
Modeling, Inference and Optimization With
Composable Differentiable Procedures

Citation
Maclaurin, Dougal. 2016. Modeling, Inference and Optimization With Composable Differentiable
Procedures. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493599

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493599
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Modeling,%20Inference%20and%20Optimization%20With%20Composable%20Differentiable%20Procedures&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=2ee0567612d7ead4d94c466cbd59ca26&departmentPhysics
https://dash.harvard.edu/pages/accessibility

Modeling, Inference and Optimization
with Composable Differentiable

Procedures

a dissertation presented
by

Dougal Maclaurin
to

The Department of Physics

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Physics

Harvard University
Cambridge, Massachusetts

April 2016

©2016 – Dougal Maclaurin
all rights reserved.

Thesis advisor: Professor Ryan Prescott Adams Dougal Maclaurin

Modeling, Inference and Optimization with Composable
Differentiable Procedures

Abstract

This thesis presents five contributions to machine learning, with themes of differen-

tiability and Bayesian inference.

We present Firefly Monte Carlo, an auxiliary variable Markov chain Monte Carlo

algorithm that only queries a potentially small subset of data at each iteration yet

simulates from the exact posterior distribution.

We describe the design and implementation of Autograd, a software package for

efficiently computing derivatives of functions written in Python/Numpy using reverse

accumulation mode differentiation.

Using Autograd, we develop a convolutional neural network that takes arbitrary

graphs, such as organic molecules, as input. This generalizes standard molecular fea-

ture representations and allows end-to-end adaptation of the feature extraction pipeline

to particular tasks.

We show how to compute gradients of cross-validation loss with respect to hyper-

parameters of learning algorithms, with both time and memory efficiency, by chaining

gradients backwards through an exactly reversed optimization procedure.

Finally, by accounting for the entropy destroyed by optimization, we show that early

stopping and ensembling, popular tricks for avoiding overfitting, can be interpreted as

variational Bayesian inference.

iii

Contents

1 Introduction 1

2 Background 4
2.1 Bayesian inference . 4
2.2 Point estimation . 6
2.3 Variational inference . 7
2.4 Markov chain Monte Carlo inference . 9
2.5 Computing gradients in reverse accumulation mode 13

3 Firefly Monte Carlo 20
3.1 Introduction . 21
3.2 Firefly Monte Carlo . 22
3.3 Implementation considerations . 26
3.4 Experiments . 33
3.5 Conclusion . 38

4 Autograd: Automatic Differentiation for Python 41
4.1 Mission and design principles . 42
4.2 Building the computation graph . 44
4.3 Performing the backward pass . 46
4.4 Primitive vector-Jacobian products . 48
4.5 Generalizing to other data types . 50
4.6 Handling all of Python’s syntax . 52
4.7 Limitations and future work . 54
4.8 Conclusion . 56

5 Convolutional Networks on Graphs 58
5.1 Introduction . 59
5.2 Circular fingerprints . 60
5.3 Creating a differentiable fingerprint . 61
5.4 Experiments . 63
5.5 Limitations . 69
5.6 Related work . 71
5.7 Conclusion . 73

iv

6 Hyperparameter Optimization Through Reversible Learning 75
6.1 Introduction . 76
6.2 Hypergradients . 78
6.3 Experiments . 84
6.4 Limitations . 91
6.5 Related work . 95
6.6 Extensions and future work . 96
6.7 Conclusion . 97

7 Early Stopping as Variational Inference 98
7.1 Introduction . 99
7.2 Incomplete optimization as variational inference 102
7.3 The entropy of stochastic gradient descent 104
7.4 Entropy-friendly optimization methods 108
7.5 Experiments . 110
7.6 Limitations . 113
7.7 Related work . 115
7.8 Future work and extensions . 117
7.9 Conclusion . 118

8 Conclusion 119

References 134

v

Acknowledgments

First, a sincere thank you to my advisor, Ryan Adams, for making all of this possible.

Ryan is a daily inspiration as a scientist, engineer and entrepreneur. He has created an

amazing research group and he cares deeply about his students and postdocs. Thanks

for taking a chance on me, believing that I could retool as a computer scientist and

welcoming me into your group. And thanks for seeding the quadcopter plague of summer

2015, even though it devastated our office plants.

Thanks to David Duvenaud, my comrade-in-arms. Almost all of the work in this

thesis was produced as a partnership: pair-programming, pair-writing, pair-cogitating

and pair-throwing-nerf-darts. It was an absolute privilege to have a collaborator with

such intelligence, imagination and energy.

Thanks to Matt Johnson, an early evangelist for Autograd, who responds to users’

issues faster than I can read them. Thanks for patiently teaching me the importance of

linear algebra, and for innumerable computer science gems.

I could wax lyrical about each member of the HIPS group, past and present. You

make MD209 feel like a small slice of paradise. Thanks Mike Gelbart, Scott Linderman,

Andy Miller, Oren Rippel, Yakir Reshef, Alex Wiltschko, Miguel Hernández-Lobato,

Elaine Angelino, Diana Cai, Jasper Snoek, James Zou and Finale Doshi-Velez. Thanks

for the camaraderie and the mind-expanding conversations. Particular thanks to Finale

for taking the helm of machine learning at Harvard this past year.

vi

Thanks to Alán Aspuru-Guzik and the OLED team: Jorge Aguilera-Iparraguirre,

Rafa Gómez-Bombarelli and Tim Hirzel. You have been collaborators of the first order

and wonderful people to get to know.

Thanks to Adam Cohen for taking the time to teach me so much, from optics to elec-

tronics to machining techniques and for sharing your intellectual breadth and intensity

and your indefatigable enthusiasm for science. Thanks to the everyone in the Cohen

Lab and to Veena Venkatachalam in particular, my co-conspirator throughout long days

skewering cells with glass pipettes in the name of photophysics.

Thanks to the Harvard Physics Department, and to Jacob Barandes and Lisa Cac-

ciabaudo in particular, for your kindness and encouragement and for tirelessly working

to help grad students.

Thanks to SAIT, ADI, and the Frank Knox Memorial Fellowship for funding.

Thanks to all of my grad school friends and the Nashton community. Particular

thanks to Miriam Huntley for originally nudging me towards machine learning and

to Noam Prywes for managing that august institution, the Advanced Society for the

Advancement of Advanced Societal Advances. Where else but the ASAASA would I

have learned about mushrooms with refractive, image-forming eyes, and heard first-hand

accounts of hunting for quasicrystals in Eastern Siberia?

Thanks to my parents and sisters, Marianne, Simon, Elspeth and Lydia, for support-

ing me my whole life in everything I do. Most importantly, thank you to my wife, Melis.

Thanks for being my constant companion, for your unwavering love and support, and

for getting high on science with me.

vii

Further Acknowledgements by Chapter

Chapter 3 contains content that has been previously published in:
Maclaurin, D. & Adams, R. P. (2014). Firefly Monte Carlo: Exact MCMC with
subsets of data. In 30th Conference on Uncertainty in Artificial Intelligence.

Chapter 4 contains contributions from David Duvenaud and Matt Johnson.

Chapter 5 contains content that has been previously published in:
Duvenaud*, D., Maclaurin*, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,
Hirzel, T., Aspuru-Guzik, A., & Adams, R. P. (2015). Convolutional networks
on graphs for learning molecular fingerprints. In Neural Information Processing
Systems.

Chapter 6 contains content that has been previously published in:
Maclaurin*, D., Duvenaud*, D., & Adams, R. P. (2015). Gradient-based hy-
perparameter optimization through reversible learning. In 32nd International
Conference on Machine Learning.

Chapter 7 contains content that has been previously published in:
Duvenaud*, D., Maclaurin*, D., & Adams, R. P. (2016). Early stopping as non-
parametric variational inference. In 19th International Conference on Artificial
Intelligence and Statistics.

* denotes equal contribution

viii

1
Introduction

In late 2015, Tesla Motors quietly pushed a software update, “Autopilot”, to its Model

S electric sedans. The update allowed the cars to drive themselves on the highway and

change lanes at the flick of a turn signal. It was made possible by a computer vision

system which used a convolutional neural network, trained on vast amounts of driving

data, to locate lanes and other vehicles from camera images.

Exploiting data to achieve engineering goals like these is the essence of machine

learning, a relatively young field with recent high-profile successes in domains such as

computer vision, speech recognition and the board game Go. This thesis presents five

diverse but interconnected contributions to the field: Firefly Monte Carlo (Chapter

3); Autograd (Chapter 4); Neural Molecular Fingerprints (Chapter 5); gradient-based

1

hyperparameter optimization (Chapter 6); and a reinterpretation of early stopping as

variational inference (Chapter 7).

The common theme linking these chapters is differentiability and the effectiveness

of gradient-based optimization. Autograd is a software tool we wrote for efficiently

computing gradients of functions written in Python. Chapters 5, 6 and 7 use Autograd

for regression on molecules, hyperparameter optimization, and approximate inference

respectively. Although Chapter 3, Firefly Monte Carlo, is not directly concerned with

differentiation, it belongs to a sub-theme of Bayesian inference, along with Chapter 7.

We begin, in Chapter 2, with background material. We introduce two general-purpose

methods for Bayesian inference: Markov chain Monte Carlo (MCMC) and variational

inference. We also describe reverse accumulation mode differentiation, the algorithm

for efficient gradient computation that underpins Autograd.

In Chapter 3 we introduce the Firefly Monte Carlo algorithm. Firefly tackles the

problem of applying MCMC to large data sets, which is usually infeasible because it

ordinarily requires examining every data point at each iteration. Firefly Monte Carlo

only queries a subset of the data at each iteration, yet maintains the true posterior as

its stationary distribution.

Chapter 4 covers the design and implementation of Autograd, an open-source software

package for automatically and efficiently computing gradients of functions written in

Python/Numpy. Autograd allows functions to be written using native Python syntax,

taking advantage of the full expressiveness offered by a modern programming language.

Much of machine learning boils down to writing down a loss function and optimizing

it with gradients. By making the gradient computation effortless, Autograd makes it

easy to rapidly prototype new ideas. It also inspired, and made feasible, the remaining

chapters of this thesis.

2

Chapter 5 tackles the problem of performing regression on graph-structured inputs

such as organic molecules. We take a standard feature representation for molecules,

the Morgan Circular Fingerprint, and make it differentiable. This allows us to learn,

using gradients, a data-driven feature representation tuned to a particular prediction

problem. This project was a collaboration with Alán Aspuru-Guzik’s group in the

Harvard Chemistry Department.

In Chapter 6 we tackle the problem of hyperparameter optimization. Hyperparame-

ters of machine learning algorithms, such as learning rates and regularization parame-

ters, are conventionally tuned using black-box gradient-free optimization of the valida-

tion loss. But, since validation loss is ultimately just a function we’ve expressed as a

computer program (albeit an elaborate one that may involve a lengthy optimization as

an inner loop) we ought to be able to optimize it using gradients computed with Au-

tograd. There is a technical challenge related to memory consumption, which we solve

with “reversible learning”, recomputing the optimization trajectory during the reverse

pass.

This “reversible learning” has interesting connections to entropy. Optimization, as

a many-to-few mapping, is an intrinsically entropy-removing process. Thus, we can’t

perfectly reverse learning unless we account for the entropy removed in the process.

We do this in Chapter 6 with a coding scheme similar to arithmetic coding. But in

Chapter 7, we actually take advantage of this entropy accounting, using it to estimate the

variational free energy of unconverged optimization. This allows us to give a theoretical

account of “early stopping”, a popular and empirically effective trick for preventing

overfitting.

3

2
Background

2.1 Bayesian inference

The Bayesian approach to modeling data treats observed data, D, and model param-

eters, θ, as random variables, and assumes, a priori, a particular joint distribution

p(D, θ), which we usually factorize into a prior, p(θ) and a likelihood, p(D|θ). Inferring

the model parameters is just a matter of conditioning on the data to obtain the pos-

terior distribution p(θ|D). Indeed, Bayes’ celebrated rule is merely a statement about

conditional probabilities:

p(θ|D) =
p(D, θ)

p(D)
=

p(D|θ)p(θ)
p(D)

. (2.1)

4

Bayesian modeling offers conceptual clarity, a principled methodology for model selec-

tion, a generative framework that separates modeling and inference, and well-calibrated

uncertainties for prediction and control. Examples of models include Kalman filters,

hidden Markov models, latent Dirichlet allocation, Gaussian processes, Markov random

fields, probabilistic context-free grammars and many more.

Unfortunately, computing quantities of interest usually requires intractable integrals.

These include expectations under the posterior or predictions about new data marginal-

izing out the model parameters,

Ep(θ|D) [f(θ)] =

∫
dθf(θ)p(θ|D) (2.2)

as well as the marginal likelihood,

p(D) =

∫
dθ p(D, θ) (2.3)

which is required to even evaluate p(θ|D) and is useful in its own right as a tool for

model selection. In special cases, these integrals can have closed-form analytic solu-

tions, and in very low dimensions we can use direct numerical integration (the cost

scales exponentially with dimension [81]) but in general we must resort to posterior

approximation.

The next three sections describe common approaches to posterior approximation: ap-

proximation by a single parameter value (point estimation, Section 2.2), approximation

by tractable distributions (variational inference, Section 2.3), and approximation by

samples generated from a Markov chain (Markov chain Monte Carlo, Section 2.4).

These approximation methods apply to any distribution for which we can evaluate

5

the density (and perhaps gradients) pointwise, up to a multiplicative constant. We’ll

write this unnormalized density as p̃(x) and the normalized density as p(x) = p̃(x)/Z

where Z is the (unknown) normalization constant.

Variational inference and Markov chain Monte Carlo both originated in statistical

physics and it can help to keep the physical interpretation in mind. The canonical

ensemble is the archetypal statistical mechanical system, a distribution over the state,

x, of a system in thermal equilibrium with a heat bath:

p(x) =
1

Z
exp [−E(x)/(kBT)] (2.4)

where E(x) is the energy of the state, T is the temperature, kB is the Boltzmann

constant, and Z is the normalizing constant or partition function. As with Bayesian

inference, we have now a distribution of interest with an unnormalized density that

is easy to evaluate, but a log normalizer, Z, that demands a potentially intractable

integral. In Bayesian modeling we call Z the marginal likelihood; in physics we call it

the partition function. In Bayesian modeling we refer to log p(θ,D) as the unnormalized

log posterior or log joint density; in physics this is just the (negative) energy (we will

usually ignore kBT , although some Bayesian methods, such as annealed importance

sampling, make use of it).

2.2 Point estimation

The simplest possible approximation to the posterior is to use a single point, most

commonly the point of maximum posterior density, knows at the MAP (maximum a

posteriori) estimate. The MAP estimate can be found with conventional optimization

techniques (though non-convexity can make it hard) and it can be a fair approximation,

6

particularly if the posterior is sharply peaked. One common criticism of MAP estimation

is that it is not invariant to reparameterization [63]. It’s worth noting that MAP

inference can be viewed as an instance of variational inference, using a delta function

variational family.

2.3 Variational inference

Another approach is to approximate the intractable distribution p(x) with a tractable

one. Given a family of distributions, qϕ(x), parameterized by ϕ (for example, Gaussians

parameterized by their mean and covariance) and some measure of how well qϕ approx-

imates p, we can frame the problem as an optimization over ϕ. This general approach

is known as variational inference.

A common measure of the goodness of the approximation is the Kullback-Liebler

(KL) divergence from qϕ, the approximating distribution, to p, the true distribution1:

KL (qϕ∥p) = Eqϕ [log qϕ(x)− log p(x)]

= Eqϕ [log qϕ(x)− log p̃(x)] + logZ (2.5)

where the expectation is taken with respect to the tractable distribution qϕ.

Since the KL divergence is always nonnegative, we can rewrite Equation 2.5 as:

logZ ≥ Eqϕ [− log qϕ(x)]︸ ︷︷ ︸
entropy

+Eqϕ [log p̃(x)]︸ ︷︷ ︸
-energy

(2.6)

≡ L(ϕ)

1 We don’t use the other KL divergence, KL (p∥qϕ), because evaluating it requires computing
an expectation with respect to p, which is exactly the hard task we are trying to solve.

7

where L is known as the variational lower bound. It is a lower bound on the normalizer,

or marginal likelihood, Z. Maximizing this lower bound with respect to ϕ amounts to

minimizing KL (qϕ∥p) and thus optimizes the quality of qϕ as a posterior approximation.

As a bonus, we can use the value of L as an approximation to the marginal likelihood

for other purposes such as model selection.

Notice that L consists of an energy-like term and an entropy-like term, as labeled in

Equation 2.6. Maximizing the (negative) energy term encourages qϕ to put its prob-

ability mass in regions of high log p̃ (i.e., low energy), while maximizing the entropy

term encourages qϕ to spread out its mass. Combined, the two terms behave like the

Helmholtz free energy, trading off entropy and energy. In statistical physics, the quan-

tity L is known as the (negative) variational free energy.

How we actually approach the minimization depends on the structure of q. A very

general approach, known as black-box stochastic variational inference (BBSVI) [55]

requires only that we be able to sample from q and evaluate its log-density. We can

then make a Monte Carlo2 estimate of the expectations in Equation 2.6 using samples

from q.

L(ϕ) ≈ log qϕ(x)− log p̃(x), x ∼ qϕ (2.7)

In principle, having access to unbiased estimates of L(ϕ) is sufficient, but having access

to unbiased estimates of the gradient ∇ϕL is extremely helpful, allowing us to use

stochastic gradient optimizers.

To obtain gradients, we need to differentiate through a procedure for sampling from

qϕ. One approach is to sample from q by warping (in a ϕ-dependent way) a sample
2Not to be confused with Markov chain Monte Carlo, described in the next section.

8

drawn from a fixed distribution, q0:

x = T (ϕ, z), z ∼ q0 (2.8)

⇒ L(ϕ) ≈ log qϕ(T (ϕ, z))− log p̃(T (ϕ, z)) (2.9)

For example, if q is a Gaussian parameterized by its mean and covariance matrix, we

can sample from q by drawing a sample from a standard normal, multiplying by the

Cholesky decomposition (or other matrix square root) of the covariance matrix and

adding the mean.

The performance of variational inference depends on the flexibility of the model class,

qϕ, and how well it is able to approximate p. Figure 2.1 shows variational approximations

with different approximating families.

Variational inference has a long history in statistical physics. Mean field theories (fac-

tored approximations) are the classic example (see any statistical mechanics textbook,

e.g. Pathria & Beale [76]), and these go back to Pierre Curie’s theories on ferromag-

netism in the late 19th century. The usual reference for variational inference in machine

learning is Wainwright & Jordan [109]. For a very recent review, see Blei et al. [15].

The more general “black-box” variational inference approach treated here was intro-

duced surprisingly recently, by Ranganath et al. [83] and Kucukelbir et al. [55].

2.4 Markov chain Monte Carlo inference

Markov chain Monte Carlo (MCMC) is a general procedure for generating approximate

samples from a distribution. Given a distribution of interest, p(x), the idea of MCMC

is to generate a chain of states, {x1, x2, ...}, such that the distribution of xt converges to

p as t becomes large. The chain satisfies the Markov property: each state only depends

9

(a) Symmetric Gaussian
(b) Symmetric

Gaussian mixture
(c) General

Gaussian mixture

(d) Metropolis-Hastings (e) Langevin Dynamics (f) Slice Sampling

Figure 2.1: Illustration of posterior approximation methods. Top row: Variational inference, with
approximating distributions consisting of (a) a symmetric Gaussian parameterized by its mean and
scale (b) a mixture of two symmetric Gaussians, parameterized by their means and scales (c) a
mixture of two general Gaussians, parameterized by means and covariance matrices. In this final
case we obtain a near-perfect fit, since the target distribution is contained within the class of ap-
proximations. (We used a stochastic optimizer so the fit isn’t truly perfect.) Bottom row: MCMC
using (d) Metropolis-Hastings with Gaussian proposals, (e) Metropolis-adjusted Langevin algorithm
and (f) slice sampling. Notice that the algorithms differ in their behavior during burn-in and in
mixing between the two modes.

on the previous one and not on the rest of the prior history. We can characterize the

chain by its transition probability desnsity, T (x′;x), the probability (per unit volume)

10

of transitioning to a new state x′, conditioned on the current state x. There are two

conditions which together are sufficient to ensure that xt converges to p. The first is

that p is an invariant, or stationary, distribution of T . That is:

∫
dxt p(xt)T (xt+1;xt) = p(xt+1). (2.10)

The second condition is that the chain is ergodic, which roughly means that the entire

state space is accessible to the chain. See Meyn & Tweedie [68] for more details.

Since integrating over state space as in Equation 2.10 is often intractable (that’s why

we’re doing MCMC in the first place) we usually prove that p is an invariant distribution

of T by satisfying the stronger condition of detailed balance:

T (xb;xa)p(xa) = T (xa;xb)p(xb) (2.11)

for all xa, xb. That is, when x is distributed according to p and the transition operator

T is applied, the number of states transitioning from (a differential region around) xa to

(a differential region around) xb is the same as the number going the other way, from xb

to xa. Thus the distribution of states remains the same. We now look at some popular

transition kernels, illustrated in Figure 2.1.

The Metropolis-Hastings [67, 38] transition operator uses a proposal distribution,

q(x′;x), (for example, a Gaussian with mean x) to propose a new state x′ given a

current state x. In order to satisfy detailed balance, the proposal may be rejected, with

rejection probability

preject = 1−min
{
p(x′)q(x;x′)

p(x)q(x′;x)
, 1

}
. (2.12)

11

Since the proposal distribution knows nothing about the target distribution, p, Metropolis-

Hastings MCMC tends to lead to slow diffusion and long mixing times.

The slice sampling [72] transition operator works by introducing an auxiliary random

variable, z ∈ R+, which augments the state space to give a new target distribution:

p(z, x) = p(z|x)p(x), where z ∼ Uniform(0, p(x)) (2.13)

Introducing z does not affect the marginal distribution of x, so if we draw samples from

this new augmented distribution and ignore the zs, we will have samples of x from

p(x) as we require. This auxiliary variable trick is very common in designing MCMC

algorithms, and we use it to develop the Firefly Monte Carlo algorithm in Chapter 3.

In this augmented space, we proceed by alternately sampling z from p(z|x) and x from

p(x|z). Thanks to our choice of conditional p(z|x), the conditional distribution of x is

the uniform distribution over the set of points where p(x) > z, which is easy to sample

from along a particular direction, although it requires a few additional tricks.

The Hamiltonian Monte Carlo [24, 63] algorithm (HMC) draws inspiration from

Hamiltonian mechanics. The transition kernel simulates the dynamics of a massive

particle with potential energy log p(x). As with slice sampling, we introduce an auxiliary

variable, z, which plays the role of momentum. z has the same number of dimensions

as x and has a standard Gaussian distribution, independent of x. Perfect simulation

of Hamiltonian dynamics leaves p(x, z) invariant but it is not ergodic, since the total

energy (kinetic plus potential) never changes. To make a valid MCMC algorithm we

could simulate Hamiltonian dynamics for a fixed length of time, then resample the

momentum variables (analogous to equilibrating velocities with the thermal bath). Of

course, in practice, perfect simulation is impossible. Instead, we simulate approximately

12

by numerically integrating Hamilton’s equations. We use the leapfrog integrator because

it is symmetric and symplectic and we correct for any changes in total energy using an

accept-reject step in the spirit of the Metropolis-Hastings algorithm. The special case

of HMC with only one leapfrog step is known as the Metropolis-Adjusted Langevin

algorithm [88, 91]. It describes dynamics dominated by friction rather than inertia and

its transition operator looks like gradient descent with added noise.

In contrast to the Victorian origins of variational inference, MCMC wasn’t developed

until the second half of the 20th century. Sampling-based methods require substantial

computational resources and it’s no coincidence that the physicist credited with invent-

ing MCMC, Nicholas Metropolis, also designed and built the MANIAC machine at Los

Alamos, one of the earliest electronic (rather than electromechanical) computers [3].

Metropolis’ 1953 algorithm computed the integrals required for calculating equations of

state from two-body interaction potentials. Decades later, Gelfand & Smith [31] pop-

ularized MCMC for Bayesian inference and it has been a popular tool in statistics and

machine learning ever since [87].

2.5 Computing gradients in reverse accumulation mode

Continuous optimization and inference problems become far easier if we have access to

the gradient of the objective function or log probability. This is particularly true for

functions in high dimensions, RD → R, since each gradient evaluation is equivalent to

making D additional function evaluations. With the right evaluation strategy, gradients

can be very cheap to compute: the time cost is only a small constant factor more than

the cost of evaluating the function itself. In this section, we explain this evaluation

strategy, known as reverse (accumulation) mode differentiation or, in the neural network

community, backpropagation.

13

Given a vector-to-scalar function, RD → R, composed of a set of primitive functions

RM → RN (for various M , N) with known Jacobians, the gradient of the composition

is given by the product of the Jacobians of the primitive functions, according to the

chain rule3. But the chain rule doesn’t prescribe the order in which to multiply the

Jacobians. From the perspective of computational complexity, the order makes all the

difference.

To be concrete, consider F : RD → R defined as the composition of four primitive

functions, F = D ◦ C ◦ B ◦ A. We break the function down so that we can refer to

intermediate values:

F (x) = y
(
x ∈ RD, y ∈ R

)
where y = D(c), c = C(b), b = B(a), a = A(x) (2.14)

The gradient (or Jacobian4) of F , F ′, is then given by

F ′(x) =
∂y

∂x

where ∂y

∂x
=

∂y

∂c

∂c

∂b

∂b

∂a

∂a

∂x
(2.15)

∂y

∂c
= D′(c),

∂c

∂b
= C ′(b),

∂b

∂a
= B′(a),

∂a

∂x
= A′(x) (2.16)

where A′, B′, C ′ and D′ are functions that compute the Jacobians of A, B, C, and D.

We will always use x ∈ RD as the input and y ∈ R as the output. Note that y is a
3 Why don’t we mention the product and quotient rules? These rules are just definitions of

the derivatives of “multiply” and “divide”. Besides having a different arity, these functions are
in the same category as other primitives like “sin” and “exp”. The chain rule stands apart. It
relates to “compose”, which is a higher-order function, taking functions as input and returning
a new function as output.

4 We’ll use “Jacobian” and “gradient” interchangeably for functions RD → R, which means
treating the gradient as a row vector. This is a nonstandard convention.

14

scalar while x is a (possibly enormous) vector.

Since matrix multiplication is associative, we can evaluate the product of Jacobians in

Equation 2.15 in any order we choose. Evaluation starting from the left, we call “reverse

accumulation mode”; evaluation starting from the right, we call “forward accumulation

mode”:

∂y

∂x
=

∂y

∂c

(
∂c

∂b

(
∂b

∂a

∂a

∂x

)
︸ ︷︷ ︸

∂b
∂x

=

∂b1
∂x1

. . . ∂b1
∂xD

...
∂bN
∂x1

. . . ∂bN
∂xD

)
Forward accumulation mode (2.17)

∂y

∂x
=

((
∂y

∂c

∂c

∂b

)
︸ ︷︷ ︸

∂y
∂b

=

[
∂y
∂b1

. . . ∂y
∂bN

]
∂b

∂a

)
∂a

∂x
Reverse accumulation mode (2.18)

Notice the dramatic difference in the size of the intermediate values computed. In

forward mode, these are Jacobians like ∂b
∂x . Since x ∈ RD is a vector, this contains D

times as many entries as the corresponding value b. In reverse mode, we compute values

like ∂y
∂b . Since y ∈ R is a scalar, this contains only as many values as b.

Reverse mode is therefore the more efficient way to evaluate the gradient of a vector-

to-scalar function, once we’ve evaluated the primitive Jacobians A′(x), B′(a), C ′(b),

and D′(c). But we can do even better: we don’t even need to evaluate the primitive

Jacobians in the first place. The Jacobians are often extremely sparse and we only ever

use them in matrix products. Matrices, after all, are just representations of linear maps,

15

so rather than instantiate them, we can just directly implement functions that apply

the linear maps. That is, for each primitive function, A : RM → RN , with Jacobian

A′ : RM → RN×M we can define the left-multiplying Jacobian-vector product function

(JVP), JA : RM → (RM → RN) as (currying5)

JA(x,g) = A′(x)g (2.19)

and the right-multiplying vector-Jacobian product function (VJP), JT
A : RM → (RN →

RM) as

JT
A (x,g) = gA′(x) (2.20)

As an example, consider a function that squares a vector elementwise:

ElemSquare(x) = x⊙ x (2.21)

where we’ve used the symbol ⊙ to denote elementwise multiplication. ElemSquare has

a very sparse Jacobian: it’s just a matrix with 2x on the diagonal and zeros elsewhere.

The VJP function is given by

JT
ElemSquare(x,g) = 2g ⊙ x (2.22)

Since the Jacobian is symmetric, the left-multiplying JVP function JElemSquare is the

same.
5 Currying (after Haskell Curry) means we formally only allow functions of a single argu-

ment and we simulate multi-argument functions using functions that return functions. Thus,
a function with signature F : X → (Y → Z) can be applied like z = F (x)(y) (where x ∈ X,
y ∈ Y , z ∈ Z). We usually drop the internal parens for convenience, writing just z = F (x, y).

16

Forward accumulation mode differentiation

x A a B b C y

1
0
...
0

 JA
∂a
∂x1

JB
∂b
∂x1

JC
∂y
∂x

0
1
...
0

 JA
∂a
∂x2

JB
∂b
∂x2

JC

...
0
0
...
1

 JA
∂a
∂xD

JB
∂b
∂xD

JC

Reverse accumulation mode differentiation

x A a B b C y

∂y
∂x JT

A
∂y
∂a JT

B
∂y
∂b JT

C 1

Figure 2.2: Illustration of the difference between forward- and reverse-mode differentiation of a
composite function F : RD → R, F = C ◦ B ◦ A. Forward-mode accumulates values such as
∂a
∂x , ∂b

∂x , Jacobians of each of the intermediate variables with respect to the input, x. It does this
by left-multiplying the previous step’s accumulated Jacobian by the current primitive Jacobian.
Reverse-mode works by multiplying Jacobians in the other direction. It accumulates values such as
∂y
∂a , ∂y

∂b , Jacobians of the output, y, with respect to each of the intermediate variables, by right-
multiplying the previous step’s accumulated Jacobian by the current primitive Jacobian. If y ∈ R
and x ∈ RD, with D large, the values accumulated in reverse-mode are a factor of D smaller and
the computation is far more efficient.

We can now implement both forward and reverse mode differentiation by chaining

JVPs, as shown in Figure 2.2. In forward mode, we apply a JVP for each input dimension

17

at each step, whereas in reverse mode we only apply a VJP once at each step. Evaluating

a JVP or a VJP is usually only a small constant factor (1 - 3) slower than evaluating

the primitive function itself6.

Forward mode differentiation is therefore a factor of D (where x ∈ RD) slower than

reverse-mode differentiation, and reverse-mode differentiation is only a small constant

factor slower than evaluating the composite function itself. It should be noted that

reverse mode differentiation has one major drawback: since we must do a complete

forward pass to compute the intermediate values before applying the JVPs on the reverse

pass, we need to store all the intermediate values in memory. This can sometimes be

prohibitive, as we will discover in Chapter 6.

We have described how to use reverse accumulation mode differentiation to efficiently

compute the gradient of a composed chain of primitive functions, but in general, a com-

posite function can be described as a directed acyclic graph of primitive functions.

Luckily, the strategy for chains generalizes quite straightforwardly to graphs. As with

chains, we do a complete forward pass to evaluate the function, storing all the interme-

diate values. Then we traverse the graph in reverse, applying Jacobian-vector products

to compute ∂y
∂z for each intermediate value z.

There are additional cases we need to handle which don’t arise with chain compo-

sition: “fan-out”, in which a value is used more than once, and “fan-in”, in which a

function takes multiple inputs. We handle fan-in by defining Jacobian-vector product

functions for each of the function’s arguments. We handle fan-out, reuse of a variable
6 This is not an absolute law, but we have not found any violations in practice. It holds for

the usual scalar primitives, things like arithmetic operations and trigonometric functions. In the
implementation of Autograd (see Chapter 4) we treat higher-level functions as primitive too,
functions like matrix multiplication or even Cholesky decomposition. But, since these can be
expressed in terms of lower-level primitives, we can always use hand-coded forward- or reverse-
mode differentiation to implement their JVP and VJP functions respectively in terms of the
JVPs and VJPs of the underlying primitives.

18

z, by computing ∂y
∂z

(i) for each branch, i, that makes use of z and summing the results

to yield the complete ∂y
∂z . This puts a constraint on the order in which the graph is

traversed, since all the ∂y
∂z

(i) must be available before continuing. Both these cases are

illustrated in Figure 2.3.

Reverse mode differentiation has been independently discovered many times in var-

ious quantitative fields [9], and even several times within machine learning [114]. The

most famous (re)invention of “backpropagation” is Rumelhart et al. [93]. My own un-

derstanding has been shaped heavily by the work of Pearlmutter and Siskind, e.g. [79].

A a

· · · z C c · · ·

B b

∂y
∂z

(1)
JT
A

∂y
∂a JT

C(1)

· · · ∂y
∂z +

∂y
∂c · · ·

∂y
∂z

(2)
JT
B

∂y
∂b JT

C(2)

Figure 2.3: Illustration of reverse accumulation mode for a computation graph, showing how to
handle fan-out (reuse of the value z) and fan-in (the two arguments feeding into function C).

19

3
Firefly Monte Carlo

In this chapter, we present Firefly Monte Carlo (Firefly), an auxiliary variable MCMC

algorithm that only queries the likelihoods of a potentially small subset of the data at

each iteration yet simulates from the exact posterior distribution. Firefly is compatible

with a wide variety of modern MCMC algorithms, and only requires a lower bound on

the per-datum likelihood factors. In experiments, we find that Firefly generates samples

from the posterior more than an order of magnitude faster than regular MCMC, opening

up MCMC methods to larger datasets than were previously considered feasible.

This chapter presents work with with Ryan P. Adams. It appeared at UAI 2014 [64]

where it won best paper.

20

3.1 Introduction

A common criticism of MCMC for Bayesian inference is that is doesn’t scale well to

large data sets. The algorithms described in Chapter 2 require evaluating the complete

unnormalized posterior at each iteration, which will usually involve inspecting every

datum that contributes to the likelihood. This is in contrast to optimization, where

people commonly use stochastic gradient methods, which use a subsample of the data

to estimate the gradient.

Recent work has shown that approximate transition operators based on subsets of

data can be used for predictive prefetching to help parallelize MCMC [5]. Other work

uses approximate transition operators directly, for Metropolis-Hastings (MH) and re-

lated algorithms [113]. Korattikara et al. [52] and Bardenet et al. [7] have shown that

such approximate MH moves can lead to stationary distributions which are approximate

but that have bounded error, albeit under strong conditions of rapid mixing.

The Firefly Monte Carlo (Firefly) algorithm is in line with these latter efforts to ex-

ploit subsets of data to construct transition operators. What distinguishes the approach

we present here, however, is that this new MCMC procedure is exact in the sense that

it leaves the true full-data posterior distribution invariant. Firefly is a latent variable

model which introduces a collection of Bernoulli variables - one for each datum – with

conditional distributions chosen so that they effectively turn on and off data points in

the posterior, hence “firefly”. The introduction of these latent variables does not alter

the marginal distribution of the parameters of interest. Our only requirement is that it

be possible to provide a “collapsible” lower bound for each likelihood term. Firefly can

lead to dramatic performance improvements in MCMC, as measured in wallclock time.

21

3.2 Firefly Monte Carlo

The Firefly Monte Carlo algorithm tackles the problem of sampling from the posterior

distribution of a probabilistic model. We will denote the parameters of interest as θ and

assume that they have prior p(θ). We assume that N data have been observed {xn}Nn=1

and that these data are conditionally independent given θ under a likelihood p(xn | θ).

Our target distribution is therefore

p(θ |{xn}Nn=1) ∝ p(θ, {xn}Nn=1) = p(θ)
N∏

n=1

p(xn|θ). (3.1)

For notational convenience, we will write the nth likelihood factor as a function of θ as

Ln(θ) = p(xn | θ) .

An MCMC sampler makes transitions from a given θ to a new θ′ such that posterior

distribution remains invariant. Conventional algorithms, such as Metropolis–Hastings,

require evaluation of the unnormalized posterior in full at every iteration. When the

data set is large, evaluating all N likelihoods is a computational bottleneck. This is the

problem that we seek to solve with Firefly.

For each data point, n, we introduce a binary auxiliary variable, zn ∈ {0, 1}, and a

functionBn(θ) which is a strictly positive lower bound on the nth likelihood: 0 < Bn(θ) ≤ Ln(θ).

Each zn has the following Bernoulli distribution conditioned on the parameters:

p(zn |xn, θ) =
[
Ln(θ)−Bn(θ)

Ln(θ)

]zn [Bn(θ)

Ln(θ)

]1−zn

.

22

We now augment the posterior distribution with these N variables:

p(θ, {zn}Nn=1 | {xn}Nn=1) ∝ p(θ, {xn, zn}Nn=1)

= p(θ)
N∏

n=1

p(xn | θ) p(zn |xn, θ) .

As in other auxiliary variable methods such as slice sampling, Swendsen-Wang, or Hamil-

tonian Monte Carlo, augmenting the joint distribution in this way does not damage the

original marginal distribution of interest:

∑
z1

· · ·
∑
zN

p(θ)

N∏
n=1

p(xn | θ) p(zn |xn, θ)

= p(θ)

N∏
n=1

p(xn | θ)
∑
zn

p(zn |xn, θ)

= p(θ)

N∏
n=1

p(xn | θ).

However, this joint distribution has a remarkable property: to evaluate the probabil-

ity density over θ, given a particular configuration of {zn}Nn=1, it is only necessary to

evaluate those likelihood terms for which zn = 1. Consider factor n from the product

above:

p(xn | θ)p(zn |xn, θ)

= Ln(θ)

[
Ln(θ)−Bn(θ)

Ln(θ)

]zn [Bn(θ)

Ln(θ)

]1−zn

=

Ln(θ)−Bn(θ) if zn = 1

Bn(θ) if zn = 0

.

23

The “true” likelihood term Ln(θ) only appears in those factors for which zn = 1 and

we can think of these data as forming a “minibatch” subsample of the full set. If

most zn = 0, then transition updates for the parameters will be much cheaper, as these

are applied to p(θ | {xn, zn}Nn=1).

Of course, we do have to evaluate all N bounds Bn(θ) at each iteration. At first

glance, we seem to have just shifted the computational burden from evaluating the

Ln(θ) to evaluating the Bn(θ). However, if we choose Bn(θ) to have a convenient form,

a scaled Gaussian or other exponential family distribution, for example, then the full

product
∏N

n=1Bn(θ) can be computed for each new θ in O(1) time using the sufficient

statistics of the distribution, which only need to be computed once. To make this

clearer, we can rearrange the joint distribution in terms of a “pseudo-prior,” p̃(θ) and

“pseudo-likelihood,” L̃n(θ) as follows:

p(θ, {zn}Nn=1 | {xn}Nn=1) ∝ p̃(θ)
∏

n:zn=1

L̃n(θ) (3.2)

where the product only runs over those n for which zn = 1, and we have defined

p̃(θ) = p(θ)

N∏
n=1

Bn(θ) L̃n(θ) =
Ln(θ)−Bn(θ)

Bn(θ)
.

We can generate a Markov chain for the joint distribution in (3.2) by alternating

between updates of θ conditional on {zn}Nn=1, which can be done with any conventional

MCMC algorithm, and updates of {zn}Nn=1 conditional on θ for which we discuss efficient

methods in Section 3.3.2. We emphasize that the marginal distribution over θ is still

the correct posterior distribution given in (3.1).

At a given iteration, the zn = 0 data points are “dark”: we simulate the Markov chain

24

Figure 3.1: Illustration of the auxiliary variable representation of a single likelihood for a one-
dimensional logistic regression model. The top panel shows how the likelihood function, Ln(θ),
corresponding to a single datum n, can be partitioned into two parts: a lower bound, Bn(θ),
shaded blue, and the remainder, shaded orange. The bottom panel shows that we can intro-
duce a Bernoulli random variable zn and construct a Markov chain in this new, higher dimen-
sional space, such that marginalizing out (i.e. ignoring) the zn recovers the original likelihood.
If Bn(θ) ≫ Ln(θ) − Bn(θ), the Markov chain will tend to occupy zn = 0 and we can avoid
evaluating Ln(θ) at each iteration.

without computing their likelihoods. Upon a Markov transition in the space of {zn}Nn=1,

a smattering of these dark data points become “bright” with their zn = 1, and we include

their likelihoods in subsequent iterations. The evolution of the chain evokes an image

of fireflies, as the individual data blink on and off due to updates of the zn.

The details of choosing a lower bound and efficiently sampling the {zn} are treated in

the proceeding sections, but the high-level picture is now complete. Figure 3.1 illustrates

the augmented space, and a simple version of the algorithm is shown in Algorithm 1.

Figure 3.2 shows several steps of Firefly Monte Carlo on a toy logistic regression model.

25

3.3 Implementation considerations

In this section we discuss two important practical matters for implementing an effective

Firefly algorithm: how to choose and compute lower bounds, and how to sample the

brightness variables zn. For this discussion we will assume that we are dealing with a

data set consisting of N data points, and a parameter set, θ, of dimension D ≪ N . We

will also assume that it takes at least O(ND) time to evaluate the likelihoods at some θ

for the whole data set and that evaluating this set of likelihoods at each iteration is the

computational bottleneck for MCMC. We will mostly assume that space is not an issue:

we can hold the full data set in memory and we can afford additional data structures

occupying a few bytes for each of the N data.

The goal of an effective implementation of Firefly is to construct a Markov chain

with similar convergence and mixing properties to that of regular MCMC, while only

evaluating a subset of the data points on average at each iteration. If the average

number of “bright” data points is M , we would like this to achieve a computational

speedup of nearly N/M over regular MCMC.

3.3.1 Choosing a lower bound

The lower bounds, Bn(θ) of each data point’s likelihood Ln(θ) should satisfy two prop-

erties. They should be relatively tight, and it should be possible to efficiently summarize

a product of lower bounds
∏

nBn(θ) in a way that (after setup) can be evaluated in

time independent of N .

The tightness of the bounds is important because it determines the number of bright

data points at each iteration, which determines the time it takes to evaluate the joint

26

posterior. For a burned-in chain, the average number of bright data points, M , will be:

M =

N∑
n=1

⟨zn⟩ =
N∑

n=1

∫
p(θ | {xn}Nn=1)

Ln(θ)−Bn(θ)

Ln(θ)
dθ .

Therefore it is important that the bounds are tight at values of θ where the posterior

puts the bulk of its mass.

Figure 3.2: Illustration of the Firefly algorithm operating on a logistic regression model of a toy
synthetic data set, a two-class classification problem in two dimensions (and one bias dimension).
The top panel shows a single iteration of Firefly, from t = 3 to t = 4, which consists of two steps:
first we sample θ, represented by the line of equal class probability. Next we sample the zn. In this
case, we see one ‘bright’ (solid) data point become dark. The bottom panel shows the trajectories
of all components of θ and z.

27

The second important property is that the product of the lower bounds must be easy

to compute and represent. This property emerges naturally if we use scaled exponential-

family lower bounds so that their product can be summarized via a set of sufficient

statistics. We should also mention that the individual bounds Bn(θ) should be easy to

compute themselves, since these are computed alongside Ln(θ) for all the bright points

at each iteration. In all the examples considered in this chapter, the rate-limiting

step in computing either Ln(θ) or Bn(θ) is the evaluation of the dot product of a

feature vector with a vector of weights. Once we have computed Ln(θ) the extra cost

of computing Bn(θ) is negligible.

At this stage it is useful to consider a concrete example. The logistic regression

likelihood is

Ln(θ) = logit−1(tnθ
Txn) =

1

1 + exp{−tnθTxn}
,

where xn ∈ RD is the set of features for the nth data point and tn ∈ {−1, 1} is its

class. The logistic function has a family of scaled Gaussian lower bounds, described in

Jaakkola & Jordan [46], parameterized by ξ, the location at which the bound is tight:

log(Bn(θ)) = a(tnθ
Txn)

2 + b(tnθ
Txn) + c

where:

a =
−1
4ξ

(
eξ − 1

eξ + 1

)
b =

1

2

c = −a ∗ ξ2 + ξ

2
− log

(
eξ + 1

)
.

This is the bound shown in Fig. 3.1. The product of these bounds can be computed

for a given θ in O(D2) time, provided we have precomputed the moments of the data,

28

Algorithm 1 Firefly Monte Carlo
Note: Using simple random-walk MH for clarity.
1: θ0 ∼ InitialDist ▷ Initialize the Markov chain state.
2: for i← 1 . . . Iters ▷ Iterate the Markov chain.
3: for j ← 1 . . . ⌈N ×ResampleFraction⌉
4: n ∼ RandInteger(1, N) ▷ Select a random data point.
5: zn ∼ Bernoulli(1−Bn(θi−1)/Ln(θi−1)) ▷ Biased coin-flip to determine

whether n is bright or dark.
6: end for
7: θ′ ← θi−1 + η where η ∼ Normal(0, ϵ2ID) ▷ Make a random walk proposal

with step size ϵ.
8: u ∼ Uniform(0, 1) ▷ Draw the MH threshold.

9: if JointPosterior(θ′ ; {zn}Nn=1)

JointPosterior(θ ; {zn}Nn=1)
> u ▷ Evaluate MH ratio

conditioned on auxiliary variables.
10: θi ← θ′ ▷ Accept proposal.
11: else
12: θi ← θi−1 ▷ Reject proposal and keep current state.
13: end if
14: end for
15:
16: function JointPosterior(θ ; {zn}Nn=1) ▷ Modified posterior that

conditions on auxiliary variables.
17: P ← p(θ)×

∏N
n=1 Bn(θ) ▷ Evaluate prior and bounds. Collapse of bound

product not shown.
18: for each n for which zn = 1 ▷ Loop over bright data only.
19: P ← P × (Ln(θ)/Bn(θ)− 1) ▷ Include bound-corrected factor.
20: end for
21: return P
22: end function

at a one-time setup cost of O(ND2):

1

N
log

N∏
n=1

Bn(θ) = aθT Ŝθ + bθT µ̂+ c

29

where

Ŝ =
1

N

N∑
n=1

xnx
T
n µ̂ =

1

N

N∑
n=1

tnxn .

This bound can be quite tight. For example, if we choose ξ = 1.5 the probability of

a data point being bright is less than 0.02 in the region where 0.1 < Ln(θ) < 0.9. With

a bit of up-front work, we can do even better than this by choosing bounds that are

tight in the right places. For example, we can perform a quick optimization to find an

approximate maximum a posteriori (MAP) value of θ and construct the bounds to be

tight there. We explore this idea further in Section 3.4.

3.3.2 Sampling and handling the auxiliary brightness variables

The resampling of the zn variables, as shown in lines 3 to 6 of Algorithm 1, takes a step

by explicitly sampling zn from its conditional distribution for a random fixed-size subset

of the data. We call this approach explicit resampling and it has a clear drawback: if

the fixed fraction is α (shown as ResampleFraction in Algorithm 1), then the chain

cannot have a mixing time faster than 1/α, as each data point is only visited a fraction

of the time.

Nevertheless, explicit resampling works well in practice since the bottleneck for mixing

is usually the exploration of the space of θ, not space of zn. Explicit resampling has the

benefit of being a simple, low-overhead algorithm that is easy to vectorize for speed.The

variant shown in Algorithm 1 is the simplest: data points are chosen at random, with

replacement. We could also sample without replacement but this is slightly harder to

do efficiently. Another variant would be to deterministically choose a subset from which

to Gibbs sample at each iteration. This is more in line with the traditional approach

30

of stochastic gradient descent optimization. Such an approach may be appropriate for

data sets which are too large to fit into memory, since we would no longer need random

access to all data points. The resulting Markov chain would be non-reversible, but still

satisfy stationarity conditions.

Explicitly sampling a subset of the zn seems wasteful if M ≪ N , since most up-

dates to zn will leave it unchanged. We can do better by drawing each update for zn

from a pair of tunable Bernoulli proposal distributions q(z′n = 1 | zn = 0) = qd→b and

q(z′n = 0 | zn = 1) = qb→d, and then performing a Metropolis–Hastings accept/reject step

with the true auxiliary probability p(zn |xn, θ). This proposal can be efficiently made

for each data point, but it is only necessary to evaluate p(zn |xn, θ) – and therefore the

likelihood function – for the subset of data points which are proposed to change state.

That is, if a sample from the proposal distribution sends zn = 0 to zn = 0 then it doesn’t

matter whether we accept or reject. If we use samples from a geometric distribution

to choose the data points, it is not even necessary to explicitly sample all of the N

proposals.

The probabilities qb→d and qd→b can be tuned as hyperparameters. If they are larger

than p(zn = 0 |xn, θ) and p(zn = 1 |xn, θ) respectively, then we obtain near-perfect

Gibbs sampling. But larger values also require more likelihood evaluations per iteration.

Since the likelihoods of the bright data points have already been evaluated in the course

of the Markov step in θ we can reuse these values and set qb→d = 1, leaving qd→b as

the only hyperparameter, which we can set to something like M/N . The resulting

algorithm, which we call implicit resampling, is shown as Algorithm 2.

31

Algorithm 2 Implicit zn sampling
1: for n← 1 . . . N ▷ Loop over all the auxiliary variables.
2: if zn = 1 ▷ If currently bright, propose going dark.
3: u ∼ Uniform(0, 1) ▷ Sample the MH threshold.
4: if qd→b

L̃n(θ)
> u ▷ Compute MH ratio with L̃n(θ) cached from θ update.

5: zn ← 0 ▷ Flip from bright to dark.
6: end if
7: else ▷ Already dark, consider proposing to go bright.
8: if v < qd→b where v ∼ Uniform(0, 1) ▷ Flip a biased coin with

probability qd→b.
9: u ∼ Uniform(0, 1) ▷ Sample the MH threshold.

10: if L̃n(θ)

qd→b

< u ▷ Compute MH ratio.
11: zn ← 1 ▷ Flip from dark to bright.
12: end if
13: end if
14: end if
15: end for

3.3.3 Data structure for brightness variables

In the algorithms shown so far, we have aimed to construct a valid Markov chain while

minimizing the number of likelihood evaluations, on the (reasonable) assumption that

likelihood evaluations dominate the computational cost. However, the algorithms pre-

sented do have some steps which appear to scale linearly with N , even when M is

constant. These are steps such as “loop over the bright data points” which takes time

linear in N . With a well-chosen data structure for storing the variables zn, we can

ensure that these operations only scale with M .

The data structure needs to store the values of zn for all n from 1 to N , and it needs

to support the following methods in O(1) time:

32

• Brighten(n) : Set zn = 1

• ithBright(i) : Return n, the ith bright data point (in some arbitrary ordering).

We similarly require Darken and ithDark. The data structure should also keep track

of how many bright data points there are.

To achieve this, we use the cache-like data structure shown in Figure 3.3. We store

two arrays of length N . The first is z.arr, which contains a single copy of each of

the indices n from 1 to N . All of the bright indices appear before the dark indices.

A variable z.B keeps track of how many bright indices there are, and thus where the

bright-dark transition occurs. In order to also achieve O(1) assignment of indices, we

also maintain a direct lookup table z.tab whose nth entry records the position in array

z.arr where n is held. Brighten(n) works by looking up int z.tab the position of n

in z.arr, swapping it with the index at position z.B, incrementing z.B, and updating

z.tab accordingly.

3.4 Experiments

For Firefly to be a useful algorithm it must be able to produce effectively independent

samples from posterior distributions more quickly than regular MCMC. We certainly

expect it to iterate more quickly than regular MCMC since it evaluates fewer likelihoods

per iteration. But we might also expect it to mix more slowly, since it has extra auxiliary

variables. To see whether this trade-off works out in Firefly’s favor we need to know how

much faster it iterates and how much slower it mixes. The answer to the first question

will depend on the data set and the model. The answer to the second will depend on

these too, and also on the choice of algorithm for updating θ.

We conducted three experiments, each with a different data set, model, and parameter-

33

update algorithm, to give an impression of how well Firefly can be expected to perform.

In each experiment we compared Firefly, with two choices of bound selection, to regular

full-posterior MCMC. We looked at the average number of likelihoods queried at each

iteration and the number of effective samples generated per iteration, accounting for

autocorrelation. The results are summarized in Figure 3.4 and Table 3.1. The broad

conclusion is that Firefly offers a speedup of at least one order of magnitude compared

with regular MCMC if the bounds are tuned according to a MAP-estimate of θ. In the

following subsections we describe the experiments in detail.

Figure 3.3: Illustration of a data structure allowing for efficient operations on the sets of bright
and dark data points. Data points 1 and 3 are bright, the rest are dark.

3.4.1 Logistic regression

We applied Firefly to the logistic regression task described in [113] using the Jaakkola-

Jordan bounds described earlier. The task is to classify MNIST 7s and 9s, using the first

50 principal components (and one bias) as features. We used a Gaussian prior over the

weights and chose the scale of that prior by evaluating performance on a held-out test

set. To sample over θ, we used symmetric Metropolis-Hasting proposals, with step size

chosen to yield an acceptance rate of 0.234 [89], optimized for each algorithm separately.

We sampled the zn using the implicit Metropolis-Hastings sampling algorithm.

34

Average Effective Speedup
Algorithm Likelihood queries Samples per relative to

per iteration 1000 iterations regular MCMC
Data set: MNIST Regular MCMC 12,214 3.7 (1)

Model: Logistic regression Untuned Firefly 6,252 1.3 0.7
Updates: Metropolis-Hastings MAP-tuned Firefly 207 1.4 22
Data set: 3-Class CIFAR-10 Regular MCMC 18,000 8.0 (1)

Model: Softmax classification Untuned Firefly 8,058 4.2 1.2
Updates: Langevin MAP-tuned Firefly 654 3.3 11
Data set: OPV Regular MCMC 18,182,764 1.3 (1)

Model: Robust regression Untuned Firefly 2,753,428 1.1 5.7
Updates: Slice sampling MAP-tuned Firefly 575,528 1.2 29

Table 3.1: Results from empirical evaluations. Three experiments are shown: logistic regression
applied to MNIST digit classification, softmax classification for three categories of CIFAR-10,
and robust regression for properties of organic photovoltaic molecules, sampled with random-walk
Metropolis–Hastings, Metropolis-adjusted Langevin, and slice sampling, respectively. For each of
these, the vanilla MCMC operator was compared with both untuned Firefly and Firefly where the
bound was determined from a MAP estimate of the posterior parameters. We use likelihood eval-
uations as an implementation-independent measure of computational cost and report the number
of such evaluations per iteration, as well as the resulting sample efficiency (computed via R-CODA
[80]), and relative speedup.

We compared three different algorithms: regular MCMC, untuned Firefly, and MAP-

tuned Firefly. For untuned Firefly, we chose ξ = 1.5 for all data points. To compute

the bounds for the MAP-tuned algorithm, we performed stochastic gradient descent

optimization to find a set of weights close the MAP value and gave each data point its

own ξ to make the bounds tight at the MAP parameters: Ln(θMAP) = Bn(θMAP) for

all n. For untuned Firefly, and MAP-tuned Firefly we used qd→b = 0.1 and qd→b = 0.01

respectively, chosen to be similar to the typical fraction of bright data points in each

case.

The results are shown in Figure 3.4a and summarized in Table 3.1. On a per-iteration

basis, the Firefly algorithms mix and burn-in more slowly than regular MCMC by around

a factor of two, as illustrated by the autocorrelation plots. Even on a per-likelihood basis,

35

the naïve Firefly algorithm, with a fixed ξ, performs worse than regular MCMC, by a

factor of 0.7, despite needing fewer likelihood evaluations per iteration. The MAP-tuned

algorithm was much more impressive: after burn-in, it queried only 207 of the 12,2214

likelihoods per iteration on average, giving a speedup of more than 20, even taking into

account the slower per-iteration mixing time. We initialized all chains with draws from

the prior. Notice that the MAP-tuned algorithm performs poorly during burn-in, since

the bounds are less tight during this time, whereas the reverse is true for the untuned

algorithm.

3.4.2 Softmax classification

Logistic regression can be generalized to multi-class classification problems by softmax

classification. The softmax likelihood of a data point belonging to class k of K classes

is

Ln(θ) =
exp(θTk xn)∑K

k′=1 exp(θ
T
k′xn)

Where θ is now a K ×D matrix. The Jaakkola-Jordan bound does not apply to this

softmax likelihood, but we can use a related bound, due to Böhning [16], whose log

matches the value and gradient of the log of the softmax likelihood at some particu-

lar θ, but has a tighter curvature. Murphy [71] has the result in full in the chapter on

variational inference.

We applied softmax classification to a three-class version of CIFAR-10 (airplane,

automobile and bird) using 256 binary features discovered by Krizhevsky [53] using

a deep autoencoder. Once again, we used a Gaussian prior on the weights, chosen

to maximize out-of-sample performance. This time we used the Metropolis-adjusted

36

Langevin algorithm (MALA, Roberts & Tweedie [91]) for our parameter updates. We

chose the step sizes to yield acceptance rates close to the optimal 0.57 [90]. Other

parameters were tuned as in the logistic regression experiment.

The softmax experiment gave qualitatively similar results to the logistic regression

experiment, as seen in Figure 3.4b and Table 3.1. Again, the MAP-tuned Firefly al-

gorithm dramatically outperformed both the lackluster untuned Firefly and regular

MCMC, offering an 11-fold speedup over the latter.

0

20

N
eg

at
iv

e
lo

g
 p

o
st

er
io

r

 (
'0

0
0

)

0 1000 2000 3000

Iterations

0

6

12

L
ik

el
ih

o
o

d
 e

v
al

u
at

io
n

s
p

er
 i

te
ra

ti
o

n
 (

th
o

u
sa

n
d

s)

0 3500

Delay (iterations)

A
u
to

co
rr

el
at

io
n

(a) MNIST with MH

10

15

N
eg

at
iv

e
lo

g
 p

o
st

er
io

r

 (
'0

0
0

)

0 250 500

Iterations

0

18

L
ik

el
ih

o
o

d
 e

v
al

u
at

io
n

s
p

er
 i

te
ra

ti
o

n
 (

th
o

u
sa

n
d

s)

0 500

Delay (iterations)

A
u

to
co

rr
el

at
io

n

(b) CIFAR-10 with Langevin

50

100

N
eg

at
iv

e
lo

g
 p

o
st

er
io

r

 (
'0

0
0
)

Regular MCMC

Untuned FlyMC

MAP-tuned FlyMC

0 200 400

Iterations

0

20

L
ik

el
ih

o
o
d
 e

v
al

u
at

io
n
s

p
er

 i
te

ra
ti

o
n
 (

m
il

li
o
n
s)

(c) OPV with Slice Sampling

Figure 3.4: Tuned and untuned Firefly Monte Carlo compared to regular MCMC with three dif-
ferent operators, data sets, and models: (a) the digits 7 and 9 from the MNIST data are classified
using logistic regression, with a random-walk Metropolis-Hastings operator; (b) softmax classifi-
cation on three classes (airplane, automobile, and bird) from the CIFAR-10 image dataset, using
Langevin-adjusted Metropolis; (c) robust regression on the HOMO-LUMO gap (as computed by
density functional theory calculations) for a large set of organic photovoltaic molecules, using slice
sampling. In each subfigure, the top shows the trace of the log posterior density to illustrate con-
vergence, and the bottom shows the average number of likelihoods computed per iteration. One
standard deviation is shown around the mean value, as computed from five runs of each. The blue
lines are computed using the full-data posterior, and the green and orange lines show the untuned
and tuned Firefly MC traces, respectively.

37

3.4.3 Robust sparse linear regression

Linear regression with Gaussian likelihoods yields a closed-form expression for the poste-

rior. Non-Gaussian likelihoods, however, like heavy-tailed distributions used in so-called

“robust regression” do not. Our final experiment was to perform inference over robust

regression weights for a very large dataset of molecular features and computed electronic

properties. The data set, described by Hachmann et al. [35, 36] consists of 1.8 million

molecules, with 57 cheminformatic features each [74, 2]. The task was to predict the

HOMO-LUMO energy gap, which is useful for predicting photovoltaic efficiency.

We used a student-t distribution with ν = 4 for the likelihood function and we com-

puted a Gaussian lower bound to this by matching the value and gradient of the

t distribution probability density function value at some ξ (ξ = 0 for the untuned

case, ξ = θTMAPx for the MAP-tuned case). We used a sparsity-inducing Laplace prior

on the weights. As before, we chose the scales of the prior and the likelihood to optimize

out-of sample performance.

We performed parameter updates using slice sampling [72]. Note that slice sampling

results in a variable number of likelihood evaluations per iteration, even for the regular

MCMC algorithm. Again, we found that MAP-tuned Firefly substantially outperformed

regular MCMC, as shown in Figure 3.4c and Table 3.1.

3.5 Conclusion

In this chapter, we have presented Firefly Monte Carlo, an algorithm for performing

Markov chain Monte Carlo using subsets (minibatches) of data. Unlike other recent

proposals for such MCMC operators, Firefly is exact in the sense that it has the true

full-data posterior as its target distribution. This is achieved by introducing binary

38

latent variables whose states represent whether a given datum is bright (used to com-

pute the posterior) or dark (not used in posterior updates). By carefully choosing the

conditional distributions of these latent variables, the true posterior is left intact under

marginalization. The primary requirement for this to be efficient is that the likelihoods

term must have lower bounds that collapse in an efficient way.

There are several points that warrant additional discussion and future work. First,

we recognize that useful lower bounds can be difficult to obtain for many problems. It

would be helpful to produce such bounds automatically for a wider class of problems. As

variational inference procedures are most often framed in terms of lower bounds on the

marginal likelihood, we expect that Firefly Monte Carlo will benefit from developments

in so-called “black box” variational methods [111, 83]. Second, we believe we have

only scratched the surface of what is possible with efficient data structures and latent-

variable update schemes. For example, the MH proposals we consider here for zn have

a fixed global qd→b, but clearly such a proposal should vary for each datum. Third,

it is often the case that larger state spaces lead to slower MCMC mixing. In Firefly

Monte Carlo, much like other auxiliary variable methods, we have expanded the state

space significantly. We have shown empirically that the slower mixing can be more than

offset by the faster per-transition computational time. In future work we hope to show

that fast-mixing Markov chains on the parameter space will continue to mix fast in the

Firefly auxiliary variable representation.

Firefly Monte Carlo is closely related to recent ideas in using pseudo-marginal MCMC

[4] for sampling from challenging target distributions. If we sampled each of the variables

{zn} as a Bernoulli random variable with success probability 0.5, then the joint posterior

we have been using becomes an unbiased estimator of the original posterior over θ, up to

normalization. Running pseudo-marginal MCMC using this unbiased estimator would

39

be a special case of Firefly: namely Firefly with z and θ updated simultaneously with

Metropolis-Hastings updates.

40

4
Autograd: Automatic Differentiation for

Python

In Chapter 2 we described reverse-mode differentiation, a procedure for transforming

a function F : RD → R composed of primitive functions into F ′, an efficient evaluator

of the gradient of F . Too often, this transformation is done by hand. Painstakingly

derived and error-prone gradient expressions occupy a substantial portion of machine

learning papers, textbooks and software.

As a purely mechanistic procedure, the transformation can and should be automated.

Given a function expressed as a computer program, we should have access to its gradient

41

without any extra (human) effort. There are some existing software tools for doing this,

but they mostly require the user to specify the function using a very limited mini-

language. This is better than deriving gradients by hand, but far from effortless.

Dissatisfied with the existing options, we wrote our own automatic differentiation

system. We wrote it for the Python programming language and the Numpy numer-

ical computing library and we immodestly gave it the unqualified name “Autograd”.

Autograd has become quite popular in the machine learning community at large and

it has powered all of the work in the rest of this thesis. This chapter describes the

implementation of Autograd and the design decisions and trade-offs we made along the

way.

I started the Autograd project and wrote the core logic but I was soon joined by

David Duvenaud and later Matt Johnson, who deserve much of the credit for extending

and maintaining it. The source code can be found at github.com/HIPS/autograd.

4.1 Mission and design principles

The goal of Autograd is to make gradients effortless. If you can write a loss function,

Autograd should be able to give you its gradient. Moreover, in writing that loss function,

you should have access to the full expressiveness of a modern high-level programming

language (Python) and a mature numerical library (Numpy). Autograd shouldn’t get

in the way. You should be able to use loops and branches, recursion, function closures,

classes, container data structures, numerical data abstractions, and so on.

Beyond this central mission, our design and implementation had a number of guiding

principles:

Support for higher-order derivatives — It should be possible to take the gradient of a

function which itself is composed of gradients. Our core logic has supported this from

42

github.com/HIPS/autograd

the beginning, but maintaining it in practice requires that every time we define a new

gradient, we also define the gradients of the primitive functions we use to implement

that gradient, and the gradients of those functions ... Thankfully, the recursion usually

bottoms out fairly quickly.

Well-defined scope — Following the UNIX philosophy, Autograd tries to do one thing

(produce gradients) and do it well. We’ve been tempted (and asked) to offer our own

low-level numerical operations and high-level machine learning abstractions but we’ve

mostly managed to resist such mission creep. Having a narrow scope has also allowed

us to keep the interface very minimal. For a long time Autograd only exposed a single

function, grad (we now have a few other high-level derivative operations like jacobian).

This made it easy for people to use, and allowed us to freely change the underlying

implementation with breaking our users’ code.

Systematically tested — One of the nice things about writing gradient-taking software

is that it’s easy to verify correctness, since gradient implementations can always be

checked against finite differences: F ′(x) ≈ (F (x + ϵ/2) − F (x − ϵ/2))/ϵ. We have test

harnesses for easily writing tests for new primitive implementations that check against a

battery of input types and values. Our current test suite checks nearly 100,000 different

gradients. This has been a great source of confidence and peace of mind.

Functional style — Autograd is written in a distinctly functional style. We make

heavy use of closures, higher-order functions (even grad itself, for example) and we prefer

immutable state where possible. An exception is the tape data structure, described

below.

43

4.2 Building the computation graph

Reverse-mode differentiation gives us a procedure for transforming the computation

graph of the function F into the gradient function F ′. But first, we need access to the

computation graph in some convenient data structure. There are several approaches to

this problem.

Direct specification of computation graph — One approach is to have the user con-

struct the computation graph directly, specifying a function by manipulating the nodes

of the graph as objects. Indeed, some very popular automatic differentiation tools such

as Theano [8, 13] take this approach. But node-by-node assembly is a clumsy way to

define a function and it’s also very limited in its expressiveness. What if you need a

loop? Or a branch? You could introduce extra tools for specifying these things, but that

amounts to inventing (and asking users to learn) an entire language-within-a-language.

A much more natural way to define a function is to use the native function definition

syntax of the programming language itself. Arguably, providing a convenient way to

specify computational functions is exactly what programming languages are built for!

Source code inspection — So how do we obtain the computation graph for a regular

function written in a programming language? One way is to directly inspect the source

code itself, since we know that tells us everything there is to know about the function.

This is feasible with some languages, particularly so-called homoiconic languages like

Lisp, in which we can manipulate programs like any other data structure. However, a

syntactically rich language like Python is hard to inspect. In principle one can access

the abstract syntax tree, but making sense of it would amount to building our own

Python interpreter.

Monitoring function execution — A third approach, and the one we take with Au-

44

tograd, is to monitor the function as it is actually being executed, and construct the

computation graph on the fly by recording every primitive function call. One can imag-

ine doing this by directly hooking into the interpreter — Python offers mechanisms for

this, designed for profiling — but we take a more low-tech approach, which we now

describe.

The main idea is to replace every primitive function with a wrapped version. The

wrapping layer takes care of the necessary book-keeping, recording the name of the

function, the arguments, and the return value. To the user, the wrapped function looks

and behaves just like the original.

As well as wrapping functions, we also wrap (or box) the return values from each

primitive function call. We call these Node objects, since they are the nodes in the

computation graph, and we use them to record the required information about primitive

function calls. Each Node contains an underlying value and a recipe for creating that

value, consisting of the identity of the function that created it, and a list of the arguments

passed to that function, (we call these the Nodes’ parents).

Each time a wrapped primitive is called, it inspects its arguments and unboxes any

Nodes. It then calls its underlying primitive function with these (unboxed) arguments.

Finally, it boxes the return value as a new Node, along with the recipe (function and

arguments) for creating it. (Actually, for performance reasons, we only do this final

re-boxing if at least one of the original arguments was boxed.)

Given a particular Node, we can now trace its parents, and their parents, and so on,

to obtain a complete genealogy, a history of how the node’s value was computed. This

is a representation of the computation graph, as illustrated in Figure 4.2.

We should note that since this computation graph is created dynamically, it will

depend in general on the particular arguments passed to the function. Its topology

45

B (wrapped)

Node ã

Value: a

Function: A

Parents: [x̃]

unbox a B (raw) b box

Node b̃

Value: b

Function: B

Parents: [ã]

Figure 4.1: Primitive function wrapping. When called with a Node as an argument, the wrapped
version of the primitive function extracts the Node’s value and passes it to the underlying primitive
function. It boxes the result in a new Node, along with pointers to the original argument and the
function itself.

may even be different from one call to the next. For example, if the composite function

contains a loop, the computation graph will be an unrolled version of this loop and

its size will depend on the number of loop iterations. Creating computation graphs

dynamically allows Autograd to handle code containing loops and branches without

explicitly accounting for them.

4.3 Performing the backward pass

We now have a way to obtain a computation graph, represented by linked nodes, given a

function composed of wrapped primitives and particular inputs. Finding the derivative

of one node, y with respect to another, x, should just be a matter of applying the

reverse accumulation mode differentiation procedure described in Chapter 2. This means

traversing the graph from y back to x, applying vector-Jacobian product operators and

accumulating values like ∂y
∂a (for each intermediate value a) until we have ∂y

∂x .

The hard part is knowing the order in which to do this. As we explained at the end of

Chapter 2, fan-out on the forward pass becomes summation on the reverse pass. On the

46

Node x̃

Value: x

Function: (None)
Parents: []

Node ã

Value: a

Function: A

Parents: [x̃]

Node b̃

Value: b

Function: B

Parents: [x̃]

Node ỹ

Value: y

Function: C

Parents: [b̃, ã]

Figure 4.2: Representation of computation graph as set of linked nodes. Each node records the
function that produces it, and the arguments given to that function, the node’s parents. This al-
lows the entire ancestry of any node to be determined.

reverse pass, we can’t proceed past a multiply-referenced value until we have traversed

all of the paths that lead up to it. What we need is a topological sorting of the graph,

an ordering of nodes with children always appearing before their parents.

We could construct a topological sort by doing a preliminary graph traversal before

performing the actual gradient accumulation traversal, but there is an easier way. In

evaluating the function itself, the interpreter has already done a full graph traversal ob-

serving the opposite ordering constraint: parents before children. (The user establishes

this order when defining the function by making sure to assign values to variables before

using them.) If we can record this order we can simply reverse it for the backward pass.

Recording the order of operations is easy, although it does destroy functional purity.

We maintain a list of operations we call the “tape”. Every time a new Node is created, we

append it to the tape. When the function finishes evaluating, the tape is a topologically

47

sorted list of Nodes. We create a separate tape for each variable we want the gradient

with respect to. Each Node keeps track of the tapes it belongs to, and Nodes inherit

tapes from their parents. Each tape then represents a (topologically sorted) subgraph

of those Nodes that are direct descendants of a particular variable, and when we walk

backwards through the tape, we only encounter relevant Nodes.

4.4 Primitive vector-Jacobian products

We’ve now described the core logic of Autograd, which is actually quite small. The bulk

of the work in writing Autograd came in defining the vector-Jacobian products (VJPs)

for each primitive function. We started from a small base, just a few basic arithmetic

operators, and we’ve grown to over 200 primitive gradients implemented. The full list

at time of writing is in Table 4.1.

The core logic of Autograd permits higher-order derivatives because the mechanism

for tracking primitive operations continues to work even if those primitives are being

applied on the backward pass. We just need to make sure that we implement VJPs for

any primitive we use to implement a VJP. This is a circular requirement, and one might

worry that it would lead to a never-ending chain of primitives in need of implementation.

In practice, however, we find that primitive functions fall nicely into closed groups,

which only need other group members for their gradients. (Consider, for example the

basic trigonometric functions: the derivative of sine requires cosine and vice versa.)

This also means that gradients are usually able to be implemented at the same level

of abstraction as the primitive functions themselves. For example, the VJP for matrix-

vector multiplication with respect to the vector argument is itself just a matrix-vector

product. This keeps things efficient, as we can continue to take advantage of high-

performance libraries that operate at that level of abstraction.

48

Operators +, -, *, /, (-), **, %, <, <=, ==, !=, >=, >
Basic math functions exp, log, square, sqrt, sin, cos, tan, sinh,

cosh, tanh, sinc, abs, fabs, logaddexp,
logaddexp2, absolute, reciprocal, exp2,
expm1, log2, log10, log1p, arcsin, arccos,
arctan, arcsinh, arccosh, arctanh, rad2deg,
degrees, deg2rad, radians

Complex numbers real, imag, conj, angle, fft, fftshift,
ifftshift, real_if_close

Array reductions sum, mean, prod, var, std, max, min, amax, amin
Array reshaping reshape, ravel, squeeze, diag, roll,

array_split, split, vsplit, hsplit, dsplit,
expand_dims, flipud, fliplr, rot90, swapaxes,
rollaxis, transpose, atleast_1d, atleast_2d,
atleast_3d

Linear algebra dot, tensordot, einsum, cross, trace, outer,
det, slogdet, inv, norm, eigh, cholesky, sqrtm,
solve_triangular

Other array operations cumsum, clip, maximum, minimum, sort,
msort, partition, concatenate, diagonal,
truncate_pad, tile, full, triu, tril, where,
diff, nan_to_num, vstack, hstack

Probability functions t.pdf, t.cdf, t.logpdf, t.logcdf,
multivariate_normal.logpdf,
multivariate_normal.pdf,
multivariate_normal.entropy, norm.pdf,
norm.cdf, norm.logpdf, norm.logcdf,
dirichlet.logpdf, dirichlet.pdf

Special functions polygamma, psi, digamma, gamma, gammaln,
rgamma, multigammaln, j0, y0, j1, y1, jn, yn,
erf, erfc

Table 4.1: Primitives with gradients implemented in Autograd.

Not all functions are differentiable. Notably, Boolean-valued comparison operations

like “>” and “<”, which are often used to select branches, are constant with respect

49

to their inputs almost everywhere (and have undefined derivatives where they aren’t).

Autograd has a dedicated mechanism to specify these as constant functions so that their

descendants aren’t tracked.

4.5 Generalizing to other data types

In discussing reverse-mode differentiation in Chapter 2, we tacitly assumed that primi-

tive functions are vector-to-vector functions, RM → RN . But we’d like Autograd to be

able to handle all of our favorite numerical types: scalars, multidimensional arrays, and

even user-defined types or arbitrary containers such as a tuple of an array, a scalar and

a complex scalar.

As long these types map to RD, it’s easy to imagine how to generalize VJP functions,

but it helps to introduce some formalism. Consider a primitive function F : V → W

where V and W are vector spaces over R. Since this is a physics thesis, we’ll use

Dirac notation to represent members of these vector spaces and their duals: kets for

vectors, |x⟩ ∈ V , and bras for covectors, ⟨x| ∈ V ∗ (where V ∗ is the dual space of V , the

space of linear maps V → R). We can generalize the Jacobian-vector product function,

JF : V → (V →W) as follows:

JF
(
|x⟩ , |a⟩

)
= lim

α→0

F
(
|x⟩+ α |a⟩

)
− F

(
|x⟩

)
α

, (4.1)

where α ∈ R and |x⟩ , |a⟩ ∈ V

Note that JF is a linear map V →W in its second argument. We can obtain the vector-

Jacobian product function as the transpose of this linear map, JT
F : V → (W ∗ → V ∗),

50

defined by:

JT
F

(
|x⟩ , ⟨b|

)
|a⟩ = ⟨b| JF

(
|x⟩ , |a⟩

)
, (4.2)

where |x⟩ , |a⟩ ∈ V and ⟨b| ∈W ∗

JF (in its second argument) maps the dual space W ∗, to the dual space V ∗.

Now that we have a definition of a vector-Jacobian product function for general

vector spaces, Equation 4.2, we can extend Autograd to handle any data type that can

be treated as a vector space. We just need to define and implement the two vector space

operations: vector addition and scalar multiplication.

In practice, we also need a way to represent covectors, since we want our primitive

Jacobian-vector product functions to take numerical data as arguments rather than

functions. We usually represent covectors by members of the original vector space,

along with a definition of what it means to apply the linear functional that the covector

represents to another member of the original vector space. Usually, this is “multiply the

entries elementwise and sum the results”. It’s also useful in practice to define a basis

for any new vector space. This allows us to use Equation 4.2 and 4.1 (with finite α) for

unit tests of the primitive JVP implementations with specific inputs.

Do we need to do anything special to handle complex numbers? We might be tempted

to treat complex values (scalars or arrays) as vector spaces over C rather than over R.

This would work if we were dealing exclusively with holomorphic primitives (functions

for which the limit in 4.1, with complex α, has the same value regardless of which

direction in the complex plane α approaches zero from). However, we would like to

be able to handle non-holomorphic primitives, like complex conjugation, as well as

primitives that map between complex numbers and real numbers, such as taking the real

51

part of a complex number. Instead, we can actually treat complex values as members

of a vector field over the reals. This lets us handle these non-holomorphic primitives,

but still gives the same result as the complex scalar field case if the primitive happens

to be holomorphic.

This general vector space treatment of the vector-Jacobian function makes it clear

that the final result of reverse-mode differentiation of a function F : V → R is a covector

(⟨g| ∈ V ∗) rather than a vector (|g⟩ ∈ V). If we want a vector in V , we need a way to

map from covectors to vectors, which requires defining an inner product ⟨·, ·⟩V on V . In

practice, Autograd just returns its internal representations of the covectors and we take

them at face value. This corresponds to mapping from V ∗ to V using the Euclidean

inner product (and taking the complex conjugate, in the case of complex numbers). It’s

a fairly minor transgression, but bearing it in mind could help us avoid type errors, such

as the commonly overlooked dimensional inconsistency of gradient descent.

4.6 Handling all of Python’s syntax

Python offers a rich set of syntactical constructs. Making sure we cover all the possible

mechanisms by which a variable’s value can be accessed and propagated takes some

work. In this section, we examine these mechanisms case by case.

Numpy functions — The prototypical way to refer to an object’s value is to pass it

as an argument to a function. Wrapping functions, as described above, is the basic

instrument Autograd uses to build the computation graph. We wrap all Numpy func-

tions by extracting them automatically, and we present the wrapped versions under an

autograd.numpy namespace. The user can use our wrapped versions rather than the

originals just by changing an import, e.g. import autograd.numpy as np instead of

import numpy as np. Thankfully, the great majority of the numerical functions are

52

under this namespace.

Built-in and other functions — Python actually has quite a limited set of built-in

functions, and we don’t wrap any of them. The few numerical builtins, sum, max, min,

are generic functions which dispatch to the operator overloading mechanisms described

below.

Operators — Python offers the usual set of infix operators +, -, /, *, >, < etc. These

are implemented using double-underscore methods (__add__, __sub__ etc.) of the left

argument. (If that doesn’t exist, Python tries the corresponding right-argument version

of the right arguments, __radd__, __rsub__.) Autograd’s Node objects implement these

double underscore methods, just as they implement other object methods.

Methods —Most object methods are accessors for an object’s own data. Since we only

need wrapped versions of these when the object is boxed, we just have to implement

the wrapped versions as methods for Autograd’s Node. The idea is that Autograd’s

Node objects should look and feel just like the objects they box, and this is done by

implementing the same interface. But this does mean creating a type system within

Autograd that parallels the underlying type system. Thus, we don’t just have a single

Node type, but an ArrayNode, a FloatNode, a TupleNode and so on.

There are occasional cases, however, when object methods take other objects as ad-

ditional arguments. This poses a problem if an unboxed object’s method is given an

Autograd Node as an argument. One example is the dot product method, ndarray.dot,

of Numpy arrays. Another example is the double underscore methods of binary oper-

ators (described below). These are hard cases to handle and we only partially suc-

ceed. With double underscore methods, if the left argument’s __add__ doesn’t rec-

ognize the argument type, it will usually call the right arguments __radd__. Numpy

ndarrays have their own convention for handling precedence, the class-level variable

53

__array_priority__, which we take advantage of. In the case of ndarray.dot, we

decided that the complexity of wrapping it couldn’t justify the benefit, and instead we

ask users to use np.dot(A, B) rather than A.dot(B).

Indexing — Indexing syntax, like operator syntax, is implemented with double un-

derscore methods, and we handle it easily by implementing those methods in Autograd

Nodes. Getting the semantics right, however, is harder. As we explain in the next sec-

tion, Autograd doesn’t support assigning to arrays or other state-mutating operations.

Container syntax — Finally, Python has direct syntactical constructs for forming

container data types: parenthesis for tuples, brackets for lists, and braces for dicts.

Although these behave semantically like multi-argument functions, we have no way to

intercept the syntax. In most cases this turns out not to be a problem. The containers

may hide Autograd nodes, but it only matters when the containers are eventually un-

packed, in which case the Autograd nodes are revealed. The few exceptions are where

we have primitive functions that take containers as arguments. The wrapping layer

can’t detect any Autograd nodes smuggled inside. We could have the wrapping layer

do a deep inspection of every argument but this would be unacceptably slow. We can

usually handle these cases by replacing the container-accepting function with a version

that unpacks the container and passes its contents to a multi-argument primitive. See,

e.g. autograd.numpy.concatenate.

4.7 Limitations and future work

Perhaps the biggest limitation of Autograd is that it can’t handle in-place modifications

of objects, and assignment to arrays in particular. The reason is that the backward pass

makes use of the values created on the forward pass. If any of these had been modified

in the mean time, the computed gradients would no longer be correct. We could make

54

copies of all values to use on the backward pass but this would be prohibitively expensive.

Alternatively, we could introduce a copy-on-write scheme, whereby we make a copy of an

object only when we detect that it is being modified. This would introduce substantial

additional complexity but it is a possible enhancement for the future.

Immutability of objects is a hallmark of functional programming, and it isn’t as

crippling as it might seem. Our experience using Autograd has been that a functional

style is a natural fit for the sorts of modeling and inference problems we like to solve in

machine learning, and it rarely feels burdensome.

A second limitation is that the overhead of function wrapping can be substantial. We

initially wrote Autograd with the assumption that it would only be used for “BLAS-

limited” computations: computations dominated by large-scale linear algebra operations

which are handled (via Numpy) by ancient optimized FORTRAN libraries like BLAS.

Evaluating a feed-forward neural network was always the canonical use-case.

But we (and others) found it useful in many other contexts, often involving smaller

matrices and scalars. In these cases, the overhead can be painful. Frustratingly, much

of the overhead comes from type checking (the function isinstance often shows up as

hot spot when profiling). Python’s laissez-faire approach to typing, which gives it a

wonderful malleability, hurts us here. If we’d chosen a stricter language, like Haskell or

Julia, we could have taken advantage of native multiple dispatch and type checking.

Finally, we receive many requests to add GPU support to Autograd. Indeed, if we are

targeting computations in the BLAS-limited regime, it would be nice to take advantage

of GPUs for highly parallel linear algebra operations. Our response is that building a

GPU linear algebra library, or even creating Python bindings to an existing library, is

out of scope for Autograd. We hope that Numpy (or another Python project) will build

such a library, so that we can wrap it with Autograd. There is a version of Autograd

55

written for Lua/Torch by a team at Twitter (directly inspired by our Python Autograd)

which has native GPU support because it wraps GPU-supporting numerical libraries

(github.com/twitter/torch-autograd).

A hybrid strategy, which several people have been using already, is to use a GPU-

capable library like Theano, to implement computationally expensive parts of a program,

the forward evaluation of a neural net for example, then to wrap that as an Autograd

primitive in order to use it as part of a larger system. Autograd’s interface for defining

new primitives makes this simple.

4.8 Conclusion

Autograd has had an unexpectedly large impact on my and my co-authors’ research.

It has inspired projects (such as the ones in this thesis) and it has changed the way

we implement machine learning algorithms. We now focus entirely on implementing

loss functions (usually log probabilities) and we are free to create and use whatever

abstractions are most appropriate for doing that. To give an example, I recently imple-

mented a simple probabilistic programming language for performing BBSVI inference

in directed graphical models with arbitrary conditional probabilities. Within it I imple-

mented Haskell-style infinite lazy lists. Together, the libraries are capable of expressing

(and doing inference in) models such as an infinite input-output linear dynamical sys-

tem. Autograd threads through the whole thing effortlessly. To implement this while

keeping track of gradients explicitly would have been unthinkable and I would never

have dared create those abstractions.

We’ve also found that using Autograd clarifies many ideas in machine learning and

makes them not just easier to implement but also easier to think about. The “examples”

directory of the Autograd repository is filled with self-contained scripts implementing

56

github.com/twitter/torch-autograd

neural networks, graphical models, variational inference, Gaussian processes, mixture

models and other ideas in machine learning. With automatic gradients, the implemen-

tations are remarkably terse, and the essential features of each algorithm are laid out

unobscured. Taking this to an amusing extreme, Ryan Adams managed to fit Black-Box

Stochastic Variational Inference into a single tweet1.

This has been my first experience developing an open-source software package and

it has been a pleasure and a thrill to see people around the world using something I’ve

built. Autograd is downloaded more than two thousand times each month, and it has

received almost 800 Github stars, the social currency of open-source development.

1 For posterity, here is the tweet reproduced in its entirety:

Ryan Adams @ryan_p_adams 7 Nov 2015
@DavidDuvenaud
def elbo(p, lp, D, N):
v=exp(p[D:])
s=randn(N,D)*sqrt(v)+p[:D]
return mvn.entropy(0, diag(v))+mean(lp(s))

gf = grad(elbo)

57

5
Convolutional Networks on Graphs

In this chapter we introduce a convolutional neural network that operates directly on

graphs, allowing end-to-end learning of prediction pipelines whose inputs are graphs of

arbitrary size and shape. The architecture we present generalizes standard molecular

feature extraction methods based on circular fingerprints. We show that these data-

driven features are more interpretable, and have better predictive performance on a

variety of tasks.

This work was enabled by Autograd, but the historical causality was actually in

the other direction. It was the prospect of taking gradients by hand through such a

complicated graph-based function that inspired Ryan to write Autograd’s predecessor,

Kayak.

58

This chapter presents work with David Duvenaud, Jorge Aguilera-Iparraguirre, Rafael

Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik and Ryan P. Adams. Ryan

conceived of the original idea for the convolutional neural network architecture. David

and I fleshed out the ideas, wrote the implementation, performed the experiments and

wrote the paper together. It was presented at NIPS in 2015 [26].

5.1 Introduction

Recent work in materials design uses neural networks to predict the properties of novel

molecules by generalizing from examples. One difficulty with this task is that the input

to the predictor, a molecule, can be of arbitrary size and shape. Currently, most machine

learning pipelines can only handle inputs of a fixed size. The current state of the art is to

use off-the-shelf fingerprint software to compute fixed-dimensional feature vectors, and

use those features as inputs to a fully-connected deep neural network or other standard

machine learning method. This formula was followed by Unterthiner et al. [108], Dahl

et al. [21], Ramsundar et al. [82]. During training, the molecular fingerprint vectors

were treated as fixed.

In this chapter, we replace the bottom layer of this stack – the function that computes

molecular fingerprint vectors – with a differentiable neural network whose input is a

graph representing the original molecule. In this graph, vertices represent individual

atoms and edges represent bonds. The lower layers of this network are convolutional in

the sense that the same local filter is applied to each atom and its neighborhood. After

several such layers, a global pooling step combines features from all the atoms in the

molecule.

These neural graph fingerprints offer several advantages over fixed fingerprints:

59

• Predictive performance. By using adapting to the task at hand, machine-

optimized fingerprints can provide substantially better predictive performance

than fixed fingerprints. We show that neural graph fingerprints match or beat

the predictive performance of standard fingerprints on solubility, drug efficacy,

and organic photovoltaic efficiency datasets.

• Parsimony. Fixed fingerprints must be extremely large to encode all possible

substructures without overlap. For example, [108] used a fingerprint vector of

size 43,000, after having removed rarely-occurring features. Differentiable finger-

prints can be optimized to encode only relevant features, reducing downstream

computation and regularization requirements.

• Interpretability. Standard fingerprints encode each possible fragment com-

pletely distinctly, with no notion of similarity between fragments. In contrast,

each feature of a neural graph fingerprint can be activated by similar but distinct

molecular fragments, making the feature representation more meaningful.

5.2 Circular fingerprints

The state of the art in molecular fingerprints are extended-connectivity circular fin-

gerprints (ECFP) [92]. Circular fingerprints [32] are a refinement of the Morgan algo-

rithm [70], designed to encode which substructures are present in a molecule.

Circular fingerprints generate each layer’s features by applying a fixed hash function

to the concatenated features of the neighborhood in the previous layer. The results of

these hashes are then treated as integer indices, where a 1 is written to the fingerprint

vector at the index given by the feature vector at each node in the graph. Figure

5.1(left) shows a sketch of this computational architecture. Ignoring collisions, each

60

Figure 5.1: Left: A visual representation of the computational graph of both standard circular
fingerprints and neural graph fingerprints. First, a graph is constructed matching the topology of
the molecule being fingerprinted, in which nodes represent atoms, and edges represent bonds. At
each layer, information flows between neighbors in the graph. Finally, each node in the graph turns
on one bit in the fixed-length fingerprint vector. Right: A more detailed sketch including the bond
information used in each operation.

index of the fingerprint denotes the presence of a particular substructure. The size of

the substructures represented by each index depends on the depth of the network. Thus

the number of layers is referred to as the ‘radius’ of the fingerprints.

Circular fingerprints are analogous to convolutional networks in that they apply the

same operation locally everywhere, and combine information in a global pooling step.

5.3 Creating a differentiable fingerprint

The space of possible network architectures is large. In the spirit of starting from a

known-good configuration, we designed a differentiable generalization of circular fin-

gerprints. This section describes our replacement of each discrete operation in circular

fingerprints with a differentiable analog.

61

Hashing The purpose of the hash functions applied at each layer of circular finger-

prints is to combine information about each atom and its neighboring substructures.

This ensures that any change in a fragment, no matter how small, will lead to a different

fingerprint index being activated. We replace the hash operation with a single layer of

a neural network. Using a smooth function allows the activations to be similar when

the local molecular structure varies in unimportant ways.

Indexing Circular fingerprints use an indexing operation to combine all the nodes’

feature vectors into a single fingerprint of the whole molecule. Each node sets a single

bit of the fingerprint to one, at an index determined by the hash of its feature vector.

This pooling-like operation converts an arbitrary-sized graph into a fixed-sized vector.

For small molecules and a large fingerprint length, the fingerprints are always sparse.

We use the softmax operation as a differentiable analog of indexing. In essence, each

atom is asked to classify itself as belonging to a single category. The sum of all these

classification label vectors produces the final fingerprint. This operation is analogous to

the pooling operation in standard convolutional neural networks.

Canonicalization Circular fingerprints are identical regardless of the ordering of

atoms in each neighborhood. This invariance is achieved by sorting the neighboring

atoms according to their features, and bond features. We experimented with this sorting

scheme, and also with applying the local feature transform on all possible permutations

of the local neighborhood. An alternative to canonicalization is to apply a permutation-

invariant function, such as summation. In the interests of simplicity and scalability, we

chose summation.

Circular fingerprints can be interpreted as a special case of neural graph fingerprints

having large random weights. To demonstrate that neural fingerprints are a generaliza-

62

tion of circular fingerprints, in this section we give evidence that circular fingerprints

are similar to neural fingerprints having large, randomly-initialized parameter vectors.

This is because, in the limit of large input weights, tanh nonlinearities approach step

functions, which when concatenated form a simple hash function. Also, in the limit of

large input weights, the softmax operator approaches a one-hot-coded argmax operator,

which is analogous to an indexing operation.

Algorithms 3 and 4 summarize these two algorithms and highlight their differences.

Given a fingerprint length L, and F features at each layer, the parameters of neural

graph fingerprints consist of a separate output weight matrix of size F × L for each

layer, as well as a set of hidden-to-hidden weight matrices of size F × F at each layer,

one for each possible number of bonds an atom can have (up to 5 in organic molecules).

5.4 Experiments

5.4.1 Neural fingerprints with large random weights are similar

to circular fingerprints

We ran two experiments to demonstrate that neural fingerprints with large random

weights behave similarly to circular fingerprints. First, we examined whether distances

between circular fingerprints were similar to distances between neural fingerprint-based

distances. Figure 5.3 (left) shows a scatterplot of pairwise distances between circular

vs. neural fingerprints. Fingerprints had length 2048, and were calculated on pairs of

molecules from the solubility dataset Delaney [22]. Distance was measured using a

continuous generalization of the Tanimoto (a.k.a. Jaccard) similarity measure, given by

distance(x,y) = 1−
∑
i

min(xi, yi)
/∑

i

max(xi, yi). (5.1)

63

Algorithm 3 Circular fingerprints
1: Input: molecule, radius R, finger-

print length S
2: Initialize: fingerprint vector f ←

0S

3: for each atom a in molecule
4: ra ← g(a) ▷ lookup atom

features
5: end for
6: for L = 1 to R ▷ for each layer
7: for each atom a in molecule
8: r1 . . . rN = neighbors(a)
9: v← [ra, r1, . . . , rN] ▷

concatenate
10: ra ← hash(v) ▷ hash function
11: i← mod(ra, S) ▷ convert to

index
12: fi ← 1 ▷ Write 1 at index
13: end for
14: end for
15: Return: binary vector f

Algorithm 4 Neural graph fingerprints
1: Input: molecule, radius R, hidden

weights H1
1 . . . H

5
R, output weights

W1 . . .WR

2: Initialize: fingerprint vector f ←
0S

3: for each atom a in molecule
4: ra ← g(a) ▷ lookup atom

features
5: end for
6: for L = 1 to R ▷ for each layer
7: for each atom a in molecule
8: r1 . . . rN = neighbors(a)
9: v← ra +

∑
N

i=1 ri ▷ sum
10: ra ← σ(vHN

L) ▷ smooth
function

11: i← softmax(raWL) ▷
sparsify

12: f ← f + i ▷ add to fingerprint
13: end for
14: end for
15: Return: real-valued vector f

Figure 5.2: Pseudocode of circular fingerprints
(left) and neural graph fingerprints (right). Dif-
ferences are highlighted in blue. Every non-
differentiable operation is replaced with a differ-
entiable analog.

There is a correlation of r = 0.823 between the distances. The line of points on the

right of the plot shows that for some pairs of molecules, binary ECFP fingerprints have

exactly zero overlap.

Second, we examined the predictive performance of neural fingerprints with large ran-

dom weights vs. that of circular fingerprints. Figure 5.3 (right) shows average predictive

performance on the solubility dataset, using linear regression on top of fingerprints. The

64

0.5 0.6 0.7 0.8 0.9 1.0
Circular fingerprint distances

0.5

0.6

0.7

0.8

0.9

1.0
N

e
u

ra
l

fi
n

g
e
rp

ri
n

t
d

is
ta

n
ce

s
Neural vs Circular distances, r=0:823

0 1 2 3 4 5 6
Fingerprint radius

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
M

S
E

 (
lo

g
 M

o
l/

L
)

Circular fingerprints

Random conv with large parameters

Random conv with small parameters

Figure 5.3: Left: Comparison of pairwise distances between molecules, measured using circular
fingerprints and neural graph fingerprints with large random weights. Right: Predictive perfor-
mance of circular fingerprints (red), neural graph fingerprints with fixed large random weights
(green) and neural graph fingerprints with fixed small random weights (blue). The performance
of neural graph fingerprints with large random weights closely matches the performance of circular
fingerprints.

performances of both methods follow similar curves. In contrast, the performance of

neural fingerprints with small random weights follows a different curve, and is sub-

stantially better. This suggests that even with random weights, the relatively smooth

activation of neural fingerprints helps generalization performance.

5.4.2 Examining learned features

To demonstrate that neural graph fingerprints are interpretable, we show substructures

which most activate individual features in a fingerprint vector. Each feature of a circular

fingerprint vector can each only be activated by a single fragment of a single radius,

except for accidental collisions. In contrast, neural graph fingerprint features can be

activated by variations of the same structure, making them more interpretable, and

allowing shorter feature vectors.

65

Solubility features Figure 5.4 shows the fragments that maximally activate the

most predictive features of a fingerprint. The fingerprint network was trained as inputs

to a linear model predicting solubility, as measured in [22]. The feature shown in the

top row has a positive predictive relationship with solubility, and is most activated by

fragments containing a hydrophilic R-OH group, a standard indicator of solubility. The

feature shown in the bottom row, strongly predictive of insolubility, is activated by

non-polar repeated ring structures.
Fragments

most activated
by

pro-solubility
feature

O
OH

O

NH

O

OH

OH

Fragments
most activated

by
anti-solubility

feature

Figure 5.4: Examining fingerprints optimized for predicting solubility. Shown here are representa-
tive examples of molecular fragments (highlighted in blue) which most activate different features
of the fingerprint. Top row: The feature most predictive of solubility. Bottom row: The feature
most predictive of insolubility.

Toxicity features We trained the same model architecture to predict toxicity, as

measured in two different datasets in Tox21 Challenge [106]. Figure 5.5 shows frag-

ments which maximally activate the feature most predictive of toxicity, in two separate

datasets.

Unterthiner et al. [107] constructed similar visualizations, but in a semi-manual way:

to determine which toxic fragments activated a given neuron, they searched over a hand-

made list of toxic substructures and chose the one most correlated with a given neuron.

66

Fragments
most

activated by
toxicity

feature on
SR-MMP
dataset

Fragments
most

activated by
toxicity

feature on
NR-AHR
dataset

Figure 5.5: Visualizing fingerprints optimized for predicting toxicity. Shown here are represen-
tative samples of molecular fragments (highlighted in red) which most activate the feature most
predictive of toxicity. Top row: the most predictive feature identifies groups containing a sulphur
atom attached to an aromatic ring. Bottom row: the most predictive feature identifies fused aro-
matic rings, also known as polycyclic aromatic hydrocarbons, a well-known carcinogen.

In contrast, our visualizations are generated automatically, without the need to restrict

the range of possible answers beforehand.

5.4.3 Predictive Performance

We ran several experiments to compare the predictive performance of neural graph

fingerprints to that of the standard state-of-the-art setup: circular fingerprints fed into

a fully-connected neural network.

Experimental setup Our pipeline takes as input the SMILES [112] string encod-

ing of each molecule, which is then converted into a graph using RDKit [86]. We also

used RDKit to produce the extended circular fingerprints used in the baseline. Hydro-

gen atoms were treated implicitly. We implemented the neural graph fingerprints and

67

the conventional fully-connected neural networks in Python, using Autograd to com-

pute gradients. Code for computing neural fingerprints and producing visualizations is

available at github.com/HIPS/neural-fingerprint.

In our convolutional networks, the initial atom and bond features were chosen to be

similar to those used by ECFP: Initial atom features concatenated a one-hot encoding

of the atom’s element, its degree, the number of attached hydrogen atoms, and the

implicit valence, and an aromaticity indicator. The bond features were a concatenation

of whether the bond type was single, double, triple, or aromatic, whether the bond was

conjugated, and whether the bond was part of a ring.

Training and Architecture Training used batch normalization [45]. We also ex-

perimented with tanh vs relu activation functions for both the neural fingerprint net-

work layers and the fully-connected network layers. relu had a slight but consistent

performance advantage on the validation set. We also experimented with dropcon-

nect [110], a variant of dropout in which weights are randomly set to zero instead of

hidden units, but found that it led to worse validation error in general. Each experiment

optimized for 10000 minibatches of size 100 using the Adam algorithm [49], a variant of

RMSprop that includes momentum.

Hyperparameter Optimization To optimize hyperparameters, we used random

search. The hyperparameters of all methods were optimized using 50 trials for each

cross-validation fold. The following hyperparameters were optimized: log learning rate,

log of the initial weight scale, the log L2 penalty, fingerprint length, fingerprint depth

(up to 6), and the size of the hidden layer in the fully-connected network. Additionally,

the size of the hidden feature vector in the convolutional neural fingerprint networks

was optimized.

68

http://github.com/HIPS/neural-fingerprint

Datasets We compared the performance of standard circular fingerprints against neu-

ral graph fingerprints on a variety of domains:

• Solubility: The aqueous solubility of 1144 molecules as measured by [22].

• Drug efficacy: The half-maximal effective concentration (EC50) in vitro of

10,000 molecules against a sulfide-resistant strain of P. falciparum, the parasite

that causes malaria, as measured by Gamo et al. [30].

• Organic photovoltaic efficiency: The Harvard Clean Energy Project [35] uses

expensive density funtional theory (DFT) simulations to estimate the photovoltaic

efficiency of organic molecules. We used a subset of 20,000 molecules from this

dataset.

Predictive accuracy We compared the performance of circular fingerprints and

neural graph fingerprints under two conditions: In the first condition, predictions were

made by a linear layer using the fingerprints as input. In the second condition, predic-

tions were made by a one-hidden-layer neural network using the fingerprints as input.

In all settings, all differentiable parameters in the composed models were optimized

simultaneously. Results are summarized in Table 5.1.

In all experiments, the neural graph fingerprints matched or beat the accuracy of

circular fingerprints, and the methods with a neural network on top of the fingerprints

typically outperformed the linear layers.

5.5 Limitations

Computational cost Neural fingerprints have the same asymptotic complexity in

the number of atoms and the depth of the network as circular fingerprints, but have

69

Dataset Solubility [22] Drug Photovoltaic
efficacy [30] efficiency [35]

Units log Mol/L EC50 in nM %
Predict mean 4.29 ± 0.40 1.47 ± 0.07 6.40 ± 0.09

Circular FPs + linear layer 1.71 ± 0.13 1.13 ± 0.03 2.63 ± 0.09
Circular FPs + neural net 1.40 ± 0.13 1.36 ± 0.10 2.00 ± 0.09
Neural FPs + linear layer 0.77 ± 0.11 1.15 ± 0.02 2.58 ± 0.18
Neural FPs + neural net 0.52 ± 0.07 1.16 ± 0.03 1.43 ± 0.09

Table 5.1: Mean squared error of neural fingerprints compared to standard circular fingerprints.

additional terms due to the matrix multiplies necessary to transform the feature vector

at each step. To be precise, computing the neural fingerprint of depth R, fingerprint

length L of a molecule with N atoms using a molecular convolutional net having F

features at each layer costs O(RNFL + RNF 2). In practice, training neural networks

on top of circular fingerprints usually took several minutes, while training both the

fingerprints and the network on top took on the order of an hour on the larger datasets.

Limited computation at each layer How complicated should we make the func-

tion that goes from one layer of the network to the next? In this chapter we chose the

simplest feasible architecture: a single layer of a neural network. However, it may be

fruitful to apply multiple layers of nonlinearities between each message-passing step (as

in [95]), or to make information preservation easier by adapting the Long Short-Term

Memory [42] architecture to pass information upwards.

Limited information propagation across the graph The local message-passing

architecture developed in this chapter scales well in the size of the graph (due to the

low degree of organic molecules), but its ability to propagate information across the

graph is limited by the depth of the network. This may be appropriate for small graphs

70

such as those representing the small organic molecules used in this chapter. However,

in the worst case, it can take a depth N
2 network to distinguish between graphs of

size N . To avoid this problem, Bruna et al. [17] proposed a hierarchical clustering

of graph substructures. A tree-structured network could examine the structure of the

entire graph using only log(N) layers, but would require learning to parse molecules.

Techniques from natural language processing [103] might be fruitfully adapted to this

domain.

Inability to distinguish stereoisomers Special bookkeeping is required to dis-

tinguish between stereoisomers, including enantiomers (mirror images of molecules) and

cis/trans isomers (rotation around double bonds). Most circular fingerprint implemen-

tations have the option to make these distinctions. Neural fingerprints could be extended

to be sensitive to stereoisomers, but this remains a task for future work.

5.6 Related work

This work is similar in spirit to the neural Turing machine [34], in the sense that we

take an existing discrete computational architecture, and make each part differentiable

in order to do gradient-based optimization.

Neural nets for quantitative structure-activity relationship (QSAR)

The modern standard for predicting properties of novel molecules is to compose cir-

cular fingerprints with fully-connected neural networks or other regression methods.

[21] used circular fingerprints as inputs to an ensemble of neural networks, Gaussian

processes, and random forests. [82] used circular fingerprints (of depth 2) as inputs to

a multitask neural network, showing that multiple tasks helped performance.

71

Neural graph fingerprints The most closely related work is Lusci et al. [60], who

build a neural network having graph-valued inputs. Their approach is to remove all

cycles and build the graph into a tree structure, choosing one atom to be the root. A

recursive neural network [97, 98] is then run from the leaves to the root to produce a

fixed-size representation. Because a graph having N nodes has N possible roots, all N

possible graphs are constructed. The final descriptor is a sum of the representations

computed by all distinct graphs. There are as many distinct graphs as there are atoms

in the network. The computational cost of this method thus grows as O(F 2N2), where

F is the size of the feature vector and N is the number of atoms, making it less suitable

for large molecules.

Convolutional neural networks Convolutional neural networks have been used

to model images, speech, and time series [58]. However, standard convolutional archi-

tectures use a fixed computational graph, making them difficult to apply to objects of

varying size or structure, such as molecules. More recently, [48] and others have de-

veloped a convolutional neural network architecture for modeling sentences of varying

length.

Neural networks on fixed graphs [17] introduce convolutional networks on

graphs in the regime where the graph structure is fixed, and each training example

differs only in having different features at the vertices of the same graph. In contrast,

our networks address the situation where each training input is a different graph.

Neural networks on input-dependent graphs [95] propose a neural network

model for graphs having an interesting training procedure. The forward pass consists of

running a message-passing scheme to equilibrium, a fact which allows the reverse-mode

72

gradient to be computed without storing the entire forward computation. They apply

their network to predicting mutagenesis of molecular compounds as well as web page

rankings. [69] also propose a neural network model for graphs with a learning scheme

whose inner loop optimizes not the training loss, but rather the correlation between

each newly-proposed vector and the training error residual. They apply their model to

a dataset of boiling points of 150 molecular compounds. Our work builds on these ideas,

with the following differences: our method replaces their complex training algorithms

with simple gradient-based optimization, generalizes existing circular fingerprint com-

putations, and applies these networks in the context of modern QSAR pipelines which

use neural networks on top of the fingerprints to increase model capacity.

Unrolled inference algorithms Hershey et al. [41] and others have noted that

iterative inference procedures sometimes resemble the feedforward computation of a

recurrent neural network. One natural extension of these ideas is to parameterize each

inference step, and train a neural network to approximately match the output of exact

inference using only a small number of iterations. The neural fingerprint, when viewed

in this light, resembles an unrolled message-passing algorithm on the original graph.

5.7 Conclusion

We generalized existing hand-crafted molecular features to allow their optimization for

diverse tasks. By making each operation in the feature pipeline differentiable, we can

use standard neural-network training methods to scalably optimize the parameters of

these neural molecular fingerprints end-to-end. We demonstrated the interpretability

and predictive performance of these new fingerprints.

Data-driven features have already replaced hand-crafted features in speech recogni-

73

tion, machine vision, and natural-language processing. Carrying out the same task for

virtual screening, drug design, and materials design is a natural next step.

74

6
Hyperparameter Optimization Through

Reversible Learning

Tuning hyperparameters of learning algorithms is hard because gradients are usually

unavailable. In this chapter, we show how to efficiently compute exact gradients of

cross-validation performance with respect to all hyperparameters by chaining deriva-

tives backwards through the entire training procedure. These gradients allow us to

optimize thousands of hyperparameters, including step-size and momentum schedules,

weight initialization distributions, richly parameterized regularization schemes, and neu-

ral network architectures. We do the computation in a memory-efficient way by exactly

75

reversing the dynamics of stochastic gradient descent with momentum.

This chapter presents work with David Duvenaud and Ryan P. Adams. David and

I came up with the ideas, wrote the implementation, performed the experiments and

wrote the paper together. It was presented at ICML in 2015 [26].

6.1 Introduction

Machine learning systems abound with hyperparameters. These can be parameters

that control model complexity, such as L1 and L2 penalties, or parameters that specify

the learning procedure itself – step sizes, momentum decay parameters and initializa-

tion conditions. Choosing the best hyperparameters is both crucial and frustratingly

difficult.

The current gold standard for hyperparameter selection is gradient-free model-based

optimization [96, 12, 14, 44]. Hyperparameters are chosen to optimize the validation loss

after complete training of the model parameters. These approaches have demonstrated

that automatic tuning of hyperparameters can yield state-of-the-art performance. How-

ever, in general they are not able to effectively optimize more than 10 to 20 hyperpa-

rameters.

Why not use gradients? Reverse-mode differentiation allows gradients to be com-

puted with a similar time cost to the original objective function. This approach is

taken almost universally for optimization of elementary1parameters. The problem with

taking gradients with respect to hyperparameters is that computing the validation loss

requires an inner loop of elementary optimization, which makes naïve reverse-mode dif-
1Since this chapter is about hyperparameters, we need a term to unambiguously denote the

other sort of parameter, the “parameter-that-is-just-a-parameter-and-not-a-hyperparameter”.
After considering “core”, “primal”, “elemental”, “fundamental”, “inner” and “vanilla” we settled
on “elementary parameter”.

76

ferentiation infeasible from a memory perspective. Section 6.2 describes this problem

and proposes a solution, which is the main technical contribution of this chapter.

Once we have access to gradient with respect to hyperparameters, we can embrace hy-

perparameters rather than strain to eliminate them, and hyperparameterize our models

as richly as they deserve. Just as having a high-dimensional elementary parameteri-

zation gives a flexible model, having a high-dimensional hyperparameterization gives

flexibility over model classes, regularization, and training methods. Section 6.3 explores

these new opportunities.

Tr
ai
ni
ng

lo
ss

Weight 1
W

ei
ght 2

Initial weights

Meta-iteration 1

Meta-iteration 2

Meta-iteration 3

Figure 6.1: Hyperparameter optimization by gradient descent. Each meta-iteration runs an entire
training run of stochastic gradient descent to optimize elementary parameters (weights 1 and 2).
Gradients of the validation loss with respect to hyperparameters are then computed by propagating
gradients back through the elementary training iterations. Hyperparameters (in this case, learning
rate and momentum schedules) are then updated in the direction of this hypergradient.

6.1.1 Contributions

• We give an algorithm that exactly reverses stochastic gradient descent with mo-

mentum to compute gradients with respect to all continuous training parameters.

77

• We show how to efficiently store only the information needed to exactly reverse

learning dynamics. For example, when the momentum term is 0.9, this method

reduces the memory requirements of reverse-mode differentiation of hyperparam-

eters by a factor of 200.

• We show that these gradients allow optimization of validation loss with respect to

thousands of hyperparameters. For example, we optimize fine-grained learning-

rate schedules, per-layer initialization distributions of neural network parameters,

per-input regularization schemes, and per-pixel data preprocessing.

• We provide insight into learning procedures by examining optimized learning-rate

schedules and initialization procedures, comparing them to standard advice in the

literature.

6.2 Hypergradients

Reverse-mode differentiation (RMD), as described in Chapter 2 has been an asset to

the field of machine learning [59]. The RMD method, known as “backpropagation”

in the deep learning community, allows the gradient of a scalar loss with respect to its

parameters to be computed in a single backward pass. This increases the computational

burden by only a small constant factor over evaluating the loss itself, regardless of the

number of parameters. Obtaining the same sort of information by either forward-mode

differentiation or brute force finite differences would require a separate pass for each

parameter and would make deep learning entirely infeasible.

Applying RMD to hyperparameter optimization was proposed by Bengio [10] and

Baydin et al. [9], and applied to small problems by Domke [23]. However, the naïve

approach fails for real-sized problems because of memory constraints. RMD requires

78

that intermediate variables be maintained in memory for the reverse pass. Evaluating

the validation loss requires training the model, which may require many elementary it-

erations. Conventional RMD stores this entire training trajectory, w1...wT in memory.

In large neural networks, the amount of memory required to store the millions of pa-

rameters being trained is typically close to the amount of physical RAM available [102].

If storing the parameter vector takes ∼1GB, and the parameter vector is updated tens

of thousands of times (the number of mini batches times the number of epochs) then

storing the learning history is unmanageable even with physical storage.

Imagine that we could exactly trace a training procedure backwards, starting from

the trained parameter values and working back to the initial parameters. Then we

could recompute the learning trajectory on the fly during the reverse pass of RMD

rather than storing it in memory. This is not possible in general, but we will show that

for the popular training procedure of stochastic gradient descent with momentum, we

can do exactly this, storing a small number of auxiliary bits to handle finite precision

arithmetic.

6.2.1 Reversible learning with exact arithmetic

Stochastic gradient descent (SGD) with momentum (Algorithm 5) can be seen as a

physical simulation of a system moving through a series of fixed force fields indexed by

time t. With exact arithmetic this procedure is reversible. This lets us write Algorithm

6, which reverses the steps in Algorithm 5, interleaved with computations of gradients.

It outputs the gradient of a function of the trained weights f(w) (such as the validation

loss) with respect to the initial weights w1, the learning-rate and momentum schedules,

and any other hyperparameters which affect training gradients.

Computations of steps 11 and 12 both require a Hessian-vector product, but these

79

Algorithm 5 Stochastic gradient descent with momentum
1: input: initial w1, decays γ, learning rates α, loss function L(w,θ, t)
2: initialize v1 = 0
3: for t = 1 to T
4: gt = ∇wL(wt,θ, t) ▷ evaluate gradient
5: vt+1 = γtvt − (1− γt)gt ▷ update velocity
6: wt+1 = wt + αtvt ▷ update position
7: end for
8: output trained parameters wT

Algorithm 6 Reverse-mode differentiation of SGD
1: input: wT , vT , γ, α, train loss L(w,θ, t), loss f(w)
2: initialize dv = 0, dθ = 0, dαt = 0, dγ = 0
3: initialize dw = ∇wf(wT)
4: for t = T counting down to 1
5: dαt = dwTvt

6: wt−1 = wt − αtvt

7: gt = ∇wL(wt,θ, t)

} exactly reverse
gradient descent
operations8: vt−1 = [vt + (1− γt)gt]/γt

9: dv = dv + αtdw
10: dγt = dvT(vt + gt)
11: dw = dw − (1− γt)dv∇w∇wL(wt,θ, t)
12: dθ = dθ − (1− γt)dv∇θ∇wL(wt,θ, t)
13: dv = γtdv
14: end for
15: output gradient of f(wT) w.r.t w1, v1, γ, α and θ

80

can be computed exactly by applying RMD to the dot product of the gradient with a

vector [78]. Thus the time complexity of reverse SGD is O(T), the same as forward

SGD.

6.2.2 Reversible learning with finite precision arithmetic

In practice, Algorithm 6 fails utterly due to finite numerical precision. The problem is

the momentum decay term γ. Every time we apply step 8 to reduce the velocity, we lose

information. Assuming we are using a fixed-point representation, 2 each multiplication

by γ < 1 shifts bits to the right, destroying the least significant bits. This is more than a

pedantic concern. Attempting to carry out the reverse training requires repeated multi-

plication by 1/γ. Errors accumulate exponentially, and the reversed learning procedure

ends far from the initial point (and usually overflows). Do we need γ < 1? Unfortu-

nately we do. γ > 1 results in unstable dynamics, and γ = 1, recovers the leapfrog

integrator [43], a perfectly reversible set of dynamics, but one that does not converge.

This problem is quite a deep one: optimization necessarily discards information. Ide-

ally, optimization maps all initializations to the same optimum, a many-to-one mapping

with no hope of inversion. Put another way, optimization moves a system from a high-

entropy initial state to a low-entropy (hopefully zero entropy) optimized final state.

It is interesting to consider the analogy with physical dynamics. The γ term is

analogous to a drag term in the simulation of Hamiltonian dynamics. Having γ < 1

corresponds to dissipative dynamics which generates heat, increases the entropy of the

environment and is not therefore not reversible. But we must have dissipation in order
2 We assume fixed-point representation to simplify the discussion (and the implementation).

Courbariaux et al. [20] show that fixed-point arithmetic is sufficient to train deep networks.
Floating point representation doesn’t fix the problem, it just defers the loss of information from
the division step to the addition step.

81

for our system to converge to equilibrium.

If we want to reverse the dynamics, there is no choice but to store the extra bits

discarded by the γ operation. But we can at least try to be parsimonious about the

number of extra bits we store. This is what the next section addresses.

6.2.3 Optimal storage of discarded entropy

This section gives the technical details of how to efficiently store the information dis-

carded each time the momentum decay operation (Step 8) is applied. If γ = 0.5, we can

simply store the single bit that falls off at each iteration, and if γ = 0.25 we could store

two bits. But for fine-grained control over γ we need a way to store the information lost

when we multiply by, say, γ = 0.9, which will be less than one bit on average. Here we

give a procedure which achieves exactly this.

We represent the velocity v and parameter w vectors with 64-bit integers. With an

implied radix point this can be a fixed-point representation of the reals. We represent

γ as a rational number, n/d. When we divide each v by d we use integer division. In

order to be able to reverse the process we just need to store the remainder, v modulo s,

in some “information buffer”, B. If B were an integer and n = 2, the remainder r would

just be a single bit, and we could store it in B by left-shifting B’s bits and adding r.

For arbitrary n, we can do the base-n analogue of this operation: multiply B by n and

add r. Eventually, B will overflow. We need a way to either detect this, store the bits,

and start a fresh integer, or else we can just use an arbitrary size integer that grows as

needed. (Python’s “long” integer type supports this). This procedure allows division

by n while storing the remainder in log2(n) bits on average.

When we multiply by the numerator of n/d we don’t need to store anything extra,

since integer division will bring us back to exactly the same point anyway. But the

82

procedure as it stands would store three bits when γ = 7/8, whereas it should store

less than one (log2(8/7) = 0.19). Our solution is the following: when we multiply v by

n, there is an opportunity to add a nonnegative integer smaller than n to the result

without affecting the reverse process (integer division by n). We can get such an integer

from the information buffer by dividing it by n and recording B modulo n. We are

using the velocity v as an information buffer itself! Algorithm 7 illustrates the entire

process.

Algorithm 7 Exactly reversible multiplication by a ratio
1: Input: Information buffer i, value c, ratio n/d
2: i = i× d ▷ make room for new digit
3: i = i+ (c mod d) ▷ store digit lost by division
4: c = c÷ d ▷ divide by denominator
5: c = c× n ▷ multiply by numerator
6: c = c+ (i mod n) ▷ add digit from buffer
7: i = i÷ n ▷ shorten information buffer
8: return updated buffer i, updated value c

We could also have used an arithmetic coding scheme for our information buffer [63,

Chapter 6]. How much does this procedure save us? When γ = 0.98, we will have to

store only 0.029 bits on average. Compared to storing a new 32-bit integer or floating-

point number at each iteration, this reduces memory requirements by a factor of one

thousand.

The standard way to save memory in RMD is checkpointing. Checkpointing stores

the entire parameter vector on only a fraction of the training steps, and recomputes

the missing steps of the training procedure (forwards) as needed during the backward

pass. However, this would require too much memory to be practical for large neural

nets trained for thousands of minibatches.

83

6.3 Experiments

In typical machine learning applications, only a few hyperparameters (less than 20) are

optimized. Since each experiment only yields a single number (the validation loss), the

search rapidly becomes more difficult as the dimension of the hyperparameter vector

increases. In contrast, when hypergradients are available, the amount of information

gained from each training run grows along with the number of hyperparameters, allowing

us to optimize thousands of hyperparameters. How can we take advantage of this new

ability?

This section shows several proof-of-concept experiments in which we can more richly

parameterize training and regularization schemes in ways that would have been previ-

ously impractical to optimize.

6.3.1 Gradient-based optimization of gradient-based optimization

Modern neural net training procedures often employ various heuristics to set learn-

ing rate schedules, or set their shape using one or two hyperparameters set by cross-

validation [21, 101]. These schedule choices are supported by a mixture of intuition,

arguments about the shape of the objective function, and empirical tuning.

To more directly shed light on good learning rate schedules, we jointly optimized

separate learning rates for every single learning iteration of training of a deep neural

network, as well as separately for weights and biases in each layer. Each meta-iteration

trained a network for 100 iterations of SGD, meaning that the learning rate schedules

were specified by 800 hyperparameters (100 iterations × 4 layers × 2 types of param-

eters). To avoid learning an optimization schedule that depended on the quirks of a

particular random initialization, each evaluation of hypergradients used a different ran-

84

dom seed. These random seeds were used both to initialize network weights and to

choose mini batches. The network was trained on 10,000 examples of MNIST, and had

4 layers, of sizes 784, 50, 50, and 50.

Because learning schedules can implicitly regularize networks [28], for example by

enforcing early stopping, for this experiment we optimized the learning rate schedules

on the training error rather than on the validation set error. Figure 6.2 shows the results

Optimized learning rate schedule

0 20 40 60 80 100
Schedule index

0

L
e
a
rn

in
g

 r
a
te

 r
a
d

ie
n

t

Figure 6.2: A learning-rate training schedule for the weights in each layer of a neural network,
optimized by hypergradient descent. The optimized schedule starts by taking large steps only in
the topmost layer, then takes larger steps in the first layer. All layers take smaller step sizes in the
last 10 iterations. Not shown are the schedules for the biases or the momentum, which showed less
structure.

of optimizing learning rate schedules separately for each layer of a deep neural network.

When Bayesian optimization was used to choose a fixed learning rate for all layers and

iterations, it chose a learning rate of 2.4.

Meta-optimization strategies We experimented with several standard stochas-

tic optimization methods for meta-optimization, including SGD, RMSprop [104], and

minibatch conjugate gradients. The results in this section used Adam [49], a variant of

RMSprop that includes momentum. We typically ran for 50 meta-iterations, and used

85

a meta-step size of 0.04. Figure 6.3 shows the elementary and meta-learning curves that

generated the hyperparameters shown in Figure 6.2.

Elementary learning curves Meta-learning curve

0 20 40 60 80 100
Training iteration

0.0

0.5

1.0

1.5

2.0

2.5
T

ra
in

in
g

 l
o
ss

Initial hypers

Final hypers

0 10 20 30 40 50
Meta iteration

0.0

0.1

0.2

0.3

0.4

0.5

F
in

a
l

tr
a
in

in
g

 l
o
ss

Training loss

Figure 6.3: Elementary and meta-learning curves. The meta-learning curve shows the training loss
at the end of each elementary iteration.

How smooth are hypergradients? To demonstrate that the hypergradients are

smooth with respect to time steps in the training schedule, Figure 6.4 shows the hy-

pergradient with respect to the step size training schedule at the beginning of training,

averaged over 100 random seeds.

Optimizing weight initialization scales We optimized a separate weight initial-

ization scale hyperparameter for each type of parameter (weights and biases) in each

layer - a total of 8 hyperparameters. Results are shown in Figure 6.5.

Interestingly, the initialization scale chosen for the first layer weights matches a heuris-

tic which says to choose an initialization scale of 1/
√
N , where N is the number of

weights in the layer.

86

Hypergradient at first meta-iteration

0 20 40 60 80 100
Schedule index

0

L
e
a
rn

in
g

 r
a
te

 r
a
d

ie
n

t

Figure 6.4: The initial gradient of the cross-validation loss with respect to the training schedule,
averaged over 100 random weight initializations and mini batches. Colors correspond to the same
layers as in Figure 6.2.

Biases Weights

0 10 20 30 40 50
Meta iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

In
it

ia
l

sc
a
le

Layer 1

Layer 2

Layer 3

Layer 4

0 10 20 30 40 50
Meta iteration

0.00

1=
p
784

0.10

1=
p
50

0.20

0.25

Figure 6.5: Meta-learning curves for the initialization scales of each layer in a 4-layer deep neural
network. Left: Initialization scales for biases. Right: Initialization scales for weights. Dashed lines
show a heuristic which gives an average total activation of 1. For the first layer it is (1/

√
784) and

for subsequent layers (1/
√
50).

6.3.2 Optimizing regularization parameters

Regularization is often important for generalization performance. Typically, a single

parameter controls a single L2 norm or sparsity penalty on the entire parameter vector

of a neural network. Because different types of parameters in different layers play

87

different roles, it is reasonable to suspect that separate regularization hyperparameter

for each parameter type would improve performance. Indeed, Snoek et al. [96] optimized

separate regularization parameters for each layer in a neural network, and found that

it improved performance.

We can take this idea even further, and introduce a separate regularization penalty for

each individual parameter in a neural network. We use a simple model as an example

– logistic regression, which can be seen as a neural network without a hidden layer.

We choose this model because every weight corresponds to an input-pixel and output-

label pair, meaning that these 7,840 hyperparameters might be relatively interpretable.

Figure 6.6 shows a set of regularization hyperparameters learned for a logistic regression

0

0.03

Figure 6.6: Optimized L2 regularization hyperparameters for each weight in a logistic regression
trained on MNIST. The weights corresponding to each output label (0 through 9 respectively)
have been rendered separately. High values (black) indicate strong regularization.

network. Because each parameter corresponds to a particular input, this regularization

scheme could be seen as a generalization of automatic relevance determination [62].

88

6.3.3 Optimizing training data

We can use Algorithm 6 to take the gradient with respect to any parameter the train-

ing procedure depends on. This includes the training data, which can be viewed as

just another set of hyperparameters. By chaining gradients through transformations

of the data, we can compute gradients of the validation objective with respect to data

preprocessing, weighting, or augmentation procedures.

-0.30

0

0.33

Figure 6.7: A dataset generated purely through meta-learning. Each pixel is treated as a hyperpa-
rameter, which are all optimized to maximize validation-set performance. Training labels are fixed
in order from 0 to 9. Some optimal pixel values are negative.

We demonstrate a simple proof-of-concept where an entire training set is learned by

gradient descent, starting from blank images. Figure 6.7 shows a training set, the pixels

of which were optimized to improve performance on a validation set of 10,000 examples

from MNIST. We optimized 10 training examples, each having a different fixed label,

again from 0 to 9 respectively. Learning the labels of a larger training set might shed

light on which classes are difficult to distinguish and so require more examples.

89

6.3.4 Optimizing initial parameters

The last remaining parameter to SGD is the initial parameter vector. Treating this

vector as a hyperparameter blurs the distinction between learning and meta-learning.

In the extreme case where all elementary learning rates are set to zero, the training

set ceases to matter and the meta-learning procedure exactly reduces to elementary

learning on the validation set. Due to philosophical vertigo, we chose not to optimize

the initial parameter vector.

6.3.5 Learning continuously-parameterized architectures

Many of the notable successes in deep learning have come from novel architectures

adapted to particular domains: convolutional neural nets, recurrent neural nets and

multitask neural nets. We can think of these architectures as hard constraints that

force particular weights to be zero and tie particular pairs of weights together. By

softening these hard architectural constraints we can form continuous (but very high-

dimensional) parameterizations of architecture. Having access to hypergradients makes

learning these softened architectures feasible.

We illustrate this “architecture learning” with a multitask learning problem using

the Omniglot data set [56]. This data set consists of 28x28 pixel greyscale images

of characters from 50 alphabets with up to 55 characters in each alphabet but only

15 examples of each character. Rather than learning a separate neural net for each

alphabet, a multitask approach would be for all the neural nets to share a single first

layer, pooling statistical strength to learn generic Gabor-like filters, while maintaining

separate higher layers specific to each alphabet.

We can parameterize any architecture based on weight tying or weight absence with

90

a pairwise quadratic penalty on the weights, wTAw, where A is a number-of-weights

by number-of-weights matrix. Learning this enormous matrix is clearly infeasible but

we can implicitly build such a matrix from lower dimensional structures of manageable

size.

For the Omniglot problem, we learn a penalty for each alphabet pair, separately for

each neural net layer. Thus, for ten three-layer neural networks, the penalty matrix A

is fully described by three ten-by-ten matrices. An architecture with fully independent

nets for each alphabet corresponds to three diagonal matrices while an architecture with

a mutual lower layer corresponds to two diagonal matrices for the upper layers and a

matrix of all ones for the lowest layer (Figure 6.9).

We use five alphabets from the Omniglot set. To see whether our multitask learning

system is able to learn high level similarities as well as low-level similarities, we repeat

these five alphabets with the images rotated by 90 degrees (Figure 6.8) to make ten

alphabets total.

Figure 6.9 shows the learned penalties (normalized by row and column to have ones

on the diagonal, akin to a correlation matrix). We see that the lowest layer has been

partially shared, across all alphabets equally, with the upper layers much less shared.

Interestingly, the top layer penalty learns to share weights between the rotated alpha-

bets.

6.4 Limitations

Backpropagation for training neural networks has several pitfalls that were later ad-

dressed by analysis and engineering. Likewise, the use of hypergradients also has several

apparent difficulties that need to be addressed before it becomes practical. This section

explores several issues with this technique that became apparent in our experiments.

91

R
ot

at
ed

O
rig

in
al

Figure 6.8: Top: Example characters from 5 alphabets taken from the Omniglot dataset. Bottom:
Those same alphabets with each character rotated by 90◦. Distinguishing characters within each
of these 10 alphabets constitute the 10 tasks in our multi-task learning experiment.

When are gradients meaningful? Bengio et al. [11] noted that “learning long-

term dependencies with gradient descent is difficult.” Our situation is even worse:

We are using gradients to optimize functions which depend on their hyperparameters

through hundreds of iterations of SGD. To make things worse, each elementary itera-

tion’s gradient itself depends on forward- and then backpropagation through a neural

network. Thus the same issues that sometimes make elementary learning difficult are

compounded.

For example, Pearlmutter [77, Chapter 4] showed that large learning rates induce

chaotic behavior in the learning dynamics, making the gradient uninformative about

the medium-term shape of the training objective. This phenomenon is related to the

92

Input Middle Output Train Test
weights weights weights error error

Separate
net-
works

0.61 1.34

Tied
weights 0.90 1.25

Learned
sharing 0.60 1.13

Figure 6.9: Results of the Omniglot multitask experiment. Each matrix shows the degree of
weight sharing between each pair of tasks for that layer. Top: A separate network is trained in-
dependently for each task. Middle: The lowest-level features were forced to be shared. Bottom:
The degree of weight sharing between tasks was optimized by hyperparameter optimization.

exploding-gradient problem [75].

Figure 6.10 illustrates this phenomenon when training a neural network having 2

hidden layers for 50 elementary iterations. We partially addressed this problem in our

experiments by initializing learning rates to be relatively small, and stopping meta-

optimization when the magnitude of the meta-gradient began to grow.

Overfitting How many hyperparameters can we fruitfully optimize? One limitation

is overfitting the validation objective, in the same way that optimizing too many param-

eters can overfit the training objective. However, the same rules of thumb still apply –

the size of the validation set, assuming examples are i.i.d., gives a rough guide to how

93

1.0 1.5 2.0
0

T
ra

in
in

g
 l

o
ss

1.0 1.5 2.0

0

G
ra

d
ie

n
t

Log learning rate

Figure 6.10: Top: Loss after training as a function of learning rate. Bottom: Gradient of loss
with respect to learning rate. When the learning rate is high, the gradient becomes uninformative
about the medium-term behavior of the function. To maintain stability during meta-learning, we
initialize using a small learning rate so as to approach the minimum from the left.

many hyperparameters can be optimized.

Discrete parameters Of course, gradients are not necessarily useful for optimizing

discrete hyperparameters such as the number of layers, or hyperparameters that affect

discrete changes such as dropout regularization parameters. Some of these difficulties

could be addressed by parameterizing apparently discrete choices in a continuous man-

ner. For instance, the per-hidden-unit regularization of section 6.3.2 is an example of a

continuous way to choose the number of hidden units.

94

6.5 Related work

The most closely-related work is Domke [23], who derived algorithms to compute reverse-

mode derivatives of gradient descent with momentum and L-BFGS, using them to up-

date the hyperparameters of CRF image models. However, his approach relied on naïve

caching of all parameter vectors w1,w2, . . . ,wT , making it impractical for large models

with many training iterations.

Larsen et al. [57], Eigenmann & Nossek [27], Chen & Hagan [19], Bengio [10], Abdel-

Gawad & Ratner [1], and Foo et al. [29] showed that gradients of regularization parame-

ters are available in closed form when training has converged exactly to a local minimum.

In contrast, our procedure can compute exact gradients of any type of hyperparameter,

whether or not learning has converged.

Support vector machines Chapelle et al. [18] introduced a differentiable bound

on the SVM loss in order to be able to compute derivatives with respect to hundreds

of hyperparameters, including weighting parameters for each input dimension in the

kernel. However, this bound was not tight, since optimizing the SVM objective requires

a discrete selection of training points.

Bayesian methods For Bayesian models with a closed-form marginal likelihood, gra-

dients with respect to all continuous hyperparameters are usually available. For ex-

ample, this ability has been used to construct complex kernels for Gaussian process

models [85, Chapter 5]. Variational inference also allows gradient-based tuning of hy-

perparameters in Bayesian neural-network models such as deep Gaussian processes [39].

However, it does not provide gradients with respect to training parameters.

95

Gradients with respect to Markov chain parameters Salimans et al. [94]

tune the step-size and mass-matrix parameters of Hamiltonian Monte Carlo by chaining

gradients from a lower bound on the marginal likelihood through several iterations of

leapfrog dynamics. Because they used only a small number of steps, all intermediate

values could be stored naïvely. Our reversible-dynamics memory-tape approach could

be used to dramatically extend the number of HMC iterations used in this approach.

6.6 Extensions and future work

Bayesian optimization with gradients Hypergradients could be used with paral-

lel, model-based optimization of hyperparameters. For example, Gaussian-process-based

optimization methods could incorporate gradient information [99]. Such methods could

make use of parallel evaluations of hypergradients, which might be too slow to evaluate

in a sequential manner.

Reversible elementary computation Recurrent neural network models can re-

quire so much memory to differentiate that checkpointing is required simply to compute

their elementary gradients [66]. Reversible computation might offer memory savings for

some architectures. For example, evaluations of Long Short-Term Memory [42] or a

Neural Turing Machines [34] rely on long chains of mostly-small updates of parame-

ters. Exactly reversing these dynamics might allow more memory-efficient elementary

gradient evaluations of their outputs on very long input sequences.

Exactly reversing other learning methods The memory saving trick from

Section 6.2.3 could presumably be applied to other momentum-based variants of SGD

such as RMSprop [104] or Adam [49].

96

6.7 Conclusion

In this chapter, we derived a computationally efficient procedure for computing gradients

through stochastic gradient descent with momentum. We showed how the approximate

reversibility of learning dynamics can be used to drastically reduce the memory require-

ment for exactly backpropagating gradients through hundreds of training iterations.

We showed how these gradients allow the optimization of validation loss with respect

to thousands of hyperparameters, something which was previously infeasible. This new

ability allows the automatic tuning of most details of training neural networks. We

demonstrated the tuning of detailed training schedules, regularization schedules, and

neural network architectures.

97

7
Early Stopping as Variational Inference

In the previous chapter we used reversible learning as a trick for performing reverse mode

differentiation without storing the intermediate states and we were forced to account

for the entropy reduction in order to do the reversal exactly. But keeping track of

entropy this way can be a powerful tool in itself. In this chapter we use this entropy

accounting to estimate the variational lower bound of the distribution associated with

an optimization procedure.

We show that unconverged stochastic gradient descent can be interpreted as a pro-

cedure that samples from a nonparametric approximate posterior distribution. This

distribution is implicitly defined by the transformation of an initial distribution by a

sequence of optimization steps. By tracking the change in entropy over these distribu-

98

tions during optimization, we form a scalable, unbiased estimate of a variational lower

bound on the log marginal likelihood. This bound can be used to optimize hyper-

parameters instead of cross-validation. This Bayesian interpretation of SGD suggests

improved, overfitting-resistant optimization procedures, and gives a theoretical founda-

tion for early stopping and ensembling. We investigate the properties of this marginal

likelihood estimator on neural network models.

This chapter presents work with David Duvenaud and Ryan P. Adams. David and

I came up with the ideas, wrote the implementation, performed the experiments and

wrote the paper together. It will be presented at AISTATS in May 2016 [25].

7.1 Introduction

In much of machine learning, the central computational challenge is optimization: we try

to minimize some training-set loss with respect to a set of model parameters. If we treat

the training loss as a negative log-posterior, this amounts to searching for a maximum

a posteriori (MAP) solution. Paradoxically, over-zealous optimization can yield worse

test-set results than incomplete optimization due to the phenomenon of over-training.

A popular remedy to over-training is to invoke “early stopping” in which optimization is

halted based on the continually monitored performance of the parameters on a separate

validation set. However, early stopping is both theoretically unsatisfying and incoherent

from a research perspective: how can one rationally design better optimization methods

if the goal is to achieve something “powerful but not too powerful”? A related trick is to

ensemble the results from multiple optimization runs from different starting positions.

Similarly, this must rely on imperfect optimization, since otherwise all optimization runs

would reach the same optimum.

We propose an interpretation of incomplete optimization in terms of variational

99

Initial After 150 steps After 300 steps
distribution of gradient descent of gradient descent

Figure 7.1: A series of distributions (blue) implicitly defined by gradient descent on an objective
(black). These distributions are defined by mapping each point in the initial distribution through
a fixed number of iterations of optimization. These distributions have nonparametric shapes, and
eventually concentrate around the optima of the objective.

Bayesian inference, and provide a simple method for estimating the marginal likelihood

of the approximate posterior. Our starting point is a Bayesian posterior distribution

for a potentially complicated model, in which there is an empirical loss that can be

interpreted as a negative log likelihood and regularizers that have interpretations as

priors. One might proceed with MAP inference, and perform an optimization to find

the best parameters. The main idea of this chapter is that such an optimization pro-

cedure, initialized according to some distribution that can be chosen freely, generates

a sequence of distributions that are implicitly defined by the action of the optimization

update rule on the previous distribution. We can treat these distributions as variational

approximations to the true posterior distribution. A single optimization run for N it-

erations represents a draw from the Nth such distribution in the sequence. Figure 7.1

shows contours of these approximate distributions on an example posterior.

With this interpretation, the number of optimization iterations can be seen as a vari-

ational parameter, one that trades off fitting the data well against maintaining a broad

(high entropy) distribution. Early stopping amounts to optimizing the variational lower

100

bound (or an approximation based on a validation set) with respect to this variational

parameter. Ensembling different random restarts can be viewed as taking independent

samples from the variational posterior.

To establish whether this viewpoint is helpful in practice, we ask: can we efficiently

estimate the marginal likelihood implied by unconverted optimization? We tackle this

question in section 7.2. Specifically, for stochastic gradient descent (SGD), we show

how to compute an unbiased estimate of a lower bound on the log marginal likelihood of

each iteration’s implicit variational distribution. We also introduce an ‘entropy-friendly’

variant of SGD that maintains better-behaved implicit distributions.

We also ask whether model selection based on these marginal likelihood estimates

picks models with good test-time performance. We give some experimental evidence in

both directions in section 7.5. A related question is how close the variational distribu-

tions implied by various optimization rules approximate the true posterior. We briefly

address this question in section 7.6.

7.1.1 Contributions

• We introduce a new interpretation of optimization algorithms as samplers from

a variational distribution that adapts to the true posterior, eventually collapsing

around its modes.

• We provide a scalable estimator for the entropy of these implicit variational dis-

tributions, allowing us to estimate a lower bound on the marginal likelihood of

any model whose posterior is twice-differentiable, even on problems with millions

of parameters and data points.

• In principle, this marginal likelihood estimator can be used for hyperparameter

101

selection and early stopping without the need for a validation set. We investigate

the performance of these estimators empirically on neural network models, and

show that they have reasonable properties. However, further refinements are likely

to be necessary before this marginal likelihood estimator is more practical than

using a validation set.

7.2 Incomplete optimization as variational inference

As explained in Chapter 2, variational inference aims to approximate an intractable

posterior distribution, p(θ|D), with more tractable distribution, q(θ), by maximizing

the variational lower bound:

L[q] ≡ Eq [− log q(θ)]︸ ︷︷ ︸
Entropy S[q]

−Eq [− log p(θ,D)]︸ ︷︷ ︸
Energy E[q]

. (7.1)

We propose a nonparametric variational family, q(θ), defined as follows. Consider a

general procedure to minimize the energy (− log p(θ,D)) with respect to θ ∈ RD. The

parameters θ are initialized according to some distribution q0(θ) and updated at each

iteration according to a transition operation T : RD → RD:

θ0 ∼ q0(θ)

θt+1 = T (θt).

Our variational family consists of the sequence of distributions q0, q1, q2, . . ., where qt(θ)

is the distribution over θt generated by the above procedure. These distributions don’t

have a closed form, but we can exactly sample from qt by simply running the optimizer

for t steps starting from a random initialization.

102

As shown in (7.1), L consists of an energy term and an entropy term. The energy

term measures how well q fits the data and the entropy term encourages the probability

mass of q to spread out, preventing overfitting. As optimization of θ proceeds from

its q0-distributed starting point, we can examine how L changes. The negative energy

term grows, since the goal of the optimization is to reduce the energy. The entropy term

shrinks because the optimization converges over time. Optimization thus generates a

sequence of distributions that range from underfitting to overfitting, and the variational

lower bound captures this tradeoff.

We cannot evaluate L[qt] exactly, but we can obtain an unbiased estimator. Sam-

pling θ0 from q0 and then applying the transition operator t times produces an exact

sample θ0 from qt, by definition. Since θt is an exact sample from qt(θ), log p(θt, D) is

an unbiased estimator of the energy term of (7.1). The entropy term is trickier, since

we do not have access to the density q(θ) directly. However, if we know the entropy of

the initial distribution, S[q0(θ)], then we can estimate S[qt(θ)] by tracking the change

in entropy at each iteration, calculated by the change of variables formula.

To compute how the volume shrinks or expands due to an iteration of the optimizer,

we require access to the Jacobian of the optimizer’s transition operator, J(θ):

S[qt+1]− S[qt] = Eqt(θt)

[
log |J(θt)|

]
. (7.2)

Note that this analysis assumes that the mapping T is bijective. Combining these terms,

we have an unbiased estimator of L at iteration T , based on the sequence of parameters,

103

θ0, . . . , θT , from a single training run:

L[qT] ≈ log p(θT , D)︸ ︷︷ ︸
Energy

+

T−1∑
t=0

log |J(θt)|+ S[q0]︸ ︷︷ ︸
Entropy

. (7.3)

7.3 The entropy of stochastic gradient descent

In this section, we give an unbiased estimate for the change in entropy caused by SGD

updates. We’ll start with a naïve method, then in section 7.3.1, we give an approxima-

tion that scales linearly with the number of parameters in the model.

Stochastic gradient descent is a popular and effective optimization procedure with

the following update rule:

θt+1 = θt − α∇L(θ), (7.4)

where the L(θ) the objective loss (or an unbiased estimator of it e.g. using minibatches)

for example − log p(θ,D), and α is a ‘step size’ hyperparameter. Taking the Jacobian

of this update rule gives the following unbiased estimator for the change in entropy at

each iteration:

S[qt+1]− S[qt] ≈ log |I − αHt(θt)| (7.5)

where Ht is the Hessian of − log pt(θ,D) with respect to θ.

Note that the Hessian does not need to be positive definite or even non-singular. If

some directions in θ have negative curvature, as on the crest of a hill, it just means that

optimization near there spreads out probability mass, increasing the entropy. There

104

Algorithm 8 stochastic gradient descent with entropy estimate
1: input: Weight initialization scale σ0, step size α, twice-differentiable negative

log-likelihood L(θ, t)
2: initialize θ0 ∼ N (0, σ0ID)
3: initialize S0 =

D
2
(1 + log 2π) +D log σ0

4: for t = 1 to T
5: St = St−1 + log |I− αHt−1| ▷ Update entropy
6: θt = θt−1 − α∇wL(wt,θ, t) ▷ Update parameters
7: end for
8: output sample θT , entropy estimate ST

are, however, restrictions on α. If αλi = 1, for any i, where λi are the eigenvalues of

Ht, then the change in entropy will be undefined (infinitely negative). This corresponds

to a Newton-like update where multiple points collapse to the optimum in a single step

giving a distribution with zero variance in a particular direction. However, gradient

descent is unstable anyway if αλmax > 2, where λmax is the largest eigenvalue of Ht. So

if we choose a sufficiently conservative step size, such that αλmax < 1, this situation

should not arise. Algorithm 8 combines these steps into an algorithm that tracks the

approximate entropy during optimization.

So far, we have treated SGD as a deterministic procedure even though, as the name

suggests, the gradient of the loss at each iteration may be replaced by a stochastic ver-

sion. Our analysis of the entropy is technically valid if we fix the sequence of stochastic

gradients to be the same for each optimization run, so that the only randomness comes

from the parameter initialization. This is a tendentious argument, similar to arguing

that a pseudorandom sequence of numbers has only as much entropy as its seed. How-

ever, if we do choose to randomize the gradient estimator differently for each training

run (e.g. choosing different minibatches) then the expression for the change in en-

tropy, Equation 7.5, remains valid as a lower bound on the change in entropy and the

105

subsequent calculation of L remains a true lower bound on the log marginal likelihood.

7.3.1 Estimating the Jacobian in high dimensions

The expression for the change in entropy given by (7.5) is impractical for large-scale

problems since it requires an O
(
D3

)
determinant computation. Fortunately, we can

make a good approximation using just two Hessian-vector products, which can usually

be performed in O (D) time using reverse-mode differentiation [78].

The idea is that since αλmax is small, the Jacobian is just a small perturbation to the

identity, and we can approximate its determinant using traces as follows:

log |I − αH | =
D∑
i=0

log (1− αλi)

≥
D∑
i=0

[
−αλi − (αλi)

2
]

(7.6)

= −αTr [H]− α2Tr [HH] . (7.7)

The bound in (7.6) is just a second order Taylor expansion of log(1−x) about x = 0 and

is valid if αλi < 0.68. As we argue above, the regime in which SGD is stable requires

that αλmax < 1, so again choosing a conservative learning rate keeps this bound in the

correct direction. For sufficiently small learning rates, this bound becomes tight.

The trace of the Hessian can be estimated using inner products of random vectors

[6]:

Tr [H] = E
[
rTHr

]
, r ∼ N (0, I) . (7.8)

To see that this is a valid estimator, consider a basis in which H is diagonal. We use

106

Algorithm 9 linear-time estimate of log-determinant of Jacobian of one iteration
of stochastic gradient descent
1: input: step size α, current parameter vector θ, twice-differentiable negative

log-likelihood L(θ)
2: initialize r0 ∼ N (0, σ0ID)
3: r1 = r0 − αrT0∇∇L(θ, t)
4: r2 = r1 − αrT1∇∇L(θ, t)
5: L̂ = rT0 (−2r0 + 3r1 − r2)
6: output L̂, an unbiased estimate of a parabolic lower bound on the change in

entropy.

this estimator to derive algorithm 9. In high dimensions, the exact evaluation of the

determinant in step 5 should be replaced with the approximation given by algorithm 9.

Note that the quantity we are estimating (7.5) is well-conditioned, in contrast to the

related problem of computing the log of the determinant of the Hessian itself. This

arises, for example, in making the Laplace approximation to the posterior [61]. This is

a much harder problem since the Hessian can be arbitrarily ill-conditioned, unlike our

small Hessian-based perturbation to the identity.

7.3.2 Parameter initialization, priors, and objective functions

What initial parameter distribution should we use for SGD? The marginal likelihood

estimate given by (7.3) is valid no matter which initial distribution we choose. We could

conceivably optimize this distribution in an outer loop using the marginal likelihood

estimate itself.

However, using the prior as the initialization distribution has several advantages.

First, it is usually designed to have broad support. Since SGD usually decreases entropy,

starting with a high-entropy distribution is a good heuristic.

The second advantage has to do with our choice of objective function. One option

107

is to use the unnormalized log-posterior, but we can use any function we like. A more

sensible choice is the negative log-likelihood. Variational distributions only differ from

the initial distribution to the extent that the posterior differs from the prior. This

difference is just the log-likelihood.

One nice implication of using the log-likelihood as the objective function is that the

entropy estimate will be exactly correct for parameters that don’t affect the likelihood,

since their gradient (and corresponding rows of the Hessian) will always be zero. Be-

cause of these favorable properties, we use the prior as the initial distribution and

log-likelihood as the objective in our experiments.

7.4 Entropy-friendly optimization methods

SGD optimizes the training loss, not the variational lower bound. In some sense, if

this optimization happens to create a good intermediate distributions, it’s only by ac-

cident! Why not design a new optimization method that produces good variational

lower bounds? In place of SGD, we can use any optimization method for which we can

approximate the change in entropy, which in practice means any optimization for which

we can compute Jacobian-vector products.

An obvious place to start is with stochastic update rules inspired by Markov chain

Monte Carlo (MCMC). Procedures like Hamiltonian Monte Carlo [73] and Langevin

dynamics MCMC [113] look very much like optimization procedures but actually have

the posterior as their stationary distribution. This is exactly the approach taken by

Salimans et al. [94]. One difficulty with using stochastic updates, however, is that

calculating the change in entropy at each iteration requires access to the current dis-

tribution over parameters. As an example, consider that convolving a delta function

with a Gaussian yields an infinite entropy increase, whereas convolving a broad uniform

108

distribution with a Gaussian yields only a small increase in entropy. Welling & Teh

[113] handle this by learning a highly parameterized “inverse model” which implicitly

models the distribution over parameters. The downside of this approach is that the

parameters of this model must be learned in an outer loop.

Another approach is to try to develop deterministic update rules that avoid some of

the pathologies of update rules like SGD. This could could be a research agenda in itself,

but we give one example here of a modification to SGD which can improve the variational

lower bound. One problem with SGD in the context of posterior approximation is that

SGD can collapse the implicit distribution into low-entropy filaments, shrinking in some

directions to be orders of magnitude smaller than the width of the true posterior. A

simple trick to prevent this is to apply a nonlinear, parameter-wise warping to the

gradient, such that directions of very small gradient do not get optimized all the way

to the optimium. For example, the modified gradient (and resulting modified Jacobian)

could be

g′ = g − g0 tanh (g/g0) (7.9)

J ′ =
(
1− cosh−2(g/g0)

)
J (7.10)

where g0 is a “gradient threshold” parameter that sets the scale of this shrinkage. The

effect is that entropy is not removed from parameters which are close to their opti-

mum. An example showing the effect of this entropy-friendly modification is shown in

Figure 7.2.

109

True posterior

0 iterations

150 iterations

300 iterations

True posterior

0 iterations

150 iterations

300 iterations

Figure 7.2: Left: The distribution implied by standard gradient descent. Right: The distribu-
tion implied by the modified, “entropy-friendly”, gradient descent algorithm. The entropy-friendly
distributions are slower to collapse into low-entropy filaments, causing the marginal likelihood to
remain higher.

7.5 Experiments

In this section we show that the marginal likelihood estimate can be used to choose

when to stop training, to choose model capacity, and to optimize training hyperparam-
110

eters without the need for a validation set. We are not attempting to motivate SGD

variational inference as a superior alternative to other procedures; we simply wish to

give a proof of concept that the marginal likelihood estimator has reasonable properties.

Further refinements are likely to be necessary before this marginal likelihood estimator

is more practical than simply using a validation set.

7.5.1 Choosing when to stop optimization

As a simple demonstration of the usefulness of our marginal likelihood estimate, we

show that it can be used to estimate the optimal number of training iterations before

overfitting begins. We performed regression on the Boston housing dataset using a

neural network with one hidden layer having 100 hidden units, sigmoidal activation

functions, and no regularization. Figure 7.3 shows that marginal likelihood peaks at a

similar place to the peak of held-out log-likelihood, which is where early stopping would

occur when using a large validation set.

7.5.2 Choosing the number of hidden units

The marginal likelihood estimate is also comparable between training runs, allowing us

to use it to select model hyperparameters, such as the number of hidden units.

Figure 7.4 shows marginal likelihood estimates as a function of the number of hidden

units in the hidden layer of a neural network trained on 50,000 MNIST handwritten

digits. The largest network trained in this experiment contains 2 million parameters.

The marginal likelihood estimate begins to decrease for more than 30 hidden units,

even though the test-set likelihood in maximized at 300 hidden units. We conjecture

that this is due to the marginal likelihood estimate penalizing the loss of entropy in

parameters whose contribution to the likelihood was initially large, but were made

111

0 100 200 300 400 500
5
6
7
8
9

10
11

R
M

S
E

Train error

Test error

0 100 200 300 400 500
Training iteration

28.6

28.4

28.2

28.0

27.8

27.6

M
a
rg

in
a
l

li
k
e
li

h
o
o
d

Marginal likelihood

Figure 7.3: Top: Training and test-set error on the Boston housing dataset. Bottom: Stochastic
gradient descent marginal likelihood estimates. The dashed line indicates the iteration with highest
marginal likelihood. The marginal likelihood, estimated online using only the training set, and the
test error peak at a similar number of iterations.

irrelevant later in the optimization.

7.5.3 Optimizing training hyperparameters

We can also use marginal likelihoods to optimize training parameters such as learning

rates, initial distributions, or any other optimization parameters. As an example, Figure

7.5 shows the marginal likelihood estimate as a function of the gradient threshold in the

entropy-friendly SGD algorithm from section 7.4 trained on 50,000 MNIST handwritten

digits.

As the level of thresholding increases, the training and test error get worse due to

under-fitting. However, for intermediate thresholds, the lower bound increases. Because

it is a lower bound, its increase means that the estimate of the marginal likelihood is

112

10 30 100 300 1000 3000
0.25

0.20

0.15

0.10

0.05

P
re

d
ic

ti
ve

 l
ik

e
li

h
o
o
d

Training likelihood

Test likelihood

10 30 100 300 1000 3000
Number of hidden units

5

4

3

2

1

M
a
rg

in
a
l

li
k
e
li

h
o
o
d

Marginal likelihood

Figure 7.4: Top: Training and test-set likelihood as a function of the number of hidden units
in the first layer of a neural network. Bottom: Stochastic gradient descent marginal likelihood
estimates. In this case, the marginal likelihood over-penalizes high numbers of hidden units.

becoming more accurate, even though the actual model happens to be getting worse at

the same time.

7.5.4 Implementation details

To compute Hessian-vector products in our models, we used autograd, a reverse-mode

automatic differentiation package for Python capable of arbitrary-order derivatives.

7.6 Limitations

In practice, the marginal likelihood estimate we present might not be useful for several

reasons. First, using only a single sample to estimate both the expected likelihood as

well as the entropy of an entire distribution will necessarily have high variance under

113

http://github.com/HIPS/autograd

0 1 3 10 30 100 300 1000
0.8
0.7
0.6
0.5
0.4
0.3
0.2

T
e
st

 L
ik

e
li

h
o
o
d

Training likelihood

Test likelihood

0 1 3 10 30 100 300 1000
Gradient threshold

0.85

0.80

0.75

0.70

0.65

0.60

M
a
rg

in
a
l

li
k
e
li

h
o
o
d

Marginal likelihood

Figure 7.5: Top: Training and test-set likelihood as a function of the gradient threshold. Bottom:
Marginal likelihood as a function of the gradient threshold. A gradient threshold of zero corre-
sponds to standard SGD. The increased lower bound for non-zero thresholds indicates that the
entropy-friendly variant of SGD is producing a better implicit variational distribution.

some circumstances. These problems could conceivably be addressed by ensembling,

which has an interpretation as taking multiple exact independent samples from the

implicit posterior.

Second, as parameters converge, their entropy estimate (and true entropy) will con-

tinue to decrease indefinitely, making the marginal likelihood arbitrarily small. How-

ever, in practice there is usually a limit to the degree of overfitting possible. This

raises the question: when are marginal likelihoods a good guide to predictive accuracy?

Presumably the marginal likelihood is more likely to be correlated with predictive per-

formance when the implicit distribution has moderate amounts of entropy. In section

7.4 we modified SGD to be less prone to produce regions of pathologically low entropy,

but a more satisfactory solution is probably possible.

114

Third, if the model includes a large number of parameters that do not affect the

predictive likelihood, but which are still affected by a regularizer, their convergence

will penalize the marginal likelihood estimate even though these parameters do not

affect test set performance. This is why in section 7.3.2 we recommend optimizing

only the log-likelihood, and incorporating the regularizer directly into the initialization

procedure. More generally however, entropy could be underestimated if a large group

of parameters are initially constrained by the data, but are later “turned off” by some

other parameters in the model.

Finally, how viable is optimization as an inference method? Standard variational

methods find the best approximation in some class, but SGD doesn’t even try to produce

a good approximate posterior, other than by seeking the modes. Indeed, Figure 7.1

shows that the distribution implied by SGD collapses to a small portion of the true

posterior early on, and mainly continues to shrink as optimization proceeds. However,

the point of early stopping is not that the intermediate distributions are particularly

good approximations, but simply that they are better than the point masses that occur

when optimization has converged.

7.7 Related work

Estimators for early stopping Stein’s unbiased risk estimator (SURE) [100] pro-

vides an unbiased estimate of generalization performance under broad conditions, and

can be used to construct a stopping rule. Raskutti et al. [84] derived a SURE estimate

for SGD in a regression setting. Interestingly, this estimator depends on the ‘shrinkage

matrix’
∏T

t=0 (I− αtHT), which is just the Jacobian of the entire SGD procedure along

a particular path. However, this estimator depends on an estimate of the noise variance,

and is restricted to the i.i.d. regression setting. It’s not clear if this stopping rule could

115

also be used to select other training parameters or model hyperparameters.

Reversible learning Optimization is an intrinsically information-destroying pro-

cess, since a (good) optimization procedure maps any initial starting point to one or

a few final optima. We can quantify this loss of information by asking how many bits

must be stored in order to reverse the optimization, as in Maclaurin et al. [65]. We can

think of the number of bits needed to exactly reverse the optimization procedure as the

average number of bits ‘learned’ during the optimization.

From this perspective, stopping before optimization converges can be seen as a way

to limit the number of bits we try to learn about the parameters from the data. This

is a reasonable strategy, since we don’t expect to be able to learn more than a finite

number of bits from a finite dataset. This is also an example of reducing the hypothesis

space to improve generalization.

MCMC for variational inference Our method can be seen as a special case of

Salimans et al. [94], who showed that any set of stochastic dynamics, even those not

satisfying detailed balance, can be used to implicitly define a variational distribution.

However, to provide a tight variational bound, one needs to estimate the entropy of the

resulting implicit distribution. Salimans et al. [94] do this by defining an inverse model

which estimates backwards transition probabilities, and then optimizes this model in an

outer loop. In contrast, our dynamics are deterministic, and our estimate of the entropy

has a simple fixed form.

Bayesian neural networks Variational inference has been performed in Bayesian

neural-network models [33, 39, 40]. Kingma & Welling [50] show how neural networks

having unknown weights can be reformulated as neural networks having known weights

116

but stochastic hidden units, and exploit this connection to preform efficient gradient-

based inference in Bayesian neural networks.

Black-box stochastic variational inference Kucukelbir et al. [54] introduce a

general scheme for variational inference using only the gradients of the log-likelihood of

a model. However, they constrain their variational approximation to be Gaussian, as

opposed to our free-form variational distribution.

SGD as an estimator Hardt et al. [37] give theoretical results showing that the

smaller the number of training epochs, the better the generalization performance of

models trained using SGD. Toulis et al. [105] examine the properties of SGD as an esti-

mator, and show that a variant that averages parameter updates has improved statistical

efficiency.

7.8 Future work and extensions

Optimization with momentum One obvious extension would be to design an en-

tropy estimator of momentum-based optimizers such as stochastic gradient descent with

momentum, or refinements such as Adam [49]. However, it is difficult to track the en-

tropy change during the updates to the momentum variables.

Gradient-based hyperparameter optimization Optimizing marginal likelihood

rather than training loss lets us choose both training and regularization parameters

without using a validation set. However, optimizing more than a few hyperparameters

is difficult without gradients. Following Domke [23] and Maclaurin et al. [65], we could

compute exact gradients of the variational lower bound with respect to all variational

parameters using reverse-mode differentiation through SGD. Chaining gradients through

117

SGD would allow one to set all hyperparameters using gradient-based optimization

without the need for a validation set.

Stochastic dynamics One possible method to deal with over-zealous reduction in

entropy by SGD would be to add noise to the dynamics. In the case of Gaussian

noise, we would recover Langevin dynamics [73]. However, estimating the entropy is

more difficult in this case. Welling & Teh [113] introduced stochastic gradient Langevin

dynamics for doing inference with minibatches, but do not track the entropy of the

implicit distribution.

More generally, we are free to design optimization algorithms that do a better job

of producing samples from the true posterior, as long as we can track their entropy.

The gradient-thresholding method proposed in this chapter is a simple first example of

a refinement to SGD that maintains a tractable entropy estimate while improving the

quality of the intermediate distributions.

7.9 Conclusion

Most regularization methods have an interpretation as approximate inference in some

Bayesian model. This chapter shows that early stopping and ensembling can also be

interpreted this way, sampling from an implicit nonparametric distribution.

We introduced a variational lower bound on the marginal likelihood of these implicit

distributions. We showed how to produce an unbiased estimate of this variational lower

bound by approximately tracking the entropy change at each step of optimization. Our

estimator is compatible with using data minibatches and scales linearly with the number

of parameters, making it suitable for large-scale problems. This inexpensive calculation

turns standard gradient descent into an inference algorithm.

118

In principle this bound could be used to choose model and training hyperparameters

without a validation set, however in practice it doesn’t beat the gold standard of cross-

validation.

119

8
Conclusion

This thesis has presented five contributions to machine learning: two algorithms for

approximate Bayesian inference, Firefly Monte Carlo (Chapter 3) and early stopping

as variational inference Chapter (7); a differentiable version of chemical fingerprints for

learning data-driven molecular features (Chapter 5); a procedure for taking gradients

with respect to hyperparameters by exactly reversing optimization dynamics (Chapter

6) and software for effortlessly producing gradients, Autograd (Chapter 4).

We can identify three recurring motifs. The first is the effectiveness of gradient-based

optimization with flexible, highly parameterized models. This has been the central in-

gredient in the success of neural networks for supervised learning and saw it in action

in our neural molecular fingerprints and in our gradient-based hyperparameter opimiza-

120

tion.

The second motif has been practical Bayesian inference. The Bayesian approach to

modeling has many compelling merits, but it is often held back by a perception of

computational difficulty. We need to make tools for approximate Bayesian inference

that are easy to use and scale well to large data sets. Firefly and early stopping as

inference were attempts in this direction.

The third motif has been the mind-expanding power of programming tools that

present the right abstraction. The gradient operator is an excellent abstraction, and

we use it freely and to great effect in symbolic mathematics. But having Autograd, a

practical implementation of the gradient operator in an actual programming language,

has been invaluable.

A promising research direction that combines these threads is to use differentiable,

highly parameterized models as conditional variational distributions. We could build

an abstraction for composing conditional probabilites that would allow us to specify

both a generative process and a variational family that can approximately condition on

observed variables. These ideas are in the air. See, for example, Kingma & Welling [51],

Kucukelbir et al. [55] and very recent work from my own colleagues, Johnson et al. [47].

121

References

[1] Abdel-Gawad, A. & Ratner, S. (2007). Adaptive optimization of hyperparameters

in L2-regularised logistic regression. Technical report.

[2] Amador-Bedolla, C., R. Olivares-Amaya, R., Hachmann, J., & Aspuru-Guzik,

A. (2013). Organic photovoltaics. In K. Rajan (Ed.), Informatics for Materials

Science and Engineering (pp. 423–440).: Elsevier, Amsterdam.

[3] Anderson, H. L. (1986). Metropolis, Monte Carlo, and the MANIAC. Los Alamos

Science.

[4] Andrieu, C. & Roberts, G. O. (2009). The pseudo-marginal approach for efficient

Monte Carlo computations. The Annals of Statistics, (pp. 697–725).

[5] Angelino, E., Kohler, E., Waterland, A., Seltzer, M., & Adams, R. P. (2014).

Accelerating MCMC via parallel predictive prefetching. In Proceedings of the

30th Conference on Uncertainy in Artificial Intelligence.

[6] Bai, Z., Fahey, G., & Golub, G. (1996). Some large-scale matrix computation

problems. Journal of Computational and Applied Mathematics, 74(1), 71–89.

[7] Bardenet, R., Doucet, A., & Holmes, C. (2014). Towards scaling up MArkov

chain Monte Carlo : an adaptive subsampling approach. In Proceedings of the

31st International Conference on Machine Learning.

122

[8] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron,

A., Bouchard, N., & Bengio, Y. (2012). Theano: new features and speed improve-

ments. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.

[9] Baydin, A. G., Pearlmutter, B. A., & Radul, A. A. (2015). Automatic differenti-

ation in machine learning: a survey. CoRR, abs/1502.05767.

[10] Bengio, Y. (2000). Gradient-based optimization of hyperparameters. Neural com-

putation, 12(8), 1889–1900.

[11] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies

with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2),

157–166.

[12] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B., et al. (2011). Algorithms for

hyper-parameter optimization. In Advances in Neural Information Processing

Systems.

[13] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,

Turian, J., Warde-Farley, D., & Bengio, Y. (2010). Theano: a CPU and GPU

math expression compiler. In Proceedings of the Python for Scientific Computing

Conference (SciPy). Oral Presentation.

[14] Bergstra, J., Yamins, D., & Cox, D. (2013). Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architectures.

In International Conference on Machine Learning (pp. 115–123).

[15] Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2016). Variational inference: A

review for statisticians. arXiv preprint arXiv:1601.00670.

123

[16] Böhning, D. (1992). Multinomial logistic regression algorithm. Annals of the

Institute of Statistical Mathematics, 44(1), 197–200.

[17] Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and

locally connected networks on graphs. arXiv preprint arXiv:1312.6203.

[18] Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multi-

ple parameters for support vector machines. Machine learning, 46(1-3), 131–159.

[19] Chen, D. & Hagan, M. T. (1999). Optimal use of regularization and cross-

validation in neural network modeling. In International Joint Conference on

Neural Networks, volume 2 (pp. 1275–1280).: IEEE.

[20] Courbariaux, M., Bengio, Y., & David, J.-P. (2014). Low precision arithmetic for

deep learning. arXiv preprint arXiv:1412.7024.

[21] Dahl, G. E., Jaitly, N., & Salakhutdinov, R. (2014). Multi-task neural networks

for QSAR predictions. arXiv preprint arXiv:1406.1231.

[22] Delaney, J. S. (2004). ESOL: Estimating aqueous solubility directly from molec-

ular structure. Journal of Chemical Information and Computer Sciences, 44(3),

1000–1005.

[23] Domke, J. (2012). Generic methods for optimization-based modeling. In Interna-

tional Conference on Artificial Intelligence and Statistics (pp. 318–326).

[24] Duane, S., Kennedy, A., Pendleton, B., & Roweth, D. (1987). Hybrid Monte

Carlo. Physics Letters, 195, 216.

124

[25] Duvenaud, D., Maclaurin, D., & Adams, R. P. (2016). Early stopping as non-

parametric variational inference. In 19th International Conference on Artificial

Intelligence and Statistics.

[26] Duvenaud, D., Maclaurin, D., Aguilera-Iparraguirre, J., Gómez-Bombarelli, R.,

Hirzel, T., Aspuru-Guzik, A., & Adams, R. P. (2015). Convolutional networks

on graphs for learning molecular fingerprints. In Neural Information Processing

Systems.

[27] Eigenmann, R. & Nossek, J. A. (1999). Gradient based adaptive regularization.

In Proceedings of the 1999 IEEE Signal Processing Society Workshop on Neural

Networks (pp. 87–94).: IEEE.

[28] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., & Bengio, S.

(2010). Why does unsupervised pre-training help deep learning? The Journal of

Machine Learning Research, 11, 625–660.

[29] Foo, C.-s., Do, C. B., & Ng, A. Y. (2008). Efficient multiple hyperparameter learn-

ing for log-linear models. In Advances in neural information processing systems

(pp. 377–384).

[30] Gamo, F.-J., Sanz, L. M., Vidal, J., de Cozar, C., Alvarez, E., Lavandera, J.-L.,

Vanderwall, D. E., Green, D. V., Kumar, V., Hasan, S., et al. (2010). Thousands

of chemical starting points for antimalarial lead identification. Nature, 465(7296),

305–310.

[31] Gelfand, A. & Smith, A. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the Americal Statistical Association, 85, 385.

125

[32] Glem, R. C., Bender, A., Arnby, C. H., Carlsson, L., Boyer, S., & Smith, J.

(2006). Circular fingerprints: flexible molecular descriptors with applications from

physical chemistry to ADME. IDrugs: the investigational drugs journal, 9(3),

199–204.

[33] Graves, A. (2011). Practical variational inference for neural networks. In Advances

in Neural Information Processing Systems (pp. 2348–2356).

[34] Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing machines. arXiv

preprint arXiv:1410.5401.

[35] Hachmann, J., Olivares-Amaya, R., Atahan-Evrenk, S., Amador-Bedolla, C.,

Sánchez-Carrera, R. S., Gold-Parker, A., Vogt, L., Brockway, A. M., & Aspuru-

Guzik, A. (2011). The Harvard clean energy project: large-scale computational

screening and design of organic photovoltaics on the world community grid. The

Journal of Physical Chemistry Letters, 2(17), 2241–2251.

[36] Hachmann, J., Olivares-Amaya, R., Jinich, A., Appleton, A. L., Blood-Forsythe,

M. A., Seress, L. R., Roman-Salgado, C., Trepte, K., Atahan-Evrenk, S., Er,

S., Shrestha, S., Mondal, R., Sokolov, A., Bao, Z., & Aspuru-Guzik, A. (2014).

Lead candidates for high-performance organic photovoltaics from high-throughput

quantum chemistry - the Harvard clean energy project. Energy Environ. Sci., 7,

698–704.

[37] Hardt, M., Recht, B., & Singer, Y. (2015). Train faster, generalize better: Stability

of stochastic gradient descent. arXiv preprint arXiv:1509.01240.

[38] Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57, 97.

126

[39] Hensman, J. & Lawrence, N. D. (2014). Nested variational compression in deep

Gaussian processes. arXiv preprint arXiv:1412.1370.

[40] Hernández-Lobato, J. M. & Adams, R. P. (2015). Probabilistic backprop-

agation for scalable learning of Bayesian neural networks. Arxiv preprint

arXiv:1502.05336.

[41] Hershey, J. R., Roux, J. L., & Weninger, F. (2014). Deep unfolding: Model-based

inspiration of novel deep architectures. arXiv preprint arXiv:1409.2574.

[42] Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural com-

putation, 9(8), 1735–1780.

[43] Hut, P., Makino, J., & McMillan, S. (1995). Building a better leapfrog. Astro-

physical Journal, Part 2 - Letters, 443, L93–L96.

[44] Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based op-

timization for general algorithm configuration. In Proceedings of LION-5, volume

6683 (pp. 507–523).: Springer.

[45] Ioffe, S. & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

[46] Jaakkola, T. S. & Jordan, M. I. (1997). A variational approach to Bayesian logistic

regression models and their extensions. In Workshop on Artificial Intelligence and

Statistics.

[47] Johnson, M. J., Duvenaud, D., Wiltschko, A. B., Datta, S. R., & Adams, R. P.

(2016). Structured vaes: Composing probabilistic graphical models and varia-

tional autoencoders. arXiv preprint arXiv:1603.06277.

127

[48] Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural

network for modelling sentences. Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics.

[49] Kingma, D. & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

[50] Kingma, D. & Welling, M. (2014a). Efficient gradient-based inference through

transformations between bayes nets and neural nets. In Proceedings of the 31st

International Conference on Machine Learning (ICML-14) (pp. 1782–1790).

[51] Kingma, D. P. & Welling, M. (2014b). Auto-encoding variational Bayes. In

International Conference on Learning Representations.

[52] Korattikara, A., Chen, Y., & Welling, M. (2014). Austerity in MCMC Land:

Cutting the Metropolis-Hastings Budget. In Proceedings of the 31st International

Conference on Machine Learning.

[53] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Technical report, Department of Computer Science, University of Toronto.

[54] Kucukelbir, A., Ranganath, R., Gelman, A., & Blei, D. (2014). Fully automatic

variational inference of differentiable probability models. In NIPS Workshop on

Probabilistic Programming.

[55] Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A., & Blei, D. M. (2016).

Automatic differentiation variational inference. arXiv preprint arXiv:1603.00788.

128

[56] Lake, B. M. (2014). Towards more human-like concept learning in machines:

Compositionality, causality, and learning-to-learn. PhD thesis, Massachusetts

Institute of Technology.

[57] Larsen, J., Svarer, C., Andersen, L. N., & Hansen, L. K. (1998). Adaptive regu-

larization in neural network modeling. In Neural Networks: Tricks of the Trade

(pp. 113–132). Springer.

[58] LeCun, Y. & Bengio, Y. (1995). Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361.

[59] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,

W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code

recognition. Neural Computation, 1, 541–551.

[60] Lusci, A., Pollastri, G., & Baldi, P. (2013). Deep architectures and deep learning

in chemoinformatics: the prediction of aqueous solubility for drug-like molecules.

Journal of chemical information and modeling, 53(7), 1563–1575.

[61] MacKay, D. J. (1992). A practical Bayesian framework for backpropagation net-

works. Neural computation, 4(3), 448–472.

[62] MacKay, D. J. & Neal, R. M. (1994). Automatic relevance determination for

neural networks. In Technical Report. Cambridge University.

[63] MacKay, D. J. C. (2003). Information theory, inference, and learning algorithms.

Cambridge University press.

[64] Maclaurin, D. & Adams, R. P. (2014). Firefly Monte Carlo: Exact MCMC with

subsets of data. In 30th Conference on Uncertainty in Artificial Intelligence.

129

[65] Maclaurin, D., Duvenaud, D., & Adams, R. P. (2015). Gradient-based hyperpa-

rameter optimization through reversible learning. In 32nd International Confer-

ence on Machine Learning.

[66] Martens, J. & Sutskever, I. (2012). Training deep and recurrent networks with

Hessian-free optimization. In Neural Networks: Tricks of the Trade (pp. 479–535).

Springer.

[67] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953).

Equation of state calculations by fast computing machines. Journal of Chemical

Physics, 21, 1087.

[68] Meyn, S. P. & Tweedie, R. L. (2012). Markov chains and stochastic stability.

Springer Science & Business Media.

[69] Micheli, A. (2009). Neural network for graphs: A contextual constructive ap-

proach. Neural Networks, IEEE Transactions on, 20(3), 498–511.

[70] Morgan, H. (1965). The generation of a unique machine description for chemical

structure. Journal of Chemical Documentation, 5(2), 107–113.

[71] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. Cambridge,

MA: MIT Press.

[72] Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31(3), 705–767.

[73] Neal, R. M. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov

Chain Monte Carlo, 2.

[74] Olivares-Amaya, R., Amador-Bedolla, C., Hachmann, J., Atahan-Evrenk, S.,

Sanchez-Carrera, R. S., Vogt, L., & Aspuru-Guzik, A. (2011). Accelerated com-

130

putational discovery of high-performance materials for organic photovoltaics by

means of cheminformatics. Energy Environ. Sci., 4, 4849–4861.

[75] Pascanu, R., Mikolov, T., & Bengio, Y. (2012). Understanding the exploding

gradient problem. arXiv preprint arXiv:1211.5063.

[76] Pathria, R. & Beale, P. (1996). Statistical Mechanics. Elsevier Science.

[77] Pearlmutter, B. (1996). An investigation of the gradient descent process in neural

networks. PhD thesis, Carnegie Mellon University.

[78] Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural

computation, 6(1), 147–160.

[79] Pearlmutter, B. A. & Siskind, J. M. (2008). Reverse-mode AD in a functional

framework: Lambda the ultimate backpropagator. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 30(2), 7.

[80] Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence

diagnosis and output analysis for MCMC. R News, 6(1), 7–11.

[81] Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007).

Numerical Recipes 3rd Edition: The Art of Scientific Computing. New York, NY,

USA: Cambridge University Press, 3 edition.

[82] Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., & Pande, V.

(2015). Massively multitask networks for drug discovery. arXiv:1502.02072.

[83] Ranganath, R., Gerrish, S., & Blei, D. M. (2014). Black box variational inference.

In Proceedings of the 17th International Conference on Artificial Intelligence and

Statistics.

131

[84] Raskutti, G., Wainwright, M. J., & Yu, B. (2014). Early stopping and non-

parametric regression: an optimal data-dependent stopping rule. The Journal of

Machine Learning Research, 15(1), 335–366.

[85] Rasmussen, C. E. & Williams, C. K. (2006). Gaussian Processes for Machine

Learning, volume 38. The MIT Press, Cambridge, MA, USA.

[86] RDKit, 2011. RDKit: Open-source cheminformatics. www.rdkit.org. [accessed

11-April-2013].

[87] Robert, C. & Casella, G. (2004). Monte Carlo statistical methods. Springer Science

& Business Media.

[88] Roberts, G. & Stramer, O. (2003). Langevin diffusions and metropolis-hastings

algorithms. Methodology and Computing in Applied Probability, 4, 337.

[89] Roberts, G. O., Gelman, A., & Gilks, W. R. (1997). Weak convergence and opti-

mal scaling of random walk Metropolis algorithms. Annals of Applied Probability,

7, 110–120.

[90] Roberts, G. O. & Rosenthal, J. S. (1998). Optimal scaling of discrete approxima-

tions to Langevin diffusions. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 60(1), 255–268.

[91] Roberts, G. O. & Tweedie, R. L. (1996). Exponential convergence of Langevin

distributions and their discrete approximations. Bernoulli, (pp. 341–363).

[92] Rogers, D. & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of

Chemical Information and Modeling, 50(5), 742–754.

132

www.rdkit.org

[93] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representa-

tions by back-propagating errors. Nature, 323, 533–536.

[94] Salimans, T., Kingma, D. P., & Welling, M. (2014). Markov chain Monte Carlo

and variational inference: Bridging the gap. arXiv preprint arXiv:1410.6460.

[95] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009).

The graph neural network model. Neural Networks, IEEE Transactions on, 20(1),

61–80.

[96] Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization

of machine learning algorithms. In Neural Information Processing Systems 25.

[97] Socher, R., Huang, E. H., Pennin, J., Manning, C. D., & Ng, A. Y. (2011a).

Dynamic pooling and unfolding recursive autoencoders for paraphrase detection.

In Advances in Neural Information Processing Systems (pp. 801–809).

[98] Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., & Manning, C. D. (2011b).

Semi-supervised recursive autoencoders for predicting sentiment distributions. In

Proceedings of the Conference on Empirical Methods in Natural Language Pro-

cessing (pp. 151–161).: Association for Computational Linguistics.

[99] Solak, E., Murray Smith, R., Leithead, W., Leith, D., & Rasmussen, C. E. (2003).

Derivative observations in Gaussian process models of dynamic systems. Advances

in Neural Information Processing Systems, (pp. 1057–1064).

[100] Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution.

The Annals of Statistics, 9(6), 1135–1151.

133

[101] Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance

of initialization and momentum in deep learning. In Proceedings of the 30th

International Conference on Machine Learning (ICML-13) (pp. 1139–1147).

[102] Sutskever, I., Vinyals, O., & Le, Q. V. V. (2014). Sequence to sequence learning

with neural networks. In Advances in Neural Information Processing Systems 27

(pp. 3104–3112). Curran Associates, Inc.

[103] Tai, K. S., Socher, R., & Manning, C. D. (2015). Improved semantic represen-

tations from tree-structured long short-term memory networks. arXiv preprint

arXiv:1503.00075.

[104] Tieleman, T. & Hinton, G. (2012). Lecture 6.5—RmsProp: Divide the gradient

by a running average of its recent magnitude. Coursera: Neural Networks for

Machine Learning.

[105] Toulis, P., Tran, D., & Airoldi, E. M. (2015). Stability and optimality in stochastic

gradient descent. arXiv preprint arXiv:1505.02417.

[106] Tox21 Challenge (2014). National center for advancing translational sciences.

http://tripod.nih.gov/tox21/challenge. [Online; accessed 2-June-2015].

[107] Unterthiner, T., Mayr, A., Klambauer, G., & Hochreiter, S. (2015). Toxicity

prediction using deep learning. arXiv preprint arXiv:1503.01445.

[108] Unterthiner, T., Mayr, A., ünter Klambauer, G., Steijaert, M., Wenger, J., Ceule-

mans, H., & Hochreiter, S. (2014). Deep learning as an opportunity in virtual

screening. In Advances in Neural Information Processing Systems.

134

http://tripod.nih.gov/tox21/challenge

[109] Wainwright, M. J. & Jordan, M. I. (2008). Graphical models, exponential families,

and variational inference. Foundations and Trends in Machine Learning, 1(1-2),

1–305.

[110] Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., & Fergus, R. (2013). Regularization

of neural networks using dropconnect. In International Conference on Machine

Learning.

[111] Wang, C. & Blei, D. M. (2013). Variational inference in nonconjugate models.

The Journal of Machine Learning Research, 14(1), 1005–1031.

[112] Weininger, D. (1988). SMILES, a chemical language and information system.

Journal of chemical information and computer sciences, 28(1), 31–36.

[113] Welling, M. & Teh, Y. W. (2011). Bayesian learning via stochastic gradient

Langevin dynamics. In Proceedings of the 28th International Conference on Ma-

chine Learning (ICML-11) (pp. 681–688).

[114] Widrow, B. & Lehr, M. A. (1990). 30 years of adaptive neural networks: percep-

tron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.

135

