encephalopathies. Nature 501, 217-221 (2013).

DePristo, M.A. et al. A framework for variation discovery and genotyping using
next-generation DNA sequencing data. Nature genetics 43, 491-8 (2011).

Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics 26, 589-95 (2010).

McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome research 20, 1297-
303 (2010).

Krawczak, M., Ball, E.V. & Cooper, D.N. Neighboring-Nucleotide Effects on the
Rates of Germ-Line Single-Base-Pair Substitution in Human Genes. The
American Journal of Human Genetics 63, 474-488 (1998).

Kryukov, G.V., Pennacchio, L.A. & Sunyaev, S.R. Most Rare Missense Alleles
Are Deleterious in Humans: Implications for Complex Disease and Association
Studies. The American Journal of Human Genetics 80, 727-739 (2007).

Hellmann, I. et al. Why do human diversity levels vary at a megabase scale?
Genome Research 15, 1222-1231 (2005).

Stamatoyannopoulos, J.A. et al. Human mutation rate associated with DNA
replication timing. Nature genetics 41, 393-395 (2009).

Koren, A. et al. Differential Relationship of DNA Replication Timing to Different
Forms of Human Mutation and Variation. The American Journal of Human
Genetics 91, 1033-1040 (2012).

Weschler, D. Weschler Intelligence Scale for Children--4th Edition (WISC-1V).
(Harcourt Assessment, San Antonio, Texas, 2003).

Weschler, D. Weschler Abbreviated Scale of Intelligence (WASI), (Harcourt
Assessment, San Antonio, Texas, 1997).

Weschler, D. Weschler Primary and Preschool Scale of Intelligence--Third
Edition, (Harcourt Assessment, San Antonio, Texas, 2002).

84



30.

31.

32.

33.

Elliott, C.D. DAS Administration and Scoring Manual, (The Psychological
Corporation, San Antonio, Texas, 1990).

Elliott, C.D. DAS Introductory and Technical Handbook, (The Psychological
Corporation, San Antonio, Texas, 1990).

Mullen, E.M. Mullen Scales of Early Learning, (American Guidance Service Inc.,
Circle Pines, MN, 1995).

Roid, G.H. & Miller, L.J. Leiter International Performance Scale- Revised,
(Stoelting Co., Wood Dale, lllinois, 1997).

85



Chapter 4

Leveraging large reference populations to identify functionally constrained genes

Work presented in this chapter will be published as part of:

Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Under review.



Abstract

Large-scale exome sequencing efforts of reference populations have greatly
improved both clinical and functional interpretation of genetic variation. We analyzed the
variation identified in 60,706 individuals included in the Exome Aggregation Consortium
(ExAC) dataset to identify genes under strong selective constraint. Of particular interest
is the set of 3,230 genes that are significantly depleted of loss-of-function variation.
These constrained genes are enriched for established haploinsufficient and dominant
disease genes, and represent core biological processes (e.g. spliceosome and
proteasome). However, only 28% have been associated with a human disease
phenotype; those that have not yet been associated promise to be a fruitful set to further

investigate both within the clinic and in functional studies.

Introduction

One of the major challenges within the field of human genetics is determining
which variant, or set of variants, is associated to disease. High-throughput DNA
sequencing technologies have aided this effort by allowing researchers to investigate
nearly all single nucleotide and small insertion and deletion (indel) variants within an
individual's genome or exome (the 1% of the genome that codes for proteins).
Unfortunately, each individual harbors tens of thousands of variants and examining
each of these variants would be a long and laborious task.

To make the task of associating variation to disease, it is critical to be able to
prioritize variants and define a subset for further analysis. There are many variant-level

prioritization tools', but we have found that using gene’s intolerance of
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nonsynonymous variation can also aid in variant interpretation**. Identifying these
constrained genes depends on the availability of exome sequencing datasets of large
reference populations. While both the 1000 Genomes Project6 and the National Heart,
Lung and Blood Institute’s Exome Sequence Project’ publically released the protein-
coding variation from thousands of individuals (n = 2,504 and 6,503, respectively), the
size of these datasets restricted researcher’s ability to identify genes that are intolerant
of loss-of-function variation.

Here, we describe using the Exome Aggregation Consortium (ExAC), which is an
order of magnitude larger than previously released datasets (n = 60,706), to evaluate

missense and loss-of-function constraint.

Results

The deep ascertainment of rare variation in the Exome Aggregation Consortium
(ExAC) allows us to infer the extent of selection against variant categories on a per-
gene basis by examining the proportion of variation that is missing compared to
expectations under random mutation. Conceptually similar approaches have been
applied to smaller exome datasets*® but have been underpowered, particularly when
analyzing the depletion of loss-of-function (LoF) variants. We compared the observed
number of rare (minor allele frequency [MAF] < 0.1%) variants per gene to an expected
number derived from a selection neutral, sequence-context based mutational model®
(Chapter 3). The model performs well in predicting the number of synonymous variants,

which should be under minimal selection, per gene (r = 0.98; Figure 4.1).
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perfect correlation (slope = 1). Axes have been trimmed to remove TTN.

We quantified deviation from expectation with a Z score®, which for synonymous

variants is centered at zero, but is significantly shifted towards higher values (greater

constraint) for both missense and LoF (Wilcoxon p < 10°° for both; Figure 4.2). The

genes on the X chromosome are significantly more constrained than those on the
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autosomes for missense (p < 10”) and loss-of-function (p < 10"°°). The high correlation
between the observed and expected number of synonymous variants on the X
chromosome (r = 0.97 versus 0.98 for autosomes) indicates that this difference in
constraint is not due to a calibration issue. To reduce confounding by coding sequence
length for LoFs, we developed an expectation-maximization algorithm (see Materials
and Methods) using the observed and expected LoF counts within each gene to
separate genes into three categories: null (tolerant of homozygous LoFs), recessive
(tolerant only of heterozygous LoFs), and haploinsufficient (intolerant of homozygous
LoFs). This metric — the probability of being loss-of-function intolerant (pLI) — separates
genes of sufficient length into LoF intolerant (pLI = 0.9, n = 3,230) or LoF tolerant (pLI <
0.1, n =10,374) categories. pLl is less correlated with coding sequence length (r = 0.17
as compared to 0.57 for the LoF Z score), outperforms the LoF Z score as an
intolerance metric (discussed more in Materials and Methods), and reveals the
expected contrast between gene lists (Figure 4.3).

Additionally, pLI is positively correlated with a gene product’s number of physical
interaction partners (p < 10'41). The most constrained pathways (highest median pLI for
the genes in the pathway) are core biological processes (spliceosome, ribosome, and
proteasome components; Kolmogorov-Smirnov [KS] test p < 107 for all) while olfactory
receptors are among the least constrained pathways (KS test p < 10™'°), demonstrated

in Figure 4.3 and consistent with previous work® 2.
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Figure 4.2. The distribution of Z scores for synonymous (gray), missense (orange), and
loss-of-function (red) for 18,225 genes. This measure of departure of number of variants
from expectation is normally distributed for synonymous variants, but right-shifted
(higher constraint) for missense and loss-of-function variants, indicating that more
genes are intolerant to these classes of variation.

Critically, we note that LoF-intolerant genes include virtually all known severe
haploinsufficient human disease genes (Figure 4.3), but that 72% of these genes have
not yet been assigned a human disease phenotype despite clear evidence for extreme
selective constraint. Many of these genes (79%) specifically do not have a disease-
associated variant in ClinVar'® (a database that collects evidence for pathogenicity of
variants). We note that this extreme constraint does not necessarily reflect a lethal

disease, but is likely to point to genes where heterozygous loss-of-function confers

some non-trivial survival or reproductive disadvantage.
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Figure 4.3. The proportion of genes in gene sets that are very likely intolerant of loss-of-
function variation. pLI close to one indicates extreme intolerance to loss-of-function
variation; we therefore take pLI = 0.9 as the cut-off for extreme loss-of-function
intolerance. The black error bars indicate a 95% confidence interval. olfactory =
olfactory receptor genes (n = 371); recessive = recessive disease genes from Blekhman
and Berg (n = 1,183); all (n = 18,225); dominant = dominant disease genes from
Blekhman and Berg (n = 709); mouse hom = genes that are lethal in mice when both
copies are knocked out (n = 2,760); essential = genes that are essential in cell culture
as curated by Hart et al 2014 (n = 285); mouse het = genes that are lethal in mice when
one copy is knocked out (n = 387); mild HI = haploinsufficient genes that cause a mild
disease (n = 59); mouse cond = genes that are lethal in mice when conditionally
knocked out in adult mice (n = 402); moderate HI = haploinsufficient genes that cause
moderately severe disease (n = 77); severe HI = haploinsufficient genes that cause
severe disease (n = 44).
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The most highly constrained missense (top 25% missense Z scores) and LoF
(pLI 20.9) genes show higher expression levels and broader tissue expression than the
least constrained genes'* (Figure 4.4). These most highly constrained genes are also
depleted for eQTLs (p < 10 for missense and LoF; Figure 4.5a), yet are enriched
within genome-wide significant trait-associated loci (x* p < 10™"*, Figure 4.5b).
Intuitively, genes intolerant of LoF variation are dosage sensitive: natural selection does
not tolerate a 50% deficit in expression due to the loss of single allele. Unsurprisingly,
these genes are also depleted of common genetic variants that have a large enough
effect on expression to be detected as eQTLs with current limited sample sizes.
However, smaller changes in the expression of these genes, through weaker eQTLs or

functional variants, are more likely to contribute to medically relevant phenotypes.
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Figure 4.4. Expression patterns of genes for bins of constraint. For synonymous and
missense Z, the bins are: bottom quartile (< 25%), two middle quartiles grouped
together, and top quartile (> 75%). For pLI: pLI 0.1, 0.1 < pLI < 0.9, and pLI = 0.9.
Note pLl is the metric used for loss-of-function (LoF) intolerance. (a) The median gene
expression, in logz(RPKM), across all tissues for bins of constraint. (b) The relationship
between constraint and the number of tissues in which a gene is expressed at an RPKM
> 0.1. Synonymous Z scores show no correlation with the number of tissues in which a
gene is expressed, but the least missense- and LoF-constrained genes tend to be
expressed in fewer tissues. Thick black bars indicate the first to third quartiles, with the
white circle marking the median.
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Figure 4.5. Signals of eQTL and GWAS loci enrichment for constraint bins. For
synonymous and missense Z, the bins are: bottom quartile (< 25%), two middle
quartiles grouped together, and top quartile (> 75%). For pLI: pLI 0.1, 0.1 < pLI < 0.9,
and pLI = 0.9. (a) The proportion of eGenes (a gene with a significant eQTL at a false
discovery rate [FDR] of 5%) found in whole blood samples from GTEx'* for each
constraint bin. Highly missense- and LoF-constrained genes are less likely to have
eQTLs as the average gene. No relationship between synonymous %enes and eQTLs is
observed. (b) Enriched of GWAS loci downloaded from the Catalog' for each constraint
bin. Highly missense- and LoF-constrained genes are more likely to be adjacent to
GWAS signals than the average gene, but no relationship is seen for synonymous Z
bins. Shaded regions around the lines indicate 95% confidence intervals.

Discussion

The large sample size of the EXAC dataset provided the opportunity to analyze
the sensitivity of human genes to nonsynonymous variation. While previous sample
sizes have been adequately powered for the assessment of gene-level intolerance to
missense variation*®, ExAC provides for the first time sufficient power to investigate
genic intolerance to loss-of-function (LoF) variants.

We created pLI—the probability of being loss-of-function intolerant—to identify

highly LoF constrained genes and highlighted 3,230 that were significantly depleted of
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LoF variation. Comparing pLI to the LoF Z score revealed that pLI| was better able to
predict haploinsufficient genes and had a greater enrichment of de novo LoFs identified
in 3,982 cases with an autism spectrum disorder'®'”. We also compared pLl to a
previous metric developed to predict haploinsufficient genes called p(H1)'®. Our metric
was able to identify twice as many genes at same cut off as p(HI)—indicating increased
sensitivity of our metric—but a larger proportion of the genes in the high p(HlI) tail are
considered likely haploinsufficient by both metrics. The subset of genes that are
considered likely haploinsufficient (= 0.8) by both metrics shows the greatest enrichment
of ClinGen haploinsufficient genes when compared to genes uniquely flagged by each
metric. Therefore, there would be benefit in combining the two metrics in a future
measure of haploinsufficiency.

The 3,230 severely LoF constrained genes represent core biological processes
and include many dominant and haploinsufficient disease genes. The established
disease genes, however, do not explain the majority of the highly LoF-intolerant genes;
only 28% of genes with a pLI = 0.9 have a human disease phenotype listed in OMIM or
ClinVar™. Further investigation will likely reveal genes that, when disrupted, cause
embryonic lethality as well as additional disease genes that have yet to be tied to
specific phenotypes. These results suggest that this set of genes will be able to aid in

the interpretation of genetic variation identified in patients.
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Materials and Methods

Establishing the expected number of variants per gene

Probabilities of a mutation

Our metrics to evaluate a gene’s intolerance to variation—their level of
constraint—rely on comparing the observed variant counts to an expectation. In order to
determine the expected number of variants per gene, we modified a previous method
described in detail in Chapter 3. We used the mutation rate table created for Samocha
et al® to determine the probability of mutation, split by mutational class (synonymous,
missense, nonsense, and splice site), for each exon in the canonical transcript. As
before, we adjusted the probabilities of mutation for regional divergence between
humans and macaques. Two major changes were made between the previous version
of the method and the one used in this paper: (1) we now used GENCODE v19
annotations for transcripts instead of Refseq and (2) the expected number of variants,
and not the probability of mutation, is adjusted for depth of sequencing coverage (see
below). Here, we focused on the canonical transcript as defined by Ensembl v75 for
each protein-coding gene and drop all transcripts that do not begin with a methionine,
end with a stop codon, or whose length are not divisible by three. After all of these

filters, there were 19,620 canonical transcripts that are used in all following analyses.

Determining the depth of coverage correction
We used the Exome Aggregation Consortium (EXAC; n = 60,706) dataset and
extracted the number of rare (minor allele frequency < 0.1%) single nucleotide variants

for every exon of the canonical transcripts. These variants were assigned functional
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classes (synonymous, missense, nonsense, and splice site) based on the amino acid
change or position in the splice site. We then needed a way to account for the depth of
sequencing coverage since regions that are poorly sequenced will, by definition, have
fewer variants than expected. To do this, we determined the median depth of coverage
for each exon. Given that synonymous variants are most likely to be free of extreme
negative selection, we focused on those variants. Using only those exons with a median
depth = 50, which we consider to be well sequenced, we regressed the number of rare
synonymous variants on the probability of a synonymous mutation to determine the
appropriate formula to predict the number of expected synonymous variants. This
formula was applied to all exons (regardless of depth). To find the appropriate way to
correct for sequencing coverage, we grouped exons by depth (bins of 2) and
determined the sums of all observed and expected synonymous variants in these
exons. The sum of observed synonymous variants divided by the sum of expected
variants had a logarithmic relationship between depth bins of 0 and 50, where it then
plateaued at ~1 (Figure 4.6). We fit the curve to determine the appropriate depth of

coverage correction for exons with a median depth between 1 and 50.

expected count, median depth > 50
depth adjusted count = { expected count * (0.089 + 0.217 = In(median depth),1 < median depth < 50
0.089 * expected count, median depth < 1
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Figure 4.6. The relationship between the median depth of exons and the sum of all
observed synonymous variants in those exons divided by the sum of all expected
synonymous variants.
Expected number of variants

To determine the depth-corrected expected number of variants per exon, we
used those exons with a median depth = 50 and regressed the number of rare
synonymous variants on the probability of a synonymous mutation. These regressions
were done separately for the autosomes with the pseudo-autosomal regions (PAR) of
the X chromosome, the non-PAR regions of the X chromosome, and the Y
chromosome. The resulting formulas were used to predict the depth-uncorrected
expected number of synonymous, missense, and loss-of-function variants (LoFs;
nonsense and splice site) variants for all exons. The correlation between the observed

and depth-uncorrected expected number of synonymous variants per exon was 0.8360.

99



We then corrected these expected numbers by the above equation and observed an
increased correlation between observed and depth-corrected expected synonymous
variants (r = 0.9283). Note that from this point forward, the expected number of variants

always refers to the depth-corrected counts.

Creation of the constraint metric

Determining Z scores of the deviation of observation from expectation

We created a signed Z score to establish the significance of the deviation of
observed variant counts per gene from expectation as in Chapter 3 with minor
modifications. To start, we sum all exon level variant counts across canonical
transcripts. Here, the observed count is the number of unique variants with a VQSLOD
= -2.632 and 123 or fewer alternative alleles (minor allele frequency cut off of ~0.1%). If
an exon had a median depth < 1, the variant counts for that exon were not included in
the total for the transcript. We then removed all transcripts where no variants were
observed. For the remaining 18,466 transcripts, we calculated the chi-squared value for
the deviation of observation from expectation for each mutational class: synonymous,
missense, and loss-of-function (LoF). The square root of these values is multiplied by -1
if the number of observed variants is greater than expectation (or 1 if observed counts
are smaller than expected) to create the Z score.

A critical next step is to correct the scores so that the synonymous Z scores
followed an approximately normal distribution. For the synonymous Z scores, we used a
subset of transcripts whose synonymous Z scores fell in between -5 and 5. All

synonymous Z scores were divided by the standard deviation of this outlier-removed
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subset to create the corrected Z scores. A slightly different approach was used for
missense and LoF Z scores. We took all transcripts with a missense Z score between -5
and 0 and combined them with those same Z scores multiplied by -1 (to create a
mirrored distribution). All missense Z scores were divided by the standard deviation of
the mirrored distribution to create the corrected missense Z scores. The same

procedure was applied to the LoF Z scores.

Removing outliers

We then used these corrected Z scores to define outlier transcripts—specifically
those with significantly elevated synonymous and missense counts or significantly
depleted synonymous and missense counts. These outliers were defined as transcripts
with a synonymous Z < -3.71 and a missense Z < -3.09 or transcripts with a
synonymous Z > 3.71 and a missense Z > 3.09. These filters removed a total of 241
transcripts, leaving 18,225 for all further analyses. The distribution of the synonymous,
missense, and LoF Z scores are depicted in Figure 4.2. Note that a Z score of ~3.09 is
equivalent to a p-value of 10° and is considered the significance threshold when

splitting transcripts into constrained and unconstrained classes.

Correlation of observed and expected counts

For the set of 18,225 cleaned transcripts, the correlation between the number of
observed rare (minor allele frequency < 0.1%) synonymous variants and the expected
number of variants given the above model is 0.9776. This correlation is higher than

simply regressing the observed synonymous variants against number of coding bases
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in the gene (r = 0.9201), or the probability of a synonymous mutation (r = 0.9349). This
relationship between observed and expected mutation counts can be seen for

synonymous, missense, and LoF variants in Figure 4.1.

Power of the Z score analyses

To achieve a Z score of 3.09 (a p-value equivalent of 10'3), the number of
expected variants would need to be a minimum of 10. Following this criterion, 99.5% of
transcripts could be evaluated for missense constraint. However, only 11,437 transcripts
(62.8%) were mutable enough to have 10 or more expected LoFs in the EXAC dataset

(see below).

Z score distributions for gene lists

We next investigated the synonymous, missense, and LoF Z score distributions

19,20 t19,20

for the following gene lists: autosomal recessive *“", autosomal dominan , essential
in cell culture?’, ClinGen haploinsufficient, FMRP interactors®?, and olfactory
receptors®. For the synonymous Z scores (Figure 4.7), most gene lists match the
distribution of the full set of canonical transcripts (median Z = 0.05). The only notable
exception is the list of olfactory receptors, which show 118% of the expected

synonymous variation (Wilcoxon p < 107°).
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missense
loss—of-function

-10 -5 0 5 10 15

‘ ! ' ! | ! Wilcox P value N % Obs
All genes ——————— NA 18,225 98.7
Autosomal recessive ————— 0.12 1,166 100
Autosomal dominant — = —— gx107° 692 98.3
Essential in culture —- - 2x107 280 103
ClinGen Haploinsufficient —— - 0.02 211 978
FMRP interactors —————— 0.83 794 100
Olfactory receptors —_—— _———— 3xi0™¥ 381 118

Figure 4.7. Distribution of synonymous Z scores for gene sets. Wilcoxon p-value for
difference from the full distribution, the number of genes in the set, and the percentage
of expected variation observed are reported on the right.

Across all canonical transcripts, ~89% of all missense variation is observed and
the median missense Z score is 0.51. As a note, higher (more positive) Z scores
indicate increased selective constraint, while negative Z scores are given for transcripts
where more variation was seen than expected. All of the gene sets tested significantly
differ from the overall distribution (Figure 4.8) with the recessive genes and olfactory
receptors showing slightly lower missense Z scores. The rest of the gene sets have

significantly higher missense Z scores (Wilcoxon p < 102%).
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Olfactory receptors

Figure 4.8. Distribution of missense Z scores for gene sets. Wilcoxon p-value for
difference from the full distribution, the number of genes in the set, and the percentage

missense
loss—of-function

Wilcox P value

NA

5x107"

— 1x10%

2x10™%
8x107™®
———— 6x1o—153

6x10™%

of expected variation observed are reported on the right.

The LoF Z scores have the most skewed distributions (Figure 4.9). Overall, only

N

18,225

1,166

692

280

211

794

381

39% of the expected loss-of-function variation is observed, giving the full set of

% Obs

88.8

97.1

82.1

67.1

72.6

75.2

123

canonical transcripts a median LoF Z score of 1.97. The Z scores for the autosomal

recessive genes match the overall distribution fairly closely (Wilcoxon p = 0.02, median

= 2.09). The olfactory receptors, as before, have significantly lower LoF Z scores

(Wilcoxon p < 10°°°, median = 0.16), but unlike with synonymous and missense do not

have more loss-of-function variation than expected (95% observed).
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missense
loss—of-function

-10 -5 0 5 10 15
‘ ! ‘ ! ‘ ! Wilcox P value N % Obs

All genes : NA 18,225 39.4

Autosomal recessive —@— 0.02 1,167 46.4
Autosomal dominant < 4x10°® 693 26.9
Essential in culture : 2x107® 280 17.5
ClinGen Haploinsufficient G axig® 212 8.88
FMRP interactors —\—/>—— Bxi0e 817 13.8
Qlfactory receptors % 2x1071% 351 94.9

Figure 4.9. Distribution of loss-of-function Z scores for gene sets. Wilcoxon p-value for
difference from the full distribution, the number of genes in the set, and the percentage
of expected variation observed are reported on the right.

Creation of a new loss-of-function constraint score

The LoF Z score is correlated with gene length

The Z scores were created to evaluate the significance of the deviation of
observed counts from expectation. Given this, it is sensitive to differences in power. For
example, a gene with 0 observed variants would require ~10-11 expected variants to
pass a significance threshold of 107 (Z score of 3.09). The expected number of variants
per gene is based on the length and mutability of the transcript. Since the probability of
having a loss-of-function mutation is small (roughly an order of magnitude less than the
probability of a missense mutation), only 63% of the canonical transcripts are expected

to have 10 or more LoFs in the EXAC dataset (59% if expecting 11 LoFs).
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Due to this reliance on mutability, it is unsurprising that the LoF Z score is
correlated with the coding length of the transcript (r = 0.5697; Figure 4.10a). This
correlation is not seen for the missense Z score (r = 0.0566; Figure 4.10b). Therefore,
larger transcripts will have more significant LoF deviations (and Z scores) than smaller
transcripts and some transcripts that are truly intolerant of loss-of-function variation will
be too small to achieve statistical significance. These results motivated the search for a

better metric to capture LoF constraint (discussed below).
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Figure 4.10. The correlation between the length of the gene and the Z score. (a) The
correlation for the loss-of-function Z score. The Pearson’s r between the two is 0.5697.
(b) The correlation for the missense Z score. The Pearson’s r between the two is
0.0566. The black line shows the linear relationship. Axes have been trimmed to

remove TTN.
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Evaluating the ratio of missing loss-of-function variation

A natural metric to evaluate intolerance to loss-of-function variation is the amount
of expected variation that was not observed. Truly intolerant transcripts should be
missing most of the expected variation, which is independent of the length of the
transcript. We defined the ratio of missing variation as one minus the quotient of the
observed counts divided by the expected counts.

The correlation between the length of the transcript and the ratio of missing loss-
of-function variation is 0.1561 (Figure 4.11). The distributions of the ratio of missing
synonymous, missense, and loss-of-function variation are depicted in Figure 4.12a. The
majority of transcripts fall between 0 and 1 for the ratio of missing LoF variation, where
1 means the transcript is completely devoid of LoF variation. Both the synonymous and

missense distributions shift towards transcripts having more of their expected variation.

1.0

0.0
1

Ratio of Missing LoF Variation

-1.0

-1.5

I T T I T ! T
0 5000 10000 15000 20000 25000 30000

Gene Length (bp)
Figure 4.11. The relationship between gene length and the ratio of missing loss-of-

function variation. The Pearson’s r between the two is 0.1561. The x-axis was trimmed
to remove TTN and the y-axis was cut at -1.5 (out of -4) to show pattern of the data.
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a) Distribution of the ratio of missing expected variation for synonymous, missense, and
loss-of-function
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b) The ratio of missing loss-of-function variation for gene lists
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Figure 4.12. Distributions of the ratio of missing variation. Note that 1 means there were
no variants observed and negative values indicate more variation observed than
expected. (a) The distribution of the ratio of missing expected variation for synonymous,
missense, and loss-of-function. The x-axis has been trimmed at -8 (out of -18) to
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Figure 4.12 (Continued) highlight the patterns of the data. (b) The ratio of missing loss-
of-function variation for gene sets. The median ratio of missing loss-of-function variation
for all genes is indicated by the dashed red line. The x-axis has been trimmed at -2 (out
of -5) to highlight the patterns of the data.

The ratio of missing LoF variation is depicted for the gene lists used above in
Figure 4.12b. All gene sets are significantly different from the set of all canonical
transcripts (referred to as “All genes” in the figure; Wilcoxon p < 107"° for all). Autosomal
recessive genes and olfactory receptors have slightly more of their expected LoF
variation than the set of all transcripts. The rest of the gene sets are significantly more
depleted for the expected LoF variation than the full set of transcripts. The most striking

signal comes from the haploinsufficient genes, none of which have more LoF variation

than expected.

Creation of pL/

One of the main goals of this work was to identify genes that are intolerant of
loss-of-function variation. Given the continuous nature of the ratio of missing loss-of-
function variation, it is slightly challenging to do this. To address this challenge, we
estimated the probability of being loss-of-function intolerant (pLI) using the expectation-
maximization (EM) algorithm.

The underlying premise of this analysis is to assign genes to one of three natural
categories with respect to sensitivity to loss-of-function variation: null (where loss-of-
function variation — heterozygous or homozygous - is completely tolerated by natural
selection), recessive (where heterozygous LoFs are tolerated but homozygous LoFs are

not), and haploinsufficient (where heterozygous LoFs are not tolerated). We assume
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tolerant (null) genes would have the expected amount of LoF variation and then took the
empirical mean observed/expected rate of LoF variation for recessive disease genes
(0.463) and severe haploinsufficient genes (0.089) to represent the average outcome of
the homozygous and heterozygous intolerant scenarios respectively. These values (1.0,
0.463, 0.089) are then used as a three-state model to which we fit the
observed/expected LoF variant rate of each gene via the following analysis.

Let m := (myuu Tree, TH1) FEpresent the proportion of all genes that fall into each
of the three proposed categories: null, recessive, and haploinsufficient.

Let Anun, Arec, @and Anr denote the expected amount of loss-of-function depletion in
each of the three categories. Based on the observed depletion of LoF variation in the

autosomal recessive'®?°

and ClinGen dosage sensitivity gene sets, we use:
Avun =1
Agec = 0.463
Anr=0.089
For each gene i, we model the observed data (LoF counts) as a function of the
unobserved class labels (Z;) as follows:
Z; | T~ Cat(Tyyi, Tree) THi)
LoF; | Z; ~ Pois(NAz,)
Here, LoF;represents the observed number of LoFs in gene iand Nis sample
size, such that N4, is the expected number of loss-of-function variants in a gene

belonging to class Z; in the EXAC data. Our goal is to find the maximum-likelihood

estimate (MLE) for = (the mixing weights of the three gene classes), and to use this
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estimate to obtain an Empirical Bayes maximum a posteriori (MAP) estimate for Z; — the
probability of gene assignment to each category — for all genes i=1...M.

We use an expectation-maximization (EM) algorithm to find the MLE for 7 and Z,
treating m as the parameters and the Z; as the latent variables. We initialize the EM
algorithm by setting 7° = (1/3,1/3,1/3).

In the E-step, we evaluate the distribution of the latent variables (Z;) given the
values of the parameters () from the previous iteration. The E-step is

Pois(LoF; | NAz)m;

Z' ';L F = [ ’
Pl LoF) = 5 b i LoF, [ N2z,

where Pois denotes the Poisson likelihood. In the M-step, we update the parameters
with a new expectation taken under the distribution of the latent variables (Z;) computed

in the M step. The update is
Thew = Z'p(Zl- | LoF; %) /Ngenes
A

We repeat these steps until the convergence criteria are met (r;; changes by
less than 0.001 from one iteration to the next).

When the EM has converged, the final mixing weights are used to determine
each gene’s probability of belonging to each of the categories (null, recessive,
haploinsufficient).

Zinuu = Pois(LoF; | NAyyu)
Zirec = Pois(LoF; [NAge()
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The final metric, pLI (the probability of being loss-of-function intolerant):

LI =
P XZ;

The closer pLl is to 1, the more likely the transcript is loss-of-function intolerant.
The overall distribution of pLl is fairly bimodal, with most genes looking either tolerant or
intolerant of loss-of-function variation (Figure 4.13a, right panel). Additionally, pLI is only
modestly correlated with transcript length (r = 0.1668; Figure 4.13b). However, we find
that the most highly LoF-intolerant genes (pLI = 0.9) are significantly longer than all
genes (Wilcoxon p < 10°°%; Figure 4.14a). The least intolerant genes are also
significantly—but to a lesser extent—larger than all genes (Wilcoxon p < 10°>; Figure

4.14b).
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a) Distributions of pNull, pRec, and pLlI
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b) Relationship between transcript coding length and pLlI
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Figure 4.13. Properties of pNull, pRec, and pLlI. (a) The distribution of pNull, pRec, and
pLl across all transcripts. The distribution is roughly bimodal for each. (b) The
relationship between pLI and the number of coding bases in each gene. The Pearson’s
ris 0.1668.
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a) Highly loss-of-function intolerant genes (pLI = 0.9)
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Figure 4.14. The distribution of gene length (bp) for all genes and those genes with high
and low pLI values versus all genes. (a) The highly LoF intolerant genes (pLI = 0.9) are
significantly longer than all genes (Wilcoxon p < 10°°). (b) The least LoF intolerant
genes (pLI < 0.1) are slightly significantly longer than all genes (Wilcoxon p =5 x 10™).
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In order to additionally confirm that the pLI metric was free of confounding with
gene length, we compare the gene size distribution of genes with a pLI = 0.99 versus
genes that had the pLI equivalent for falling into the recessive category (pRec) = 0.99.
pRec is determined by the equation below:

Z i,Rec

XZ

pRec =

We find no significant difference in the distribution of gene length between genes
with pLI =2 0.99 (n = 1,803) and genes with pRec = 0.99 (n = 1,145; p = 0.3032; depicted

in Figure 4.15).

O pRec>0.99
O pLI>0.99

0 2000 4000 6000 8000 10000

bp

Figure 4.15. The distribution of gene length for high pLI and pRec genes. There is no
significant difference between gene length (in base pairs [bp]) for genes with pLI = 0.99
or pRec =2 0.99 (p = 0.3032).
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We also show that longer genes are, in general, more depleted of LoF variation
(observed/expected), which can explain the enrichment of long genes in the set of
genes with pLI 2 0.9. There is a relationship between deciles of gene length (bins of
increasing gene length) and the observed depletion of LoFs in that bin: longer genes

(deciles closer to 1) have a significantly lower rate of observed/expected (p < 10™;

Figure 4.16).
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Figure 4.16. The relationship between deciles of gene length and the amount of
expected variation observed. Longer genes (higher decile numbers) have a significantly
lower rate of observed/expected loss-of-function (LoF) variation (p < 10°°).

Given that the X chromosome is hemizygous in males, we expect that genes on
the X would be more constrained than those on autosomes. As expected, we find the
genes on the X chromosomes are significantly more constrained than those genes on

the autosomes for missense and loss-of-function (synonymous p = 0.0223; missense p
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= 4.43x10°%; loss-of-function p = 2.50x10"°). The high correlation between the observed
and expected number of synonymous variants on the X chromosome (r = 0.9677 vs
0.9777 for autosomes) indicates that this difference in constraint is not due to a
calibration issue.

We find that 3,230 (17.7%) of genes are confidently considered extremely loss-
of-function intolerant since their pLl is 0.9 or greater. Similarly, there are 3,463 (19.0%)
and 1,226 (6.7%) genes with pRec or pNull = 0.9, respectively. pRec and pNull also
show fairly bimodal distributions (Figure 4.13, middle and left panels, respectively). As
a warning, while we consider pLI to be a valuable metric to identify genes that appear
haploinsufficient, we caution against using pRec as a similar metric for recessive
disease genes. An appropriate recessive disease gene metric would benefit from
including information about the site frequency spectrum of variants observed in the

gene, among other properties.

Comparison to a previous haploinsufficiency metric: p(Hl)

Our metric to evaluate loss-of-function intolerance was designed to identify
genes that are intolerant of heterozygous loss-of-function variants, which would mean
that these genes are likely acting via haploinsufficiency. Previously, Huang et al (2010)

designed p(HI)—the probability of being haploinsufficient'®

—to determine how likely
each gene was to be haploinsufficient. Huang and colleagues made this metric by using
properties of established haploinsufficient and haplosufficient genes to train a predictive

model. The properties included in the final model were “dn/ds between human and
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macaque, promoter sequence, embryonic expression and network proximity to known
HI [haploinsufficient] genes™'®.

In order to compare pLI and Huang'’s p(HI), we took the 18,064 genes that had
values for both metrics. Since p(HI) was trained on a set of haploinsufficient genes, we
removed 64 genes that were part of their training data set and considered to be
haploinsufficient by ClinGen’s Dosage Sensitivity Map, which left 18,000 genes for
analysis. While there are 3,175 genes in this set with pLI = 0.9, there are only 613 with
p(HI) = 0.9. For this reason, we dropped the cut-off to 0.8, giving 3,878 genes for pLI
and 1,061 for p(HI).

Within the 18,000 genes, 148 are considered haploinsufficient by ClinGen, 109 of
which have a pL| = 0.8. By contrast, only 51 of the 148 haploinsufficient genes have a
p(HI) = 0.8, and 80% of those (n = 41) also have pLI = 0.8. Our metric identifies twice as
many genes at the same cut off, but a larger proportion of the genes in the high p(HI)
tail are considered likely haploinsufficient by both metrics.

Table 4.1a and b depict the breakdown of all genes and ClinGen
haploinsufficient genes, respectively, by their pLI and p(HI) values. We took those data
and found the enrichment of ClinGen haploinsufficient genes in the high pLI and p(HI)
tails by setting as baseline the fraction of ClinGen haploinsufficient genes with pLI and
p(HI) < 0.8 compared to all genes in that category (n = 29 and 13,681, respectively).
The fraction of each other category was compared to this baseline to determine the
enrichment of genes that fall into each of the other categories (pLI < 0.8 and p(HI) = 0.8,

etc.) and is shown in Table 4.1c. Genes uniquely flagged by both metrics have similar
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enrichments (10 for pLI versus 10.8 for p(HI)). The real enrichment, however, is found in

the subset of genes that are considered likely haploinsufficient (= 0.8) by both metrics.

Table 4.1. Probability of Loss of Function (pLI) and Probability of Haploinsufficient (
p(HI)) counts for all genes and ClinGen. The breakdown of all genes (a) and ClinGen
haploinsufficient genes (b) by their pLI and p(HI) values. (c) The enrichment of ClinGen
haploinsufficient genes that fall into the high pLI and p(HI) tails when taking the fraction
of ClinGen genes with pLI and p(HI) < 0.8 compared to all genes.

a) Breakdown of all genes (n = 18,000) by their pLI and p(HI) values

p(HI) < 0.8 | p(HI) 2 0.8

pLI<0.8 13681 441

pLI =0.8 3258 620
b. Breakdown of ClinGen haploinsufficient genes (n = 148) by their pLI and p(HI) values

p(HI) < 0.8 | p(HI) 2 0.8

pLI < 0.8 29 10
pLI>0.8 68 41

c. Enrichment of ClinGen haploinsufficient genes in each pLI and p(HI) category

p(HI) < 0.8 | p(HI) 2 0.8

pLI < 0.8 1.0 10.8

pLIz0.8| 10.0 31.6

Evaluating loss-of-function constraint metrics

To determine which of the three protein-truncating constraint metrics (LoF Z, ratio
of missing LoF variation, and pLl) is the most useful to use as a general LoF intolerance
measure, we perform two tests: (1) the ability to predict known haploinsufficient genes

and (2) enrichment of de novo LoFs found in autism spectrum disorder cases.
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We perform a logistic regression using the three LoF constraint metrics to predict
inclusion in the ClinGen haploinsufficient gene list. For all regressions, transcript length
is included as a covariate. pLI has the highest Z-value (14.314), reflecting a more
significant ability to predict haploinsufficient genes. The Z-value for LoF Z is 11.307 and
is 12.164 for the ratio of missing protein-truncating variation.

For the enrichment of de novo LoFs, we use the published de novo variants from

3,982 cases with autism and 2,078 controls'®"’

and a previously described method that
controls for the mutability of each gene (see Chapter 3)°. In brief, the probability of
mutation (for a specific mutation type) is summed across all genes in a gene set and
compared to the total probability of mutation (of the same type) for all genes. That
fraction becomes the expected fraction of genes in the gene set that should harbor a de
novo variant of the same type. We evaluate the observed overlap between the de novo
list and the gene set of interest by invoking the binomial.

Since this method requires an established gene set, we took genes with pLI = 0.9
(n = 3,230) and matched the set size using the genes with the highest LoF Z scores and
ratio of missing LoF variation. While the fold enrichment is greatest for the ratio of
missing LoF variation (enrichment = 1.9, p < 10"), pLI still outperforms the LoF Z score

(Table 4.2). No significant enrichments are seen when using the control de novo LoFs

(fold enrichments between 0.81 and 0.91).
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Table 4.2. The enrichment of de novo loss-of-function variants (LoFs) from autism
cases with the top loss-of-function intolerant genes as defined by LoF Z, the ratio of
missing LoF variation, and pLlI.

LoF Z > 3.891 | Ratio missing LoFs > 0.9061 | pLI=0.9
(n=3,230) (n =3,230) (n = 3,230)
LoF fold enrichment 1.3656 1.9224 1.6290
p-value 5.07x10™" 5.12x10% 8.31x10%°

Applications of pLlI

Given pLI's superior performance in predicting haploinsufficient genes and
clearer interpretability than the ratio of missing LoF variation, we chose to use pLlI as
our main metric of LoF intolerance.

Established haploinsufficient genes are enriched in the high pLI tail (pLI = 0.9, x?
p<10°; Figure 4.3). Of note, the enrichment in pLI stratifies with the severity of the
disease caused by the haploinsufficient genes with increasingly severe phenotypes
showing increased enrichment in the highly LoF-intolerant genes (manually curated
from the ClinGen dosage sensitivity list). Critically, we note that LoF-intolerant genes
include virtually all known severe haploinsufficient human disease genes (Figure 4.3),
but that 79% of these genes do not have a disease-associated variant listed in ClinVar'
despite the clear evidence for extreme selective constraint.

The targets of FMRP? are also strongly enriched in the high pLI tail (pLI = 0.9, x?

1920 and those essential in cell culture®',

p < 10™% Figure 4.3). Dominant disease genes
however, are more evenly split between the two categories, but still enriched for pLI =
0.9 (x> p < 10 and p < 103, respectively). Olfactory receptors® and recessive

disease genes'®?® have low pLI scores overall, indicating that these sets are not likely
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haploinsufficient. These results do not mean that recessive genes are not important to
disease, but that they can on average tolerate a heterozygous LoF.

We also studied three gene lists that correspond to genes found in mice: those
genes that are lethal as homozygous knock outs, genes that are lethal as heterozygous
knock outs, and genes that are lethal when conditionally knocked out in adult mice
(mouse gene lists were provided by Joanne Berghout from JAX). As depicted in Figure
4.3, the conditional lethal genes are the most enriched in the most LoF-intolerant genes,

followed by the heterozygous lethal, and then the homozygous lethal genes.

Gene expression and eQTLs

To further understand the characteristics of constrained genes we investigate the
association of the synonymous Z score, missense Z score, and pLI with various gene
expression and regulation metrics utilizing the multi-tissue gene expression data from
the Genotype-Tissue Expression (GTEx) project'* (GTEx Analysis V4, dbGaP
Accession phs000424.v4.p1) spanning 53 tissue types sampled from 212 post-mortem

donors downloaded from the GTEx portal (http://www.gtexportal.org) on July 29, 2015.

The medians of log2-transformed RPKM values for each tissue are correlated
with the constraint scores after excluding sex chromosomal transcripts and transcripts
not expressed in the given tissue (i.e. median RPKM = 0). Given the high correlation in
gene expression between the various brain regions sampled in GTEx, a composite
measure for brain expression is created by taking the median expression values for
each gene across these eleven brain tissue types (only one of the duplicate

measurements for each cerebellum and cortex was included). This composite brain
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expression measure is used instead of the individual brain regions when the per-gene
median and maximum expression values across all tissues are calculated and similarly
when the total number of tissues a given gene is expressed in is determined, therefore
giving 41 as the maximum number of tissues in which a gene can be detected.
Consistently in each tissue, gene expression level is strongly and positively
correlated with missense Z score and pLl, a result that is further strengthened after
accounting for gene coding sequence length. The association with synonymous Z
score, however, is non-significant or considerably subtler. Similar patterns of
association are observed for the median and maximum gene expression across tissues
(median gene expression is depicted in Figure 4.4a). Also, the total number of tissues a
gene is expressed in is positively correlated with missense Z score and pLlI at different

RPKM cutoffs (Figure 4.4b; Figure 4.17).

RPKM > 0.1 RPKM > 1.0

40 — 40 —
35 — 35 —
30 — 30 —
25 — 25 —
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Figure 4.17. The relationship between constraint and tissue expression at different
RPKM cutoffs for constraint bins. For synonymous and missense Z, the bins are: bottom
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Figure 4.17 (Continued) quartile (< 25%), two middle quartiles grouped together, and
top quartile (> 75%). For pLI: pLI 0.1, 0.1 <pLI < 0.9, and pLI = 0.9.

The relationship between the constraint scores and gene regulatory variation
detected in the GTEx dataset is investigated in the 13 tissues with the largest sample
sizes (expression and genotype data available for >60 individuals) that were included in
the GTEx V4 eQTL analyses (Adipose — Subcutaneous, Artery - Aorta, Artery — Tibial,
Esophagus - Mucosa, Esophagus - Muscularis, Heart - Left Ventricle, Lung, Muscle —
Skeletal, Nerve — Tibial, Skin - Sun Exposed (Lower leg), Stomach, Thyroid and Whole
Blood). The eQTL analysis follows the steps described in detail in the GTEXx pilot phase
manuscript™.

Dividing the analyzed transcripts into three subsets based on their constraint
scores (for Z: bottom quartile (<25%), the two middle quartiles grouped, top quartile
(>75%); for pLI: pLI 0.1, 0.1 < pLI < 0.9, pLI 20.9), we calculate the proportion of
eGenes, i.e. a gene with a significant eQTL (FDR 5%), out of all genes included in the
eQTL analysis (expressed in at least ten individuals at >0.1 RPKM) in each of the
constraint subsets for each of the 13 tissues and for synonymous, missense and LoF
constraint scores separately. The power for eQTL discovery varies widely from tissue to
tissue given the sample sizes per tissue, which range from 74 (Artery - Aorta) to 168
(Whole Blood). Independent of the total number of eGenes discovered, in each tissue,
the most missense and loss-of-function constrained group of genes are significantly
depleted of eGenes compared to the least constrained group (e.g. in skeletal muscle, p
< 10* for pLI ). Such pattern is not seen when grouping the genes based on their

constraint for synonymous variation. To have a metric comparable between tissues, we
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further normalize these eGene proportions by the total number of eGenes discovered in
each tissue. Figure 4.5a shows the average proportion of eGenes in whole blood
clearly demonstrating both the depletion (59.57% of the average for pLl) of eGenes
among the most and enrichment (125.11% of the average for pLIl) among the least

missense and loss-of-function constrained genes.

Enrichment of GWAS signals

Next we investigate the same synonymous Z score, missense Z score, and pLl in
the Genome-wide Association Studies (GWAS) Catalog'® for the closest gene to signal;
see Gene List table below) [Hindorff et al, Accessed 02/04/2015]. We filter results to
include only those GWAS signals that had been reported with a p < 5.0x10. In order to
categorize GWAS results by ontologies, we only include those signals that have been
mapped in the “Experimental Factor Ontology” (EFO, http://www.ebi.ac.uk/efo). We find
2,792 unique genes that have been listed in the Catalog and for which we have Z
scores and pLl.

As performed in previous analyses, we divide variants by functional categories:
synonymous, missense and loss-of-function, and each category was further divided in
three constraint groups: Lowest (0 - 25% quantile for Z; pLI < 0.1), Middle (25 — 75%
quantile for Z; 0.1 < pLI < 0.9) and Highest (75 — 100% quantile for Z; pLI 2 0.9). Then

we estimate the enrichment of genes in the GWAS catalogue as:

Eq = Pq * S
GWAS
_ q
Py = /ewas
_ N
S="ewas
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where:
Py is the proportion of GWAS genes in the quantile q
and S'is a scaling factor (humber of evaluated genes divided by number of GWAS hits)

The standard error for the proportions are similarly scaled:

si= (=) v s

Ng

We estimate the significance of the difference in the number of GWAS loci of
highest versus the lowest constraint scores using a x° test.

While only the loss-of-function category shows a clear and significant difference
between the highest and the lowest constraint scores, we note a pattern in the
missense category where the less constrained genes have higher, albeit not significant,
proportion of GWAS hits than the middle category (Figure 4.5b).

To better characterize this pattern we divide the GWAS hits by major EFO
categories: Cancer, Cardiovascular, Digestive, Immune, Metabolic, Nervous, Response
to drug, Body measure and Others, and compare the least constrained genes versus
the middle category as well as the most constrained genes versus the middle category
(Figure 4.18). Again, we see that on average, GWAS hits are enriched in the most LoF
constrained genes and depleted in the least constrained. In this sub-analysis we also
identify an enrichment of Cardiovascular, Metabolic, and body measurement GWAS hits
in the most missense constrained genes, while these categories with enrichments were

non-significant in least missense constraint genes.
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Figure 4.18. The odds ratio of being a GWAS hit for each Experimental Factor Ontology
trait for the most constrained genes versus the middle bin. For synonymous and
missense Z, the bins are: bottom quartile (< 25%), two middle quartiles grouped
together, and top quartile (> 75%). For pLI: pLI 0.1, 0.1 < pLI < 0.9, and pLI = 0.9.

Networks and pathway analysis

To better understand the set of genes considered intolerant of loss-of-function

variation, we use the STRING database® to obtain a network of experimentally

128



supported protein-protein physical interactions. The network consists of 14,160 genes
(nodes) and 712,137 physical interactions (edges). For each gene, we compute the
number of neighbors it has in the network (degree of the node), which corresponds to
the number of interaction partners its encoded protein has. We run a linear regression
between the pLI score of a gene and its number of interaction partners and find that
genes with more partners are more likely to have high pLI scores (t-test p < 10'41). A
weaker positive correlation is found between the number of interaction partners and the
missense Z score of a gene (t-test p < 10°%). A weak negative correlation is observed
between the number of partners and the synonymous Z score (t-test p < 107°).

The list of 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
were obtained from Broad Institute GSEA. Each pathway is represented by the list of
pLI scores for each of the genes in the pathway. For each pathway, we compute the
Kolmogorov-Smirnov (KS) statistic between its list of pLI scores and the pLI scores of all
the genes to quantify the enrichment or depletion of pLI for this pathway. Fifty-eight
pathways show significant deviations in pLI from the rest of the genes at multiple-testing

adjusted p-value of 10”7 (Table 4.3).
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Table 4.3. 58 KEGG pathways that show significant deviations in pLlI.

Number | Fraction of
Pathway name p-value Median pLlI of genes with

genes duplication
KEGG_ACUTE_MYELOID_LEUKEMIA 1.13E-12 | 0.966868135 55 0.090909091
KEGG_SPLICEOSOME 3.22E-24 | 0.962186023 119 0.042016807
KEGG_ADHERENS_JUNCTION 9.98E-16 | 0.954642795 72 0.041666667
KEGG_PROSTATE_CANCER 4.65E-17 | 0.953884196 88 0.045454545
KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY | 2.39E-12 | 0.953566812 74 0.067567568
KEGG_ENDOMETRIAL_CANCER 2.22E-09 | 0.945932366 50 0.04
KEGG_PROTEASOME 4.46E-07 | 0.939368296 44 0.068181818
KEGG_NON_SMALL_CELL_LUNG_CANCER 6.81E-11 | 0.937024402 53 0.056603774
KEGG_LONG_TERM_POTENTIATION 1.38E-09 | 0.934189798 69 0.115942029
KEGG_RENAL_CELL_CARCINOMA 9.26E-15 | 0.934189798 69 0.043478261
KEGG_CHRONIC_MYELOID_LEUKEMIA 8.58E-16 | 0.927847096 72 0.069444444
KEGG_PANCREATIC_CANCER 1.93E-12 | 0.914702778 69 0.057971014
KEGG_GLIOMA 3.49E-14 | 0.912772901 65 0.107692308
KEGG_SMALL_CELL_LUNG_CANCER 1.95E-10 | 0.912222953 83 0.108433735
KEGG_THYROID_CANCER 4.84E-06 | 0.907173398 28 0.035714286
KEGG_MTOR_SIGNALING_PATHWAY 1.08E-06 | 0.898304164 51 0.019607843
KEGG_WNT_SIGNALING_PATHWAY 5.43E-20 | 0.894082823 142 0.077464789
KEGG_AXON_GUIDANCE 3.44E-15 | 0.889436552 125 0.168
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 4.10E-17 | 0.879812545 132 0.060606061
KEGG_MELANOMA 2.06E-10 0.86533156 69 0.057971014
KEGG_ERBB_SIGNALING_PATHWAY 1.54E-12 | 0.855133233 86 0.046511628
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 4.18E-18 | 0.833673302 124 0.10483871
KEGG_GAP_JUNCTION 1.50E-07 | 0.832476903 86 0.174418605
KEGG_COLORECTAL_CANCER 1.96E-11 0.82592172 60 0.033333333
KEGG_PATHWAYS_IN_CANCER 4.59E-31 | 0.817693684 315 0.082539683
KEGG_RIBOSOME 3.00E-22 | 0.791160924 86 0.046511628
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 2.49E-10 | 0.787536053 94 0.106382979
KEGG_TGF_BETA_SIGNALING_PATHWAY 3.23E-09 | 0.774529936 83 0.120481928
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY | 5.22E-11 | 0.774064994 106 0.075471698
KEGG_MAPK_SIGNALING_PATHWAY 1.11E-20 | 0.726173344 257 0.062256809
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 2.92E-14 | 0.702854984 209 0.081339713
KEGG_HEDGEHOG_SIGNALING_PATHWAY 6.08E-06 0.68038415 55 0.163636364
KEGG_BASAL_CELL_CARCINOMA 3.18E-06 0.68038415 51 0.117647059
KEGG_PROGESTERONE_MEDIATED_OOCYTE
MATURATION 1.04E-08 | 0.657005772 84 0.107142857
KEGG_ENDOCYTOSIS 3.16E-11 | 0.656574472 175 0.08
KEGG_ALDOSTERONE_REGULATED_SODIUM
REABSORPTION 5.41E-06 | 0.641391597 41 0.146341463
KEGG_OOCYTE_MEIOSIS 6.30E-10 | 0.634553384 110 0.045454545
KEGG_FOCAL_ADHESION 1.84E-12 | 0.629287802 196 0.12755102
KEGG_CELL_CYCLE 1.18E-10 | 0.618667023 122 0.024590164
KEGG_MELANOGENESIS 5.89E-07 | 0.596680215 97 0.18556701
KEGG_CHEMOKINE_SIGNALING_PATHWAY 3.53E-14 0.42745098 185 0.210810811
KEGG_CARDIAC_MUSCLE_CONTRACTION 9.89E-06 | 0.324238693 71 0.070422535
KEGG_HUNTINGTONS_DISEASE 2.45E-07 | 0.301784519 170 0.070588235
KEGG_ALZHEIMERS_DISEASE 1.36E-06 | 0.218440721 155 0.096774194
KEGG_CYTOKINE_CYTOKINE_RECEPTOR 8.60E-06 | 0.09785415 | 257 | 0.249027237

_INTERACTION
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Table 4.3 (Continued).

number | fraction of
pathway name p-value median pLlI of genes with

genes duplication
KEGG_OLFACTORY_TRANSDUCTION 4.42E-17 | 0.005113489 376 0.909574468
KEGG_ARACHIDONIC_ACID_METABOLISM 2.04E-06 2.36E-05 58 0.431034483
KEGG_STEROID_HORMONE_BIOSYNTHESIS 3.81E-07 3.67E-06 54 0.685185185
KEGG_METABOLISM_OF_XENOBIOTICS_BY
_CYTOCHROME_P450 9.30E-10 3.49E-06 69 0.753623188
KEGG_PENTOSE_AND_GLUCURONATE
_INTERCONVERSIONS 7.42E-09 2.34E-06 27 0.703703704
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 1.64E-09 9.11E-07 71 0.774647887
KEGG_RETINOL_METABOLISM 9.25E-12 2.93E-07 63 0.714285714
KEGG_DRUG_METABOLISM_OTHER_ENZYMES 2.12E-09 2.93E-07 51 0.588235294
KEGG_LINOLEIC_ACID_METABOLISM 1.37E-06 2.82E-07 29 0.586206897
KEGG_OTHER_GLYCAN_DEGRADATION 8.57E-06 2.77E-07 16 0
KEGG_ABC_TRANSPORTERS 1.65E-07 4.44E-08 44 0.272727273
KEGG_ASCORBATE_AND_ALDARATE
 METABOLISM 1.51E-08 3.50E-08 25 0.8
KEGG_STARCH_AND_SUCROSE_METABOLISM 4.60E-09 3.06E-08 50 0.52

For each pathway, we quantify the degree of its redundancy by computing the

fraction of its genes with a duplication in the human genome®. Among the highly

constrained pathways (highest median pLI for the genes in the pathway) are core

biological processes (spliceosome, ribosome, and proteasome components; KS test p <

10 for all) while olfactory receptors are among the least constrained pathways (KS test

p < 107'®). More surprisingly, we identify multiple metabolic pathways, such as starch

and sucrose metabolism (KS test p < 10”), as being highly unconstrained. Members of

these pathways are also likely to have paralogous genes in the human genome.
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Chapter 5

Investigating patterns of regional missense constraint within genes



Abstract

The identification of constrained genes has already proven useful when
analyzing genetic variation, particularly within a clinical context. Treating the whole gene
as a unit does not take advantage of the known function of elements within the gene,
but was necessary when using smaller exome sequencing datasets. The size of the
recently released Exome Aggregation Consortium (ExAC; n = 60,706 individuals) now
permits the evaluation of constraint of regions within genes. Loss-of-function variants
typically have the same effect no matter where they occur in the gene, but the
deleteriousness of missense variants varies depending both on the location of the
variant in the gene and the specific amino acid substitution. In this work, we use the
ExAC dataset to identify patterns of regional missense constraint within genes and
show that these constrained regions are enriched for both established pathogenic
variants and de novo missense variants found in patients with a neurodevelopmental
disorder. We additionally created a metric—which includes information about local
missense depletion and amino acid substitution deleteriousness among other
features—to aid in the prioritization of missense variants. Compared to multiple other
metrics, it is the best predictor of missense variant pathogenicity and will ultimately

improve variant interpretation of clinical exomes.

Introduction
The availability of large-scale exome sequencing datasets has provided the
opportunity to better understand patterns and rates of variation within the human

population. These resources permit the identification of genetic sequences that are
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intolerant of nonsynonymous variation (constrained) and therefore more likely to be
associated to disease. One signature of strong selective constraint is the depletion of
nonsynonymous variation within reference populations of individuals. There is also a
shift in the allele frequency spectrum of the remaining variants to increasingly rare
variation. Both signatures have previously been evaluated in a set of 6,503 individuals
from the National Heart, Lung and Blood Institute’s Exome Sequencing Project (ESP)’
to identify genes that are significantly missense constrained (Chapter 3)**. More
recently, similar methods have been applied to the Exome Aggregation Consortium
dataset (n = 60,706) and found genes intolerant of loss-of-function variation (Chapter 4).
The constrained genes identified in all studies were enriched for known disease genes
and harbored significantly more de novo loss-of-function variants identified in cases with
severe neurodevelopmental disorders, establishing their medical relevance.

|dentifying constrained genes has already proven to be useful in the
interpretation of patient variation*. However, it is well known that missense variants can
have dramatically different effects, depending on where they occur in the gene and the
specific amino acid substitution. While the ESP dataset was not well powered to
evaluate missense intolerance of sub-genic regions, the EXAC dataset permits such
investigations. Determining a domain’s intolerance to variation would highlight the
functional components that are most sensitive to perturbation. Unfortunately, protein
domain information is not known for all genes. We therefore use the exon as a basis to
evaluate regional patterns of missense constraint within genes so that the method may
be applied globally. In this work, we describe a method to perform this analysis and find

that 15% of genes show evidence of variability in missense constraint.
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We also sought to use the depletion of missense variation in the region where a
variant resides to aid in variant interpretation. There are many tools to predict the
deleteriousness of missense variants®’ and to evaluate specific amino acid
substitutions®®. We create a score that measures the increased deleteriousness of
amino acid substitutions when they occur in missense-constrained regions. We then
combine information from orthogonal deleteriousness into one metric (MPC), which
outperforms all other metrics at separating pathogenic and benign missense variants.

To evaluate the usefulness of our metric outside of established disease-
associated variants, we study newly arising (de novo) missense variants identified in
cases with a neurodevelopmental disorder. Over the last 5 years, there have been
many large-scale sequencing projects of parent-child trios to evaluate the role of de
novo variation and identify genes and pathways relevant to disease etiology. These
studies have focused primarily on neurodevelopmental disorders, such as intellectual
disability'®"!, developmental delay'?, and epileptic encephalopathy’. These studies
have established an important, but modest, role of de novo variation in these diseases.
The largest excesses were seen for de novo loss-of-function variation, which have
become the main focus for follow up research. However, there is also a significant
enrichment of de novo missense variants in these patients, but it is modest (1.2 fold),
indicating that a subset of the variants are disease-related but the majority are not. We
find that the most missense constrained genes and regions contain nearly all of the
excess of de novo missense variation in the neurodevelopmental cases and additionally

show that MPC promises to be a powerful way to prioritize missense variants.
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Results

Searching for regional missense constraint within transcripts

We used a set of 18,225 transcripts (see Materials and Methods for transcript
filtering) and, for every exon, extracted rare (minor allele frequency [MAF] < 0.1%)
missense variants from the Exome Aggregation Consortium (EXAC; n = 60,706) dataset
and predicted the expected number as described previously (Chapters 3 and 4)°.

To define regions within transcripts that were specifically missense constrained,
we applied a likelihood ratio test to determine the break in between neighboring exons
that most significantly (by xz) splits the transcript into two regions with varying levels of
missense depletion. If the largest (most significant) x> was above our significance
threshold (= 10.8; p < 10'3), we then similarly searched for a way to continue to split the
transcript into regions until the best x° fell below our significance threshold. If the
transcript did not have strong enough evidence to be split into two regions, we tested
two breaks at a time to recover transcripts that have a depleted region in the middle. We
only accepted the two-break model if the x* was 13.8 (p < 10™) or larger. The method is
depicted in Figure 5.1.

Applying this method to 18,225 transcripts, we found evidence of regional
differences in missense depletion in 2,671 transcripts (14.7%) with 1,700 having one
significant break (being split into 2 segments), 919 with 3 breaks, and 52 with three or

more breaks (Table 5.1).
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Figure 5.1. Visual of the method to find regional constraint within transcripts. The
example transcript has four exons. First, all possible breaks in between exons are
tested and the X* are collected. If the largest x* = 10.8 (p < ~10%), the method searches
for a second significant break while keeping the first break set (here, the break between
exons B and C). This process continues until the largest x* obtained is less than 10.8
and, at that point, the last significant model is kept. If a transcript does not have
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Figure 5.1 (Continued) evidence of a significant single break, the method searches for
two breaks at a time. If the largest x* = 13.8 (p < ~10™), then that two break model is
kept as the result. Otherwise, the transcript is considered to have no evidence of
regional missense constraint.

Table 5.1. Distribution of significant breaks for all canonical transcripts.

Number of breaks | Number of transcripts | Percentage of transcripts

0 15,554 85.3
1 1,700 9.3
2 919 5.0
3 35 0.2

4 14 0.1

5 2 <0.1
6 1 <01

We plotted the fraction of expected variation observed (y) for all full transcripts
and the regions of transcripts that were split by our method (Figure 5.2). While most
transcripts and regions of transcripts have the expected amount of missense variation,
there is an excess of missense-depleted regions, particularly when y < 0.8. All coding
sequence above 0.8 does not appear to be missense constrained, so we focus our
future analyses on those transcripts and regions with y < 0.8. Within the missense
constrained transcripts and regions, we further subdivided into four quartiles: [0-0.2],

(0.2-0.4], (0.4-0.6], and (0.6-0.8].
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Figure 5.2. The distribution of the fraction of expected missense variation observed
(observed/expected, also referred to as y) for all transcripts and regions of transcripts.
The dashed black line represents the mirror of the distribution above one. The solid red
line indicates the threshold between likely missense constrained regions (y < 0.8) and
regions that show no evidence of regional missense constraint (y > 0.8). The dashed
gray lines demarcate the y quartiles used in later analyses: [0-0.2], (0.2-0.4], (0.4-0.6],
and (0.6-0.8].

ClinVar variants and regional depletion

Given that the transcripts and regions with y < 0.8 are depleted of missense
variation, we hypothesized that they would be enriched of disease-associated missense
variants. We therefore extracted pathogenic variants from ClinVar' to evaluate any
potential enrichments. Since our method is focused on finding regions that are intolerant
of heterozygous missense variants, we selected only those variants that disrupt

haploinsufficient genes known to cause severe disease (n = 440 variants).
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While the missense-constrained regions (y < 0.8) represent about a third of all
coding bases, they contain the great majority of the pathogenic ClinVar variants (2.7
fold enriched; p < 10™°%; Table 5.2). However, almost all of this enrichment is found in
those transcripts and regions that have y < 0.6: 82.7% of ClinVar variants vs 15.6% of
coding bases (5.3 fold enriched; p < 10°°°). These data indicate that the transcripts and
regions in between 0.6 and 0.8 have a similar signature as the missense unconstrained
transcripts and regions and are therefore less likely to harbor pathogenic variation that

causes severe disease when disrupted.

Table 5.2. Shown for each bin of missense depletion is the count (N) and percentage
(%) of coding base pairs (in megabase pairs [Mbp]), pathogenic or likely pathogenic
variants from ClinVar'® in haploinsufficient genes that cause severe disease (ClinVar).
The range of missense depletion (fraction of expected missense variation observed) is
provided in the first column (y).

Y (obs/exp) | NMbp % Mbp | N ClinvVar % ClinVar
[0, 0.2] 0.7 2.21% 25 5.68%
(0.2,0.4] 1.4 4.34 141 32.05
(0.4, 0.6] 2.9 9.06 198 45.00
(0.6, 0.8] 5.1 15.97 8 1.82
>0.8 22.0 68.42 68 15.45

Of the 44 severe haploinsufficient genes, 24 (55%) have evidence of regional
variability in missense constraint, and of this subset 18 (75%) contain both
unconstrained and constrained regions. As an example, the first 9 exons of CDKL5
have only 25% of their expected variation ()(2 = 52.5), but the last 11 have 81% (x2 =
6.4). ClinVar lists 43 pathogenic or likely pathogenic missense variants in CDKLS5, 39

(91%) of which are found in the constrained regions (Figure 5.3). Three of the
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remaining variants are in the first 50 base pairs (bp) of exon 10 and lie in the kinase

domain that extends 66 bp into that exon.

constrained
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Figure 5.3. Distribution of ClinVar'* pathogenic and likely pathogenic variants in
CDKLS. Variants are indicated with a star. 91% of the variants (39/43) fall into the first 9
exons, which are significantly constrained (gamma = 0.25, x* = 52.5). The constrained
region is marked with a bar.

Using regional constraint to interpret de novo variation

The ClinVar variants have been established as pathogenic, but we wanted to test
if our regional missense depletion results of the regions could aid in prioritization of
variants identified in patients. We chose to study de novo missense variants from cases
with a neurodevelopmental disorder (n = 1,640)'%"® due to the significant, but modest,
excess of de novo missense variants in these cases (1.2 fold enriched; p = 2.3x10™"";
Table 5.3). The de novo missense variants from 2,078 unaffected siblings of autism

cases were used as controls'®8.
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Table 5.3. Counts, fold enrichment, and significance of de novo variants. The observed

counts (Obs), expected counts (Exp), fold enrichment (Fold), and p-value for

synonymous (Syn), missense (Mis), and loss-of-function (LoF; nonsense, essential
splice site, and frameshift) variants are presented for control trios'>'®, developmental
delay (DDD)"?, intellectual disability (ID)'®"", epileptic encephalopathy (EE)', and all

neurodevelopmental cases (a combination of DDD, ID, and EE; all neuro).

Control DDD ID EE All neuro

N trios 2078 1133 151 356 1640

Obs 506 263 28 89 380
S Exp 582.68 317.70 42.34 99.82 459.87
%) Fold 0.8684 0.8278 0.6613 0.8916 0.8263
p-value 0.0013 0.0018 0.0254 0.3007 0.0001
Obs 1215 868 106 278 1252
) Exp 1308.86 713.64 95.11 224.23 1032.98
= Fold 0.9283 1.2163 1.1145 1.2398 1.2120
p-value 0.0046 1.23x10® 0.1437 0.0003 2.30x10™"

Obs 184 233 36 59 328
L Exp 181.71 99.07 13.20 31.13 143.41
a Fold 1.0126 2.3518 2.7265 1.8953 2.2872
p-value 0.5868  1.91x10°°  1.69x107  557x10°  8.05x10™

As depicted in Figure 5.4, the distribution of control de novo missense variants
between bins of missense depletion follows the distribution seen for coding base pairs.
For example, 71.4% of the control variants are in regions with y > 0.8, which represent
68.4% of all coding bases. By contrast, the de novo missense variants identified in
patients with a neurodevelopmental disorder are enriched in the most missense-
depleted regions. This is seen most strongly, as for the ClinVar variants, in regions with

y < 0.6 (2 fold enriched, p < 10°7).
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Figure 5.4. Fraction of base pairs and variants for each constraint bin. Shown for each
bin of missense depletion (e.g. y > 0.8) is the fraction of coding base pairs (base pairs),
de novo missense variants from 2,078 control trios (control dn mis)™'®, de novo
missense variants from 1,640 cases with a neurodevelopmental disorder (neurodev dn
mis)'®"3, and pathogenic or likely pathogenic missense variants from ClinVar'* in
haploinsufficient genes that cause severe disease (severe HI variants). Lighter blues
indicate greater missense depletion.

We then compared the rate of de novo missense variants in cases to the rate in
controls across missense constraint bins. If a region or transcript is tolerant of missense
variation, we expect it to have the same rate of de novo variation in cases as in controls,

reflecting the background rate of mutation (1:1). However, if the region is intolerant of

missense variation—and therefore more likely to be associated to disease—we expect
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to find a higher rate of de novo variants found in cases compared to the rate in controls
(>1:1). As expected, the least missense-constrained bin (y > 0.8) is indistinguishable
from one (Figure 5.5; Table 5.4). While the most depleted two bins (y < 0.4) show a
much higher rate of de novo missense variants in cases than in controls (OR > 4.5),
there is no difference in the fourth bin (0.6 <y < 0.8). Regions and genes with more
modest missense depletion (0.4 <y < 0.6) have an intermediate OR of 2.3, supporting
that there is power is using the quantitative depletion of missense variation and not

solely a threshold.
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Figure 5.5. Comparison of the rate of case de novo missense variants to control de
novo missense variants by bins of missense depletion. The case variants come from
1,640 trios with a neurodevelopmental disorder'®'® and the control variants were
identified in 2,078 control trios'>'®. The dashed gray line indicates a ratio of one. 95%
confidence intervals are depicted around each point estimate.
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Table 5.4. Shown for each bin of missense depletion is the count (N) and percentage

(%) of coding base pairs (in megabase pairs [Mbp]) for de novo missense variants
found in 1,640 trios with a neurodevelopmental disorder (case dn

)10-13

and those from

2,078 control trios (control dn)'>'®. The last column (C:C dn rate) provides the ratio of
the neurodevelopmental case to control de novo missense rate. The first column lists
the range of missense depletion (fraction of expected missense variation observed; y).

y (obs/exp) | N Mbp % bp N S?Ise % gﬁse N cg:trol % cg:trol 4 f;ca:te
(0, 0.2] 0.7 221% 52 4.33% 14 1.19% 4.5877
(0.2,0.4] 1.4 4.34 146 12.16 38 3.23 4.8215
(0.4, 0.6] 2.9 9.06 170 14.15 94 7.99 2.2861
(0.6, 0.8] 5.1 15.97 163 13.57 190 16.16 1.0875
>0.8 220 68.42 670 55.79 840 71.43 1.0179

Combining the three most depleted bins together (y < 0.6), there are 0.21 de

novo missense variants per case exome and only 0.05 per control exome. However,

this enrichment disappears when y > 0.6 (0.51 events per case exome versus 0.50 in

controls). It is important to note, however, that a majority (56%) of the de novo variants

found in cases are in transcripts and regions are not considered missense constrained

(y > 0.8). These analyses have refined the signal of de novo variant enrichment and

have shrunk the number of candidate pathogenic variants from 1,201 to 368.

Taken together, these analyses indicate that the signal for both established

pathogenic variants as well as the excess of de novo missense variants in cases with a

neurodevelopmental disorder can be found in those transcripts and regions with 60% or

less of their expected missense variation.
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Measuring the increased deleteriousness of amino acid substitutions

While the gene or region disrupted by a missense variant is important to
consider, it is also critical to consider the specific type of amino acid substitution that
occurred. Major changes in the physiochemical properties of the side chain are
expected to have larger effects on the protein than more subtle changes. The
deleteriousness of these changes has been quantified in a variety of metrics, the two
most common of which are BLOSUM® and Grantham?®. Here, we postulated that there
may be specific amino acid substitutions that are preferentially eliminated when they
occur in the most missense depleted regions of the exome.

To measure the increased deleteriousness of amino acid substitutions when they
occur in the constrained regions of the exome, we tabulated all possible amino acid-to-
amino acid substitutions that could occur in the exome via a single nucleotide mutation
as well as the number observed in EXAC (with MAF < 0.1%). The rate of possible
substitutions observed was determined for constrained (y < 0.8) and unconstrained (y >
0.8) regions separately; in almost all instances, we observed a higher rate in the
unconstrained regions, including for synonymous variants. The fold difference between
the rate in the unconstrained and constrained regions clusters for synonymous changes
around one and is in the 2.5-3 range for nonsense, with missense values falling

primarily in between the two (Figure 5.6).
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Figure 5.6. The fold difference between the rate of possible amino acid substitutions
observed in unconstrained versus constrained regions. All possible amino acid
substitutions that could be created by a single nucleotide mutation were tallied for
unconstrained (y > 0.8) and constrained (y < 0.8) regions of the exome. The observed
rate of the possible substitutions was calculated and the fold difference between that
observed in the unconstrained regions versus the constrained regions is plotted.
Synonymous substitutions are in gray; missense in orange; and nonsense in red. The
dashed lines indicate the median of the fold differences for all synonymous substitutions
(gray) and nonsense substitutions (red).

We used the normalized fold difference of missense substitutions (“missense
badness”) as a measure of the increased deleteriousness of amino acid substitutions
when they occur in constrained genes and regions. As expected, this score has a high
correlation with BLOSUM and Grantham scores (r = -0.6327 and 0.5255, respectively;
Figure 5.7). Interestingly, we find that leucine to isoleucine substitutions are not among
the most tolerant amino acid substitutions based on missense badness (missense
badness = 0.42) even though the two are isoforms of each other. By contrast, both the

BLOSUM and Grantham scores for this substitution indicate tolerance of the substitution

(BLOSUM = 2; Grantham = §). On the other side, serine to leucine substitutions—which
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is a change from a hydrophilic to a hydrophobic side chain—are considered deleterious
by BLOSUM (-2) and Grantham (145), but not by missense badness (0.20). Further
investigation into these differences may reveal properties of the constrained transcripts

and regions.
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Figure 5.7. The correlations between missense badness and other metrics of amino
acid substitution deleteriousness. Missense badness shows a high correlation to both
BLOSUM (r = -0.6327, a) and Grantham scores (r = 0.5255, b).

Combining variant level deleteriousness scores

We wanted to determine which variant deleteriousness metric, or combination of
metrics, was best at differentiating benign from pathogenic missense variants. We
selected missense variants with a MAF > 1% in ExAC as our benign set (n = 93,238
variants) and used the ClinVar missense variants found in haploinsufficient genes that
cause severe disease as our set of pathogenic variants (n = 1,674). The metrics we

compared were: missense depletion of the region in which the variant was found (y),

151



missense badness, Polyphen2®, BLOSUM?®, and Grantham scores®. Using logistic
regressions, we found that the best predictor of missense deleteriousness was the

missense depletion (y) of the region in which the variant was located (Table 5.5).

Table 5.5. Comparing the ability of various metrics to differentiate between benign and
pathogenic variants. Logistic regressions were performed to determine which score
could best separate benign from pathogenic missense variants. Missense variants in
ExAC with a MAF > 1% were considered benign (n = 93,238). Pathogenic variants were
those missense variants in ClinVar that were found in haploinsufficient genes that cause
severe disease (n = 1,674). Lower AIC indicates a better predictor.

Score AIC

Missense depletion (y) | 13967.06
Polyphen2 14615.62
Missense badness 15218.00
Grantham 15233.18
BLOSUM 15239.38

The metrics can provide complementary information, so we sought to create a
composite predictor. Given that y was by far the best score, we tested nested models
and found that both missense badness and Polyphen2 significantly added to the
composite predictor, but that neither BLOSUM nor Grantham did. Therefore, the best
model included y, missense badness, and Polyphen2 (Table 5.6), and we take the

predictions as our final score, known as MPC.
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Table 5.6. The models tested combining missense depletion (obs_exp), missense
badness (mis_badndess), and Polyphen2 (polyphen2). Note that when BLOSUM is
added back, the predictor works less well.

Model AlC
obs_exp + mis_badness + polyphen2 13286
obs_exp * mis_badness * polyphen2 13174
obs_exp + mis_badness + obs_exp:mis_badness + polyphen2 + 13172
obs_exp:polyphen2

obs_exp + mis_badness + obs_exp:mis_badness + polyphen2 + 13176
obs_exp:polyphen2 + blosum

Using MPC to evaluate the deleteriousness of de novo variants

We tested the usefulness of MPC by analyzing the de novo variants from cases

1013 and from controls*'®. The number of benign

with a neurodevelopmental disorder
variants limits the range of MPC from 0 to 5, with increasing large numbers indicating
increased deleteriousness. The distribution of MPC for the control de novo variants is
made primarily of scores below 1 (Figure 5.8a). The MPC distribution for the de novo
missense variants identified in cases with a neurodevelopmental disorder, on the other
hand, appears to be made of two distributions: one following the distribution of the

control de novo variants and the other with a peak at an MPC of 2 (Figure 5.8b),

reinforcing that these variants are a mix of signal and noise.
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Figure 5.8. The MPC distributions for de novo variants in cases and controls. The MPC
scores for the 1,254 de novo missense variants identified in control trios (a) and the
MPC scores for the 1,234 de novo missense variants found in cases with a
neurodevelopmental disorder (b).
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Discussion

We have developed a method to locate regions within genes that are specifically
intolerant of missense variation. Across all genes, 15% have evidence of regional
variability in missense constraint, most of which are only split into two regions. We find
that the genes and regions that have 60% of less of their expected missense variation—
while only representing a small fraction of all coding sequence—contain 85% of
pathogenic variants' in haploinsufficient genes known to cause severe disease. These
genes and regions also contain nearly all of the excess of de novo missense variation
that is seen in cases with a neurodevelopmental disorder'®"2.

Ideally, constraint would be calculated per base, but even the ExXAC dataset is
not large enough to provide sufficient power to do this. We therefore need to aggregate
variant counts. While there are many options, we chose to aggregate counts across
exons. Aggregating across protein domains would potentially be more informative
functionally, but domain information is unfortunately unavailable for many genes. Since
exons are natural biological units transferred between transcripts and are available for
all genes, we believe they are currently the best option.

Moving forward, it will be important to not only include protein domain information
but to consider non-linear sequences. Binding pockets are critical aspects of proteins,
but are made up of amino acids scattered across the gene. Other 3D structural aspects
of the protein (internal versus external residues, etc.) would also be important to

consider when evaluating variant deleteriousness. Therefore, future work would greatly

benefit from being able to evaluate disparate amino acids.
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Since the missense constrained regions are depleted of variation due to selective
pressures, we proposed that including information about the local missense depletion
could improve variant deleteriousness metrics. We first created a measure of the
increased deleteriousness of amino acid substitutions when they occur in missense
constrained genes and regions, which outperformed similar amino acid substitution
matrices (BLOSUM?® and Grantham®) at separating pathogenic'* from benign variants.
The best predictor of variant deleteriousness, however, was the combination of regional
missense constraint, the amino acid substitution score we developed (missense
badness), and Polyphen2°. The MPC scores—the joint metric—for the de novo

missense variants from neurodevelopmental cases'®"?

appeared to be a mixture of two
distributions (benign and pathogenic), which matches what would be expected given the
modest enrichment of such variants in the cases.

We predict that MPC will be most informative for those variants that are found in
regions with intermediate missense depletion (40-60% of expected variation) since this
set of variants has a lower signal to noise ratio than the variants found in the more
missense depleted genes and regions. We also hope to test MPC on the de novo
missense variants from 3,982 cases with an autism spectrum disorder (ASD)">"®. We
previously found a relationship between the IQ of an ASD case and the rate of de novo

loss-of-function variants, with lower IQ individuals having a higher rate®"’

. We recently
discovered a similar relationship with 1Q for de novo missense variants that were
predicted to be damaging by Polyphen2°® and fell into one of the 1,003 missense

constrained genes discussed in Chapter 3.
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As the number of sequenced individuals increases in reference datasets such as
ExAC, we will be able to further refine our analyses of regional constraint. Additionally,
the aggregation of whole genome sequencing data from reference populations will allow
similar analyses of noncoding regions and promises to empirically highlight genetic
regions intolerant of variation. The knowledge gained from our work and similar studies
will continue to improve our ability to interpret genetic variation and, therefore,

understanding of the genetic basis of disease.

Materials and Methods

Transcript and exon definitions

In order to have one representative transcript for each gene, we used the
canonical GENCODE (v19) transcript as defined by Ensembl 75, for protein-coding
genes. We removed transcripts that lacked a methionine at the start of the coding
sequence, a stop codon at the end of coding sequence, or were indivisible by three,
which left 19,621 transcripts. Additionally, 795 transcripts that had zero observed
variants—when dropping counts in exons with a median depth < 1 (explained below)—
were removed, leaving 18,466 transcripts for analysis. The exon boundaries were

defined by UCSC’s annotation for GENCODE v19 (downloaded on June 16™, 2014).

Observed variant counts

We consider intolerance to loss-of-function variation to primarily be a property of
a gene. We therefore searched for regional constraint to missense variation alone. To

obtain the observed number of missense variants per exon, we extracted variants from

157



the Exome Aggregation Consortium’s dataset (ExAC; n = 60,706) that met the following
criteria:

(1) Defined as a missense change by the predicted amino acid substitution.
Variants that would be considered “initiator_codon_variants” and “stop_lost”
by annotation programs such as VEP'® are therefore included in the total.

(2) Caused by a single nucleotide change.

(3) Had an adjusted allele count < 123, corresponding to a minor allele frequency
(MAF) < 0.1%. The adjusted allele count only includes individuals with a
depth (DP) = 10 and a genotype quality (GQ) = 20.

(4) Had a VQSLOD = -2.632.

Due to the VQSLOD threshold, variants were not required to have a PASS in their
FILTER column. The observed counts represent the unique number of qualifying

variants and not the aggregate allele count of all qualifying variants within the exon.

Expected variant counts

Expected missense variant counts were determined as described in Chapter 4.
Briefly, we used a model of mutation based on sequence context and corrected for
regional divergence between humans and macaques to define the probability of a
mutation per exon in all canonical transcripts (as discussed in Chapters 3 and 4)°. We
used exons with a median depth = 50 and regressed the number of rare, synonymous
variants on the probability of a synonymous mutation. Note that regressions were run
separately for the autosomes with the pseudo-autosomal regions (PAR) of the X

chromosome, the non-PAR regions of the X chromosome, and the Y chromosome. The
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expectations produced by these regressions were then corrected for the median depth
of coverage of the exon using the following equation:

expected count, median depth > 50
depth adjusted count = { expected count * (0.089 + 0.217 = In(median depth),1 < median depth < 50
0.089 * expected count, median depth < 1

As mentioned above, for exons with a median depth < 1, we set both the observed and

expected counts to 0.

Likelihood ratio tests to define regional constraint

Using the observed and expected counts for the 18,466 canonical transcripts, we
searched for significant breaks between exons that would split the transcript into two or
more regions with varying levels of missense depletion. We chose to use exons in these
analyses for three main reasons: (1) the size of EXAC does not allow for base pair
resolution so we must aggregate variant counts; (2) exons are a natural biological unit
which are transferred between transcripts; (3) protein domain information, while ideal, is
missing for many genes and we wanted an approach that would be applicable to all
genes.

We assume that observed counts should follow a Poisson distribution around the
expected number. We defined the null model—no regional variability in missense
depletion—as the model where the overall fraction of expected missense variation
observed (y) for the transcript is used as the expectation for all segments. We then
employed a likelihood ratio test to compare the null model with an alternative model
where expectation was y for each specific segment. Given that the alternative model
should always have a better fit than the null, we require a x? above a given threshold to

establish significance.
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We used the following general formula to determine the significance of a break
that would split a transcript into segments A and B:
po = Pois(obsy, exp, *y) * Pois(obsg, expg * V)
p1 = Pois(obs,, expy * Y4) * Pois(obsg, expg * ¥g)
x* = 2(log(p1) — log (po))
Where y is the fraction of expected variation observed across all segments in the
transcript; obs, is the observed number of missense variants in segment A; exp, is the
expected number of variants in segment A; y, is the fraction of expected variation
observed only for segment A; obsj is the observed number of missense variants in
segment B; expy is the expected number of variants in segment B; y; is the fraction of
expected variation observed only for segment B; and Pois denotes the Poisson
likelihood.

For the purposes of this method, all exons or sections with more observed
variants than expected were assigned y = 1 since we were looking for variation in
missense depletion. In addition, exons or sections with zero observed variants were
considered to have one variant to prevent y = 0.

We first searched for a single break in between exons that would significantly (x?
>10.8, p < ~10) better model the transcript’s data than the null model. If multiple
significant breaks between exons were found, we took the best break as defined by the
x? value. If a significant break was found, we searched for a second break. This process
was repeated until the best break between exons did not significantly improve on the
model (x* < 10.8). If a transcript had no significant single break, we searched for two

breaks at a time, requiring a X*> = 13.8 (p < ~10™) to indicate significance. Those
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transcripts with x* < 13.8 were considered to show no evidence of regional variability in

missense depletion, and were left intact. The general process is depicted in Figure 5.1.

Excess of missense depleted coding sequence

For all coding segments (both full transcripts and the regions of transcripts), we
plotted the fraction of expected variation observed (y; Figure 5.2). There is a peak at
one, indicating that most transcripts and regions have the expected amount of missense
variation. We expect that natural stochasticity in counts will lead to a distribution of y
around 1. Even given this, we see an excess of transcripts and regions that are
depleted of missense variation. To aid in visualization, we took the distribution of
transcripts and regions above one and mirrored it (displayed as a dashed line). The
excess of transcripts and regions with low y over the mirrored distribution occurs when y
< 0.8, particularly below 0.6. We therefore took 0.8 as an arbitrary cut-off between
regions that are likely missense constrained (y < 0.8) and those that have no evidence
of missense constraint (y > 0.8). Within the missense constrained regions and
transcripts, we further subdivided into four quartiles: [0-0.2], (0.2-0.4], (0.4-0.6], and

(0.6-0.8].

ClinVar pathogenic variants

To test if the genes and regions we identified as missense constrained were
enriched for established disease-associated variants, we extracted variants from the
July 9, 2015 release of ClinVar™ that were labeled as “pathogenic” and “likely
pathogenic”. We specifically focus on those missense variants that fell into a set of 44

haploinsufficient genes that cause severe disease (n = 440 variants). The
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haploinsufficient genes were those with sufficient evidence for dosage pathogenicity
(level 3) as determined by the ClinGen Dosage Sensitivity Map

(www.ncbi.nlm.nih.gov/projects/dbvar/clingen/; downloaded on May 5, 2015); the

severity of disease caused by variants in the genes was manually curated.

De novo variants from cases with a neurodevelopmental

Over the last five years, there have been a large number of exome sequencing
studies, particularly of neurodevelopmental disorders. We collected the de novo variants
found in 151 trios with intellectual disability'®"", 1,133 with developmental delay'?, and
356 with an epileptic encephalopathy“”. In these studies, there is a large excess of de
novo loss-of-function variants (> 2 fold enriched; Table 5.3) but also a significant, but
more modest, excess of de novo missense variants (1.1-1.3 fold enriched). The modest
enrichment indicates that there is a set of variants contributing to disease (signal), but
many neutral variants (noise). De novo variants from the unaffected siblings of autism

cases were used as controls (n = 2,078)"°.

Confidence intervals around the ratio of case:control de novo variant rates

We compared the rate of de novo missense variants in cases compared to the
rate in controls for the five constraint bins. To determine confidence intervals around the
point estimates of the ratio of de novo variant rates, we took the natural logarithm of the
point estimate

x1/n1

6 =
x,/n,

and found the standard error
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SE(log @) _ \[(nl —x1)/%, n (ny — x3)/x;

ny n,

using the delta method. The upper and lower bounds are then transformed back to
obtain the 95% confidence interval

6 exp[il.96SE(log @)] ,
where x; is the number of case de novo variants; n, is the number of case trios; x, is

the number of control de novo variants; and n,is the number of control trios.

Creation of missense badness

We created a metric (missense badness) of the increased deleteriousness of
specific amino acid substitutions when they occur in constrained regions to identify
those substitutions that are preferentially eliminated when they occur in missense
depleted sequence. We identified all possible amino acid-to-amino acid substitutions
that could occur via a single nucleotide mutation and then tallied the number of these
substitutions in ExAC with a MAF < 0.1%. The observed and possible were then split by
whether they occurred in a gene or regions with y < 0.8 (constrained) ory > 0.8
(unconstrained) and we determined the rate of possible substitutions observed for both
groups. While we observed a higher rate of possible substitutions observed in the
unconstrained regions, we noticed that synonymous changes in isoleucine and those in
phenylalanine did not follow this pattern.

We used the median fold difference of all synonymous substitutions as a floor
(set to 0) and the median of all nonsense substitutions as a ceiling (set to 1) and

normalized the missense fold differences to create missense badness. We find a high
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correlation between missense badness and other amino acid substitution matrices (r = -

0.6327 for BLOSUM and 0.5255 for Grantham scores (Figure 5.7).

Creation of MPC, a composite missense deleteriousness score

We used logistic regressions to determine which of five deleteriousness metrics
was best at separating benign from pathogenic missense variants. The metrics we
compared were the missense depletion of the region in which the variant was found (y),
missense badness, Polyphen2®, BLOSUM?®, and Grantham scores®. Our benign variants
were missense variants with a MAF > 1% in EXAC (n = 93,238 variants). The
pathogenic variants were ClinVar'* missense variants found in haploinsufficient genes
that cause severe disease (n = 1,674). The best single predictor of missense
deleteriousness was the missense depletion (y) of the region in which the variant was
located (Table 5.5).

As the metrics provide complementary information, we used nested models to
determine the best composite score starting with missense depletion (y). Missense
badness and Polyphen2 significantly added to the composite predictor, but BLOSUM
and Grantham did not. We therefore tested the combination of the three significant
metrics and all possible interactions between them. The best model included all three
scores and the interaction between y and missense badness as well as the interaction
between y and Polyphen2 (Table 5.6).

We used the best regression to predict scores for all benign and pathogenic
variants. In order to make more easily interpretable numbers, we transformed the raw

score (RS)
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—lo nbenign < RS
G0 Nbenign ’

where np.nign is the number of benign variants with a raw score less than RS and
Npenign is the total number of benign variants. We refer to the final composite score as
MPC. Since there are ~91k benign variants that had information for all three metrics, the
highest MPC is ~5.

MPC contains three mostly orthogonal pieces of information for each missense
variant: the missense depletion (y) of the region in which the variant is found; the
deleteriousness of the specific amino acid substitution; and the Polyphen2 score, which
incorporates multiple lines of evidence (phylogenetic, structural, etc.) to determine

deleteriousness of the variant.
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Chapter 6

Discussion



The main goal of this thesis was to develop methods and tools to better
understand rare protein-coding variation, especially within the context of interpreting
such variation in disease. To that aim, we built a pipeline to robustly identify de novo
variants from sequencing data; created a sequence-context based model of mutation;
identified genes that were intolerant of missense and loss-of-function variation; and

found regions of missense intolerance within genes.

Summary of results

Identifying de novo variation

In the study of de novo variation, it is especially important to be confident in the
genotype calls of all members of the parent-child trio. As described in Chapter 2, we
determined a set of key parameters to consider when identifying de novo variation: (1)
the genotype likelihoods provided by the genotyping software, (2) the relative number of
reference and non-reference sequencing reads, and (3) the depth of sequencing
coverage. The second parameter was particularly critical as we found that the most
likely explanation for a falsely called “de novo” variant was missing a heterozygous
genotype in one of the parents.

As an additional improvement to our de novo identification pipeline, we used the
allele frequency in a reference population of a potential de novo variant to compare the
probability that the variant was truly de novo versus the probability of missing a
heterozygous genotype in one of the parents. The probability of being a true de novo
variant, in combination with the aforementioned parameters, was used to separate

variants into three categories in terms of the likelihood of validating as de novo. We
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found that the class with the strongest evidence of being de novo had a high rate of
molecular validation (97.3% for single nucleotide changes and 92.3% for indels’; Table
2.3). Our final workflow is a sensitive and specific method to identify de novo variation

from sequencing data of trios.

Creating a mutational model

We created a sequence-context based mutational model in order to rigorously
evaluate the observed burden of de novo variants within cases with an autism spectrum
disorder (ASD; Chapter 3). We first created a mutation rate table using intergenic single
nucleotide polymorphisms (SNPs) from the 1000 Genomes Project? and applied it to the
coding region of the genome to create a per gene probability of mutation, which we split
by mutational class. The raw probabilities of mutation were corrected for only two
factors: the depth of coverage at the site and the regional divergence between humans
and macaques. The final probabilities of mutation formed the basis of a statistical
framework to evaluate de novo variant burden globally, for sets of genes, and on a per-
gene basis.

We also used the mutational model to predict the expected number of rare (minor
allele frequency (MAF) < 0.1%) variants in the National Heart, Lung and Blood
Institute’s Exome Sequencing Project (ESP; n = 6,503)3. The high correlation between
the observed and expected number of rare synonymous variants per gene (r = 0.940)
supported that predictions of both missense and loss-of-function variants would also be
accurate. We created a signed Z score to evaluate any deviation of observed from

expected counts. While we were underpowered to analyze loss-of-function variation, we
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found 1,003 genes that were significantly depleted of the expected amount of missense
variation (missense Z score > 3.09). Given that the model is selection neutral, these
deficits are consistent with evolutionary constraint. These constrained genes were
enriched for established dominant and haploinsufficient disease genes.

We then used the statistical framework to analyze the de novo variants identified
in 1,078 trios where the child had an autism spectrum disorder (ASD)*®. We found both
a global excess of de novo loss-of-function variants (1.57 fold enriched; p = 2.1x107;
Table 3.1a) and far more transcripts harboring loss-of-function variants than expected
(p < 0.001). An important aspect of our model was to determine the significance of
burden within single genes: in this dataset, we found two genes (DYRK7A and SCN2A)
had more de novo loss-of-function variants than expected at a significance threshold of
10 (Table 3.2). The targets of FMRP® and the missense constrained genes defined
above were two gene sets that were significantly enriched for de novo loss-of-function
variation in ASD cases (>2 fold; p < 10 for both). By contrast, the de novo variants
from 343 unaffected siblings had no significant enrichments in any category.

All analyses were repeated using the de novo variants found in 151 trios with
intellectual disability'®"". The global enrichment of de novo loss-of-function variants was
greater for intellectual disability (0.24 de novo loss-of-function events per exome; p =
6.5x10”; Table 3.4a) and, even though there were fewer cases, there were three genes
with a significant burden of de novo loss-of-function and missense variants (Table
3.4c). Given these results, we separated the ASD samples with 1Q = 100 from the rest
of the cases. All of the significant signals in ASD—global enrichment of de novo loss-of-

function variants, excess of genes with multiple such variants, and the enrichment of
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such variants in the targets of FMRP and constrained genes—were not observed for the
ASD cases with IQ = 100, indicating that the genetic architecture of ASD varies between
low and high 1Q cases.

Finally, we found that the distributions of missense Z scores of genes harboring a
de novo loss-of-function variant in ASD or intellectual disability cases were significantly
shifted towards higher constraint (Wilcoxon p < 10 for both; Figure 3.3). The
distribution for genes with a de novo loss-of-function variant in an unaffected individual
was no different from the overall distribution of missense Z scores. Together, these
results indicated a significant role of de novo loss-of-function variation in ASD etiology,

and that the constrained genes we identified were medically relevant.

Identifying genes intolerant of loss-of-function variation

The Exome Aggregation Consortium (ExAC) dataset, which contains protein-
coding variation for 60,706 reference individuals, provided us the opportunity to
investigate loss-of-function constraint (Chapter 4) and intolerance to missense variation
within transcripts (Chapter 5). To identify constrained genes using the EXAC dataset, we
slightly modified the mutational model to incorporate an empirically defined, and EXAC-
specific, depth of coverage adjustment. While the Z score was well powered for
studying missense constraint, the loss-of-function Z score was highly correlated with the
number of coding bases in a transcript (r = 0.5697; Figure 4.10a). We therefore created
pLlI—the probability of being loss-of-function intolerant—which identified 3,230 genes
that are extremely depleted of loss-of-function variation (pLI = 0.9). Established

haploinsufficient disease genes are enriched in the high pLI tail, as are dominant
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1213 and genes found to be essential in cell culture™ (x* p < 10°°, 10,

disease genes
and 102, respectively; Figure 4.3).

The most loss-of-function intolerant genes compromise core biological
processes, such as members of the spliceosome and proteasome complexes. The
missense Z score and pLI also show a relationship with the number of protein-protein
interaction partners associated with the gene: those genes with many protein-protein
interaction partners are more likely to be constrained (t-test p < 10 for missense Z and
p < 10" for pLI). Additionally, we found that the most highly constrained missense and

loss-of-function genes are expressed at higher levels and in more tissues, are depleted

of eQTLs"®, and are enriched for GWAS loci'®.

Searching for patterns of missense constraint within genes

The size of the EXAC dataset also allowed us to investigate patterns of regional
missense constraint within genes given the large expected number of missense variants
per genes (average 170; median 127). We used the observed and expected missense
variant counts per exon and applied a nested likelihood ratio test to identify significant
breaks in between exons that split the gene into regions with varying levels of missense
depletion. Overall, 2,738 genes (14.8%) had evidence of regional missense constraint
with the majority of these being split into only two regions (Table 5.1).

Across all genes and regions of genes, those with 60% of less of their expected
missense variation contained the majority (85%) of the ClinVar'’ pathogenic variants in
severe haploinsufficient disease genes. These regions were also enriched for de novo

missense variants in cases with a neurodevelopmental disorder'®'"8° put not for de
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novo variants found in control individuals'? (Figure 5.4). The importance of these
regions was further supported by the fact that the rate of de novo missense variants in
cases with a neurodevelopmental is significantly higher than the rate seen in controls
(2-4 fold enriched; Figure 5.5). Overall, we find 0.22 de novo missense variants per
case exome and 0.07 per control exome in these missense-depleted regions. By
contrast, all other regions show no difference in the number of events per exome (0.51
for cases compared to 0.50 in controls).

We used the total number of observed and possible amino acid substitutions in
constrained and unconstrained regions to create missense badness, a measure of the
increased deleteriousness of specific amino acid substitutions when they occur in the
constrained regions of the exome. Missense badness is correlated with both BLOSUM?'
and Grantham?? scores (r = -0.6327 and 0.5255, respectively; Figure 5.7) and was able
to separate pathogenic variants from ClinVar'” from benign variants (MAF > 1% in
ExAC) better than the two other metrics.

The most accurate single predictor of whether a variant was pathogenic or
benign, however, was the missense depletion of the region. Given that missense
badness and missense depletion are capturing orthogonal pieces of information, we
chose to find the best combination of a number of scores. The best joint metric included
missense depletion, Polyphen2 score®®, and missense badness. MPC worked better
than all other single metrics or combinations at separating pathogenic and benign

missense variants.
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Improvements and future directions

Better processing of challenging variants

Our de novo variant identification workflow has proven to be both sensitive and
specific, but it currently does not process sites with more than three alleles (one
reference and two non-reference). As more individuals are sequenced and included in
the same datasets, the number of multi-allelic sites will increase and therefore the script
should be updated. We are also limited by the quality of variants provided by the
genotyping software. In particular, variant calls on the Y chromosome as well as indels
could be much improved. Therefore, our de novo results are less reliable for both

chromosome Y variants and indels.

Accounting for indels and methylation status of CpG sites

Our inability to reliably identify indels in sequencing data has also limited the
field’s ability to model indel mutation rates. A major limitation of the mutational model
used throughout this thesis is that it lacks the ability to predict the expected number of
indels—specifically frameshift variants—per gene. In order to study frameshift variants
in our de novo data, we estimated the rate based on the rate of nonsense variants.
While this estimate was useful for the de novo variant studies, we knew it was not
accurate enough to predict the expected number of frameshift variants in reference
populations such as EXAC, and thus we had to exclude all frameshift variants from our
calculations of loss-of-function constraint.

While our mutational model accurately predicts the number of rare synonymous

variants per transcript in EXAC (r = 0.9776), we are also aware that there are other
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improvements that could be made to the mutational model itself. Two other factors that
could influence mutation rate that we did not incorporate into the mutational model are
the methylation status of CpG sites in the male germline and the effects of transcription-
coupled repair (TCR). Cytosines in CpG dinucleotides are sometimes methylated and
can then deaminate, leading to a C>T (G>A) transition. Transitions at methylated CpGs
occur at a much higher rate than all other mutations, including transitions at
unmethylated CpGs. Our model of mutation could therefore be improved by splitting
CpGs by their methylation status in the male germline (where de novo variants are most
likely to arise) and using separate mutation rates for the two types.

Another potential improvement to the model would be accounting for TCR, which
is a DNA damage repair mechanism that corrects mutations on the template strand of
transcribed genes via nucleotide excision. A signature of TCR is strand asymmetry for
mutations, which is especially prominent when studying transitions that result from CpG
methylation and then deamination?. Our early investigations into TCR indicated that it
did not have a large influence on the predictions of our model, but strand asymmetry
has been seen in de novo variants from whole genome sequencing®, indicating that it

may be important to revisit.

Probabilities of mutation for further split by mutational class

It would be useful to have the probabilities of mutation per gene split by more
than simply mutation type. As an example, we could split the probability of a missense
mutation by the three Polyphen2?® categories (benign, possibly damaging, and probably

damaging). We would specifically like to have the breakdown of high confidence versus
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low confidence loss-of-function variants, as defined by LOFTEE

(http://www.github.com/konradjk/loftee). This work is currently underway and will

hopefully be released with the second release of the ExAC dataset.

Incorporating allele frequency information for loss-of-function constraint

The next wave of the EXAC dataset is predicted to have nearly 100,000
individuals as part of the reference population (D.G. MacArthur, personal
communication) and would provide greatly increased power to detect constrained
genes. For pLl, there are 4,621 (25%) transcripts that have a pLI between 0.1 and 0.9
that we consider to be uninterpretable due to their low expected loss-of-function counts
(mean of 11.47; median of 8.25). Incorporating information from LOFTEE and removing
low confidence variants, such as those that occur in the last 5% of a transcript, would
also improve our loss-of-function constraint analyses. Additionally, a few of our high pLI
genes have common (MAF > 0.1%) loss-of-function variants. A future improvement to
the method may also include the combined allele frequency of all loss-of-function
variants in the transcript. The largest drawback of this potential addition would be
adding in common variants that appear to be loss-of-function, but do not have the
predicted effect on the protein. This issue may be mitigated, in part, by only using high

confidence LOFTEE variants.

Moving regional constraint beyond exon boundaries

We have many more analyses planned for the regional missense constraint

work. We know that our method to search for regional constraint is limited by exon
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boundaries. As depicted in Figure 5.3, 39 of the 43 pathogenic missense variants from
Clinvar'” in CDKL5 are found in exons 1-9, which we considered constrained. While
one of the remaining variants falls in the middle of the unconstrained exons (10-20),
there are three pathogenic variants that lie within 50 base pairs of the beginning of exon
10, which is part of the unconstrained region in CDKLS5, and are all within the kinase
domain that extends 66 base pairs into that exon. We will be updating our method to
detect regional constraint so that, once it finds a significant break in between two exons,
we search amino acid by amino acid in the two nearby exons to find the best way to
split the gene.

We are also working on a way to search for constraint of non-linear sequences.
The current sample size of EXAC does not permit the evaluation of constraint on single
bases and would require many to be combined to achieve the necessary power.
However, the non-linear approach would allow us to interrogate constraint of 3D

structural features of the protein, such as the amino acids in binding pockets.

Continued testing of MPC

Finally, our score of missense deleteriousness, MPC, that accounts for regional
missense depletion, Polyphen2?®, and missense badness still needs to be tested
against other variant prioritization tools, such as CADD?. We would also like to test how
well it separates pathogenic from benign variants specifically in regions that have 40-
60% of their expected missense variation. This is an interesting set of coding
sequences to investigate since it contains a lower signal to noise ratio than sequence

with < 40% of its expected missense variation.
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Final thoughts

Throughout this thesis, we have sought to understand the rate and distribution of
rare protein-coding variants. Our sequence-context based mutational model proved
useful both to analyze the burden of de novo variation in trio sequencing studies and to
identify genes and regions within genes that are intolerant of nonsynonymous variation.
Overall, we have established methods to prioritize medically relevant variation with the
goal of separating it from the vast amounts of relatively neutral variants also identified in
sequencing studies.

The tools and metrics we created have become widely adopted within the field.
The de novo identification pipeline and framework to rigorously evaluate de novo
variation have been used in studies of schizophrenia, congenital heart disease®’, and in
the children of testicular cancer survivors?®, among others. Beyond de novo studies, the
probabilities of mutation we generated are being used outside of the context of de novo

variation?%:3°

and the missense Z scores created from the ESP dataset are being
applied as a metric of genic intolerance to variation®'. Finally, the constraint and pLI

scores are available on the EXAC web browser (http://www.exac.broadinstitute.org) and

for free download in order to aid the community in variant prioritization.
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Explanation of the appendix
Given that work presented in Chapters 2 and 3 have already been published, |
have included the final versions of the main articles in this appendix. Their respective

supplements can be found online.
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Autism spectrum disorders (ASD) are believed to have genetic and
environmental origins, yet in only a modest fraction of individuals
can specific causes be identified?. To identify further genetic risk
factors, here we assess the role of de novo mutations in ASD by
sequencing the exomes of ASD cases and their parents (n =175
trios). Fewer than half of the cases (46.3%) carry a missense or
nonsense de nove variant, and the overall rate of mutation is only
modestly higher than the expected rate. In contrast, the proteins
encoded by genes that harboured de novo missense or nonsense
mutations showed a higher degree of connectivity among themselves
and to previous ASD genes® as indexed by protein-protein inter-
action screens. The small increase in the rate of de novoevents, when
taken together with the protein interaction results, are consistent
with an important but limited role for de nove point mutations in
ASD, similar to that documented for de novo copy number variants.
Genetic models incorporating these data indicate that most of the
observed de novo events are unconnected to ASD; those that do
confer risk are distributed across many genes and are incompletely
penetrant (that is, not necessarily sufficient for disease). Our results
support polygenic models in which spontaneous coding mutations
in any of a large number of genes increases risk by 5- to 20-fold.
Despite the challenge posed by such models, results from de novo
events and a large parallel case-control study provide strong
evidence in favour of CHDS8 and KATNALZ as genuine autism
risk factors.

In spite of the substantial heritability, few genetic risk factors for
ASD have been identified'?. Copy number vatiants (CNVs), in pat-
ticular de moveo and large events spanning multiple genes, have been
identified as conferring risk*”. Although these CNVs provide impert-
ant leads to underlying biology, they rarely implicate single genes, are
rarely fully penetrant, and many confer risk to a broad range of con-
ditions including intellectual disability, epilepsy and schizophrenia®.
There are alse documented instances of rare single nucleotide variants
(SNVs) that are highly penetrant for ASD".

Large-scale genetic studies make clear that the origins of ASD risk
are multifarious, and recent estimates based on CNV data put the

number of independent risk loci in the hundreds®. Yet knowledge
regarding specific risk-determining genes and the overall genetic
architecture for ASD remains incomplete. Although new sequencing
technologies provide a catalogue of most variation in the genome, the
profound locus heterogeneity of ASD makes it challenging to distin-
guish variants that confer risk from the background noise of in-
consequential SNVs. De novo variation, being less frequent and
potentially more deleterious, could offer insights into risk-determining
genes. Accordingly, we sought to evaluate carefully the observed rate
and consequence of de seve point mutations in the exomes of ASD
subjects.

‘We performed exome sequencing of 175 ASD probands and their
parents across five centres with multiple protocols and validation
techniques (Supplementary Information). We used a sensitive and
specific analytical pipeline based on current best practices’™ to analyse
all data and observed no heterogeneity of mutation rate across centres,

In the entire sample, we observed 161 coding region point muta-
tions (101 missense, 50 silent and 10 nonsense), with an additional twe
conserved splice site (CSS) SNVs and six frameshift insertions/
deletions (indels) validated and included in pathway analyses
(Supplementary Table 1).

To determine whether the rate of coding region point mutations was
elevated, we estimated the mutation rate in light of coverage and base
context using two parallel approaches (Supplementary Information).
On the basis of both models, the exome target should have a signifi-
cantly increased (—~30%) mutation rate compared to the genome.
Conservatively, by assuming the low end of the estimated mutation
rate from recent whole-genome data (1.2 X 1078 we estimate a
mutation rate of 1.5 X 10~% for the exome sequence captured here.
The observed point mutation rate of 0.92 per exome is slightly but not
significantly elevated versus expectation (Table 1) and is insensitive to
adjustment for lower coverage regions (Supplementary Information).
Indeed our rate is similar to that of ref. 11,

Per-family events were distributed exquisitely according to the
Poisson distribution (Table 1), suggesting limited variation in the
underlying rate of de novo mutation in ASD families. The relative rates
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Table 1 | Distribution of events per family

Events per All ASD trios Random
family mut. exp.i
Exon DN SNys* Exp.t

8] 71 9.7 732

1 62 64.2 638

2 28 295 278

3 10 2.1 8.1

4 2 2.1 18

5 1 04 03
Mean 0920 0871

*Exon DN SNYs include all single nucleotide variants in coding sequence but excludes indels and
intronic variants.

¥ The expected distribution of number of trios with a given event count as determined by the Poisson.
+ Random mut. exp. is the expectation for 1 75 trios based on the sequence -context mutation rate model
M1 (Supplementary Information) based on the count of the numkber of trics that have at least 10
coverage.

of functional’ (missense, nonsense, CSS and read-through) versus
silent changes did not deviate from expectation (Table 2). We did,
however, observe ten nonsense mutations (6.2%), which exceeded
expectation (3.3%) (one-tailed P = 0.04; Supplementary Information).

We examined missense mutations using PolyPhen-2 scores'? to
measure severity, as some missense vatiants can severely affect func-
tion". These scores showed no deviation from random expectation.
The observed PolyPhen-2 scores clearly deviate from standing vari-
ation in the parents (Table 2), but such varjation, even the rarest
category, has survived selective pressure and so is inappropriate for
comparison to de novo events.

We observed three genes with two de nove mutations: BRCA2 (two
missense), FAT! (two missense) and KCNMA! (one missense, one
silent). A gene with two or more non-synenymous de novo hits across
a panel of trios might indicate strong candidacy. However, simulations
(Supplementary Information) show that two such hits are inadequate
to define a gene as a condusive risk factor given the number of
observed events in the study.

From analyses of secondary phenotypes (Supplementary Tables 2
and 3), the most striking result is that paternal and maternal age,
themselves highly correlated (r2 = 0.679, P-value <<0.0001), each
strongly predicts the number of de novo events per offspring (paternal
age, P = 0.0013; maternal age, P = 0.000365), consistent with aggreg-
ating mutations in germ cells in the paternal line'. Consistent with a
liability threshold model, there is an increased rate of de novo mutation
in female versus male cases (1.214 for females versus 0.914 for males);
however, the difference is not significant, owing to limited sample size.
Considering phenotypic correlates, we observed no rate difference
between subjects with strict autism versus those with a broader ASD
classification, between positive and negative family histery, or any
significant effect of de novo mutation en verbal, non-verbal or full-
scale IQ (Supplementary Table 3).

Given that hundreds of loci are apparently invelved in autism® and
de novo mutations therein affect ASD risk, we modelled different
numbers of risk genes and penetrances (Supplementary Informa-
tion) and show that a model of hundreds of genes with high penetrance
mutations is excluded by our data, however, more modest contribu-
tions of de novo variants are not. For example, up to 20% of cases

Table 2 | Rates of mutation annotation given variant type

Type of de novo De novo Random Singletons Doubletons =3

mutation (o)t de novo (%) (%6t (Bt Bt
Missense 62.7 66.1 595 554 48.8
Nonsense 6.2 33 1.2 08 0.4
Synonymous 31.1 306 393 438 B50.8
PolyPhen-2 missense classification

Benign 35.0 359 46.6 513 63.4
Possibly 21.0 189 188 177 151
damaging

Probably 44.0 452 347 310 21.4
damaging

*Allindels and failing variants were removed
+Singletons, doubletons and =3 (copies) are only those variants called in 132 parents.
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carrying a de nove event conferring a 10- or 20-fold increased risk is
consistent with these data (Supplementary Table 4). Thus, our data are
consistent with either chance mutation or a modest role for de novo
mutations en risk. Importantly, a single deleterious event is unlikely to
fully explain disease in a patient.

‘We therefore posed two questions of the group of genes harbouring
de novo functional mutations: do the protein products of these genes
interact with each other more than expected, and are they unusually
enriched in, or connected to, previous curated lists of ASD-implicated
genes? Using an in silico approach (DAPPLE)", the protein—protein
connectivity defined by InWeb'® in the set of 113 genes harbouring
functional de #ove mutations was evaluated. These analyses (Fig. 1)
showed significantly greater connectivity among the de novo identified
proteins than would be expected by chance (P <C0.001) (Supplemen-
tary Information).

Querying previously defined, manually curated lists of genes® asso-
ciated with high risk for ASD with or without intellectual disability
(Supplementary Table 5), and high-risk intellectual disability genes
(Supplementary Table 6), we asked whether there was significant
enrichment for de #ovo mutations in these genes. Five genes with
functional de novo events were previously associated with ASD and/
or intellectual disability (STXBPI, MEF2C, KIRREL3, RELN and
TUBAIA); for four of these genes (all but RELN) the previous evidence
indicated autosomal dominant inheritance.

‘We then assessed the average distance (I, Supplementary Fig, 2) of
the de novo coding variants in brain-expressed genes (see supplement)
to the ASD/intellectual disability list using a pretein-protein inter-
action background network. To enhance power, data from a compan-
ion study™ were used, including the observed silent de novo variants
and de novo variants in unaffected siblings as comparaters. The average
distance for non-synonymous variants was significantly smaller for the
case set than the comparator set (3.66 = 0.42 versus 3.78 = 0.59;
permutation P = 0.033) (Supplementary Fig. 3). Much of this signal
comes from 31 synaptic genes identified by three large-scale synaptic
proteomic studies (D; = 3.47 = 0.46 versus 3.57 = 0.60; permutation
P =0.084) (Fig. 2; see also Supplementary Fig. 4 for the complete data).
Taken in total, these independent gene set analyses, along with the
modest enrichment of de nove variants over background rates in

TOPORS
BIF ToP1
POLR2A STXBPS
SMARGG CHD SNTGT S = 1% 1070
STATZ SMARGG2
PIAST sl
REST KIAR1967
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Figure 1 | Protein-protein interaction for genes with an observed
functional de novo event. Direct protein connections from InWeb, restricting
to genes harbouring de #ovo mutations for DAPPLE analysis. Two extensive
networks are identified: the first is centred on SMARCC2 with 12 connections
across 11 genes; the second is centred on FN 1 with 7 connections across 6 genes.
The P value for each gene having as many connections as those observed is
indicated by nede colour.
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Figure 2 | Direct and indirect protein-protein interaction for genes with a
functional de novo event and previous ASD genes. PPI network analysis for
de novo variants and 31 previous synaptic ASD genes (see Supplementary
Information). Nodes are sized based on connectivity. Genes harbouring de novo
variants (left) and previous ASD genes (right) are coloured blue, with dark blue
nodes representing genes that belong to one of these lists and are also

ASD, indicate that a proportion of the de novo events observed in this
study probably contribute to autism risk.

Using whole-exome sequencing of autism trios, we demonstrate a
rate, functional distribution and predicted impact of de novo mutation
largely consistent with chance mutational processes governed by
sequence context. This lack of significant deviation from random
mutational processes indicates a more limited role for the contribution
of de novo mutations to ASD pathogenesis than has previously been
suggested'”, and specifically highlights the fact that observing a single
de novo mutation, even an apparently ‘severe’ loss-of-function allele, is
insufficient to implicate a gene as a risk factor. Yet the pathway
analyses presented here assert that the overall set of genes hit with
functional de novo mutations is not random and that these genes are
biologically related to each other and to previously identified ASD/
intellectual disability candidate genes. Modelling the de nove muta-
tional process under a range of genetic models reveals that some
models are inconsistent with the observed data—for example, 100 rare,
fully penetrant Mendelian genes similar to Rett’s syndrome—whereas

intermediate proteins. Intermediate proteins (centre) are coloured in shades of
orange based on a P value computed using a proportion test, where a darker
colour represents a lower P value. Green edges represent direct connections
between genes harbouring de novo variants (left) and previous ASD genes. All
other edges, connecting to intermediate proteins, are shown in grey.

others are not inconsistent, such as spontaneous ‘functional’ mutation
in hundreds of genes that would increase risk by 10- or 20-fold
(Supplementary Table 4). Models that fit the data are consistent with
the relative risks estimated for most de nove CNVs® and suggest that de
novo SNVs, like most CNVs, often combine with other risk factors
rather than fully cause disease. Furthermore, these models indicate
that de novo SNV events will probably explain <(5% of the overall
variance in autism risk (Supplementary Table 4).

Considering the two companion papers'*, 18 genes with two func-
tional de novo mutations are observed in the complete data. Using
simulations, 11.91 genes on average harbour functional mutations
by chance (Supplementary Table 7). Thus, a set of 18 genes with two
or more hits is not quite significant (P = 0.063). Matching loss-of-
function variants, however, at SCN2A, KATNALZ2 and CHDS (Sup-
plementary Table 7) are unlikely to occur by chance because of the
expected very low rate of de novo nonsense, splice and frameshift
variants. We evaluated these strong candidates further using exome
sequencing on 935 cases and 870 controls, and at both KATNALZ2 and
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CHDS three additional loss-of-function mutations were observed in
cases with nene in controls. No additional loss-of-function mutations
were seen at SCN2A in the case—control data, but a new splice site de
#nove event has been validated in an additional autism case while this
paper was in press, strengthening the evidence for this gene as relevant
to autism. Using data from more than 5,000 individuals in the NHLBI
Exome Variant Server (http://evs.gs.washington.edw/EVS/) as addi-
tional controls, three loss-of-function mutations were seen in
KATNALZ but nene in CHDS, making the additional observation of
three CHD8 loss-of-function mutations in our cases significant evid-
ence (P <00.01) of this being a genuine autism susceptibility gene. Not
all genes with double hits are nearly so promising (Supplementary
Information and Supplementary Tables 8 and 9), supporting the
estimate above that most of such observations are simply chance
events. Overall, these data underscore the challenge of establishing
individual genes as conclusive risk factors for ASD, a challenge that
will require larger sample sizes and deeper analytical integration with
inherited variation.

METHODS SUMMARY

‘We ascertained probands using the Autism Diagnostic Interview-Revised (ADI-
R), the Autism Diagnostic Observation Schedule-Generic (ADOS) and the DSM-
1V diagnosis of a pervasive developmental disorder. All probands met criteria for
antism on the ADI-Rand either autism or ASD on the ADOS, except for the three
subjects that were not assessed with the ADOS. All subjects provided informed
consent and the research was approved by institutional human subjects boards.

For 175 trios, we performed exome capture and sequencing using either the
Agilent 38MDb SureSelect v2 (2 = 118), the NimbleGen Seq Cap EZSRv2 (n = 51),
or NimbleGen VCRome 2.1 (Baylor # = 6). After capture, another round of LM-
PCR was performed to increase the quantity of DNA available for sequencing. All
libraries were sequenced using an MluminaHiSeq2000.

All sequence data were processed with Picard (http://picard.sourceforge.net/),
which recalibrates quality scores and local realignment at known indels® and
BWA’ for mapping reads to hgl9. SNPs were called using GATK®® for all trios
jointly. Putative de novo mutations were identified restricting to sites passing
standard filters and both parents were homozygous for the reference sequence
and the offspring was heterozygous, and each genotype call was made confidently
(see Supplementary Information).

All putative de nove events were validated by sequencing the carrier and both
parents using Sanger sequencing methods (71 trios) or by using Sequenom
MALDI-TOF (104 trios). All events were annotated using RefSeq hgl9.

‘We modelled a Poisson process consistent with the mutation model and
observed data. We varied the fraction of genes that influence risk, the probability
of a functional variant, and the penetrance of said events.

‘We performed association tests using SKAT', a generalization of C-alpha™,
Qur primary analyses treat case-control data generated at Baylor and Broad
sequencing centres separately (23 genes X 2 sites), but we also petrformed mega-
and meta-analyses (23 genes X 2 methods).

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Phenotype assessment. Affected probands were assessed by research-reliable
research personnel using Autism Diagnostic Interview-Revised (ADI-R), and
the Autism Diagnostic Observation Schedule-Generic (ADOS) and DSM-IV
diagnosis of a pervasive developmental disorder was made by a clinician. All
probands met criteria for autism on the ADI-R and either autism or ASD on
the ADOS, except for the three subjects from AGRE that were not assessed with
the ADOS. In all, 85% of probands were classified with autism on both the ADI-R
and ADOS. All subjects provided informed consentand the research was approved
by institutional human subjects boards.

Exome sequencing, variant identification and de nove detection. Exome
capture and sequencing was performed at each site using similar methods.
Exons were captured using the Agilent 38 Mb SureSelect v2 (University of
Pennsylvania and Broad Institute n = 118), the NimbleGen Seq Cap EZ SR v2
(Mt Sinai School of Medicine, Vanderbilt University n = 51), or NimbleGen
VCRome 2.1 (Baylor # = 6). After capture, another round of LM-PCR was per-
formed to increase the quantity of DNA available for sequencing, Alllibraries were
sequenced using an IuminaHiSeq2000.

Sequence processing and variant calling was performed using a similar compu-
tational workflow at all sites. Data were processed with Picard (http-//picard.
sourceforge.net/), which uses base quality-score recalibration and local realign-
ment at known indels® and BWA’ for mapping reads to hgl9. SNPs were called
using GATK®? for all trios jointly. The variable sites that we have considered in
analysis are restricted to those that pass GATK standard filters. From this set of
variants, we identified putative de rovo mutations as sites where both parents were
homaozygous for the reference sequence and the offspring was heterozygous and
each genotype call was made confidently (see Supplementary Information).
Validation of de novo events. Putative de novo events were validated by
sequencing the carrier and both parents using Sanger sequencing methods

RESEARCH

(University of Pennsylvania, Mt Sinai School of Medicine Vanderbilt
University, Baylor Medical College) or by Sequenom MALDI-TOF genotyping
of trios (Broad).

Gene annotation. All identified mutations were then annotated using RefSeq
hg19. The functional impact of variants was assessed for all isoforms of each gene,
with the most severe annotation taking priority. Splice site variants were identified
as occurring within two base pairs of any intron/exon boundary.

Expectation of de nove mutation calculation. To calculate the expected de rove
rate, we assessed the mutability of all possible trinucleotide contexts in the inter-
genic region of the human genome for variation in two fashions: fixed genomic
differences compared to chimpanzee and baboon'? and variation identified from
the 1,000 Genomes project. The overall mutation rate for the exome was then
determined by summing the probability of mutation for all bases in theexome that
were captured successfully. We also determined the probability of each class
functional mutation by summing the annotated variants.

Pathway analyses. We applied DAPPLE™, which uses the InWeb database’®, to
determine whether there is excess protein-protein interaction across the genes hit
by a functional de novo event We also assessed whether these genes were more
closely connected to a list of ASD genes®.

Modelling de novo events, We modelled a Poisson process consistent with the
expected distribution defined by the mutation model and with the observed data.
‘We varied the fraction of genes that influence risk, the probability a variant in a
genewould be functional, and the penetrance of functional de nove events. We also
simulated a random set of de rrovo events to estimate the probability of hitting a
gene multiple times.

Association analysis. We performed association tests using SKAT', a general-
ization of C-alpha®. Qur primary analyses treat case-control data generated at
Baylor and Broad sequencing centres separately (23 genes X 2 sites), but we also
performed mega- and meta-analyses (23 genes X 2 methods).
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A framework for the interpretation of de novo mutation

in human disease

Kaitlin E Samocha!4, Elise B Robinson! -3, Stephan ] Sanders™5, Christine Stevens??, Aniko Sabo7,

Lauren M McGrath®, Jack A Kosmicki’»*!%, Karola Rehnstrém!!12, Swapan Mallick!?, Andrew Kirby!-2,
Dennis P Wall>!0, Daniel G MacArthur!2, Stacey B Gabriel?, Mark DePristo!%, Shaun M Purcelll,2815-17,
Aarno Palotie®1112, Eric Boerwinkle”13, Joseph D Buxbaum5-17:19-21, Edwin H Cook Jr22, Richard A Gibbs?,
Gerard D Schellenberg??, James § Sutcliffe?4, Bernie Devlin?®, Kathryn Roeder?%27, Benjamin M Nealel > &

Mark ] Daly!-3

Spontaneously arising (de novo) mutations have an important role in medical genetics. For diseases with extensive locus
heterogeneity, such as autism spectrum disorders (ASDs), the signal from de novo mutations is distributed across many genes,
making it difficult to distinguish disease-relevant mutations from background variation. Here we provide a statistical framework
for the analysis of excesses in de novo mutation per gene and gene set by calibrating a model of de ove mutation. We applied
this framework to de nrovo mutations collected from 1,078 ASD family trios, and, whereas we affirmed a significant role for
loss-of-function mutations, we found no excess of de novo loss-of-function mutations in cases with 1Q above 100, suggesting
that the role of de novo mutations in ASDs might reside in fundamental neurodevelopmental processes. We also used our model
to identify ~1,000 genes that are significantly lacking in functional coding variation in non-ASD samples and are enriched for

de novo loss-of-function mutations identified in ASD cases.

Exome sequencing has enabled the identification of de wmovo
(newly arising) mutations and has already been effectively used to
identify causal variants in rare mendelian diseases. In the case of
Kabuki syndrome, the observation of a de novo mutation in MLL2
(KMT2D) in 9 of the 10 cases analyzed strongly implicated loss of
MIL2 function as causall. The conclusion that MLL2 is impor-
tant in Kabuki syndrome etiology based on the de novo mutation
findings relies upon the unlikely accumulation of independent and
infrequently occurring events in the vast majority of these unre-
lated cases. By contrast, de novo mutations have a smaller role in the
pathogenesis of heritable complex traits, such as ASDs, and associated
de novo mutations are spread across multiple genes. These differences

in the eticlogic architecture of complex traits make the task
of identifying ‘causal’ genes considerably more challenging.
For example, recent exome sequencing studies demonstrated a
significant excess of de novo loss-of-function mutations in ASD cases
but lacked the ability to directly implicate more than a very small
number of genes’ .

The main complicating factor for interpreting the number of
observed de nove mutations for a particular gene is the background
rate of de rovo mutation, which can vary greatly between genes. As
more individuals are sequenced, multiple de novo mutations will
inevitably be observed in the same gene by chance. However, if
de novo mutation has a role in a given disease, we would expect to find
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that genes associated with the disease would contain more de novo
mutations than expected by chance.

Here we develop a statistical model of de movo mutation to evaluate
the findings from exome sequencing data. With this model, we estab-
lish a statistical framework to evaluate the rates of de move mutation,
not only on a per-gene basis (in a frequentist manner analogous to that
used in common genome-wide association analysis) but also globally
and by gene set. We further use this model to predict the expected
amount of rare standing variation per gene and to detect those genes
that are significantly and specifically deficient in functional variation,
likely reflecting processes of selective constraint. Consequently, as
selection has reduced standing functional variation in these genes, it
is reasonable to hypothesize that mutations in these genes are more
likely to be deleterious.

We used the mutational model along with our list of highly con-
strained genes to evaluate the relationship between de novo mutation
and ASDs. Most of the families in these analyses were also included
in a set of previous studies of de novo mutation, which reported an
overall excess of de novo loss-of-function mutations in ASD cases, as
well as multiple de novo mutations in specific genes”~>. We build on
those studies to examine the aggregate rates of de novo mutation, the
excess of multiply mutated genes and the overlap of de movo mutations
with gene sets, which highlights the complex relationship between
intellectual functioning and the genetic architecture of ASDs.

RESULTS

Basis of the mutational model

Accurate estimation of the expected rate of de nove mutation in a
gene requires a precise estimate of each gene’s mutability. Although
gene length is an obvious factor in a gene’s mutability, local sequence
context is also a well-known source of differences in mutation rate’.
Accordingly, we extended a previous model of de rove mutation based
on sequence context and developed gene-specific probabilities for dif-
ferent types of mutation: synonymous, missense, nonsense, essential
splice site and frameshift (Online Methods, Supplementary Fig. 1
and Supplementary Table 1)°. Underscoring the importance of the
sequence context factors in the model, this genome-wide rate yieldsan
expected mutation rate of 1.67 x 10~ mutations per base per genera-
tion for the exome alone. Using counts of rare {minor allele frequency <
0.001) synonymous variants identified in the National Heart, Lung,
and Blood Institute (NHLBI) Exome Sequencing Project (ESP), we

found that our per-gene probabilities of mutation were significantly
more correlated (r = 0.940) with these counts than with gene length
alone (P < 1 » 10-16; Online Methods).

Having established accurate per-gene probabilities of mutation, we
could then investigate the rates and distribution of de novo mutations
found in sequencing studies. Specifically, we wished to systematically
assess (1) whether cases had genome-wide excesses of certain func-
tional categories of de nove mutation; (i1) whether individual genes
could be associated via de #ovo mutation with genome-wide statistical
significance; (iii) whether specific sets of genes collectively showed
significant enrichment of de rovo mutations; and (iv) whether there
were genome-wide excesses of genes with multiple de nove mutations.
Below we demonstrate the usefulness of the statistical framework in
addressing all of these questions with respect to recently generated
family exome sequencing data for autism and intellectual disability.

Identifying genes under selective constraint
There has been a long-standing interest in identifying genes in the
human genome that are sensitive to mutational changes, as these genes
would be the most likely to contribute to disease. Recent work made
use of ESP data to create a metric evaluating the proportion of com-
mon functional variation in each gene, thereby identifying genes that
appeared to be intolerant of mutation®. Along these lines, we correlated
our calculated per-gene probabilities of mutation with the observed
counts of rare missense variants in the ESP data set. In contrast to the
high consistency between predicted synonymous mutation rates and
observed synonymous counts (expected ifthe category is under no spe-
cific selection), we observed a significant number of genes with a severe
deficit in missense variants compared to the expectation generated
from predicted mutation rates (P < 1 x 10-16). Such a deficit is consist-
ent with strong evolutionary constraint: when damaging mutations
arise, they are quickly removed from the population by purifying selec-
tion. To avoid erroneously identified constrained genes, we removed
134 genes with either significantly elevated or decreased synonymous
and nonsynonymous rates (both P < 0.001; Online Methods).
Comparing both the synonymous and missense mutation predic-
tions of our model to the ESP data set, we identified alist of excessively
constrained genes (missense Zscore > 3.09; corresponding to P < 0.001)
that represented roughly 5% of all genes (Supplementary Table 2).
A high proportion of the most significantly constrained genes (mis-
sense constraint P < 1 x 10-%) were associated with autosomal or

Table 1 Evaluation of the rates of de novo mutation in ASD cases and unaffected siblings

Genome-wide excesses of mutational events

Unaffected siblings (7 = 343 families)

ASD cases (2= 1,078 families)

Observed events Expected events

Observed events Expected events

Mutation type per exome per exome FPalue per exome per exoms Fualue
Synanymous 0.21 0.27 0.0218&a 0.25 0.27 0.10652
Missense 0.61 0.62 0.81892 0.64 0.62 0.5721b
Loss of function 0.08 0.09 0.4508° 013 0.09 2.05x% 10772
Genome-wide excesses of multiply mutated genes
Unaffected siblings (7 = 343 families) ASD cases (= 1,078 families)

Observed genes Average expected Observed genes Average expected
Mutation type with 22 DNMs genes with =2 DNMs Pwalue with =2 DNMs genes with 22 DNMs FPvalue
Synonymous 9] 0.49 10 4 3.8 0.5185
Missense 5 25 0.1049 33 21 0.0070
Loss of function 0 0.039 1.0 6 0.5 <0.001
Loss of function + missense 5 3.0 0.0779 48 27 <0.001

The top half of the table shows the observed and expected rates of mutation by type per exoms Tor unaffected siblings? and ASD cases, including some unpublished US and
Finnish trios2-6. The bottam half of the table shows the number of genes with multiple de nova mutations in unaffected siblings and ASD cases across studies. The average
number of expected genes with multiple de nove mutations was determined by simulation. DNMs, de nave mutations. Significant P values are shown in bold

#Two-tailed, POne-tailed.
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The results for all genes can be found in

ASD cases Supplementary Table 4. A conservative

Number of Number of significance threshold of P = 1 x 10-5 was

observed expected. used, correcting for 18,271 genes and 2 tests.

loss-of-function loss-of function - ; 3 " .

Gene Mutations mutations mutations Fvalue COHSlderlng this set of 1,078 trios as a smgle
DYRKIA Nonsense, splice site, frameshift 3 0.0072 6.15x 1078 experlment,v 2 genes (D,YRKIA and S_CNZ_A)
SCN2A Nonsense, nonsense, frameshift 3 0.018 9.20 x 10-7 E)FceedEd this conservative genome-wide sig-
CHD8 Nonsense, splice site, frameshift 3 0.022 1.76 x 10-6 nificance threshold for more de nove loss-of-
KATNALZ  Splice site, splice site 2 0.0048 119 x 1075 function mutations than predicted. SCN24
oGz Frameshift, frameshift 2 0013 803105 4lso had significantly more functional de
ARIDIB  Frameshift, frarmeshift 2 0.018 1.57 x 104 nrovo mutations than expected. CHDS, with

Shown are genes with multiple de nove loss-of-function mutations across 1,078 ASD cases,
include nonsense, frameshift and splice site-disrupting mutations. Number of expected loss-of-function mutations
refers to the expected number of de nove loss-of-function mutations based on the probability of mutation for the gene as
determined by our model. The genome-wide significance threshold is 1 x 106, Significant P values are shown in bold

X-linked dominant, largely sporadic mendelian disease entries in the
Online Mendelian Inheritance in Man database (OMIM; n = 27/86).
By contrast, a set of genes for which the missense constraint was very
closetothe expectation (n = 111; —0.01 < Z < 0.01) had only 2 de novo
or dominant disease inheritance entries in OMIM, a number signifi-
cantly different from that for the highly constrained set (P < 1 % 10-%).
For the 86 most highly constrained genes, no autosomal recessive
mendelian disorders have been documented. However, 11 of the 111
genes with average levels of constraint have been identified as causal
in autosomal recessive mendelian disorders. The significant excess of
recessive disease-causing genes in the middle part of the distribution
in comparison to the constrained set (P < 0.003) underscores the idea
that recessive inheritance models do not induce strong constraint.

Mutation rates for ASDs and intellectual disability
We applied the model to two primary data sets: published results from
ASD sequencing studies®-® with a collection of additional unpub-
lished ASD family trios and published results from individuals with
severe intellectual disability™!°. Comparisons of the predicted number
of mutations per exome and the observed data from the 1,078 ASD
cases as well as the 343 sequenced unaffected siblings®-¢ are shown
in Table 1. The model’s predictions matched the observed data for
the unaffected siblings well, but the cases showed a significant excess
of de novo loss-of-function mutations (P = 2.05 % 10~7), consistent
with the findings of the individual sequencing studies. Using our
model to simulate null de novo mutation sets, we found that there
were significantly more genes with two or more de novo loss-of-func-
tion mutations than would be expected by chance (P < 0.001; six
observed when less than one was expected; Supplementary Table 3).
Notably, although we did not observe a global excess of de nove mis-
sense mutations, we did observe an excess of genes with 2 or more
functional (loss-of-function or missense) de nove mutations (48 such
genes were observed when the average number expected was 27;
P < 0.001) and genes with 2 or more de novo missense mutations
alone (33 such genes were observed when the average number expected
was 21; P = 0.007 for missense variants; Table 1). No such excess of
genes containing multiple de #ove mutations was seen in the unaf-
fected siblings (Table 1). Of note, our framework also supports the
assessment of many other weightings and combinations of alleles—
such as missense variants only (optimal for pure gain-of-function
disease models), predicted damaging missense variants only and exact
probability estimates for specific combinations of loss-of-function
and missense variants—beyond those shown above.

Some of the genes that had 2 or more de novo loss-of-function
mutations across the 1,078 subjects with ASD are listed in Table 2.

three de noveloss-of-function mutations and
one missense mutation, was very close to the
significance threshold in these studies (P =
1.76 % 1076 for loss-of-function mutations;
P = 3.20 x 10~° for functional mutations).
However, a recent targeted sequencing study found 7 additional
de novo loss-of function mutations in CHD& in ASD cases!!, bring-
ing the total number of de nove loss-of-function mutations in CHD&
to 10, a number that was highly significant (P = 8.38 x 107" when
accounting for the total number of trios (# = 2,750) examined in the
combination of the targeted and exome-wide studies). These results
offer the encouraging point that, as with genome-wide association
studies (GWAS), larger collaborative exome sequencing efforts for
trios will define unambiguous risk factors. It is important to note,
however, that not all genes with a large number of de movo mutations
had significant Pvalues. For example, TTN had four missense de nove
mutations in ASD cases but had a P value that was not even nominally
significant (P = 0.18), owing to the enormous size of the gene. Even
having two de novo loss-of-function mutations was on occasion not
enough to provide compelling significance (POGZ; two frameshift
mutations; P = 8.93 % 10-°). In comparison, none of the genes found to
contain multiple de nove mutations in the unaffected siblings crossed
the significance threshold (Supplementary Table 5).

These analyses were also applied to the results from the sequenc-
ing studies of moderate to severe (IQ < 60) intellectual disability”1%.

Loss-of-function mutations

Table 3 Evaluation of the rates of de novo mutation in cases with
intellectual disability
Genome-wide excesses of mutational events

Intellectual disability cases

Observed Expected
events events
Mutation type per exome per exome FPvalue
Synonymous 0.19 0.27 0.025672
Missense 070 062 0.2380%
Loss of funstion 0.24 0.0% 6.49 x 10-7b

Genome-wide excesses of multiply mutated genes
Intellectual disability cases

Observed  Average expected

genes with genes with =2
Mutation type 22 DNMs DNMs Pyalue
Synonymous 1 0.092 0.0879
Missense 3 0.47 0.0090
Loss of function 2 0.011 <0.001
Loss of function + missense &) 0.60 <0.001

The top half of the table shows the observed and expected rates of mutation by type per
exome for cases of intellectual disability (n = 151 families)®19, The bottorn half of the table
shows the number of genes with multiple de neve mutations in intellectual disability cases
across studies. The average number of expected genes with multiple de nove mutations was
determined by simulation. DNMs, de neve mutations. Significant £ values are shown in bold.
aTwo-tailed. POne-tailed
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Table 4 Individually significant genes identified from the analysis of de novo mutations in individuals with intellectual disability

Number of Number of Number of
loss-of function missense DNMs
Gene Mutations mutations mutations expected Fvalue Test
SYNGAPI Splice site, frameshift, frameshift 3 o] 0.0017 8.15x 10-10 Loss of function
SCNZA Missense, nonsense, frameshift, frameshift 3 1 0.0025 2.56 x 109 Loss of function
SCNZA Missense, nonsense, frameshift, frameshift 3 1 0.018 501 x 109 Loss of function + missense
STXBRI Missense, missense, splice site 7 2 0.0071 587 x 108 Loss of function + missense
TCrg Missense, missense 6] 2 0.0063 2,39 % 1072 Loss of function + missense
GRINZA Missense, missense 6] 2 0.016 1.34 x 104 Loss of function + missense
TRIO Missense, missense (6] 2 0.033 5,60 x 1074 Loss of function + missense

Shown are genes with multiple functional de aovo mutations across 151 cases of intellectual disability? 10, Loss-of-function mutations include nonsense, frameshift and
splice site~disrupting mutations. The genome-wide significance threshold is 1 x 10-%, The number of mutations is either compared to the expected number for loss-of-function
mutations only or for both loss-of-function and missense mutations, as indicated by the number of DNMs expected and test columns. Significant P values are shown in bold

Intellectual disability, like ASD, showed a significant excess of de novo
loss-of-function mutations (P = 6.49 % 10~7; Table 3). Even with a
much smaller sample size (# = 151), there were genes with significantly
more loss-of-function and functional de #ove mutations than predicted
by the model (Table 4). The data for intellectual disability also showed
significantly more genes with multiple missense, loss-of-function and
functional de novo mutations than predicted (P = 0.009 for missense
mutations; P < 0.001 forloss-of-function and functional mutations).

Inour ASD sample, we then investigated the rate of de novo events
as a function of 1Q; roughly 80% of this sample had an IQ assessment
attempted. We found that the rate of de novoe loss-of-function muta-
tionin ASD cases with a measured IQ above average was no different
than the expectation (IQ > 100; # = 229; 0.08 de noveloss-of-function
mutations per exome in comparison to the expectation of 0.09; P =
0.59). By contrast, the rate in the rest of the sample was substantially
higher than the expectation (# = 572; rate of 0.17 de novo loss-of-
function mutations per exome; P=1.17 % 107'%). Furthermore, when
directly compared (rather than being compared to our expectation),
these two groups were significantly different from each other (P <
0.001), confirming a difference in genetic architecture among ASDs
as a function of IQ (Supplementary Table 6). These conclusions were
unchanged in separate analyses of nonverbal and verbal IQ as well as
full-scale IQ (Supplementary Table 6).

Gene set enrichment
Given the significant global excess of de novo loss-of-function muta-
tions in ASD cases, we wanted to evaluate whether the set of genes
harboring de novo loss-of-function mutations had significant overlap
with several sets of genes proposed to be relevant to autism or describ-
ing biochemical pathways. We used the probabilities of mutation to
determine the fraction ofloss-of-function mutations expected to fall
into the given gene set. We then used the binomial distribution to
evaluate the number of observed loss-of-function mutations overlap-
ping with the set in comparison to the established expectation. When
we applied this analysis to a set of 112 genes reported to be disrupted
in individuals with ASDs or autistic features, we observed no enrich-
ment of de nevo loss-of-function mutations (Fig. 1, Betancur)'? By
contrast, we applied this analysis to a recent study of 842 genes found
to interact with the fragile X mental retardation protein (FMRP)
in vivo and found a highly significant overlap (2.3-fold enrichment;
P < 0.0001; Fig. 1)>!% This enrichment with the targets of FMRP
held even when we removed the de novo mutations identified in the
study by lossifov et al.?, which initially reported an enrichment of
de novo mutations in ASD cases in FMRP-associated genes (2.5-fold
enrichment; P < 0.0001).

We then evaluated the group of individuals from the ASD studies
who had a de novoloss-of-function event in one of the targets of FMRP.

On average, these cases were enriched for having a measured I1Q of
<100 (Fisher’s exact test P = 4.01 x 10~% Supplementary Table 7)
as well as a significantly reduced male/female ratio (P = 0.02;
Supplementary Table 8) as compared to the remaining sequenced
cases (Supplementary Note). These individuals represented about 3%
of the total sample, when, at most, a 1% overlap would be expected.
The estimated odds ratio (OR) of de novo loss-of-function events in
the set of FMRP target genes was around 6, very similar to the ORs
estimated for large copy number variants (CNV's) that disrupt multi-
ple genes'“. In addition, the OR for the published cases of moderate
tosevere intellectual disability noted above (IQ < 60; not ascertained
for ASDs) having a de noveloss-of-function event in the set of FMRP
targets was roughly 10.

The same analysis was applied to thelist of de nove loss-of-function
events from the unaffected siblings of ASD cases and additional
control individuals (n = 647)>%51% There was a significant enrich-
ment when evaluating ovetlap with the set of autism-related genes
(P=10.0095; Fig. 1). However, no significance was observed for overlap
with the in vivo targets of FMRP. The list of de nove loss-of-function
mutations from the individuals with intellectual disability, on the
other hand, was significant for both sets (P < 1 x 10~* for both sets;
Supplementary Fig. 2). Even the de novo missense mutations found
in the intellectual disability cases showed significant overlap with both
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Figure 1 The expected and observed fraction of genes with a de nowo
loss-of-function mutation in ASD cases and unaffected controls for four
gene sets of interest. ASD cases (n=1,078) and unaffected controls

(n = 647) were sequenced across various studies (refs. 2-6,10,15)
"Betancur" refers to @ set of genes reported to be disrupted in individuals
with ASDs or autistic features; of the 112 onthe listl? we could evaluate
111, "FMRP" refers to the genes whose mRNAS are bound and regulated
by the fragile X mental retardation protein, as identified by Darnell

ot al.1% The "constrained" category is aset of 1,003 genes that we
defined as significantly lacking rare missense variation, indicating
intolerance to mutation. The targets of FMRP that are also considered
constrained by our metric make up the "constrained FMRP'" category,
*P<(0.01,*F<1x10-4 binomial test
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sets under study (P = 0.02 for autism-related genes and P < 0.0001 for
the targets of FMRP; Supplementary Fig. 2).

Evaluating constrained genes

We further applied the enrichment analysis to our set of constrained
genes and found that they contained more de novo loss-of-function
mutations than expected by chance (2.3-fold enrichment; P < 0.0001;
Fig. 1). We observed a greater fold enrichment when focusing on the
subset of constrained genes that were also identified in the FMRP
study (3.0-fold enrichment; P < 0.0001; Fig. 1)13. We note that the
FMRP targets showed significant overlap with the constrained set
of genes (OR = 1.29; P < 0.0001), which is consistent with the report
that the targets of FMRP are under greater purifying selection than
expected?. All enrichments were demonstrated to be independent of
gene length (Supplementary Note).

The genes that contained a de novo missense or loss-of-function
mutation in the intellectual disability cases also showed a significant
enrichment for both the constrained gene set and the set of con-
strained targets of FMRP (P < 0.0001 for all lists). In comparison,
no enrichment was found with either set for the list of genes that
had a de novo loss-of-function mutation in unaffected siblings and
control individuals.

In addition to treating constraint as a dichotomous trait, we also
evaluated the missense Z score for each of the genes with a de novo
loss-of-function mutation. We found that the distribution of mis-
sense Z scores for genes with a de novo loss-of-function mutation in
unaffected individuals was no different than the overall distribution
of scores (Wilcoxon P = 0.8325; Fig. 2). By contrast, both the genes
with a de novo loss-of-function mutation in ASD and intellectual dis-
ability cases had values significantly shifted toward high constraint
(Wilcoxon P < 1 x 107 for both). Furthermore, we compared the
distribution of Z scores among each of the three groups. Both the ASD
and intellectual disability distributions were significantly different
from the distribution of missense Z scores for unaffected individuals
(P =0.0148 and 0.0012, respectively). The intellectual disability mis-
sense Z scores were also significantly higher than the corresponding
ASD values (P = 0.0319).

When evaluating the ASD cases split by IQ group, we found no
enrichment of genes with de novo loss-of-function mutations with
either constrained genes or targets of FMRP in the group with IQ
of 2100 (P > 0.5 for both sets of genes), but we found very strong
enrichment in the set with IQ of <100 (P < 0.0001 for both sets of
genes). These results underscore the idea that phenotypically distinct
subsets of ASD cases may have significantly different contributions
from de novo mutation.

Comparison of constraint metric with existing methods

Identifying constrained genes by comparing observed nonsynony-
mous sites to the expectation is conceptually similar to the traditional
approach of detecting selective pressure by comparing observed non-
synonymous sites to observed synonymous sites (for example, dy/ds)
that has been used extensively. Our approach should in principle
achieve greater statistical power to detect constrained genes; compari-
son of an observation to an expectation is statistically more powerful
than contrasting that observation with a generally smaller second
observation (the number of observed synonymous variants). To inves-
tigate this claim, we identified genes that had significant evidence for
selective constraint using the dy/dg metric (their ratio of synonymous
to nonsynonymous sites deviated from the genome-wide average at
P <0.001; Supplementary Note). There were only 377 of these genes,
over half of which overlapped with the constrained gene list defined
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Figure 2 Distributions of missense Zscores and Z scores for genes
containing de novo loss-of-function mutations identified in unaffected
individuals, ASD cases and intellectual disability cases. (a) Distribution
of missense Zscores. The red bar indicates a Z score of 3.09, or

the threshold for inclusion in the set of 1,003 constrained genes.

(b) Missense Z scores for genes containing de novo loss-of-function
mutations in unaffected individuals, ASD cases and intellectual
disability cases?6:9.10.15 Black bars indicate the mean Z score of each
group: 0.94, 1.68 and 2.46 for unaffected individuals, ASD cases

and intellectual disability cases, respectively. Although the missense

Z scores of the de novo loss-of-function mutations found in unaffected
siblings matched the overall distribution (Wilcoxon P= 0.8325;

NS, not significant), de novo loss-of-function mutations found in both ASD
and intellectual disability cases were significantly shifted toward more
extreme constraint values (P < 1 x 105 for both). All Pvalues for
deviation from the overall distribution are listed on the right side of the
figure. In addition, the distributions of missense Z scores for each of the
three de novo lists were all individually significant at P < 0.05.

by our method (n = 1,003; overlap of 237 genes). The genes identified
as significantly constrained by only our metric (the top 10 of which
included RYR2, MLL (KMT2A), MLL2 and SYNGAPI) were still
significantly enriched for known causes of autosomal and X-linked
dominant forms of mendelian disease (P = 5 x 10~%). We therefore
conclude that the model-based approach to identifying constrained
genes adds substantial power to traditional approaches. The impor-
tance of this increased power to detect constraint is further articulated
in the ASD and intellectual disability analyses below.

Several groups have previously published approaches and specific
gene sets from these that are also aimed at identifying genes under
excessive purifying selection or generally intolerant of functional
mutation. Bustamante ef al.'® expanded on the McDonald-Kreitman
framework!”, contrasting fixed differences in the primate lineage to
polymorphic differences in humans to identify a set of genes under
weak negative selection, while more recently Petrovski et al.® used
the excess of rare versus common missense variation within humans
to flag genes intolerant of functional variation. We found a reason-
able correlation between our metric of constraint and the residual
variation intolerance score (RVIS) of Petrovski ef al. (Supplementary
Fig. 3)%. A comparison of these approaches as applied to the priori-
tization of known haploinsufficient genes, as well as to the de novo
loss-of-function mutations in autism described here, is provided in
the Supplementary Note and demonstrates that the two human-
only approaches (constraint and RVIS) perform better on these tasks
of identifying medical genetics lesions of severe effect in modern
humans (Supplementary Table 9). Intriguingly, both of these other
approaches use independent information from each other and from
our approach (which uses the absence of rare functional variation in
comparison to the expectation within humans), raising the possibil-
ity that composite scores employing all three sources of information
could add further value in highlighting which genes are most sensitive
to heterozygous mutation.
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DISCUSSION

We have developed a framework for evaluating excesses of de novo
mutations identified through exome sequencing. Even though this
framework can be leveraged to evaluate excesses of mutation across a
study and in gene sets, the key focus is on evaluating the significance
for individual genes. Given the small number of observed de novo
events per gene, simple case-control comparisons cannot achieve any
meaningful level of significance. For example, observing 3 de novo
loss-of-function mutations in a small gene in 1,000 case trios is per-
haps quite compelling, especially if no such mutations were identified
in 1,000 control trios. However, a simple three-to-zero case-control
comparison in this situation would yield no compelling statistical
evidence (one-tailed P = 0.125). Incidence of such extremely rare
events, however, can be evaluated if the expected rate of such events is
known. Sequencing large numbers of control trios to gather empirical
rate estimates on a per-gene basis that are accurate is infeasible and
inefficient. The calibrated model and statistical approach described
here can achieve a close approximation of this ideal. Our method,
therefore, offers the ability to evaluate the rate of rare variation in
individual genes in situations where burden tests would fail.

Other groups have developed similar statistical frameworks1:18;
notably, the Epi4K Consortium'® used the same base model we began
with? to interpret event rates. Our model, however, has two primary
strengths. First, our model of de novo mutation incorporates additional
factors beyond sequence context that affect mutation rate. Both the
depth of coverage (how many sequence reads were present on average)
for each base and the regional divergence around the gene between
humans and macaques independently and significantly improve the
predictive value of our model (Supplementary Note). Second, given
the high correlation between the number of rare synonymous variants
in ESP and the probability of a synonymous mutation determined by
our full model, we have a metric to evaluate the extent to which genes
in the human genome show evidence of selective constraint. The list of
1,003 genes that we define as constrained contains an enrichment of
genes known to cause severe human disease—an observation analo-
gous to that recently made in using empirical comparison of com-
mon and rare rates of functional variation to evaluate intolerance to
mutation® In fact, site count deficits and shifts in site frequency each
contribute independent information to the definition of constraint
and can in principle be combined ina composite test.

The results of our metric were compared to both the scores created
by Petrovski ef al.® and the loci identified as being under negative
selection by Bustamante ef al.1%. Overall, our metric and the RVIS
metric defined by Petrovski ef al. worked similarly well, reinforcing
the benefits that could come from combining the two approaches. It
is unsurprising that these methods outperform the evolutionary ones
on the specific matter of genes intolerant to heterozygous mutation.
Evolutionary methods examining differences between polymorphism
and fixed differences, which are more sensitive to weaker negative
selection, require that mutations be tolerated well enough to become
polymorphic in the first place. By contrast, approaches measuring
the complete absence of variation will pick up the most strongly
intolerant genes.

Ideally, we can conceptualize defining two metrics of genic con-
straint, one based on missense variants and the other based on loss-
of-function variants. With only 6,503 individuals in ESP, we are
underpowered to determine significant deviations for most genes
with respect to loss-of function variants. As sample size increases,
our ability to calculate constraint improves. For example, if the sample
size were to increase by an order of magnitude, we would be able to
evaluate approximately 66% of genes usingloss-of-function variants.

We therefore view the constrained gene list as a work in progress, to be
updated when larger exome sequencing data sets become available.

Applying our statistical framework to de movo mutations from
1,078 ASD cases shows that, although there is no global excess in
de nove missense mutations, there are significantly more genes that
contain multiple de nove missense mutations than expected. We also
see significant overlap between thelist of genes with a de novo loss-of-
function mutation in ASD cases and the set of constrained genes that
we defined. In addition, there is significant overlap between the genes
with a de novo loss-of-function mutation and the targets of FMRP, as
reported in lossifov ef al.2. All of the significant signals in ASD—the
global excess of de novoloss-of-finction mutations, the excess of genes
with multiple functional de nove mutations, the overlap between the
genes with de novo loss-of-function mutation and both constrained
genes and the targets of FMRP—are not found in the subset of ASD
cases with IQ of >2100. The lack of signal in this subset indicates that
genetic architecture among ASDs varies as a function of IQ. Overall,
the probabilities of mutation defined by our full model and list of con-
strained genes can be used to critically evaluate the observed de novo
mutations from sequencing studies and to aid inthe identification of
variants and genes that have a critical role in disease.

URLs. Online Mendelian Inheritance in Man (OMIM), http://omim.
org/; Exome Variant Server, http://evs gs.washington.edu/EVS/; site to
query constraint information and de #ove mutations from published
studies, http://atgu.mgh.harvard.edu/webtools/gene-lookup/; Picard,
http://picard.sourceforge.net/.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. New data included in this manuscript have been
deposited in the database of Genotypes and Phenotypes (dbGaP),
merged with our published data under accession phs000298.v1.p1.

Note: Any Supplementary Information and Source Data files are available in the
enline version of the paper.
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ONLINE METHODS

De novo mutation information. Published de nove mutations were collected
for both ASD?-® and severe intellectual disability®1°. Updated de nove calls
were provided from two of the ASD studies®. Details about sample collection,
sequencing and variant processing can be found in the separate studies.

Additional sequencing. Exome sequencing of the additional families (x = 129)
was performed at the Broad Institute. Exons were captured using Agilent 38Mb
SureSelect v2. After capture, a round ofligation-mediated PCR was performed
to increase the quantity of DNA available for sequencing. All libraries were
sequenced using an Illumina HiSeq 2000 instrument. Data were processed
with Picard, which uses base quality score recalibration and local realign-
ment at known indels™ and Burrows-Wheeler Aligner (BWA)? to map reads
to hgl9. SNPs were called using the Genome Analysis Toolkit (GATK) for
all trios jointly'®2!, The variable sites that we have considered in analysis
were restricted to those that passed GATK standard filters, From this set
of variants, we identified putative de nove mutations and validated them as
previously described®, Autism Consortium samples (# = 78 trios) were col-
lected in Boston under institutional review board (IRB) approval from Harvard
Medical School, Massachusetts General Hospital, Children’s Hospital Boston,
Tufts-New England Medical Center and Boston University Medical Center
with ADTand ADOS assessment. Finnish autism samples (12 = 51 trios) were
collected under IRB approval at the University of Helsinki with ADTand ADOS
assessment and consented for autism research only. In both studies, all par-
ticipants gave written informed consent, although, as autism is classified as
a childhood disorder, many subjects are children, with informed consent
provided by their parents or guardians.

Mutational model. We wanted to create an accurate model of de nove muta-
tion for each gene. To do so, we extended a previous sequence context-based
model of de nove mutation to derive gene-specific probabilities of mutation
for each of the following mutation types: synonymous, missense, nonsense,
essential splice site and frameshift®. In brief, local sequence context was used
to determine the probability of each base in the coding region mutating to
each other possible base and then to determine the coding impact of each
possible mutation. These probabilities of mutation were summed across genes
to create a per-gene probability of mutation for the aforementioned muta-
tion types (see the Supplementary Note for more details). Here we applied
the method to exons and immediately flanking essential splice sites, butnote
that the framework is applicable to non-genic sequences. While fitting the
expected rates of mutation to observed data, we added a term for local primate
divergence across 1 Mb (to capture additional unmeasured sources of regional
mutational variability) and another for the average depth of sequence of each
nucleotide (to capture inefficiency of variant discovery at lower sequencing
depths); both terms significantly improved the fit of the model to observed
data (details in the Supplementary Note). We also investigated a regional
replication timing term?? but found no evidence for it significantly improving
the model (Supplementary Note).

To evaluate the predictive value of the model of de nove coding mutations,
we extracted synonymous variants that were seen 10 times or fewer in the

6,503 individuals in ESP and compared the number of these rare variants in
each gene to (i) the length of the gene and (ii) the probability of a synonymous
mutation for that gene as determined by our model. Although gene length
alone showed high correlation (r = 0.880), our full model showed significantly
greater correlation (r = 0.940; P< 1 x 10718}, Ofnote, the stochastic variability
of counts from ESP is such that, if the model were perfect, the correlation to
any instance of these data would be 0.975, indicating that little additional
gene-to-gene variability remains to be explained. The relative rates of different
types of coding mutation were quite similar to those in previous work based
on primate substitutions?3, With this calibrated model of relative mutability,
we determined the absolute expected mutation rate per gene by applying a
genome-wide mutation rate of 1.2 x 107® mutations per base pair per genera-
tion (Supplementary Note)?+25,

Removing potential false positive constrained genes. To identify genes that
appeared to be significantly constrained, we used our probabilities of mutation
to predict the expected amount of synonymous and nonsynoenymous varia-
tion in ESP data. Those genes that had the expected amount of synenymous
variation but were significantly (P < 0.001) deficient for missense variation
were labeled as constrained. To ensure that genes were not nominated as being
constrained erroneously, we excluded from all analyses 134 genes in which
the observed synonymous and nonsynenymous rates were both significantly
elevated or significantly decreased (both P < 0.001). Upen inspection, this
list contained a number of genes that contained an internal duplication (for
example, FLG), a nearby psendogene (for example, AHNAK2) and a number
of cases where recent duplications and/or annotation errors have led to the
same sequence being assigned to two genes (for example, SLX1A and SLX18).
These are all scenarios where standard exome processing pipelines systemati-
cally undercall variation {reads are unmapped owing to uncertainty on which
gene to assign them to) or overcall false variants owing to read misplace-
ment. Thisfurther suggests that a byproduct of this analysis framework is the
identification of a residual set of challenging genes for current exome sequenc-
ing pipelines.
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Synaptic, transcriptional and chromatin
genes disrupted in autism
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The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their
impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871
autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate
(FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.30). These 107
genes, which show unusual evolutionary constraint against mutations, incur de nove loss-of-function mutations in over
5% of autistic subjects. Many of the genes implicated encode proteins for synaptic formation, transcriptional regulation
and chromatin-remodelling pathways. These include voltage-gated ion channels regulating the propagation of action
potentials, pacemaking and excitability-transcription coupling, as well as histone-modifying enzymes and chromatin
remodellers—most prominently those that mediate post-translational lysine methylation/demethylation modifications

of histones.

Features of subjects with autism spectrum disorder (ASD) include com-
promised social communication and interaction. Because the bulk of
risk arises from de nove and inherited genetic variation'™, character-
izing which genes are involved informs ASD neurobiology and reveals
part of what makes us social beings.

Whole-exome sequencing (WES) studies have proved fruitful in uncov-
ering risk-conferring variation, especially by enumerating de novo vari-
ation, which is sufficiently rare that recurrent mutations in a gene provide
strong evidence for a causal link to ASD. De nove loss-of-function (LoF)
single-nudleotide variants (SN'Vs) or insertion/deletion (indel) vari-
ants'' " are found in 6.7% more ASD subjects than in matched controls
and implicate nine genes from the first 1,000 ASD subjects analysed"! ¢,
Moreover, because there are hundreds of genes invelved in ASD risk,
ongoing WES studies should identify additional ASD genes as an almost
linear function of increasing sample size.

Here we conduct thelargest ASD WES study so far, analysing 16 sam-
ple sets comprising 15,480 DNA samples (Supplementary Table 1 and
Extended Data Fig. 1). Unlike earlier WES studies, we do not rely solely
on counting de rtovo LoF vatiants, rather we use novel statistical methods
to assess association for autosomal genes by integrating de novo, inher-
ited and case-control LoF counts, as well as de nove missense variants
predicted to be damaging. For many samples original data from sequen-
cing performed on [llumina HiSeq 2000 systems were used to call SNVs
and indels in a single large batch using GATK (v2.6)"”. De novo muta-
tions were called using enhancements of earlier methods™ (Supplemen-
tary Information), with calls validating at extremely high rates.

After evaluation of data quality, high-quality alternative alleles with
a frequency of <(0.1% were identified, restricted to LoF (frameshifts,
stop gains, donor/acceptor splice site mutations) or probably damaging
missense (Mis3) variants (defined by PolyPhen-2 (ref. 18)). Variants were
classified by type (de novo, case, control, transmitted, non-transmitted)
and severity (LoF, Mis3), and counts tallied for each gene.

Some 13.8% of the 2,270 ASD trios (two parents and one affected
child) carried a de nove LoF mutation—significantly in excess ef both
the expected value'® (8.6%, P < 10~ and what was observed in 510
control trios (7.1%, P = 1.6 X 10~ %) collected here and previously pub-
lished". Eighteen genes (Table 1) exhibited two or more de novo LoF
mutations. These genes are all known or strong candidate ASD genes,
but given the number of trios sequenced and gene mutability'*'*, we

would expect to observe this in approximately two such genes by chance.
While we expect only two de novo Mis3 events in these 18 genes, we
observe 16 (P = 9.2 ¥ 101, Poisson test). Because most of our data
existin cases and controls and because we observed an additional excess
of transmitted LoF events in the 18 genes, it is evident that the optimal
analytical framework must involve an integration of de novo mutation
with variants observed in cases and controls and transmitted or untrans-
mitted from carrier parents. [nvestigating beyond de novo LoFs is also
critical given that many ASD risk genes and loci have mutations that
are not completely penetrant.

Transmission and de novo association

Weadopted TADA (transmission and de novo association), a weighted,
statistical model integrating de novo, transmitted and case-centrol vari-
ation®. TADA uses a Bayesian gene-based likelihood model including
per-gene mutation rates, allele frequencies, and relative risks of particu-
lar classes of sequence changes. We modelled both LoF and Mis3 sequence
variants. Because noaggregate association signal was detected for inher-
ited Mis3 variants, they were not included in the analysis. For each gene,
variants of each class were assigned the same effect on relative risk. Using
aprior probability distribution of relative risk across genes for each dass
of variants, the model effectively weighted different classes of varijants
in this order: de novo LoF > de novo Mis3 > transmitted LoF, and allowed
fora distribution of relative risks across genes for each class. The strength
of association was assimilated across classes to produce a gene-level Bayes
factor with a corresponding FDR g value. This framework increases the
power compared to the use of de novo LoF variants alone (Extended
Data Fig. 2).

TADA identified 33 autosomal genes with an FDR < 0.1 (Table 1)
and 107 with an FDR < 0.3 (Supplementary Tables 2 and 3 and Extended
Data Fig. 3). Ofthe 33 genes, 15 (45.5%) areknown ASD risk genes’; 11
havebeen reported previously with mutations in ASD patients but were
not classed as true risk genes owing to insufficient evidence (SUV420H 1
(refs 11, 15), ADNP", BCLI1A'", CACNA2D3 (refs 15,21), CTTNBP2
(ref. 15), GABRB3 (ref 21), CDC42BPB", APHIA"™, NR3C2 (ref. 15),
SETD5 (refs 14, 22) and TRIO") and 7 are completely novel (ASHIL,
MLL3 (also known as KMT2C), ETFB, NAA 5, MYO9B, MIB! and VILI).
ADNP mutations have recently been identified in 10 patients with ASD
and other shared clinical features™. Two of the newly discovered genes,

00 MONTH 2014 | YOL 000 | NATURE | 1

©2014 Macmillan Publishers Limited. All rights reserved

201



RESEARCH l:jiHA:

Table 1 | ASD risk genes

dnLoF count FDR=0.01 0.01<FDR

=0.05 005<FDR=0.1

=2 ADNP, ANK2, ARID1B, CHD8, CUL3,

DYRK1A, GRIN2B, KATNAL2, POGZ,

SCN2A, SUV420H1, SYNGAP1, TBR1
1 CTTNBP2,
0 MiB1

ASXL3,BCL11A, CACNA2D3, MLL3

ASHIL

GABRB3, PTEN, RELN APH1A, CD42BPB, ETFB, NAA15, MYO9B, MYTIL,
NR3C2, SETDS, TRIO

ViL1

TADA analysis of LoF and damaging missense variants found to be de novo in ASD subjects, inherited

ASHIL and MLL3, converge on chromatin remodelling. MYO9B plays
a key role in dendritic arborization**. MIBI encodes an E3 ubiquitin
ligase critical for neurogenesis® and is regulated by miR-137 (ref. 26),
a microRNA that regulates neuronal maturation and is implicated in
schizophrenia risk®.

When the WES data from genes with an FDR < 0.3 were evaluated
for the presence of deletion copy number variants (CNVs) (such CNVs
are functionally equivalent to LoF mutations), 34 CNV's meeting quality
and frequency constraints (Supplementary Information) were detected
in 5,781 samples (Extended Data Fig. 1). Of the 33 genes with an FDR
< 0.1, 3 contained deletion CNVs mapping to 3 ASD subjects and one
parent. Of the 74 genes meeting the criterion 0.1 = FDR < 0.3, about
one-third could be false positives. Deletion CNVs were found in 14 of
these genes and the data supported risk status for 10 of them (Extended
Data Table 1 and Extended Data Fig. 4). Two of these ten, NRXNI and
SHANKS3, were previously implicated in ASD>*'°. The risk from dele-
tion CNVs, as measured by the odds ratio, is comparable to that from
LoF SNVs in cases versus controls or transmission of LoF variants
from parents to offspring.

Estimated odds ratios of top genes
Inherent in our conception of the biology of ASD is the notion that
there is variation between genes in their impact on risk; for a given

by ASD subjects, or present in ASD subjects (versus control subjects). dnLoF, de novo LoF events.

class of variants (for example, LoF) some genes have a large impact,
others smaller, and still others have no effect at all. In addition, mis-
annotation of variants, among other confounds, can yield false variant
calls in subjects (Supplementary Information). These confounds can
often be overcome by examining the data in a manner orthogonal to
genediscovery. For example, females have greatly reduced rates of ASD
relative to males (a ‘female protective effect’). Consequently, and regard-
less of whether this is diagnostic bias or biological protection, females
haveahigherliability threshold, requiring a larger genetic burden before
being diagnosed®>**?°. A corollary is that if a variant has the same effect
on autism liability in males as it does in females, that variant will be
present at a higher frequency in female ASD cases compared to males.
Importantly, the magnitude of the difference is proportional to risk as
measured by the odds ratio; hence, the effect on risk for a class of variants
can be estimated from the difference in frequency between males and
females.

Genes with an FDR < 0.1 show profound female enrichment for
de novo events (P =0.005 for LoF, P = 0.004 for Mis3), consistent
with de novo events having large impacts on liability (odds ratio = 20;
Extended Data Fig. 5). However, genes with an FDR between 0.1 and
0.3 show substantially less enrichment for female events, consistent
with a modest impact for LoF variants (odds ratio range 2-4, whether
transmitted or de novo) and little to no effect from Mis3 variants. The
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results are consistent with inheritance patterns: LoF mutations in
FDR <C0.1 genes are rarely inherited from unaffected parents whereas
those in the 0.1 = FDR <{0.3 group are far more often inherited than
they are de novo mutations.

By analysing the distribution of relative risk over inferred ASD
genes™, the number of ASD risk genes can be estimated. The estimate
relies on the balance of genes with multiple de novo LoF mutations
versus those with only one: the larger the number of ASD genes, the
greater proportion that will show only one de nove LoF. This approach
yields an estimate of 1,150 ASD genes (Supplementary Information).
‘While there are many more genes to be discovered, many will have a
modest impact on risk compared to the genes in Table 1.

Enrichment analyses

Gene sets with an FDR < 0.3 are strongly enriched for genes under
evolutionary constraint™® (P = 3.0 X 10~ ; Fig. 1a and Supplementary
Table 4), consistent with the hypothesis that heterozygous LoF muta-
tions in these genes are ASD risk factors. Over 5% of ASD subjects carry
de novo LoF mutations in our FDR < 0.3 list. We also observed that
genes in the FDR < 0.3 list had a significant excess of de novo non-
synonymous events detected by the largest schizophrenia WES study
so far®® (P = 0.0085; Fig. 1a), providing further evidence for overlap-
ping risk loci between these disorders and independent confirmation
of the signal in the gene sets presented here.

We found significant enrichment for genes encoding messenger RNAs
targeted by two neuronal RNA-binding proteins: FMRP*' (also known
as FMR1), mutated or absent in fragile X syndrome (P = 1.20 X 10737,
34 targets™, of which 11 are corroborated by anindependent data set®?),
and RBFOX (RBFOX1/2/3) (P = 0.0024, 20 targets, of which 12 overlap
with FMRP), with RBFOX1 shown to be a splicing factor dysregulated
in ASD**** (Fig. 1a). These two pathways expand the complexity of
ASD neurobiology to post-transcriptional events, incduding splicing
and translation, both of which sculpt the neural proteome.

ARTICLE g ZLE]

‘We found nominal enrichment for human orthologues of mouse genes
encoding synaptic (P = 0.031) and post-synaptic density (PSD) proteins*
(P = 0.046; Fig. la, b and Supplementary Tables 4-6). Enrichment
analyses for InterPro, SMART or Pfam domains (FDR < 0.05 and a
minimum of five genes per category) reveal an overrepresentation of
DNA- or histone-related domains: eight genes encoding proteins with
InterPro zinc-finger FYVE PHD domains (142 such annotated genes
in the genome; FDR=7.6 X 1074, and five with Pfam Su(var)3-9,
enhancer-of-zeste, trithorax (SET) domains (39 annotated in the gen-
ome; FDR =82 107%).

Integrating complementary data

To implicate additional genes in risk for ASD, we used a model called
DAWN (detecting association with networks)*’. DAWN evokes a hid-
den Markov random field framework to identify clusters of genes that
show strong association signals and highly correlated co-expression in
akey tissue and developmental context. Previous research suggests human
mid-fetal prefrontal and motor-somatosensory neacortex is a critical
nexus for risk'é, thus we evaluated gene co-expression data from that
tissue together with TADA scores for genes with an FDR < 0.3, Because
this list is enriched for genes under evelutionary constraint, we general-
ized DAWN to incorporate constraint scores (Supplementary Informa-
tion). When TADA results, gene co-expression in mid-fetal neocortex
and constraint scores are jointly modelled, DAWN identifies 160 genes
that plausibly affect risk (Fig. 2), 91 of which are not in the 107 TADA
genes with an FDR < 0.3, Moreover, the model parameter describing
evolutionary constraint is an important predictor of clusters of putative
risk genes (P = 0.018).

A subnetwork obtained by seeding the 160 DAWN genes within a
high-confidence protein—protein interactome' confirmed that the putat-
ive genes are entiched for neuronal functions. We kept the largest con-
nected component, containing 95 seed DAWN genes, 50 of which were
inthe FDR <C 0.3 gene set. The DAWN gene products form four natural
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clusters on the basis of network connectivity (Fig. 2). We visualized the
enriched pathways and biological functions for each of these clusters
on ‘canvases™’ (Extended Data Fig. 6). Many of the previously known
ASD risk genes fall in cluster C3, including genes involved in synaptic
transmission and cell-cell communication. Cluster C4 is enriched for
genes related to transcriptional and chromatin regulation. Many TADA
and DAWN genes in this cluster interact tightly with other transcrip-
tion factors, histone-modifying enzymes and DNA-binding proteins.
Five TADA genesin the cluster C2 are bridged to the rest of the network
through MAPT, as inferred by DAWN. The enrichment results for
cluster C2 indicate that genes implicated in neurodegenerative disor-
ders could also have a role in neurodevelopmental disorders.

Emergent results

Amongst the critical synaptic components found to be mutated in our
study are voltage-gated ion channels involved in fundamental processes
including the propagation of action potentials (for example, the Na,1.2
channel), neuronal pacemaking and excitability-transcription coupling
(for example, the Ca, 1.3 channel) (Fig. 1b). We identified four LoF and
five Mis3 variants in SCN2A (Na,1.2), three Mis3 variants in CACNA1D
(Ca,1.3) and two LoF variants in CACNA2D3 (01,9-3 subunit). Remark-
ably, three de novo Mis3 variants in SCN2A affected residues mutated in
homologous genes in patients with other syndromes, including Brugada
syndrome (SCN5A) or epilepsy disorders (SCN1A) (Arg379His and Arg
937His). These arginines, as well as the threonine mutated in Thr1420Met,
cluster to the P-loops forming the ion selectivity filter, located in prox-
imity to the inner ring (DEKA motif) (Fig. 1c). Because homologous
channels mutated in these arginines do not conduct inward Na™ cur-
rents’®*, Arg379His and Arg937His mutations might have similar effect.

Two de novo CACNA 1D variants (Gly407Arg and Ala749Gly) emerged
at positions proximal to residues mutated in patients with primary aldos-
teronism and neurological deficits (Fig. 1d). The reported mutations
interfere with channel activation and inactivation*’. Amongst variants
found in cases, Ala59Val maps to the NSCaTE domain, also important
for Ca*>"-dependent inactivation, and Ser1977Leuand Arg2021His co-
cluster in the carboxy-terminal proline-rich domain, the site of interac-
tion with SHANK3, a key PSD scaffolding protein. Mutations in RIMS1
and RIMBP2, which can associate with Ca, 1.3, were found in our cohort
(but with an FDR > 0.3).

Chromatin remodelling involves histone-modifying enzymes (encoded
by histone-modifier genes, HMGs) and chromatin remodellers (read-
ers) that recognize specific histone post-translational modifications and
orchestrate their effects on chromatin. Our gene set is enriched in HMGs
(9 HMGs out of 152 annotated in HIstome*', Fisher’s exact test, P =
2.2 X 1077). Enrichment in the gene ontology term ‘histone-lysine N-
methytransferase activity’ (5 genes out of 41 so annotated; FDR =
2.2 X 10" ) highlights this as a prominent pathway.

Lysines on histones 3 and 4 can be mono-, di- or tri-methylated,
providing a versatile mechanism for either activation or repression of
transcription. Of 107 TADA genes, five are SET lysine methyltransferases,
four are jumonji lysine demethylases, and two are readers (Fig. 3a).
RBFOX1 co-isolates with histone H3 trimethyl Lys 4 (H3K4me3)*, and
our data set is enriched in targets shared by RBFOX1 and H3K4me3
(P = 0.0166; Fig. 1a and Supplementary Table 4). Some de novo missense
variants targeting these genes map to functional domains (Extended
Data Fig. 7).

For the H3K4me2 reader CHDS, we extended our analyses in search
of additional de novo variation in the cases of the case-control sample.
By sequencing complete parent—child trios for many CHDS variants,
five variants were found to be de novo, two of which affect essential
splice sites and cause LoF by exon skipping or activation of cryptic splice
sites in lymphoblastoid cells (Fig. 3b).

Given the role of HMGs in transcription, we reasoned that TADA
genes might be interconnected through transcription ‘routes’. We searched
for a connected network (seeded by 9 TADA HMGs) in a transcription
factor interaction network (ChEA)*. We found that 46 TADA genes
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Figure 3 | ASD genes in chromatin remodelling. a, TADA genes cluster to
chromatin-remodelling complexes. Amino-terminals of histones H3, H4

and part of H2A are shown. Lysine methyltransferases add methyl groups,
whereas lysine demethylases remove them. b, De novo Mis3 and LoF variants in
CHDS8. The box shows the outcome of reverse transcription PCR and Sanger
sequencing in lymphoblastoid cells for two newly identified de novo splice-site
variants. The first mutation affects an acceptor splice site (red arrow), causing
the activation of a cryptic splice site (red box), a four-nucleotide deletion,
frame shift and a premature stop. The second mutation affects a donor splice
site (red arrow), causing exon skipping, frame shift and a premature stop.

are directly interconnected in a 55-gene cluster (Extended Data Fig. 8)
(P =0.002; 1,000 random draws), for a total of 69 when including all
known HMG:s (Fig. 4) (P = 0.001; 1,000 random draws).

Examining the Human Gene Mutation Database we found that the
107 TADA genes included 21 candidate genes for intellectual disabil-
ity, 3 for epilepsy, 17 for schizophrenia, 9 for congenital heart disease
and 6 for metabolic disorders (Fig. 5).

Conclusions

Complementing earlier reports, ASD subjects show a clear excess of
de novo LoF mutations above expectation, with a concentration of such
events in a handful of genes. While this handful has a large effect on risk,
most ASD genes have a much smaller impact. This gradient emerges
most notably from the contrast of risk variation in male and female ASD
subjects. Unlike some earlier studies, but consistent with expectation,
the data also show clear evidence for effect of de novo missense SNVs
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Other HMGs

on risk; for risk generated by LoF variants transmitted from unaffected
parents; and for the value of case-control design in gene discovery. By
integrating data on de novo, inherited and case-control variation, the
yield of ASD gene discoveries was doubled over what would be obtained
from a count of de novo LoF variants alone. ASD genes almost uni-
formly show strong constraints against variation, a feature we exploit
to implicate other genes in risk.

Three critical pathways for typical development are damaged by
risk variation: chromatin remodelling, transcription and splicing, and
synaptic function. Chromatin remodelling controls events underlying
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Figure 5 | Involvement in disease of ASD genes. The Venn diagram shows
the overlap in disease involvement for the TADA genes.
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Figure 4 | Transcription regulation
network of TADA genes. Edges
indicate transcription regulators
(source nodes) and their gene targets
(target nodes) based on the ChEA
network; interactions among only
HMGs are ignored.

the formation of neural connections, including neurogenesis and neural
differentiation®, and relies on epigenetic marks as post-translational
muodifications of histones . Here we provide extensive evidence for HMGs
and readers in sporadic ASD, implicating specifically lysine methyla-
tionand extending the mutational landscape of the emergent ASD gene
CHDS to missense variants. Splicing is implicated by the enrichment of
RBFOX targets in the top ASD candidates. Risk variation also affects
multiple classes and components of synaptic networks, from receptors
and jon channels to scaffolding proteins. Because a wide set of synaptic
genes is disrupted in idiopathic ASD, it seems reasonable to suggest
that altered chromatin dynamics and transcription, induced by disruption
of relevant genes, leads to impaired synaptic function as well. De #ove
mutations in ASD''™"%, intellectual disability** and schizophrenia® clus-
ter to synaptic genes, and synaptic defects have been reported in models
ofthese disorders*. Integrity of synaptic function is essential for neural
physiology, and its perturbation could represent the intersection between
diverse neuropsychiatric disorders®.

Online Content Methods, along with any additional Extended Data display items
and Source Data, are available inthe online version of the paper; references unique
to these sections appear only in the online paper.
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