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ABSTRACT

Evolution of biological systems requires players of multiple layers, from atoms and molecules to
organisms and populations. Expression of a gene is operated by molecular machineries for transcrip-
tion, translation, regulation, and maintenance, which work in concert to produce certain macro-
scopic and observable phenotypes. And when these phenotypes are exposed to selective pressures,
more fit phenotypes (with their genes, molecular machineries, and interaction networks) survive in
the population. While the relationship of a gene to its cellular consequences is not fully elucidated,
it is known that molecular interactions are one of the key factors that determine the relationship.

In this dissertation, we introduce several theoretical tools to study protein interactions and evolu-
tion, and show their applications at various scales. The first tool is a coarse-grained scoring function
that predicts binding free energy of a protein complex. The scoring function is a simple linear com-
bination of exposed interface areas of different amino acids. In spite of the simplicity, it shows a
reasonable predictive power, and predicts correct biochemistry qualitatively. The second is an ana-
lytical theory of a spin model on a simple graph, developed by using conventional statistical mechan-
ics. We separated structural and energetic contributions to the free energy of the system, and also
obtained a closed form of linear graph contributions. The closed form is applied to predict sequence
space free energy of lattice proteins. Lastly, we introduce statistical methods to analyze cellular pro-
teomes and transcriptomes. They can extract global responses of proteomes and transcriptomes to a
perturbation, and also responses of specific gene groups. We applied the methods to E. coli and yeast
systems to address questions on the genotype-phenotype relationship and evolution.
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Nothing in biology makes sense except in the light of

evolution.

Theodosius Dobzhansky (1973)

Introduction

EVOLUTION IS A FUNDAMENTAL PROCESS THAT EXPLAINS A WIDE RANGE OF BIOLOGICAL
STRUCTURES AND SYSTEMS, from structures of biomolecules to interactions of populations. To
systematically describe evolution, scientists have been using the concept of genotype and phenotype
for more than 100 years™. A genotype is a part of genetic information in an organism and it deter-
mines a phenotype, which is a specific and observable characteristic of the organism. Now, we know
that genetic information is stored as nucleic acid sequences, whose transcription, maintenance, and
regulation are all done by molecular machineries. On the other hand, phenotypic traits are usually
more macroscopic and diverse; for example, according to the Saccharomyces Genome Database*®,
reported phenotypes of yeast contain cellular morphology, cell cycles, developmental behaviors, in-
teractions with host/environment, and growth/death. Therefore, due to its multi-scale nature from
the atomistic to the cellular or higher level, there is no unique way to study the genotype-phenotype
relationship, and holistic understanding on various methods and perspectives is required.

One important stepping stone between genetic information and phenotypic traits is cellular

120

networks®, such as protein-protein interaction networks', metabolic networks™°, and gene reg-

ulatory networks 28

. Genetic information is translated into protein molecules, one of the major
building blocks of an organism, and proteins interact with other molecules under the laws of phys-
ical chemistry. Protein interactions, with other types of interactions, constitute cellular networks,

which determine phenotypic traits of a cell (Figure 1.1). This dissertation presents several theoretical
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Figure 1.1: Simplified hierarchy of molecular and cellular biology.

approaches to study the interactions and networks, as well as their evolutionary consequences.

The first half of this dissertation introduces two theoretical methods to address biophysical ques-
tions about protein-protein interactions and protein evolution: scoring function development for
predicting protein binding free energy (chapter 2) and analytical treatment of a spin model on a sim-
ple graph using conventional statistical mechanics (chapter 3). The latter theory is applied to predict
evolution of protein structures.

In chapter 2, we developed a minimalistic model based on interface areas of protein complexes
for predicting protein binding energy. The factor is described by a simple linear combination of
buried surface areas according to amino-acid types. Even without structural optimization, our min-
imalistic model demonstrates a predictive power comparable to more complex methods, making
the proposed approach the basis for high throughput applications. Application of the model to a
proteomic database shows that receptor-substrate complexes involved in signaling generally have
lower affinities than enzyme-inhibitor and antibody-antigen complexes, and they differ by chemi-
cal compositions on interfaces. Also, we found that protein complexes with components that come
from the same genes generally have lower affinities than complexes formed by proteins from dif-
ferent genes, but in this case the difference originates from different interface areas. This chapter is
modified from Choi e 4l.?” with the publisher’s permission.

Chapter 3 shows that there is a direct relationship between a network system’s topology and its
thermodynamic stability. We separated topological and enthalpic contributions to free energy of a
spin model on a simple graph and found that considering the topology is sufficient to qualitatively
predict its stability at high temperature, even when the energetics are not fully known. This result
was applied to the metal lattice system, and we found that it partially explains why point defects are
more stable than high-dimensional defects. Given the energetics, we can even quantitatively com-
pare free energies of systems on different graph structures via a closed form of linear graph contribu-

tions. The closed form is applied to predict sequence space free energy of lattice proteins.



In the second half of this dissertation, we focus on systems-level analysis of proteomes and tran-
scriptomes experimentally extracted from E. coli and yeast cells, as these are the resulting products of
molecular interactions. Chapter 4 introduces statistical tools to analyze cellular proteome and tran-
scriptome, which are here defined as relative abundance data of proteins and mRNAs, respectively.
Although chapter 4 itself contains some examples on how to use the tools, chapter 5 and chapter 6
provide more applications of the developed tools to answer some interesting biological questions.

In chapter 4, we establish a quantitative relationship between the global effect of mutations
on the E. coli proteome and bacterial fitness. We created E. coli strains with specific destabilizing
mutations in the chromosomal fo/A4 gene encoding dihydrofolate reductase (DHFR) and quanti-
fied the ensuing changes in the abundances of 2,000+ E. coli proteins in mutant strains by a mass
spectrometry-based protein identification method, which has been successfully used to compare
samples in different conditions**°. mRNA abundances in the same E. coli strains were also quan-
tified. The proteomic effects of mutations in DHFR are quantitatively linked to phenotype: the
standard deviations of the distributions of logarithms of relative-to-wildtype protein abundances
anti-correlate with bacterial growth rates. Proteomes hierarchically cluster first by media conditions,
and within each condition, by the severity of the perturbation to DHFR function. These results
highlight the importance of a systems-level layer in the genotype-phenotype relationship. This chap-
ter is modified from Bershtein ez 4l." under the CC BY copyright license.

The first application of the methods introduced in chapter 4 is horizontal gene transfer, which
plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional in-
tegration of the foreign genes are poorly understood. In chapter s, we perform inter-species replace-
ment of the chromosomal fol4 gene with orthologs from 35 other mesophilic bacteria. The orthol-
ogous inter-species replacements caused a marked drop (in the range 10-90 %) in bacterial growth
rate. Serial propagation of the orthologous strains for approximately 6oo generations dramatically
improved growth rates. By using the statistical tools developed in chapter 4, we could compare pro-
teomes from different strains, and found the following: by apparently distinguishing between self
and non-self proteins, protein homeostasis imposes an immediate and global barrier to the func-
tional integration of foreign genes by decreasing the intracellular abundance of their products. Once
this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the
transferred proteins to the constraints imposed by the intracellular environment of the host organ-
ism. This chapter is modified from Bershtein ez 4l.” under the CC BY copyright license.

Chapter 6 presents the second application, which compares proteomes of two different yeast
strains when they respond to inhibition of an essential heat shock protein Hspgo. The correlations

between different proteomes show that the two strains have significantly different proteome pat-



terns, regardless of the Hspgo inhibition. We employed two different grouping methods to dissect
the proteomes. First, genes are grouped by their Gene Ontology (GO) terms, and this grouping pro-
vides information on gene groups that are significantly more expressed in one of the two strains.
From this information, we found that large “modules” (such as mitochondria- and vacuole-related
genes) drives the proteome-level difference, suggesting that divergent evolution between the two
strains adjusted modules on cellular networks, not individual genes or proteins. Also, we showed
that this proteome-level difference is reduced when the two strains are treated by the inhibitor drug.
The second way is grouping by phenotypes, which suggests potential experiments that discriminate
the two strains upon the inhibition by their phenotypes.

The theoretical approaches introduced in this dissertation deepen our understandings on interac-
tion networks in a cell. Protein binding affinity, which determines the structure of a protein-protein
interaction network, can be estimated with a relatively low cost by the scoring function shown in
chapter 2, which also provides biophysical insight that the interface area generated by association is
crucial in determining binding affinity. The theory presented in chapter 3 has a direct application to
the protein evolution problem, and it can be applied to interaction networks in a cell, considering
the model’s generality. As shown in chapters 4, 5, and 6, analysis of proteome-level differences of
different cells provides a hint for an underlying network structure arising from direct and indirect
interactions of cellular proteins, and it was applied to directly compare the proteomic fingerprints

before and after evolution, which allows a mechanistic study on adaptation.



Minimalistic Predictor of Protein Binding

Free Energy

2.1 BACKGROUND

PROTEIN-PROTEIN INTERACTIONS (PPIs), such as those involved in signaling pathways and enzyme-
inhibitor interactions, play a fundamental role in biological function and evolution. Thus sig-
nificant biological insight can be gained by estimating the strength of PPIs in the whole interac-
tome3*»7"8, Various methods have been developed to predict binding affinities accurately and quickly,
either based on physical force fields”*7** or molecular dynamics *****. Although several recent

methods were reported to show high correlation to experiment™+#295°

, it is still challenging to es-
timate the precise binding energy of a specific protein complex from first principles, especially at a
relatively low computational cost.

To accurately predict binding energy of two proteins, we need to identify and quantify physical

factors that govern binding energy. It has been known 68,65 that major contributors to binding en-

100,24 129,56

ergy are the interface area*>°%, hot spots , conformational changes , allosteric interactions
of small molecules**7*, and even non-interacting surfaces 67, Among them, the interface area serves
as a primary factor and also it provides a playground for other factors. Usually the interface area is

associated with the magnitude of hydrophobic interactions *, but its detailed composition is also



important in determining binding affinity °°.

In this chapter, we will develop a scoring function that predicts protein binding free energy solely
based on the interface area, using the mean-field approach. Here, we assume that the structure of a
protein complex is given (we may or may not know about the structures of its components). Also,
we will check if this simple model has a reasonable predictive power, and if it can reveal correct bio-

chemistry.

2.2 INTERFACE AREA AND BINDING FREE ENERGY

To develop a model solely based on the interface area, we use changes in accessible surface areas
(AASAs) during association for the ingredients of the scoring function. The definition of AASA
is simply the difference of accessible surface areas between a protein complex and its unbound com-

ponents:

AASA =) ASAcomponenti — ASAcomplex- (20)

However, the practical calculation of AASA depends on the situation, especially on availability of
structures. A complex and its components can have their own different conformations. If all struc-
tures of those conformations are known, we use the (arithmetic or Boltzmann-weighted) average

values for the terms in equation 2.1:

AASA = Z<A8Acomponenti> - <ASAcompleX>- (2'-2)

This is an ideal scenario, which rarely happens. Usually, we have a single conformation (or a few)
for each of a complex and its constituent components. Then the ASA can be directly calculated
from each structure, using equation 2.1. A worse situation is that we do not have structural infor-
mation of component conformations. In this case, we extract each component structure from the
structure of a whole complex, and apply equation 2.1.

It has been reported that AASA provides a major contribution to binding free energy (Figure
2.1a), especially when binding is not accompanied by major conformational changes 6. Also, they
found that this correlation disappears if they include the protein complexes with large conforma-
tional changes during association. Note that this result came from the data set that contains the
structures of both complex and components. Pretending the “worse” case that we do not have the
component structures, we checked if this AASA, calculated from the structure of a complex only,

can predict the binding free energy. Interestingly, this “worse” AASA reports a stronger correla-
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Figure 2.1: Correlations between interface areas (AASAs) and experimental dissociation free energies. Red lines indi-
cate the regression lines. (a) Component ASAs are calculated from experimentally determined component structures.
Shown data are for 69 protein complexes that do not accompany with large conformational changes upon association,
and if other complexes are included, the trend totally disappears. Data from Kastritis et al °°. (b) Component ASAs are
calculated from the structures extracted from complex structures with no structure relaxation. Shown data are for all
139 protein complexes (some of which suffer large conformational changes) used in this work.

tion when we include the complexes with large conformational changes (Figure 2.1b), implying that
the area generated by association is more relevant to binding affinity than the original ASAs of the

components.

2.3 MODEL CONSTRUCTION

Inspired by the previous findings, we decided to construct a scoring function based on AASA val-
ues. The data set was constructed from 139 complexes extracted from the structure-afhinity bench-
mark, which provides the structures and binding affinities of protein complexes, as previously de-
scribed °°. Even though the benchmark provides structural information of complex components, we
only used the structures of complexes, to reach broader applicability of the model. In order to com-
pute atomic ASAs, We employed the Shrake-Rupley algorithm™ implemented in ASA.PY " with
the probe radius of 1.4 angstroms. Here we neglected hydrogen atoms.

Based on the fact that the contribution to solvation depends on the amino acid types of residues™®,
we grouped atomic AASAs by their amino acid types. Since AASAs of the backbone atoms are
known to be independently crucial in stabilizing a protein structure', we separated the backbone
atoms. Consequently, we have 20 side-chain plus one backbone AASA terms for each protein com-

plex.

*http:/ /boscoh.com/protein/asapy.html
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Subset1 | 1ACB, 1AK4, 1AK], 1AY7, 1BRS, iBUH, iBVK, 1CBW, 1E4K, 1EGE,
IEAW, 1tEMV, 1EZU, 1FC2, 1HES, 114D, 1]2], iIKXP, iNBs, INSN,
10PH, 1PVH, 1QA9, 1RLB, 1YVB, 1ZHI, 2ABZ, 2B4], 2BTF, 2FJU,
2l25, 20UL, 20ZA, 2PCC, 2VIR

Subset2 | IAHW, 1AVX, 1AVZ, 1B6C, 1B]1, 1DFJ, 1EFN, 1F6M, 1FQYJ, 1FSK,
IGRN, JIW, [JTG, iJWH, 1KsD, 1KAC, IMAH, iIMLC, iIMQ8,
1P2C, 1RoR, 1T6B, 1US7, iVEB, iWE], 1XD3, 1ZLI, 2AJF, 2B42,
2HQS, 219B, 200B, 2SIC, 2VDB, 3BP8

Subset 3 | 1ATN, 1FFW, 1FLE, 1GLA, 1GPW, 1GXD, tHIA, 1l2M, 1IBR, 1IJK,
1JPS, 1IKTZ, 1LFD, iINCA, iNVU, iNWo, 1PPE, 181Q, tUUG, 1XQS,
1XU1, 1ZoK, 2A9K, 2CoL, 2HLE, 2HRK, 2JoT, 2MTA, 2NYZ,
200R, 2PCB, 2UUY, 3BZD, 3CPH, 3SGB

Subset 4 | 1A2K, 1BVN, 1DQ)], 1E6], 1E96, 1IEER, 1IEWY, 1F34, 1GCQ, 1GLi,
1H1V, tHoD, 1tHCF, 1By, 1IQD, 1JMO, 1KKL, 1KLU, 1KXQ), 1Mo,
10Co, IPXV, 1R6Q), 1IRV6, 1WQ1, 2AQ3, 2JEL, 203B, 2PTC, 28NI,
2 TGP, 2VIS, 2WPT, 4CPA

Table 2.1: Four subsets randomly constructed from the structure-affinity benchmark ®®. The interfaces are same as

defined in Kastritis et al ®.

Following the four-fold cross-validation method*°, we divided the whole data set into four sub-
sets of equal size (Table 2.1). Then we ran four rounds of training and testing, in each of which
the union of three sets serves as a training set and the remaining subset is used as a test set. In each
round, we ran a linear regression using each possible combination of 21 terms (20 side-chain AASA
terms and 1 backbone AASA term), that s, (2*' — 1) combinations were investigated for each round.
For each combination, we checked if the combination is “relevant,” based on the correlation coef-
ficients of the regression. A combination is “relevant” if removing any of its constituent elements
leads to a statistically significant decrease in predictive power compared to random-number terms.
The details of this procedure are explained below.

Let L, a certain combination of terms. For example, we may choose
L, = {AASAL, AASAcys, AASATyr}. (23)

For the given combination Z,, we first run the linear regression on the training set, where we assume

alinear combination of the elements in L, as a regression model. Employing the previous example



in equation 2.3, the regression model for L, is
AGpindg = C+ wala X AASApL + weys X AASAcys + wryr X AASATy:. (2.4)

The training set is used to determine the weights {w; } and constant C. The regression analysis also
provides Pearson’s correlation coefficient R*, which will be denoted by (R?) . Using the deter-
mined weights, we also compute the R* value of the test set, which will be denoted by (R?), res: here.
Now, every element in L, is tested to check if the term is statistically significant. To that end, we
remove element i from L, to construct a new combination L;, and do the same regression procedure

for L; to get (R*);¢r and (R?); est. Now element 7 is statistically significant in L, only if:
L. (Rz)i,tr < (Rz)o,tr;

2. (Rz)i,test < (R2>07t65t’ and

3. distance = /[(R)ier — (R?)o,ee]” + [(R?)irest — (R?)ostest)” > ¢(Lo).

The first two conditions require L, to be more predictive than Z; (increase in the predictive
power) on both (R?),; and (R?)es axes. However, it is possible that this increase in predictive power
is just by chance. Hence we added the third condition, which requires the increase to be significant
compared to random numbers, which determines the criterion ¢(ZL,).

To determine ¢(L, ), we drew random numbers from the uniform distribution on the interval (o,
1). We generated a random number set for each term (hence 21 random number sets in total), and
determined R® values following the description above. We repeated this procedure 5,000 times and
got the distribution of “distances” (Figure 2.2). We collected the data satisfying the conditions 1 and
2, and determined the standard deviation ¢ of its distribution. (Since a distance is nonnegative, we
symmetrized the distribution to define ¢.) Finally, we set ¢(L,) = 2.5¢. Note that ¢(L,) depends

only on the number of elements in L, (Table 2.2).

2.4 FINAL MODEL AND I1TS PREDICTIVE POWER

From each round of different training and test sets, we collected four groups of “relevant” combi-
nations, and found a common combination, which consists of only three AASA terms, AASAryy,
AASAger, and AASAcy, (Table 2.3):

AGping = C+ wryr X AASATyr + wser X AASAger + weys X AASAcys, (2.5)
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Figure 2.2: Distance distributions from random number sets. N indicates the number of terms to construct a regres-
sion model. As N increases, the standard deviation of the distribution decreases.

N T N T N T N T

I 0.0255| 5 o0.007 | 9 0.0067 || I3 0.0042
2 0.0223 || 6 0.0100 | I0 0.0059 || I4 0.0040
3 0.0182| 7 ©0.0087 || I 0.0052 || I ©0.00I8
4 0.0147 || 8 0.0075 || 12 0.0048 | 16 0.0016

Table 2.2: Standard deviations (SDs) of R? distributions generated from random number sets. N'is the number of
terms in a null-model combination, and c-indicates the standard deviation. These SDs numerically define ¢(L, ), a
criterion used to check if a certain increase in predictive power is statistically significant. For N > 16, there is no data
point satisfying the conditions 1 and 2 simultaneously.
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First round Second round Third round Fourth round
Comb. Dist. | Comb. Dist. | Comb. Dist. | Comb. Dist.
C 0.0046 S 0.0300 R 0.000I R 0.0006
S 0.0136 Y 0.0533 C 0.0034 H 0.0031
Y 0.0248 CY 0.1058 S 0.0133 O 0.0064
CS 0.0337 SY 0.1498 Y 0.0197 CS 0.0295
CYy 0.0516 | CSY o0.2072 CS 0.0317 | NSY o0.0674
SY 0.0519 CY 0.0587 | CSY 0.0884
NSY 0.0729 CSY ou016 | CHSY 0.0978
CSY 0.0878 CHSY o.nr82
CNSY 0.1103
CKSY 0.1141
CNSWY  o.314
CGNSY 0.1341
CGNSWY  o0.1506

Table 2.3: Relevant combinations of AASA terms and their corresponding distances for each round, in which one
subset plays a role of a test set, while the union of the remaining three subsets is a training set. For example, in the first
round, the union of subsets 2, 3, and 4 is a training set, while subset 1 is a test set. Each string indicates a combination
of AASA terms of the symbolized amino acids, where the 1-letter amino acid notation is used and letter O refers to the
backbone atoms (e.g. string “CKSO” means { AASAc,s, AASA s, AASAs.,, AASAp.ckbone })- The common combination
found in all rounds is underlined.

where C = —8.5 kcal/mol, wryy = —0.0086 kcal/ mol/A?, weey = —0.014 kcal/mol/A?, and weys =
—0.032 kcal/mol/A? (these numbers have been determined by using the entire data set). We also
checked if inclusion of the u-potential, a contact-based potential that is capable of discriminating
real protein complexes from decoys (Appendix A), improves the accuracy or not, but it turned out
that it does not.

The final model shows Pearson’s correlation coefhicient R of 0.48 between predicted and ob-
served binding affinities for the whole set of 139 protein complexes, which is unexpectedly high
when compared to the known methods, especially considering its simple nature (Figure 2.3 and
Table 2.4). The root mean squared error (RMSE) is 2.6 kcal/mol, comparable to the RMSE of 2.25
kcal/mol from the ZAPP calculation™. Equivalent error estimates for GA-PLS and BioQSAR were

reported to be 0.8-1.5 kcal/mol 95°

. It should be noted that even though the whole set contains
protein complexes with large conformational changes during docking, the current model still shows
a desirable performance without considering structural changes during association.

In the following two sections, we show the applicability of the simple model to discern different

II
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Figure 2.3: Correlation between predicted and experimental dissociation free energies. The red line indicate the
regression line.

Method R Feature

MARS?” 0.52 Machine learning

ZAPP™ 0.63 Regression with 9 terms

GA-PLS™ 0.83 Consideration of allostery

BIOQSAR™®® 0.82-0.88 | Machine learning

SPA-PP™#+ 0.39 Statistical potential

ROSETTADOCK™ # 0.42 Regression with 11 terms

DFIRE?” 0.35 Statistical potential

PMF?7 0.37 Modified statistical potential

Interface area 0.24 Regression with AASAq, only (Figure 2.1b)

This work 0.48
Table 2.4: Comparison of Pearson’s correlation coefficient R values among different methods, where the same bench-
mark ¢ is used.
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Figure 2.4: A distribution of percent sequence identities computed by pairwise comparison of 2,531 non-redundant

protein heterodimers extracted from PDBePISA”2. The inset amplifies the region between 20 % and 100 %, showing
the redundancy peak around 100 %.

types of protein complexes, according to their biochemical functions and genetic origins. We col-
lected protein complex structures from the PDBePISA database” to form non-redundant groups of
different protein types. To construct a non-redundant group of protein complexes, we considered
two protein complexes are equivalent if the percent sequence identity between the two is higher
than 9o %. The distribution of percent identities of 2,531 protein heterodimers extracted from
PDBePISA gives a minimum at 90 %, which can be considered as the point where the redundancy
peak starts (Figure 2.4). Note that this is also consistent with one of the criteria used in a previous

study”?.

2.5 BroroGicaL FUNCTIONS AND BINDING FREE ENERGY DISTRIBUTIONS

First, we checked if the current model can discriminate obligatory and transient complexes, and if
it can capture more subtle differences. We extracted representative non-redundant groups of var-
ious obligatory and transient protein complexes from the PDBePISA database”: antibody light-
heavy chain recognition (LH, 367 complexes), antibody-antigen recognition (AA, 157 complexes),
enzyme-inhibitor recognition (EL 123 complexes), and receptor-substrate recognition (RS, 210 com-
plexes). LH recognition is considered obligatory, while other three interactions are all known as

transient ®>'°»%%7_It has been known that obligatory interactions are generally tighter than the tran-

3



Obligatory/transient HL-AA HL-EI HL-RS
Current model AGreq || 2.0 X 107 | 9.2 X 107 | 9.9 X 107
ZAPP AGyreq 4.6 X1077% | 50X 10°% | .9 X 10%
Contact number 71X10 7 | 32X10% | 2.4 X 10777
Among transient AA-EI AA-RS EI-RS
Current model A Giyeq 0.99 23X10°°% | 7.4 X107°
ZAPP AGpreq 4.0X107° | 72 X107 | 2.2 X101
Contact number 0.013 3.0 X 10} 0.061

Table 2.5: p-values from the two-sample Kolmogorov-Smirnov test on each pair of free energy or contact number
distributions. The abbreviations follow those in Figure 2.5.

sient interactions **®

, but we want to quantitatively analyze the differences in binding energies.

Our model is used to calculate the binding energy distributions for all four groups (Figure 2.5a).
Note that the distributions generally conform to the previously reported distribution of protein
binding energies'*’. It is shown that obligatory interactions are stronger than transient ones as ex-
pected. However, among the three transient complexes, the RS complexes turned out to have sig-
nificantly weaker binding than AA and EI complexes. This quantitative difference can be explained
by different natures of AA/EI and RS interactions. The functions of AA/EI binding are mostly to
bind to their partners as tightly as possible. In contrast, receptor-substrate binding should show a
weaker interaction because binding partners should easily associate or dissociate to regulate activ-
ity ®". Similar results were attained from more accurate ZAPP calculation (Figure 2.5b). The corre-
sponding Kolmogorov-Smirnov p-values are given in Table 2.5.

To check whether the significant difference between the types of interactions is merely due to
the differences in sizes of interfaces, we scored the binding affinity again using a simpler scoring
function based solely on the contact count that reports the interface size, which is a different met-
ric from AASA. A pair of atoms are considered to be in contact when the distance between them
is smaller than 10 angstroms (comparable to the Debye length for a physiological concentration).
The result (Figure 2.5¢c) shows two features: (1) HL complexes (obligatory) have significantly more
contacts than the other three types of complexes (transient). (2) The difference among the other
three is relatively insignificant, even though the Kolmogorov-Smirnov test shows that EI complexes
have a marginally different distribution of the contact counts from AA and RS complexes. The
first feature is shown in the predicted binding energy distributions, which means that the number
of interface contacts essentially differentiates HL complexes from the other three types of protein

complexes. To make extremely strong binders, the interface areas have to be increased, because mere
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Figure 2.5: Distributions of predicted dissociation free energies and contact numbers in various biochemical contexts,
represented by different colors. (a) Distributions of free energies predicted by the current model (equation 2.5). Bin
size = 1 kcal/mol. (b) Distributions of free energies predicted by ZAPP 3. Bin size = 1 kcal/mol. (c) Distributions of
contact counts, which quantitatively measure the interface sizes. Bin size = 1,000. Note that this simple model can
reproduce most characteristics captured by ZAPP, a more complicated model. The obligatory (HL) interactions gen-
erally have more contacts than the transient interactions, implying that the free energy difference between the two
groups is due to the interface size. However, the contact count cannot explain the difference between transient inter-
actions, which suggests that this difference originates from more subtle and qualitative differences (e.g. amino acid
composition) of the interfaces. The Kolmogorov-Smirnov p-values are summarized in Table 2.5.
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modification of chemical interactions cannot achieve this objective. However, the second feature,
that AA, EI, and RS complexes are almost indistinguishable in contact number distributions, is in-
consistent with previous binding energy calculations. This fact suggests that EI and AA complexes
are predicted to bind more tightly than RS complexes, yet their contact interfaces are almost the
same size. Also, it implies that AA and EI complexes have evolved to find stronger binding amino

acids on their interfaces, leaving the total interface areas unchanged.

2.6 ROLE oF GENETIC ORIGIN

Another interesting comparison is between complexes of protein domains coming from the same
gene and those from different genes. (To our knowledge, there has been no previous study to com-
pare their binding energy distributions quantitatively.) We focused on the dimers from Homo sapi-
ens, since they comprise the largest set in the PDB. From the H. sapiens data set from PDBePISA7,
we collected two different non-redundant groups: intra-genic (1,213 complexes) and inter-genic (270
complexes). An interaction between two components of a dimer is considered int7a-genic when they
are from the same open reading frame, which is tagged by a unique UniProt ID*. Otherwise, the
interaction is inter-genic.

The predicted binding energy distributions of these groups reveal that inter-genic interactions
are significantly stronger than intra-genic ones (Figure 2.6a). The qualitative trend was also repro-
duced by ZAPP calculation (Figure 2.6b). This is presumably due to an entropic cost of finding
their binding partners, which must be compensated by stronger binding. In other words, intra-genic
complexes have their components in spatial proximity when synthesized, while inter-genic com-
plexes need to search the subunits to be assembled. This requirement for a stronger binding affinity
between inter-genic domains could be relaxed by active transport, but to the authors’ knowledge,
there has been no systematic study on this topic.

We also checked the interface sizes by counting interface contacts (as described in the previous
section), and found that the docking difference between intra-genic and inter-genic complexes ap-
pears to be mainly driven by quantitative differences in interface size. Intra-genic complexes have, on
average, a smaller number of contacts than inter-genic complexes (Figure 2.6¢), implying that evo-
lution has found that it is more efficient to synthesize small protein complexes from a single gene,
while making large complexes by assembling two independent units, potentially from different ori-

gins.
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Figure 2.6: Distributions of predicted dissociation free energies and contact numbers of protein complexes with dif-
ferent types of genetic origins, represented by different colors. See text for the definitions of intra-genic and inter-genic
complexes. (a) Distributions of free energies predicted by the current model (equation 2.5). Bin size = 1 kcal/mol. (b)
Distributions of free energies predicted by ZAPP 135 Bin size = 1 kcal/mol. (c) Distributions of contact counts, which
quantitatively measure the interface sizes. Bin size = 1,000. Note that this simple model can reproduce most charac-
teristics captured by ZAPP, a more complicated model. The inter-genic complexes generally have more contacts than
the intra-genic interactions, implying that the free energy difference between the two groups is due to the interface
size. The two-sample Kolmogorov-Smirnov test gives the following p-values, confirming the differences: (a) 9.2 X 1012,
(b) 2.6x 10, and (c) 20x 102,
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2.7 CONCLUSION

In this chapter, we have shown that the interface area affer association is capable of predicting bind-
ing energy of protein complexes, even when a large conformational change occurs during associa-
tion. Separation of interface areas according to amino acid types can increase the predictive power,
which is comparable to that of traditional methods. Also the simple model has shown its ability to
reveal important aspects of chemistry and biology of PPIs on the whole proteome scale. We expect
the simple predictor of PPI binding affinity presented in this study to be used in future proteomics
studies of physics and evolution of protein complexes, such as more realistic simulations of mass

action dynamics in PPI networks of a variety of organisms®.
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Relationship between Graph Topology and
System Stability

3.1 BACKGROUND

OVER THE LAST THIRTY YEARS, graph theory has been applied to study various networks, includ-
ing protein interaction networks, neural networks, and the World Wide Web #9%*°4°_Especially the
interplay between network structure and dynamics has attracted huge attention #, while the equi-
librium characteristics of networks, which may deepen our understanding of network phenomena,
have not yet been studied thoroughly #°.

The free energy of a system on a given graph architecture is one important equilibrium charac-
teristic. However, to our knowledge, an analytical relationship between a graph’s topology and the
stability of a system on the graph has not previously been reported, despite the utility such a rela-
tionship would provide in discriminating between topologies based on their stability or the insight
into graph dynamics it could provide. For example, there will be a general thermodynamic tendency
to prefer stable over unstable topologies even when a system is out of equilibrium.

In this chapter, we will consider a spin model on a graph, which has a wide range of applications
from metal alloy behaviors to social network phenomena. Based on the model, we will study the

general relationship between a system’s graph topology and its free energy, without considering de-
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tailed energetics, and determine the conditions where the relationship holds. Also, we will develop
an approximate theory to calculate the free energy when we are given full information on interaction

energies.

3.2 HAMILTONIAN AND FREE ENERGY

Consider a simple graph of N nodes (with no self-loops and no multiple links, and which may be
either connected or disconnected). The graph connectivity is described by the adjacency matrix 4,
whose element 4;; = 1when there is a link between nodes 7and /, and 4;; = o otherwise. Each
node is in one of A1 possible states. The Hamiltonian, H, is defined as the summation of energetic
contributions of all links, each of whose energy is determined by the states of its two terminal nodes.
Note that orphan nodes do not contribute energetically by definition.

The Hamiltonian can be written as
NN
Ho= - Z AiEg(i)s(j)» (3.1)
1]

where A4 is the adjacency matrix of the given graph, E is the energy matrix, and 5(7) is the state of
node 7. The partition function Z(8) = }_y,, exp(—@H) over all possible state configurations can

be expanded as follows:

Z(@):ZI—gZ%+§ZH2—-~. (3.2)

{s} s} {9

The first summation is simply the number of all possible state configurations: A#N. This is a
purely entropic term. Moving to the O(8) term, each link (z.¢., nonzero 4j;) contributes an ener-
getic contribution of Zs(i)w) Ej(;)s(j)» While the remaining nodes (other than i and j) contribute

entropically as MM~ In other words,

ZH = i/WN*zZAiszkl (33)

{5} ij k.l

1
= ;MN Z Aj;E,, (3.4)
l?]

where £, = ) k1 Lkl /M is the average energy. Noting that ) | j;/2 is the total number of links,

equation 3.4 describes the mean-field energetic contribution.
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TA L

Figure 3.1: Three different types of two-link multigraphs.

Next, let us explicitly calculate the O(8*) term in equation 3.2

¢ ._ &
J2 M= 4 D A ) Eis iy, (3:5)
{s} ijkl {s}

and there are three different types of energetic contribution, depending on the relationship between
the two node pairs (7, 7) and (k, /). The contribution of each type is represented diagrammatically in
Figure 3.1. Here, each link represents a single energy term E(;)(;). Note that the graphs are no more
simple in these diagrams; they are multigraphs, which allow multiple links (see Figure 3.1¢).

To be specific, Figure 3.1 describes three different cases: (a) the pairs are totally disconnected (no

nodes are same). The contribution is N4> EypnEyq. (b) They share only one of their

m,n,p,q
nodes(i = kori = lorj = korj = [ other nodes are all different). The contribution is
M3 Zm%p EypnEnp. (¢) The two pairs are identical (either i = kandj = L ori = landj = k).

The contribution to the partition functionis AN 2>~ E% . To generalize this energetic contri-

bution, let us define E(g) for graph g as follows:

n(g)
E(g) _ M-—n(nodes) Z H Elka (3.6)
nodes k=1
where J; indicates a link of index &, 7(g) is the number of links in graph g, and z(nodes) is the num-
ber of nodes in graph g. This is the energetic contribution of each multigraph normalized by the
entropic contribution M.
The number of possible (7, , k, /) combinations for each multigraph type should be calculated.

Let us define another variable, [g]:

n(g)
Lg] = Z HAlk> (3'7)

nodes k=1
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and the three different two-link multigraphs in Figure 3.1 give

[II = ZAijAkl (3.8)

ik,

[ N = XA (39)

- i,k

gl - >4 (310)

However, they do not count the exact numbers, because equation 3.8 contains contributions from
equations 3.9 and 3.10, and equation 3.9 includes those from equation 3.10. The exact number of

contributing combinations for graph type g, which will be denoted by W(g), is given as follows:

W@) N [@] (3.11)
“(P) = AR () »
w39 - BY-7(A) (@) »

The factors of 2 and 4 respectively in equations 3.1 and 3.12 come from the symmetry counting. For

two pairs of indices (%, /) and (k, /), we have four possibilities to get graph 3.1b: i = k,j = k,i = |,
and j = /, and two possibilities to get graph 3.1c: (i = k) A (j = [),and (j = k) A (i = [).
Furthermore, the energy contribution can be decomposed by defining energy deviation ¢; =

Ejp; — E,. For the linear term,

Z Ey = MPE,, (3.14)
k,l

as we have seen above. Considering that ) _, ;¢ = o, arithmetics leads to
k)

D Fu = ME+) G13)
bl kol
> EwEw = ME+D am, (3.16)
k,l,m k,l,m
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and

Z EpkEy, = M4EZ- (3'17)

k,,m,n

Therefore, the explicit form of the O(8*) term (equation 3.5) is

& w(99) e am o (R) e (40 4

W<§)/MN2 M£§+kZJeil ,
e (§1) e (B) o (B)+

(3.19)
W(A>Mazﬁk191m+W< MZZEI

k,l,m

which becomes

or using equations 3.11, 3.12, and 3.13,

] o A« (o) [

Note that the first term in parentheses is indeed

2 -aCar-=] -{=r(])}- b1

For higher-order terms, it is convenient to use the language of graph topology. As shown in equa-

tion 3.5, generally higher-order terms contain summations of products of .4 and £ matrix elements,
and we will systematically investigate them by using definitions 3.6 and 3.7.

Calculation of J#(g), the degeneracy of graph g, provides the partition function in the form of

n(g)

Z(B) = 1+ Z ﬂ/z Wi(g)E(g) ¢ » (3.22)
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where 7(g) is the number of links in graph g and the summation is over all possible (connected and

disconnected) graphs g. To calculate I#(g), let us define a child graph and a parent graph. A child

graph b of graph g is obtained by (non-simple) contraction*® of unconnected nodes in graph g, and

gis called a parent graph of b. For example, in Figure 3.1, graph b is a child graph of a, and a parent

graph of c. Note that a child graph always has the same number of links as its parent.

Generally the following equation holds:

(g =K ld+ > (—)" €K, 9ld] o,
gecle)

(3-23)

where K(g) is the combinatoric factor to construct graph ¢ from n(g) links, K(¢, ¢) is the combina-

toric factor to generate graph ¢’ from graph g by node contraction, m(¢', g) is the number of con-

traction operations required to construct ¢’ from g, and C(g) is the set containing all child graphs of

graph g. For example, see equations 3.11, 3.12, and 3.13 for the case of two-link graphs. Since the num-

ber of links is same for parent and child graphs, we can write equation 3.22 in terms of [g] by using

the following formula: for the given number of links 7,

N wmeEe = Y. Hld.
g ng)en

where

H(g) = K(9E@g) + Y (—)"*€)K(g.¢)K({)E(),
gEP)

and P(g) is a set containing all parents of graph g, and the partition function is now

_3/a)®
2(@) = 2§ 1+ 3 CER Hig)g
g

Note that since

K(g) + ) (- K(g, ¢ )K(¢) = o

g/
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Figure 3.2: Examples of chain and star graphs. (a) Chain graph of length 6. (b) Star graph with 6 leaves.

unless gis a one-link graph, we can always replace E(g) in equation 3.25 by ¢(g), which is defined as

n(g)
e(g) = M ") N " T](E, - E). (3.28)

nodes k=1

For an unconnected graph ¢ consisting of connected graphs {gi }, E(¢) = [[, £(gx), and [¢] =

[1,.[ge]. Thus, equation 3.22 can be written as

—B/2)"®)
2g)=mepy S B pgig (329)

connected g

and the free energy is

F(8) = —NkgTln M+ Z F(g, B), (3.30)

connected ¢

where

1(=B/2)"e
B (!

One advantage of equation 3.30 is that the graph topology, contained in [g], is now separated

Fg.8) = H(g lg]- (331)

from detailed energetics, contained in H(g). Hence, even without knowing the exact energy matrix,
it is possible to compare [g] values from different structures and, in some cases, we can determine
which structure provides a more stable system. To illustrate this, let us consider two different graph
systems, a chain graph of length N and a star graph with Nleaves (Figure 3.2). They have the same
numbers of nodes and links, so they have the same free energy up to the order of O(f°) in equation
3.30.

The elements of their adjacency matrices for the chain and star graph systems, denoted by _Achain
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and A" respectively, are given below:

Af]hain — 3i,j+1 + 31.7]._1 (3-32«)
AP = Yt & — 20, (333)

where J;; is the Kronecker delta and index 1 for the star graph indicates the center. In calculating
¢] for a multiple graph g, we have a summation over various products of 4jj, and when there is
a common index (e.g. jin A Ay), the star graph gives a larger contribution to [g] than the chain
graph, since the two indices are disentangled in the former system. For example, let us calculate

S = Zijk Ajj Ay, for both graphs:

N

gehain Z(&i_w + Jit1) O jea + 1)
ijk

= Z(Ji—l,k—ﬁ—l + 3i—1,k—1 + 3i+1,k+1 + a\i-‘rLk—l)
ik
= (N=2)+(N—1)+(N—1)+ (N—2)

= 4N-—6, (334)

where (N — k) terms are obtained by considering the boundary conditions. Also,

N
Sstar = Z(aiﬂ —|— Jj,l — 2,31'71(;]‘71)(9]'71 + 3]@71 - 2.3]'713]@71)
ijke
- Z(a\i,la\j,l + i + a\;,x + 3]’713]@71 + O(%))
ijke
= N +3N—4N
= N*—N. (3.33)

Here, since 3; = djj, we get a quadratic dependence on N, which does not appear in the first case.

Hence, SPan < §8% for N > 3. The same logic can be employed to conclude that

Lg]chain < k]star. (3.36)

At the temperature high enough that the infinite sum in equation 3.30 for the star graph does not

diverge and if it is stable (negative), we can conclude that the star graph system is more stable than
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Figure 3.3: Two different types of defects. Broken bonds are marked in red. (a) Diamond structure with a grain bound-
ary indicated by a red plane. (b) Same structure with a vacancy defect. Drawn by VESTA 3%,

the chain graph system. Note that this qualitative result is independent of the details of the energy
matrix, which quantitatively determines the range of temperatures valid for the previous conclusion
and the difference in free energies (e.g., for the Ising model, the star graph system is always more
stable than the chain graph system at any temperature). This explains why a graph system usually
prefers a branched structure to a linear structure, if there are no other factors than link energies that

determine the system energy.

3.3 LATTICE SYSTEMS WITH DEFECTS

A realistic application of this general conclusion is to a lattice system with defects. We will consider
two types of defects. One is a planar defect (grain boundary), and another is a point defect (point va-
cancy). We constructed a 3-dimensional diamond-like lattice structure in 3 X 3 X 3 unit cells with the
periodic boundary condition (216 lattice points). The first system contains the grain boundary mod-
eled by a discontinuity on the (oor) plane (see Figure 3.3a). The second system simulating vacancy
defects was constructed by removing lattice points randomly (see Figure 3.3b) until the number of
broken bonds was equal to the number of bonds broken by the grain boundary in the first system
(the number of remaining bonds = 324). Using a similar argument as above, it can be shown that [g]
is generally greater for the point vacancy system than for the grain boundary system, and a Monte
Carlo (MC) simulation was conducted to check that the system with point vacancies is indeed more
stable than that with a grain boundary.

A binary alloy of silicon and germanium is considered to make different states 5() = Si, Ge on
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lattice site 7, and the interatomic potential developed in previous works”?* was employed, assuming
equal bond lengths: E(Si, Si) = —2.17/, E(Ge, Ge) = —1.93/, E(Si, Ge) = —2.04/, where J

is a constant. We tested five different temperatures, 10"

;107 %,107 3,10 #, and 1077 in units of B/.
We compiled 1,000 independent MC simulations for each temperature, and in each simulation we
performed 1.1 million MC steps and neglected the first 0.1 million steps.

The result is summarized in Figure 3.4. As inverse temperature 3/ increases, the free energy difter-
ence between the two systems increases as well. As expected, the point defect system is more stable,
which is consistent with the known fact that point vacancies have a thermal equilibrium concentra-
tion whereas higher-dimensional defects do not and they require external sources™®. The entropic
effect of multiple vacancy configurations and the stabilizing effect of structure relaxation have pre-
viously been used to explain this difference™, but both factors were fixed in our simulations so they
cannot account for the stability differences observed here. Also, note that the numbers of broken
bonds are equal, meaning that the “surface areas” are the same. Thus, this result implies that the sta-
bility of point defects (compared to line and planar defects) is partially due to the lattice topology
itself.

3.4 HiGH-TEMPERATURE EXPANSION

Until now, we have considered qualitative differences between different graph systems. If an energy
matrix is fully known, can we make a quantitative prediction? Among the multigraphs under con-
sideration, each of which contributes independently to free energy (equation 3.30), we have linear

graphs, defined as graphs where two (terminal) nodes have vertex degree 1 and the other nodes have

2.8



degree 2. A linear graph can be a parent graph of other connected graphs, but it does not have any
connected parent graph. Since [g] > [/] if gis a parent graph of b, the linear graph provides one of
the largest [g] values among the connected graphs with the same number of links. Explicitly, for a

linear graph g of length #(g),
0= Ay Aiyy iy = su A", (3.37)
where su4 = ). Aj. For energetic contributions, it can be shown similarly that
6(g) = M @15y @), (3.38)

Also,
K(g) =2"97" a(g), (3:39)

where 2” - n! is a combinatoric factor and due to symmetry we have the double-counting correction

of 1/2. Considering only the first term in equation 3.2, we can denote this contribution to the free

energy by
- I 8 n(g)
Fin(B) = — M h;g <_M> su"®@su 479, (3.40)
s.t.n(g)>2
Diagonalization helps to get a closed form of this equation. For eigenvalues \; > A, > -+ > Ay

of square matrix B of size N, we have su B* = "N |4|*A¥, where 4; is the inner product of the

eigenvector corresponding to eigenvalue A; and an all-ones vector of size N*°. Using this, we can

write
N
sudt = Z|c,-|2)\f (3.41)
i=1
M
sudt = ) |difu, (3.42)
j=1

where {\;} and {;} represent the spectra of /4 and ¢ respectively, and {¢; } and {4;} correspond to

{a;} above for A and ¢ respectively. Thus, equation 3.40 becomes

N,M 2 2
~ 1= |Gl 1P
Fin = E / ) .
1 ((@) 2 M2 - 1+ [Q)\uu]/M (3 43)
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for MkpT > max(|\]) max(]p.j]). The total free energy is now

A,
1+ BAi{Aj/M

I 2 I
F@) = —N/eBTlnM—i—;Eo-su A—i (tr ¢ — A—Jsu sz> tr Az—i—z Z

4M2 M? - 0(‘3 )’

(3.44)
while a mere linear approximation (from equation 3.20) gives

_ T g B s 2 2 e e .
F(8) = —NkgTln M+ 2‘EO su A I {(tre 7 ) tr A + 7 su A } +0(pB).

(3.45)

3.5 SEQUENCE SPACE FREE ENERGY OF HETEROPOLYMER

To illustrate the utility of the quantitative formula (equation 3.44), let us consider an example from
biophysics. As previously investigated %, the sequence space free energy of a heteropolymer is closely
related to protein evolution, which is governed by sequence space dynamics through mutations

and is therefore of deep interest to protein biophysicists. This free energy can be quantitatively pre-
dicted by the formulae above, and equation 3.44 shows a better performance than equation 3.4s for
predicting free energies of lattice proteins, which can be described by small graphs and hence have
degeneracies in low-order structural terms such as su 4>,

The Hamiltonian of a 3-dimensional lattice protein is given by

NN
H= > Z AijEAA(i)AA(;‘)‘ (3.46)
ij
Here A is called a contact matrix in the protein structure literature, whose element /4;; is 1 when
residues 7 and j are in contact, and 4;; = o otherwise. £ is an interaction matrix that contains infor-
mation about interaction energy between two amino acid types. Nis the chain length, and AA(k)
indicates the amino acid type of residue k. Unlike the previous work **, we do not need to assume
any special form of the interaction matrix.
We studied the sequence space of a 3x3x3 lattice protein structure, whose graph representation
consists of only 27 nodes. There are 103,346 maximally compact structures of a 33X 3 lattice pro-
tein™, but we used 10,000 representative structures to reduce the computational cost, following

Heo et al’°. We also used two-letter alphabet, whose corresponding interaction matrix was chosen
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to represent hydrophobic-polar interactions in proteins:

E= (3.47)

Then we scanned all 2?7 (about 1.3 X10%) possible sequences to compute Z(8) = Zsequences exp(—BH)
and corresponding F{() for given 8. We denote this () as “enumerated free energy,” to distin-
guish it from the theoretical prediction, which will be called “analytical free energy.”

Figure 3.5 shows the sequence space free energy distributions at @ = o.1. Equation 3.44 can per-
fectly discriminate different structures (one-to-one correspondence; panel a), but equation 3.4s is
not capable of discriminating among structures with different free energies (panel b), due to the de-
generacies in tr 4* and su 4*. Note that even in the former case, the structures are mainly separated

by three different su .4? values, implying that they are still in the high-temperature regime.

3.6 CONCLUSION

In this chapter, we demonstrate an analytical method for systematically calculating the free energy of
a spin model on a simple graph. Through this approach, we find that the topology, realized by [g],
contributes to the free energy, independently of energetic or other factors. Thus, it can be used to
qualitatively predict a more stable structure among different ones at high temperature. The theory
was illuminated by comparison between chain and star graphs; without specifying the interaction
matrix, we showed that the star graphs are more stable than chain graphs at the high-temperature

limit. The approach was applied to lattice models with different defect types, which lead to different
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free energies, even with the same surface areas of defects. We also showed that linear graphs are spe-
cial in a sense that their infinite sum can be computed exactly, and this approach was applied to the
protein design problem. The relative order of sequence space free energies of lattice proteins were
perfectly predicted by the formula containing the linear graph contribution, whereas a mere linear
approximation barely discriminate three groups with different su .4* values. We believe that this
theory can be expanded and applied to other graph-related problems in physics, from more complex
spin systems (e.g. spin glass model) to biological systems (e.g. protein-protein interaction networks

and neural networks) and also social networks.
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Systems-Level Responses of Escherichia coli

to Perturbations

4.1 BACKGROUND

TO UNDERSTAND HOW A SMALL GENETIC VARIATION CAN LEAD TO A DRASTIC EFFECT ON
CELLULAR BEHAVIORS, it is required to consider a complex interplay between various scales, from
the molecular level, through the systems level, to the cellular level32. Several studies demonstrated
that mutations in metabolic enzymes have local effects on fitness through changes in metabolic
flux ", Mutations that change protein stability can also affect fitness through modulation of the
number of functional folded proteins™"*** or by affecting the number of toxic unfolded species®>**.
However, in most cases, a direct link between the mutational effects on protein function and organ-
ismal phenotype is not obvious due to pleiotropic effects, such as protein aggregation ** and forma-
tion of functional and non-functional multimers®#*47. Furthermore, recent studies have shown
that partial inhibition of an enzyme can cause broad changes in the metabolic profile of the cell, ex-
tending far beyond the immediate products of enzymes in question”*77.

The systems-level proteomic response to a genetic variation is an important stepping stone to
understand the relationship of genetic variations to cellular responses. Earlier studies showed that

bulk characteristics of the macromolecular composition in the cell cytoplasm (e.g., the total protein
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concentration or the ratio of proteins to RNAs) are sensitive to changes in growth conditions, such
as the availability of nutrients*+%. However, the effect of mutations or changed growth condi-
tions on the abundances of individual proteins in the cytoplasm is not known. The key objective
of the present study is to understand to what extent point mutations in a metabolic enzyme and/or
variations in the media affect the proteome composition in the bacterial cytoplasm and how these
changes are related to the fitness effects of such mutations.

The Shakhnovich group has been experimentally studying the effect of mutations in the chro-
mosomal copy of the fol.4 gene, which encodes the core metabolic enzyme dihydrofolate reduc-
tase (DHFR). DHFR is one of key enzymes in E. coli metabolic pathways. It catalyzes the reduc-
tion reaction of dihydrofolate into tetrahydrofolate, which is a crucial substrate of the one-carbon
metabolic pathway. This pathway is linked to de novo synthesis of purine, as well as methionine
and glycine biosynthetic cycles™*. Therefore, a perturbation in DHFR may impact a relatively large
number of pathways and their constituents, so that the perturbation eventually leads to cellular be-
havior changes that are experimentally detectable. Also, DHFR has a low copy number in E. coli
cytoplasm (approximately 40 copies per cell)*#, and hence, the possibility of protein aggregation
after a perturbation is relatively small.

In this chapter, we will study how a perturbation in DHFR alters the expression levels of other
proteins, and show that the systems-level analysis can broaden our understanding on the genotype-

phenotype relationship.

4.2 PERTURBATIONS

We employed two types of perturbations, point mutations and drug inhibition, and two types of

growth media for the mutant strains, as explained below.

4.2.1 POINT MUTATIONS

In the previous studies ™"

, a set of chromosomal missense point mutations was introduced in the
open reading frame of the E. coli fol A gene, and their effects were evaluated in terms of the biophys-
ical and biochemical properties of the encoded DHFR molecule, as well as the cellular growth rate,
which is a proxy to the fitness*>*»**. Among a wide range of mutations, we found several mutations
that led to a noticeable drop of growth rate, even though they form soluble oligomers, implying that
the drop is not simply due to aggregation-associated toxicity .

In this study, we selected four mutant strains with estimated AAG values ranging from 2.8 to 6.4

kcal/mol (these values are estimated upon the assumption of additivity of stability effects of single-
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Figure 4.1: Growth rates of all studied strains under various conditions. Growth rates were determined from the expo-
nential phase of growth using the three-parameter fit of Iog(OD/ODO) versus time curves proposed in Zwietering et
al**. The fol A mix brought the growth rates of the mutant strains very close to the WT level. Error bars represent the
SDs of three independent growth measurements.

point mutations). Mutants Wi33V and V7sH+I1ssA showed a slight drop in growth rates, while
the growth of V7sH+Io1L+I1ssA and Io1L+W133V strains was severely compromised (Figure 4.1).
We determined that the observed loss of fitness stems primarily from the loss-of-function effect of
the destabilizing mutation that renders DHFR molecules susceptible to rampant aggregation or

degradation in the cell .

4.2.2  DRUG INHIBITION

Trimethoprim (TMP) is a well-known competitive inhibitor of DHFR, and it shows a strong speci-
ficity for DHFR ™. TMP also has a high degree of specificity for bacterial DHFRs over eukaryotic
DHFRs, which allows it to have been widely used as an antibiotic, sometimes combined with other
drugs such as sulfamethoxazole’. In this study, we used two different concentrations of TMP, 0.5
ug/mL and 1.0 ug/mL, and as expected, the growth rate drops as the TMP concentration increases

(Figure 4.1).

4.2.3 STANDARD MEDIUM AND THE FOLA MI1x

The standard growth medium is the M9 minimal medium supplemented with 0.2 % glucose, -mM
MgSO4, 0.1 % casamino acids, and o.5-ug/mL thiamine. However, it has been known that supple-

menting the growth media with a combination of purine, thymidine, pantothenate, glycine, and
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Proteome (- fol A mix) Proteome (+ fol A mix) Transcriptome
WiV 2,195 | WT 849 | W33V 4,192
V7sH+I155A 2,094 | W33V L8so | V7sH+IissA 4,189
TMP o.5 ug/mL 2,195 | V7sH+I1ssA ,8so | TMP o.5 ug/mL 4,189
V7sH+Io1iL+I1i5sA 2,094 | VzsH+IotL+11ssA 1,849 | VzsH+IoiL+I1s5A 4,191
To1L+Wi33V 2,195 | IoiL+Wi33V 847 | IoiL+Wi33V 4,189

Table 4.1: Numbers of genes and protein products detected and quantified in the quantitative proteomics and tran-
scriptomics experiments.

methionine sustains the growth of E. coli that lacks the fo/.4 gene™

. We found that the growth rate
differences between the WT and mutants are equalized when the cells grow on this media (Figure

4.1). We will call this additional nutrient combination the “folA mix.”

4.3 GLOBAL EFFECTS OF PERTURBATIONS ON THE PROTEOME AND TRANSCRIPTOME

To determine the relationship between the fitness of the selected mutant strains and the systems-
level responses to the DHFR mutations, we quantified changes in the protein abundances in the E.
coli proteome. To this end, we applied chemical labeling based on isobaric TMT technology with
subsequent LC-MS/MS quantification #"7"7. This method allowed us to obtain relative protein
abundances (RPAs) between each strain/condition in question and a reference system. As a refer-

ence, we chose WT E. coli in our standard growth media (“unperturbed system”):

N, protein (g; f)
N, protein (g; 9] ) ’

where Nprotein (g; ¢) indicates the protein expression level of gene g in the system under condition ¢

RPA(g: o) = (+)

and Nprotein (¢; @) the protein expression level of g in the reference system. In total, we quantified 11
proteomes that included all conditions listed in Figure 4.1. To control for natural biological variation
at different stages of growth, we also collected the RPA data for WT strains grown to different op-
tical density (OD) levels. We were able to detect and quantify approximately 2,000 proteins (Table
4.1) available for direct comparison between all 11 proteomes.

To assess the relationship of the proteome changes to the transcriptome, we also obtained, under
identical experimental conditions, transcripts of the fo/4 mutant strains and the WT strain treated
with o.5 ug/mL of TMP. Here we similarly define relative nRNA abundances (RMAs):

Nmzrwa (g5 )

RMA(g o) = Nmrna (g 2)

(42)
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Figure 4.2: Typical distributions of LRPAs and LRMAs. Data shown are for one repeat of the W133V strain. Other
distributions are shown in Figure 4.12 at the end of the chapter.

where Niyrna (g; ¢) indicates the mRNA expression level of gene gin the system under condition
cand Nirna (g @) the mRNA expression level of ¢in the unperturbed system. Total mMRNA was
extracted and the reads were aligned to the reference genome so that we could measure the absolute
transcript levels Nrna, from which the ratio was calculated according to equation 4.2.

We use logarithms of RPAs and RMAs (denoted by LRPAs and LRMAs, respectively) to see the

fold changes of expression levels easily:

LRPA(g, C) - log Nprotein (g; C) - log Nprotein (g; @), (4-3)
LRMA(g;c) = log Nmrna(g ¢) — log Nimrna (g ©). (4.4)

Note that the sign of LRPA or LRMA indicates the direction of regulation. If the logarithmic value
is positive, the condition increases the expression level of the gene with respect to the reference sys-
tem, and this can be considered as up-regulation. The opposite case will be down-regulation. The
typical LRPA and LRMA distributions are shown in Figures 4.2a and 4.2b, respectively, and other
distributions are summarized in Figure 4.12 at the end of this chapter.

We found that there exists a robust and statistically significant anti-correlation between the stan-
dard deviations (SDs) of LRPA distributions and the growth rates (Figure 4.3a). Generally, the SDs
of LRMA distributions are about twice as big as those of LRPA distributions (Figure 4.3b), suggest-
ing that mRNA abundances are more sensitive to genetic variation, probably due to the lower copy
numbers of mMRNAs compared with the proteins that they encode. (Note that another basic statis-
tical quantity, the mean of an LRPA/LRMA distribution may vary from sample to sample due to
slight variation of final OD of samples, and thus it cannot be a reliable measure of the systems-level

response.)
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Figure 4.3: Global statistical properties of proteomes and transcriptomes. Colors indicate different experimental
conditions (blue: mutation, red: TMP inhibition, yellow: folA mix), and purple lines refer to the regression lines. (a) The
SD of LRPA distribution is anti-correlated with the growth rate. Error bars correspond to the SDs of three independent
experiments. (b) The SD of LRMA distribution is correlated with that of LRPA distribution. The slope is close to 2,
suggesting that transcriptomes are more readily perturbed than proteomes. Error bars correspond to the SDs of two
independent transcriptomics experiments (x axis) and three independent proteomics experiments (y axis).

Importantly, the variation of SD of LRPA between strains and conditions is not a mere conse-
quence of natural biological variation between growth stages: the SD of LRPA for the WT strain
grown to different OD remain remarkably constant (Figure 4.4a). In addition, when comparing
two proteomes extracted independently from the WT strain grown up to entrance into stationary
phase under identical conditions (biological repeats), the correlation of LRPA between them is very
high (Pearson’s correlation coefficient R = 0.94), indicating that the TMT-labeling-based proteome
quantification technique is highly reproducible (Figure 4.4b).

4.4 COMPARISON BETWEEN B10LOGICAL REPEATS: REPRODUCIBILITY

The broad distributions of LRPA and LRMA might indicate that variations in protein and mRNA
abundances are just a consequence of stochastic sample-to-sample variation between colony founder
cells. If this were the case, we could not see strong reproducibility from sample to sample. An-

other possibility is that the broad distributions of LRPA and LRMA are due to long-time intrinsic
stochasticity in gene expression 46, which extends beyond a mere cell-to-cell variation to affect the
total abundances in the bulk. In that case, we might still find that the overall statistical properties

of the proteome response to a perturbation (such as the SD of an LRPA/LRMA distribution) are

robust and reproducible between samples from biological repeats.
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Figure 4.4: Reproducibility of global statistical properties. (a) The SDs of LRPA distributions determined for wild-type
strains grown to different OD are remarkably constant. This result indicates that observed variability of SDs between
strains and conditions is not due to natural variation of the biomass. (b) Scatter plot of LRPAs between two indepen-
dent proteome data of the wild-type strain. The red line indicates the regression line. Both proteomes were obtained
independently from the wild-type strain grown to the same OD levels under identical conditions, and both are normal-
ized to the proteomics data obtained at /=60 min. The TMT-labeling based LC-MS/MS quantification technique shows
a very high correlation between highly complex protein mixtures (over 2,000+ proteins) extracted from identical bio-
logical repeats.
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An extreme scenario of the latter case is that each protein abundance consistently responses to ge-
netic or media variation. In other words, the LRPA/LRMA of each protein is always reproducible
(apart from the experimental noise) from sample to sample at the identical condition. We note that
a mere analysis of the LRPA/LRMA distribution from an individual experiment does not allow us
to distinguish between randomly and consistently varying quantities since the LRPAs or LRMAs
for all genes, whether random or consistent, appear to be drawn from the same distributions, as
shown in Figures 4.2 and 4.12. Only comparison of LRPA/LRMA distributions between biological
repeats can reveal the degrees of randomness and consistency in the proteomics and transcriptomics
responses to the perturbations.

For further analysis, we separated the strain-to-strain variation of global statistical properties
— means and SDs — from the variation of the abundances of individual proteins. To that end, we
normalized the LRPA and LRMA for gene ¢ in experimental condition ¢ to obtain the z-score:

_ Llgo) — (L))
2go) = : (45)

TL(c)

where Z(g; ¢) is the LRPA or LRMA of gene gin condition ¢, (Z(c))¢ and o7 () indicate the arith-

metic mean and standard deviation of the LRPA or LRMA distribution in condition ¢, respectively.
We modeled the gene set as a set consisting of two different types of genes. The genes of one

type consistently response to the change of experimental condition, while the other gene group

responses randomly. Assume that the total number of genes is N and the number of genes in the

former group is K. For the “consistent” genes, the z-scores from two biological repeats A and B in

the same experimental condition ¢ are identical up to the experimental noise:
a(i; ) = za(i; ¢) + (), (4.6)

where 7 is the gene index (i = 1,2, - - , K) and »(%) indicates the experimental noise on gene i. On
the contrary, the z-scores of “random” genes (whose indices are from K + 1to N) are statistically
independent between biological repeats. Then, we can write Pearson’s correlation coefficient Rag(c)

between the z-scores of gene sets from two biological repeats A and B in experimental condition ¢ as
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follows:

>, 7a (i €)z (i ¢)
VEE ka0 S, i
Yo (i O + Y8 za (4 09 (d) + Z?;KJH za(2; ¢)zp (4 ¢)
VEE a0l /S, a0
- Klla@EoP), + 0 (VK) + O (VN-K) )
. Nz IP),

N (4.10)

(4.8)

&

Here we apply the central limit theorem to approximate the sum of # random variables with accu-
racy up to O(y/n), and assume that N and K are both large numbers. The final result is obtained
by keeping linear terms only in both the numerator and denominator and omitting all square-root
terms. Note that the error is of the order of 1/ V/N, as indicated in equation 4.9.

From equation 4.10, we can estimate the number of “consistent” genes in the gene set by com-
paring two biological repeats and checking Pearson’s correlation coefficient. We prepared three bi-
ological repeats for proteomics analysis and two biological repeats for transcriptomics analysis, in
five different experimental conditions (4 mutants + 1 TMP inhibition). As shown in Figure 4.5, the
correlation coefficients are generally high, ranging from 0.56 to 0.92. Note that the correlation co-
efficients are overall higher for mRNAs than for proteins. This implies that the stochasticity at the
mRNA level is smaller than that at the protein level.

This simple analysis suggests that a good portion of the observed LRMA and LRPA distribu-
tions in different experimental conditions are not just simple manifestation of a noisy gene expres-
sion or an epigenetic sample-to-sample variation in the founder clones. Rather, we observed that in
each case more than 1,000 genes vary their mRNA and protein abundances in a consistent manner
in response to DHFR mutations and drug inhibition. It is important to note that this conclusion
does not depend on the assumption about the amplitude of the experimental noise, since the error is
of the order ofI/\/]TTand N = 2,000>1L

Lastly, we checked if the consistent behavior of genes is due to variation between the growth
stages and culture densities for different experimental conditions. We compared the WT proteomes
at different OD values to the proteomes of different perturbations, and found generally low cor-
relations at all OD values (Figure 4.6). This indicates that the variation of proteomes at different

growth stages does not account for the LRPAs in different experimental conditions. Consequently,
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Figure 4.5: Correlations between LRPA/LRMA z-scores in biological repeats. T1 and T2 denote transcriptomics re-
peats and P1, P2 and P3 denote repeated proteomics experiments. (a) W133V mutant. (b) V75H+1155A mutant. (c)
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Figure 4.6: Scatter plots of the z-scores of LRPA between proteomes of the WT strain grown to various OD levels
versus those of the mutant strains and TMP-treated WT strain. Red lines mark the y=x lines. Low correlations indicate
that perturbations observed in response to DHFR mutations or functional inhibition by TMP is largely unrelated to
natural variation rooted in different stages of the growth cycle.

we conclude that the E. coli proteome and transcriptome are highly sensitive to perturbations in the
metabolic enzyme DHFR; a vast number (in the range of 1,000-2,000) of genes consistently vary
their transcription levels and protein abundances in response to mutations in the folA4 gene or TMP

inhibition.
4.5 COMPARISON BETWEEN DIFFERENT TYPES OF PERTURBATIONS

The z-score of a specific gene indicates the relative intensity of regulation of the gene in the pro-
teome/transcriptome. For example, a higher z-score of LRPA indicates that the gene is more up-
regulated upon the given perturbation than other genes in the whole proteome. Comparison of

the z-score distributions of two different experimental conditions provides a measure for how

much their proteome/transcriptome responses to the perturbations are similar. We compared the
proteomes from 6 different conditions (4 mutants + 2 TMP inhibition systems) in the standard
medium, the proteomes from s different conditions (4 mutants + 1 TMP inhibition) in the fol A mix
medium, and the transcriptomes from s different conditions (4 mutants + 1 TMP inhibition) in the
standard medium.

There is a remarkable pattern in the correlations between proteomes of different conditions.
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Proteomes that show a moderate decrease in growth (W133V, V7sH+I1ssA, and WT treated with

0.5 ug/mL of TMP) are closely correlated between themselves, as are the proteomes of cells with a
severe decrease in growth rates (IotL+Wi33V, V7sH+Io1L+I1ssA, and WT treated with 1 ug/mL

of TMP). The correlation between members of these two groups is considerably weaker, albeit

still highly statistically significant (Figure 4.7a, upper right). The addition of the fol A mix, which
nearly equalizes the growth between WT and even the most detrimental mutants (Figure 4.1), signif-
icantly reduces this separation of two classes, making correlations between all proteomes uniformly
high (Figure 4.7a, lower left). A similar but less pronounced pattern of correlations is observed for
LRMA data (Figure 4.7b). The observation that strains having similar growth rates tend to have
similar proteomes might suggest that the growth rate is the single determinant of the proteome com-
position. However, a more careful analysis shows that this is not the case: the growth rate is not the
sole determinant of the proteome composition.

We clustered the LRPA z-scores using the Ward clustering algorithm ™. The z-score set from ex-
perimental condition ¢ is considered as a vector X, whose elements are z-scores of different genes, in
a multi-dimensional space (dimensionality & 2,000). The distance between a pair of vectors is mea-
sured by the typical Euclidean distance metric. Based on this set of metric data, Ward’s hierarchical
clustering method is used to determine which conditions are clustered. Here, clusters are generated
in order to minimize the error sum of squares, or the variance. Consider two clusters A and B, each
of which respectively contains 7, and 7 elementsand A N B = @. The merging cost A(A, B) of
combining A and B is defined as

na+np na ng
AAB) = D % — mausl [ = D |5 — 7all? = D |7 — 7], (4.1)
c€EAUB cEA cEB

where ||¥ — y|| indicates the distance between ¥ and ¥, and 772 = ) 78 ¢ X /n is the center of cluster
K of size ng. Note that each summation corresponds to the error sum of squares, i.e. the variance, of

each cluster. Arithmetics leads to the following simple formula:

(4.12)

To get the same dimension with the Euclidean distance, the following metric (Ward’s linkage) is used

to determine the distance between clusters A and B:

d(A,B) = a\/A(A,B), (4.13)
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Figure 4.7: Correlations between proteomes and transcriptomes. Red lines mark the y=x lines. (a) Scatter plots be-
tween proteomes of all systems under the standard growth condition (upper right) and in presence of the fol A mix
(lower left). The addition of the fol A mix minimizes the variations between different proteomes. (b) Transcriptomics
data obtained for systems grown under the standard condition. Correlations are overall higher for mRNA abundances,
but similar classes of transcriptomes are discernible.

45



and constant a is set to /2 so that the Euclidean distance between two singleton clusters A and B
is identical with the Euclidean distance /|74 — 73||?. Beginning with each vector consisting of
its own cluster, Ward’s hierarchical clustering merges clusters to minimize the growth of the sum of
d(A, B). In practice, this method is known to be comparatively effective to reconstruct the original
cluster structure*®. One advantage of Ward’s method is that it is not extremely sensitive to outliers,
and in this sense we think that this method is better than other methods for our purpose, since we
are in the situation with a relatively strong background biological noise.

It should be noted here that the Euclidean distance between two vectors has a one-to-one corre-
spondence to Pearson’s correlation coefficient R. For two vectors X and  on the multi-dimensional

space, their euclidean distance is defined as

R ﬁ("f = [+ -2 Y (419

and their correlation coefficient is defined as

L > i Xiyi
R(X,y) = —L———. B
&)= S (415

Note that x; and y; are g-scores of a certain proteome/transcriptome data set, meaning that they have
distributions of mean o and SD 1, and since the dimensionality is huge, we can safely assume that the

variance V' = ) . x? &~ N, where Nis the dimensionality. Substitution leads to

= 22
R(%,5) =1— Hx;Nva (4.16)
and the actual data are consistent with the prediction of equation 4.16 (Figure 4.8).

The clustering result (Figure 4.9) shows that proteomes cluster hierarchically in a systematic, bio-
logically meaningful manner. At the first level of the hierarchy, proteomes separate into two classes
depending on the growth media: Proteomes from E. coli cells grown in the presence of the folA
mix tend to cluster together as do those from the cells grown in the standard medium without the
fol A mix. At the next levels of the hierarchy, .e., within each media condition, different experimen-
tal setups cluster according to their growth rates. This result suggests a peculiar interplay of media
conditions and the internal state of the cells (growth rate) in sculpting their proteomes.

To evaluate the significance of this finding, we generated hypothetical null model proteomes
(NMPs) whose correlations are determined exclusively by their assigned growth rates and clustered

them by applying the same Ward algorithm. In this null model, proteomes of two systems A and B
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Figure 4.9: Ward hierarchical clustering of proteomes. Colors show the normalized growth rates, and the values of the
horizontal axis at split points indicate Ward distances between corresponding clusters. Proteomes cluster hierarchi-
cally according to media conditions and growth rates.
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are correlated according to a simple relationship

ol _ G4/Gp, ifG4< Gp
AR T Gp/G4, otherwise (417)

where G; indicates the growth rate of system 7. Note that when two E. coli systems grow at the same
rate (no matter how slow or fast) their proteomes are fully correlated at R34! = 1. The NMPs
are generated as eleven 2000-dimensional vectors of z-scores by assigning to each NMP a growth
rate of one of the 11 strains and conditions probed in this analysis and randomly generating each z-
score to satisfy the correlation condition 4.17. To that end, we applied a Metropolis Monte-Carlo
algorithm where each step corresponds to replacement of an individual z-score component in one
of 2000-element z-score vectors by a random number drawn from the Gaussian distribution with
mean o and SD 1, and accepting or rejecting the change according to the Metropolis criterion with

the following “Hamiltonian”:

I

N ({Rij}, {R;}““}) =3 (Rij - R3“11>2, (4.18)
i#j=1

where 7 and j indicate the indices of two hypothetical proteomes, Ry; is the current correlation coeffi-
cient of z-score vectors between NMPs 7 and 7, and R;}“H is the “target” correlation coefhicient based
on strains growth rates as given by equation 4.17. Iterating the MC steps with the Metropolis tem-
perature (kg 7)pun = 10~ %, we obtained the NMPs where pairwise correlations satisfy the condition
4.17 with better than 5 % accuracy and clustered them using the same Ward clustering to obtain the
control tree (Figure 4.10). We stochastically generated numerous NMPs and found the same tree for
each realization.

The NMP tree in Figure 4.10 is qualitatively different from the real data (Figure 4.9), thereby re-
jecting the null hypothesis that the growth rate is the sole determinant of the correlation between
the proteomes. The differences between the real proteomes and NMPs are further highlighted by
the observation that real proteomes cluster hierarchically while NMPs do not. Each branch point on
the tree represents the root of a cluster, which has two properties, the Ward distance at the branch
point (Z.e., branch point on the x-axis coordinate) and the number of leaves — the number of pro-
teomes that belong to it. For hierarchical trees, these two properties are correlated, while for simple
trees, they are not. Indeed, the analysis shows that real proteomes cluster hierarchically, while NMPs

do not (Figure 4.11).
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4.6  SrecrFic EFFECTS OF PERTURBATIONS ON FUNCTIONAL GROUPS

To study specific biological processes rather than the whole proteome, we grouped the genes into
480 overlapping functional classes introduced by Sangurdekar er 2/™. We evaluated the cumulative
g-score 2 as an average among all proteins belonging to functional class ¢ at specific perturbation p.
A large absolute value of 2 indicates that LRPAs or LRMAs for all proteins within the functional
class in concert shift up or down due to the perturbation.

We focused on several interesting functional groups of genes, especially the ones that show statis-
tically significant shifts in the whole proteome or transcriptome. The statistical significance p-value,
that show whether a group of genes is significantly up-regulated or down-regulated (either in the
proteome or transcriptome), can be estimated based on a simple null model of independence of LR-
PAs or LRMAs of genes within a class. In this null model, each zg represents an average of a large
number of independent random numbers, and the expected distribution of 2 is Gaussian, accord-

ing to the central limit theorem:

Pnull(z[;) = ﬁ exp [_Z\[C(Zzg)z] , (4-19)

where N, is the number of genes in functional class ¢c. Therefore, the probability, or p-value, of ob-

served || under the null hypothesis is

~value (|2 —2/ P (2)dz = - / eiN‘zz/zdz, (4.20)
p-value([zc|) " ( \ AN 2

where the factor of 2 accounts for the possibility of both up- and down-regulation of genes from the

given functional group. This value can be numerically calculated by using the error function.
Figure 4.13 at the end of this chapter shows the p-values for variation of average LRPA/LRMA
for genes grouped by function (upper) and by operon (lower). Besides shifts in folA expression
and DHFR abundances, significant variations were found for many important functional groups
of genes (Figure 4.13, upper) First, the genes responsible for motility shut down across the mu-
tant strains with a concomitant drop in their protein abundances (see the fli.4 operon in Figure
4.13, lower). Interestingly, the addition of the folA mix completely reverses this trend (except par-
tial reversal for the IorV+W133V mutant). Also, while a broad set of SOS response genes is tran-
scriptionally up-regulated (in contrast to the RpoS-regulated subset of stress-induced genes), the
protein abundances of these gene products are highly elevated only in the slowest growing strains,
I91L+Wi33V and V7sH+IorV+IissA. Addition of the fol A mix alleviates the SOS response in all
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strains. Moreover, TMP does not trigger the SOS response at either o.5 or 1.0 ug/mL, nor does it
trigger DNA repair genes. Possibly, the depletion of precursor purines and pyrimidines might not
lead to overall DNA damage that triggers the SOS response. Expression of genes belonging to the
pyrimidine biosynthesis pathway is significantly up-regulated, but the abundances of their protein
products drop in all strains, with the most significant impact on the slower growing Io1L+Wi33V
and V7sH+Io1V+I1ssA strains and WT strain treated with a high concentration of TMP. Addition
of the fol A mix again reverses this proteomic trend, giving rise to increased abundances of all the
gene products belonging to this pathway.

Additional systematic insights come from the analysis of the variation of genes grouped by com-
mon transcriptional units regulated by operons (Figure 4.13, lower). For example, the genes respon-
sible for the uptake of ferric ions (under the Fur regulator) exhibit major transcriptional down-
regulation and a concomitant drop in protein abundance. For some genes, however, variations of
transcript numbers and protein abundances do not exactly go hand in hand. For example, argi-
nine catabolism genes (ArgR operon) are transcriptionally up-regulated, but their protein abun-
dances significantly drop in the mutant strains in the M9 medium and slightly drop in the presence
of the folA mix. This effect is probably common to the genes in the nitrogen metabolism path-
way, as seen for the RpoN and NtrC operons. Other pathways like catabolite activation (CRP)
and fumarate/nitrate reduction (FNR) show concerted transcriptome and proteome changes (up-
regulation in both cases) for the fol.4 mutants that moderately affect growth rates (W133V and
V7sH+I1ssA). However, a reversal of this trend is observed for the mutants that exhibit severely
compromised growth (V7sH+Ig1L+I1ssA and IoiL+W133V), where the abundances of CRP- and
FNR-regulated proteins drop significantly. An interesting insight comes from the analysis of RpoS-
dependent genes. It has been shown that the phosphorylated response regulator ArcA is a direct
suppressor of RpoS$ transcription®®. Indeed, we observed transcriptional up-regulation of ArcA and
down-regulation of RpoS. However, at the proteome level, there is down-regulation of ArcA for
the V7sH+IgiL+1155A and I91L.+W133V strains, while there is a small but noticeable increase in the
abundance of proteins controlled by RpoS for the same mutants. This also holds true for the WT

treated with a high concentration of TMP.

4.7 CONCLUSION

Quantitative transcriptomics and proteomics are powerful tools in systems biology. They have been
widely used to analyze systems-level changes associated with disease phenotypes in mammalian

cells®*. Other applications include the study of the systems-level response to major perturbations
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such as whole genome duplication?®, osmolarity and oxidative stresses °**, and loss of function
mutations in the RNA degradosome in E. coli, which affect global RNA turnover and regula-
tion"™*?, Also, quantitative proteomics was used to explore the general relationship between cel-
lular proteomes and growth rates*>**7_ In particular, Geiler-Samerotte and collegues established
the relationship between growth rates and the total numbers of soluble and insoluble proteins in
yeast”. In contrast to earlier studies, the focus of the present work is on the systems-level proteome
and transcriptome response to the minimal and most fundamental genetic perturbations — missense
point mutations introduced through genome editing into a core metabolic enzyme.

A popular conceptual view in systems biology postulates that modularity and stability of tran-
scriptional networks had evolved to confer robustness to biological systems™*. In particular, an
effect of a point mutation in a robust biological system should be limited to genes and their protein
products that physically, genetically, or metabolically interact with a perturbed protein. However,
we found that local perturbations of DHFR function reproducibly affect transcription and protein
abundances of a huge number of genes that are apparently unrelated to the folate pathway, which
highlights a highly pleiotropic systems-level effect of mutations in DHFR. A detailed analysis of
gene groups provided a rationale for some but not all of these shifts. All mutant and TMP-treated
WT strains shut down motility, presumably as a way to conserve resources. However, for many
pathways, an intuitive explanation of the changes is not obvious. For example, the genes responsible
for nitrogen metabolism and ferric ion uptake are significantly affected. Moreover, for these genes,
mRNA and protein abundances change in the opposite directions in a statistically significant way,
indicating the importance of regulation at the level of protein turnover. Another striking example
of the turnover effect is DHFR itself. Both destabilizing DHFR mutations and TMP treatment
caused activation of the folA4 promoter, but the abundance of DHFR proteins increases only upon
TMP treatment. Up-regulation of the gene does not save the destabilized mutants. This effect can
be attributed to protein quality control, which detects and degrades partly folded mutant DHFR 2.
It should be noted that the overall increase in DHFR abundance upon TMP treatment cannot al-
leviate the detrimental fitness effect of TMDP; the number of active DHFR molecules would still
decrease upon addition of TMP due to the inhibition of DHFR by the antibiotic.

The key finding of this study is that point mutations in an essential enzyme have a profound
pleiotropic effect extending to the level of the whole proteome and transcriptome. Moreover, the
SD of an LRPA/LRMA distribution appears to provide a reliable global quantification of the de-
gree of the pleiotropic effects associated with the corresponding perturbation. “Narrow” distribu-
tions (low SD) indicate that the mutations do not induce widespread systems-level perturbations

and their fitness effects are minimal, whereas “wide” distributions (high SD) reveal a comprehensive
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systems-level response with ensuing pronounced fitness effects. While we do not have a full mecha-
nistic explanation for this finding, some reasons can be speculated. In particular, we note that partial
loss of DHEFR function has a profound effect on the pool of cell metabolites””. Such a global change
may affect biophysical properties (such as stability and binding affinity) and the ensuing degradation
rates of multiple proteins, thus causing changes in the protein turnover balance. Indirect support
for this view comes from the hierarchical clustering of proteomes, which shows that media composi-
tion rather than mere growth rate determines the crucial segregation between proteomes at the top
of the hierarchy. Mutations in DHFR cause a domino-like effect leading to transcriptional activa-
tion of the fol4 gene, the changes in abundance for the whole E. coli proteome, and finally, changes
of growth rates in the perturbed cellular systems. The quantitative measures of these effects on all
scales strongly correlate, suggesting the existence of a common underlying cause that drives these

changes. Future studies will reveal the existence and exact nature of this cause.
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Figure 4.12 (following page): Distributions of LRPAs and LRMAs for all strains and conditions for which MS data were
obtained. Three repeats for the mutant strains and the WT strain treated with TMP 0.5 ug/mL are shown.
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Figure 4.12: (continued)
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Figure 4.13 (following page): Statistical significance of variation for specific gene groups. Clustering global variation in
mRNA and protein abundances as belonging to functional classes (upper) or co-regulated by a specific operon (lower)
reveals the highly statistically significant variation of several functional groups. The color code indicates the direction
of change (blue: down-regulation, red: up-regulation), and the color depth indicates the logarithm of p-values against

the null model of independent variation within a group of genes.
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Figure 4.13: (continued)
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Response and Adaptation of E. coli to

Horizontal Gene Transfer

5.1 BACKGROUND

HoORIZONTAL GENE TRANSFER (HGT) is a major force in bacterial evolution7>**>. Comparative
genomic analyses show that HGT events can be broadly classified into three types: a) acquisition of
anew gene not present in the taxa, b) acquisition of an orthologous gene in addition to the endoge-
nous chromosomal copy, and ¢) direct chromosomal replacement of a gene by its ortholog from
other species (also known as xenologous horizontal gene transfer)”. Koonin ez al. also found that
all three HGT types are approximately equally common and represent an efficient mechanism for
rapid evolution and/or adaptation to new niches”".

The genetic mechanisms responsible for the horizontal transfer of foreign genes (i.e., transforma-

105126 However,

tion of naked DNA, conjugation, and viral transduction) are well characterized*
the material transfer of DNA from other bacterial species is only an initial step. The evolutionary
fate of an HGT event (fixation, elimination by purifying selection, or persistence as a subdomi-
nant clone) depends on the fitness benefit or cost of the newly acquired gene. Previous studies on
these fitness effects have arrived at apparently inconsistent conclusions. For example, Sorek ez al. ex-

pressed multiple proteins from 79 prokaryotic genomes in an expression vector under control of an
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inducible promoter and measured the ensuing fitness effects in E. coli. They found that expression
of many foreign proteins is detrimental to the £. coli host and attributed the fitness cost to a gene

dosage-related toxicity u8

. Lind ez al. found that inter-species chromosomal replacement of three
native genes encoding ribosomal proteins in S. typhimurium was detrimental to fitness, apparently
due to low expression of transferred proteins®*. Although these studies showed that many HGT
events incur fitness costs, they did not provide mechanistic or molecular explanations of why this
was the case. Meanwhile, other studies have argued that HGT is predominantly neutral rather than
deleterious. Insertion of random DNA fragments from other bacteria in the Salmonella chromo-
some showed no significant fitness effect for about 90 % of the inserts”°. Introduction of foreign
and complex subunits in E. coli also showed no loss in fitness'*".
The apparent controversies on the nature of the fitness landscape of HGT events can be at-

tributed to several challenges:

1. Pleiotropy at the molecular level. The starting genetic material has a broad distribution of
molecular and sequence properties that are not entirely independent (e.g., potential effect of
GC-content on RNA stability7# that could affect transcription/translation, and of protein

folding stability and activity™® that could affect function).

2. Pleiotropy at the cellular level. Beyond the foreign gene’s immediate functional context,
HGT may affect or be affected by other cellular factors, such as protein-protein, metabolic,
or regulatory interaction networks™*****47_ Another example is a protein homeostasis (pro-
teostasis) machinery, which maintains the integrity of the proteome through assisted folding

107,130

and degradation and is known to buffer against the deleterious effects of mutations

However, the actual effect of proteostasis on horizontal gene transfer is not yet known.

3. Time and length scales in evolution. Similarly to mutations, HGT events can be accom-
panied by immediate and transient responses of the cell that are particularly hard to detect
using comparative genomics, because it analyzes HGT that has survived selection over long

evolutionary time scales.

Altogether, these challenges need to be addressed to understand the fitness landscape of HGT and
the cellular responses that lead to the subsequent accommodation or rejection of a foreign gene.

In this chapter, we sought to develop an experimental system that allows full control over the
molecular properties of the transferred gene (Figure s.1a). Our focus is on the functional barriers to
HGT emerging at the protein level rather than genomic barriers affecting transcription and trans-

lation. To this end, we used the essential gene folA4 encoding dihydrofolate reductase (DHFR) as a
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Figure 5.1: Experimental scheme for mimicking HGT and its consecutive evolution with the resultant growth rate
distribution. (a) The open reading frame of the folA gene encoding DHFR in the E. coli chromosome is replaced with
orthologs from 35 other mesophiles, while preserving the endogenous promoter. The strains carrying the orthologous
DHFR replacements are evolved for 31 serial passages (approx. 600 generations) under standard conditions. (b) Dis-
tribution of the growth rates before (immediately upon HGT) and after evolution experiment. The growth rates of the
WT strain with E. coli DHFR are indicated by dashed lines. The Kolmogorov-Smirnov (KS) test indicates that pre- and
post-evolution populations are significantly different in terms of their growth rates (p-value < 107%9). While 31 out of
the 35 naive strains (88 %) have lower growth rates than WT, 30 % of the post-evolution strains have higher growth

rates than WT.

model. DHEFR catalyzes an electron-transfer reaction to form tetrahydrofolate, a carrier of single-
carbon functional groups utilized in central metabolism, including de novo purine biosynthesis,
dTTP formation, and methionine and glycine production™. DHFR is also an important target of
antifolate therapy by trimethoprim (TMP), a competitive inhibitor that binds with high specificity
to the active site of bacterial enzymes**. Additionally, comparative genomics studies have demon-
strated that HGT plays an important role in the evolution of the folate metabolic pathway, includ-
ing the spread of antifolate resistance?™. Moreover, DHFR is an essential enzyme in E. coli with
a relatively low basal expression level (approximately 40 copies per cell on average'*), and its activ-
ity is linked to bacterial fitness in a dosage-dependent manner™#7. As such, DHFR is a convenient
model to study the HGT-related fitness effects. We experimentally mimicked multiple HGT events
by replacing the fol 4 gene on the E. coli chromosome with its orthologs from 35 phylogenetically

diverse mesophiles. This collection of orthologs explores a broad distribution of protein sequences

and biophysical properties.

5.2 GROWTH RATES BEFORE AND AFTER EvOLUTION

We initially identified 290 orthologous DHFR sequences from mesophilic bacteria and selected
35 diverse sequences with amino acid identity to E. coli DHFR ranging from 29 % to 96 % (Figure

5.2). First, we sought to minimize the contributions from confounding factors that mostly affect
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transcription and translation of replaced genes, such as GC content’, codon-usage pattern *+*,

specific loci at which chromosomal incorporations occur, and the copy number of the transferred
genes"*7#. The amino acid sequences of the chosen 35 orthologous DHFRs were converted into
DNA sequences using the codon signature of E. coli’s fol A gene. We used the A-red recombination
system® to replace the open reading frame (ORF) of fo/A4 with the synthetic DNA sequences, while
preserving E. coli’s wild-type folA promoter. Thus, the resulting 35 strains carrying the orthologous
DHER gene replacements are identical with respect to the chromosomal location of the folA gene
and the mode of regulation of their DHFR expression. In addition, they have similar GC content
and codon usage signature.

We assayed the fitness of the resulting HGT strains by measuring their growth rates at 37 °C (this
condition was consistently used throughout the work). As shown in Figure 5.1b and Figure 5.2, We
found that E. coli fitness (here and below we use the terms fitness and growth rate interchangeably)
is very sensitive to the orthologous replacements of its DHFR. Growth rates are lower than wild-
type (WT) E. coli in 31 out of 35 strains, with six strains (DHFR-23, 35, 36, 37, 38 and 43; highlighted
in Figure s5.2) exhibiting a severe fitness loss of 70-85 %. DHEFR-21 (from W. paramesenteroides) did
not grow at all under the conditions of the experiments. Surprisingly, we found no significant cor-
relation between growth rates of the HGT strain and the evolutionary distance between DHFR
orthologs, measured as % of amino acid identity relative to E. coli DHFR (Spearman R = 0.16; p-
value = 0.4) (Figure s.3), thus, challenging the notion that sequence similarity between endogenous
and transferred genes facilitates horizontal gene transfer.

The high fitness cost of the orthologous replacements of E. coli DHFR demonstrates the exis-
tence of a molecular constraint (“a barrier”) to HGT. To determine whether the evolutionary pro-
cess can traverse this barrier, we conducted high-throughput serial passaging of the HGT strains
(Figure s.1a). Overall, we performed 31 passages which amount to approximately 6oo generations for
the WT strain. Growth rate measurements after the evolution experiment show that orthologous
strains have substantially improved their fitness (Figure 5.2). Moreover, about 30 % of the strains
grew as well as or better than WT after the evolution experiment (Figure s.1b and s5.2). The improve-
ment in growth rates was especially dramatic among strains that experienced the most severe fitness
loss upon HGT (DHFR-23, 35, 36, 37, 38 and 43; highlighted in Figure 5.2). Thus, the molecular
constraints to horizontal transfer of the DHFR coding genes were largely alleviated during experi-

mental evolution.
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Figure 5.2: Growth rates before and after evolution for each strain as a function of its DHFR'’s position in the phy-
logeny. Color scheme is similar to Figure 5.1b. Strains are sorted according to the phylogenetic tree on the left. On
the right we show an ID number for each strain (used throughout the text) and the original species carrying the DHFR

ortholog. We highlight in orange the ID numbers of strains that experience severe fitness drop (30 % and lower) upon

DHFR replacement. Error bars represent standard deviations of 4 independent measurements.
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Figure 5.3: Evolutionary distances of orthologous DHFRs, measured as % of amino acid sequence identities with re-
spect to WT E. coli DHFR. Sequence identities does not correlate with growth rates (a) before or (b) after evolution
(Spearman R and p-values are indicated). Ec (green) denotes the WT E. coli strain. Strains with severe fitness effects
are colored in orange. Dashed green lines are regression fits to all points. Excluding DHFR-37 in (a), there is still no cor-
relation between identify and growth rate (R = 0.06, p-value = 0.72; dotted line is the regression fit excluding DHFR-
37). Error bars represent standard deviations of 4 independent measurements.

5.3 EXPRESSION LEVELS

To determine how the effect of HGT percolates throughout the entire E. coli proteome, we ana-
lyzed the systems-level effect of inter-species DHFR replacements before and after the evolution
experiment. To that end, we quantified relative (to WT) abundances of approx. 2000 proteins in
the cytoplasm using tandem mass tags (TMT) with subsequent LC-MS/MS analysis, as described
in chapter 4. We picked five strains for proteomic characterization based on their fitness effect upon
HGT (Figure s.1b): DHFR-23, 35 and 38 (severely deleterious); DHFR-22 (mildly deleterious); and
DHFR-39 (beneficial). For reference, we compared the proteomic effects of orthologous replace-
ments with the proteomic effect of treating E. coli with 1 ug/mL of trimethoprim (TMP).
Following the analysis in chapter 4, we first checked the correlation between growth rates and
LRPA SDs. As shown in Figure 5.4, the correlation holds for most systems, except the DHFR-23
system upon HGT that shows a dramatic drop in growth rate but a mild perturbation level mea-
sured by the SD. Other nine systems, regardless of whether they are upon HGT or post-evolutionary,
follow the same trend well. Hence, we confirm that if a cell needs to change expression levels of its
genes more radically to buffer the impact of perturbation, the reduction of growth is larger, imply-
ing that the unperturbed E. coli system has an optimized cellular network to maximize its growth

rate.
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Figure 5.4: The SD of LRPA distribution is anti-correlated with the growth rate. Error bars on the y-axis correspond
to the SDs of four independent experiments. No error bar indicates that the corresponding SD is negligible. Red dots
indicate the data upon HGT, blue dots indicate the post-evolution data, and a yellow dot indicates the TMP data. The
purple line refers to the regression line, except the outliers (DHFR-23 upon HGT and TMP-treated WT).

5.4 SIMILARITIES OF PROTEOMES

For each of the > 2000 proteins detected, we quantified their enrichment using the logarithms of
relative protein abundances (LRPA) that are expressed as z-scores (see chapter 4). In Figure 5.5, we
show the correlation plots of the z-scores between proteomes. As expected for DHFR-35 and 38,
where HGT is severely deleterious, their proteomes strongly resemble the proteome of TMP-treated

—I0§

WT strain (R = 0.42, p-value = 9.5 X 10”74 and R = 0.50, p-value = 7.1 X 107", respectively). This
result suggests that the systems-level response to HGT of the DHFR genes is akin to response to
inactivation of the endogenous DHFR protein by TMP. Interestingly, despite significant evolution-
ary distance between the DHFR alleles from strains DHFR-35 and 38 (Figure 5.2), the correlation
between their proteomic profiles is significant (R = 0.84, p-value < 10™°°°). However, the proteome
of DHFR-23, another orthologous strain with a severely reduced growth, was not similar to the
TMP-treated WT proteome (R = 0.07, p-value = 0.0041), suggesting that, at least for some strains,
the systems-level response to the partial loss of DHFR function follows a different pattern. The pro-
teome of DHFR-22, a strain with moderately reduced fitness, was much less similar to the proteome
of TMP-treated WT (R = 0.30, p-value = 8.6 X 10~ ¥). The proteome of DHFR-39, one of the few
strains that grew better than WT upon HGT, bore no resemblance to TMP treatment (R = -o0.0s,
p-value = 0.026).

After the evolution experiment, the proteomic profiles of the strains lose their resemblance to
TMP-treated WT cells (Figure s.5), which reflects the alleviation of the detrimental effects of HGT.

Additionally, after the evolution experiment the proteomic profiles of the strains become more sim-
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Figure 5.5: z-scores correlation plots between proteomes of indicated DHFR orthologous strains (a) upon HGT and
(b) after evolution and WT strain treated with 1 ug/mL trimethoprim (TMP). The strains are representative of the
fitness effects upon HGT: DHFR-23, 35 and 38 are severely deleterious; DHFR-22 is mildly deleterious; and DHFR-
39 is beneficial (Figure 5.2). Global proteome quantification was obtained using LC-MS/MS analysis of TMT-labeled
proteomes (see chapter 4). The strains are sorted left to right according to decreasing similarity of their proteomes
upon HGT with that of TMP-treated WT cells.
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ilar (the increased correlations in inter-strain comparison in Figure s.5). In particular, although the
proteome of DHFR-23 is barely similar to DHFR-35 and 38 before the evolution experiment, it be-

comes much more similar to DHFR-35 and 38 after it.

5.5 FuncTioNAL PATHWAYS AND OPERONS

Next, we carried out a comparative analysis at the level of functional pathways and operons. Using
the functional and regulatory classification of genes by Khodursky and co-workers™ (see chapter 4),
we collected the gene groups that show significant regulations upon HGT (Figure 5.6a) and after
evolution (Figure 5.6b), compared to WT. As shown in chapter 4, upon a perturbation, cells first
reduce expression of the motility-related gene groups (motility, flagellum, flagella biosynthesis, and
fliA groups in Figure 5.6a). However, DHFR-23 and 39, whose proteomes show little similarities

to that of TMP-treated WT, regulate those groups in the opposite direction (up-regulation). Also,
upon severely deleterious point mutations, E. coli cells show down-regulation of translation-related
genes (see chapter 4), but it is apparently not the case for DHFR-22, 23, and 39. Rather, DHFR-23
and 39 showed strong up-regulation of translation-related genes. However, after serial evolution,
this strong distinction is lost (Figure 5.6b); DHFR-38, 35, and 22, which drastically repress expres-
sion of motility-related genes, now show up-regulation of those genes. Note that the proteomic
responses of DHFR-35 and 38 upon HGT and post-evolution are similar despite their evolutionary
distance (see Figure 5.2).

To systematically study the effect of evolution, we screened those that collectively changed their
abundances significantly during the evolution experiment, by employing the Kolmogorov-Smirnov
(KS) test. First, we determined the direction of adaptation by comparing the average z-values of the
naive and evolved proteome sets of a given gene group. If the average z-value increases, it means that
the cell evolved to increase expression levels of the gene group; otherwise, it decreased the expression
levels. Then, we applied the two-sample KS test on the two sets, which provides the p-value for the
null hypothesis that the two sets were drawn from the same distribution. Hence, we can quantita-
tively interpret a lower p-value as an indication that the two sets have more significantly different
distributions of z-values.

As shown in Figure 5.7, we found that the genes responsible for cell motility show the largest in-
crease in their abundances, which is notable, because it suggests that through the adaptation process,
HGT strains have eliminated the energetic burden which caused shutting down of cell motility in
the first place (Figure 5.6a). In the same vein, genes responsible for a number of metabolic processes

such as synthesis of amino acids and nucleotides as well as turnover of several metals show highly
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Figure 5.6: Statistical significance of variation for functional and regulatory classes of genes (a) upon HGT and (b) after
serial evolution. The color code indicates the direction of change (blue: down-regulation, red: up-regulation), and the
color depth indicates the logarithm of p-values against the null model of independent variation within a group of genes.
We showed only the gene groups whose change upon evolution experiment is significant for any strain (p < 109).
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significant changes between the naive and evolved strains.

5.6 CONCLUSION

In this chapter, we provided systems-level insight into the impact of HGT events and adaptation
of E. coli to overcome the impact. We focused here on xenologous transfer of DHFR coding genes,
one of common modes of HGT 7. The chromosomal gene replacements were done while preserv-
ing the endogenous promoter. Such an experimental design provided us with a direct control over
conditions of expression, enabling us to focus on the link between variation of sequence and the
proteome pattern due to HGT. We were able to purify 33 orthologous DHFRs and measure their
growth rates, which showed most of the replacements are detrimental immediately upon HGT.
However, the serial evolution experiment mostly recovers their growth rates.

The key finding of this work is that E. coli cells apparently discriminate between own and foreign
proteins. Upon HGT, the cells response to this event as a perturbation and show immediate adjust-
ment of protein expression levels, as they do in the case of DHFR point mutations and inhibition
by TMP (see chapter 4). However, when selective pressures act on the growth rates of the cells, af-
ter several hundred generations, the cells adapt themselves to the transferred gene by rewiring their
cellular networks. Restoration of growth rates show that this adaptation process is quite successful,
and the proteome patterns after evolution show that the reconstructed network structures are sig-
nificantly different from the original E. coli network structure, which is optimized to maximize the
growth rate of a normal E. coli cell.

Besides being relevant to understanding the evolutionary dynamics of HGT, our approach is
broadly applicable to the study of the genotype-phenotype relationship. While the concept of a
fitness landscape is dominant in evolutionary biology, it remains highly metaphoric as its “axes” re-
main unlabeled. A promising approach to map fitness landscape is by introducing “bottom up,”
controllable genomic variations that cause known changes of the molecular properties of pro-

11545140:88,28,29,% However, point mutations and/or random mutagenesis are limited in their

teins
ability to generate a broad variation of catalytic activities and other physical properties of proteins.
In contrast, “borrowing” highly diverged yet catalytically active orthologous proteins from other
species allows us to cover a broad range of variation of molecular properties of proteins. By system-
atically exploring the relationship between molecular properties of xenologously replaced proteins
and the fitness of corresponding cells, this approach provides an opportunity to quantitatively char-

acterize the global properties of fitness landscapes.
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Figure 5.7: Change in global variation in protein abundances induced by experimental evolution of the indicated or-
thologous strains calculated for functional and regulatory classes of genes. Color code indicates the logarithms of
p-values from the two-sample KS tests performed on pre- and post-evolution proteomes along with the direction of
change (blue: drop in abundance, red: increase in abundance). We plotted only the gene groups whose change upon
evolution experiment is significant for any strain (KS p-value less than 0.01).

70



Multi-Level Responses of Different Yeast
Strains to Heat Shock Protein Inhibition

6.1 BACKGROUND

GENETIC VARIATION WITHIN A SPECIES PRODUCES VARIOUS STRAINS, whose differences can
be identified at the genetic, proteomic, and cellular levels. Comparative study provides insight on
the detailed mechanism of how a small change at the genetic level can propagate through cellular
networks to drastically different phenotypes of organisms. The primitive comparison comes from
genomic sequence comparison>*?, but there is a gap in our understanding at the systems level.

In chapter 4, we developed statistical tools to analyze the systems-level responses of an E. coli
cell to various perturbations, and it was applied to investigate adaptation of E. coli to reduce the
impact of horizontal gene transfer in chapter 5. These works are focused on how a perturbation
affects mRNA and protein abundance profiles in a cell to change the growth rate. However, this
method can be used to compare two different strains.

In this chapter, we will use two different strains of yeast Saccharomyces cerevisiae as a model sys-
tem, and inhibit an essential heat shock protein to obtain their proteome fingerprints upon this
perturbation. Then, we will use different grouping methods to extract biological meanings and to

systematically analyze the difference in responses of different strains to the inhibition.
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6.2 RELATIVE PROTEIN ABUNDANCE DISTRIBUTION STATISTICS

The two different S. cerevisiae strains used in this work are a standard lab strain S288C (denoted

by BY) and a vineyard isolate RMii-1a (denoted by RM)*, which differ at approximately o.5 % of
their nucleotide sequences ®*. We treated both strains by radicicol of 5 ug/mL, which is dissolved in
dimethyl sulfoxide (DMSO). Radicicol (RAD) is known as a competitive inhibitor of Hspgo family
proteins™*. The Hspoo family proteins, among major heat-shock proteins, play an important role
as an evolutionary capacitor® and a hub regulator of protein homeostasis'**. Hence, inhibition

of Hspoo is expected to have a huge impact on the proteome, leading to a drastic change in cellular
traits. We prepared three independent replicates for each of RAD-treated BY and RM strains, and
as a control experiment, we also prepared two independent replicates for each of BY and RM strains
treated only with the solvent DMSO. We measured their relative protein abundances (RPAs) by
the TMT-MS techniques used in the previous chapters, and converted each PRA into its logarithm
(LRPA). The total number of detected proteins is 4,310.

As described in chapter 4, the standard deviation (SD) of an LRPA distribution (generated from
comparison between two proteomes) quantitatively captures how different one proteome distribu-
tion is from another. We first compared how different the replicates are from each other, to set the
natural noise level due to cell-to-cell variations and experimental errors (Figure 6.1, gray bars). The
average value of the noise levels is 0.042 (Figure 6.1, gray line).

Next, we checked the difference between the systems with and without RAD, and also the dif-
ference between two different strains. The LRPA values of each gene are averaged over biological
replicates to give a representative value, which was used to calculate the LRPA SD. As shown in Fig-
ure 6.1 (blue bars), the SD values are comparable to the average noise level, which implies that the
global effect of RAD on each proteome is negligible. In contrast, the difference between the BY and
RM strains is remarkable (Figure 6.1, red bars); the SD values are about three times as much as the
noise level.

To avoid possible confusion, let us here define the 4 different LRPA values for each gene g (see
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Figure 6.1: Standard deviations of LRPA distributions. Gray bars indicate comparisons between biological repeats of
one strain in the same experimental condition (e.g., the first bar compares two replicates of the BY strain without RAD
treatment), and they provide the noise level. The average noise level is shown as a gray line. Blue bars show the effect
of RAD on two strains, and red bars show the strain differences at the given treatment. For blue and red bars, the
average LRPA value (over replicates) for each gene is used to calculate LRPA SDs. (For rigorous definitions of LRPAs,
see equations 6.1-6.4 in the text.) The LRPA SDs between RAD-treated and untreated strains (either BY or RM) are
close to the noise level (blue bars), implying that the global impact of RAD treatment on the proteome is not significant.
However, the LRPA SDs between different strains (regardless of RAD treatment) are significantly higher than the noise
level (red bars), and it suggests that there is a global difference between the proteomes of the two strains.

equation 4.3 in chapter 4):

Nprorein (g; BY, RAD+DMSO)
Nprotein (g; BY, DMSO) ’
Nprotein (¢ RM, RAD+DMSO)

LRPA(g; BY) = log (6.1)

LRPA(;; RM) = o , 6.2
(& R 8" Nprorcin (& RM, DMSO) (62
Nirotein (¢; BY, RAD+DMSO)
LRPA(¢5; RAD+DMSO) = log — oo’ =2 6.
(g RAD+ ) %% Npsorcin (¢; KM, RAD+DMSO) (63)
Nrotein (¢; BY, DMSO
LRPA(z; DMSO) = log procein (¢ ) (6.4)

Nprotein (g; RM, DMSO) '

In other words, LRPA(g; BY) represents the expression level difference of gene g between the BY
strains with and without RAD, LRPA(g; RM) that of gene g between the RM strains with and
without RAD, LRPA(g; RAD) that of gene g between the RAD-treated BY and RM strains, and
LRPA(g; DMSO) that of gene g between the BY and RM strains grown in the media containing
DMSO without RAD.
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6.3 2z-SCORE DISTRIBUTIONS

In order to compare different proteomes, we transformed the LRPAs into their corresponding z-
scores, according to the following equation (see equation 4.5 in chapter 4):
LRPA(g; c) — (LRPA(c))
a(g o) = S %, (6:5)

TLRPA(c)

where LRPA(g; ¢) is the LRPA of gene g with control variable ¢ (as defined in the previous section),
(LRPA(c))g and oy rpa(c) respectively indicate the arithmetic mean and standard deviation of the
LRPA distribution with control variable c. Note that z-scores are extracted from comparison be-
tween two different systems. For example, z(g; BY) indicates the relative expression level difference
of gene g between the BY strains with and without RAD treatment (equation 6.1), and z(g; DMSO)
indicates the relative expression level difference of gene g between the BY and RM strains grown in
the media containing DMSO but not RAD (equation 6.4).

Figure 6.2a shows the correlation between the z(g; BY) distribution and z(g; RM) distribution,
which compares the reactions of the two strains to the RAD inhibition. Pearson’s correlation co-
efficient R is 0.50, which is not extremely high, implying that there are some different systems-level
responses to the drug between the BY and RM strains. However, if we compare two experimen-
tal conditions (RAD+DMSO and DMSO only), R becomes 0.96, which suggests that most of the
proteome-level differences between the two strains are conserved even after addition of RAD (Fig-
ure 6.2b).

We checked the 2(g; DMSO+RAD) distribution to study differences between the BY and RM
strains under the same experimental condition, which is the RAD treatment. (As Figure 6.2b im-
plies, the z(g; DMSO) and z(g; DMSO+RAD) distributions have very similar profiles, so it would
be sufficient to investigate the DMSO+RAD case only.) We grouped the genes according to their
Gene Ontology (GO) terms, which contain detailed information about biological process, molec-
ular function, and/or cellular component each gene is involved in”. Each GO term group has the
number of members (genes) and their average z-score, from both of which we can calculate the p-
value that shows if the difference in the gene group between the two strains is significant or not (see
chapter 4). We removed redundant groups by considering the hierarchical structure of GO term an-
notation. If two GO term groups share the same gene members and one GO term among the two is
a broader term that contains another, we remove the former, to obtain GO terms as specific as pos-
sible. If there is no direct hierarchical relationship between the two groups with the same members,

we keep both, since the two GO terms would deliver different information.
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Figure 6.2: z-Score correlations. Red lines indicate the y=x lines. (a) Correlation between BY and RM strains in terms
of their responses to RAD (comparing the RAD+DMSO and DMSO-only conditions). (b) Correlation between two ex-
perimental conditions (RAD+DMSO, DMSO only) in terms of strain differences (comparing BY and RM). See equations
6.1-6.4 inthe text.

Figure 6.3 shows top 30 GO term groups that are significantly more expressed in the BY strain
than in the RM strain when both strains are under the RAD treatment, according to their p-values.
Similarly, Figure 6.4 shows top 30 GO term groups more expressed in the RM strain. We filtered
out the groups with 10 or less genes to reduce biological noises. Notably, proteins involved in crucial
pathways (e.g. translation, electron transport chain, secretion pathway) and organelles (e.g. mito-
chondria, ribosome, vacuole) have drastically different expression levels in the two strains, suggest-
ing that the unexpectedly large variation between the proteomes of the BY and RM strains (Figure

6.2a) originates from rewiring of “modules” on cellular networks, not individual genes or proteins.

6.4 PROTEOME-LEVEL DIFFERENCES IN RESPONSES TO RaDICICOL

Considering the significant systems-level difference between the BY and RM strains, there might
be some pathways that show different dynamics upon perturbations between the two strains. To
investigate this, we studied the genes in the z(g; BY) and 2(g; RM) distributions by grouping them
according to their GO terms and calculating the p-values of the groups, as done in the previous sec-
tion.

Since we are interested in the difference between the two strains, we define a single measure
D(G), that shows how much different the behaviors of a GO term group G are in the BY and RM

strains:

D(G) = —sgn({2)pv) log(papy) + sgn((2)c,rm) log(pc,rm); (6.6)

75



autophagy (26}
vesicle-mediated transport (185) :
hydrolase activity (663)
glycolytic process 1(21)
vacuolar part (82)
vacuole (75)
Golgi vesicle transport (92)
secretion by cell (60) :
obsolete secretory pathway (39)
cellular response to starvation (13)
establishment of localization in cell 373) :
pyruvate metabolic process 27)
transport (663)
intracellular transport (353)
membrane invagination (19)
cellular localization (212)
storage vacuole (49)
lytic vacuole (49)
localization (714)
amine metabolic process (23)
membrane docking (14)
establishment of localization (679)
inorganic anion transport (11)
cellular response to nutrient levels (18)
response to nutrient levels (19)
post-Golgi vesicle-mediated transport (29)
anion transmembrane transport (27)
single-organism localization (515)
heterochromatin organization (12)
chromosomal region (36) : : :
1 102 10 10° 108 107 <1012

p-value
Figure 6.3: Top 30 GO term gene groups that are significantly more expressed in the BY strain than in the RM strain

when both strains are treated by RAD. Each bar indicates the p-value of each GO term group, and the number of mem-
bers is given in parentheses. The groups with at least 11 genes are only shown.
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Figure 6.4: Top 30 GO term gene groups that are significantly more expressed in the RM strain than in the BY strain
when both strains are treated by RAD. Each bar indicates the p-value of each GO term group, and the number of mem-
bers is given in parentheses. The groups with at least 11 genes are only shown. The first GO term group “mitochondrial
part” has the p-value of 2.5 X 102!, which exceeds the upper limit of the x-axis.
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where sgn(x) indicates the sign of x, and (z) s indicates the arithmetic mean of z(g; S) values in
group G, whose p-value is denoted by pg 5. Hence, if the two strains regulate the gene group G sig-
nificantly in different directions, | D(G)| is amplified, but if they move in concert, their significances
cancel each other. The sign of D(G) shows which strain regulates the gene group more significantly
(positive: BY, negative: RM).

Comparing this D(G) and the “unperturbed” difference (difference between the BY and RM

strains with no RAD treatment)

Do(G) = —Sgn(<Z>G,DMso) IOg@G,DMso)7 (6~7)

we found an interesting anti-correlation (Figure 6.5), where we only used non-redundant GO term
groups whose sizes are greater than ro. This significant anti-correlation indicates that the BY and
RM strains react to the inhibition of an essential heat shock protein by reducing the proteomic dif-
ference between the two strains. To obtain a more detailed picture, we collected four types of GO

term groups:

1. the gene groups with pg gy < 0.05, pgrm < 0.0s, and the same signs of average z-scores

(significant and consistent regulations upon the RAD treatment for both strains),

2. the gene groups with pg gy < 0.05, pg rm < 0.0s, and the opposite signs of average z-scores

(significant and opposite regulations upon the RAD treatment for the two strains),

3. the gene groups with pg gy < 0.05and pg rm > 0.05 (significant regulations upon the RAD

treatment only for the BY strains), and

4. the gene groups with pg gy > 0.05and pg rm < 0.05 (significant regulations upon the RAD

treatment only for the RM strains).

The gene groups of type 1, on whose genes there are significant and consistent regulations upon
the RAD treatment for both BY and RM strains, are shown in Figure 6.6. Unsurprisingly, the genes
related to the function of Hspgo are all up-regulated: protein folding, response to temperature stim-
ulus, response to heat, unfolded protein binding, and protein refolding. Especially, the HSP8z and
HSC82 genes, which encode the Hspoo proteins in S. cerevisiae, are annotated with GO terms “pro-
tein folding” and “unfolded protein binding” but not the other three, showing that the drive is not
solely due to the strong up-regulation of HSP§2 or HSCSz.

There is no group of type 2, and the gene groups of type 3 are shown in Figure 6.7a. The most

significant regulation is observed for the genes responsible for mitochondrial constituents. It has
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Figure 6.5: The correlation between the unperturbed inter-strain difference DO(G) and the difference in the reac-
tions of the BY and RM strains to the RAD treatment D(G) (see text for the definitions). The red line indicates the
regression line. If a gene group is significantly more expressed in the BY strain, it is more likely that upon the RAD
treatment, the RM strain up-regulates the group (or the BY strain down-regulates it, or both) to reduce the difference
of the average expression levels of the gene group in the two strains.

been known that in human cancer cells the genes responsible for mitochondrial constituents are
highly expressed when Hspgo proteins are inhibited *>°4. Here, only the BY strain shows this behav-
ior, and this is presumably because the RM strain already has a sufficient number of mitochondrial
genes (Figure 6.4) that it can absorb the impact of the RAD inhibition.

As shown in Figure 6.7b, among the gene groups of type 4, the most significantly down-regulated
are the genes responsible for various aspects of membrane components, which are more expressed
in the RM strain than the BY strain (Figure 6.4). Again, the membrane-related genes have higher
expression levels in the RM strain than in the BY strain, and upon the perturbation, the RM strain
reduces their expression levels while the BY strain shows no significant regulation on them, so that
the difference between the two strains is reduced. This also happens to the ribosome-related gene
group (compare Figures 6.4 and 6.7b).

In summary, if a gene group is significantly more expressed in the BY strain than in the RM
strain, it is more likely that upon the RAD treatment, either the RM strain up-regulates the group
or the BY strain down-regulates it, to apparently reduce the difference of the average expression lev-
els of the gene group in the two strains. It also holds for the gene groups that are significantly more

expressed in the RM strain.
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Figure 6.6: The GO term gene groups that show significant and consistent regulations upon the RAD treatment for
both BY and RM strain. The hue of color indicates the direction of regulation upon the RAD treatment (red: up-
regulation, blue: down-regulation), and the saturation of color provides the p-value. The groups is sorted according
to the geometric mean of two p-values.
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Figure 6.7: The GO term gene groups that show significant regulations upon the RAD treatment (a) only for the BY
strain and (b) only for the RM strain. The hue of color indicates the direction of regulation upon the RAD treatment
(red: up-regulation, blue: down-regulation), and the saturation of color provides the p-value. The groups are sorted
according to the p-values, and only top 25 groups are shown for each panel.
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6.5 PHENOTYPE-LEVEL DIFFERENCES IN RESPONSES TO RaDICICOL

As discussed so far, the BY and RM strains show non-identical responses to the RAD treatment at
the systems level (due to their different “unperturbed” proteome patterns), so as a consequence, the
two strains might show some different cellular level traits under certain conditions. To investigate
this, we grouped the genes according to their phenotypes. We employed the phenotypic curation
data provided by the Saccharomyces Genome Database (SGD)#7, which provides information about
phenotypes due to single point mutations on the target gene. For example, the HSP82 gene is an-
notated with the phenotypes such as decreased budding index, decreased competitive fitness, and
increased heat sensitivity.

Similarly to the previous section, we used the z(g; BY) and 2(g; RM) data and calculated the av-
erage g-score and p-value for each phenotypic gene group. Again, the sign of the average z-score in-
dicates the direction of regulation due to the RAD treatment (up- or down-regulation), and the
p-value indicates the statistical significance of the difference. Also, using the classification scheme
for gene groups introduced in the previous section, we collected phenotypic gene groups of types
3 and 4; the former corresponds to the gene groups whose regulation upon the RAD treatment is
significant only for the BY strain, and the latter those whose regulation is significant only for the
RM strain. Note that there was no phenotypic gene group of type 2, whose members the two strains
significantly regulate in opposite directions. Figure 6.8 shows the phenotypic gene groups of type 3,
while the phenotypic gene groups of type 4 are shown in Figure 6.9. Here, we only present the gene
groups whose sizes are greater than 1o0.

Although it is not easy to explain all these behaviors in terms of the systems-level changes, there
are a few points to note. First, the genes responsible for phenotype “mitochondrial genome main-
tenance” are strongly up-regulated after the RAD treatment in the BY strain, while this behavior is
invisible in the RM strain. This is consistent with the systems-level behavior of mitochondrial genes,
as discussed in the previous section. The phenotypic group for “autophagy” is slightly up-regulated
only in the RM strain, and this can be explained by already high expression levels of autophagy-
related gene groups in the BY strain (Figure 6.3).

6.6 CONCLUSION

Despite the small difference at the genomic level, the BY and RM strains of S. cerevisiae show rather
significant differences at the proteomic level in responses to inhibition of a crucial heat shock pro-
tein. The inhibition itself does not perturb the proteomes much (the SD of LRPA does not increase

much), but some functional and constitutional gene groups are drastically affected by the pertur-
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Figure 6.8: The phenotypic gene groups that show significant regulations upon the RAD treatment only for the BY
strain. The hue of color indicates the direction of regulation upon the RAD treatment (red: up-regulation, blue: down-
regulation), and the saturation of color provides the p-value. The chemicals added to the experimental system are
noted in parentheses. The groups are sorted according to their p-values.
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Figure 6.9: The phenotypic gene groups that show significant regulations upon the RAD treatment only for the RM
strain. The hue of color indicates the direction of regulation upon the RAD treatment (red: up-regulation, blue: down-
regulation), and the saturation of color provides the p-value. The chemicals added to the experimental system are
noted in parentheses. The groups are sorted according to their p-values.
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bation. In order to investigate their behaviors systematically, we employed two different grouping
methods, one using the GO annotation and another using the SGD phenotype annotation.

The GO annotation grouping provides insight on various gene groups at diverse levels of biol-
ogy. The most striking feature found by this analysis is that the response of each strain to the per-
turbation tends to decrease the difference between the two strains. It implies that the proteomic
patterns of different strains to address the stress are rather similar, suggesting that these patterns
were conserved well during evolutionary adaptation processes. This is presumably because the stress
response modules are crucial for survival of biological systems, as cell stress response pathways are
well conserved among different biological kingdoms®**.

Although the relationship between the GO term groups and phenotype term groups is not trivial
except for a few cases, the phenotypic grouping complements the bottom-up approach of the pro-
teomic analysis, helping the design of experiment to reveal the difference between the two strains, in
responses to the crucial perturbation. We hope that the current analysis and its data will be used to

inspire new experiments that provide full understanding on strain differences.
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The //.—Potential for Protein-Protein

Interactions

The u-potential is a mean-field knowledge-based potential that assigns a negative (attractive) en-
ergy score for a frequent contact and a positive (repulsive) score for an infrequent one, where the
frequency is determined statistically from a large data set”°. This potential captures the elements of
positive and negative design into the scoring function, and it has been reported several times that the
potential successfully predicts folded protein structures 25145146143 Tn this appendix, we will show
that the u-potential can be used to predict binding, since the positive and negative design principle is
also intrinsic in a protein-protein interaction (PPI).

The u-potential contact energy of atom types A and B is defined as

. _{"ZPNIZ\B"‘(I_M) ZPNIZB

EB_ < ’
B U, Ny (- ) X, N

(A.)

where Ni and N5 are the numbers of AB pairs in protein complex p that are in contact and that
are not in contact, respectively. Atoms A and B are counted only when they are on the surfaces of
different chains. To determine whether a residue is on the surface of the protein chain, we calculated
its accessible surface area (ASA) using the Shrake-Rupley algorithm™ implemented in ASA.PY (see
chapter 2). This ASA was normalized to the ASA of the same residue in an Ala-X-Ala motif™°. The
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residue and its constituent heavy atoms are considered to be on the surface when the normalized
ASA value exceeds 20 %.

We used the atom-typing scheme developed in a previous study*, augmented by s more atom
types for backbone N, a-C, carbonyl C and O atoms, as well as glycine a-C atoms. Two atoms are
considered to be in contact if the interatomic distance is less than 10 A. This choice of cutoff is mo-
tivated by the Debye screening length in physiological salt concentrations of 100 mM. Hydrogen
atoms are ignored. We used 888 non-redundant protein heterodimers extracted from PDBePISA 73
to compute ZP NiB and ) " ZNV‘ZB. The parameter w is set to be 0.9906 to make the average interac-
tion over all different types of atomic pairs to be zero, in order to maximize the energy gap between a
native docked state and other unstable states. The total contact energy of a PPI system is computed

from a simple sum of pairwise u-potential energies,

Econtact - Z EA:.A]’H (AZ)
i<y
in contact
where 4* is the atom type of surface atom 7 on component .

An immediate sanity check is the ability of the potential to distinguish between real protein com-
plexes from decoys. We prepared a non-redundant test set of 292 protein dimers from PDBePISA 7,
and two decoy sets by 41 protein dimers from DOCKGROUND. One of the decoy sets consists
of dimers whose fraction of correct contacts, £, is close to 0.5, while the other decoy set has f ~ o.
The trained u-potential contact energy is shown to have a discriminative power between native pro-
tein complexes and protein complex decoys (Figure A.1). The two-sample Kolmogorov-Smirnov
test gives a p-value against the null hypothesis that the data from two sample sets originate from the
same distribution; comparison of the training and test sets gives p = 0.31 (implying that the two
sets are from the same distribution), while comparison of the training set and other two decoy sets
yieldsp = 4.1 X 107%,andp = 5.3 X 10 for the decoy sets with f = o.5and f = o.0, respec-
tively. Therefore, the u-potential is capable of discerning decoy protein complexes from real protein

complexes.
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Figure A.1: u-Potential energy distributions of native and decoy protein sets. Two non-redundant sets of native pro-
tein dimers, the training (888 dimers) and the test (292 dimers) sets, are independent to each other. They show almost
perfect convergence (p-value = 0.31). Two decoy sets are different by theirfvalues, a fraction of the number of correct
contacts to a total number of contacts, showing that the distribution deviates from the native protein distribution as
the number of incorrect contacts increases. The bin size is 300 arbitrary units (a.u.).
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