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Abstract

In recent years, two-dimensional electron systems have played an integral role at the forefront of

discoveries in condensed matter physics. These include the integer and fractional quantum Hall ef-

fects, massless electron physics in graphene, the quantum spin and quantum anomalous Hall effects,

and many more. Investigation of these fascinating states of matter brings with it surprising new re-

sults, challenges us to understand new physical phenomena, and pushes us toward new technological

capabilities. In this thesis, we describe a set of experiments aimed at elucidating the behavior of two

such two-dimensional systems: the quantumHall effect, and the quantum spin Hall effect.

The first experiment examines electronic behavior at the edge of a two-dimensional electron system

formed in a GaAs/AlGaAs heterostructure, under the application of a strong perpendicular magnetic

field. When the ratio between the number of electrons and flux quanta in the system is tuned near

certain integer or fractional values, the electrons in the system can form states which are respectively

known as the integer and fractional quantumHall effects. These states are insulators in the bulk, but

carry gapless excitations at the edge. Remarkably, in certain fractional quantum Hall states, it was

predicted that even as charge is carried downstream along an edge, heat can be carried upstream in a

neutral edge channel.

By placing quantum dots along a quantumHall edge, we are able to locally monitor the edge tem-

perature. Using a quantum point contact, we can locally heat the edge and use the quantum dot

thermometers to detect heat carried both downstream and upstream. We find that heat can be carried

upstreamwhen the edge contains structure related to the ν = 2/3 fractional quantumHall state. We
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further find that this fractional edge physics can even be present when the bulk is tuned to the ν = 1

integer quantum Hall state. Our experiments also demonstrate that the nature of this fractional re-

construction can be tuned by modifying the sharpness of the confining potential at the edge.

In the second set of experiments, we focus on an exciting new two-dimensional system known as

a quantum spin Hall insulator. Realized in quantumwell heterostructures formed by layers of HgTe

and HgCdTe, this material belongs to a set of recently discovered topological insulators. Like the

quantumHall effect, the quantum spinHall effect is characterized by an insulating bulk and conduct-

ing edge states. However, the quantum spin Hall effect occurs in the absence of an external magnetic

field, and contains a pair of counter propagating edge states which are the time-reversed partners of

one another. It was recently predicted that a Josephson junction based around one of these edge states

could host a new variety of excitation called a Majorana fermion. Majorana fermions are predicted to

have non-Abelian braiding statistics, a property which holds promise as a robust basis for quantum

information processing.

In our experiments, we place a section of quantum spinHall insulator between two superconduct-

ing leads, to forma Josephson junction. BymeasuringFraunhofer interference, we are able to study the

spatial distribution of supercurrent in the junction. In the quantum spin Hall regime, this supercur-

rent becomes confined to the topological edge states. In addition to providing a microscopic picture

of these states, our measurement scheme generally provides a way to investigate the edge structure of

any topological insulator.

In further experiments, we tune the chemical potential into the conduction band of the HgTe

system, and investigate the behavior of Fraunhofer interference as a magnetic field is applied parallel

to the plane of the quantum well. By theoretically analyzing the interference in a parallel field, we

find that Cooper pairs in the material acquire a tunable momentum that grows with the magnetic

field strength. This finite pairing momentum leads to the appearance of triplet pair correlations at

certain locations within the junction, which we are able to control with the external magnetic field.
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Ourmeasurements and analysis also provide amethod to obtain information about the Fermi surface

properties and spin-orbit coupling in two-dimensional materials.
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1
Introduction

1.1 Electrons in two dimensions

Two-dimensional electron systems occupy a central position in condensed matter physics,
and for good reason. A vast array of interesting behaviors are possible when electrons are confined
to a plane, depending on many factors such as their crystalline environment, the electron density, the
presence of external electric or magnetic fields, and electron-electron interactions. This diversity of
possibilities opens the potential to realize new states of matter, discover exciting physical phenomena,
and imagine devices which previously were not possible. The exploration of such an immense space
of possibilities is uniquely facilitated in two dimensions, where a variety of rather simple experimental
inputs provide a large degree of control.

Because a two-dimensional electron system (2DES) is planar, it is possible to alter the electron den-
sity electrostatically by placing a metal gate over the sample. Then the behavior of the system can be
explored over a range of electron density. By patterning the gates using nanolithography techniques,
it is even possible to realize structures such as quantum point contacts (QPCs) and quantum dots
(QDs) inside a 2DES. These basic structures are interesting in their own right, allowing investigation
of one-dimensional electron physics [117] or precise control over a small number of electrons [108].
Moreover, it is possible to use such structures as tools to probe the physics of their parent 2DES. For
example, one can use a QPC to locally inject charge into a 2DES and quantum dots can in principle
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function as electrometers, spectrometers, or thermometers.
Another benefit of 2DESs is that external magnetic and electric fields can be used to significantly

manipulate the system. In two dimensions, applying a perpendicular magnetic field discretizes the
spectrum of the system into a series of energy levels known as Landau levels. The physics associated
with these levels is fascinating and can provide a window into the properties unique to a given system.
Since the 2DES is a planar system, it is also possible to place metal gates on either side of the 2DES
with relatively small spatial separation. Then, one can experimentally apply significant electric fields
perpendicular to the system without the need for excessive voltage applied to the gates. Depending
on the particular system under consideration, such an electric field can have profound effects on the
electronic structure [73, 124].

Even with these powerful tools for manipulating the behavior of a two-dimensional electron sys-
tem, there remains a striking diversity of behavior. As alluded topreviously, these behaviors dependon
many factors. For example, in graphene, a two-dimensional honeycomb lattice of carbon atoms, the
electronic spectrum is gapless and disperses linearly with momentum [87]. In contrast, semiconduct-
ing heterostructures such as GaAs/AlGaAs quantumwells have a band gap and parabolic dispersion.
In both of these systems, application of a magnetic field perpendicular to the system leads to a diverse
variety of states known as the quantum Hall effect, with the underlying properties of each material
influencing the detailed nature of these states.

In this thesis, we describe a set of experiments aimed at elucidating the behavior of two different
two-dimensional systems: the quantum Hall effect in GaAs/AlGaAs quantum wells, and the quan-
tum spinHall effect inHgTe/HgCdTequantumwells. Both of these are examples of a class ofmaterial
called a topological insulator. Topological insulators are characterized by an energy gap in bulk of the
material, while the boundary contains gapless conducting states. In two dimensions, these boundary
states consist of one-dimensional channels with unique electronic properties. As we will see through-
out this thesis, the edge states of a two-dimensional topological insulator are a fruitful ground for
investigating new physical phenomena.

In the following chapters, we will explore the physics underlying the quantumHall effect and the
quantum spin Hall effect, as well as the techniques we have used in order to control and investigate
their behavior. The following is a brief overview of the contents of each chapter.

1.2 Organization of this document

In Chapter 2, we review the physics which arises when a strongmagnetic field is applied perpendicular
to the plane of a 2DES.When the ratio between the number of electrons and flux quanta in the system
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is tuned near certain integer or fractional values, the electrons in the system can form states which are
respectively known as the integer and fractional quantum Hall effects. We review the single-particle
physics behind the integer quantum Hall effect, followed by an overview of the fractional quantum
Hall effect. In particular, we describe the formation of a neutral mode at the edge of the ν = 2/3

state. Reconstruction of quantumHall edges due to electrostatic screening is also discussed.
Chapter 3 describes our study of the edge of a quantum Hall system, realized in a heterostructure

composed of layered GaAs and AlGaAs. Using a quantum point contact, we are able to inject charge
into the outermost component of a quantum Hall edge. Using a local measurement of the down-
stream chemical potential, we find that physics associated with the ν = 2/3 fractional quantumHall
effect can exist even when the bulk of the 2DES is tuned into an integer quantumHall state. By plac-
ing quantum dots along the edge, both downstream and upstream of the quantum point contact, we
are able to monitor how heat is carried by the quantumHall edge states.

Chapter 4 contains an overview of a recently discovered topological insulator, the quantum spin
Hall insulator. We provide a general overview of the quantum spin Hall effect, and how this effect
arises in quantum wells composed of a layer of HgTe sandwiched by layers of HgCdTe. We exam-
ine the model proposed by Bernevig, Hughes, and Zhang, which predicts that this material should
become a quantum spin Hall insulator when the well width exceeds 6.3 nm. Following this, we re-
view several experiments which have elucidated the nature of charge transport in the quantum spin
Hall effect. Finally, we discuss an exciting theoretical proposal, in which coupling superconductors
to the quantum spinHall edge leads to the appearance of new topological excitations calledMajorana
fermions.

In Chapter 5, we present experiments in which a section of HgTe quantum well is placed between
two superconducting leads to form a Josephson junction. Using Fraunhofer interferometry, we are
able tomonitor the spatial distribution of supercurrent in the quantumwell. In wells that are 7.5 nm
wide, we find that supercurrents are confined to the sample edges as the bulk density is depleted using
a top gate, as expected for a quantum spin Hall insulator. Our interference measurements provide
microscopic information about the quantum spin Hall edge states. We also examine the behavior
when the quantum well width decreases to 4.5 nm, in which case the edge supercurrents cannot be
distinguished from those in the bulk.

Chapter 6 details further experiments on Josephson junctions based around HgTe quantum wells
wider than 6.3 nm, and with the chemical potential tuned into the conduction band. In these exper-
iments, application of a magnetic field in the plane of the system leads to an unusual evolution of the
Fraunhofer interference. Based on our measurements and theoretical analysis, we find that Cooper
pairs in the quantum well acquire a tunable momentum that grows with the magnetic field strength.
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This finite momentum shift leads to triplet pairing of electrons at certain locations within the junc-
tion, which we are able to control with the external magnetic field. The details of the interference
behavior provide ameans to probe the nature of spin-orbit coupling within the quantumwell, as well
as a measure of geometric properties of the junction. The density dependence of our measurements
also allows us to extract the value of g̃/vF , where g̃ is the effective g-factor and vF is the Fermi velocity.

4



2
QuantumHall effects in GaAs quantum

wells

2.1 Two-dimensional electron system in GaAs quantumwells

When a system of electrons is confined in one direction (say, the z direction) but free to move in the
remaining directions (x and y), it is referred to as a two-dimensional electron system (2DES). This is
the situation that one encounters in certain layered semiconductor heterostructures, where bandgap
engineering in the z direction is used to confine electrons. A particularly clean 2DES arises in het-
erostructures in which a layer of GaAs is sandwiched by layers of AlGaAs. Since the conduction band
of GaAs typically lies approximately 300meV below that of AlGaAs[23], such a heterostructure ap-
proximately realizes a square well confinement in one spatial direction.

Numerous technological advances over the preceding decades have made it possible for the GaAs/
AlGaAs 2DES to achieve electron mobilities exceeding 30 × 106 cm2/Vs, a feat which has yet to be
surpassed by any other 2DES.Many of these developments, including in some cases their experimental
benefits and pitfalls, are described in [23, 66, 92].

In order to understand the basic properties of a 2DES, it is often a good approximation to ignore
electron-electron interactions. In this case one can treat each electron individually, so that the Hamil-
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tonian for a single electron is written as

H = − ℏ2

2m
∇2 + V (z). (2.1)

Here V (z) is the confining energy, and m is the effective mass of electrons. When we solve the
Schrödinger equation with this Hamiltonian, we find solutions with energies equal to

Ei(kx, ky) = Ei +
ℏ2

2m

(
k2x + k2y

)
. (2.2)

The index i labels different quantum well states, or sub-bands. For convenience, we set the energy
of the lowest sub-bandE1 = 0. In a systemwith in-plane dimensionsLx×Ly , the in-planemomen-
tum will take discrete values ℏk⃗ = ℏ

(
2πNx
Lx

,
2πNy

Ly

)
, whereNx andNy are integers. Here we have

assumed periodic boundary conditions.
Due to Pauli exclusion, each of the states described above can only be occupied by two electrons

with opposite spin. At zero temperature, in a 2DES with areal density n, states will be occupied from
the lowest energy up to a maximum energy called the Fermi energyEF = ℏ2k2F /2m. Here we have
also defined the Fermi momentum ℏkF , the maximum occupied in-plane momentum. It is straight-
forward to show that the Fermi wave vector and density are related by kF =

√
2πn, and that the

density of states is independent of energy and equal to g(E) = m
πℏ2 (see Figure 2.2). As long as the

Fermi energy and temperature are both small compared to the sub-band splittingE2−E1, it remains
valid to treat the system as effectively two-dimensional. One can easily verify that these conditions are
satisfied under typical experimental conditions (see [79], for example).

In the following sections we will review the response of a 2DES to a magnetic field applied in the z
direction. We will find that the application of a strong magnetic field not only strongly modifies the
properties derived above, but also leads to many new and unexpected behaviors.

2.2 Integer quantumHall effect

In 1980, von Klitzing, Dorda, and Pepper reported measurements on a 2DES located within a silicon
metal-oxide-semiconductor field-effect transistor [115]. They applied a strong magnetic field (18 T)
oriented perpendicular to their Hall-bar device (shown in Figure 2.1), and varied the electron density
in the device using a top gate. By doing this they were able to make two striking observations. First,
under the strong magnetic field the Hall resistance Rxy evolved through many precisely quantized
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Figure 2.1: Observation of the integer quantumHall effect, from [115]. Under a perpendicular magnetic field of 18 T,

sweeping the voltage on a top gate causes the Hall resistance to evolve through a series of plateaus given byRxy =
h

Ne2 (N is an integer). Plateaus inRxy are associated with zeros in the longitudinal resistanceRxx .

plateaus, given by

Rxy =
h

Ne2
, (2.3)

where N is an integer (hence the name integer quantum Hall effect). A given plateau Rxy = h
Ne2

occurred in the vicinity of ν = n
B/Φ0

= N , where the number ν is equal to the ratio between the
electron number and the number of flux quanta penetrating the 2DES. The second important obser-
vation was that when the Hall resistanceRxy was on a quantized plateau, the longitudinal resistance
Rxx was found to be zero. The measurement of zero longitudinal resistance indicates that transport
associated with the quantized plateaus occurs without dissipation.
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2.2.1 Landau levels

To understand the integer quantum Hall effect (IQHE), we must analyze the behavior of a 2DES
under a perpendicular magnetic field B⃗ = Bẑ. This problem is greatly simplified by neglecting in-
teractions between electrons, so that one need only consider one electron at a time. TheHamiltonian
for an electron confined to two-dimensions, under a perpendicular magnetic field, is:

H =
1

2m

(
p⃗+ eA⃗

)2
. (2.4)

Here, the charge of an electron is −e, and we use the kinetic momentum p⃗ + eA⃗. To solve the
Schrödinger equation, we must choose a gauge. A commonly used gauge is the Landau gauge:

A⃗ = B (−y, 0, 0) (2.5)

which gives B⃗ = ∇ × A⃗ = Bẑ. Already we can see that because the vector potential is linear in
the spatial coordinate y, this system should in essence behave as a harmonic oscillator. Substituting
equation (2.5) into equation (2.4), we find:

H =
p2y
2m

+
1

2m
ω2
c

(
y − l2Bkx

)2
. (2.6)

Here we have made the substitution px = ℏkx, since the Hamiltonian commutes with px. We have
also defined the cyclotron frequency ωc =

eB
m and the magnetic length lB =

√
ℏ
eB . Equation (2.6)

indeed has the form of a harmonic oscillator, with the y position shifted by the distance l2Bkx.
When we solve the Schrödinger equation with the Hamiltonian in equation (2.6), the solutions

have the standard energy eigenvalues of a quantum harmonic oscillator:

E(N, kx) =

(
N +

1

2

)
ℏωc. (2.7)

In effect, the perpendicular magnetic field quenches the kinetic energy of electrons, reducing the den-
sity of states to a set of equally spaced levels, often referred to as Landau levels (Figure 2.2). TheLandau
levels are highly degenerate, with different eigenstates within a level having different quantum num-
bers kx. Within a Landau level, the degeneracy per unit area is equal to 1/2πl2B = B/Φ0

1. In other
words, there is one state per flux quantumΦ0 = h/ewithin any given Landau level.

We can define a filling factor ν = n
B/Φ0

. Since ν is equal to the ratio between the number of

1If we account for the spin degree of freedom and neglect Zeeman splitting, this degeneracy is multiplied by
2.
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Figure 2.2: The density of states in a two-dimensional electron system. (A) In the absence of an external magnetic

field, the density of states is independent of energy and given by g(E) = m
πℏ2 . States are filled up to themaximum

occupied energy, the Fermi energyEF . (B)When amagnetic fieldB is applied perpendicular to the plane of the 2DES,

the kinetic energy becomes quantized into highly degenerate Landau levels. The energy of these levels is given by

E =
(
N + 1

2

)
ℏωc. Accounting for the electronic spin degree of freedom, each level holds 2B/Φ0 electrons, where

Φ0 = h/e is themagnetic flux quantum.

electrons in the sample and the number of flux quanta penetrating the sample, it counts the number
of Landau levels which are filled. For example, a filling factor of ν = 1 would mean that there is
one electron per flux quantum, so that the lowest Landau level is completely filled. In discussing the
original observation of the IQHE, we noted that plateaus in the Hall resistance Rxy occurred near
integer values of the filling factor ν. We can now understand that Landau levels play an important
role in this relationship, but in order to see how this plays out in a transport experiment wemust now
consider what happens at the edge of the sample.

2.2.2 Edge states

Suppose that our electron system is confined by a potential V (y), which is zero for |y| < W/2 and
increases for |y| ≥ W/2. The increasing confinement at the edges means that Landau level energies
will bendupward at the edges of the sample. For illustrative purposes, we can assume that the potential
V (y) increases slowly enough at the edges that locally it can be approximated as constant 2. Then the
solutions to equation (2.6) will bemodified only by the addition of a position-dependent energy shift,

2Wewill revisit the physics associated with a smooth confining potential in Section 2.4.
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so that we can write the following dispersion relation [52]:

E(N, kx) =

(
N +

1

2

)
ℏωc + V (l2Bkx). (2.8)

When the chemical potential lies between Landau levels in the bulk, the levels which are fully occu-
pied in the bulk will necessarily intersect the chemical potential at the edges of the sample (Figure 2.3)
[41]. We can see from equation (2.8) that the group velocity v = 1

ℏ
∂E(N,kx)

∂kx
will have opposite sign at

opposite edges of the sample. Hence, charge will be carried in a chiral sense through one-dimensional
channels at the boundary of the sample. We can see that the number of channels that we expect at the
edge of the sample is equal to the numberN of completely filled Landau levels.

It is straightforward to show that the conductance of a ballistic one-dimensional channel is e2/h.
The quantum Hall effect can in essence be viewed as a set ofN one-dimensional wires, with the left
and right movers located at opposing edges of the sample. If we impose a current through a Hall bar
device such as the one in Figure 2.3B and measure the Hall resistance Rxy , we therefore expect, on
the basis of this analysis, to find that Rxy = h

Ne2
. Furthermore, since the left and right movers are

well-separated, if we measure the longitudinal resistance Rxx along an edge, we expect to find that
Rxx = 0. This protection against backscattering underlies the extremely precise quantization of the
IQHE3.

In the presence of disorder, localized states appear in the spectrum of the system (Figure 2.3A).
Then, when the chemical potential lies between Landau levels, changing either the external magnetic
field or the density results in a change in the occupation of these localized states. Since localized states
do not contribute to transport, we expect that in the vicinity of integer filling factors ν we should
find plateaus in Rxy concomitantly with zeros of Rxx. This matches what was originally observed
by von Klitzing, et. al. When the chemical potential lies within a Landau level, however, changes in
density or magnetic field will modify the occupation of extended states which percolate throughout
the sample and are able to scatter. Under these conditions, wedonot necessarily expect to findplateaus
inRxy or zero longitudinal resistanceRxx. These expectations also match the behavior observed by
von Klitzing, et. al.

2.3 Fractional quantumHall effect

The behavior of samples away from integer filling factor ν is extremely interesting. In clean samples
where electron-electron interactions play an important role, an entirely new set of states develops at

3The quantized Hall resistance is now known to within 2 parts in 107 [122].
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Figure 2.3: Current-carrying edge states in the IQHE. (A) Energy bands as a function of position y, in a sample with a
confining potential that increases for |y| ≥ W/2 (adapted from [41]). Landau levels at the edge of a 2DES are raised

to higher energies by the confining potential. Levels which are completely filled in the bulk intersect the chemical

potential at the edge of the system, leading to the formation of conducting one-dimensional edge channels. The center

of the sample contains a disordered region (shaded gray). (B) Schematic of transport through chiral edge states in a

Hall bar geometry, with the red edge having a higher chemical potential than the blue edge. Dark gray areas are the

2DES, and light gray areas aremetallic contacts. When current flows through a Hall bar in the IQH regime as shown,

a measurement of the Hall resistanceRxy will be quantized to
h

Ne2 , whereN is the number of edge channels. A

measurement ofRxx will be zero, since backscattering is prohibited along the edge.

certain fractional values of the filling factor. In this section, we present a brief overview of these states,
which are collectively known as the fractional quantumHall effect.

2.3.1 Overview of the Fractional quantumHall effect

In 1982, Tsui, Stormer, and Gossard reported an extraordinary result [114]. Near 1/3 filling of the
lowest Landau level, they observed a quantized plateau in the Hall resistance equal toRxy = 3h/e2,
accompanied by aminimum in the longitudinal resistivityRxx. Dubbed the fractional quantumHall
effect (FQHE) at filling ν = 1/3, this new state of matter cannot be explained in terms of Landau
levels arising from non-interacting electrons under a strong magnetic field. Instead, it is necessary to
consider Coulomb interactions between electrons, leading to the Hamiltonian

H =
∑
j

1

2m

(
p⃗j + eA⃗(r⃗j)

)2
+
∑
j>k

e2

|r⃗j − r⃗k|
. (2.9)

Here we sum over all electrons, with the momentum and position of the jth electron respectively
given by p⃗j and r⃗j .

In general it is not known how to solve the Hamiltonian (2.9) exactly. However, in 1983 Laughlin
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Figure 2.4: A plethora of quantumHall states, from [126]. In addition to integer quantumHall states, a wide variety

of fractional quantumHall states are observed. The strongest of these occur at certain filling factors given by ν =
p

2fp±1 , where where f and p are positive integers.
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made significant headway toward understanding the ν = 1/3 FQHE with an astute ansatz for the
ground state wave function. Using the variational approach, he arrived at a correlated state with Hall
conductance (1/m)× (e2/h) [69]. Remarkably, the elementary excitations of Laughlin’s state were
shown to have the fractional charge e/m, which has nowbeen observed experimentally at filling factor
ν = 1/3 [77].

Using modern heterostructures, it is now possible to observe a large variety of FQH states. A rep-
resentative measurement, shown in Figure 2.4, reveals that many of the observed fractions follow a
specific sequence,

ν =
p

2fp± 1
, (2.10)

where f and p are positive integers.
The above sequence of FQH states is often understood in the bulk of the system using amean-field

approach called the composite fermion (CF) theory (see [49] for a detailed overview). Within this
theory, each electron becomes attached to 2f magnetic flux quanta4, to form a composite fermion.
These composite fermions will then experience an effective magnetic fieldBeff, which differs from the
external magnetic field B by the relation Beff = B − 2fnΦ0, where n is the electron density. If
the filling factor is tuned so that ν = p

2fp±1 , it is then possible to show that the composite fermion
filling factor νCF = nΦ0/Beff is simply equal to the integer p. Hence, FQH states which fall into the
sequence (2.10) can be understood in terms of the IQHE of composite-fermions.

At filling ν = 1/25, the system of composite fermions effectively feels zero magnetic field. It is
then possible to view the system as a Fermi sea[42]. In order to have a fractional quantumHall state
with even denominator, one possibility would then be for composite fermions in this Fermi sea to
interact and condense into an entirely new state. Fractional quantum Hall states are in fact observed
at certain even-denominator fillings, most notably at ν = 5/2. It is widely hoped that the ground
state of the ν = 5/2 state is well-described by a wave function proposed by Moore and Read, in
which pairing interactions between composite fermions lead to a state analogous to a superconductor
[84]. The fundamental excitations of this Moore-Read state are theoretically predicted to have non-
Abelian braiding statistics, a property which could be useful for quantum information processing.
For good theoretical and experimental overviews of progress in this area, see [79, 86].

4Note that the true magnetic field remains uniform in the sample.
5More generally, ν = 1/2f .
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2.3.2 Edge states in the fractional quantumHall effect

In the IQHE, we were able to formulate a picture in which the formation of edge channels leads to
quantization of the Hall conductance. In the FQHE, although it is not immediately clear that such a
picture should be possible, the sharp quantization of the Hall conductance might lead one to suspect
that edge channels with fractionally quantized conductance can form. In 1990, X.G.Wen showed the-
oretically that the edge of a Laughlin 1/m state indeed hosts such a one-dimensional channel, which
carries fractionally charged excitations in one direction with conductance e2/mh [125]. Inmore com-
plex fractional quantumHall states, such as the CF sequence in (2.10), this picture can be generalized
to include multiple fractionally quantized edge channels [52].

A peculiar situation arises, however, when considering even an ostensibly simple case such as the
ν = 2/3 state. A naïve view would have this state be composed of a ν = 1/3 hole state embedded
in an integer ν = 1 state, so that the bulk filling factor is 2/3 ([74], Figure 2.5A). At the edge, there
would then be two counter propagating states, one associated with the ν = 1/3 state and having
conductance e2/3h, and the other associated with the ν = 1 state and having conductance e2/h.
Depending on the details of scattering between these two edges, one would then expect in an exper-
iment to measure a non-universal two-terminal conductance of 2

3 × e2

h ≤ G2T ≤ 4
3 × e2

h . In fact,
in experiments the conductance is universally found to be quantized to G2T = 2

3 × e2

h , in conflict
with this simple theoretical picture. Moreover, a time-domain experiment found only a single charge
mode propagating downstream at the ν = 2/3 edge, with no evidence for upstream charge transport
[6]. Clearly, some ingredient is lacking from this simple theoretical picture.

In attempting to resolve this apparent contradiction, Kane, Fisher, and Polchinski considered the
possibility of random tunneling between the ν = 1/3 and ν = 1 edges [56]. They found that the
addition of this random tunneling leads to a phase transition into a new disorder-dominated edge
phase. Remarkably, the eigenstates of this new edge phase are predicted to consist of a mode carrying
charge downstream with conductance 2

3 × e2

h , and a neutral mode which carries energy upstream
(Figure 2.5B). In addition to resolving the problem with the two-terminal conductance, this analysis
predicts that locally exciting the neutralmode of a ν = 2/3 edge should lead to upstreampropagation
of heat from the point of excitation. In Chapter 3, we use a thermometer placed along the edge of a
quantumHall system to detect such upstream flow of heat.

2.4 Electrostatics and reconstruction of edge channels

In Section 2.2.2, we describe edge channels as relatively featureless one-dimensional channels, which
occurwhenLandau levels intersect the chemical potential (Figure 2.6A-C). In reality, the properties of

14



B

I

•     ≤ G2T ≤     • 2    e2

3    h
4    e2

3    h

A

I

 G2T =     • 2    e2

3    h

G = 1 edge

G = -1/3 edge

G = 2/3 edge

neutral mode

Figure 2.5: Possible edge channel configurations at bulk filling ν = 2/3. Dark gray areas are the 2DES, and light gray
areas aremetallic contacts. (A)A simple pictures of the ν = 2/3 state consists of a ν = 1/3 hole state embedded
in an integer ν = 1 state. In this picture, the two-terminal conductanceG2T depends on the details of scattering

between the edge states andwould not be universally quantized. (B)Kane, et. al. considered the presence of random

tunneling between the ν = 1/3 and ν = 1 edges. They found that this leads to a transition to a new edge phase,

where the eigenstates are a charge-carryingmodewith conductance 2
3 × e2

h , and a neutral modewhich carries energy

upstream. The two-terminal conductance in this situation is quantized toG2T = 2
3 × e2

h .

edge channels will be determined by the interplay between Coulomb interactions, magnetic confine-
ment, the smoothness of the electrostatic confining potential, and even disorder (as mentioned in the
previous section). In formulating a more realistic picture of the edge modes, Chklovskii, Shklovskii,
andGlazman considered the problem of a two-dimensional electron systemwith an edge defined elec-
trostatically by an electrode [20]. In the absence of an external magnetic field, they found that as one
approaches the edge the electron density screens the electric field from the gate and smoothly decreases
to zero.

With an external perpendicular magnetic field, however, the local density of states becomes a series
of delta functions due to the formation of Landau levels. Now, at the edge of the system, it becomes
necessary to pay an additional energy ℏωc whenever the density exceeds a particular integer filling
ν = N . Thus, it is no longer always energetically favorable to locate electrons farther from the gate
electrode. The system can instead reach a lower energy state by relocating some electrons from the
ν = N + 1 Landau level into the ν = N level. Although there will be a penalty for moving these
electrons closer to the gate, the net decrease in energy through this process leads the system to form a
series of compressible and incompressible strips, as shown in Figure 2.6D-F.

In clean enough samples, even further reconstruction is possible. As the electron density decreases
near the edge of a sample, it is in principle possible to stabilize incompressible strips associated with
FQHstates, in addition to the IQHstrips. In ourmeasurements inChapter 3, for example, weprovide
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Figure 2.6: Electrostatics of edge channels, from [20]. (A-C) In a single-electron picture, the Landau levels bend up-

ward at the edge of the sample due to the confining potential. Edge states occur where Landau levels intersect the

chemical potential, and the electron density drops in sharp steps as Landau levels are depleted. (D-F) In amore realistic

self-consistent electrostatic picture, the 2DES screens the electric field from the gate. The presence of Landau levels

influences this screening, so that the system forms a series of alternating compressible and incompressible strips at the

edge of the sample.

evidence for the formation of a ν = 2/3 strip located outside of a bulk ν = 1 state. By injecting
electrons into the ν = 2/3 edge associated with this strip, andmeasuring the resulting upstream edge
temperature, we are able to provide evidence for the upstream neutral mode predicted by Kane, et. al.
Moreover, by probing both gate-defined and etch-defined edges, we find evidence that the sharpness
of the edge confinement indeed modifies the edge structure.
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3
Local thermometry of neutral modes on the

quantumHall edge

When a two-dimensional electron system (2DES) is subject to a strong perpendicular mag-
netic field and tuned such that the ratio of electrons to magnetic flux quanta in the system (ν) is near
certain integer or fractional values, the bulk of the system develops a gap due to either quantization
of kinetic energy (the integer quantumHall, or IQH, effect) or strong correlations arising from non-
perturbative Coulomb interactions (the fractional quantum Hall, or FQH, effect) [37]. While the
bulk (2D) is gapped and incompressible, the edge (1D) of the system contains compressible regions
with gapless excitations that carry charge chirally around the system, in a direction determined by the
externalmagnetic field. Compressible edge states have gainedmore attention recently due to their abil-
ity to serve as a bus for quasiparticles that exist in exotic FQH phases[15, 110]. These edges, however,
can have considerable internal structure that is not apparent from bulk transport measurements.

The spatial structure of edges is dictated by the interplay between the external confining potential
that defines the edge, an additional harmonic confinement from the magnetic field, and Coulomb
interactions. It was predicted [20] and verified [48, 128, 132] that for a smooth, topgate-defined con-
fining potential, it is energetically favorable for the electron density to redistribute slightly to create
alternating compressible and incompressible strips. This has the effect of spatially separating edges
corresponding to transitions between different filling factors. Such an effect is not present in sharper
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edges [47].
Perhaps more surprising than this spatial structure is the possibility of modes that carry energy

(or heat) upstream, even as the magnetic field carries the injected charge downstream. The edge of
the ν = 2/3 FQH state was originally predicted to consist of a ν = 1 edge of electrons traveling
downstreamwith a ν = 1/3 edge of holes propagating upstream [74, 125]. This edge structure would
suggest a two-terminal conductance ofG2T = 4

3
e2

h . Scattering between the edges would lead to non-
universal values in the range of 2

3
e2

h ≤ G2T ≤ 4
3
e2

h . Experimentally, however, no such two terminal
conductance has beenmeasured. Direct approaches to look for upstream charge transport in the time
domain have similarly found no evidence [6]. This motivated a picture in which disorder induces
scattering and equilibration between the edges, forcing the charge to travel exclusively downstream.
Heat, however, would be allowed to travel diffusively upstream anddownstream, leading to a nonzero
thermal Hall conductivity and partial upstream heat transport at ν = 2/3 [53, 56].

Evidence for upstream heat transport in a ν = 2/3 edge was recently obtained by performing
modified shot noise measurements [14]. Our approach studies the same state by directly placing ther-
mometers upstream and downstream of a current-source heater to observe charge and heat transport
along the edge. We will focus on low-energy transport properties, in contrast to another recent mea-
surement with a high degree of charge imbalance along the edge [26].

As our heater, we use a lithographically fabricated quantumpoint contact (QPC), tuned to the tun-
neling regime (Figure 3.1C). Tunneling of electrons through thisQPC at elevated energy locally excites
the outermost compressible component of a gate-defined edge [116]. This edge, in general, may have
many spatially separated compressible components (dark gray regions in Figure 3.1A). We then place
quantum dots 20 µm upstream and downstream of the QPC to measure charge and heat transport
(blue and red gates in Figure 3.1A). The edge itself is defined by a separate pair of gates (green in Fig-
ure 3.1A), and the perpendicularmagnetic field defines a clockwise charge-propagation direction (with
respect to Figure 3.1). All measurements were carried out in a dilution refrigerator with a minimum
electron temperature of 20mK, measured with Coulomb blockade thermometry.

3.1 Charge signatures of edge reconstruction

To first characterize the structure of the edge that we are tunneling charge into, we energize a subset
of gates upstream (blue) and downstream (red) of the central QPC to create twomore point contacts
that serve as imperfect voltage probes (R ∼ 100 kΩ). This ensures that we onlymeasure the chemical
potential of the outermost edge component alone [116]. Current is injected through the central QPC
(10 pA sourced through O3 and drained at O6). The upstream chemical potential, V 1 − V 7, was
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Figure 3.1:Measurement overview. (a) Scanning electronmicrographwith colored gates. O1-7 denote ohmic contacts.

Injection of current through the central QPC (yellow) populates and heats the outermost quantumHall edge channel.

Deflector gates (green) adjacent to the injection site define the edge or can be de-energized to direct edge channels to

floating ohmic contacts (O2 andO4). A quantum dot (red) located 20µmdownstream of the injection site is used to

measure the temperatureTd and chemical potentialµd of the outer edge channel. Similarly, an upstream dot (blue)

measuresTu andµu. Inner edgesmay be present at a different temperature (Ti) and chemical potential (µi). Our

measurements cannot determine edgewidths, but there is some evidence that edge reconstructionmay occur over

several micrometers in these device (see Figure 3.18). (b, d)Coulomb blockade peaks and diamonds for the quantum

dots. The temperature is determined from the Coulomb blockade peakwidth. The chemical potential is determined by

zeroing the voltage bias across the quantum dot. (c) The IV characteristic of theQPC. For charge transport (Figure

3.2), the QPCwas biased just beyond blockade. Heat transport measurements (Figure 3.3) were taken at all points of

the IV curve.

19



observed to be immeasurably small in all measurements, indicating that no charge is transported up-
streamon a 20µmscale. The downstream chemical potential,V 5−V 7, can be used to determine the
resistance of the edge connecting the source to the probe (the localHall resistanceRL). This resistance
is plotted in blue in Figure 3.2. Further measurement details can be found in Section3.5.

For magnetic fields (B) between 2 T and 8 T, the measured value RL = 1 h
e2

indicates that the
charge is carried between the injector anddetector by electronicmodes that behave similarly to an IQH
ν = 1 edge. Inner edges can (and must, at fields below 6 T) be present, as can be seen by comparing
Rxy with RL. These inner edges, however, do not carry any of the injected charge. Above 8 T, we
find thatRL is quantized toRL = 3

2
h
e2

even though the bulk is at ν = 1[67]. This suggests that the
edge has additional structure consisting of alternating compressible and incompressible regions that
are spatially separated, as indicated in Fig. 3.2 (IV). In this situation, we only access the outermost edge
of the incompressible ν = 2/3 strip located outside the ν = 1 bulk. The robust quantization that we
observe indicates that no charge leaks out of this outermost ν = 2/3 edge over the 20 µm separating
the injector from the detector.

The edge-deflecting gates (green in Figure 3.1A) can be de-energized to deflect the edges into float-
ing ohmic contacts located 250 µm away (O2 and O4), where they will chemically equilibrate and
thermally cool (although some equilibration and cooling may occur before the edges reach the ohmic
contacts). If we repeat this charge transport measurement with the deflector gates de-energized, we
continue to monitor no upstream charge transport. However, the downstream resistance is observed
tomatch exactly the bulk value ofRxy , plotted in black in Figure 3.2. This indicates that our deflection
process does, indeed, force all edges to fully equilibrate their chemical potentials in ohmic contacts O2
and O4, providing an important control for the heat transport measurements discussed below.

3.2 Heat Transport at ν = 2 and ν = 3

To characterize heat transport, we energize all of the gates upstream and downstream of the central
QPC to form quantum dots, which serve as thermometers to measure the temperature of the edge.
This is similar to another recent spectroscopic approach [3, 4, 111]. The width of the Coulomb block-
ade peak as a function of gate voltage can be translated into the temperature of the leads (Figure 3.1B,
details in Section 3.5).

With the thermometers active, we inject current through the QPC set to an average transmission
of 15% to create a non-equilibrium population in the outermost edge (Figure 3.1C). The low trans-
mission ensures that we inject solely electrons into the edge (no FQH edges are fully transmitted).
These energetic electrons, however, are not necessarily the elementary excitations of the edge and will
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Figure 3.3: Local edge temperature versus QPC power dissipation at different magnetic fields. Negative (positive) QPC

powers correspond to the injection of holes (electrons). For eachmagnetic field, the upstream and downstream tem-

peratures weremeasuredwith (blue, red) andwithout (cyan, magenta) the deflector gates energized. The difference

between temperatures with andwithout the deflectors energized is plotted across the bottom row for the down-

stream (red) and upstream (blue) dots. For I and II, corresponding to an integer outermost edge, heat is carried chirally

downstreamwith no upstream heat transport. For IV, where wemeasure a 2/3 outermost edge, the heat is carried

downstream and upstream. For III, heat is also carried in both directions, whileRL=1. We attribute this behavior to

reconstruction outside the bulk ν=1 edge, which allows upstream heat transport without 2/3 charge transport.

therefore excite the natural edge modes as they decompose. By increasing the bias across theQPC, we
vary the current (and therefore the power) being delivered to the edge. Wemonitor both the chemical
potential and temperature of the edge at the upstream and downstream dots (Figure 3.1B and 3.1D).

Measurements are first performed with the deflector gates energized, to measure heat transport as-
sociatedwith the edge (red and blue curves in rows 1 and 2 of Figure 3.3). We then repeat the procedure
with the deflector gates off, tomeasure any background heating not associatedwith the edge (cyan and
magenta curves in rows 1 and 2 of Figure 3.3). The difference between these two temperatures gives
us a measure of the excess heat carried by the edge (bottom row in Figure 3.3, red is downstream and
blue is upstream temperature).

At the two lowest fields thatweremeasured (2.41Tand3.8T), our charge transportmeasurements
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indicate that we are injecting charge into a ν = 1 edge sitting outside an incompressible bulk at filling
ν = 3 or ν = 2 respectively. This is depicted schematically in Figure 3.2 (I,II) and in Figure 3.4
(II). Bymonitoring the chemical potential as we vary the injected power, we find that charge is carried
exclusively by the outermost ν = 1 edge over the entire range of measurement (Section 3.5).

At 2.41 T, when the bulk is at ν = 3, there is no measurable background heating either upstream
or downstream. When the deflectors are turned on, we find heating downstream but none upstream.
When the bulk is at ν = 2, we find about 2− 3mK of background heating that is perfectly cancelled
in the upstream direction. Thus, in both cases, we find that heat carried by edge modes is transported
exclusively downstream. While this strict downstream heat transport in the IQH regime is expected
andmatches previousmeasurements [14, 38], surprisingly, themagnitude of the temperature observed
does not agree with what one would expect from quantized thermal transport (assuming an equili-
brated edge):

KH ≡ ∂JE
∂T

= n
π2

3

k2B
h
T =⇒ T =

√
6hJE/n

πkB
,

whereJE is the power carried by the edge andn is the number of IQHedges participating in transport
[53]. At ν = 2, for an injected power of 350 fW, we expect an edge temperature between 430 mK
and 608 mK, depending on how well the two edges thermally equilibrate (n = 2 or n = 1). Our
measured temperature of 30mK indicates that a substantial quantity of heat is transferred out of the
edge[4]. We can model the behavior of heat transport for out-of-equilibrium Fermi systems (Section
3.6), which indicates a similar temperature deficiency. Both models, however, give the correct shape
for the temperature versus power curves presented in Figure 3.3.

3.3 Neutral modes associatedwith the ν = 2/3 and ν = 1 edges

At the highest measured field, 8.3 T, charge transport (Figure 3.2) indicates that we have an incom-
pressible ν = 2/3 strip outside a ν = 1 bulk, depicted schematically in Figure 3.2 (IV). Here we see
substantially more background heating, both upstream and downstream. This bulk heating at ν = 1

is unexpected and has not previously been observed, although a similar result at ν = 4/3 has recently
been reported [5]. Further details can be found in Section 3.7. After subtracting contributions from
the bulk (deflectors energized)we still find anupstream temperature rise of5mKat300 fW, compared
with a downstream rise of 11mK. Such upstream heating is consistent with the predicted upstream
thermal conductivity of the outerν = 2/3 → 0 edge[53], although the asymmetry betweenupstream
and downstream temperatures suggests that the inner ν = 1 → 2/3 edge (which is expected to carry
heat preferentially downstream) is partially participating in heat transport.
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At the second highestmeasured field, 6.2T, onewould expect, based on charge transport, behavior
similar to what we findwhen the bulk is at ν = 2 or ν = 3, with all heat being carried downstream by
the integer ν = 1 edge. Instead, we find a behavior similar towhatwas observed at 8.3T,with heating
bothupstreamanddownstreamand a slight asymmetry between the two. This surprising result canbe
understood if we allow for the presence of additional structure in the ν = 1 edge that does not affect
charge transport. Perhaps the simplest such structurewould be the presence of an incompressible strip
of ν = 2/3, much like what we see at 8.3T, but with charge equilibrating between the two separated
edges of this strip (Figure 3.2 (III)). With these edges equilibrated, we measure a local Hall resistance
ofRL = h

e2
. However, the diffusive heat transport provided by the outer ν = 2/3 → 0 edge could

still carry heat to the upstream thermometer (edge IV in Figure 3.4). Importantly, this mechanism of
upstream heating by an apparent ν = 1 edge would not be universal and would depend sensitively
on the spatial reconstruction of the edge. A sharper mesa-defined edge with a larger density gradient
[14, 38] or a lower-mobility 2DES may not allow an incompressible strip of ν = 2/3 to form outside
the ν = 1 bulk. To clarify this, we will now consider a device with a mesa-defined edge.

3.4 Sharp confinement modifies edge structure

Here, wewill present data froma sample inwhichwephysically removedmaterial to define the bound-
ary of the 2DES, creating a steeper confining potential when compared to the device in Figure 3.1. As
a result of the steeper confinement, we find edges of type III and IV (from Figure 3.4) when the bulk
is at ν = 1. The gate-defined edge, as a reminder, had edges of type IV and V at bulk filling ν = 1.
From the table in Figure 3.4, we see that charge transport (Rxy andRL) cannot discriminate between
the type III and type IV edges. We will now present evidence that both of these edges can exist in a
single sample, and that they can be distinguished by monitoring upstream heat transport.

In Figure3.5, we present a scanning electron micrograph of the device under consideration. The
device geometry and substrate used are identical to those used for the device presented in Figure 3.1.
Instead of using deflector gates to define the edge, we used a chemical etch to remove material be-
tween the QPC heater and the quantum dot thermometer. This creates a physical boundary to the
sample along which the edge propagates. The density in the 2DESmust drop to zero across this edge,
which can happen over a shorter length scale than for an edge created by depleting the 2DES through
electrostatic gating.

To demonstrate that this edge is sharper, we can repeat our local charge transport measurements
(Figure 3.5b,RL in red). The observed enhanced conductance at any given field (red compared with
blue) is a result of either more edges participating in transport, or a greater conductance of participat-
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originally separated FQH (ν=2/3 and ν=1→2/3) channels are brought close together, allowing charge to equilibrate

between them. Although the device is drawnwith and edge of type III (from Figure 3.4), an edge of type IV cannot be

ruled out from charge transport, either locally (RL) or globally (Rxy ). Dotted red lines indicate quantized values of

RL. Dashed green lines indicate fields at which thermometrymeasurements weremade.

ing edges. This is precisely what is expected if the edges are confined with a steeper potential. Here
we will focus on behavior on the edge of the ν = 1 bulk (6.2 and 8.3 T). From the charge transport
measurements, we cannot distinguish the exact structure at either field (see edges III and IV in Figure
3.4).

To distinguish between these two possible edge structures, we can perform upstream thermometry
measurements. As we created our edge in this sample by etching themesa, we cannot control for bulk
heating by energizing and de-energizing deflection gates. However, by using an identical geometry to
the gate-defined device, we can still identify the presence or absence of excess heating due to the edge.
This thermometry measurement is presented in Figure 3.6, with data from the edge-defined device in
red. For comparison, data from the gate-defined device taken at the same fields are reproduced in dark
blue and light blue (identical to upstream data in columns III and IV of Figure 3.3).

At 6.2 T, we see that the temperature detected upstream (red in Figure 3.6a) closely matches the
temperature associated with bulk heating in the original device (light blue). This is consistent with no
heat being transported by the edge. The lack of upstream heat carried by the edge allows us to classify
it as a simple IQH ν = 1 edge (type III in Figure 3.4), similar to what was observed at bulk fillings of
ν = 2 and ν = 3 in the original device.
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Figure 3.6: Upstream thermometry to identify FQH structure in the ν=1 edge. Light blue curves depict background
upstream heating, which we attribute to the bulk. The dark blue curves depict the heat observedwith a gate-defined

edge connecting the heater and the thermometer. The red curves depict upstream heat observedwith a sharper mesa-

defined edge connecting the heater and the thermometer. (a)At low fields, the upstream heating from themesa-

defined edge closely matches the background, suggesting no excess heat is carried by the edge. (b)At high fields, there

is a similar amount of upstream heating by both sharp and shallow edges, both appreciably above the background.

27



At 8.3 T, the temperature measured upstream (red in Figure 3.6b) seems to be elevated, closely
matching the temperature seen when a ν = 2/3 edge connects the heater to the upstream thermome-
ter. Recall that in the original device, this ν = 2/3 edge was detectable through measurement ofRL

(blue curve in Figure 3.2). Here the charge signature has vanished (RL = Rxy , but the nearly identi-
cal upstream heating strongly suggests that the ν = 2/3 edge is still present (edge IV in Figure 3.4).
These measurements increase our confidence in assigning edge IV to our observations at 6.2T in the
original device.

By studying the charge and heat transport properties of the outermost component of a gate-defined
quantumHall edge, thesemeasurements suggest that such edges contain considerable structure. Charge
transport along the edge shows that correlated FQHmodes can exist outside an IQHbulk. Evenwhen
these charge signatures are not present (Fig. 3.2 (III) and edge IV in Fig. 3.4), heat transport suggests
that density reconstructions can still create edge components that carry heat upstream. The presence
of such edge structure could have strong implications for the behavior of quantumHall interferome-
ters, where integer edges are conventionally treated as featureless electron beams [25].

In addition to this, by separating bulk and edge contributions, we have been able to observe bulk
heat transport at ν = 1 that is absent at ν = 2 and ν = 3, the origin of which remains an open
question.

More generally, our system provides a framework to extract quantitative information about charge
and heat transport at the boundary of any two-dimensional topological insulator. Such a system can
be essential to discriminate between topological states of matter that have identical charge transport
behavior. For example, with the ν = 5/2 FQH state, the presence or absence of these neutral modes
would allow us to discriminate between distinct ground states that are particle-hole conjugates of each
other [28, 71, 72].
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3.5 Chemical PotentialMeasurements and Thermometry

I. Chemical PotentialMeasurement

As the DC current I injected through the QPC increases, the downstream chemical potential of the
outermost edge componentmust correspondingly rise. Unless aDC voltage biasVZB is applied toO5
to exactly compensate this altered chemical potential, a DC current will flow through the dot when-
ever the Coulomb blockade is lifted. Tuning the dot to this zero bias condition allows us to measure
the chemical potential of the outermost edge component. In principle an upstream charge current
may cause a similar rise in chemical potential at the upstream dot. For all measurements, the upstream
chemical potential was indistinguishable from that of the ground contact (O7), suggesting that up-
stream charge transport does not occur on a 20 µm scale.

The dependence ofVZB on the current I , at a particular value ofmagnetic field, measures the total
conductance of the edge channels participating in charge transport at the quantum dot. For the de-
flector gates energized, this conductance matches 1/RL. When the deflector gates are at zero voltage,
however, all edges carry charge and the total conductance matches the Hall conductance. These ob-
servations corroborate the assertion that the deflector gates are able to direct the flow of edge channels.
When the deflector gates are energized, the data also show that charge remains in the outermost edge
on a20µmscale evenduring thermometrymeasurements. An example of edge resistances determined
using the quantum dot zero bias condition is presented in Figure 3.7.

II. Coulomb Blockade Thermometry

At each value of the magnetic field, quantum dots were tuned to the Coulomb blockade (CB) regime.
The typical charging energy was 50 µeV, while the typical spacing between CB peaks corresponded
to 20 mV on the plunger gate. We calibrated each dot individually for thermometry measurements
by extracting the slopesm1 andm2 of CB diamonds adjacent to the conductance peak of interest, as
shown in Figure 3.8. The lever arm α = CG/C was then determined by

α =
|m1m2|

|m1|+ |m2|
, (3.1)

where CG is the capacitance between the dot and the plunger gate, and C is the total capacitance.
Knowingα allows the use of the conductance peak width as a sensitive thermometer. Our dots are in
the metallic regime∆E ≪ kBT ≪ e2/C , where the temperature exceeds the dot level spacing∆E.
Note that thermometry in themetallic regime is slightly different than thermometrywith a single level,
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where obtaining exact electron distributions and individual lead temperatures is possible [3, 46]. The
temperature of the leads is then found through the formula for the lineshape of a conductance peak
centered at gate voltage VR [8]:

G ∝ cosh−2

(
e · α · |VR − VG|

2.5kBT

)
. (3.2)

During the experiment, we applied a fixed 4 µV AC voltage bias and a variable DC voltage bias to
each dot (contactsO1 andO5 in Fig. 3.1). The differentAC frequencies used for each dotwere typically
215 and 315Hz. To determine the temperature T of the leads coupled to a single dot, we first tuned
theDCvoltage biasVDC applied to the dot so that the chemical potentials of the two leadswere equal,
as described above. Then the plunger gate voltage VG was swept through a conductance peak while
the resulting AC current was monitored using lockin techniques. The typical AC dot resistance was
> 100 kΩ, resulting in AC currents of∼ 10 pA. For each DC current I injected through the QPC,
the temperature of the leads was extracted using equation 3.2. Representative scans over conductance
peaks in the downstream dot, for two different injected currents, are plotted in Fig. 3.9.

A data set consisted of one sweep of the DC voltage bias Vbias applied to the QPC (contact O3),
between −250 µV and 250 µV. At each value of Vbias we recorded the injected current I , as well
as the temperature T and chemical potential µ for both dots. The QPC power was defined as the
vector PQPC = I · Vbias − I2(h/νe2), where ν was the bulk filling factor. For each sweep, the
electron temperatures found using equation (3.2) were normalized such that the minimum electron
temperature was always 20 mK, equivalent to an effective rescaling of α. This minimum electron
temperature of 20mKwasmeasured at the base temperature of our dilution refrigerator via Coulomb
blockade thermometry, for quantum dots with cold leads sourced directly from ohmic contacts. We
assume in our experiment that all edges are at this minimum temperature when Vbias = 0. For a dot
coupled to a fractional edge, electronic correlationsmay alter the temperature extractedusing equation
3.2. As long as the peakwidth remains linear in temperature as a result of such behavior, our procedure
accurately reports relative edge temperatures. The absolute fractional edge temperatures may then
differ from our reported data by an overall normalization.

While all of our reported Coulomb blockade temperatures use the above rescaling to normalize
the base temperature to 20 mK, it is also possible to calibrate temperatures using the resistive RuO
thermometer on the mixing chamber. In Fig. 3.11 such a calibration is plotted, showing how the tem-
perature deduced from Coulomb blockade peaks corresponds to the mixing chamber temperature.
The behavior is linear at high temperatures and saturates to the minimum dot temperature of 20
mK at low temperatures due to the decoupling of the electronic system from the lattice. Because the
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mixing chamber thermometer is not directly coupled to the two-dimensional electronic system, we
have chosen to normalize minimum temperatures to 20 mK rather than calibrate using the mixing
chamber. From this data we see that a calibration using the mixing chamber thermometer does not
significantly alter our results beyond a 140% temperature rescaling at the highest reported temper-
atures. This rescaling may be due to electron correlations in the leads, which are known to broaden
Coulombblockade peaks (tunneling between g = 1/3Luttingerwires should result in a 130%higher
effective temperature) [36]. None of our qualitative claims are changed by such a rescaling, and this
temperature increase cannot explain the temperature deficiency discussed in themain text and Section
3.6.

We accumulated several normalized data sets at each value of magnetic field, both with the deflec-
tor gates energized and at zero voltage. To determine the increase in temperature at the downstream
dot due to heat carried by the outermost edge component, we first separated the data sets into two
groups, depending on whether the deflectors were energized or at zero voltage while the data was
taken. For each group, the normalized downstream temperatures were then averaged to obtain two
vectors containing the mean downstream temperatures for both deflector settings. The QPC powers
were similarly averaged, resulting in the power-dependent mean temperatures plotted in Fig. 3.3. The
pre-averaged data from 8.3Twith deflectors off is presented in Figure 3.10.

The difference between the mean downstream temperatures, for equal QPC power, was reported
as the excess downstreamdot temperature. This procedurewas also used for the upstreamdot, and for
all reported values of the magnetic field. The excess temperatures determined in this way are plotted
in the third row of Fig. 3.3 of the main paper.
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Figure 3.10: Full dataset taken at 8.3 Twith deflectors off. These curves were averaged to produce the cyan andma-
genta curves in Figure 3.3(IV).
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Figure 3.11: Comparison ofMixing Chamber and Coulomb Blockade Thermometry, at 6.15 T. Heat is applied to the

mixing chamber and temperatures aremeasured using a resistive RuO thermometer attached to themixing chamber

along with the two patterned quantum dots. (a,b)Widths for the CB thermometers are calibrated using the diamonds.

(c) Thewidths of our CB peaks are linear in temperature, except for a saturation at 20mK as themixing chamber is

cooled to 10mK.
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3.6 Power carried by Non-Equilibrium Edges

In our experiment, we tune the bulk quantumHall state to filling factor ν, and apply a voltage V be-
tween ohmic contactsO3 andO6. These two contacts are separated by aQPC tuned to have resistance
R ∼ 100 kΩ. When a net current I is injected through the QPC, the electronic occupation of the
outermost compressible edge channel deviates locally from its equilibrium distribution. Quantum
dots placed 20 µm upstream and downstream of the QPC probe the chemical potential and tem-
perature of this outermost edge. The form of Coulomb blockade peaks monitored during our heat
transportmeasurements suggests that the outer edge internally reaches thermal equilibriumover a dis-
tance smaller than 20 µm. However, our charge measurements indicate that chemical equilibration
of the outer edge with inner edge channels starts to occur at a distance greater than 20 µm. Thus, at
the downstreammeasurement point the outermost edge has a Fermi occupation function and carries
all of the injected current I . For the measurements at magnetic fields of 2.41 T and 3.8 T (bulk ν =
3 and ν = 2), the electrical conductance of this edge is consistent with downstream charge transport
by a single integer quantum Hall (IQH) edge. Furthermore, our thermometry measurements show
strict downstream heat transport, also consistent with the IQH regime. To determine the expected
quantitative outcome of our measurements in the IQH regime, we analyze charge and heat transport
by IQH edges in the experimental system described above.

The chemical potential µ of an IQH edge is related to the current IE that it carries:

IE =
e

h
µ. (3.3)

In our model, the total number of edge channels on each side of the QPC is equal to the bulk filling
ν. However, since only the outermost channel contributes to charge transport on a 20 µm scale, we
treat inner channels as inert and consider only the behavior of the outer channel. The two outer edges
that carry charge toward the QPC originate in ohmic contacts O3 and O6. The occupations of these
incoming edges are therefore Fermi functions,

fO3
in (E) = f(E − µO3

in , Tbase)

fO6
in (E) = f(E − µO6

in , Tbase),
(3.4)

where µO3
in = µ + eV and µO6

in = µ are the chemical potentials of O3 and O6 and Tbase = 20mK
is the electron base temperature. At the QPC, the electronic occupations of the outgoing edge modes
are forced out of equilibrium. At a distance 20µm from theQPC these outgoing edges reach thermal
equilibrium, with chemical potentialsµO3

out = µ+eV −(h/e)I andµO6
out = µ+(h/e)I determined
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using equation 3.3. While these chemical potentials can be found simply by considering charge trans-
port, a more detailed analysis of scattering at the QPC is necessary to determine the temperatures of
the outgoing edges.

The equilibrium temperatureT of an IQHedge is related to the powerJE carried by its excitations
according to [53]

JE =
(πkB)

2

6h
T 2. (3.5)

In general JE can also be calculated from the occupation n(E) and chemical potential µ of an edge,
by integrating the power:

JE =
1

h

∫ µ

0
dE · (µ− E) · (1− n(E)) +

1

h

∫ ∞

µ
dE · (E − µ) · n(E). (3.6)

Here the first integral corresponds to the contribution of hole-like excitations, while the second inte-
gral corresponds to particle-like excitations. The 1D relation g(E) ·v(E) = 1/h between the velocity
v(E) and density of states g(E)was used to simplify the integrals.

Since the outgoing edges in our model have non-equilibrium distributions nO3
out(E) and nO6

out(E)

immediately after the injection of current I , their respective energy currents are determined using
equation 3.6. At a distance 20 µm from the QPC, the outgoing edges are in equilibrium. If no en-
ergy escapes from the edge as it equilibrates, equation 3.5 then provides a calculation of the expected
edge temperatures. With the goal of ultimately finding these temperatures, we therefore consider the
forms of the non-equilibrium edge distributions, which depend on the energy-dependentQPC trans-
mission probability τ(E). This transmission is determined by the differential conductance dI/dV
of the QPC, as follows:

I =

∫ ∞

0
dE · τ(E) · (fO3

in (E)− fO6
in (E)). (3.7)

Using τ and the distributions of the incoming edges (equation 3.4), we find expressions for the
non-equilibrium distributions:

nO3
out = (1− τ) · fO3

in + τ · fO6
in

nO6
out = (1− τ) · fO6

in + τ · fO3
in .

(3.8)

From these distributions we can then deduce the partitioning of power among the outgoing edges, as
well as the outgoing equilibrium temperaturesTO3

out andTO6
out . We find that each outgoing edge carries
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an equal energy current. Conservation of energy provides a constraint on the total outgoing power:

I · V − I2(h/e2) =
(πkBT

O3
out)

2

6h
+

(πkBT
O6
out)

2

6h
− (πkBTbase)

2

3h
. (3.9)

This relationship holds as long as the inner edges remain decoupled from the outermost edge modes.
Here the left-hand side specifies the power dissipated by theQPC,while the right-hand side represents
the net power carried away by edge excitations. The term I2(h/e2) refers to energy dissipated at
ohmic contacts, and does not contribute to heating the edge. For completeness, the distributions of
the outgoing edges, 20 µm from the QPC, are given below:

fO3
out(E) = f(E − µO3

out, T
O3
out)

fO6
out(E) = f(E − µO6

out, T
O6
out),

(3.10)

In Figure 3.12, numerical calculations of the outermost edge occupation functions are plotted dur-
ing each stage of scattering at the QPC, for an applied voltage V = 175 µV and at bulk filling ν = 2.
In panel B, the incoming distributions are shown with the QPC transmission τ extracted from IV
data. In panels C and D, the non-equilibrium and equilibrium distributions are plotted for outgoing
edges on each side of the QPC. For the equilibrium outgoing distributions, we extract the tempera-
turesTO3

out andTO6
out over a range of V to determine the dependence of edge temperatures on theQPC

powerPQPC = I ·V −I2(h/e2). As shown in Figure 3.13, ourmodel qualitatively explains the cusp
in temperature that is observed at PQPC = 0.

Using this model, we expect the downstream quantum dot tomeasure amaximum temperature of
560mK for ν = 2 and 545mK for ν = 3. The actual observedmaximum temperatures were 55mK
forν = 2 and35mKforν = 3. Althoughweobserveno charge leakage to inner edge channels on a20
µm scale, the loss of heat to inner edges is still possible and would decrease the expected temperatures.
If all edges equilibrate thermally over a distance smaller than 20 µm, we expect that the power JE
carried by the outermost edge will be divided by the filling factor ν. Using equation 3.5, it follows
that the temperature will be divided by ν1/2. For this type of thermal equilibration we thus expect to
measure 395mK for ν = 2 and 315mK for ν = 3. Whether or not heat escapes to the inner edges, it
is still clear from this analysis that in our experiment the majority of the power dissipated in the QPC
does not find its way to the outermost edge.
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Figure 3.12: (A) The IV curve of theQPC at bulk filling ν = 2. An applied voltageV = 175µVwas used to calculate

the distributions shown in (B-D). This voltage and the corresponding injected current aremarkedwith dashed lines.

(B) TheQPC transmission probability τ , calculated from theQPC IV curve, is shown inmagenta. In blue (red), the

occupation fO6
in (fO3

in ) of the incoming outer edgemode originating at ohmic contact O6 (O3). The chemical potentials

differ by eV = 175µeV. (C) In blue, the non-equilibrium occupationnO3
out of the outermost edge immediately after

the injection of current through theQPC. This edge component carries charge towardO3. 20µm from theQPC, the

edge is in equilibriumwith the distribution fO3
out , shown in red. (D) The edge component carrying charge towardO6

has the non-equilibrium occupationnO6
out, shown in blue, immediately after current is injected. 20µmdownstream the

edge has equilibrated to the distribution fO6
out, shown in red.

3.7 BulkHeat Transport

As mentioned in the main text and Section 3.6, we observe temperatures well below what is expected
for a system of quantum Hall edges with no energy dissipation. This necessarily means that heat
diffuses out of the edges into additional modes in either the bulk of the 2D electronic system or the
surrounding crystalline solid. Because we see a bulk contribution to heatingwhen the bulk is at ν = 1

(Columns III and IV of Fig. 3.3), but not when the bulk is at ν = 2 or ν = 3 (Columns I and II),
and because we don’t expect a change ofmagnetic field to significantly affect heat conduction through
the solid, we can attribute the heating at high fields to the ν = 1 electronic system. While we don’t
know the mechanism of this bulk heat transport in such a strongly insulating state, we suspect it may
be associated with low energy spin degrees of freedom that exist at ν = 1.

The presence of this bulk heat transport in the two measurements where we see upstream heat
transport attributed to edges requires some additional discussion.1 Specifically, we need to rule out
the possibility that turning our deflectors on and off affects the quantity of heat transported by the

1In the sharp-edged sample discussed in Section 3.4, bulk heating is present without additional edge heating
at 6.2T.
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bulk to the thermometers, thereby producing a signal unrelated to edge heat transport. Below we
describe two experiments specifically designed to address this possibility. Our findings provide two
important observations. Firstly, our gates are not completely effective at preventing the flow of heat,
matching observations in [58]. We inferred this from the shape of our Coulomb blockade peaks, and
checked it explicitly by attempting to block heat flow with a gate. Secondly, if we reduce the length of
the deflector gates to the point where there is much less bulk ν = 1 region for heat to diffuse upwards
into when the deflectors are off, we observe the same qualitative and quantitative behavior that was
presented in the main body of the paper. Both of these observations are discussed more carefully
below.

I. Diffusion of heat through gated regions

When our topgates are energized to completely deplete carriers from the underlying 2D electron sys-
tem, we would expect that energy can no longer be transported by that system. However, heat that
manages to diffuse into the lattice can still propagate. Here we will present data suggesting that some
heat does indeed diffuse across the depleted regions.

The first indication that such diffusion is taking place can be seen in the form of our Coulomb
blockade peaks. The fits we used in the experiment assume that the temperatures of the two quantum
dot leads are identical. However, sincewe are only explicitly heating one side of the dot, a simplemodel
suggests thatwe should expect leadswith different temperatures. This temperature asymmetry should
show up as an increased kurtosis in the CB peak shape. In Figure 3.14, we show the one-temperature
fit that was used in the main body of this paper along with two alternatives that allow for asymmetric
lead temperatures. This particular peak corresponds to the downstream measurement at a magnetic
field of 6.2T and an injected power of 274 fW. The deflector gates are energized, so this peak includes
both edge and bulk contributions.

Figure 3.14b presents an alternative fit with an additional fit parameter that allows for different tem-
peratures in the two leads. While the one-temperature fit suggests lead temperatures of 51 mK, the
two temperature fit suggests that one of the leads is hotter (60mK) and the other is colder (39mK).
However, even though the fits are consistently better with the extra parameter, the residuals are not
systematically cleaner. Figure 3.15 presents a comparison of the one-temperature and two-temperature
fits for the entire range of injected powers that we studied. Below 50 fW of injected power, the one-
temperature and two-temperature fits agree exactly, suggesting equal temperature leads. At higher
powers, the two temperature fit does suggest a difference in the lead temperatures. Even this asymme-
try, however, has to be considered carefully. Because there are nearby peaks (roughly 800 mK away
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from the peak center, when translated from gate voltage as in Figure 3.14), at high temperatures we can
expect them to artificially distort our peak and increase the quality of an asymmetric-temperature fit.

Figure 3.14c presents yet another fit which assumes that the cold lead has the naively expected tem-
perature of 20mK, corresponding to the observed base temperature for electrons with no intentional
heating. The temperature of the hot lead is allowed to vary. With this constraint, the best fit suggests
a hot lead temperature of 59mK. Here, however, the residuals have a pronounced trend that persists
for all fits with the 20 mK constraint.

Without strong evidence that a two-temperature fit better describes our measurements, we opted
to use a single-temperature fit for the main data presented. None of the qualitative observations of
bulk heat transport or upstream heat transport by a neutral edge mode are affected by using the hot-
ter temperature from two-temperature fits. Furthermore, the two-temperature fit doesn’t solve the
temperature deficiency alluded to in the main text or Section 3.6.

We can go further and explicitly test for heat transport across depleted regions by placing a strip
of such a region between our heater and our thermometers, as in the device pictured in Figure 3.16.
Any heat detected at the thermometers would necessarily have to diffuse through the depleted region
beneath the vertical gates. Results of this test are depicted in Figure 3.17. Here, we can clearly see
that some heat flows through these narrow depleted regions. At the highest injected power, we see
the temperature rise from 20mK to 28mK with an uninterrupted 2D and a temperature rise to 22
mK with the 2D depleted beneath the vertical gates. This small heat diffusion through gated regions
is qualitatively consistent with our observation of heating in the cold leads of our quantum dots, as
mentioned above. The fact that the temperature is reduced from the ungated value (22 mK versus
28mK) provides additional evidence that the 2D electron system is responsible for the observed bulk
heat transport at high fields.

II. Geometric Diffusion Considerations

Because we only detect neutral mode heating when there is a bulk contribution to the heating signal,
we have to ensure that there is no significant change in the bulk contribution as we energize and deen-
ergize the deflector gate. It would appear plausible, for instance, that by turning on the deflector gate
we reduce the area over which the bulk heat can diffuse. Specifically, with the deflector gate on, heat
canno longer diffuse up into the 2D regionbetween our heater and our thermometers. As a result, one
may conjecture that more heat will be directed towards the thermometers resulting in a higher tem-
perature unassociated with quantum Hall edge physics. The first indication that this redirection of
heat isn’t relevant is the above observation (from CB peak shapes and direct measurements) that heat
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Figure 3.14: (a)One temperature fit of the CB peak seen downstream at 6.2 T and 274mWof injected power. The

deflector gates are energized, so this peak includes both edge and bulk contributions. Additional peaks are centered

roughly 800mK to the left and right of the center of this peak. (b) Fit obtained by adding an additional parameter

allowing for asymmetric lead temperatures. There is no systematic improvement in the residual trend by using such a

fit (though the quality of fit obviously improves slightly). (c) Fit obtained using the same form as panel b, but fixing the

cold lead to a 20mK distribution. This produces a low quality of fit and certainly doesn't describe our data well. (d,e,f)

Fit residuals plotted below the associated fit.

44



−300 −200 −100 0 100 200 300
15

20

25

30

35

40

45

50

55

60

QPC Power (fW)

D
ow

ns
tr

ea
m

 T
em

pe
ra

tu
re

 (
m

K
)

Figure 3.15: Temperature fit of the CB peak seen downstream at 6.2 T as a function of injected power. Black de-

notes the one-temperature fit (as in Figure 3.14a), and red and blue denote the hot and cold temperatures of a two-

temperature fit (as in Figure 3.14b). They agree perfectly at low injected powers, but begin to diverge beyond 50 fW.
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Figure 3.16: Device designed to explicitly test for heat leakage across a depleted barrier. When the vertical gates

are energized, the 2D systems on the left and right are completely isolated (electrically) from the 2D systemwith the

heater in the center.
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Figure 3.17: Heat transport across a depleted barrier. The cyan curve depicts temperaturemeasured upstream from

the heater when the vertical gates are deenergized. The blue curve depicts the temperature when the vertical gate is

energized, so heat must diffuse across a depleted region. Themagenta and red curves are the corresponding traces for

the downstream dot. All data was taken at 8.3 T, corresponding to column IV in Fig. 3.3.
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does indeed partially diffuse through depleted regions. A more convincing test, however, consists of
altering the geometry of the bulk to reduce the effect of this geometric distortion.

To this end, consider the device shown in Figure 3.18b. It is identical to the devices used for mea-
surements in the main body of the paper, but with a shorter deflector gate length (8 µm instead of
15 µm). At 8.3 T, we expect an edge structure as shown in Figure 3.18, with two separated edges:
one corresponding to the boundary between vacuum and ν = 2

3 and the other corresponding to the
boundary between ν = 2

3 and ν = 1, as ν = 1 is the bulk filling factor and ν = 2
3 is the edge

that we detect with our local injectionmeasurements. In the 8 µmdeflector device, with the deflector
de-energized, we measure a slightly elevated resistance (1.19RK ), indicating that the inner edge cor-
responding to the transition from ν = 2

3 to ν = 1 is being backscattered (transmission coefficient of
52% for that inner edge). This indicates that the ν = 1 bulk is largely closed off in this deflected re-
gion, so we would expect very little bulk heat to diffuse upwards through this narrow constriction. If
the difference in upstream heating displayed in Figure 3.3(IV) of themain paper is due to a redirection
of bulk heat flow, we would expect almost the same difference between the temperature measured in
the 15 um deflector device (Figure 3.18a) and the 8 um deflector device (Figure 3.18b).

The data from these measurements are presented in Figure 3.19. The blue and red points corre-
spond to temperatures measured in the device from Figure 3.18a with deflectors off. The cyan and
magenta points correspond to temperatures measured in the device from Figure 3.18b, also with de-
flectors off. These undeflected temperatures in the twodevices are very close, towithin the data spread.
For reference, the temperature associated with turning on the deflectors (which results in the same ge-
ometry for the two devices) is displayed in green and orange.

From these, we can infer that the excess temperature found in the green and orange traces is indeed
associated with a hot ν = 2

3 edge, as this edge is the only component of the system that is significantly
altered as deflector gates are turned on in the device from Figure 3.18b.

In Section 3.4, we present yet another device, where the gate-defined edge is replaced by a sharp
mesa-defined edge. If the excess upstream heat was due to a redirection of bulk heating, we would
expect an elevated temperature in that situation, given that the device possesses a nearly identical bulk
geometry compared with the gate-defined edge. Here, however, we don’t see any heat associated with
the edge at 6.2 T (Fig. 3.13a). This provides even further evidence that the observed upstream heat is
due to FQH edge structure and is independent of the measured bulk heat transport at ν = 1.
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Figure 3.18: A device to test the effect of geometric diffusion considerations. (a) SEM image of device identical to that

used for data in themain paper. Edge labels correspond to what is expected at a field of 8.3 T, based on our local and

globalRxy measurements. (b) SEM image of a device with a narrower region throughwhich edges can be deflected.

From the elevated resistance shown in panel d, we know that the inner edge is partially backscattered. (c)Copy of the

∆VZB versus IDC curve from Fig. 3.7, demonstrating that the resistance in the deflector channel is the same as the

bulk value (1.01RK ), indicating that the ν = 1 state is fully connected from the top to the bottom of the image in

panel a. (d)A corresponding∆VZB versus IDC curve for the device in panel b. The elevated resistance (1.19RK )

indicates that the inner edge, which has a conductance of e2

3h is 52% transmitted. This suggests that the ν = 1 state is
connected through a narrow channel in this device, providingmuch less room for heat to diffuse upwards compared to

the device in panel a.
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Figure 3.19: The blue and red points correspond to temperaturesmeasured in the device from Fig. 3.18a with deflec-

tors off. The cyan andmagenta points correspond to temperaturesmeasured in the device from Fig. 3.18b, also with

deflectors off. These undeflected temperatures in the two devices are very close, to within the data spread. For ref-

erence, the temperature associated with turning on the deflectors (which results in the same geometry for the two

devices) is displayed in green and orange. From this we can conclude that the observed upstream heating is not due to

a redirection of bulk heating upon energizing of deflector gates. a)Upstream. b)Downstream.
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3.8 LengthDependence ofRL

If two separated co-propagating edge channels are filled to different chemical potentials, we expect
charge to slowly equilibrate between them. By varying the length between injector (the central QPC),
and detector (a downstreamQPC), we can learn how this equilibration takes place.

Data from 3 separate samples, all from the same wafer, are shown in Figure 3.20. At 6.2 T, RL is
always found to be quantized to 1 (though it isn’t so clear for the 1µmdevice due to large conductance
fluctuations). Focusing on data from sample 3 only, we see that a transition fromRL = 1 toRL =

3/2 occurs at 7.2 T, for lengths between 10 µm and 40 µm. The fact that all the RL curves from
sample 3 lie on top of each other indicates that the edges can maintain different chemical potentials
over 10s of microns without equilibrating.

The slightly higher transition field for sample 1 (20 µm) compared to sample 3 is likely due to a
slightly different density frozen in beneath the gates during sample cooldown. From the difference in
transition fields (7.2 T versus 7.6 T) we can estimate that there is 5%more density frozen in near the
gates in sample 1 compared to sample 3. BulkRxy values do not vary by such a large amount between
samples in this wafer.

3.9 Molecular Beam Epitaxy Information

All samples used in this experiment were obtained from the wafer LP 11-18-08.1, grown at Bell Lab-
oratories in Murray Hill, NJ, by Loren Pfeiffer and Kenneth West. Figure 3.21 has the details of the
growth.
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Figure 3.21:Wafer Structure: LP 11-18-08
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4
The quantum spin Hall effect in HgTe

quantum wells

4.1 The quantum spin Hall effect

The integer quantum Hall effect (IQHE) is the prototypical example of a system which in-
sulates in the bulk and carries gapless edge excitations. The IQHE occurs when a large magnetic field
is applied perpendicular to the plane of a two-dimensional electron gas. The bulk of the system then
develops a gap due to the quantization of kinetic energy into Landau levels. At the edges of the sys-
tem, the confining potential bends these levels to higher energy. Levels which are completely filled
with electrons in the bulk will necessarily intersect the chemical potential at the edge, forming gapless
one-dimensional channels [41]. These channels carry charge chirally around the system with a quan-
tized conductance of e2/h per channel. A measurement of the Hall conductance σxy will therefore
be quantized toNe2/h, whereN is the number of edge channels.

The chiral nature of edge channels in the IQHE strongly suppresses backscattering, which would
require electrons to tunnel through the incompressible bulk of the sample. This means that charge
carriers can be carried along IQHedges essentiallywithout dissipating energy, a very appealing techno-
logical prospect. Less appealing is the need for a strongmagnetic field in order to discretize the density
of states into energetically separated Landau levels. It is difficult to see how to obtain an analogous
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situation to the IQHE without the need for an external magnetic field.
A breakthrough in this respect came from viewing materials with a bulk energy gap (insulators)

from the perspective of topology [45]. In this approach, two insulators are said to be topologically
equivalent if it is possible to continuously tune between their Hamiltonians without closing the en-
ergy gap. Insulators which are topologically equivalent to the vacuum are referred to as trivial insula-
tors. Early on, Thouless, Kohmoto, Nightingale, and denNijs came to the important conclusion that
the IQHE is topologically distinct from the vacuum and is characterized by a topological invariant
called the Chern invariantN [112]. This Chern invariant is the same as the number of edge channels
at the boundary of the system, and cannot change under smooth variations of the system Hamilto-
nian. The Chern number also embodies a unifying feature of the topological insulators known as the
bulk boundary correspondence. This correspondence relates the topology of a bulk insulator to the
presence of gapless modes at the boundary. In other words, both the topology and the number of
edge channels are described by a single unifying quantum number. The bulk-boundary correspon-
dence also implies that gapless conducting states will always exist at interfaces between two insulators
where the topological invariant changes.

Within this powerful framework a myriad of topological states distinct from the IQHE become
possible to envision [60, 101, 105, 106]. In the vein of searching for a zero magnetic field analogue
to the IQHE, we focus now on one of these states in particular: the Z2 topological insulator, also
known as the quantum spin Hall (QSH) insulator[55, 75]1. This insulating state is characterized by a
Z2 topological invariant which counts the number of stable gapless edge states modulo 2. When the
topological invariant is 0, the system is in the topologically trivial state. A topological invariant of 1
corresponds to the quantum spin Hall insulator.

The quantum spin Hall insulator is a two-dimensional state of matter with an energy gap in the
bulk (Figure 4.1). It is a time-reversal symmetric state, which hosts gapless edge channels due to its
nontrivial topology. Due to the time-reversal symmetry, these edge channels circulate in opposite di-
rections and carry opposite spin. In this sense, the quantum spin Hall insulator is roughly similar
to two copies of the ν = 1 IQHE effect, with one copy for each spin. In a perfect system with no
electron-electron interactions, as long as time-reversal symmetry is preserved the counterpropagating
channels at any given edge are prevented from backscattering.

Theoretical work on obtaining a nontrivial Chern number without an external magnetic field was
first done byHaldane in 1988 [40]. Following that there were several theoretical proposals tomeasure
the QSH effect either in graphene [54] or in strained semiconductors [11], but these were both pro-

1Recently, another two-dimensional topological insulator, the quantumanomalousHall insulator, has been
experimentally measured under zero external magnetic field [19].
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Figure 4.1: The quantum spin Hall effect, from [62].

hibitively difficult experimentally [75, 83, 129]. The first experimentally feasible scheme for realizing
the quantum spin Hall insulator came in 2006, when Bernevig, Hughes, and Zhang predicted that
this state should appear in quantum wells made of HgTe/HgCdTe [12]. In addition to the quantum
spin Hall effect, the unconventional band structure of HgTe leads to interesting electronic behavior
even outside of the quantum spin Hall state. We will explore the origins and consequences of these
effects in the following sections and chapters.

4.2 Band structure of (Hg,Cd)Te quantumwells

4.2.1 General properties of bulkHgTe and CdTe

In order to understand how a HgTe/HgCdTe quantum well can become a quantum spin Hall insu-
lator, we should first examine the bulk properties of the underlying HgTe and CdTe crystals. Both of
these bulk materials have the zinc-blende lattice structure. Near the Fermi level, the important bands
in each material are the s-type Γ6 band and the p-type band which spin-orbit coupling splits into a
J = 3/2,Γ8 band and aJ = 1/2,Γ7 band. The 8-bandKanemodel, derived fromk ·p perturbation
theory, approximately determines the structure of these bands near theΓ−point. The band structure
of bothHgTe and CdTe near theΓ−point is shown in Figure 4.2. The band ordering in CdTe is typi-
cal of zinc-blende semiconductors, with the s−like conduction band at higher energy than the p−like
valence band [127].

Replacement of Cd with Hg drastically modifies the band structure. In contrast with Cd, Hg has
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Figure 4.2: The bulk band structure of HgTe and CdTe, near theΓ point, from [63]. The band ordering in CdTe follows

the normal progression of bands for zinc-blende semiconductors, with the s−likeΓ6 band at higher energy than the

p−likeΓ7 andΓ8 bands. By contrast, the band ordering in HgTe is inverted, with theΓ8 bands at higher energy than

theΓ6 band.
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many occupied shallow 5d levels which tend to be spatially delocalized, leading to a large effective
positive nuclear charge [131]. This large effective charge most strongly modifies the energy of s−like
states originating in the Hg, thus lowering the Γ6 band below the Γ8 band. With a negative energy
gap of−300meV, such an unusual band ordering is often referred to as an inverted band structure2.

4.2.2 Bulk electronic properties of HgTe quantumwells

Due to its inverted band structure, one might anticipate that a quantum well based around HgTe
should have some fairly unique properties. This is in fact the case, and in the following sections we
will explore an array of interesting consequences for the electronic structure that directly arise from
band inversion.

Beforedelving into thedetailedpeculiarities ofHgTequantumwells, however, anheuristic overview
is beneficial. To that end, when a layer of HgTe is sandwiched on either side by CdTe, the resulting
spectrum of energy levels is to a large extent determined by the interplay between bulk band structure
and the zero point motion resulting from confinement. Within this picture there are then two basic
behaviors which are controlled by the width d of the HgTe layer, as shown in Figure 4.3. If d is suffi-
ciently large, we can expect that the confinement energy will be small enough that the quantum well
subbands remain inverted, as in bulk HgTe. As d becomes smaller, the confinement energy increases,
pushing the subbands closer together until at a critical thickness dC the bands touch. For thicknesses
d < dC , the band structure will then be ‘uninverted.’ With these basic considerations, we can expect
that the quantum well thickness d should be a powerful experimental input for tuning between in-
verted and uninverted regimes, and that wells thicker than a critical thickness should have interesting
electronic properties associated with an inverted band structure.

To describe the above scenario quantitatively requires a model with at least four bands (including
spin). The four-band model proposed by Bernevig, Hughes, and Zhang succeeds in describing the
most interesting behaviors of this system, including the band inversion and topological phase transi-
tion. Their model can be derived perturbatively using k · p theory, and its form can be deduced by
considerations of both symmetry and energy.

In reducing the 8-band Kane model down to the BHZ model, the bulk split-off Γ7 band is ne-
glected, since it has only small effects on the quantum well band structure3. There are then six re-
maining bands which combine to form the opposite-spin states of three sets of subbands, labeled E

2Although there is an energy gap between the Γ6 and Γ8 bands, HgTe is a semi-metal. This is due to the
degeneracy between the heavy- and light-hole bands at the Γ point.

3The contribution of the Γ7 band to the quantum well energies is< 5%.
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Figure 4.3: Schematic diagrams of energy levels in quantumwells formed by a layer of HgTe sandwiched on each side

by CdTe, from [12]. The ordering of energy levels inside the quantumwell is tuned by the well thicknessd. When the

thicknessd is larger than a critical thicknessdC , the energy levels in the well are inverted. As the thicknessd becomes
smaller, zero point motion in the well becomesmore pronounced. Eventually whend < dC , the band ordering
switches.

(electron-like),H (heavy hole-like), andL (light hole-like) [93]. Since theL bands are separated ener-
getically by≈ 100meV from the other bands, they are neglected, leaving only theE andH bands.

There is good reason not to neglect theseE andH bands, and in particular the first subbandsE1

andH1. At the Γ point with zero in-plane momentum, the |E1,mJ⟩ state is formed from a linear
combination of the |Γ6,mJ = ±1/2⟩ and |Γ8,mJ = ±1/2⟩ states. Because theE1 state then has
angular momentum 1/2, it is analogous to states which normally form the conduction band in a two-
dimensional electron system (hence the designation as ‘electron-like’). Under these same conditions,
the |H1,mJ⟩ state is formed from the |Γ8,mJ = ±3/2⟩ state. With angular momentum 3/2, the
H1 state is similar to states which normally form the valence band, and is referred to as ‘hole-like.’
The energies of these states, calculated using k · p theory, are shown in Figure 4.4 as a function of the
quantumwell thickness [89, 93]. Near a critical well thickness, dC = 6.3 nm, we see that the electron-
likeE1 state crosses the hole-likeH1 state, as anticipated from the heuristic discussion above.

By considering the symmetry properties of the E1 andH1 states, Bernevig, Hughes, and Zhang
arrived at theirmodel for the behavior of theE1 andH1 states near the critical well thickness. Written
in the basis |E1,mJ = +1/2⟩, |H1,mJ = +3/2⟩, |E1,mJ = −1/2⟩, and |H1,mJ = −3/2⟩,
the Hamiltonian is:

HBHZ =

(
H(k)

H∗(−k)

)
, H = ϵ(k) + di(k)σi, where (4.1)
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Figure 4.4: Evolution of electron- and hole-like energy levels in HgTe quantumwells, as a function of the quantumwell

thicknessd, from [63]. In this plot the in-plane wave vectorskx = ky = 0. At the critical thicknessdC = 6.3 nm,
theE1 andH1 bands cross. For wells thinner than 6.3 nm, the bands are ordered normally, with electron-like bands
at higher energy than hole-like bands. For wells thicker than 6.3 nm, the band ordering inverts.

d1 + id2 = A(kx + iky), (4.2)

d3 =M −B
(
k2x + k2y

)
, and (4.3)

ϵ = C −D
(
k2x + k2y

)
. (4.4)

Themost important parameter in this model is themass termM , which changes sign at the critical
well thickness dC and gives the energy difference between theE1 andH1 bands at zero in-plane wave
vector. Using this model and the parameters listed in Table 4.1, one can calculate the expected band
structure for quantum well widths less than, equal to, and greater than dC (Figure 4.5). With the
well thickness is equal to 5.8 nm, the system has an energy gap, a dominantly hole-like valence band,
and a dominantly electron-like conduction band. Increasing the well width to the critical thickness,
dC = 6.3 nm, causes the gap to close. With the thickness set to 7.0 nm, the gap again opens. Now,
however, the character of states near the bottom of the conduction band is dominantly hole-like due
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Figure 4.5: Dispersion relations calculated for three different quantumwell thicknesses, using the BHZmodel with

parameters listed in Table 4.1. The energy bands are colored according to projection onto theE1 (blue) andH1 (red)
bands, after Bernevig, Hughes, and Zhang. The energy range is 125meV for all plots. When the well thickness is equal

to 5.8 nm, the system has an energy gap, a dominantly hole-like valence band, and a dominantly electron-like conduc-

tion band. Increasing the well width to the critical thickness,dC = 6.3 nm, causes the gap to close. With a thickness

equal to 7.0 nm, the gap again opens. Now, however, the character of states near the bottom of the conduction band

is dominantly hole-like due to the band inversion. Similarly, states near the top of the valence band are dominantly

electron-like.

to the band inversion. Similarly, states near the top of the valence band are dominantly electron-like.
In the conduction band of the 7.0 nm quantumwell, the evolution from hole-like to electron-like

character with increasing in-plane wave vector k⃗ carries ramifications for the effective in-plane g-factor
g̃. Since hole-like states have angular momentum 3/2 and are therefore not first-order coupled by
magnetic fields, the effective g-factor near k⃗ = 0 is expected to be zero. As |k| increases, the character
of states becomesmore electron-like, and therefore the effective g-factor should evolve away from zero.
A calculation of the theoretically expected g-factor,

g̃ = g||

√
⟨σx(1 + sz)/2⟩2 + ⟨σy(1 + sz)/2⟩2 + ⟨σz(1 + sz)/2)⟩2, (4.5)

is shown in Figure 4.6. Here σ and s are Pauli matrices operating in spin space and pseudo spin
(E1,H1) space respectively, and g|| = −20.5 [63]. As expected, g̃ is zero at k⃗ = 0, and evolves
toward g|| as |k| increases. This theoretically expected behavior will become important in Chapter
6, where we describe experiments in which a magnetic field is applied parallel to the plane of HgTe
quantum wells in the inverted regime.
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d (nm) A (eV·Å) B (eV·Å2) D (eV·Å2) M (eV)
5.8 −3.62 −18.0 −0.594 0.00922
6.3 3.73 −85.7 −68.2 0
7.0 3.645 −68.6 −51.2 −0.010

Table 4.1: List of parameters used tomodel band structure in the BHZmodel. For the 5.8 nm quantumwell, parameters

were taken from [12]. For the 6.3 nm quantumwell, parameters were taken from [16]. For the 7.0 nm quantumwell,

parameters were taken from [63].

g~

Figure 4.6: Calculation of the effective g-factor in the conduction band of 7.0 nm-wide HgTe quantumwell. Since such

a well is in the inverted regime, the character of states near the bottom of the conduction band is dominantlyH1
(hole-like). Moving away from the band edge, mixing in ofE1 (electron-like) states becomesmore pronounced. Since
theH1 states have angular momentum 3/2 and are not first-order coupled bymagnetic fields, the effective g-factor is

expected to evolve dramatically as a function of the in-plane wave vector k⃗. As depicted, the effective g-factor is zero
at k⃗ = 0. As |k| increases, the effective g-factor evolves tomore negative values.
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4.2.3 Topological edge states in wide HgTe quantumwells

In addition to having interesting bulk electronic properties, the BHZ Hamiltonian (equation (4.1))
carries spectacular implications at the edges of a finite system. When the Fermi energy is tuned into
the bulk band gap, the physical edges of an inverted quantum well should always host two counter
propagating channels with opposite spin, realizing the quantum spin Hall effect. An heuristic argu-
ment for this is often used, andwe describe it here. One imagines placing the edge of an invertedHgTe
quantum well system in contact with the edge of an insulator with normal band ordering. Then, on
moving spatially from the HgTe quantum well into the conventional insulator, the inverted bands
should switch to the normal ordering. The crossing of these bands is protected by time-reversal sym-
metry, and we therefore expect that the edge of the HgTe should always host a pair of time-reversal
symmetric edge states. Of course, for thin HgTe wells where the bands are ordered normally, one ex-
pects that no such crossing should occur at the edge, and therefore there should be no quantum spin
Hall effect.

There is a better argument based on topology. Just as the Chern invariant n counts the number
of edge channels and therefore the Hall conductance σxy in the IQHE, an analogous topological in-
variant can be defined for the quantum spin Hall effect. Bernevig, Hughes, and Zhang calculated the
Hall conductance of their model. They found that σxy = 0 forM/2B < 0, and σxy = ±e2/h
for 0 < M/2B < 2, where theH(k) andH∗(−k) blocks of the Hamiltonian (4.1) have opposite
values of σxy . There are then three distinct possible phases, enumerated by the possible values of the
Hall conductance σxy . One of the phases, in which the quantumwell is uninverted, is equivalent to a
trivial insulator and is characterized byσxy = 0. The other two phases occur for an inverted quantum
well and each have a pair of counter propagating edges. In time-reversal invariant two-dimensional in-
sulators, it is possible to show that a Z2 topological invariant distinguishes between an even and odd
number of pairs of edge states [55]. Phases with an even number of edge state pairs are topologically
trivial, while those with an odd number of pairs are equivalent and topologically nontrivial. The Z2

invariant takes values of either 0 or 1, and counts the number of stable gapless edge states modulo 2.
Using the bulk-boundary correspondence, simply knowing that an inverted quantum well has a Z2

invariant of 1 is enough to say that it must be a quantum spin Hall insulator. The different topol-
ogy of inverted and uninverted wells also explains the evolution of E1 andH1 states in Figure 4.4;
because the bulk gap must close at a topological phase transition, the E1 andH1 states cross at the
critical well thickness dC = 6.3 nm.
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4.3 Experimental expectations for charge transport

The BHZ model provides several clear experimental predictions for charge transport in HgTe quan-
tum wells. The most dramatic prediction is that the system should undergo a topological phase tran-
sition when the quantum well thickness crosses through the critical thickness dC = 6.3 nm. For
wells thinner than the critical thickness, this means that if the chemical potential is tuned into the gap,
there should be no edge channels and no quantum spin Hall effect. For wells whose width matches
the critical thickness, the gap should close, and the system should realize a single-valley Dirac system
[16]. Finally, for wells thicker than the critical thickness, the system should become a quantum spin
Hall insulator when the chemical potential enters the bulk gap. Charge should then flow at the edges
of the sample, but still not through the bulk. Although it is not possible experimentally to tune the
quantumwell thickness in a single sample4, by growing sampleswith different thicknesses it is possible
to test this expectation.

A second prediction concerns the nature of charge transport in the quantum spin Hall effect.
As long as time-reversal symmetry is conserved, electrons should not be able to scatter between the
counter propagating edge modes. Along any given edge of an experimental sample, one then ex-
pects to find a ballistic one-dimensional channel with conductance e2/h. A convenient geometry
with which to test this expectation is the Hall bar geometry shown in Figure 4.7. Assuming that edge
channels equilibrate completely at each contact, a standard measurement of the longitudinal conduc-
tance should yield the result Gxx = 2e2/h in the quantum spin Hall regime. This result contrasts
dramatically with what one expects for a trivial insulator, whereGxx = 0.

4.4 Experimental evidence for topological edge channels

In Chapter 5, we present measurements of Josephson junctions where a rectangular section of quan-
tum well is contacted on opposite sides by superconducting aluminum leads. By measuring Fraun-
hofer interference in a device where the quantum well width exceeds 6.3 nm, we are able to spatially
image the topological edge states associated with the quantum spin Hall effect. In the following sec-
tions, we discuss experimental evidence for these topological edge channels that was obtained prior to
the work in Chapter 5.

4Not yet, anyway.
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Figure 4.7: Predicted conductance of trivial and topological devices, adapted from [12, 62]. (a) Experimental fabri-

cation of a Hall bar, as shown, allows a four-terminal measurement of the longitudinal conductanceGxx. With a top

gate, the chemical potential can be tuned into the bulk band gap. Then, with the current sourced from contact 1 and

drained at contact 4, themeasured voltage difference between contacts 2 and 3 (and hence the conductanceGxx)

indicates whether the device is in the trivial or topological regime. (b) In the trivial regime (d < dC ), the sample insu-
lates when the chemical potential lies in the band gap, so that the conductanceGxx is expected to be zero. (c) In the

topological regime (d > dC ), the presence of quantum spin Hall edge states leads to a nonzero conductance evenwith

the chemical potential in the band gap. In the absence of backscattering, and if edge channels equilibrate perfectly in

the leads, the conductance of this Hall bar configuration should then beGxx = 2e2/h.
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4.4.1 Quantized resistance

The first experimental evidence for the quantum spin Hall effect came from the group of Laurens
Molenkamp at the University ofWürzburg [62]. They found that in devices where the quantumwell
was thinner than the critical thickness dC , the longitudinal resistance was dramatically higher than in
devices with quantum wells thicker than dC . The layout of these devices was the same as in Figure
4.7.

The results of their measurements are shown in Figure 4.8. In the first device, which contained
a 5.5 nm-thick quantum well, tuning into the bulk band gap leads to a longitudinal resistance of
more than 10Mohm. This contrasts dramatically with the measurements on 7.3 nm-thick quantum
wells, where devices with micron-scale dimensions had longitudinal resistances close to h/2e2. As
discussed previously, this nearly quantized resistance can be interpreted as evidence for transport via
quantum spin Hall edge modes. Comparing the ≈ 3 orders of magnitude difference in resistance
between narrow and wide quantum wells strengthens this interpretation.

An additional device had dimensions 20.0 × 13.3 µm2 and also contained a 7.3 nm-thick quan-
tum well. In this device, the resistance was surprisingly somewhat larger than the expected resistance
h/2e2. This suggests that in HgTe samples, the scattering length for the edge states is on the order of
a fewmicrons. Even in devices that are nearly quantized, the resistance can fluctuate by several kohm.
These deviations from the expected resistance are ubiquitous and have been studied both theoreti-
cally [76, 104, 118, 119] and experimentally [13, 64] with no definitive resolution to date. Regardless of
whether the scattering mechanism is known, however, the dramatic difference in resistance seen on
changing the quantum well width by only ≈ 2 nm, combined with the nearly quantized resistance
of micron-scale samples, still provides strong evidence for the existence of topological edge states. In
addition, the nonlocal nature of the edge conduction has also been checked by varying the geometry
and arrangement of contacts in various wide-well devices [98].

In the Yacoby lab, we sought to replicate the original observation of quantum spin Hall behavior,
using a wide quantum well grown by the group of Laurens Molenkamp. The growth structure of
the wafer that we used is shown in Figure 4.9, and the mobility and density of this intrinsically doped
sample were µ = 94, 000 cm2/Vs and n = 3.78× 1011/cm2.

The device that we fabricated is shown in Figure 4.10. Amesa, createdwith argon etching, is shown
in green and also lies under blue and red regions. Blue regions define ohmic contacts made by deposit-
ing titanium and gold. The red areas define the top gate, which is used to tune the electron density.

Due to the intrinsic doping of this wafer, ungated areas of the device will have a metallic two-
dimensional electron system and can be treated as extensions of the ohmic contacts. On energizing
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Figure 4.8: Experimental evidence for the quantum spin Hall effect in HgTe quantumwells, adapted from [62]. The

longitudinal four-terminal resistance of four different devices wasmeasured, as a function of the voltage on a global

top gate. The devices were all in the configuration discussed in Figure 4.7. Device I contained a 5.5 nm-thick quantum

well, while Devices II-IV contained a 7.3 nm-thick quantumwell. Devices I and II had dimensions 20.0 × 13.3µm2,

while devices III and IVwere smaller with dimensions 1.0 × 1.0µm2 and 1.0 × 0.5µm2 respectively. In device I,

tuning the chemical potential into the band gap resulted in ameasured resistance that was orders of magnitude larger

thanh/2e2, as expected for a trivial sample. In the smallest samples with wide wells (devices III and IV), tuning into
the band gap yielded a resistance close toh/2e2, as expectedwhen quantum spin Hall edges are present.
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Figure 4.9: Schematic of the heterostructure used tomeasure resistance consistent with the quantum spin Hall effect.

The quantumwell thickness was 8 nm. Thewafer was also intrinsically doped.

the top gate, regions underneath the gate can be tuned into the topologically insulating regime. Since
the gate only overlaps the mesa in short (2 micron) lengths, the quantum spin Hall edge states only
traverse this short length between the contacts, even in a device with large overall dimensions.

To mimic the contact arrangement used in the measurements by the Molenkamp group, we mea-
sure current from three adjacent grounded contacts, and source current from the appropriate remain-
ing contact. On repeating the measurement in Figure 4.8, we find that as the chemical potential is
tuned into the band gap, the longitudinal resistance approaches the expected value of h/2e2 (Figure
4.10). This measurement provides further evidence for the existence of topological edge states in the
quantum spin Hall effect.

In all of the experiments discussed so far, themeasured resistance depends not only on the resistance
of the edge segment between the voltage leads, but also on the resistances of all other segments. This
is not ideal, since the fundamental property that one hopes to probe in suchmeasurements is actually
the conductance of a single quantum spin Hall edge. It is therefore desirable to find a measurement
strategy which would allow us to examine each edge resistance individually.

Figure 4.11 depicts our scheme for accomplishing this goal. We model the system as a ring, with
each of the edge segments replaced by a resistor Ri. Electrical contacts are then placed between the
resistors. We will be interested in a pair of measurements which allows us to find the value of one of
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Figure 4.10:Measuring resistance consistent with the quantum spin Hall effect. (A) The device used for themea-

surements. The top gate overlapped the edge only in small (2 micron long) segments. Upon depleting the electron

density under the top gate, this gate design results in short quantum spin Hall edges. (B) The longitudinal resistance, as

a function of the gate voltage. With the chemical potential tuned into the gap underneath the top gate, this resistance

becomes close to the expected resistance for transport through quantum spin Hall edges (red line).
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these resistancesR1. In each of the twomeasurements, a current I flows between two of the contacts,
and voltages are measured across the resistorsR1 andR4. Using the first measurement (Figure 4.11a),
one finds

I =
V1
R1

+
V4
R4

. (4.6)

The second measurement (Figure 4.11b) allows one to measure the ratio r14 between the resistances
R1 andR4, expressed in terms of measured quantities as

r14 ≡
R1

R4
=
U1

U4
. (4.7)

When we combine these two measurements, we find an expression for R1 which depends only on
experimentally measured quantities:

R1 =
V1 + r14 · V4

I
. (4.8)

Many schemes of this type are possible, allowing experimental extraction of all eight edge resistances.
Figure 4.12 shows the resistance of all eight edge segments, extracted using this method. In each

plot, the expected edge resistance h/e2 appears as a green line. The mean edge resistance, calculated
using data highlighted in red, is plotted as a dark gray line. The area shaded in light gray falls within
one standard deviation of the mean resistance. Despite the usual fluctuations, one can immediately
see that four of the edge resistances are very close to the expected resistanceh/e2. This provides strong
evidence in favor of the quantum spinHall effect. The remainingmean edge resistances are somewhat
higher than expected, a fact which remains to be explained.

4.4.2 Current imagingwith a scanning SQUID

In 2013, imaging experiments performed by the Moler group at Stanford University yielded further
evidence for topological edge channels, and for a topological phase transition tuned by the quantum
well thickness [90]. Using a scanning SQUID, they were able to detect magnetic fields produced by
current flowing in HgTe samples. In samples with quantum wells thicker than the critical thickness
dC , upon tuning the chemical potential into the band gap they found that currents only flowed near
the edges of the sample. In quantumwells thinner than dC , they found no evidence of enhanced edge
conduction. These measurements provide additional evidence, via imaging of transport currents, for
the existence of topological edge states.
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Figure 4.11: Strategy for measuring individual quantum spin Hall edge resistances. A pair of measurements allows

extraction of the edge resistanceR1. (a) The first measurement provides a relation betweenR1 andR4, in terms

of measured quantities. (b) The secondmeasurement provides the ratio r14 between the resistancesR1 andR4.

Combining these twomeasurements gives an expression forR1 in terms of only measured quantities.
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Figure 4.12: Resistances of quantum spin Hall edges, extracted using the scheme depicted in Figure 4.11. In each

plot, the data in red was averaged to produce themean resistance plotted in dark gray. The light gray area falls within

one standard deviation of this mean resistance. Green lines show the expected resistanceh/e2 for a single quantum
spin Hall edge. Four of themeasured edge resistances lie within one standard deviation of this expected resistance,

providing evidence for the quantum spin Hall effect.
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4.5 Josephson effect in HgTe quantumwells

Given the preponderance of evidence in support of the quantum spin Hall effect, it is natural to ask
what use this unique systemmight have. One answer to this question centers on combining the topo-
logical edge channels with superconductivity. The edge states of a quantum spin Hall insulator are
special in that they realize a quantum wire with no spin degree of freedom. Such effectively spinless
wires have been intensely researched in recent years, due to the possibility that introducing supercon-
ducting pairing into these systems could result in a completely newphase ofmatter called a topological
superconductor [2, 9].

Topological superconductivity in this contextwas first examined theoretically byAlexeiKitaev [59].
He studied a one-dimensional chain of fermions with superconducting pairing but no spin degree of
freedom, and found that it is possible for such a system to become a topological superconductor. Such
a one-dimensional topological superconductor is characterized by the appearance of a zero-energy
mode, called a Majorana fermion, at each end of the wire. Majorana fermions in this condensed mat-
ter context are fractionalized modes which pair to form conventional fermions [86]. It is interesting
that a single fermonic degree of freedom can become delocalized in this way. In fact, 2n sufficiently
separatedMajoranamodes define a degenerateHilbert space of 2n states, where the only way to rotate
between states is to braid a pair of Majorana modes spatially around one another. In such an ideal
system, local perturbations would not be able to change the state of the system. This profound ro-
bustness of the quantum state in a system of Majorana fermions makes them highly desirable as the
building blocks for a quantum computer.

In pioneering work, Fu and Kane envisioned a system based around the quantum spin Hall effect
which could host Majorana fermions [34]. They studied an annulus of quantum spin Hall insulator
which is contacted by a superconductor everywhere along its outer edge except for a region of length
L (Figure 4.13I). They then studied the spectrum of states inside this region as a function of the phase
differenceϕbetween the ends of the junction. In the short junction limit, they found that therewill be
two energy levels in the spectrum which cross at zero energy, due to the presence of Majorana modes
in the junction (Figure 4.13IIa). Furthermore, breaking of time-reversal symmetry (for example by
application of an in-plane magnetic field) opens a gap in the quantum spin Hall edge, confining the
Majorana modes more tightly to the boundaries of the superconductor. Increasing the strength of
the parallel magnetic field then pushes the spectrum of states closer to zero energy, as the Majorana
modes become more tightly confined (Figure 4.13IIb). Finally, increasing the length of the junctions
adds additional states but cannot lift the crossing atE = 0, which is due to the nontrivial topology of
the system (Figure 4.13IIc, d). The existence of states inside the gap which cross at zero energy arises
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Figure 4.13: A Josephson junction based around a quantum spin Hall edge, adapted from [34]. (I)A superconduc-

tor/quantum spin Hall edge/superconductor junction where a single edge state connects two superconductors sep-

arated by a distanceL. The annular geometry in this setup would allow control over the phase differenceϕ across

the junction, via magnetic flux threaded through the center of the annulus. (II) a) The spectrum of states in the short-

junction limitL = 0, featuring a degeneracy atE = 0whenϕ = π. b-d) Upon increasing the junction length
L, introducing a non-zero Zeeman fieldM0, or changing the chemical potentialµ away from zero, the degeneracy at

E = 0 andϕ = π remains. HereL is in units of v/∆0, where v is the edge state velocity and∆0 is the amplitude of

the induced pairing potential.M0 andµ are in units of∆0.

due to the presence of a quantum spin Hall edge channel contacting the superconductor. In a trivial
insulator, no such states should exist and the spectrum should be gapped and featureless.

With this in mind, we are motivated not only to study the microscopic properties of the quantum
spin Hall effect, but also its possible role in quantum information processing. To that end, in the
following chapters we study transport in junctions where a rectangular section of quantum well is
located between two superconducting leads. Such an arrangement is called a Josephson junction, and
in the absence of external magnetic fields ordinarily carries a supercurrent IS determined as follows:

IS = IC sin(∆ϕ). (4.9)

This relation, called the DC Josephson effect, was predicted by Brian Josephson in 1962 [51]. It
specifies a definite relation between the phase difference∆ϕ between the superconducting leads and
the supercurrent IS , in terms of the maximum supercurrent IC that can flow in the junction. This
maximum supercurrent, called the critical current, is the largest value of IS for which equation (4.9)
has a solution.

If an external magnetic field is applied perpendicular to the quantumwell, there will then be a flux
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Φpenetrating the junction. It is thennecessary to account for theAharonov-Bohmphase accumulated
by electrons traversing the junction. If supercurrent flows uniformly throughout the junction in the
absence of the external magnetic field, it is possible to show that the critical current in the junction
will then be modulated by this flux in the form of a Fraunhofer diffraction pattern [113]:

IC(Φ) = IC |sin(πΦ/Φ0)/(πΦ/Φ0)| . (4.10)

Here Φ0 = h/2e is the magnetic flux quantum. The experiments described in Chapters 5 and
6 will be concerned with this relationship, and how it is modified by certain properties of the HgTe
system. In Chapter 5, we study how depletion of the electron density in the bulk of a topological sam-
ple restricts the flow of supercurrent to the quantum spin Hall edge channels. The resulting change
in the Fraunhofer interference provides microscopic information about these topological edge states.
In Chapter 6, we study the effect on Fraunhofer interference of a magnetic field oriented parallel to
the plane of the sample. With the chemical potential tuned into the conduction band of an inverted
quantumwell, this experiment provides information about the interplay between superconductivity,
spin-orbit coupling, and the applied magnetic field.
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5
Induced superconductivity in the quantum

spin Hall edge

5.1 Introduction

Topological insulators are a newly discovered phase of matter characterized by a gapped bulk
surrounded by novel conducting boundary states [45, 55, 94]. Since their theoretical discovery, these
materials have encouraged intense efforts to study their properties and capabilities. Among the most
striking results of this activity are proposals to engineer a new variety of superconductor at the surfaces
of topological insulators [33, 34]. These topological superconductors would be capable of supporting
localized Majorana fermions, particles whose braiding properties have been proposed as the basis of
a fault-tolerant quantum computer [86]. Despite the clear theoretical motivation, a conclusive real-
ization of topological superconductivity remains an outstanding experimental goal. Here we present
measurements of superconductivity induced in two-dimensional HgTe/HgCdTe quantum wells, a
material which becomes a quantum spin Hall insulator when the well width exceeds dC = 6.3 nm
[63]. In wells that are 7.5 nm wide, we find that supercurrents are confined to the one-dimensional
sample edges as the bulk density is depleted. However, when the well width is decreased to 4.5 nm
the edge supercurrents cannot be distinguished from those in the bulk. Our results provide evidence
for supercurrents induced in the helical edges of the quantum spin Hall effect, establishing this sys-
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tem as a promising avenue toward topological superconductivity. In addition to directly confirming
the existence of the topological edge channels, our results also provide a measurement of their widths,
which range from 180 nm to 408 nm.

Topological superconductors, like topological insulators, possess a bulk energy gap and gapless sur-
face states. In a topological superconductor, the surface states are predicted tomanifest as zero-energy
Majorana fermions, fractionalized modes which pair to form conventional fermions. Due to their
non-Abelian braiding statistics, achieving control of these Majorana modes is desirable both funda-
mentally and for applications to quantum information processing. Proposals toward realizing Majo-
rana fermionshave focusedon their emergencewithin fractional quantumHall states [84] and spinless
p+ip superconductors [95], and on their direct engineering using s-wave superconductors combined
with topological insulators or semiconductors [1, 102]. Particularly appealing are implementations in
one-dimensional (1D) systems, where restriction to a single spin degree of freedom combined with
proximity to an s-wave superconductor would provide the basis for topological superconductivity
[59]. Effort in this direction has been advanced by studies of nanowire systems [21, 22, 31, 70, 85, 97]
and by excess current measurements on InAs/GaSb devices [61].

An attractive route toward a 1D topological superconductor originates from the two-dimensional
(2D) quantum spin Hall (QSH) insulator. This topological phase of matter was recently predicted
[11, 12] and observed [62, 98] in transport measurements of HgTe/HgCdTe quantum wells thicker
than a critical thickness dC = 6.3 nm. Due to strong spin-orbit coupling the bulk bands of the
system invert, crossing only at the edges of the system to form 1D counterpropagating helical modes.
Time-reversal symmetry ensures protectionof thesemodes against elastic backscattering over distances
shorter than the coherence length [104]. The helical nature of the edge modes makes them a partic-
ularly appealing path toward topological superconductivity, due to the intrinsic elimination of their
spin degree of freedom. Here we report measurements of supercurrents induced in HgTe/HgCdTe
quantumwell heterostructures. As the system enters theQSHregimewe find that these supercurrents
become confined to the topological edgemodes, verifying their existence and providing amicroscopic
picture of the QSH state.

5.2 Measurement overview

Our approach consists of a two-terminal Josephson junction, with a rectangular section of quantum
well located between two superconducting leads (Figure 5.1). At a given bulk carrier density, the pres-
ence or absence of helical edge channels influences the supercurrent density profile across the width of
the junction. In the simplest case the supercurrent density is uniform throughout the device, and edge
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channels are indistinguishable from bulk channels (Figure 5.1a). This behavior would be expected for
a non-topological junction (quantumwell width smaller than dC ), or in a topological junction (quan-
tum well width larger than dC ) far from the bulk insulating regime.

In a topological junction, decreasing the bulk carrier density brings the device closer to the QSH
insulator regime (Figure 5.1b). Scanning SQUIDmeasurements suggest that over a range of bulk den-
sities the QSH edge channels coexist with bulk states, and can carry considerably more edge current
than would be expected for a non-topological conductor [90]. In the two-terminal configuration,
this helical edge contribution appears as peaks in the supercurrent density at each edge. When the
bulk density becomes sufficiently low, these edge peaks are the only features in the supercurrent den-
sity (Figure 5.1c). Then the supercurrent is carried solely along the helical edges, and the system is in
the regime of the quantum spin Hall superconductor.

Placing such a Josephson junction in a perpendicular magnetic fieldB provides a way to measure
the supercurrent density in the quantum well. In general, the maximum supercurrent that can flow
through a Josephson junction is periodically modulated by a magnetic field. Typically, the period of
the modulation corresponds to the magnetic flux quantumΦ0 = h/2e. In our junctions this period
matches the area of theHgTe regionplus half the area occupiedby each contact, a result of theMeissner
effect. The particular shape of the critical current interference pattern depends on the phase-sensitive
summation of the supercurrents traversing the junction [113]. In the case of a symmetric supercurrent
distribution, this integral takes the simple form:

Imax
C (B) =

∣∣∣∫∞
−∞ dxJS(x) cos(2πLJBx/Φ0)

∣∣∣ .
HereLJ is the length of the junction along the direction of current, accounting for the magnetic flux
focusing from the contacts.

It is evident that different supercurrent densities JS(x) in the junction can give rise to different
interference patterns Imax

C (B). The flat supercurrent density of a trivial conductor corresponds to a
single-slit Fraunhofer pattern |(sin(πLJBW/Φ0))/(πLJBW/Φ0)|, characterized by a central lobe
width of 2Φ0 and side lobes decayingwith 1/B dependence (Figure 5.1a). As helical edges emerge, this
single-slit interference evolves toward the more sinusoidal oscillation characteristic of a SQUID (Fig-
ure 5.1b). The central lobe width shrinks to Φ0 when only edge supercurrents remain, with the side
lobe decay determined by the widths of the edge channels (Figure 5.1c). Measuring the dependence of
Imax
C onB therefore provides a convenient way tomeasure the distribution of supercurrent in a junc-
tion. To quantitatively extract JS(x) from the measured quantity Imax

C (B) we follow an approach
developed by Dynes and Fulton, where nonzero Imax

C (B)minima are ascribed to an asymmetric su-
percurrent distribution [30]. Although other effects may lead to nonzero minima in Imax

C (B), we
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Figure 5.1: Expected two-terminal behavior in different regimes of a topological quantumwell. (a)When the bulk of

a sample is filled with charge carriers, supercurrent can flow uniformly across the junction, corresponding to a flat

supercurrent densityJS(x). A perpendicular magnetic fieldB modulates themaximum critical current Imax
C , re-

sulting in a single-slit Fraunhofer interference pattern. (b)As the bulk carriers are depleted, the supercurrent density

develops peaks due to the presence of the helical edges. This evolution toward edge-dominated transport appears in

the interference pattern as a narrowing central lobe width andmore pronounced side lobe amplitudes. (c)When no

bulk carriers remain, the supercurrent is carried only along the helical edges. In this regime the interference results in

a sinusoidal double-slit pattern, with an overall decay inB that is determined by the width of the edge channels.
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consider here only the possibility of an odd component in JS(x). Full details of the extraction proce-
dure can be found in Section 5.8.

5.3 Induced superconductivity in the quantum spin Hall regime

To study how supercurrents flow in theQSH regime, wemeasure a Josephson junction consisting of a
7.5nm-wide quantumwell contacted by titanium/aluminum leads [91]. Our contact lengths are each
1 µm, and the contact separation is 800 nm. The junction width of 4 µm is defined by etched mesa
edges. A voltage VG applied to a global topgate allows us to tune the carrier density in the junction.
At each value of VG andB, the critical current Imax

C is determined by increasing the current through
the junction while monitoring the voltage across the leads. The behavior observed in this device is
reproducable in several other similar junctions, as reported in Section 5.10.

As a function of the topgate voltage, the overall behavior of the junction evolves between two ex-
tremes. At more positive gate voltage and higher bulk density, the critical current envelope strongly
resembles a single-slit pattern (Figure 5.2a). This type of interference suggests a nearly uniform super-
current density throughout the sample, confirmed by transformation to the JS(x) picture (Figure
5.2b). This nearly flat distribution indicates that the quantumwell is in the high carrier density regime
of an essentially trivial conductor.

Atmore negative gate voltage and lower bulk density, the critical current envelope becomes close to
a sinusoidal oscillation (Figure 5.2c). The shift toward a SQUID-like interference pattern corresponds
to the development of sharp peaks in supercurrent density at the mesa edges (Figure 5.2d).

We can track this evolution in a single device by measuring the critical current envelope at a series
of gate voltages. As the topgate is varied from VG = 1.05 V to VG = −0.45 V, the maximum
critical current decreases from 505nA to 5.7nA.At the same time, the overall critical current behavior
shows a narrowing of the central interference lobe, from 2Φ0 at positive gate voltages toΦ0 at negative
gate voltages (Figure 5.3a,b). The side lobes additionally become continuously more pronounced,
indicating the confinement of supercurrent to channels at the edges of the junction (Figure 5.3c,d).
The normal resistance, measured at large bias to overcome superconductivity, increases from 160 Ω

to∼ 3, 000Ω over the range of this transition (Figure 5.3e). While it is possible to gate further toward
depletion, the critical currents become too small to reliably measure and no meaningful supercurrent
density can be extracted.

At the most negative gate voltage, VG = −0.45V, we can estimate the widths of the supercurrent-
carrying edge channels using a Gaussian lineshape (Figure 5.3f). Using this method, we find widths
of 408 nm and 319 nm for the two edges. Our measurements of edge widths in another device with
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Figure 5.2: General behavior observed in the topological Josephson junction. (a)Amap of the differential resistance

across the junction, measuredwith the topgate atVG = 1.05V, shows the single-slit interference characteristic of
a uniform supercurrent density. (b) The supercurrent density, extracted forVG = 1.05V, is consistent with trivial
charge transport throughout the bulk of the junction. (c)When the topgate voltage is lowered toVG = −0.425V,
the differential resistance shows amore sinusoidal interference pattern. (d)Using the inteference envelopemeasured

atVG = −0.425V, the supercurrent density is clearly dominated by the contribution from the edges. In this regime

almost no supercurrent passes through the bulk.
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Figure 5.3: Continuous evolution with gating in the topological Josephson junction. (a)As the topgate is varied from

VG = 1.05V toVG = −0.45V, themaximum critical current decreases from 505 nA to 5.7 nA. (b)Normalizing the

interference patterns to their peak values reveals the evolution toward sinusoidal interference. (c)Using the envelope

at each gate voltage, the evolution of the supercurrent density can be visualized. (d)By normalizing each supercurrent

density to its maximum value, the transition from trivial to edge-dominated supercurrent transport can be clearly seen.

(e) This transition occurs as the normal device resistance increases from 160Ω to 3,000Ω. (f)At themost negative

gate voltage,VG = −0.45V, the supercurrent density provides ameasurement of the edgewidths.
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similar dimensions, as well as one with a 2 µm mesa width, show edges as narrow as 180 nm (see
Section 5.10). These width variations, as well as the normal state resistance that is low compared to
the resistance h/2e2 for two ballistic 1D channels, suggest the presence of additional edgemodes or of
bulk modes coupled too weakly across the junction to carry supercurrent.

5.4 Induced superconductivity in a non-topological quantumwell

To provide further evidence that the observed edge supercurrents are topological in nature, we next
turn to a heterostructure with a quantum well width of 4.5 nm. In this device, the well width is
smaller than the critical width dC , so that the sample is not expected to enter the QSH regime. Near
zero topgate voltage and a normal resistance of 270 Ω, the critical current interference pattern has a
maximumof 243nA and resembles a single-slit envelope (Figure 5.4a,b). Upon energizing the topgate
and decreasing the bulk density, the single-slit pattern persists. In contrast to thewidewell sample, this
behavior corresponds to a supercurrent density that remains distributed throughout the junction even
as the normal resistance rises to several kΩ (Figure 5.4c-f). Because the edge supercurrents are present
only when the well width is larger than dC , we conclude that our observations provide evidence for
induced superconductivity in the helical QSH edge states.

By studyingFraunhofer interference, ourmeasurements provide detailed information about the su-
percurrent distribution inHgTequantumwells. In thequantumspinHall regime, this interferometry
confirms the existence of topological edge channels associated with the quantum spin Hall insulating
state. Our observed supercurrent distributions additionally provide the first direct measurements of
the helical edges’ spatial extent. In general, our application of this Fourier imaging technique toHgTe
quantum wells could be widely adopted as a method to elucidate the microscopic structure of topo-
logical materials. In our devices, the observation of Josephson supercurrents through the helical edge
channels establishes the HgTe/HgCdTe system as a platform in which to pursue topological super-
conductivity andMajorana bound states, whether through following existing theoretical proposals or
those yet to be formulated [50, 82, 103].

5.5 Device characteristics

Deviceswere fabricatedon twodifferentHgTe/HgCdTeheterostructures, with layer structures shown
in Figure 5.5. Wafer I contained a 7.5 nm quantum well with an electron density of 3.6× 1011/cm2

and a mobility of 300, 000 cm2/Vs. Wafer II contained a 4.5 nm quantum well with an electron
density of 3.5× 1011/cm2 and a mobility of 100, 000 cm2/Vs.
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Figure 5.4: Continuous evolution with gating in the non-topological Josephson junction. (a)As the topgate is varied

fromVG = 0V toVG = −1.5V, themaximum critical current decreases from 243 nA to 4.4 nA. (b)Normalizing the

interference patterns to their peak values shows the stability of the single-slit pattern over a wide range of gating. (c)

Using the envelope at each gate voltage, the evolution of the supercurrent density can be visualized. (d)Normalizing

each supercurrent density to its maximum value shows that the supercurrent remains distributed throughout the

device. (e) This roughly uniform supercurrent distribution remains even as the device resistance increases from 215

Ω to almost 2,500Ω. (f)A linetrace of the supercurrent density close to depletion further demonstrates that the

supercurrent flows throughout the device.
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Wafer I Wafer II

CdTe substrate

100 nm Hg0.3Cd0.7Te

70 nm Hg0.3Cd0.7Te

CdTe substrate

50 nm Hg0.3Cd0.7Te

50 nm Hg0.3Cd0.7Te7.5 nm HgTe
4.5 nm HgTe

Doping (Iodine)

25 nm Hg0.3Cd0.7Te

Figure 5.5: Schematics of the heterostructures used in the experiment. The quantumwell thicknesses were 7.5 nm for

Wafer I and 4.5 nm forWafer II.

Device processing consisted of the following steps. Mesas were defined by etching with an Ar ion
source, and were 100 nm in height. Contacts consisted of 10 nm of titanium under 180 nm of alu-
minum, deposited by thermal evaporation after in situ cleaning with an Ar ion source. A 50 nm layer
of aluminum oxide deposited by atomic layer deposition isolated themesa and contacts from the top-
gate, which consisted of 10 nm of titanium under 250 nm of gold. An SEM image of a junction is
depicted in Figure 5.6.

5.6 Critical current measurement

Measurements were performed in a dilution refrigerator with a base temperature of 10 mK, and an
electron temperature of 20mKmeasured using standardCoulombblockade techniques. At each volt-
age VG on the topgate, the magnetic field was stepped throughB = 0mT over a range of 8mT. At
each value of magnetic field, the DC current IDC through a junction was then increased while mon-
itoring the DC voltage drop VDC across the junction. A voltage threshold was used to determine
the critical current; the point beyond which VDC was increasing and above the threshold voltage was
recorded as the critical current Imax

C (B, VG). Our threshold was set at 1 µV, several standard devi-
ations above the noise level. There is an artificial offset introduced by this method when the critical
current falls to zero. In our analysis these artificial offset currents are reported as zero instead of the
value given by the threshold method.
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IDC 

VDC 

VG

1 μm

Figure 5.6: A scanning electronmicrograph showing the layout of the junctions. Amesa 4microns in width was con-

tacted by Ti/Al leads. The voltage dropVDC across these leads wasmonitored as a function of the DC current IDC

flowing between them. A voltageVG applied to a topgate was used to tune the electron density in the device.

5.7 Normal resistance and strength of the induced superconductivity

The critical current IC and normal state resistanceRN of an ideal device are related to the aluminum
superconducting gap∆ by the formula eICRN/π = ∆[10]. In reality, measurement of IC andRN

can yield a product eICRN/π that is smaller than ∆. This situation can arise if, for example, the
critical current is smaller than expected due to imperfect contact between the aluminum and modes
in the HgTe quantum well. The measured product∆∗ = eICRN/π therefore provides a gauge of
how strongly superconductivity is induced into the quantumwell. In order to calculate this quantity
it is necessary to know the normal resistance ofmodes contributing to the supercurrent, as well as their
critical current.

Tomeasure the normal resistance of our device, at each voltage VG on the topgate we applied a DC
voltagebias of750µVbetween the aluminum leadswhilemeasuring thedifferential resistanceRusing
an AC current bias of 5 nA. This measurement avoids features related to superconductivity through
application of theDCbiasmuch larger than the aluminum superconducting gap. However, onemust
exercise caution in equating theseR values directly to the normal resistanceRN ofmodes which carry
supercurrent, because the large DC bias can provide sufficient energy for transport via bulk states that
would otherwise be inaccessible near zero bias. Therefore, the reportedR is likely to be lower than the
normal resistance of the modes actually available for low bias transport, complicating an estimation
of the strength of superconductivity induced in our device.

Despite this complication, we can still analyze extreme possibilities for the strength of the induced
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superconductivity. In the case that only two helical edge channels contribute to the supercurrent the
normal resistance of the device is h/2e2. If the normal transport occurs ballistically, this is the max-
imum normal resistance that can be assigned to superconducting modes. Then using the measured
IC = 5.7 nA at VG = −0.45 V, the product∆∗ = eIC · (h/2e2)/π = 23 µeV provides an upper
bound on the strength of the induced superconductivity.

5.8 Analysis of current density profile

In a Josephson junction immersed in a perpendicular magnetic field B, the magnitude of the maxi-
mum critical current Imax

C (B) depends strongly on the supercurrent density between the leads. For
example, a uniform supercurrent density generates single-slit Fraunhofer interference, while a sinu-
soidal double-slit interference pattern arises from two supercurrent channels enclosing the junction
area. In the following discussion we elaborate on this correspondence, outlining the quantitative way
in which we convert ourmeasured interference patterns to their originating supercurrent density pro-
files. We assume throughout that the current density varies only along the x direction, and that the
supercurrent is directed along the orthogonal y direction. The junction then has a length L in the
y direction, and the leads each have a length LAl. Our method follows the approach developed by
Dynes and Fulton [30].

At a fixedmagnetic field, the total critical current through the Josephson junction is aphase-sensitive
summation of supercurrent over the width of the junction. Suppose we have a supercurrent density
profile JS(x). Then its complex Fourier transform yields a complex critical current functionIC(β),

IC(β) =

∫ ∞

−∞
dxJS(x)e

iβx, (5.1)

where the normalizedmagnetic field unitβ = 2π(L+LAl)B/Φ0, and themagnetic fluxquantum
Φ0 = h/2e.

The experimentally observed Imax
C (β) is themagnitude of this summation: Imax

C (β)= |I C(β)|.
Therefore to extract the supercurrent density from Imax

C (β) it is necessary to first recover the complex
critical currentIC(β).

This reduces to a particularly simple problem in the case of an even current density, JE(x), repre-
senting a symmetric distribution. The odd part of eiβx vanishes from the integral, and equation (1)
becomesIC(β) = IE =

∫∞
−∞ dxJE(x) cosβx. SinceJE(x) is real andpositive, we see thatIC(β)

is also real, and it typically alternates between positive and negative values at each zero-crossing. Be-
cause Imax

C (β) = |IC(β)|, we can therefore recover the exact IC(β) by flipping the sign of every
other lobe of the observed Imax

C (β).
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Now suppose that on top of this even function, the current distribution has a small but non-
vanishing odd component, JO(x),with its Fourier transform IO(β) =

∫∞
−∞ dxJO(x) sinβx.Then

(1) gives

IC(β) = IE(β) + iIO(β). (5.2)

The observed critical current Imax
C (β) =

√
I2E(β) + I2O(β) is therefore dominated by IE(β) ex-

cept at its minima points. Approximately, IE(β) is obtained bymultiplying Imax
C (β)with a flipping

function that switches sign between adjacent lobes of the envelope function (Figures 5.7,5.8a). When
IE(β) is minimal, the odd part IO(β) dominates the critical current. IO(β) can then be approx-
imated by interpolating between the minima of Imax

C (β), and flipping sign between lobes (Figure
5.8b). A Fourier transform of the resulting complexIC(β), over the sampling range b of β, yields the
current density profile (Figure 5.9):

JS(x) =

∣∣∣∣∣ 12π
∫ b/2

−b/2
dβIC(β)e

−iβx

∣∣∣∣∣ . (5.3)

5.9 Gating of resistance and supercurrent

To study the variation of the normal resistance as a function of the bulk carrier density, we swept
the topgate voltage in the topological junction (main text) from VG = 1.05 V to VG = −3 V.
Over this gate range, the differential resistance was measured using an AC excitation of 5 nA. We
additionally maintained a constant DC voltage bias of 750 µV across the junction to avoid features
related to superconductivity. The resulting normal resistance measurement displays two relatively
conductive regimes separated by a resistance plateau peaking near 6-8 kΩ (Figure 5.10a). This behavior
is consistent with previous transportmeasurements of theQSH effect, where theQSH insulator state
appears as a resistance peak when samples are gated from n-type to p-type regimes [62]. The value
of the resistance plateau is lower than the expected resistance h/2e2 for two ballistic 1D channels,
suggesting that additional bulkmodes are present. NearVG = −3V, our junction resistance saturates
at 3 kΩ and we observe no superconductivity. This behavior can be explained by the formation of an
n-p-n junction, where barriers between regions of different carrier type can block the transmission of
supercurrent.

As we tune the topgate to more negative voltages, the maximum critical current of our junction
decreases (Figure 5.3a). The electron temperature T = 20mK provides an estimate 2ekBT/ℏ ≈ 1

nA for the smallest critical currents that can still be reliably measured. For the topological junction
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Figure 5.9: The current density profileJS(x) that corresponds to the envelope in Figure 5.7.
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Figure 5.10: Additional data for the topological junction discussed in themain text, as the carrier density in the HgTe is

depleted even further. (a)As a function of the topgate voltage the normal AC resistance peaks near 6-8 kΩ, consistent

with theQSH effect in the presence of several additional bulk modes. (b) The junction's AC resistance as a function

of magnetic field, measuredwith the topgate voltage atVG = −0.7V andwith noDC current bias. Even though

the resistanceminima are far from 0Ω, the resistance oscillates with a period corresponding toΦ0 = h/2e. This
periodic behavior is consistent with the superconducting interference observed at higher densities, and suggests that

supercurrent transport persists well into theQSH regime.

shown in the main text (Figures 5.2, 5.3), this limit is reached above a topgate voltage of VG = −0.45

V. However, even beyond this point clear magnetoresistance oscillations are still apparent. In Figure
5.10b these oscillations are plotted for VG = −0.7 V. The magnetic field period corresponds to the
magnetic flux quantum Φ0 = h/2e observed throughout the gating of the device, suggesting that
supercurrent transport persists well into the QSH regime.

5.10 Additional devices

In addition to the two devices presented in the main text, we also measured several different junction
geometries fabricated using the 7.5 nm quantum well heterostructure. One of these junctions had a
width of 2microns, but was otherwise identical to the topological device presented in the main text.
This device also showed a transition from uniform bulk supercurrent to edge-dominated supercur-
rent, concurrently with the normal resistance rising from 300 ohms to 4, 000 ohms (Figure 5.11). The
size of the magnetic field period in this device is 0.68 mT, consistent with the overall device area of
2 microns × (800 nm + 1 micron). From the supercurrent density profile in the QSH regime, we
extract edge widths of 180 nm and 197 nm.

The other device, a 4 micron wide junction, was also identical to the topological junction from
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Figure 5.11: Data from a Josephson junction fabricated usingWafer I, the 7.5 nm quantumwell. This junction was

identical to the one presented in themain text, except that the width of themesa is 2microns. (a)Amap of the crit-

ical current envelope as a function of topgate voltage shows that this device has amagnetic field period of 0.68mT,

consistent with the overall area of the device. (b)After normalization the interference patterns show the evolution

of this device into theQSH regime. The decay of the interference envelope over roughly 4mT in theQSH regime is

determined by the widths of the edge channels. (c, d) The supercurrent density shows the confinement of supercurrent

to edgemodes as the bulk density is depleted. (e) The normal resistance of the junction as a function of the topgate

voltage. (f) Edgewidths extracted from the supercurrent density at the farthest negative gate voltage (-1.1 V).
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the main text except that the topgate was only 200 nm long and was threaded between the contacts.
Although this topgate did not fully cover the junction, the behavior observed in this device was still
consistent with the other topological devices (Figure 5.12). This suggests that the gate effect was ap-
proximately uniform across the area between the contacts. When the normal resistance of the device
was4, 000ohms, supercurrent transportwas observed in this device through edgeswithwidths of208
nm and 214 nm. Even after supercurrents became too small to measure, the normal resistance of this
device approached the expected value of h/2e2 for transport through two ballistic one-dimensional
edge modes.
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Figure 5.12: Data from a Josephson junction fabricated usingWafer I, the 7.5 nm quantumwell. This junction was

identical to the one presented in themain text, except that the topgate was 200 nm and centered between the con-

tacts. (a,b)Consistent with other topological devices, the critical current envelope tranforms from a single-slit to a

sinusoidal pattern as the density is decreased. The decay of the interference lobes is over roughly 4mT at themost

negative gate voltage. (c, d) The supercurrent density shows the confinement of supercurrent to edgemodes as the

bulk density is depleted. (e) The normal resistance of the device, extending beyond the 4, 000 ohmswhere the small-
est supercurrents were observed. The resistance approaches the expected value for transport through two ballistic

QSH edges. (f) Edgewidths extracted from the supercurrent density at the farthest negative gate voltage.
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6
Controlled finite momentum pairing and
spatially varying order parameter in HgTe

quantum wells

Conventional s-wave superconductivity is understood to arise from singlet pairing of elec-
trons with opposite Fermi momenta, forming Cooper pairs whose net momentum is zero [7]. Sev-
eral recent studies have focused on structures where such conventional s-wave superconductors are
coupled to systemswith an unusual configuration of electronic spin andmomentum at the Fermi sur-
face. Under these conditions, the nature of the paired state can be modified and the systemmay even
undergo a topological phase transition [33, 102]. Here we present measurements and theoretical cal-
culations of several HgTe quantum wells coupled to either aluminum or niobium superconductors
and subject to a magnetic field in the plane of the quantumwell. By studying the oscillatory response
of Josephson interference to the magnitude of the in-plane magnetic field, we find that the induced
pairing within the quantumwell is spatially varying. Cooper pairs acquire a tunable momentum that
grows with magnetic field strength, directly reflecting the response of the spin-dependent Fermi sur-
faces to the in-plane magnetic field. In addition, in the regime of high electron density, nodes in the
induced superconductivity evolve with the electron density in agreement with our model based on
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the Hamiltonian of Bernevig, Hughes, and Zhang [12]. This agreement allows us to quantitatively
extract the value of g̃/vF , where g̃ is the effective g-factor and vF is the Fermi velocity. However, at
low density our measurements do not agree with our model in detail. Our new understanding of the
interplay between spin physics and superconductivity introduces a way to spatially engineer the order
parameter, as well as a general framework within which to investigate electronic spin texture at the
Fermi surface of materials.

6.1 Unconventional superconductivity with finite momentum pairing

Below a critical temperature andmagnetic field, certainmaterials undergo a phase transition to the su-
perconducting state. Macroscopically identified through effects such as zero resistivity and theMeiss-
ner effect [80], superconductors may further be understood microscopically as arising due to pair-
ing of electrons occupying opposite points on the Fermi surface and having opposite spin. Within a
conventional setting this interaction results in Cooper pairs with zero net momentum. However, in
certain materials the presence of both magnetic order and superconductivity can lead to intrinsically
nonzero pairing momentum as the system enters the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state
[35, 68]. Studies of both CeCoIn5 and κ-(BEDT-TTF)2Cu(NCS)2 under large external magnetic
fields found evidence for coupled magnetic order and superconductivity, although in each material
the field strength needed was in excess of 10 T [57, 78].

Exotic superconductivity has recently comeunder additional investigation through the goal of com-
bining s−wave superconductors with materials whose properties are rarely found among the con-
ventional superconductors. For example, inducing pairing from an s-wave superconductor into a
material with strong spin-orbit coupling and reduced dimensionality has been recently considered
as a viable platform within which to achieve triplet pairing [88, 96] and topological superconduc-
tivity [33, 102], or to engineer a Josephson ϕ0-junction [27, 130]. Moreover, when a ferromagnetic
layer is sandwiched by two superconductors, pairs traversing the junction acquire momentum due to
the exchange field within the ferromagnet [17, 24]. Measurements of critical current oscillations in
such superconductor-ferromagnet-superconductor (SFS) junctions have provided evidence for both
π-junctions and nonzero pairing momentum [32, 65, 100, 107], although the magnitude of the mo-
mentum was effectively untunable due to the typically large exchange fields.

Herewe report on coupling between superconducting leads and a two-dimensional electron system
realized withinHgTe/HgCdTe heterostructures in the inverted regime. Due to the interplay between
superconductivity, band structure, and the applied magnetic field, we find that the order parameter
has an oscillatory component derived from the finite momentum of paired electrons, and that this
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momentum can be continuously tuned between conventional and unconventional regimes. Our use
of only relatively small externalmagnetic fields (≤ 4T) andmicron-scale device dimensions introduces
a new regime in the exploration of the interplay between superconductivity and spin physics.

6.2 Interference measurements with a finite parallel magnetic fieldBx

To study the effect of magnetic field and band structure on electron pairing, we place two supercon-
ducting leads on opposite boundaries of a rectangular section of quantum well. Devices were fabri-
cated at varying angles with respect to the cleavage edges of the crystal (the [110] and [11̄0] axes). The
angular alignment corresponds to a rotation angle θ with respect to the principal crystal axis [100],
with θ defined modulo π/2 (Figure 6.1A, see Section 6.6). The widthW between the two leads is
800 nm and the lengthL of the resulting Josephson junction is 4microns. We study the influence of
either niobium or aluminum superconductors by applying a small AC current bias between the two
leads while measuring the resultant AC voltage [91]. The aluminum thickness is 15 nm in order to
sustain superconductivity in moderate parallel magnetic fields (Section 6.7) [81], while the niobium
thickness is 130 nm. Josephson interference is generated by application of small (up to ∼ 10 mT)
magnetic fields in the z direction [113]. Throughout, the in-plane coordinate axes are referred to as x
and y, respectively oriented perpendicular and parallel to the supercurrent flow between leads. The
addition of a normal metal topgate allows us to study superconductivity over a range of density in
the electron-doped regime. Previous experiments have also investigated the behavior of devices as the
electron density is further depleted into the quantum spinHall regime [43, 62]. In the regime of high
electron density andwith no parallel magnetic field, our junctions display Josephson interference con-
sistent with uniform supercurrent transport through the bulk of the quantum well, shown in Figure
6.1B for a device with aluminum leads.

We primarily study differential resistance with zero applied DC current, due to the efficiency of
suchmeasurements in illuminating the structure of the interference pattern. Lower resistance relative
to the normal device resistance typically corresponds to elevated critical current (Section 6.8). In an
aluminum-based junction, with the topgate voltage set to 0.5 V and with angle θ = π/4, increasing
themagnetic field in thex direction stronglymodulates the Josephson interference (Figure 6.1C). Two
distinct regions of decreased resistance are separated by a nodal field of approximately Bx = 1.1 T,
corresponding to the suppression of induced superconductivity. At each value of the parallel field,
we extract the minimum junction resistance as a measure of the strength of superconductivity at that
particular field. Plotting theseminimum junction resistances highlights the oscillatory effect of parallel
field on superconductivity, with the nodal field marked by an arrow (Figure 6.1D). The suppression
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Figure 6.1: Experimental control of the order parameter and of pairingmomentum. (A) Two superconducting leads,

composed of either aluminum or niobium, couple to a rectangular section of HgTe quantumwell to form a Josephson

junction. The widthW separating the leads is always 800 nm, while the lengthL of the junction is always 4microns.

The resistance of the junction is monitored by applying a small AC current bias (typically∼ 1 nA) and concurrently
measuring the resulting AC voltage. Further sourcing DC current allowsmeasurement of critical currents and normal

device resistance. The external magnetic field B⃗ contains a small z component to generate Josephson interference,
while here the largerx component couples significantly to the spin-degree of freedom. Junctionsmay be oriented at
an angle θwith respect to the [100] principal crystal axis, moduloπ/2. (B) In the electron-doped regime, the devices
show Josephson interference consistent with transport through a doped bulk. In all subsequent measurements, zero

DC current is applied. (C) The differential resistance of a junction with aluminum leads oscillates due to Josephson in-

terference as the perpendicular field varies. Increasing the parallel fieldmodulates the strength of induced supercon-

ductivity. (D) Plotting theminimum resistance at each value ofBx demonstrates the presence of a nodal resistance

maximum nearBx = 1.1 T. (E) In an aluminum-based device oriented with θ = π/2, increasing the parallel field
similarly modifies the resistance. (F) In a junction with niobium leads, a similar modulation of the resistance occurs. (G)

Amore detailed study of the space outlined in red in (F) highlights three regions of decreased resistance separated by

bands of high resistance nearBx = 0.9 T andBx = 2.7 T. In both (F) and (G), the decreased resistance above 2.5 T
is highlighted via a stretched color scale. (H) Theminimum resistance at each value ofBx further shows the oscillatory

nature of the superconductivity as the parallel field increases. Successively higher nodes (marked by arrows) occupy

broader regions of parallel field, while superconductivity also weakens as the parallel field increases.

97



of superconductivity at the nodal field directly results from the finite momentum of induced Cooper
pairs.

In an aluminum-based junction, with the topgate set to 0 V and oriented with θ = π/2, a similar
modulation of superconductivity occurs as the parallel field Bx grows (Figure 6.1E, see Section 6.9-
6.10). Although the aluminum leads can sustain superconductivity up to 1.75 T, we only measure
this device up toBx = 1T due to constraints on the range of our vector magnet (see Section 6.6).

The resistance of a device with niobium leads and θ = π/4 is similarly modulated upon appli-
cation of a parallel field, with multiple nodes visible as Bx increases to 4 T (Figure 6.1F). For these
measurements the topgate voltage was set to 0 V. A more detailed measurement highlights the pres-
ence of three distinct regions of decreased resistance, separated by bands of high resistance occurring
nearBx = 0.9 T andBx = 2.7 T (Figure 6.1G). We again extract the minimum junction resistance
at each particular parallel field value, demonstrating the oscillatory effect of parallel field on supercon-
ductivity (Figure 6.1H). Nodes of the oscillation, marked by arrows, correspond to local maxima in
the overall junction resistance.

Despite the differences in fabrication of our devices, the nodal structure is both robust and occurs
at nearly the same parallel field magnitudes. These observations suggest that the induced pairing mo-
mentum originates in the heterostructures and not the bulk superconductors, and is insensitive to
details of the crystal orientation. Since superconductivity arises from pairing of electrons with oppos-
ing spins and momenta, it is therefore necessary to examine the nature of both Zeeman coupling and
spin-orbit coupling within the quantum well.

6.3 Theoretical model of the proximity effect

We model our devices by considering first the quantum well region in the absence of the supercon-
ductors, for which a four-band theoretical Hamiltonian H1 was proposed as a way to describe the
topology of the band structure [12]. We adopt a version of this model to include both the external
magnetic field and possible contributions from spin-orbit coupling [63, 99, 123]. The key prediction
of the band structure modeling is that the Zeeman coupling from the external field Bx modifies the
Fermi surfaces in a manner which depends on the nature of the spin-orbit coupling (Section 6.11). As
a consequence, the induced superconducting order parameter is expected to oscillate in space, due to
a pairing momentum shift with magnitude of order ℏ∆k ≈ g̃µBBx/vF , whose orientation also
depends on the spin-orbit coupling. Here g̃ is the in-plane g-factor, and vF is the Fermi velocity.

To theoretically investigate theproximity effect in ourquantumwells, we consider amodel inwhich
the two-dimensional electron gas (2DEG), assumed to have uniform electron density, is contacted

98



by a pair of superconducting leads with a controlled phase difference between them, and we seek to
calculate the maximum supercurrent that can be carried between the strips (Figure 6.3A, see Section
6.12-6.15 for details not presented here). Our model calculations cannot predict the absolute value of
the critical current, but they should give the correct dependence onparameters such as the strength and
direction of the magnetic field. We assume a HamiltonianH = H1 +H2, whereH2 is the coupling
between the superconductors and the 2DEG, described by a pairing Hamiltonian of the form

H2 = −
∫
dxdy

[
∆(x, y)Ψ†(x, y) + ∆∗(x, y)Ψ(x, y)

]
. (6.1)

HereΨ(x, y) ≡ ψ↑(x, y)ψ↓(x, y) is an operator which annihilates a singlet pair of electrons in the
2DEG at the point (x, y), while the pair potential∆(x, y) is a complex number that depends on the
phase of the superconductor and the tunneling amplitude at that point.

We assume that the contacts between the 2DEG and the superconductors occur at the edges of the
superconductors, located at y = 0 and y =W , so that we may write

∆(x, y) = λ1(x)δ(y) + λ2(x)δ(y −W ) ≡ ∆1(x, y) + ∆2(x, y), (6.2)

with−L/2 < x < L/2. We assume that the magnitude of the coupling is constant along each lead,
but the phase will vary if there is a perpendicular magnetic fieldBz ̸= 0.We choose a gauge where the
vector potential points in the x direction, with Ax = −Bz(y −W/2), so that the vector potential
vanishes along the midline of the 2DEG. If the superconducting strips have identical widthsWSC ,
then the couplings λj will have the form

λj(x) = |λj | e2πiϕj(x), (6.3)

ϕj(x) = ϕj(0) +
(−1)j−1xBz(W +Wsc)

2Φ0
, (6.4)

with j = 1, 2.
To lowest order in the couplings λj , the portion of the total energy that depends on the phase

difference between the two superconducting leads can be written in the form:

E = −
∫
dx2 [λ

∗
2(x2) ⟨Ψ(x2,W )⟩1 + c.c.] , (6.5)

where ⟨Ψ(x, y)⟩1 is the order parameter at point (x, y) induced by the superconductor j = 1. In
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turn, this may be written in the form

⟨Ψ(x, y)⟩1 =
∫
dx1λ1(x1)F (x, x1, y), (6.6)

whereF is the propagator from point (x1, 0) to point (x, y) for an induced Cooper pair. Depending
upon the relativemagnitudes of spin-orbit coupling and the Zeeman coupling, the propagatorF may
take various forms (see Section 6.14). Here we consider both structural inversion asymmetry (SIA),
referring to asymmetry of the quantum well in the z direction [18], and bulk inversion asymmetry
(BIA), referring to inversion asymmetry of the underlying crystal lattice [29]. In the limit where ei-
ther SIA or BIA is strong compared to the Zeeman coupling, the pair momentum shift orientation is
independent of position on the Fermi surface. The shift occurs along an angleαwith respect to the x
axis, and the propagator is

F (x, x1, y) =
kF

8π2vF
· eiγ + e−iγ

(x− x1)2 + y2
, γ = ∆k (sin(α)y + cos(α)(x− x1)) . (6.7)

InFigure 6.2, we calculate the order parameter ⟨Ψ(x, y)⟩1 for several different limiting cases. When
SIA dominates the spin-orbit coupling, a magnetic fieldBx induces pairing momentum in the y di-
rection, and the order parameter also oscillates in the y direction (Figure 6.2A). When∆kW = π/2,
the first node of the oscillation coincides with the line y = W corresponding to the width of the
junction. Increasing the parallel field so that∆kW = 3π/2 leads to coincidence of the second node
and the junction width (Figure 6.2B).

If BIA instead dominates the spin-orbit coupling, when θ = 0 the parallel magnetic field induces
order parameter oscillations in the x direction (Figure 6.2C). These oscillations arise due to the finite
length of the Josephson junction, with amplitudes that are largest near the ends of the mesa. In con-
trast to the limit of large SIA, with dominant BIA the nodes of the order parameter never coincide
with the junction width. Oscillations in the order parameter instead occur with greater frequency
along the x direction as the magnetic field increases.

Finally, when the Zeeman coupling dominates the spin-orbit coupling, the pair momentum shift
magnitude is isotropic in-plane, but the orientation lies parallel to the direction of Cooper pair prop-
agation. In this limit the propagator is

F (x, x1, y) =
kF

8π2vF
· eiγ + e−iγ

(x− x1)2 + y2
, γ = ∆k

√
(x− x1)2 + y2. (6.8)

Here the induced order parameter oscillates along both the x and y directions (Figure 6.2D). Al-
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Figure 6.2: Theoretical prediction for the spatially varying order parameter ⟨Ψ(x, y)⟩1 near a single superconducting
lead, withBz = 0. (A)With dominant SIA, application of an in-planemagnetic fieldBx induces oscillations of the

order parameter in the y direction, with wavelengthhvF /g̃µBBx. When g̃µBBxW/ℏvF = π/2 the first node of
the order parameter occurs a distanceW from the superconductor. (B)As themagnitude of magnetic field increases,

the wavelength of order parameter oscillations decreases. When g̃µBBxW/ℏvF = 3π/2, the second order param-
eter node lies a distanceW from the superconductor. (C) If instead BIA dominates, the order parameter oscillations

occur in thex direction. As themagnetic field increases, the frequency of oscillations increases. In the inset, a linecut
of the order parameter a distanceW from the superconductor demonstrates that oscillations are an end effect, with

amplitudes which decay into the bulk of the 2DEG. (D)Withweak spin-orbit coupling, the parallel fieldBx introduces

order parameter oscillations in both directions.

101



though the shape of the order parameter resembles the limit of strong SIA, the possibility to oscillate
in all in-plane directions prevents a node from forming along a line of constant y.

6.4 Modeling interference patterns with finiteBx

We can link the order parameter oscillations to the Josephson energyE by integrating over the second
superconducting lead at position y =W , as in equation (6.5). By then differentiating with respect to
the phase difference ϕ2(0)− ϕ1(0) we find the current-phase relation of the junction, which is then
maximized with respect to the phase difference to obtain the critical current.

When SIA dominates the spin-orbit coupling, the critical current periodically disappears when the
nodal condition ∆kW = (2n + 1)π/2 is satisfied (Figure 6.3B). This suppression of the critical
current arises when singlet pairs injected at one lead evolve to become triplet pairs at the location of
the second lead. The conversion to triplet pairing corresponds to nodes of the induced singlet order
parameter; when these nodes coincide with the positions of the leads, the supercurrent is completely
suppressed. Microscopically, these oscillations of the order parameter correspond to finitemomentum
pairing of electrons, as diagrammed in the inset of Figure 6.3B. In the limit of strong SIA, the Fermi
surfaces oppositely shift in the y direction, so that Cooper pairs form internally to each surface with
finitewavevector∆kŷ. Furthermore, as the parallelmagnetic fieldBx increases beyond the nodal field
Bnode =

π
2 ·

ℏvF
g̃µBW , we observe evidence that the junction transitions into aπ-junction (Section 6.17).

The predicted interferencewith strong SIA resembles the nodal patternwe observe experimentally.
However, in both aluminumandniobium-baseddeviceswe also observe that superconductivityweak-
ens as the parallel field increases, in contrast with the cosine dependence predicted by our model. We
believe that this effect results from spatially inhomogeneous screening of the parallel field at the edges
of superconducting leads. The superconductor repels the in-plane field and slight roughness at the
edges results in a weak magnetic field along the z direction that is positive at some locations and neg-
ative at others. This screening leads to a spatially varying random component of the phase that grows
linearly with the in-plane field. Hence, we introduce a random phase χ ∝ (R1(x1)−R2(x2))Bx,
where the random variables R1(x1) and R2(x2) correspond to fluctuations in the direction of the
parallel field at each interface (see Section 6.16 for details). With this randomness, the calculated criti-
cal currents diminish inmagnitude as the in-plane field increases, in agreement with our experimental
observation (Figure 6.3C).

Considering, instead, BIA as the dominant source of spin-orbit coupling, when the junction is
aligned to the [100] or [010] crystal direction, the order parameter oscillates in the x direction. This
oscillation corresponds to shifting of the Fermi surfaces oppositely along x, so that Cooper pairs form
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Figure 6.3:Modeling Josephson interference between two superconducting leads. (A)With two leads, paired elec-

tronsmay traverse the junction beginning at a pointx1 in the lower superconducting lead (SC 1). The pairing ampli-

tude at the pointx2 in the upper lead (SC 2) takes account of the phase accumulated due to finite pairingmomentum

within the HgTe quantumwell. (B)With SIA dominant, the external magnetic fieldBx increases the pairing wavevec-

tor∆k only in the y direction. At certain values∆k = (2n + 1)π/(2W ),n integer, the superconducting inter-

ference disappears. A diagram schematically depicts the expected Fermi surfaces and Cooper pairing, where arrows

denote spin direction and pairs are each colored blue or red. Similar diagrams throughout this figure indicate the ex-

pectation for pairing and Fermi surfaces as themodel parameters change. (C)Randomness at the interface between

the quantumwell and superconductors may arise due to structural imperfections. The random phase causes super-

conductivity to weaken as the parallel field increases. (D) For junctions aligned to a principal crystal axis, dominant

BIA leads to a pairing wavevector∆k that grows in thex direction asBx increases. The critical current maxima then

occur at increasingly large values of |Bz| asBx grows. Fabricating devices at varying angles with respect to the crys-

tal is expected tomodify the interference when BIA dominates. The region outlined in dashedwhite corresponds to

themeasured region in Figure 6.1E. (E)With dominant Zeeman coupling, the pairingmagnitude is isotropic in-plane

and the interference grows as a hybrid of the SIA and BIA cases. Characteristically, interference fringes repeatedly

combine to form the central fringe at each successive node in the parallel field. Additionally, with zero perpendicular

field, superconductivity disappears at values of parallel field that are smaller than the nodal magnetic field in the case

with dominant SIA. (F) Including randomness leads to a similar picture to (C), while retaining the combining of fringes

characteristic of dominant Zeeman coupling.
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internally to each surface with wavevector∆kx̂ (Figure 6.3D). Since the real-space supercurrent den-
sity and the Josephson critical current can be regarded as Fourier conjugates [30], this pairingmomen-
tum results in finite weight of the interference at a particularmagnitude ofBz that grows linearly with
the parallel field, forming a ‘V’ shape. In our measurements of the device oriented with θ = π/2, this
splitting would be seen in the limit of strong BIA, but is not observed experimentally (Figure 6.3E,
Section 6.10). Additionally, when junctions are fabricated at an angle θ = π/4, with strong BIA the
behavior is expected to shift from that shown in Figure 6.3D to the nodal structure in Figure 6.3B.
Since we instead observe behavior that does not depend on the crystal orientation, we conclude that
BIA in our heterostructure is relatively weak. This conclusion agrees with a previous measurement
of Shubnikov-de Haas oscillations in a HgTe quantum well, which was found to be consistent with
strong SIA and weak BIA [39].

In the limit of overall weak spin-orbit coupling, the order parameter oscillates in both in-plane di-
rections. Zeeman coupling at finite values ofBx leads to two concentric Fermi surfaces with opposite
spin polarization, so that pairing occurs between surfaces with momentum in all in-plane directions
(Figure 6.3E). Increasing the parallel magnetic field causes the interference to both spread in Bz and
periodically oscillate, a hybrid of the two above cases. Characteristically, at each node the two inter-
ference fringes adjacent to the central fringe combine to form the subsequent central fringe, a direct
result of the inability to form nodes in the order parameter along lines of constant y. Although it is
possible that this behavior is present in the device with niobium leads, the nodal pattern is more con-
sistent with strong SIA with aluminum leads at high density. In the limit of overall weak spin-orbit
coupling, with the random phase χ the modeled interference successfully reproduces many aspects
of the behavior observed in the niobium device, but is still inconsistent with the aluminum devices
(Figure 6.3F).

6.5 Density dependence

As an additional study into the nature of electron pairingmomentum, we explore the evolution of the
minimum junction resistance at different parallel fieldBx values, while energizing the global topgate
to modify the bulk electron density. Devices used for these measurements were aligned such that
θ = π/4, corresponding to the devices of Figure 6.1C,D,F-H. At themost positive gate voltage, as the
magnetic field is increased the niobium device displays the node of increased resistance nearBx = 0.9

T (Figure 6.4A). As before, an additional node is present nearBx = 2.7T.When the top gate voltage
is lowered to−5V, the fieldmagnitude of the lower node increases, first slowly and thenmore rapidly.
In the device with aluminum leads, a similar nodal structure is observed, with the magnitude of the
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nodal field weakly increasing as the top gate voltage is lowered from 0.5 V to 0 V (Figure 6.4B). Due
to a doping layer in the heterostructure of the niobium device, more negative gate voltage is required
in this device to achieve depletion (see Section 6.6).

The dependence of the nodal field magnitude on density can be calculated within the framework
of our model based on BHZ theory, here assuming the presence of SIA due to a perpendicular electric
field equal to 10mV/nm (Section 6.11). Since the magnitude of the induced Cooper pair momentum
is approximately ℏ∆k ≈ g̃µBBx/vF , the dependence of both g̃ and vF on the electron density will
directly influence the magnitude of the parallel field needed to satisfy the nodal condition∆kW =

(2n + 1)π/2. Due to the inverted nature of the bands, the g-factors in the conduction bands are
expected to evolve from−20.5 toward zero as the Fermiwavevector decreases [63], while the expected
magnitudes of theFermi velocities first decrease slightly and thenmore rapidly fall to zero (Figure 6.4C,
D). With these considerations we expect the magnitudes of the induced pairing wavevectors at 1T to
fall to zero from values near 1.2/µm as the Fermi wavevector decreases (Figure 6.4E). As a result, the
magnetic field needed to satisfy the nodal condition increases as the electron density decreases, finally
diverging at zero electron density (calculated in black dotted lines in Figure 6.4A-B). Although the
overall evolution agrees well with the expectation from BHZ theory, we find that our measurements
on niobium and aluminum devices respectively yield values of g̃/vF that are approximately 1.9 and
1.4 times greater than those expected theoretically (see Section 6.11).

Several aspects of the density-dependent data do not fall into the modeling framework discussed
above, and are interesting for further consideration. First, we expect that the position of the node
associated with induced Cooper pair momentum should occur at higher parallel magnetic field as the
density is reduced, a behavior that we observe only at high density. As the density is further reduced,
the magnitude of the nodal field eventually begins to decrease, an element of our model that is not
present and remains to be understood, but could possibly be explained by a finite g-factor at zero
density. Second, in the aluminum device, the region of reduced resistance occuring above the first
node appears to be strongest near top gate voltages equal to−0.9V and 0.5V.We observe that these
two regions of reduced resistance are connected by a region in which the resistance is more weakly
reduced, but we have no reason to expect that the reduction in resistance above the first node should
vary as the density decreases.

Ourmeasurements demonstrate that a parallelmagnetic field can be used both to tune themomen-
tum of Cooper pairs in a material and to clarify the nature of spin-orbit coupling in that material. A
major current goal of condensed matter physics is to understand the nature of the superconductivity
that results when electron pairing is combined with materials possessing exotic spin textures. There-
fore our newunderstanding that the superconducting order parameter can be engineered in spacemay
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density, the nodal magnetic field diverges as the density is lowered. The nodal magnetic field, averaged over the two

Fermi surfaces, is calculated using BHZ theory and plotted as dashed black lines in (A) and (B).
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be utilized to investigate spin physicswithin a broad range ofmaterials including InAs-based quantum
wells or the surfaces of three-dimensional topological insulators. Our method to tune the Josephson
energy could find additional application in the field of quantum information processing, where direct
control of the energy levels in a single superconducting qubit could provide a powerful tool for the
investigation and optimization of qubit coherence.

6.6 Wafer characteristics and GeneralMeasurements

Junctions were fabricated using HgTe/HgCdTe heterostructures grown in the [001] crystal direction
(the z direction), composed as shown in Figure 6.5. Wafer I contained an 8 nm quantumwell with an
electron density of 13.5 × 1011/cm2 and a mobility of 390, 000 cm2/Vs. Wafer II contained a 7.8
nm quantum well with an electron density of 2.9 × 1011/cm2 and a mobility of 790, 000 cm2/Vs.
Josephson junctions fabricated on these wafers were aligned at varying angles with respect to the [110]
and [11̄0] cleavage edges of the crystal, but we do not knowwhich is which in our samples. Therefore,
we can only specify that the angular alignment corresponds to a rotation angle θ with respect to the
[100] crystal axis, modulo π/2. Although we do not know which principal axis θ is referenced to
experimentally, our model predicts the same results when θ is referenced to either. The x and y axes
always lie respectively perpendicular and parallel to the direction of current flow in devices (see Figure
6.1).

Throughout the remainder of this chapter, devices are referred to in the followingmanner. Device
A was fabricated by depositing aluminum leads onto a mesa etched into Wafer I, and was oriented
at an angle θ = π/4. Devices B, C, and D were concurrently fabricated by depositing aluminum
leads on Wafer II, and were respectively oriented at different angles θ = 0, π/2, and π/4. Device E
was fabricated using Wafer I, contained niobium leads, and was oriented at θ = π/4. Device F was
fabricated using Wafer I, contained aluminum leads, and was oriented at θ = π/4. Note that data
from devices C, D and E were reported in the main text.

Devices were processed as follows. To define the ends of the junctions, mesas 100 nm in height
were etched using an argon ion source. To fabricate superconducting contacts, the contact area was
etched enough to expose the quantum well using argon milling. Without breaking vacuum, the con-
tact material was then deposited. For devices A-D and F, 5 nm of titanium was deposited by thermal
evaporation, followedby thermal evaporationof15nmof aluminum. Fordevice E,10nmof titanium
was deposited by e-beam evaporation, followed by 130 nm of niobium deposited by DCmagnetron
sputtering. Next, a50nm layer of aluminumoxidewas grownusing atomic layer deposition, to isolate
the final topgate layer (10 nm of titanium and 250 nm of gold) from the underlying junctions.
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Wafer I Wafer II

70 nm Hg0.3Cd0.7Te

25 nm Hg0.3Cd0.7Te

CdTe substrate

8 nm HgTe

146 nm Hg0.3Cd0.7Te

CdTe substrate

7.8 nm HgTe49 nm Hg0.3Cd0.7Te

Doping (Iodine)

100 nm Hg0.3Cd0.7Te

Figure 6.5: Composition of the heterostructures used in the experiment, labeledWafer I andWafer II. Both wafers

consist of a HgTe quantumwell surrounded by barriers of Hg0.3Cd0.7Te. InWafer I, a layer containing iodine dopants

lies 70 nm below the quantumwell. Both wafers were grown on CdTe substrates, in the [001] crystal direction.

Measurements were performed primarily in a dilution refrigerator outfitted with a 6− 1− 1 vec-
tor magnet capable of applying up to 6 T in one direction, and 1 T in the two remaining directions.
Experiments were carried out at the mixing chamber base temperature of 50 mK. Unless otherwise
mentioned, all measurements occurred in this system. Two measurements were performed in a sepa-
rate dilution refrigerator with a base temperature of 10mK.

As either the externalmagnetic field or the topgate voltagewas varied, the differential four-terminal
resistance of junctions was monitored using standard lock-in techniques. To determine critical cur-
rents or to provide bias sufficient to measure the normal resistance of the junctions, sometimes a DC
current bias was applied to the junctions. Otherwise all measurements occurred with no DC current
bias.

6.7 Characterization of Thin Aluminum Leads

The resistance of thin aluminum leads was characterized as a function of magnetic field in both the
x direction and the y direction (Figure 6.6). In each plot, red and blue color coding corresponds
to the two leads of a single junction. Different junctions were used in the two plots, demonstrating
the consistency of the fabrication process. The critical parallel field of the 15 nm aluminum films
was consistently above 1.5 T, in agreement with a previous study of thin aluminum [81]. The data
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Figure 6.6: Resistances of junction leads as the parallel magnetic field is increased in thex and y directions, for junc-
tions with aluminum leads. The critical field in the plane of the leads is consistently above 1.5 T.

presented in Figure 6.6B was collected at a temperature of 10mK in the system discussed previously.

6.8 CriticalCurrentofa Josephson JunctionUnderExternalParallelMag-
netic Field

Here we present measurements of the critical current in device D, for different values of the external
magnetic field. When compared to corresponding measurements of differential resistance without
any applied DC current (Figure 6.8E and Figure 6.9E), it is apparent that both measurement modes
reveal the same basic behaviors.

In the measurements of critical current presented here, increasing the external field in either the
x or y direction results in a decrease of the maximum critical current (Figure 6.7A, B). This decrease
occurs more rapidly forBy , where the critical current becomes too small to reliablymeasure whenBy

exceeds 0.44T.Bx, however, must exceed 1.1T before critical currents become immeasurably small.
Upon normalization of the interference pattern at each separate value of parallel field, the asym-

metry between the two directions becomes more pronounced (Figure 6.7C, D). At all values of Bx,
the shape of the Josephson interference remains essentially unaffected. By contrast, as By increases
the critical current splits into two separate maxima which occur at larger values of |Bz|. In Section
6.16 we model the effect of the in-plane fieldBy , which we expect to induce a finite x component of
the pairing wavevector that grows linearly withBy . In junctions with finite length and withBz = 0,
this pairing momentum in the x direction leads to oscillations in the order parameter which are most
pronounced near the ends of the junction. As a consequence, we expect that asBy increases, themax-
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Figure 6.7: The critical current as a function of perpendicular magnetic fieldBz , as parallel components of themag-

netic field are varied. The data presented here was taken using the device with aluminum leads presented in themain

text (device D). (A, B)As the parallel magnetic field in either thex or y direction is increased, themagnitude of the
maximum critical current decreases. This decrease occurs more rapidly in y direction than in thex direction. (C)Nor-
malizing the Fraunhofer interference at each value ofBx shows that the shape of the interference pattern remains

essentially unaffected until it becomes immeasurably small. (D) In theBy direction, normalization reveals a dramati-

cally different behavior of the Fraunhofer interference, where critical current maxima occur at higher values ofBz as

By is increased. Concurrently, the weight of the critical current atBz = 0mT decreases to 0. These observations
match those deduced throughmeasurements of the differential resistance as the parallel magnetic field varies in ei-

ther thex or y direction. Therefore both differential resistance and critical current measurements reflect the same
basic phenomenon.
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imum critical currents in our junctions will occur at values of |Bz| that grow linearly withBy . With
only the parallel fieldBx present, however, the induced pair momentum is expected to lie along the y
direction. In this case no such wavevector in the x direction is observed.

6.9 Josephson Junctions Rotatedwith Respect to the Crystal

Measurements of the differential resistance were performed on junctions oriented at different angles
with respect to the crystal lattice, in order to determinewhether bulk inversion asymmetry (BIA) plays
a significant role in themomentum acquired by Cooper pairs. As previouslymentioned, these devices
A-E have orientation θ = π/4, 0, π/2, π/4, and π/4 respectively. Devices A-D use aluminum leads,
while device E uses niobium leads. For each set of the devices, we explored behaviors resulting from
a parallel magnetic field applied in the x direction or in the y direction, which in the previous section
were shown for device D to differ.

Even as the angle θ varies among devices, themanner inwhich superconductivity evolves due to the
applied fieldBx remains qualitatively unchanged at high density (Figure 6.8). Devices B-D, fabricated
on a single piece of wafer, show quantitative agreement in the value ofBx at which a superconduct-
ing node appears. Devices A and Ewere separately fabricated onWafer I, and show slight quantitative
differences but nevertheless the same shape. The appearance of these nodes in the interference evolu-
tion, with no dependence on the crystal orientation, signals that structural inversion asymmetry (SIA)
dominates the behavior of our quantum wells in the electron-doped regime (Section 6.11-6.14).

With the parallel field applied in the y direction and at high density, the interference pattern splits,
forming a ‘V’ shape asBy increases that is qualitatively identical for all values of θ (Figure 6.9). The
slope of the two arms of the ‘V’ varies among devices, but is similar for devices B-D which were fab-
ricated concurrently. The most dramatic effect is seen for device E with 130 nm thick niobium leads,
in which the slope is approximately 7 times smaller than the other devices.

From the above measurements one can conclude that the basic differences in interference asBx or
By is increased have little to do with the orientation of the crystal lattice. Themost striking difference
is found among the data with themagnetic field oriented along the y direction, in which the thickness
of the leads correlates to the slope of the interference splitting. This behavior, which results from
magnetic flux penetrating the areadL formed by the lengthL of the junction and the height difference
d between the center of the quantum well and the center of the leads, is modeled in Section 6.16.
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Figure 6.8: Josephson interference as themagnetic fieldBx is increased. (A) Junctions were oriented at an angle θ,
moduloπ/2, with respect to the [100] axis of the crystal. Devices generating data in (C-E) were concurrently fabri-
cated with respect to the same crystal cleavage edge. Devices in (B) and (F) were separately fabricated. All junctions

had aluminum leads except for in (F), where niobium leads were used. (B) For a junction oriented at θ = π/4with
respect to the crystal, the differential resistance is monitored as both the perpendicular fieldBz and the parallel field

Bx are altered. AsBx increases, the position of nodes in the interference pattern does not change, but the interfer-

ence gradually disappears. (C)A junction oriented at θ = 0 and (D) a junction oriented at θ = π/2with respect to
the crystal show qualitatively identical behavior. (E)A further junction aligned at θ = π/4 shows the same behav-
ior, as previously presented in themain text. (F)Also in themain text, the junction with niobium leads is oriented with

θ = π/4 and shows interference which remains strongly weighted atBz = 0 T. The observations on aluminum
devices are all consistent with dominant SIA in the quantumwell.
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Figure 6.9: Josephson interference as themagnetic fieldBy is increased. (A) Junctions were oriented at an angle

θ, moduloπ/2, with respect to the [100] axis of the crystal. As in Figure 6.8, devices generating data in (C-E) were
concurrently fabricated with respect to the same crystal cleavage edge, and devices in (B) and (F) were separately

fabricated. (B)With the junction aligned such that θ = π/4, the differential resistance is monitored as a function of
the perpendicular fieldBz and the parallel fieldBy . IncreasingBy rapidly causes the weight of interference fringes

to shift to largerBz values, forming a `V' shape. The interference evolvesmore rapidly due to a parallel field in the y
direction than in thex direction due to the fact that leads are spatially displaced in z with respect to the quantumwell.

(C)Orienting a junction at θ = 0 introduces no qualitative change to the behavior, as is also the case with (D) a junc-
tion oriented at θ = π/2. Junctions from themain text with (E) aluminum and (F) niobium leads are presented, also

displaying similar behavior. The enhanced scale ofBz in the niobium-based junction is due to the increased thickness

of the leads.
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6.10 Evolutionof InterferenceLobesastheParallelMagneticFieldBx In-
creases, in a Device with θ = π/2

In the previous section, itwas observed that at particular values of the parallelmagnetic fieldBx, nodes
of suppressed superconductivity occur in our Josephson junctions. Additionally, this evolution of the
Josephson interference with the parallel field Bx does not depend on the device orientation with re-
spect to the crystal. The appearance of nodes with lack of θ dependence already suggests that the effect
of bulk inversion asymmetry (BIA) in our devices is small, and that structural inversion asymmetry
(SIA) dominates (Section 6.11- 6.14). Still, the evolution of critical currents, in particular themaximum
critical current of interference lobes occurring at nonzero perpendicular field, can provide further ev-
idence that BIA is weak. When θ = π/2, in the limit of strong BIA these side lobe maximum critical
currents are expected to grow as the parallel fieldBx is increased from zero (Figure 6.3D). However, if
SIA is strong, these critical currents are expected to monotonously decay as the parallel field increases
up to the first node.

In Device C, oriented at θ = π/2, we study the evolution of the first three side lobes adjacent to
the central lobe (Figure 6.10A). Ameasurement of the critical currents of these lobes indicates that all
lobes are largest when Bx = 0 T (Figure 6.10B). We extract the maximum critical current for each
side lobe, plotted in Figure 6.10C for each lobe. All critical currents are largest whenBx = 0 T, and
all decay monotonously until becoming indistinguishable from zero. This evolution of the side lobe
critical currents provides additional evidence consistent with weak BIA in our devices.

6.11 Four-BandModel and Spin-Orbit Effects in theQuantumWell

A four-band model has been developed starting from k · p theory, and subsequently used to describe
the topologyofHgTequantumwells [12]. Herewe adopt an elaborationon thismodel, where bulk in-
version asymmetry (BIA), structural inversion asymmetry (SIA), and coupling to an externalmagnetic
field are included. The four bands originate in the s− and p−like bands of the underlying crystals,
so that the basis states are written as |E1,mJ = +1/2⟩, |H1,mJ = +3/2⟩, |E1,mJ = −1/2⟩,
and |H1,mJ = −3/2⟩. In this notation, E1 refers to electron-like states with angular momentum
1/2, whileH1 refers to hole-like states with angular momentum 3/2. TheHamiltonian describing the
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Figure 6.10: Evolution of critical currents, in Device C, oriented such that θ = π/2. Data was takenwith the top gate
voltage set to 0 V. (A) The differential junction resistance, measuredwith no applied DC current, evolves consistently

with the absence of BIA in the device. (B) The critical currents in the interference side lobes adjacent to the central

lobe decay as the parallel fieldBx increases from zero. The region of the critical current measurement is outlined in

red in (A). Each side lobe is labeled in white. (C) The extractedmaximum critical current for each side lobe. Within each

lobe, the critical current decreases from its maximum value atBx = 0 T.
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system is then [63, 99, 123]:

H1 = ϵ
(
k̂2
)
+M

(
k̂2
)
sz +Ak̂xsxσz −Ak̂ysy + h

(
cos(2θth)σy + sin(2θth)σx

)
sy

+R0
sz+1
2

(
k̂xσy − k̂yσx

)
− µB · B⃗ · M⃗

(6.9)
where

ϵ
(
k̂2
)
= C −D

(
k̂2x + k̂2y

)
,M

(
k̂2
)
=M −B

(
k̂2x + k̂2y

)
(6.10)

and

Mx = g||σx
1 + sz

2
, My = g||σy

1 + sz
2

, Mz = gE⊥σz
1 + sz

2
+ gH⊥σz

1− sz
2

. (6.11)

The first four terms are those present in the original theory of Bernevig, Hughes, and Zhang. The
fifth term describes the magnitude h of the BIA and the angle θth between the x axis and the [100]
crystal direction. The sixth term includes SIAwith strengthR0/(eE), where E is themagnitude of an
electric field oriented along the z axis. Coupling to the external magnetic field occurs anisotropically
and is different for E1 andH1 states due to the inability of magnetic field to couplemJ = ±3/2

to first order. The value of the parallel g-factor g|| and perpendicular g-factors gE⊥ and gH⊥, along
with all other parameter values, are listed in Table 6.1. The in-plane wavevectors are k̂x = i∂x and
k̂y = i∂y .

The bare effect of a parallelmagnetic field is visualized by settingh = 0 andR0 = 0 and calculating
the conduction band spectrum, under various values of B⃗ (Figure 6.11A-C). In each plot, the bands
are plotted up to the Fermi energy, which varies in order to demonstrate various limiting cases of weak
or strong spin-orbit coupling. The Fermi surfaces are projected onto a plane below the bands, with
the spin texture plotted at various points on the Fermi surfaces. The x and y components of the spin
vectors are equal respectively to ⟨σx (1 + sz) /2⟩ and ⟨σy (1 + sz) /2⟩, the spin expectation values
projected onto theE1 bands.

With no external magnetic field, the conduction band is doubly degenerate due to the presence
of the spin degree of freedom, modeled here up to a Fermi energy equal to 20 meV. Changing the
magnetic field to 3 T in the x direction lifts this degeneracy due to the Zeeman effect, resulting in
two concentric Fermi surfaces centered at k⃗ = 0. Within the outer Fermi surface, spins point toward
−x, due to the negative value of g||. Within the inner Fermi surface, spins are oppositely oriented.
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A (eV·Å) B (eV·Å2) D (eV·Å2) M (eV) h (eV) θth R0/(eE) (nm2) E (mV/nm) gE⊥ gH⊥ g||
3.645 −68.6 −51.2 −0.010 0, 0.0016 0 −15.6 0, 10 22.7 −1.21 −20.5

Table 6.1: List of parameters used tomodel the band structure. Parameters correspond to a quantumwell in the in-

verted regime, with a well width of 70 Å.

B. C.A.

E. F.D.

H. I.G.

B = (0,3,0) T B = (0,0,0) T B = (3,0,0) T

No Spin-Orbit Coupling

Dominant SIA Spin-Orbit

Dominant BIA Spin-Orbit

Figure 6.11:Modeling of the conduction band structure under various spin-orbit and parallel magnetic field condi-

tions. (A-C)When spin-orbit coupling is absent, the addition of a 3 T parallel magnetic field simply polarizes spins in a

direction determined by the sign of the in-plane g-factor, g||. With no exernal magnetic field, the two spin bands are

degenerate (B). (D-F)Dominant structural inversion asymmetry causes axially symmetric spin-splitting to occur at

finite momentum (E). This type of spin-orbit coupling causes the bands to shift orthogonally to the external magnetic

field (D, F), leading to nonzero Cooper pair momentum in the shift direction. (G-I)Dominant bulk inversion asymmetry

with θth = 0, π/2 acts oppositely to structural inversion asymmetry, so that external magnetic fields cause bands to
shift parallel to the external magnetic field. This type of shift is not observed experimentally in our devices.
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Application of a 3 T magnetic field in the y direction identically splits the bands, although the spins
in this case orient along±y. It can be seen that with no spin-orbit coupling and an applied in-plane
magnetic field, pairs may form with nonzero wavevector in any in-plane direction.

Including dominant SIA (equivalent to a perpendicular electric field of 10mV/nm) with no BIA
modifies the expectation for the band structure (Figure 6.11D-F). Even without any external magnetic
field, in this case the bands are spin-split for all nonzero wavevectors. The axial symmetry of the spin-
orbit coupling results in the spin texture shown in Figure 6.11E, modeled up to a higher Fermi energy
of 50 meV to highlight the limit of strong SIA. Now coupled with an external magnetic field, these
factors result in a behavior that is different from the case with no spin-orbit coupling. Whenmagnetic
field is applied in the x (y) direction, the two Fermi surfaces shift oppositely in the y (x) direction.
Consistent with our observations on aluminum-based junctions in the electron-doped regime, this
shift implies that a magnetic field in the x direction introduces a pairing wavevector in the y direc-
tion. Also superficially consistent with our data, a magnetic field in the y direction leads to a pairing
wavevector in the x direction. However, the magnitude of this wavevector alone is too small to ex-
plain the experimental evolution of interference asBy is increased. A full explanation of this effect is
presented in Section 6.16. Finally, the lack of dependence of SIA on the angle θth is consistent with
our measurements (Figures 6.8 and 6.9).

In the remaining case, the effect of dominant BIA with no SIA is investigated in Figure 6.11G-I, for
an angle θth = 0 and up to a Fermi energy of 20 meV. Similarly to the case of strong SIA, with no
external magnetic field present the bands are spin-split at nonzero wavevectors. However, the texture
of spins at the Fermi surfaces displays tetrahedral symmetry in this case. As a result, when parallel
magnetic field is present in the x (y) direction, the two Fermi surfaces shift oppositely in the x (y)
direction. This shifting is orthogonal to the shifts present with strong SIA, and does not agree with
our interferencemeasurements on devices alignedwith θ = 0 orπ/2. Furthermore, the shift direction
rotates by π/2 as the angle θth becomes π/4. This prediction that the direction of induced Cooper
pair momentum should depend on θth is also inconsistent with our results.

Finally, in the main text, we model the evolution with density of the in-plane g-factor g̃, the Fermi
velocity vF , and the pair momentum shift ∆k ≈ g̃µBBx/ℏvF , under the assumption that BIA
is absent and SIA is dominant (equivalent to a perpendicular electric field of 10 mV/nm). At each
density, a particular value of the magnetic field satisfies the condition ∆kW = π/2, leading to a
node in the induced superconductivity in the junction. We find that the evolution with density of
this nodal magnetic field value agrees with our model at high densities. In niobium and aluminum
devices respectively, the value of the nodal magnetic field is consistent with values of of g̃/vF that are
approximately 1.9 and 1.4 times greater than those expected theoretically. Using different values for
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the electric field only weakly modifies this conclusion. For example, if the SIA was instead equivalent
to a perpendicular electric field of 40 mV/nm, we would find values of of g̃/vF approximately 2.1
and 1.5 times greater than the theoretical expectation, only a∼ 10% difference.

6.12 ModelofaTwo-DimensionalElectronGasContactedbySuperconduct-
ing Leads

In the following sections, we model the coupling of superconducting leads to our quantum well. We
consider a geometry in which a two-dimensional electron gas (2DEG) is contacted by a pair of super-
conducting leads with a controlled phase difference between them, and we seek to calculate the max-
imum supercurrent that can be carried between the strips. The following is a more complete deriva-
tion of the pair propagator F used in the main text to carry out this goal. We assume a Hamiltonian
H = H0+H2, whereH0 is theHamiltonian for the 2DEG in the absence of the superconductor, and
H2 is the coupling between the superconductors and the 2DEG, described by a pairing Hamiltonian
of the form

H2 = −
∫
dxdy

[
∆(x, y)Ψ†(x, y) + ∆∗(x, y)Ψ(x, y)

]
. (6.12)

HereΨ(x, y) ≡ ψ↑(x, y)ψ↓(x, y) is an operator which annihilates a singlet pair of electrons in the
2DEG at the point (x, y), while the pair potential∆(x, y) is a complex number that depends on the
phase of the superconductor and the tunneling amplitude at that point.

We assume that the contacts between the 2DEG and the superconductors occur at the edges of the
superconductors, located at y = 0 and y =W , so that we may write

∆(x, y) = λ1(x)δ(y) + λ2(x)δ(y −W ) ≡ ∆1(x, y) + ∆2(x, y), (6.13)

with−L/2 < x < L/2. We assume that the magnitude of the coupling is constant along each lead,
but the phase will vary if there is a perpendicular magnetic fieldBz ̸= 0.We choose a gauge where the
vector potential points in the x direction, with Ax = −Bz(y −W/2), so that the vector potential
vanishes along the midline of the 2DEG. If the superconducting strips have identical widthsWSC ,
then the couplings λj will have the form

λj(x) = |λj | e2πiϕj(x), (6.14)
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ϕj(x) = ϕj(0) +
(−1)j−1xBz(W +Wsc)

2Φ0
, (6.15)

with j = 1, 2. The phases in equation (6.15) are determined by the condition that there should
be no net current flow along the length of the superconducting strips, so the phase gradient in each
superconductor shouldbe canceledby the vector potential along the center line of the superconductor.

We assume thatBz is sufficiently weak that the cyclotron radiusRc = ℏkF /eBz is large compared
toW (typically in our devicesRc ≈ 10 µm, which is large compared toW = 800 nm). In this case,
we may ignore the effect ofBz on the trajectories of electrons in the 2DEG. Moreover, since we have
chosen the vector potential to vanish along themidline of the 2DEG, an electron crossing from y = 0

to y = W will acquire no net phase due to the vector potential. We also ignore, for the moment,
any orbital effects of the parallel fieldB||. Thus the 2DEGHamiltonianH0 will include the Zeeman
coupling toB||, as well as the spin-orbit coupling, but will not include terms due to themagnetic field
in the kinetic energy.

To lowest order in the couplings λj , the portion of the total energy that depends on the phase
difference between the two superconducting leads can be written in the form:

E = −
∫
dx2 [λ

∗
2(x2) ⟨Ψ(x2,W )⟩1 + c.c.] , (6.16)

where ⟨Ψ(x, y)⟩1 is the order parameter at point (x, y) induced by the superconductor j = 1. In
turn, this may be written in the form

⟨Ψ(x, y)⟩1 =
∫
dx1λ1(x1)F (x, x1, y), (6.17)

where F is the propagator from point (x1, 0) to point (x, y) for an induced Cooper pair. We will
determine the form of F in the following section.

As a first approximation, we may ignore the fact that there are boundaries of the 2DEG at x =

±L/2 and that electrons will be reflected at these boundaries (either specularly or diffusely, and pos-
sibly with a spin flip). Similarly, we ignore the possibility of single-particle reflection at y = 0 or
y = W , where the superconducting leads touch the 2DEG. Furthermore, we assume that the elec-
tron density is constant in the 2DEG, and we ignore any interactions between electrons in the 2DEG.
We also ignore scattering by impurities inside the 2DEG. Then the propagator F may be calculated
for an infinite, translationally invariant 2DEG, where themomentum of each electron is a good quan-
tum number. We believe that corrections due to reflections at the boundaries will have quantitative
effects but will not affect qualitatively the form of our results. Modeling of critical current including
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specular reflections at mesa edges will be discussed in Section 6.15 and 6.16.

6.13 Derivation of a General Formula for the Pair Propagator F

As discussed previously, the portion of the total energy that depends on the phase difference between
the two superconducting leads can be expressed, to leading order in the coupling constants λj , in
terms of the pair propagator F (x, x1,W ) of the normal 2DEG from a point (x, 0) under one su-
perconductor to a point (x1,W ) under the other, according to equation (6.16). A more complete
calculation should go beyond lowest order and should take into account the finite widths of the su-
perconducting contacts and changes in the local chemical potential resulting from the coupling to the
superconductor. The effect of these correctionsmay be described by introduction of an amplitude for
normal reflection where the 2DEGmeets the edge of the superconductor, as well as a renormalization
of the amplitude for Andreev reflection, which will clearly have an effect on the overall magnitude of
the coupling between the two superconductors and therefore on the maximum critical current. Since
we do not know the precise strength of the coupling between the 2DEG the superconductors in the
first place, we are not interested in this overall magnitude of the critical current, but rather in its de-
pendence of the critical current on the parameters of the system, such as direction and strength of the
magnetic field, the sample geometry, and the electron density.

A potential concern for our analysis is that beyond the lowest order in perturbation theory, one
should include processes where an electron can undergo multiple reflections between the two super-
conductors before it is absorbed in an Andreev process at one side or the other. However, processes
involvingmultiple reflectionswill fall off faster withW than the processes included in equation (6.16),
particularly if one takes into account disorder at the superconducting interface. Consequently, we feel
justified in neglecting such processes here.

If one uses equation (6.16) to calculate the critical current, one finds that dependences of the crit-
ical current on system parameters such as the direction and strength of the magnetic field arise from
interference between contributions to the integral from different points x and x1, which will be par-
ticularly sensitive to variations of the phase ofF (x, x1,W ) as a function of these variables. We remark
that, strictly speaking, calculations beyond lowest-order perturbation theorymay lead to dependences
of the amplitude for Andreev reflections at the boundaries on the angle of incidence and on the elec-
tron energy that differ somewhat from the lowest-order results, whichwould give, in turn, corrections
to the space dependence of the integrand in equation (6.16). However, we do not expect these cor-
rections to have a major effect on the results in the parameter range of interest to us. Moreover, any
corrections of this type would depend on details of the coupling between the superconductor and the
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2DEG, which are not known in practice.
The functionF (x, x1,W )will dependonwhatone assumes for theHamiltonianH1 of the 2DEG.

A four-bandmodelHamiltonianH1 for ourquantumwellswaspreviously discussed. Sincewepresently
are interested in behavior near the Fermi energy EF , and within the conduction bands only, in the
following we adopt a simplified two-band model Hamiltonian. This Hamiltonian for an electron in
the 2DEG with momentum k⃗ is given by the 2× 2matrix

H0
k⃗
= vF (k − kF ) + β⃗(k̂) · σ⃗, (6.18)

βj = g̃µBBj/2 + k̂iSij , (6.19)

where Bj are the x and y components of the in-plane magnetic field, g̃ is an effective g-factor, k̂ ≡
k⃗/k, and k̂iSijσj is the spin-orbit coupling term, whichwe assume to be small compared to the Fermi
energy. We have here assumed a single electron band, and assumed that band structure is isotropic in
the absence of spin-orbit coupling. We can then write

H0
k⃗
=
∑
η

ϵ
k⃗η
P k̂η, (6.20)

with η = ±1. Here ϵ
k⃗η

are the two eigenvalues, and P k̂η are projection matrices given by

ϵ
k⃗η

= vF (k − kF ) + η
∣∣∣β⃗∣∣∣ , P k̂η = (1 + ηβ̂ · σ⃗)/2, (6.21)

with β̂ ≡ β⃗/
∣∣∣β⃗∣∣∣.

We next define a 2× 2matrix function

g(r⃗, ϵ) ≡ 1

(2π)2

∑
η

∫
d2keik⃗·r⃗δ(ϵ− ϵ

k⃗η
)P k̂η. (6.22)

Then, letting r⃗ = (x− x1, y), the pair propagator F (x, x1, y)may be expressed as

F (r⃗) =

∫ ∞

0
dϵ

∫ ∞

0
dϵ′

tr
[
g(r⃗, ϵ)σygT (r⃗, ϵ′)σy + g(r⃗,−ϵ)σygT (r⃗,−ϵ′)σy

]
2(ϵ+ ϵ′)

, (6.23)

where T indicates the matrix transpose.
We are interested in the situation where kF r ≫ 1, and |ϵ| ≪ EF . Then the integration over the
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direction of k⃗ is dominated by regions close to the end points where k⃗ is either parallel or antiparallel
to r⃗, and the expression for g(r⃗, ϵ)may be approximated by

g(r⃗, ϵ) ≈
k
1/2
F

(2π)3/2vF r1/2

∑
η

[
eikF reiϵr/vF e−iπ/4e−iδk+η rP η+

+e−ikF re−iϵr/vF eiπ/4eiδk
−
η rP η−

] (6.24)

where P η± is equal to P k̂η , with k̂ = ±r̂ ≡ ±r⃗/r and

δk±η =
η
∣∣∣β⃗(±r̂)∣∣∣
vF

. (6.25)

When we substitute the expression for g in formula (6.23) for F (r⃗), we may ignore the terms pro-
portional to e±2ikF r, as these rapidly oscillating terms will give vanishing contribution to the energy
if the width of the contacts between the 2DEG and the superconducting strips are large compared to
1/kF . Performing the integrals over ϵ and ϵ′ in the remaining terms, one obtains the result

F (r⃗) ≈ C

r2

∑
ηη′

Nηη′(r̂)e
−i

(
δk+η −δk−

η′

)
r
, (6.26)

withC = kF /(8π
2vF ), and

Nηη′(r̂) = Nηη′(−r̂) =
1− ηη′β̂(r̂) · β̂(−r̂)

2
. (6.27)

6.14 Special Cases and Limiting Forms of the Pair Propagator

Here we discuss several special cases which lead to limiting forms for the pair propagator F (r⃗). The
above expressions (equations (6.26) and (6.27)) may be simplified in the limit where the Zeeman en-
ergy is small compared to the spin-orbit energy splitting. When B|| = 0, we find that β̂(r̂) =

−β̂(−r̂), so that Nηη′ = δηη′ . Furthermore, when η = η′, we see that the exponent in equation
(6.26) is equal to zero, soF will have no oscillations as a function of r. IfB|| is nonzero but still small
compared to the spin-orbit splitting, it remains a good approximation to set Nηη′ = δηη′ . In the
exponent, however, we have

(
δk+η − δk−η

)
= ηg̃µBB⃗|| · β⃗(r⃗). (6.28)
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An important example is the case of pure SIA spin-orbit coupling, where the matrix S has the
Rashba form, S ∝ iτy , where τy is a Pauli matrix. In this case we may write

(
δk+η − δk−η

)
r = η∆k⃗ · r⃗ (6.29)

with

∆k⃗ = ẑ × B⃗||g̃µB/vF . (6.30)

The oscillations in F (r⃗) have a simple interpretation in this case. WhenB = 0, the Fermi surface
consists of two circles centered about theorigin, split by the spin-orbit coupling,with spinorientations
shown in Figure 6.3B. Application of a weak in-plane magnetic field will shift the two Fermi circles
in opposite directions, by amounts ±∆k⃗/2. The function F (r⃗) describes the propagator when a
singlet pair of electrons is injected at one point and removed at a second point, separated by r⃗. For
large separations,F (r⃗) is dominated by pairs of electrons that are close to the Fermi energy, with wave
vectors opposite to each other and parallel or antiparallel to r⃗. Because the two electrons must have
opposite spins, theymust belong to the same branch of the Fermi surface. Thus, the induced pairs will
have total momenta equal to±∆k⃗, depending on the branch η. The momentum shifts are manifest
in the phase factors eiη∆k⃗·r⃗, which appear in F (r⃗) in this case.

In the case of pure BIA coupling, the matrix S is ∝ τ z , in our coordinate system. We may again
write the phase accumulation in the form (6.29), but now the direction of∆k⃗ depends on the direc-
tions of B⃗|| relative to the crystal axes.

The formula forF (r⃗) also becomes simple in the case where the Zeeman energy is large compared
to the spin-orbit splitting. In this case, the Fermi surface consists of two concentric circles, with spin
that are uniformly aligned on each circle, either parallel or antiparallel to B⃗||. In order to form a spin
singlet, we must choose one electron from each Fermi circle. If we also require that the momenta be
parallel or antiparallel to r⃗, we see that the induced electron pair will have a total momentum equal to
±r̂g̃µBB||/vF .Thus we should find that the phase shift is independent of the direction of r⃗.

These expectations may be confirmed using the formulas derived above. In the case where the
Zeeman energy is large compared to the spin-orbit splitting, we find that β⃗(k̂) is independent of k̂,
and thusNηη′ = δη,−η′ . Furthermore, δk+η − δk−−η = ηg̃µBB||/vF , independent of r⃗.
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6.15 Reflections from the Sample Edges

Taking into account the effects of electron reflections from the ends of the sample, at x = ±L/2, we
should rewrite the propagator F in a more general form as

F (x2, x1,W ) = F0(r⃗) + F1

[(
x2 +

L

2

)
,

(
x1 +

L

2

)
,W

]
+ F2

[(
L

2
− x2

)
,

(
L

2
− x1

)
,W

]
,

(6.31)

where F0 is the function given by equation (6.26) for the infinite system, r⃗ = (x2 − x1,W ), as
before, and F1 and F2 describe the contributions of electrons reflected from the left boundary or
right boundary respectively. We assume that the length L is long enough that we can neglect the
effects of electrons that scattermultiple times fromopposite boundaries. Herewewill assume that the
boundaries at x = ±L/2 are represented by infinite potential barriers, which are perfectly smooth,
so that electrons are specularly reflected with no change in spin. The symmetry of our problem will
then be such thatF1 andF2 have identical functional forms, so we need only find the form ofF1. For
convenience, we move the left boundary to the line x = 0, and we assume that the right boundary is
located at x = ∞. Using similar reasoning to what we used in the translationally invariant case, we
may write F1 in the form

F1(x2, x1,W ) =

∫ ∞

0
dϵ

∫ ∞

0
dϵ′

tr
[
h(x2, x1,W, ϵ)σ

yhT (x2, x1,W, ϵ
′)σy + c.c.

]
2(ϵ+ ϵ′)

(6.32)

where

h(x2, x1,W, ϵ) = −
k
1/2
F

(2π)3/2vF s1/2

∑
η1,η2

[eikF seiϵs/vF e−iπ/4e
−i(δk+1,η1

s1+δk+2,η2
s2)P η1+

1 P η2+
2

+ e−ikF se−iϵs/vF eiπ/4e
i(δk−1,η1

s1+δk−2,η2
s2)P η1−

1 P η2−
2 ],

(6.33)
where s = [(x1 + x2)

2 +W 2]1/2, s1 = sx1/(x1 + x2), s2 = s− s1, and

δk±j,η =
η
∣∣∣β⃗(±k̂j)∣∣∣
vF

, (6.34)
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for j = 1, 2,with

k̂1 = − [(x1 + x2),−W ]

s
, k̂2 =

[(x1 + x2),W ]

s
. (6.35)

Furthermore, we have

P η±
j = (1 + ηβ̂(±k̂j) · σ⃗)/2. (6.36)

We now turn to one particular example. In order to evaluate expression (6.32) forF1, wemust first
evaluate the trace over a product of projection matrices and σy . In the case of strong SIA coupling
and weak magnetic field, the trace simplifies, and we obtain the result

tr
[
P η1+
1 P η2+

2 σy
(
P η3−
1 P η4−

2

)T
σy
]
= δη1η3δη2η4

[
sin2 θδη1η2 + cos2 θδη1,−η2

]
, (6.37)

where sin θ =W/s. Furthermore forB|| in the y direction, we find

(δk+j,η − δk−j,η)sj = (−1)jηxj
g̃µBBy

vF
. (6.38)

Thus, in the case of strong SIA andB|| in the y direction, we find

F1(x2, x1,W ) =
2C
[
sin2 θ cos∆k(x1 − x2) + cos2 θ cos∆k(x1 + x2)

]
(x1 + x2)2 +W 2

, (6.39)

where∆k = g̃µBBy/vF , and the constantC is the same as in equation (6.26).

6.16 Modeling Josephson Interference

Using the pair propagatorF (r⃗) and equation (6.16), we can calculate the Josephson energy and critical
current for our junctions. In the limit of either strong BIA or strong SIA, the Cooper pairmomentum
shift occurs at an angle αwith respect to the x axis and the pair propagator is

F (x2, x1,W ) =
kF

8π2vF
· eiγ + e−iγ

(x2 − x1)2 +W 2
, γ = ∆k (sin(α)W + cos(α)(x2 − x1)) . (6.40)

As previously noted, in this case pairing occurs internally to each Fermi surface. In the limit of weak
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spin-orbit coupling, the pair propagator instead takes the form

F (x2, x1,W ) =
kF

8π2vF
· eiγ + e−iγ

(x2 − x1)2 +W 2
, γ = ∆k

√
W 2 + (x2 − x1)2. (6.41)

Due to the opposite spin polarization of the two Fermi surfaces, pairing in this limit is expected to
occur between Fermi surfaces, in contrast to the limit of large spin-orbit coupling.

The Josephson energyE is obtained in each limit by evaluating equation (6.16). By differentiating
the Josephson energy with respect to the phase difference ϕ1(0) − ϕ2(0) we find the current-phase
relation of the junction, which is then maximized with respect to the phase difference to obtain the
critical current.

In the main text we consider only a parallel field along the x direction. In both aluminum and
niobium-based devices we experimentally observe that superconductivity weakens as the parallel field
Bx increases, in contrast with the cosine dependence predicted by our theoretical model. We believe
that this effect results from spatially inhomogeneous screening of the parallel field at the edges of su-
perconducting leads. The superconductor repels the in-plane field and slight roughness at the edges
results in a weak magnetic field along the z direction that is positive at some locations and negative at
others. This screening leads to a spatially varying random component of the phase that grows linearly
with the in-plane field. Hence, we introduce a random phase χ ∝ (R1(x1)−R2(x2))Bx, where
the random variables R1(x1) and R2(x2) correspond to fluctuations in the direction of the paral-
lel field at each interface. The modeled step size in x is 40 nm, with no correlations between adjacent
positions. The randomphaseχ is uniformly distributed between zero and an upper boundwhose ab-
solutemagnitude is equal to 15%of themaximumphase generated by the intrinsicmomentum. With
this randomness, the calculated critical currents diminish in magnitude as the in-plane field increases,
in agreement with the experimental observation (shown in Figure 6.3C for the case of dominant SIA).

In general, the parallel field B⃗|| can be oriented anywhere in the plane, which modifies α accord-
ingly in the case that spin-orbit coupling is strong. Additionally, loosening the constraint that B⃗|| lie
parallel to x introduces an artifact wavevector qy ≈ 2πB|| sin(β)d/Φ0, where d is the height differ-
ence between the centers of the quantum well and of the superconducting leads, and β is the angle
between the parallelmagnetic field and thex axis. This additional phase arises due to themagnetic flux
penetrating the area dL formed between the leads and the quantumwell due to this height difference.
Importantly, no flux penetrates this area when the parallel component of magnetic field is only in the
x direction, so that in this case the pair momentum is solely determined by the Zeeman coupling and
the spin-orbit coupling.
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The behavior of Josephson interference in our devices essentially involves different mechanisms
when the parallel magnetic field lies in the x or y direction. With the above modeling it is clear that
this difference is due to the dependence of qy on the magnetic field angle β, so that the data for the
magnetic fieldBy reflects primarily the difference in height between the superconducting leads and the
quantumwell. Since we cannot entirely rule out either dominant Zeeman coupling or dominant SIA,
wemodel both possibilities for this field direction. With dominant SIA and the height difference d set
to either 10 nm (Figure 6.12A) or 70 nm (Figure 6.12B), the model agrees well with the experimental
observation. The corresponding model without any spin-orbit coupling also agrees, however (Figure
6.12C, D).

Nevertheless, it is clear that with the parallel magnetic field in the y direction, the most prominent
feature in the response of the device is driven by the parallel magnetic flux penetrating the area dL
and not by effects intrinsic to the heterostructure. Assuming that only this parallel magnetic flux con-
tributes, one can estimate the distance d for each device, accounting for the slight difference inWSC

for aluminum and niobiumdevices (1µmand 400 nm respectively). For devices A-E, the correspond-
ing distance d ≈ 21, 10, 9, 7, and 70 nm, in agreement with lithographic dimensions. The similar
values ofd for devices B-D reflects the fact that these deviceswere all fabricated concurrently. Device E,
in which niobiumwas used for the leads, has a much larger value of d due to the fact that the niobium
thickness was larger than the aluminum thicknesses.

Athough the parallel magnetic flux dominates the response of devices to the fieldBy , with purely
SIA it is still in principle possible in this direction to extract the intrinsic nature of spin-orbit coupling.
Since the wavevectors qy and∆k add and subtract, the ‘V’ shape of supercurrent evolution contains
two nearly identical slopes, which in ourmeasurements are unobservable due to the concurrent decay
of superconductivity. However, normalizing the theoretical critical currentmagnitude still reveals the
possibility to determine the nature of spin-orbit coupling using this parallel field direction (Figure
6.12E).

An additional characteristic common among the data sets is an asymmetry in the interference pat-
tern upon inversion of one component of the appliedmagnetic field. In Figure 6.12Fwe show an inter-
ference pattern measured onDevice F with both positive and negative componentsBy andBz . Here
the data appears invariant under inversion of both components of the magnetic field, as we expect
from time-reversal symmetry. However, the lack of symmetry under inversion of a single component
of themagnetic field suggests that devices lack structural symmetry under rotation by 180 degrees. We
maymodel this asymmetry as arising from a difference in lengths of the two leads on either side of the
junction. An exaggeration of this effect, where the interface to one lead is 4microns and to the other
is 4.5microns, shows increased intensity of interference for positive perpendicular field as compared

128



Critical Current

B
z
 (mT)

-5 0 5

B
y
 (

T
)

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1
Critical Current

B
z
 (mT)

-50 0 50

B
y
 (

T
)

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1
Critical Current

B
z
 (mT)

-5 0 5

B
y
 (

T
)

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

Critical Current

B
z
 (mT)

-50 0 50

B
y
 (

T
)

0

0.05

0.1

0.15

0.2

0

0.2

0.4

0.6

0.8

1
Normalized Critical Current

B
z
 (mT)

-5 0 5

B
y
 (

T
)

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

Normalized Critical Current

B
z
 (mT)

-5 0 5

B
y
 (

T
)

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1

A. Dominant SIA with d = 10 nm B. Dominant SIA with d = 70 nm C. Dominant Zeeman with d = 10 nm

D. Dominant Zeeman with d = 70 nm E. Dominant SIA with d = 10nm

G. Dominant SIA, d = 10 nm, asymmetry

Critical Current

B
z
 (mT)

-5 0 5

B
y
 (

T
)

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1
Critical Current

B
z
 (mT)

-5 0 5

B
y
 (

T
)

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

Resistance (Ω)

B
z
 (mT)

-4 -2 0 2 4

B
y
 (

T
)

-0.15

-0.1

-0.05

0

0.05

0.1

0

50

100

F. Resistance Measured with By>0 and By<0

H. Dominant SIA, d = 0 nm, no re�ections I. Dominant SIA, d = 0 nm, re�ections

Figure 6.12:Modeling of the critical current as the perpendicular magnetic fieldBz (generating flux quanta) and the

parallel magnetic fieldBy (generating Cooper pair momentum) are varied. (A)With dominant SIA and the height dif-

ferenced between the leads and the quantumwell set to 10 nm, the interference evolves consistently withmeasure-

ments of differential resistance on aluminum devices (devices A-D). (B) Increasing d to 70 nm decreases the slope of

each arm of the interference pattern consistently with themeasurement of a device with thicker niobium leads (device

E). (C, D) Eliminating spin-orbit coupling leads to a similar picture for both values ofd, highlighting the overwhelming
extrinsic nature of the pairingmomentum inducedwhen the parallel field is applied in the y direction. E)Normalizing
the critical current at each value ofBy reveals additional features weakly present in the interference with SIA and

d = 10 nm. Since the extrinsic wavevector qy adds and subtracts with the wavevector∆k induced due to SIA, two
slopes are in principle found in each arm of the interference pattern. However, superconductivity weakens to the

extent that such splitting cannot be conclusively observed in our devices. (F) The resistance of Device F, measured

as bothBy andBz are tuned to positive and negative values. Themeasured resistance is observed to be symmetric

under inversion of bothBy andBz , as expected from time-reversal symmetry. Under inversion of eitherBy orBz ,

however, the resistance is asymmetric. (G)Modeling asymmetry in the lengths of superconducting electrodes leads

to asymmetry in the interference with respect to inversion ofBz . Plotted here are the expected critical currents for

a device with 4microns and 4.5microns as the interfacial lengths. (H) The expected evolution of interference upon

increasingBy assuming dominant SIA andwithd = 0. (I) Including specular reflections at themesa ends, assum-
ing the presence of a steep confining potential which does not flip spins upon reflection, quantitatively modifies the

interference evolution. However, qualitatively the behavior remains unchanged.
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to negative perpendicular field (Figure 6.12G), similar to what is observed experimentally.
Finally, in all of the above modeling we have ignored contributions due to reflections at the ends

of the mesa. In Figure 6.12H, we plot the expected evolution of interference upon increasing By as-
suming dominant SIA and with d = 0, ignoring the possibility of reflections at mesa boundaries.
We may include specular reflections at the mesa boundaries in the model, as discussed in Section 6.15.
With these contributions, the interference evolution is quantitatively modified (Figure 6.12I). How-
ever, the ‘V’ shape of the interference evolution is still present, with each arm of the ‘V’ having the
same slope as was obtained by ignoring edge reflections. Hence, we conclude that the contribution of
specular reflections preserving the spin direction only quantitatively modifies the expected device be-
havior. We have not carried out calculations for other boundary conditions, such as diffuse reflection,
but we expect that results in these cases would not be qualitatively different from the cases of specular
reflection or no reflection at all.

6.17 Evidence for the Transition to a π-Junction

In a conventional Josephson junction with no external magnetic field, the supercurrent IS is related
to the phase difference∆ϕ between the leads via the Josephson relation IS = IC sin(∆ϕ). Here IC is
the critical current of the junction. When the induced order parameter oscillates in space, it is possible
that this order parameter can have a different sign at the boundary of each superconducting lead. This
modifies the current-phase relation by a phase shift of π, so that in such a junction IS = IC sin(π +

∆ϕ). These junctions are referred to as π-junctions, and were first explored in systems composed of
a ferromagnetic layer sandwiched between two superconductors [100]. A simple experiment which
provides evidence of the π phase shift consists of two junctions connected in parallel and sharing the
same superconducting leads. If one of the junctions is conventional and the other is aπ-junction, then
if the junctions also have equal critical currents the total supercurrent must be zero in the absence of
external magnetic fluxBz . This contrasts with the standard result for two conventional junctions in
series, in which the maximum supercurrent is expected withBz = 0.

In our junctions, applying a finite magnetic field Bx results in finite momentum pairing in the y
direction. For a junction with widthW , we expect that a π-junction should then be realized when
π
2 · ℏvF

g̃µBW < Bx <
3π
2 · ℏvF

g̃µBW , corresponding to the situation where the induced order parameter
has a single node inside the junction. To carry out the experiment described above requires that we
realize both a π-junction and a conventional junction. To achieve this goal, we have fabricated a de-
vice in which a junction with dimensions 800 nm× 4 µm is wired in parallel with a junction having
dimensions 200 nm× 2 µm (Figure 6.13A). When the condition π

2 · ℏvF
g̃µBW < Bx <

3π
2 · ℏvF

g̃µBW is
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satisfied for the 800 nm junction, the 200 nm junction will still be in the conventional regime. This
experiment therefore allows one to detect the π phase shift, and also to verify that the parallel fieldBx

necessary to achieve the shift depends on the junction widthW . All data presented on this device was
collected at a temperature of 10mK in the system discussed previously (Section 6.6).

Due to the screening of the parallel magnetic field by the superconducting leads (described in Sec-
tion 6.16), we have fabricated our device such that all edges of the leads which lie along the y direction
are far from the active areas of the device which contain the quantum well. If this were not the case,
the screened field would penetrate the quantum well imhomogeneously, leading to unwanted inter-
ference. Instead, the quantum well between the 200 nm and 800 nm junctions is etched away, form-
ing a SQUID geometry. Any screened parallel field penetrates through this central hole, leading to
SQUID-like interference between the 200 nm junction and the 800 nm junction. The critical current
of this device canbe simulatedwith varying amount of screened flux, using the formalismdeveloped in
Section 6.12-6.16. With no screened flux, the expected behavior is simulated in Figure 6.13B. In Figure
6.13C, we plot the same simulation but with experimentally relevant flux screening.

In both simulations, the perpendicular fieldBz modulates the critical current. A large period of≈
1mTcorresponds to the area of the200nm junction, while a smaller period of≈ 0.3mTcorresponds
to the area of the 800 nm junction. In the simulation with no screened flux, when the parallel field
Bx exceeds≈ 1.2 T, the critical current develops a sharp minimum atBz = 0. This critical current
minimum results from the formation of a π-junction in the 800 nm section of the device. In the
simulation which includes screened flux, increasing the parallel field Bx leads to oscillations in the
critical current, even at Bz = 0. These oscillations arise because the screened flux penetrates the
center of the SQUID loop formed by etching the hole between the two junctions. Here, when the
parallel fieldBx exceeds≈ 1.2 T, the formation of a π-junction in the 800 nm junction manifests as
a π phase shift in the SQUID oscillations. This is due to the fact that when one arm of the SQUID
loop is a π-junction, the condition for the maximum supercurrent shifts by 1/2 flux quantum. To
illustrate this effect, a line trace of the simulated critical current atBz = 0 is plotted in Figure 6.13D.

To determine whether the π phase shift is present in our device, we measured the differential resis-
tance with a small amount of DC current (20 nA) applied in order to highlight the positions of the
high resistance nodes associatedwith critical currentminima. Upon increasing the perpendicular field
Bz , we observe two periods of oscillation corresponding to the areas of the 200 nm and 800 nm junc-
tions (Figure 6.13E). With Bz = 0, increasing Bx reveals a series of resistance peaks, corresponding
to minima of critical current brought on by the SQUID oscillations. At Bx = 1.2 T, only oscil-
lations in Bz corresponding to the 200 nm area are observed, suggesting that in the 800 nm device
supercurrent has been completely suppressed. Above this nodal value of Bx, we expect to observe
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Figure 6.13: Evidence for the transition to aπ-junction. (A) The device used for thesemeasurements consists of a junc-
tion with dimensions 800 nm× 4µmwired in parallel with a junction having dimensions 200 nm× 2µm. A central

area with no quantumwell, created by etching, separates the two junctions by 1µm. (B)An external field in both thex
and z directionsmay be simulated, neglecting screening effects from the leads. In this case, application of themagnetic

fieldBx leads to a pair momentum shift in the y direction. AtBx = 1.2 T, the 800 nm junction transitions to aπ-
junction state. Above this nodal field, the critical current develops aminimum atBz = 0 due to the presence of both
a conventional andπ-junction in the device. (C) Including screening of themagnetic fieldBx by the aluminum leads,

the simulation shows that increasingBx while keepingBz = 0 leads to oscillations in the critical current. These are
due to flux penetrating the central hole in the device, and are essentially the critical current oscillations of a SQUID

loop. (D) In this situation, the transition of the 800 nm junction to aπ-junction is then expected tomanifest as a phase
shift in these SQUID oscillations. A linecut of the simulated critical current atBz = 0, as a function ofBx, displays

this shift. (E) Themeasured differential resistance of the device, with a DC current bias of 20 nA, shows a node struc-

ture whichmatches the predicted interference. (F) Extracting the differential resistance atBz = 0 shows a periodic
dependence onBx at low fields, with the predicted phase shift aboveBx = 1.2 T.
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the predicted phase shift in the SQUID oscillations which signifies the appearance of a π-junction.
Plotting the differential resistance as a function ofBx, extracted whenBz = 0, we find that the po-
sition of nodes does indeed shift by 1/2 flux quantum (Figure 6.13F). Therefore, we conclude that a
π-junction is realized in the 800 nm junction and not in the 200 nm junction, and that the origin of
this π-junction lies in oscillations of the induced order parameter brought on by the application of
the parallel fieldBx.
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A
Fabrication procedures for GaAs devices

This appendix describes the processes used to fabricate theGaAs-based devicesmeasured in this thesis.
Most of these recipes have by this point become standard, but are listed here for completeness.

A.1 FabricationWorkflow

A.1.1 Mesas

1. Define the etch mask using Shipley 1805 photoresist.

2. Measure the resist thickness using a profilometer.

3. Etch the wafer in a well-mixed solution of H3PO4:H2O2:H2O (1:1:25) long enough to hit
the target mesa height. The nominal etch rate is 180− 200 nm/min, but this can vary slightly
between growths and etchant solution preparations. One can deal with the variation via a two-
step etch. In the first etch, aim to etch halfway to the target thickness, and then measure the
actual etch depth with a profilometer. This procedure gives a measurement of the etch rate,
which can then be used to determine the remaining time needed to hit the target thickness.

4. After etching, rinse in DI water.

5. Remove the resist with acetone and rinse in IPA.
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6. Measure the mesa height using a profilometer. It is safest to etch through the quantum well
layer when making mesas.

A.1.2 Ohmic contacts and bond pads

1. Define the contact areas using AZ5214 photoresist.

2. Evaporate 7 nmNi, x/3 nmGe, 2x/3 nmAu, 20 nmNi, 100 nmAu. Here, x is the depth of
the quantum well in nm.

3. Lift off in acetone.

4. Anneal at 120C (1minute), 340C (1minute), ramp from 340C to 460C in 30 seconds, then
hold at 460 C for 2 seconds before stopping the heat.

A.1.3 Small gates

Small gates typically range in size from< 1 µm up to 10 µm.

1. Define small gate areas in PMMA 950A4, using a standard e-beam recipe.

2. After developing, load the sample into a thermal evaporator.

3. Deposit 30 nm PdAu (60:40).

4. Lift off in acetone.

A.1.4 Large optical gates

1. Define the gate areas using AZ5214 photoresist.

2. Evaporate 20 nm Ti and enough Au to climb the mesas.

3. Lift off in acetone.

A.2 List of procedures

A.2.1 Shipley photolithography

1. Spin-coat the sample with Shipley 1805 photoresist at 5000RPM for 40 seconds.

2. Bake the wafer at 80 C for 5minutes.
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3. Expose for 2.7 seconds on MJB4 in constant power mode. It is advisable to check the lamp
intensity before exposure, and scale the exposure time accordingly.

4. Develop the sample in MIF319 for 9 seconds. Take care during this step, since MIF319 con-
tains TMAH.

5. Bake the sample at 100 C for 5minutes.

A.2.2 AZ5214 image reversal photolithography

This is a photolithography recipe that produces an undercut, enabling lift-off of deposited materials.
After development, it should be possible to see the undercut in an optical microscope.

1. Spin-coat the sample with AZ5214 photoresist at 5000RPM for 40 seconds.

2. Bake the wafer at 100 C for 45 seconds.

3. Expose for 0.4 seconds onMJB4 in constant power mode.

4. Bake the sample for 55 seconds at 120 C.

5. Flood expose the sample for 45 seconds.

6. Develop the sample in AZ726 IR for 20 seconds.

A.2.3 E-beam lithography

These are instructions for a 100 kV Elionix-7000 system, and written specifically for small gate fab-
rication. If features with lateral dimensions larger than ≈ 10 microns are needed, the dose needs to
be scaled down due to proximity effects. To lift off layers thicker than 30 nm, insert layers of PMMA
495 C6 as needed before the final PMMA 950A4 layer. Bake each layer of PMMA at 180 C for> 5

minutes after spin-coating.

1. Spin-coat the sample with PMMA 950A4 at 4000RPM for 45 seconds.

2. Expose the pattern. Dose: 2500 µC/cm2.

3. Develop inMIBK/IPA (1:3) at 0 C for 1minute.
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B
Fabrication procedures for HgTe devices

This appendix describes the processes used to fabricate theHgTe-based devicesmeasured in this thesis.
At the highest level, the fabricationworkflow for these devices follows the samebasic steps as forGaAs-
based devices. However, in detail there are many differences, so that a recipe which works perfectly
well for GaAs can be disastrously bad for HgTe! As one example, heating the HgTe heterostructure
above 80C tends to rapidly damage thematerial, so thatmany photolithography and ebeamprocesses
either cannot be used or must be modified appropriately for use with HgTe. The recipes presented in
this appendix will reliably produce Josephson junction devices with yields approaching 100%, but to
find the most up-to-date procedures, consult the Yacoby group server.

B.1 FabricationWorkflow

B.1.1 Mesas

1. Define the etch mask using either HSQ or SiO2/Ti.

2. (Optional) Measure the height of the etch mask before milling using a profilometer.

3. Mill using a DC argon ion source for enough time to etch through the quantum well (usually
aim for 100 nm).

4. (Optional) Measure the height of the etch mask after milling using a profilometer.
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5. Remove the etch mask by immersing the sample in 1:7 BOE for 7minutes. Rinse in DI water.

6. Measure the height of the mesa using a profilometer. If you performed the optional steps you
can get a sense for if the etchmask is etched at all. Typically for this process it will not be etched.

B.1.2 Bond pads

This procedure will produce large areas of Ti/Au that make good bond pads. If themetal is deposited
onto a regionwhere the quantumwell has not yet been removed, then therewill also be ohmic contact
to the quantum well with typical resistances of≈ 1 kohm/10, 000 µm2.

1. Define large bond pad areas in PMMA, using a low temperature e-beam recipe.

2. After developing, load the sample into a vacuum chamber with a thermal evaporator (and op-
tionally a DC argon source).

3. (Optional) Mill slightly using a DC argon ion source (aim for about 10 nm etch depth). This
step is not strictly necessary, but will improve adhesion.

4. Deposit 10 nm of titanium, followed by 50 nm of gold.

5. Lift off in acetone.

B.1.3 Contacts

This procedure will produce contacts that are suitable for inducing superconductivity.

1. Clean the sample with oxygen plasma and spin PMMA.

2. Define contact areas in PMMA, using a low temperature e-beam recipe. These contacts should
overlap the bondpads and/or contact the same continuous region of quantumwell as the bond
pads.

3. After developing, load the sample into a vacuum chamberwith aDC argon source andmaterial
deposition capability.

4. Mill using a DC argon ion source, aiming to expose the quantum well but not etch through.

5. Deposit the desired materials:

138



(a) 10 nm titanium, followed byX nm aluminum1, whereX > mesa height. These con-
tacts will climb themesa but will stop superconducting if themagnetic field applied par-
allel to the film exceeds 100mT.

(b) 5 nm titanium, followed by 15 nm aluminum. These contacts probablywon’t climb the
mesa, but will superconduct up to 1.5-2T applied parallel to the film.

(c) 10 nm titanium, followed by X nm niobium. X can vary and since the niobium is
sputtered, the contacts climbmesas. The contacts will superconduct up to applied fields
of at least 4T.

6. Lift off in acetone.

B.1.4 Topgates

Use this procedure tomake topgates. It is necessary to deposit a dielectric layer between the gatemetal
and the substrate to prevent gate leakage.

1. Clean the sample with oxygen plasma.

2. Deposit Al2O3 using atomic layer deposition. The thickness of this layerwas 50nm for devices
in this thesis, but other thicknesses could be used.

3. Define the gate areas in PMMA, using a low temperature e-beam recipe.

4. Load the sample into an evaporator and deposit 10nmof titanium, followed byX nmof gold,
whereX >mesa height to ensure continuity of the gate material. We have typically deposited
films withX = 250 nm.

5. Lift off in acetone.

B.2 List of Procedures

B.2.1 Creating anHSQ etch mask

Use this procedure to pattern an etch mask composed of HSQ. HSQ is a negative e-beam resist, so
areas exposed to the electron beam will be shielded during the etching process. This is a relatively
quick method to make mesas. However, sometimes isolated small features (< 10 µm) do not stick to
the substrate strongly enough, and can be inadvertently removed during development. We have some

1All of the aluminum films in this work were deposited by thermal evaporation.
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evidence that this problem becomes more pronounced as the resist ages, but more characterization is
needed.

• Remove HSQ from refrigerator and place in room temperature fume hood for 30minutes.

• Spin HSQ onto the substrate at 3000 rpm, for 45 seconds. Bake at 80 C for 4minutes.

• Spin another layer of HSQ onto the substrate at 3000 rpm, for 45 seconds. Bake at 80C for 4
minutes.

• Expose the pattern as soon as possible after baking. Dose: 1800 µC/cm2.

• Develop in 25%TMAH for 17 seconds. Take care during this step, since TMAH is extremely
poisonous. Rinse the sample in DI water after developing.

• You are now ready to etch mesas.

B.2.2 Creating a SiO2/Ti etch mask

This is a liftoff procedure for patterning an etch mask composed of SiO2/Ti. The titanium may not
be strictly necessary, but it is etched extremely slowly by DC argon milling and is easy to deposit, so
we use it.

• Define the mesa areas in PMMA, using a low temperature e-beam recipe.

• After development, load the sample into an ebeam evaporator and deposit≈ 100 nm SiO2.

• Deposit 20 nm of titanium.

• Lift off the etch mask in acetone.

• You are now ready to etch mesas.

B.2.3 Milling theHgTe heterostructure

Use this procedure to removematerial from theHgTe heterostructure. For the recipes presented here,
the sample should be mounted facing a DC argon source, with the surface of the wafer oriented per-
pendicular to the argon flux (although angle milling is certainly also possible). We used two different
DC argon sources in this thesis, onemounted inside a thermal evaporator, and one inside a sputtering
system. The following parameters characterize these two sources:
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1. Veeco 3cmDC Ion Source

• Beam voltage: 500V

• Beam current: 50mA

• Accelerator voltage: 1000V

• Etch rate of HgTe heterostructure: 80 nm/minute

2. Kaufman Ion Source

• Beam voltage: 400V

• Beam current: 23mA

• Accelerator voltage: 80V

• Etch rate of HgTe heterostructure: 81 nm/minute

B.2.4 Oxygen plasma cleaning

This is a recipe for using an ECR-based reactive ion etcher to clean the surface of theHgTeheterostruc-
ture. We have found it essential to clean the surface prior to atomic layer deposition of Al2O3. With-
out this cleaning step there tends to be holes in the growth. The particular etcher that we use is aNexx
RIE.

1. Run the recipe `burnin.rcp' for 20 minutes, to clean the chamber. If the sample is being
cleaned before ALD, this time can be used to preset the ALDmachine to the deposition tem-
perature.

2. Load the sample onto the sample chuck, using a drop of Santovac5 vacuum oil on the backside
of the wafer to provide a better thermal link to the stage.

3. Run the recipe `shipblas.rcp'with the following parameters:

• O2 flow (sccm): 20

• Process pressure (mtorr): 15

• Microwave power (watts): 400

• RF power (watts): 20

• Backside helium (torr): 10
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• Chuck temperature (C): 25.0

• Tolerance delay (s): 30

• Processing time (s): 300

4. Unload the sample and clean the vacuum oil off the back side using IPA.

B.2.5 Niobium deposition

Niobium was sputtered in a commercially available AJA ATC series UHV hybrid deposition system.
The base pressure of the system was in the 10−9 − 10−8 torr range. All of the niobium films in this
thesis were deposited using DC sputtering, with the following parameters:

• Ar flow (sccm): 50

• Process pressure (mtorr): 3

• Power (watts): 200

B.2.6 Atomic layer deposition of Al2O3

This a recipe for low-temperature atomic layer deposition ofAl2O3. It was developed for aCambridge
Nanotech Savannah ALD system. It is advisable to wait until the deposition begins before walking
away from the system, tomake sure that pulses are firing normally. Also, the system is set up to record
a screenshot when the recipe finishes.

1. Place awasher onto the center of the stage, and load the sample so that it sits in the center of the
washer. This will prevent the sample from accidentally moving into the outlet of the chamber
during the pump-down. (If you’re feeling lucky, skip the washer.)

2. Pumpout the chamber and run the recipe`AL2O3 50C 50nm'with the following parameters:

142



0 Flow 20

1 Heater 9 50

2 Heater 8 50

3 Stabilize 9

4 Wait 60

5 Pulse 0 0.015

6 Wait 20

7 Pulse 3 0.015

8 Wait 10 10

9 Goto 5 500

10 Wait 10

3. Unload the sample.

B.2.7 Low temperature ebeam lithography

These are instructions for a 100 kV Elionix-7000 system. We have found that exposing HgTe het-
erostructures to standard ebeam doses at 100 kV does not degrade their electronic properties.

1. Spin-coat the sample with PMMA. Spin each layer of PMMA at 4000 RPM for 45 seconds.
After spinning each layer of PMMA, bake the sample at 80 C for 10minutes. For lift-off pro-
cesses, determine howmany layers of PMMA are needed based on the maximum thickness of
material that will be deposited, as follows:

• ≈ 30 nm: one layer of PMMA 950A4.

• ≈ 300 nm: one layer of PMMA 495 C6, followed by one layer of PMMA 950A4.

• For thicker films, add more layers of PMMA 495 C6.

Note that these are just rough guidelines. Also note that PMMA will be etched slightly by
argon milling, typically at a rate of≈ 40 nm/minute for the parameters used in this work.

2. Expose the pattern. Dose: 2700 µC/cm2.

3. Develop inMIBK/IPA (1:3) at 0 C for 1minute.
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C
Cryogenic Apparatus

Themeasurements described in this thesis were carried out using two dilution refrigerators fromOx-
ford Instruments, an MX400 and an MX50. The MX400 was used primarily for measurements in
Chapters 3-5. The MX50, which was retro-fitted with a 6 − 1 − 1 vector magnet, was used for most
of themeasurements in Chapter 6. The wiring and performance of both of these systems have already
been described, by Vivek Venkatachalam in the case of the MX400 [120] and by Mikey Shulman in
the case of the MX50 [109].

Herewewill not reiterate these descriptions, but ratherwill focus on twomodificationsmade to the
MX400 system. These changes are both aimed at allowing control over more than one component of
the external magnetic field. The first change was to construct and install a small magnet which could
be mounted on the end of a cold finger. This small magnet can supply up to≈ 10mT perpendicular
to the sample plane, while a larger magnet surrounding the IVC supplies fields of order 1T parallel to
the sample. This setup allowed us to quickly start investigating the physics presented in Chapter 6.

Amore long-term and flexible (but alsomore costly and initially time-consuming) solution is to use
a vector magnet to individually control each component of the magnetic field. This was the second
change that wemade to theMX400, which is now retrofitted with a 12−3−1 vectormagnet. Below
we will briefly describe the operation of this magnet.
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C.1 Magnet mounted on a cold finger

A quick way to get small amounts of magnetic field (≈ 10 mT) perpendicular to a sample, while
applying large fields (1 T) in-plane, is to wind a small magnet and place it on the end of a cold finger.
To do this properly requires a few considerations. First, the cryostat will have limited cooling power,
so in order to run at base temperature itwill be necessary to use superconductingwire. In order for this
wire to remain superconducting, it will need to bewell-thermalized below its critical temperature, and
the external magnetic field must not exceed the critical field of the wire. Second, with two magnets
oriented perpendicular to one another, there will be a torque on the small magnet that should be
considered.

Figure C.1 depicts our solution to this problem. Copper wires are used from room temperature
until the 4K stage of the cryostat, where solder joints are then used to connect the copper leads to
superconducting wire. For the superconducting wire we used 102 µm-diameter T48B-M wire from
Supercon, Inc. To avoidmaking additional solder joints (which couldbecome resistive sources of heat)
we used one continuous piece of wire from the 4K stage to the micro-magnet. At each stage of the
cryostat, the wires were thermalized by winding around copper spools and securing with GE-varnish
(Figure C.1A-B). At the base of the cold finger, the two superconducting leads feed into the micro-
magnet, which is held in place by the sample stage and actually protrudes through it slightly (Figure
C.1C). This intentional protrusion exists so that the sample, whenmounted on a special sample holder
with a hole (Figure C.1D) is able to lie flush with the end of the magnet.

The magnet itself consists of a 1mm-diameter copper core, 1 cm in length, with 10 layers of wind-
ing for 1000 turns in total. The end of the magnet nearest the sample terminates in a copper cap that
is 200µm thick, in order to position the sample as close as possible to the end of themagnet. Thewire
is held in place on the magnet with Stycast. As specified by Supercon, the critical current of the wire
at 4.2 Kelvin and in an external magnetic field of 3 T is 7 A. We were able to apply 1 A through the
magnet under an external field of 1 T without any problems or heating of the mixing chamber. It is
recommended to zero the current through such a coil before performing a helium transfer.

Using this coil, we were able to get≈ 12mT/A at a distance of≈ 1mm from the end of the coil,
calibrated using the known flux periodicity of a HgTe-based Josephson junction device.

C.2 Vector magnet

Currently, theMX400 is fitted with a 12−3−1 vectormagnet fromOxford instruments. We briefly
describe here the aspects of this magnet which are most relevant for operation.
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Figure C.1:Wiring and thermalization of themicromagnet. At each stage of the dilution refrigerator, the supercon-

ducting wire was wrapped around copper spools and securedwith GE-varnish. (A) Four stages of thermalization occur

from the 1K pot down to themixing chamber. (B)At the 4K plate, there is an additional stage of thermalization. The

wiring consists of one continuous superconducting wire from the 4K stage to themagnet. At the 4K stage, the super-

conducting wire is soldered to copper wires leading to a vacuum feedthrough at the top of the cryostat. (C)At the end

of the cold finger, the sample stage provides 24 sample wires. Themicro-magnet protrudes through themiddle of the
stage. (D)A specialized sample holder allows the back of the sample to lie flush with the end of themicro-magnet. This

maximizes the perpendicular field at the top surface of the sample, for a given current through themicro-magnet.
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C.2.1 Allowed fields

This section lists the three safe parameter ranges available to the magnet. These should also be listed
in the Oxford manual.

1. The maximum field available in the y direction is 1T. It is possible to orient the magnetic field
anywhere within a sphere of radius 1T, centered at the origin.

2. The maximum field available in the x direction is 3 T. It is possible to orient the magnet any-
where within a circle of radius 3T in the xz plane.

3. The maximum field available in the z direction is 12T. Up to 2.5 degree tilt correction is pos-
sible over the full 12T range of the z coil, meaning that it is safe to apply up to 523mT in the
xy plane while the z coil is at 12T.

C.2.2 Driver

Oxford instruments supplies a Labview-based program which can talk to the magnet power supply
and control the field in each direction. When controlling the magnet through Matlab, this Oxford
software acts as an unnecessary middleman and slows down communication. Fortunately, it is also
possible to communicate directly with the power supply, for example via ethernet. A driver written
for this purpose, smcMercury3axisDirect.m, can be found on the Yacoby server.
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