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Abstract

The coalescent is a stochastic process that describes the genetic ancestry of individuals
sampled from a population. It is one of the main tools of theoretical population genetics
and has been used as the basis of many sophisticated methods of inferring the demo-
graphic history of a population from a genetic sample. This dissertation is presented
in four chapters, each developing coalescent theory to some degree. In the first chap-
ter, I investigate how patterns of coalescence are affected by the population pedigree
in structured populations, showing that the pedigree has longer-term effects in struc-
tured populations than in unstructured populations. Based on my findings, I develop
a conceptual framework for jointly inferring population sizes, migration rates, and the
recent pedigree of sampled individuals, and I demonstrate the efficacy of this approach
in an application to simulated data. In Chapter 2, I present a theoretical study of the
distribution of segments of identity-by-descent, showing how the accuracy of predictions
made based on sequentially Markov coalescent models depends on the particular model
being used as the basis of calculations. In the third chapter, I undertake a theoretical
comparison of two approximations, termed the SMC and SMC’, to the full model of
coalescence with recombination. I derive new theoretical properties of the SMC’ and
use these properties to demonstrate that the SMC’ is, in a well-defined sense, the most
appropriate first-order approximation to the full coalescent with recombination. I also
show that estimates of population size based on the SMC are statistically inconsistent.
Finally, in Chapter 4, I develop a coalescent hidden Markov model approach to infer-
ring the demographic and reproductive history of a triploid asexual lineage derived from
a diploid sexual ancestor. The motivation for this project is an ongoing collaborative
effort to sequence and analyze the genomes of sexual and asexual lineages of the New
Zealand snail Potamopyrgus antipodarum. The method I present in this chapter will be
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applied to these genomes to infer when triploid asexual lineages were derived from sex-
ual ancestors and to describe the demographic history of those sexual ancestors. Here,
I investigate the this method with simulated asexual genomes.
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Introduction

We are living in an era of abundant information. From the devices we carry to the

purchases we make and the media we consume, seemingly every interaction we have

with the world generates information that is stored and analyzed for one purpose or

another. We also carry information in our cells, written in the three billion DNA base

pairs that make up a human genome. The particular sequence of these base pairs encodes

nearly all of the information that is required for life, and it determines much of what

makes each of us the individuals we are. Scientists first discovered how to sequence DNA

molecules in the 1970’s, and since then we have been amassing genetic information in

the form of DNA sequences at a rapidly accelerating pace. The human genome sequence

was published in 2003 after more than a decade of collaboration between researchers

at numerous institutions. With today’s sequencing technology, it takes about a day to

produce a human genome of moderate quality, and this time will soon shorten as new

sequencing technologies become available. There are currently thousands of publicly

available human genome sequences, and it was recently estimated that altogether the

DNA sequencing machines currently in use have the capacity to produce about 35

petabases of sequence per year [1]. As this DNA sequence data continues to accumulate,

it becomes imperative that we have the tools to efficiently extract the information

contained in the sequences.

The promise of DNA sequencing has been that it will provide medical breakthroughs
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and pave the way for precision medicine, where medical treatment is tailored to the

patient’s genome. DNA sequencing has transformed biomedical research — many of

the promised breakthroughs have been provided, and personalized, precision medicine

still drives diverse research efforts and enormous investments.

Perhaps a less obvious use of DNA sequencing is to use it to learn about our collective

evolutionary history. As DNA is transmitted from parent to offspring, occasional errors

in the DNA replication process cause changes in the DNA sequence to be inherited by

the offspring. These mutations may subsequently be inherited by individuals in future

generations, leaving a signature of the reproductive success of the ancestors of any

present-day individual bearing that mutation. When many individuals and mutations

are considered, patterns of genetic variation emerge in the DNA sequence data. These

patterns depend on the dynamics of reproduction in the population: What is the size

of the population? How is reproduction structured across geographic space? Do some

individuals have a heritable advantage over others, leading to natural selection? How

has all this changed over time? Change the answer to any of these questions, and

patterns of genetic variation in the present-day population will also change.

To determine how the dynamics of reproduction affect the distribution of genetic

variation in a population, it is necessary to construct a mathematical model of repro-

duction. This is the domain of the field of theoretical population genetics, and it is,

broadly, the subject of this dissertation. The foundations of theoretical population ge-

netics were established in the early and middle twentieth century, before the advent of

DNA sequencing. Classic work by Haldane [2], Wright [3], Fisher [4], Kimura [5], and

others showed how random mating, mutation, natural selection, migration, and other

forces acting in a population conspire to shape patterns of genetic variation in the pop-

ulation. Many of the models developed by these authors are prospective: Given that
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a variant is at a particular frequency in the present generation, the models studied by

these authors predict the distribution of trajectories that the frequency might take over

the course of future generations (Fig. 1A). This forward-looking “diffusion” approach to

modeling populations is especially well suited for gaining a conceptual understanding

of how evolution works, since evolution happens forward in time.

Figure 1: Illustration of forward-in-time and backward-in-time approaches to theoretical population
genetics. In panel A, five different trajectories are shown for a genetic variant initially at frequency
0.5 in the population. Random mating by individuals in the population causes the frequency of the
variant to change over time. Diffusion theory makes probabilistic statements about the distribution
of these trajectories. In panel B, a gene genealogy for a sample of ten copies of a gene is shown. This
tree-like structure shows the relationships of the ancestors of the sampled gene copies. Each merging
of two branches represents a “coalescent event,” where some single ancestor had two offspring that
each gave rise to a separate lineage that is also ancestral to the sample. Coalescent theory makes
predictions about gene genealogies and uses these structures to make predictions about genetic
variation in samples. Diffusion models and coalescent models are closely linked to one another, and
the same results can often be arrived at using both approaches.

Another, more recently introduced approach to modeling genetic variation in a pop-

ulation is retrospective. Given a sample of genes, this approach models the ancestry

of the sample as a stochastic process. At different points in the past, pairs of genetic

lineages ancestral to the sample reach their common ancestor in generations where one

ancestor had two offspring that were each themselves ancestral to the sampled gene

copies. Eventually a common ancestor of the entire sample is reached, and the resulting
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tree structure, termed a “gene genealogy,” fully describes the ancestry of the sample

(see Fig. 1B). The model for generating these gene genealogies is called the coalescent

[6], and the subfield of theoretical population genetics that deals with gene genealogies

is called coalescent theory. By allowing mutations to occur along the branches of a gene

genealogy, it is possible to directly model genetic variation in a sample. This makes

coalescent theory a powerful and flexible framework for inferring the demographic and

evolutionary history of a population.

This dissertation presents my graduate school work in four chapters, each involv-

ing and developing coalescent theory to some degree. The first chapter addresses the

question of how the biparental pedigree, i.e. genealogy, of a population affects the pro-

cess of coalescence. For mathematical convenience, in population genetics it is typically

assumed that each chromosome is inherited through a different pedigree, which is not ac-

tually the case. This chapter grows out of recent work showing that the particular shape

of the pedigree has minimal effects on coalescence in random-mating, completely un-

structured populations [7]. Here, I consider how the pedigree affects coalescent patterns

in structured populations, where multiple subpopulations are connected by occasional

migration events between them. I show that compared to the case of unstructured pop-

ulations, the pedigree has larger effects over a longer period than in the unstructured

case. This work also produced a new conceptual approach for jointly inferring popula-

tion sizes, migration rates, and the pedigree of the sample. I conclude Chapter 1 with

a demonstration of this approach, inferring these parameters from simulated data.

In Chapter 2, I explore the connections between coalescent theory and identity-by-

descent, which occurs when two individuals both inherit a stretch of their genome from

the same, recent ancestor. I provide a technical, theoretical update to previous work

modeling identity-by-descent using coalescent theory, performing calculations based on
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a more complex but more accurate model of coalescence and recombination, termed the

SMC’. This part of Chapter 2 was incorporated into in a paper I co-authored with Shai

Carmi, my advisor John Wakeley, and Itsik Pe’er [8]. The second half of this chapter

deals with making quantitative predictions about mutation along stretches of identity-

by-descent. This work was part of a paper I co-authored with Pier Palamara and others

[9].

Chapter 3 explores theoretical properties of models of coalescence and recombina-

tion. The full idealized model of recombination and coalescence, called the “ancestral

recombination graph” or sometimes “coalescent with recombination,” is a relatively

simple model to describe, but many mathematical obstacles lay in the way of its use

in coalescent-based statistical inference. Two approximations to the ancestral recombi-

nation graph, the original sequentially Markov coalescent (SMC) [10] and then another

called the SMC’ [11], were introduced as tractable approximations to the full ancestral

recombination graph. These models have been used as a basis for many of the most

recent sophisticated population-genetic inference procedures [e.g., 12, 13, 14]. In Chap-

ter 3, I provide a variety of new theoretical results for the SMC’ model of coalescence

and recombination. I use these results to show that the SMC’ is, in a certain sense, the

most suitable approximation to the full model. I also show that inferences made based

on the simpler SMC model are statistically inconsistent, i.e. they will produce biased

estimates even with infinite amounts of data. This work was done in collaboration with

Shai Carmi and Asger Hobolth, with whom I co-authored a paper presenting the work

in this chapter [15].

Finally, in Chapter 4, I present a demographic inference method tailored to triploid

asexual lineages of the New Zealand snail Potamopyrgus antipodarum. The method uses

the genome of such an asexual snail to infer the time at which a triploid snail lineage
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transitioned to asexual reproduction from sexual ancestors, as well as the population

size history of those sexual ancestors. Like other recent coalescent-based demographic

inference methods [12, 13, 16, 17], the inference procedure I propose uses a hidden

Markov model derived from a sequentially Markov coalescent model (here, the SMC’).

The innovation I provide is to fully model the genealogies of more than two sequences

under the standard coalescent. This is made possible by averaging over the phasing of

the three chromosomes in the triploid asexual genome. This project is motivated by

a collaboration with Maurine Neiman and others, who are sequencing the genomes of

many sexual and asexual P. antipodarum. Currently, I have completed the theoretical

phases of this project; once the sequencing is completed later this year, I will apply

the inference procedure described in this chapter to the sequenced genomes. In the

meantime, in this dissertation I describe the method and explore its accuracy when

applied to simulated data, and I discuss some of its potential limitations.
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1
Population structure and coalescence in

pedigrees

1.1 Introduction

The coalescent is a stochastic process that describes how to construct gene genealogies,

the tree-like structures that relate the sampled copies of a gene to one another. Since

its introduction by Kingman [6, 18], the coalescent has been extended and applied to

numerous areas in population genetics and is now one of the foremost mathematical

tools for modeling genetic variation [19, 20].

In a typical application to data from diploid sexual organisms, the coalescent is ap-
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plied to multiple loci that are assumed to have independent ancestries because they are

found on different chromosomes and thus segregate independently, or are far enough

apart along a single chromosome that effectively they segregate independently. Even

chromosome-scale coalescent-based inference methods [e.g., 12, 13, 17] multiply proba-

bilities across distinct chromosomes that are assumed to have completely independent

histories due to their independent segregation.

In a diploid sexual population, all genetic material is inherited through a single popu-

lation pedigree. The population pedigree is the structure that contains all relationships

between all members of the population throughout all time. In most populations the

pedigree is unobserved, but in cases where the pedigree has been entirely or partially

observed, either through field observation, thorough genetic sampling, or by examining

historical records (in the case of humans), it can be highly informative about past and

present demographic and evolutionary forces in the population [21, 22]. Regardless of

whether the pedigree has been observed, it is true that each sexual diploid population

has only one pedigree, and all all of the sampled chromosomes segregated through that

same pedigree. In assuming that independently segregating loci have completely inde-

pendent gene genealogies, it is implicitly also assumed that each such locus was inherited

through an independent population pedigree.

While this is clearly not the case, the non-independence between gene genealogies

of independently segregating loci introduced by the shared population pedigree has

only recently been examined. Wakeley et al. [7] studied gene genealogies of loci seg-

regating independently through pedigrees of diploid populations generated under basic

Wright-Fisher-like reproductive dynamics, i.e., populations with constant population

size, random mating, non-overlapping generations, and lacking population structure. In

this context, they found that the shape of the population pedigree affected coalescence
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probabilities mostly in the first ∼ log2(N) generations back in time, where N is the

population size, and they found that in general it was difficult to distinguish distribu-

tions of coalescence times that were generated by segregating independent chromosomes

back in time through a fixed, randomly-generated pedigree from the predictions of the

standard coalescent.

That the pedigree should have substantial effects on coalescence probabilities only

during the most recent ∼ log2(N) generations is in agreement with other theoretical

studies of the structure of population pedigrees. Chang [23] found that the number

of generations until two individuals share an ancestor in the biparental, pedigree sense

converges to log2(N) as the population size grows. Likewise, Derrida et al. [24] showed

that the distribution of the number of repetitions in an individual’s pedigree ancestry

becomes stationary around log2(N) generations in the past. This log2(N)-generation

timescale is the natural timescale of convergence in pedigrees due to the approximate

doubling of the number of possible ancestors each generation back in time until the

ancestral population size is reached. This occurs around ∼ log2(N) generations in the

past in a well mixed, constant-sized population of size N .

In each of these studies it is assumed that the population is panmictic, i.e., that in-

dividuals mate with each other uniformly at random. One phenomenon that may alter

this convergence in pedigrees is population structure, with migration between subpop-

ulations. In a subdivided population, the exchange of ancestry between subpopulations

depends on the particular history of migration events embedded in the population pedi-

gree. These past migration events may be infrequent or irregular enough that the con-

vergence in the pedigree depends on the details of the migration history rather than on

the reproductive dynamics underlying convergence in unstructured populations. Rohde

et al. [25] studied the sharing of pedigree ancestry in structured populations and found
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that population structure did not change the log2(N)-scaling of the number of gener-

ations until a common ancestor of everyone in the population is reached. Barton and

Etheridge [26] studied the expected number of descendants of an ancestral individual, a

quantity termed the reproductive value, and similarly found that population subdivision

did not much slow the convergence of this quantity over the course of generations.

While these results give a general characterization of how pedigrees are affected by

population structure, a direct examination of the coalescent process for loci segregating

independently through a fixed pedigree of a structured population is still needed. It

may be that fixing the migration events in the pedigree produces long-term fluctuations

in coalescent probabilities that make the predictions of the structured coalescent break

down. Here, we explore how population structure affects coalescence through a fixed

population pedigree. Using simulations, we investigate the fluctuations in coalescence

probabilities caused by the variation in the migration history embedded in the pedi-

gree and determine how these fluctuations depend on deme size and migration rate.

We also study the particular effects of recent admixture on coalescence-time distribu-

tions and use our findings to develop a simple framework for modeling the ancestry

of the sample as a mixture of different non-admixed ancestries. To demonstrate the

efficacy of this approach, we create a maximum-likelihood inference procedure for in-

ferring population-scaled migration and mutation rates jointly with the recent pedigree

of the sample. Finally, we perform simulations to confirm that this approach allows for

accurate inference of migration rates even in the presence of recent admixture in the

sample.
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1.2 Theory and Results

1.2.1 Pedigree simulation

Except where otherwise stated, each population we model has two sub-populations

of constant size, exchanging migrants symmetrically at a constant rate. This model

is simple to describe, demonstrates the effects of population structure in one of the

the simplest ways possible, and has a relatively simple mathematical theory [20]. We

anticipate that many of our results will be generalizable to more complex models of

population structure.

We assume that generations are non-overlapping and that the population has two

sexes that are equal in number. In each generation, each individual chooses a mother

uniformly at random from the females of the same deme with probability 1 − m and

from the females of the other deme with probability m. Likewise a father is chosen

uniformly at random from the males of the same deme with probability 1−m and from

the males of the other deme with probability m. This particular model of migration

corresponds to broadcast spawning, in which gametes migrate but individuals do not.

Through simulation of other models of reproduction and migration, we find that our

results are not sensitive to these particulars of the migration process.

All simulations were carried out with coalseam, a program for coalescent simulation

through randomly-generated population pedigrees. The user provides parameters such

as population size, number of demes, mutation rate, and migration rate, and coalseam

simulates a population pedigree under a Wright-Fisher-like model meeting the specified

conditions. Gene genealogies are constructed by simulating segregation back in time

through the pedigree, and the resulting genealogies are used to produce simulated ge-

netic loci. Output is in a format similar to that of the program ms [27], and various

11



Figure 1.1: Coalescence time distribution for independently segregating loci sampled from two
individuals in a panmictic population. The gray shows the distribution from the pedigree, and the
black line shows the exponential prediction of the standard coalescent.

options allow the user to simulate and analyze pedigrees featuring, for example, recent

selective sweeps or fixed amounts of identity by descent and admixture.

The program coalseam is written in C and released under a permissive license. It is

available online at https://github.com/ammodramus/coalseam.

1.2.2 Structured population pedigrees and probabilities of coa-

lescence

In a well-mixed population of size N , the distribution of coalescence times for indepen-

dently segregating loci sampled from two individuals shows large fluctuations over the

first ∼ log2(N) generations depending on the degree of overlap in the pedigree of the

two individuals. After this initial period, the coalescence probabilities quickly converge

to the expectation under standard coalescent theory, with small fluctuations around

that expectation. [7, Fig. 1.1]. The magnitude of these fluctuations depends on the

population size, but even for small to moderately sized populations (e.g., N = 500), the

exponential prediction of the standard coalescent is a good approximation to the true

distribution after the first log2(N) generations.

12
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When the population is divided into multiple demes, deviations from the coalescent

probabilities predicted by the structured coalescent depend on the particular history

of migration in the population pedigree. The effect of the migration history is espe-

cially pronounced when the average number of migration events per generation is of

the same order as the per-generation pairwise coalescent probability (Fig. 1.2A). In this

migration-limited regime, two lineages in different demes have zero probability of coa-

lescing before a migration event in the pedigree can bring them together into the same

deme. This creates large peaks in the coalescence time distributions for loci segregating

independently through the same pedigree, with each peak corresponding to a particular

migration event (Fig. 1.2A). This scenario is somewhat implausible, however: It will not

often be the case that migration is so infrequent that it happens on a population-wide

level only every ∼ 1/N generations. In such a scenario, it would be more realistic to

model the migration process as a series of distinct admixture pulses rather than migra-

tion occurring at a continuous rate, even if (as here) the underlying migration process

does have a constant rate.

Even when the migration rate is higher and there are many migration events per

coalescent event, the pedigree can still cause coalescence probabilities to differ from the

predictions of the structured coalescent. Under these conditions, coalescence is not con-

strained by individual migration events, but there may be stochastic fluctuations in the

realized migration rate, with some periods experiencing more migration and others less.

These fluctuations can cause deviations in the predicted coalescence probabilities long

past the log2(N)-generation timescale found in well-mixed populations (Figs. 1.2B, S1,

S2). The degree of these deviations depends on the migration rate and the population

size, with smaller populations and lower migration rates causing greater deviations, and

deviations from predictions are generally larger for samples between demes than sam-
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Figure 1.2: Distribution of pairwise coalescence times for two individuals sampled from different
demes. In both panels, the black line shows the distribution calculated from the simulated pedigrees,
and the purple line shows the prediction from the structured coalescent. Vertical lines along the
horizontal axis show the occurrence of migration events in the population, with the relative height
representing the total reproductive weight [see 26] of the migrant individual(s) in that generation.
(A) Low migration pedigree, with M = 4Nm = 0.04 and N = 100. Under these conditions,
coalescence is limited by migration events, so there are distinct peaks in the coalescence time distri-
bution corresponding to individual migration events. (B) Higher migration pedigree, with M = 0.4
and N = 1000. With the higher migration rate, coalescence is no longer limited by migration, but
stochastic fluctuations in the migration process over time cause deviations away from the standard-
coalescent prediction on a timescale longer than log2(N) generations.

ples within demes. Reassuringly, when there are many migration events per coalescent

event (i.e., when Nm >> 1/N), the predictions of the structured coalescent seem to fit

the observed distributions in pedigrees reasonably well (Figs. S1–S2).

To investigate the dependence of the coalescence time distribution on the pedigree

more systematically, we simulated 20 replicate population pedigrees for a range of pop-

ulations sizes and migration rates. From each pedigree, we sampled two individuals in

different demes and calculated the distribution of pairwise coalescence times for inde-

pendently segregating loci sampled from those two individuals. We measured the total

variation distance from the distribution predicted under a discrete-time model of co-

alescence and migration analogous to the continuous-time structured coalescent. The

14



total variation distance of two discrete distributions P and Q is defined as

DTV (P,Q) =
1

2

∑
i

|P (i)−Q(i)| . (1.1)

We found that the total variation distance between the distributions of pairwise coales-

cence times from pedigrees and the distributions from standard theory decreases as both

N and M increase and that, in general, the total variation distance is more sensitive to

the migration rate than on population size (Fig. S3).

1.2.3 Admixture and coalescence distributions in pedigrees

As is the case for panmictic populations, the details of the recent sample pedigree

are most important in determining the patterns of genetic variation in the sample. In

panmictic populations, overlap in ancestry in the recent past creates identity-by-descent.

In structured populations, an individual may also have recent relatives from another

deme, resulting in admixed ancestry. When this occurs, the distribution of pairwise

coalescence times is potentially very different from the prediction in the absence of

admixture due to the admixture paths in the pedigree that lead to a recent change in

demes. The degree of the difference in distributions is directly related to the degree of

admixture, with more recent admixture causing greater changes in the coalescence time

distribution (Fig. 1.3).

The distribution of coalescence times for a sample with admixed ancestry can be

approximated by considering the sample to be a mixture of different samples. With

admixture in the recent sample pedigree, there is some probability that after the first

few generations back in time, one or more of the lineages will not be in the deme from

which they were originally sampled. When this happens, the genetic variation in the
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Figure 1.3: Pairwise coalescence time distributions for samples with admixed ancestry. Each panel
shows the distribution of pairwise coalescence times for a sample whose pedigree contains some
amount of admixture. In each simulation, there are two demes of size N = 1000, and the scaled
migration rate is 4Nm = 0.1. In each panel, the population pedigree was simulated conditional
on the sample having the pedigree shown in the panel. The purple line shows the between-deme
coalescence time distribution that would be expected in the absence of admixture, and the gold
line shows the the mixture of the within- and between-deme coalescence time distributions that
corresponds to the degree of admixture. Black lines are numerically calculated coalescence time
distributions for the simulated example pedigrees.
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sample will reflect the locations of the lineages before the admixture took place. This

type of “sample reconfiguration” can be viewed probabilistically, with the Mendelian

probabilities of the different paths through the pedigree determining the probabilities

of different sample reconfigurations.

As an example, consider a sample of unlinked loci taken from two individuals related

by the pedigree shown in Fig. 1.3C, where one of two individuals sampled from different

demes has a grandparent from the other deme. The distribution of pairwise coalescence

times for loci sampled from this pair resembles the distribution of Tw/4+ 3Tb/4, where

Tb is the standard between-deme pairwise coalescence time for a structured-coalescent

model with two demes, and Tw is the corresponding within-deme pairwise coalescence

time (Fig. 1.3C). The particular mixture reflects the fact that a lineage sampled from

the admixed individual follows the admixture path with probability 1/4.

This sample reconfiguration framework can also be used to model identity-by-descent

(IBD), where overlap among branches of the recent sample pedigree causes early coales-

cence with unusually high probability. If the pedigree causes an IBD event to occur with

probability Pr(IBD), then the pairwise coalescence time is a mixture of the standard

distribution (without IBD) and instantaneous coalescence (on the coalescent timescale)

with probabilities 1 − Pr(IBD) and Pr(IBD), respectively. If there is both IBD and

admixture in the recent sample pedigree (or if there are multiple admixture or IBD

events), the sample can be modeled as a mixture of several sample reconfigurations

(e.g., fig. 1.4).

This approach to modeling the sample implicitly assumes that there is some thresh-

old generation separating the recent pedigree, which determines the mixture of sample

reconfigurations, and the more ancient pedigree, where the standard coalescent models

are assumed to hold well enough. The natural boundary between these two periods is
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Figure 1.4: Distribution of pairwise coalescence times for a sample whose recent pedigree contains
both admixture and IBD. The recent pedigree of the sample is shown, with the two sampled individ-
uals located at the bottom of the pedigree. The distribution for the simulated pedigree (gray line) is
based on numerical coalescence probabilities calculated in a pedigree of two demes of size N = 1000
each, with migration rate M = 4Nm = 0.2. The colored lines show mixtures of the within-deme
coalescence time distribution (fTw) and the between-deme distribution (fTb

). The inset shows the
probability of coalescence during the first five generations; the probability mass at generation 1 is
predicted by the mixture model accounting for both IBD and admixture (orange line). The red line
shows the distribution if IBD is ignored, and the blue line shows the distribution if both IBD and
admixture are ignored.
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around log2(N) generations, since any pedigree feature more ancient than that tends to

be shared by most or all of the population (making such features “population demog-

raphy”), and any features more recent tend to be particular to the sample. In practice,

it seems sufficient to model only the first ∼ 3–5 generations back in time, since events

beyond this time have relatively minor effects on patterns of coalescence.

We note that there is a long history in population genetics of modeling genetic vari-

ation in pedigrees as a mixture of different sample reconfigurations. Wright [28] wrote

the probability of observing a homozygous A1A1 genotype as p2(1 − F ) + pF , where

p is the frequency of A1 in the population and F is essentially the probability of IBD

calculated from the sample pedigree. This can be thought of as a probability for a

mixture of two samples of size n = 2 (with probability 1 − F ) and n = 1 (probability

F ). The popular ancestry inference program STRUCTURE [29] and related methods

similarly write the likelihood of observed genotypes as a mixture over different possible

subpopulation origins of the sampled alleles. Here, motivated by our simulations, we

explicitly extend this approach to coalescent models. In the next section, we create an

example method for inferring population parameters such as mutation and migration

rates jointly with features of the sample pedigree such as recent IBD and admixture. In

the Discussion (see below), we further discuss the similarities and differences between

our modeling approach and those of existing methods.

1.2.4 Joint inference of the recent sample pedigree and popula-

tion demography

The sample reconfiguration framework for modeling genetic variation in pedigrees shows

how estimators of population-genetic parameters may be biased by admixture or IBD in

the recent sample pedigree. In Appendix A, we calculate the bias of three estimators of
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the population-scaled mutation rate θ = 4Nµ in a panmictic population when the recent

sample pedigree contains IBD. In Appendix B, we calculate the bias of a moments-based

estimator of M due to recent admixture in the sample pedigree. We use simulations to

confirm these calculations (Figs. S5,S6). In both cases, if the recent sample pedigree is

known, it is straightforward to correct these estimators to eliminate the bias.

It is uncommon that the recent pedigree of the sample is known, however, and if it

is assumed known, it is often estimated from the same data that is used to infer de-

mographic parameters. Ideally, one would infer long-term demographic history jointly

with sample-specific features of the pedigree. In this section, we develop a maximum-

likelihood method for inferring IBD and admixture jointly with scaled mutation and

migration rates. The method uses the approach proposed in the previous section: the

sample pedigree defines some set of possible outcomes of Mendelian segregation in re-

cent generations (ending approximately log2(N) generations ago), and the resulting,

reconfigured sample is modeled by the standard coalescent process.

Before we describe our method, we define some notation. We study a population with

two demes each of size N , with each individual having probability m of migrating to

the other deme in each generation. We rescale time by N so that the rate of coalescence

within a deme is unity and the rescaled rate of migration per lineage is M/2 = 2Nm.

We assume that we have sampled two copies of each locus from each of n1 (diploid)

individuals from deme 1 and n2 individuals from deme 2. We write the total diploid

sample size as n1 +n2 = n so that the total number of sequences sampled at each locus

is 2n.

We index our sequences with In := {1m, 1p, 2m, 2p, . . . , nm, np}, where im and ip index

the maternal and paternal sequences sampled from individual i. Arbitrarily, we assume

that the indices pertaining to the first n1 individuals index sequences sampled from
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deme 1 and indices pertaining to the last n2 individuals index the sequences sampled

from deme 2.

Each recent pedigree P has some set of possible outcomes of segregation, involving

coalescence of lineages (IBD) and movement of lineages between demes (admixture).

The set of these reconfigurations is denoted R(P), and each reconfiguration r ∈ R(P) is

a partition of In, with the groups in r representing the lineages that survive after segre-

gation back in time through the recent pedigree. Each group in a reconfiguration is also

labeled with the deme in which the corresponding lineage is found after segregation back

in time through the recent pedigree. The pedigree also induces a probability distribution

Pr(r | P), r ∈ R(P), giving the probabilities of the different sample reconfigurations.

The data X = {X1,X2, . . . ,X l} consist of sequence data at L loci. The data at

locus i are represented by the sequences Xi = {X(a)
i,1 , X

(b)
i,1 , X

(a)
i,2 , X

(b)
i,2 , . . . , X

(a)
i,n , X

(b)
i,n },

where X(a)
i,j and X(b)

i,j are the two sequences at locus i from individual j. We label them

(a) and (b) because we assume that they are of unknown parental origin. In order

to make calculation of sampling probabilities feasible, we assume that each sequence

evolves under the infinite-sites mutation model and can thus be represented by a bi-

nary sequence. We also assume that there is free recombination between loci and no

recombination within loci.

Our goal is to find the θ, M , and P that maximize the likelihood

L(P, θ,M | X) = Pr(X | P ; θ,M) =

L∏
i=1

∑
r∈R(P)

Pr(Xi | r; θ,M) Pr(r | P).
(1.2)

Probabilities are multiplied across independently segregating loci because their ances-
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tries are independent conditional on the pedigree.

In order to calculate Pr(Xi | r; θ,M), it is necessary to consider all the ways the

sequences Xi could have been inherited maternally versus paternally, since we assume

that we do not know which sequence is maternal and which is paternal. For sequences

Xi, let Λ(Xi) be the set of all possible ways of labeling Xi as maternal and paternal,

thus associating each sequence with an index in In. The sampling probability of the

data at locus i is then

Pr(Xi | r; θ,M) =
1

2n

∑
λ∈Λ(Xi)

Pr(Xi | λ, r; θ,M), (1.3)

since there are 2n ways that the Xi could have segregated as maternal and paternal

alleles, and each is equally likely to have occurred.

Together the reconfiguration r ∈ R(P) and the maternal-paternal labeling λ ∈ Λ(Xi)

imply a partition P(Xi, r, λ) of the sequences Xi corresponding to the partition of

sequence indices represented by r. For each group h ∈ P(Xi, r, λ), there is a group

g ∈ r that can be mapped onto h such that 1) each index i ∈ g indexes a distinct

sequence in h sampled from the individual indexed by i, and 2) the deme labeling of g

matches the deme labeling of h. Denote the unique elements of the set A as A̸=. The

conditional sampling probability of the sequences Xi given maternal-paternal labeling

λ ∈ Λ(Xi) and sample reconfiguration r ∈ R(P) is

Pr(Xi | λ, r; θ,M) = Pr(P(Xi, r, λ); θ,M) =
ϕ({h ̸= : h ∈ P(Xi, r, λ)}; θ,M) if |h̸=| = 1 ∀h ∈ P(Xi, r, λ)

0 otherwise,

(1.4)
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where each h ∈ P(Xi, r, λ) is one of the non-empty subsets in the partitioned sequences,

|h ̸=| is the number of unique elements in such a subset, {h ̸= : h ∈ P(Xi, r, λ)} is the “re-

duced” set of sequences, such that each subset in the partition is replaced by the unique

elements in the subset, and ϕ({h̸= : g ∈ P(Xi, r, λ)}; θ,M) is the standard infinite-sites

sampling probability of the sample after it has been reconfigured by the recent pedigree.

This sampling probability can be calculated numerically using a dynamic programming

approach [30, 31, see below].

In other words, conditional on certain sequences being IBD (i.e., they are in the same

group in the partitioned sequences), the sampling probability is the standard infinite-

sites probability of the set of sequences with duplicate IBD sequences removed and the

deme labelings of the different groups made to match any admixture events that may

have occurred. If any of the sequences designated as IBD are not in fact identical in

sequence, the sampling probability for that reconfiguration and maternal-paternal label-

ing is zero. (This assumes that no mutation occurs in the recent part of the pedigree.)

Conveniently, each reconfigured sample with non-zero probability corresponds to one of

the ancestral sample configurations in the recursion to solve the standard infinite-sites

sampling probability for the entire sample Xi, so that the sampling probability for all

pedigrees can be calculated by solving the recursion for the sampling probability of the

original sample only once.

Together, (1.2), (1.3), and (1.4) give the overall joint log-likelihood of mutation rate

θ, migration rate M , and pedigree P given sequences X:
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LL(θ,M,P | X) =

L∑
i=1

log

 ∑
r∈R(P)

Pr(r | P)
∑

λ∈Λ(Xi,r)

Pr(P(Xi, r, λ); θ,M)

−

nL log(2)

(1.5)

Our goal is to maximize (1.5) over θ, M , and P in order to estimate these parameters.

One naive approach would be to generate all possible recent sample pedigrees and

maximize the log-likelihood conditional on each pedigree in turn. However, the number

of pedigrees to consider is prohibitively large even if only the first few generations back

in time are considered. Many sample pedigrees will contain many IBD or admixture

events and thus be unlikely to occur in nature, and in many populations, it is more

probable that the sample have few IBD or admixture events in the very recent pedigree,

if any. With this in mind, we consider only pedigrees containing no more than two

events, whether they be IBD events or admixture events. Since we assume that we do

not know the parental origin of each sequence, we further reduce the number of pedigrees

to consider by evaluating only pedigrees that are unique up to labeling of ancestors as

maternal and paternal.

In a two-deme population, each pedigree with two or fewer IBD or admixture events

has the shape of one of the pedigrees shown in Figure S4. There are at most 21 distinct

shapes of pedigrees with two or fewer events, and for each such pedigree shape, there

exist some number of pedigrees with unique labelings of the sampled individuals and

timings of the events in the pedigree. (Fewer distinct shapes are possible if the sample

size is too small to permit certain shapes.) Table 1.1 gives the number of distinct pedi-

grees that must be considered for different sample sizes and numbers of past generations
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Table 1.1: Number of distinct pedigrees with two or fewer IBD or admixture events. Pedigrees that
differ only in maternal-paternal labeling of individuals are not counted as distinct.

generations sample size
n = 1 n = 2 n = 3 n = 4

g = 2 16 123 434 1109
g = 3 41 328 1144 2879
g = 4 78 631 2190 5477

considered. We note that we consider only pedigrees with non-overlapping generations

and the sampled individuals found in the current generation. This is sufficient for the

Wright-Fisher-like model of pedigrees that we investigate here, but real pedigrees will

tend not to satisfy these criteria. Allowing overlapping generations will require con-

sideration of many additional pedigrees and introduce problems of identifiability, with

multiple pedigrees having the same set of reconfigurations with the same probabilities.

We do not explore these issues here.

To calculate the standard sampling probabilities needed in (1.4), we use the method of

Wu [31], which uses a dynamic-programming approach to efficiently calculate sampling

probabilities of sequences generated under the infinite-sites mutation model in a two-

deme population. In principle, it should be possible to calculate the log-likelihood of

all pedigrees simultaneously, since any reconfiguration of the sample by recent IBD

or admixture must correspond to one of the ancestral configurations in the recursion

solved by Wu’s [2010] method [see also 30]. Thus, for particular values of θ and M ,

after solving the ancestral recursion only once (and storing the sampling probabilities of

all ancestral configurations), the likelihood of any pedigree can be found by extracting

the relevant probabilities from the recursion. However, in order to take this approach

to maximize the log-likelihood, it is necessary to solve the recursion on a large grid of θ
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and M . In practice, we find that it is faster to maximize the log-likelihood separately

for each pedigree, using standard derivative-free numerical optimization procedures to

find the M and θ that maximize the log-likelihood for the pedigree. For simplicity, we

use ordered sampling probabilities throughout, since the typical unordered probabilities

would be inappropriate in this context due to the partial ordering of the sample by the

pedigree.

To test our example inference method we simulated datasets of 1000 independently

segregating loci generated by simulating coalescence through a randomly generated

pedigree of a two-deme population with deme size N = 1000 and migration rate

M ∈ {0.2, 2.0}. We sampled one individual (two sequences) from each deme. Se-

quence data were generated by placing mutations on the simulated gene genealogies

according to the infinite-sites mutation model with rate θ = 1.0 (when M = 0.2) or

θ = 2.0 (M = 2.0). In order to investigate the effects of admixture on the estimation

on θ and M , each replicate dataset was conditioned upon having one of three different

sample pedigrees with differing amounts of admixture (see Fig. 1.5). We calculated

maximum-likelihood estimates of θ and M for each of the 41 distinct pedigrees con-

taining two or fewer IBD or admixture events occurring in the past three generations.

We compared these estimates to the estimates that would be obtained from a similar

maximum-likelihood procedure that ignores the pedigree (i.e., assuming the null pedi-

gree of no sample reconfiguration).

When there was recent admixture in the sample, assuming the null pedigree to be the

true pedigree produced a bias towards overestimation of the migration rate (Fig. 1.5),

since the early probability of migration via the admixture path must be accommodated

by an increase in the migration rate. For this reason, the overestimation of the migration

rate was greater when the degree of admixture was greater. The mutation rate was also
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with pedigree

without pedigree

true values

Figure 1.5: Maximum-likelihood mutation rates and migration rates for genetic datasets generated
with different sample pedigrees. Each point depicts the maximum-likelihood estimates of θ and M
for a particular simulation. Orange points show estimates obtained when the pedigree is included
as a free parameter, and purple points show estimates obtained when the pedigree is assumed to
have no effect on the data. In the first two columns, one of the sampled individuals is conditioned
upon having a relative from the other deme, and in the third column the data are generated from
completely random pedigrees. In each panel the true parameter values are shown with a solid white
circle, and horizontal and vertical lines show means across replicates. Gray lines connect estimates
calculated from the same dataset.
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overestimated when the admixture in the pedigree was ignored, presumably because

migration via the admixture path did not decrease allelic diversity as much as the

overestimated migration rate should. Including the pedigree as a free parameter in the

estimation corrected this biased estimation of M in the presence of admixed ancestry

in the sample. Estimates from simulations of samples lacking any features in the recent

pedigree produced approximately unbiased estimates of θ and M (Fig. 1.5).

The pedigree was not inferred as reliably as the mutation and migration rates (Fig. 1.6).

When the simulated pedigree contained admixture, the estimated pedigree was the cor-

rect pedigree (out of 41 possible pedigrees) roughly half of the time. For pedigrees with

no admixture and no IBD, the correct pedigree was inferred about one third of the time.

In addition to calculating a maximum-likelihood pedigree, it is possible to construct an

approximate 95% confidence set of pedigrees using the fact that the maximum of the

log-likelihood is approximately χ2 distributed when the number of loci is large. These

pedigree confidence sets contained the true pedigree ∼ 88 − 99% of the time, depend-

ing on the true sample pedigree, mutation rate, and migration rate. A log-likelihood

ratio test has nearly perfect power to reject the null pedigree for the simulations with

the lesser migration rate; for simulations with the greater migration rate the power

depended on the degree of admixture, with more recent admixture producing greater

power to reject the null pedigree (Fig. 1.6). Type I error rates for simulations where

the null pedigree is the true pedigree were close to α = 0.05.

We also simulated datasets of 1000 loci taken from samples with completely random

pedigrees in a small two-deme population of size N = 50 per deme with one of two

different migration rates (M ∈ {0.2, 2.0}). Whether or not the pedigree was included as

a free parameter mostly had little effect on the estimates of θ and M (Fig. 1.7). However,

in the few cases when the sample pedigree included recent admixture, the estimates were
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biased when the sampled pedigree was not considered as a free parameter. Inferring the

pedigree together with the other parameters corrected this bias.

Figure 1.6: Inference of sample pedigrees. For simulations of 1000 infinite-sites loci, with θ = 0.5
and M = 0.2 (A) or θ = 1.0 and M = 2.0 (B), different measurements of the accuracy and power
of pedigree inference are shown. The conditioned-upon sample pedigrees are shown at the bottom
of the figure. The blue bars show the proportion of simulations in which the maximum-likelihood
pedigree was the true pedigree. The purple bars show the proportion of simulations where it was
inferred that sampled individuals had admixed ancestry. The green bars show the proportion of
simulations in which the true pedigree was found within the approximate 95% confidence set of
pedigrees, and the pink bars show the proportion of simulations in which the null pedigree is rejected
by a log-likelihood ratio test.

1.3 Discussion

Here we have explored the effects of migration events fixed in the population pedigree

on the patterns of coalescence of unlinked loci. In contrast to the case of well-mixed,

random-mating populations, in structured populations the population pedigree can in-

fluence coalescence well beyond the time scale of ∼ log2(N) generations in the past.
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Figure 1.7: Maximum-likelihood mutation rates and migration rates for datasets of 1000 loci segre-
gated through sample pedigrees simulated in a two-deme population model with deme size N = 50.
Each point depicts the maximum-likelihood estimates of θ and M for a particular simulation. Orange
points show estimates obtained when the pedigree is included as a free parameter, and purple points
show estimates obtained when the pedigree is assumed to have no effect on the data. True parameter
values are shown with white circles, and horizontal and vertical lines show means across replicates.
Gray lines connect estimates calculated from the same dataset.
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These effects are greatest when the total number of migration events occurring per

generation is of the same order as the coalescence probability. When migration occurs

more frequently than this, the particular history of migration events embedded in the

population pedigree has less of an effect on coalescence, and the coalescence distribu-

tions based on the structured coalescent serve as good approximations to coalescent

distributions within pedigrees.

We have also proposed an approach for incorporating the recent ancestry of the sam-

ple into coalescent-based inference of population mutation and migration rates in a

two-deme population model. Unaccounted-for admixed ancestry of the sampled indi-

viduals introduces a bias in estimated migration rates, and this bias is eliminated by

the inclusion of the sample pedigree as a free parameter in this inference.

The inference approach we have described above is in multiple ways complementary

to existing procedures for inferring recent admixture and relatedness in structured pop-

ulations. The popular program STRUCTURE [29] and related methods [32, 33, 34] are

powerful and flexible tools for inferring admixture and population structure. Likewise,

the inference tools RelateAdmix [35], REAP [36], and KING-robust [37] all offer solu-

tions to the problem of inferring relatedness in the presence of population structure and

admixture. Perhaps the most similar in scope is the method of Wilson and Rannala

[38], which uses inferred ancestry proportions to estimate migration rates in the most

recent generations. For input, each of these methods take genotypes at polymorphic

sites, often biallelic SNPs, that are assumed to segregate independently. Likelihoods are

calculated from the probabilities of observing the observed genotypes under the rules

of Hardy-Weinberg equilibrium. These methods are well suited for samples of a large

number of SNP loci sampled from a large number of individuals. The inference proce-

dure we implemented, on the other hand, is capable of handling a sample of only a few
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individuals (n ≈ 4), and we assume that the infinite-sites mutation model holds, with no

recombination within loci and free recombination between loci. Likelihood calculations

in our method are based on the coalescent in an explicit population genetic model, and

the parameters of this model are the primary objects of inference. The pedigree is also

explicitly modeled. We have shown that our approach works well when its assumptions

hold. If the narrow assumptions of our model do not hold, or if the primary goal of

inference is to infer recent features of the sample pedigree per se, other, more flexible

methods are likely to be better.

Underlying our inference method is a hybrid approach to modeling the coalescent.

Probabilities of coalescence are determined by the sample pedigree in the recent past,

and then the standard coalescent is used to model the more distant past. This is similar

to the approach used by Bhaskar et al. [39] to model coalescence when the sample size

approaches the population size. In such a scenario, they suggest using a discrete-time

Wright-Fisher model to model coalescence for the first few generations back in time and

then use the standard coalescent model after the number of surviving ancestral lineages

becomes much less than the population size. We note that in a situation where the

sample size nears the population size in a diploid population, there will be numerous

common ancestor events and admixture events in the recent sample pedigree, so it may

be important to consider the pedigree when genetic variation is sampled from a fixed

set of individuals at independently segregating loci.

Our sample reconfiguration framework could in theory be applied to models that

allow the demography of the population to vary over time [e.g., 40, 41]. In such an

application, if only a few individuals are sampled, it would be important to distinguish

between the effects of very recent events that are particular to the sample and the effects

of events that are shared by all individuals in the population. The latter category of
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events are more naturally considered demographic history. On the other hand, if a

sizable fraction of the population is sampled, inferred pedigree features may be used to

learn more directly about the demography of the population in the last few generations.

As sample sizes increase from the tens of thousands into the hundreds of thousands and

millions [1], it will become more and more possible to reconstruct large (but sparse)

pedigrees that are directly informative about recent demographic processes.

Unexpected close relatedness is frequently found in large genomic datasets [e.g. 42,

43, 44]. It is common practice to remove closely related individuals (and in some cases,

individuals with admixed ancestry) from the sample prior to analysis, but this unnec-

essarily reduces the amount of information that is available to make inferences. What

is needed is a fully integrative method of making inferences from pedigrees and genetic

variation, properly incorporating information about both the recent past contained in

the sample pedigree and the more distant past that is the more typical domain of pop-

ulation genetic demographic inference. Here, by performing simulations of coalescence

through pedigrees, we have justified a sample reconfiguration framework for model-

ing coalescence in pedigrees and given an example of how this can be incorporated into

coalescent-based demographic inference. We hope this work spurs further investigations

of pedigrees and patterns of coalescence.
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2
The distributions of IBD segment lengths

and the number of mutations separating

IBD segments

2.1 Introduction

Identity by descent (IBD) is a central concept in the study of genetic variation. In the

broadest sense, two genetic samples are IBD if they are identical due to coinheritance of

genetic material. However, the definition of identity and the scope of coinheritance vary

so much from usage to usage that IBD is possibly best considered to be an umbrella
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concept encompassing many loosely related concepts. As a concept, IBD has historically

been used to describe patterns of coinheritance of Mendelian loci in pedigrees. It has also

been used to describe allelic identity that is due to coinheritance rather than recurrent

mutation. More recently, many authors have employed a concept of IBD defined in

terms of non-recombinant chromosomal segments coinherited from a single ancestor.

Thompson [45] provides a recent review of the various ways of thinking about IBD.

In this chapter we adopt the concept of IBD defined by recombination. We say that

a segment of two aligned chromosomes is IBD if the segment spans contiguous ancestral

material inherited from a single ancestor of the two chromosomes. Segments of identity

by descent defined this way are delimited by recombination events that occurred during

the ancestry of the sampled chromosomes. Under this definition of IBD, all chromosomes

are IBD with all other chromosomes at all points along the chromosome; what varies

with each pair of chromosomes is the distribution of breakpoints between IBD segments

along the aligned chromosomes [see 45, 46, 47]. Most segments of IBD defined this

way are difficult to detect in genetic data and are only reliably detected when the IBD

segment is long (and thus relatively young). For this reason, previous studies employing

this concept of IBD have considered only segments surpassing a given length to be IBD

[reviewed by 48]. The use of a threshold length also provides a possibility of non-identity

to complement the concept of identity, and it limits the considered timescale to the

moderately recent past. However, genomic resources and IBD inference tools continue

to improve, and it is becoming increasingly possible to detect shorter and shorter IBD

segments [48].

Here, we investigate the full distribution of IBD segment lengths. To make theoretical

predictions, we employ an assumption equivalent to the assumption used by Marjoram

and Wall [11] to distinguish their sequentially Markov coalescent model (termed SMC’)
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from the sequentially Markov coalescent model (SMC) of McVean and Cardin [10].

Both of these models provide an approximation to the coalescent with recombination

(CwR), often referred to as the “ancestral recombination graph,” which is the full,

idealized model of ancestry for a sample of recombining chromosomes [30]. The SMC

and SMC’ simplify the CwR by disallowing certain coalescence events, which grants gives

the pattern of ancestry across a chromosome the Markov property. In particular, the

SMC allows coalescence events only between ancestral segments containing overlapping

ancestral material. That is, two ancestral lineages are allowed to coalesce only if they

carry genetic material at some site that is inherited by two individuals in the sample.

Under the full CwR, all pairs of lineages are allowed to coalesce, regardless of whether

ancestral material overlaps, so this is an approximation. However, the approximation is

surprisingly good [10]. The SMC’ modifies the SMC to allow coalescence between pairs

of lineages containing overlapping or adjacent ancestral material. This improves the

approximation to the CwR and retains the Markov property for patterns of ancestry

across the chromosome [11].

Initial calculations of IBD segment lengths were based on the SMC [49]. Using the

assumptions of the SMC’, we calculate the marginal distribution of IBD segment lengths.

We also calculate the distribution of IBD segment ages conditional on segment length,

and we use this distribution to show that the age of many IBD segments typically found

in the recent literature is too ancient to reflect any features particular to the pedigree

of the sample. We conclude with an investigation the mutations on IBD segments and

calculate the probability of true mutational identity for recombinational IBD segments

of different lengths, finding that the number of mutations along a segment rapidly

converges to a simple distribution (a Negative Binomial distribution) as the IBD segment

length increases. Throughout, we find that predictions made with SMC’ assumptions
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are indistinguishable from the results of simulations of the full CwR.

Some of the results in this chapter, in particular those related to lengths of IBD seg-

ments under the assumptions of the SMC’, were independently derived by Shai Carmi,

with whom I subsequently co-authored a paper [8]. Similarly, some of the results re-

lated to ages of IBD segments of different lengths and mutations on IBD segments were

incorporated into a manuscript that I co-authored with Pier Palamara [9].

2.2 Results

Our approach to deriving distributions related to IBD segment lengths closely follows

that of Palamara et al. [49]. Consider a chromosome of total genetic length r Morgans.

Assume that in each generation, recombination occurs across the chromosome at rate r

without interference. We sample two such chromosomes and choose a focal point along

the aligned chromosomes. From the focal point we look to the right and to the left along

the aligned chromosomes to determine the extent of recombinational IBD. Assume that

the chromosome is long enough that its edges have little effect on the distribution of the

length of the IBD segment containing the focal point. Suppose also that the coalescence

time is t at the focal point, where the coalescence time has been rescaled by N , the

haploid population size, in the coalescent limit. With time rescaled this way, ancestral

lineages coalesce with rate 1.

At this point, recall that we define an IBD segment to be a chromosomal segment

spanning contiguous ancestral material inherited from a single ancestor. This differs

slightly from definitions of recombinational IBD used in previous studies, which define

IBD in terms of the distance between nearest recombination events. In the context of the

coalescent with recombination, two ancestral lineages formed by a single recombination

event (i.e., two lineages ancestral to the same descendent chromosome) can coalesce
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back together, possibly prior to the coalescence event in the ancestor that defines the

recombinational IBD segment. If such a “healing” or “back” coalescence event occurs,

all evidence of the recombination event is essentially erased, and the ancestral material

comprising the IBD block extends to a subsequent recombination point. This line of

argument is equivalent to the modification of the sequentially Markov coalescent (SMC)

into the SMC’, in which the new lineage formed by recombination is allowed to coalesce

back onto the gene genealogy that is adjacent along the chromosome [11].

When time is measured in discrete generations, recombination events occur across

the chromosome at a rate of 1 per Morgan in each generation. When time is modeled

as continuous and rescaled by N , recombination happens at a rate of ρ/2dt = Ndt per

Morgan in the infinitesimal time interval (t, t + dt). (In this chapter we will measure

segment lengths in units of ρ; to convert to Morgans, divide the segment length by

2N .) Looking to the right from the focal point on a single chromosome, if the focal

coalescence time is t, the total exponential rate of arrival for the nearest recombination

event is
∫ t
0 ρ/2du = ρt/2. When considering the nearest recombination event along a

pair of chromosomes, this rate is ρt. However, at each time s, 0 < s < t, recombination

events at that time produce two ancestral lineages that coalesce back together prior

to t with probability 1
2(1 − e−2(t−s)). To see that this is the case, consider the three

possible outcomes at time t after a recombination event occurs at time s < t (Fig.

2.1). The three possible outcomes are (1) no coalescence occurs prior to time t; (2) the

broken-off lineage (i.e., the lineage not containing the focal point) coalesces back onto

the lineage containing the adjacent ancestral material, and (3) the broken-off lineage

coalesces with ancestral lineage containing the homologous positions sampled from the

other chromosome. The probability of no coalescence is e−2(t−s), since each of the two

coalescence events occurs at rate 1. Given that a coalescence event does occur, the two
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Figure 2.1: The three possible outcomes of a recombination event that occurs at time s prior to
a conditioned-upon local coalescence time t. After the recombination event occurs, the broken-off
lineage can coalesce either back onto the adjacent ancestral material or onto the homologous ancestral
material. Each of these coalescence events occurs at rate 1, so the probability that no coalescence
event occurs is e−2(t−s). The probability that each coalescence event occurs is 1

2 (1− e−2(t−s)).

coalescence events are equally probable, so that the probability that the recombination

event back-coalesces before time t is 1
2(1− e−2(t−s)).

Since we are interested only in the distance to the nearest recombination event causing

a change in most recent common ancestry along two chromosomes, in the time interval

(s, s + ds), 0 < s < t, the effective recombination rate across the chromosome is ρ[1 −
1
2(1−e

−2(t−s))]ds. Thus the total rate of arrival of the first effective recombination event

(i.e., the first change in the most recent shared ancestor) between times 0 and t is

∫ t

0
ρ

[
1− 1

2

(
1− e−2(t−s)

)]
ds =

ρ

4

(
1− e−2t + 2t

)
.

Looking to the left from the focal point, if we make the same assumption that is

used to derive the SMC’, namely that ancestral lineages containing exclusively non-

overlapping and non-adjacent ancestral material cannot coalesce [11], then the process of

generating the extent of recombinational IBD on the left of the focal point is independent

of the process of generating the extent of recombinational IBD on the right. With this
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assumption, the distribution of the length L of the IBD segment containing the focal

point is Erlang-2
(
1
4

(
1− e−2t + 2t

))
, with density

fL|T (l|t) =
l

16
e−

1
4
l(1−e−2t+2t) (1− e−2t + 2t

)2
. (2.1)

If the IBD segment is defined by adjacent sites of ancestral recombination, instead

of contiguous ancestral material, the total rate of arrival of the IBD segment boundary

is ρt and the distribution of L∗ is Erlang-2(t). This is equivalent to assuming the SMC

model of coalescence and recombination, since under the SMC, each recombination event

produces a new ancestor between a pair of chromosomes. (We will use asterisks to mark

random variables related to IBD under the SMC assumptions.) For random variables

X and Y , X is defined to be stochastically less than Y if Pr(X > a) ≤ Pr(Y > a) for all

a. Because the distribution of IBD segment lengths under the SMC does not account

for back coalescence events, it is stochastically less than the length distribution under

the SMC’.

Figure 2.2 shows the difference between the conditional length distributions for L

and L∗. When the focal coalescence time is short, there is little difference between the

distributions because there is little time for additional coalescence events after the re-

combination event. When the focal coalescence time is longer, there is more opportunity

for a back coalescence event and the distributions are less similar.

To derive the marginal distribution of IBD segment lengths unconditional on local

pairwise coalescence time, we integrate f(l|t) over t:

fL(l) =

∫ ∞

0
fL|T (l|t)fT (t)dt =

∫ ∞

0

l

16
e−

1
4
l(1−e−2t+2t) (1− e−2t + 2t

)2
e−tdt. (2.2)
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Figure 2.2: Comparison of the distribution of IBD lengths given a local coalescence time. In panel
A, the total effective recombination rate is shown as a function of local coalescence time. Under
the SMC, the total recombination rate grows linearly with coalescence time. Under the SMC’, the
total effective recombination rate is less for older segments because they have a greater tendency
to produce recombination events that have a substantial probability of back coalescence. In panels
B–D, comparisons of Erlang-2 length distributions for different local coalescence times are shown.
When the local coalescence time is greater, the effect of back coalescence is greater and the SMC and
SMC’ distributions are more different. Histograms show results of simulations of the full coalescent
with recombination carried out in ms. In each panel, the simulation results are the IBD segments
whose ages are in the interval [0.95t, 1.05t] taken from a simulation of 50 million IBD segments,
each at the midpoint of a chromosome of total length ρ = 1000.
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The solution of this integral can be expressed in terms of special functions and is

given in Appendix D. The solution of the equivalent integral for L∗ is

fL∗(l) =

∫ ∞

0
fL∗|T (l|t)fT (t)dt =

2l

(1 + l)3
.

This distribution has no moments, and because L is stochastically greater than L∗,

the distribution of L must also have no moments. Figure 2.3A shows the difference

between these two distributions and compares each to the distribution of IBD segments

under the coalescent with recombination.

This approach to deriving the distributions of L and L∗ corresponds to a particular

process of sampling IBD segments. Since derivations are in reference to a given focal

point, the sampling process is equivalent to choosing a point (rather than a segment)

uniformly at random from a collection of IBD segments arranged sequentially across

an infinite chromosome. By choosing a point at random, segments are sampled with

weight proportional to their lengths; this is known as the inspection paradox. If instead

the segments are weighted equally and a segment is sampled uniformly at random, the

density of such a segment S is given by the following integral:

fS(s) =
1
sfL(s)∫∞

0
1
ufL(u)du

=
3fL(s)

2s
. (2.3)

Note that the kth moment of S is 3/2 multiplied by the (k − 1)th root of L. Thus

E[S] = 3/2 and S has no higher moments. The equivalent density for S∗ is

fS∗(s) =
2

(1 + s)3
.

This distribution also has a mean (E[S∗] = 1) but no higher moments. Figure 2.3B
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Figure 2.3: Comparison of the distribution of IBD lengths under the SMC, SMC’, and CwR. Panel A
shows the distribution of IBD segment lengths when segments are sampled with weight proportional
to their length (i.e., IBD segments encompassing a fixed point). Panel B shows the distribution of IBD
segment lengths when segments are sampled uniformly at random. In both ascertainment schemes,
IBD segments are longer when back coalescence is modeled, i.e., under the SMC’ assumptions.
Histograms show results of simulations of the full coalescent with recombination carried out in ms.
Simulation sample sizes are 5 million for both panels.

compares the distributions of S and S∗.

Using Bayes’ Rule, it is possible to obtain the distribution of pairwise coalesce times

given an IBD segment length. This is

fT |L(t|l) =
e−tfL|T (l|t)

fL(l)
. (2.4)

Figure 2.4 shows this distribution for different IBD segment lengths. It is notable

that for segments of lengths typically inferred from recent studies, for example segments

of length in the range of 1 to 5 cM, the distribution of ages of these segments extends

greatly beyond the log2(N) timescale on which the population pedigree converges [7, 26,

see t = log2(N)/N ≈ 0.0013 for N = 10000 in Figure 2.4]. This shows that most IBD

segments in this length range are due to coalescence events in ancestors that are shared

equally by all individuals in the population; thus the presence of such recombinational
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Figure 2.4: Distribution of IBD segment ages conditional on segment length. Panels A–C show
ages of IBD segments of lengths l = 1, l = 10, and l = 100, respectively. In each panel, a histogram
shows simulated ages of IBD segments in the length interval [0.95l, 1.05l]. The simulation results
taken in each panel were taken from a large pool (n = 5 million) of random IBD segment lengths
simulated using ms with a total recombination rate of ρ = 1000. Sample sizes were n = 1023920
(A), n = 929020 (B), and n = 99806 (C). There were many fewer simulations for panel C (l = 100)
because IBD segments of that length are relatively rare. Theoretical predictions in panel C are less
accurate presumably because of the effects of finite chromosome length (ρ = 1000) on sampling a
segment of length l = 100.

IBD segments conveys little information about the pedigree relationships particular

to the two individuals possessing the pair of chromosomes being compared, if such

particular relationships exist.

Mutation

The calculations above can be used to study mutational differences along recombina-

tional IBD segments. Assume that mutation occurs according to an infinite-sites model

at rate θ/2. Because we have scaled lengths by ρ, the relevant parameterization of mu-

tation is the ratio ν = θ/ρ. Conditional on the length l and coalescence time t of an

IBD segment, the number of heterozygous sites along the segment is Poisson distributed

with mean νlt. Thus the joint distribution of the local coalescence time, IBD segment
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length, and the number of heterozygous sites on the IBD segment is

fT,L,K(t, l, k) = e−tfL|T (l|t)
(νlt)k

k!
e−νlt. (2.5)

One can also derive the distribution of the number of mutations along an IBD segment

given its length. This has the following form:

Pr(K = k|L = l) =

∫ ∞

0
fT |L(t|l)

(νlt)k

k!
e−νltdt. (2.6)

The integral in (2.6) can be solved numerically.

It is worthwhile to make the same calculations with the simpler expressions involving

L∗, since L converges in distribution to L∗ as L → ∞. Under the SMC, the equivalent

of equation (2.6) has the following solution:

Pr(K = k|L∗ = l) =
1

2
(k + 1)(k + 2)

(
1 + l

1 + l + lν

)3( lν

1 + l + lν

)k
. (2.7)

As l → ∞, this becomes

1

2
(k + 1)(k + 2)

(
1

1 + ν

)3( ν

1 + ν

)k
, (2.8)

which is a Negative Binomial distribution with success probability ν/(1 + ν) = θ/(θ +

ρ) and r = 3. It is clear that equation (2.7) is well approximated by the limiting

distribution (2.8) when l ≫ 1. Equivalently, if the minimum considered IBD segment

length is x cM, then (2.8) should provide a reasonably accurate approximation to the

distribution of the number of mutations along IBD segments so long as N ≫ 100
x . This

convergence argument is made with reference to equations involving L∗ rather than L,

but convergence of the number of mutations on L to equation (2.8) is observed on the
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same scale through numerical calculation of equation (2.6) (Fig. 2.5).

The concept of recombinational IBD is often linked to mutational identity through

the assumption that large IBD segments inherited recently from a common ancestor

will tend to be allelically identical. This assumption can be examined using the above

calculations. When a segment is long, the Negative Binomial distribution given in

equation (2.8) can be used, and the probability of complete mutational identity is

(1 + ν)−3 = ρ3/(θ + ρ)3. When the mutation and recombination rates are equal, this

probability is 1/8. To consider the probability of complete identity for shorter segments,

we can solve the integral in equation (2.6) with k = 0. This integral can be solved an-

alytically for segments modeled under both the SMC and SMC’, but the solution for

segments modeled by the SMC’ is long and involves special functions, so it is omitted.

Under the SMC, the probability of complete identity is

Pr(K = 0|L∗ = l) =
(1 + l)3

(1 + l + lν)3
.

This function decreases monotonically from unity to (1 + ν)−3 as l increases from

zero; thus, shorter segments always have a greater probability of being completely iden-

tical than longer segments. Interestingly, the probability of complete identity for IBD

segments under the SMC’ is minimized between zero and infinity. There is no simple

expression for this minimum, but numerical calculations indicate that it grows sublin-

early with ν. Figure 2.6 shows the probability of complete mutational identity as a

function of IBD segment length, modeled by both the SMC and SMC’.
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Figure 2.5: Distribution of the number of mutational differences along IBD segments of different
lengths. Panels A–D show the distribution of the number of singleton mutations along IBD segments
of lengths l = 0.1, 1, 10, and 100. In a diploid population of size 1000, for example, these lengths
would correspond to 0.0025 cM, 0.025 cM, 0.25 cM, and 2.5 cM, respectively. Each panel shows
theoretical predictions based on the length of the segment (modeled under the SMC and SMC’),
predictions for the case where L→ ∞, and observations from simulations. Simulations were carried
out in ms. Each simulation (n = 50 million) generated a chromosome with end-to-end recombination
and mutation rates ρ = θ = 1000. Vertical lines in the magenta circles show the standard errors of
estimates from simulations.
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Figure 2.6: Probability of complete mutational identity as a function of segment length. Probabilities
are shown for three different values of ν = θ/ρ, modeled by the SMC and SMC’. In each case the
asymptotic probability of complete mutational identity is (1+ ν)−3 = ρ3/(θ+ ρ)3. Segment lengths
are measured in units of ρ = 2Nr.

Simulations

To check calculations and determine the parameter space in which it is important to

model back-coalescence events, we ran simulations using the coalescent simulator ms.

When ms is provided with the -T option, it outputs local coalescence times that can

be used to extract recombinational IBD segments that are generated by the full coa-

lescent with recombination. In analyzing the output from ms, two segments broken by

recombination were considered to be part of the same recombinational IBD segment

if they were contiguous and had the same coalescence time. Because ms simulates the

full coalescent with recombination, the size of the simulated chromosomes is limited by

computational resources to a maximum total recombination rate of ρ ≈ 1000, which

is 5 cM in a haploid population of size 10000. This finite chromosome length likely
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introduces the effects of chromosome ends on longer simulated segments, and this is

apparent in the data (for example, see Fig. 2.4C).

2.3 Discussion

Here, we have calculated various distributions related to recombinational IBD segments.

We showed that the SMC’ provides accurate predictions for the lengths of IBD segments

across the whole range of segment lengths and ages. We also calculated the distribution

of the age of an IBD segment given its age and and the number of mutations on an IBD

segment given its length. As noted above, these results were incorporated into studies

that I co-authored [8, 9].

IBD provides a powerful lens for investigating the recent history of a population.

Palamara et al. [49] developed a method for reconstructing population sizes in the recent

past based on observed IBD segment lengths and estimated recent bottlenecks and

contractions in the Ashkenazi Jewish and Kenyan Maasai populations. Their method

uses length distributions similar to those presented above, except they allow variable

population sizes and implicitly base their calculations on the SMC rather than the SMC’.

Ralph and Coop [47] studied IBD across Europe taking a more empirical approach

and similarly based calculations on the SMC. Calculations based on the SMC are quite

accurate for IBD segments with length greater than ∼ 100 measured in units of ρ = 2Nr;

for N = 5000, this is 0.5 cM. At the present, most studies consider only IBD segments

longer than ∼ 1−2 cM, since IBD detection methods struggle to accurately identify IBD

segments shorter than this [but see 50, 51]. If the population is small or if shorter IBD

segments are retained, it will be important to base calculations on the SMC’ rather than

the SMC. Short IBD segments are difficult to delimit, due to a lack of polymorphic sites

or the possibility of multiple contiguous short segments being combined into a single
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segment. This presents an additional challenge beyond choice of SMC versus SMC’. In

order to avoid these difficulties, Harris and Nielsen [52] used the lengths of intervals

between sequence mismatches to infer demographic history in humans. They found

that it was necessary to base calculations on the SMC’ rather than the SMC in order

to make accurate inferences.
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3
The SMC’ is a highly accurate

approximation to the ancestral

recombination graph

3.1 Introduction

Of the many models of genetic variation in the field of theoretical population genetics,

few have as much relevance in the era of genomics as the ancestral recombination graph

(ARG). The ancestral recombination graph models patterns of ancestry and genetic

variation within sequences experiencing recombination under neutral conditions [53, 54].
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Under the formulation of Griffiths and Marjoram [54], lineages recombine apart and

coalesce together back in time to produce a graph structure describing the ancestral

genealogy at each point along a continuous chromosome. While only a few simple rules

govern the process, many aspects of the model are analytically intractable.

Wiuf and Hein [55] provided a formulation of the ARG that proceeds across the chro-

mosome (rather than back in time), producing the genealogy at each point sequentially.

As with the back-in-time formulation of Griffiths and Marjoram [54], at each point along

the chromosome there is a local genealogy describing the ancestry of the sample at that

point, and changes in the genealogy occur at points where recombination events have

occurred. In this sequential formulation of the ARG, a new lineage is produced wherever

an ancestral recombination event is encountered along the chromosome. To produce a

new genealogy at the recombination site, the new lineage is coalesced to the ARG rep-

resenting the ancestry of all previous points along the chromosome. This dependence

on all previous points makes the process non-Markovian and is one of the properties of

the ARG that makes it often intractable.

Approximations to the ARG have been suggested with the goal of modeling coales-

cence with recombination in a way that is analytically tractable. McVean and Cardin

[10] introduced the sequentially Markov coalescent (SMC). The original formulation of

the SMC was a sequential model, generating genealogies along the chromosome such

that each new genealogy depends only on the previous genealogy. Like the ARG, the

SMC has both a back-in-time formulation and a sequential formulation. The back-in-

time formulation of the SMC is equivalent to that of the ARG except that coalescence

is allowed only between lineages containing overlapping ancestral material. As a conse-

quence, in the sequential formulation of the pairwise (n = 2 chromosomes) SMC, each

recombination event produces a new pairwise coalescence time.
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Marjoram and Wall [11] introduced a slight modification to the SMC, termed the

SMC’, which retains the Markov behavior along the chromosome but models additional

coalescence events that make it a closer approximation to the ARG. Specifically, in

the back-in-time formulation of the SMC’, coalescence is allowed between lineages con-

taining either overlapping or adjacent ancestral material. In the sequential formulation

of the pairwise SMC’, this means that not every recombination event necessarily pro-

duces a change in local coalescence time, since two lineages created by a recombination

event can coalesce back together. Figure 3.1 shows the transitions that are permitted

under the back-in-time and sequential formulations of the pairwise ARG, SMC, and

SMC’. The sequentially Markov coalescent models have been used in many recently in-

troduced population-genetic, model-based inference procedures, including the pairwise

SMC (PSMC) model [12], multiple SMC (MSMC) model [17], diCal [13], coalHMM

[16, 56], and ARGWeaver [14].

The SMC’ was shown by simulation to produce measurements of linkage disequilib-

rium more similar to the ARG than those produced by the SMC [8, 11]. Few other

comparisons between these models have been made, and analytical results for the SMC’

are few. Here, we propose a model for generating pairwise coalescence times at two fixed

points along continuous chromosomes modeled by the SMC’. Through analysis of this

model, we calculate for the first time many statistical properties of the pairwise SMC’

and compare these against those of the ARG and SMC. Specifically, for each model

of coalescence with recombination, we compare the following properties of (T1, T2),

the joint distribution of pairwise coalescence times at two fixed points: the joint den-

sity fT1,T2(t1, t2) (Section 3.2.2), the conditional density fT2|T1(t2|t1) (Section 3.2.3), the

probability P (T1 = T2) that the pairwise coalescence times are the same (Section 3.2.4),

and the covariance Cov[T1, T2] between the coalescence times (Section 3.2.5). These
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Figure 3.1: Transitions permitted under the ARG, SMC’, and SMC models. Under “Sequential
Transitions,” a transition occurs from left to right across the chromosome at the rightmost recom-
bination event. Locations of recombination events are marked with red lines along the horizontal
axis, and the ith coalescence time is labeled as ti. Under “Back-in-time transitions,” the arrow
indicates a coalescence event that occurs between two aligned ancestral chromosomes, each carrying
a combination of ancestral (solid black line) and non-ancestral material (dashed gray line). Ancestral
material is defined as a portion of a chromosome that is ancestral to the sample.

quantities are readily related to measures of linkage disequilibrium in real sequence

data.

Using our two-locus model of the pairwise SMC’, we also show that the joint distri-

bution of coalescence times immediately to the left and right of a recombination event

is the same under the SMC’ and ARG. This allows us to calculate the asymptotic bias

of the pairwise SMC- and SMC’-based population-size estimators, which we confirm by

simulation. We show that the SMC’ estimator is approximately asymptotically unbi-
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ased.

3.2 Results

3.2.1 Two-locus Markov chain models

We first present two-locus, back-in-time formulations (as opposed to sequential, across-

the-chromosome formulations) of the ARG, SMC, and SMC’ models, beginning with

the previously described ARG and SMC because these models are simpler and provide

context for the presentation of the SMC’. Kaplan and Hudson [57] described how the

process of generating coalescence times at two linked loci modeled by the ARG can

be represented as a continuous-time Markov chain, with coalescence and recombination

events causing transitions between states. Simonsen and Churchill [58] explored this

process further for the case where the sample size is n = 2 and derived for the ARG

many of the quantities we compare against the SMC’ in this paper.

If time is scaled such that the rate of coalescence is one and the total rate of recom-

bination between the two linked loci is ρ/2, then the two-locus ancestral process under

the ARG is the model depicted in Fig. 3.2A. The process starts in state R0 with two

lineages, each containing linked copies of the two loci. From R0, the process transitions

with rate ρ to state R1, in which one of the two chromosomes has experienced a re-

combination event, or to state CB, in which both loci have coalesced, terminating the

process. From R1, a recombination event on the remaining linked chromosome (occur-

ring with rate ρ/2) can take the process to R2, in which neither locus has coalesced and

all focal-locus copies are unlinked, or to CL or CR, in which the left and right focal loci

have coalesced, respectively.

Unlike previous descriptions of two-locus continuous-time Markov chains [58, 59],
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we disregard any information about linkage between the two loci after one locus has

coalesced, since the rate of coalescence at the uncoalesced locus is 1 regardless of the

state of linkage with the coalesced locus. In general, the rate of coalescence between

each pair of lineages containing uncoalesced ancestral material is 1, and the rate of

recombination, breaking apart linked loci back in time, is ρ/2 multiplied by the number

of lineages containing linked loci.

The defining feature of the SMC is that ancestral lineages not containing overlapping

ancestral material cannot coalesce [10]. For the back-in-time formulation of the SMC,

the consequence of restricting coalescence in this way is that once a recombination

event occurs between the two loci, the process can never return to the fully-linked,

uncoalesced state (R0) and the remaining time until coalescence at the two loci can

be modeled as independent exponential random variables with rate 1 (Fig. 3.2B). This

suggests a natural representation of the joint distribution of (T1, T2) under the SMC:

(T1, T2) ∼ (X0 +RXL, X0 +RXR), (3.1)

where X0 ∼ Exp(1+ρ) is the amount of time to leave R0, R ∼ Bernoulli( ρ
1+ρ) indicates

whether the first event is a recombination event, and XL ∼ XR ∼ Exp(1) are the

exponential waiting times until coalescence after the first recombination event. All of

these random variables are independent in the SMC model, so it is straightforward to

calculate many of the quantities we compare in this paper using this representation.

The defining rule of the SMC’ model of coalescence with recombination is that only

ancestral lineages containing overlapping or contiguous ancestral material can coalesce

[11]. The back-in-time model of coalescence at two fixed loci under this model is the

Markov jump chain shown in Figure 3.3. Under the SMC’, it is necessary to model the

56



number of recombination events that have occurred between the two loci at each point

in time. To see that this is the case, consider the state R2 in Figure 3.3. In this state,

two recombination events have occurred between the focal loci, and neither focal locus

has coalesced. Because lineages can only coalesce to lineages containing overlapping

or adjacent ancestral material, two particular coalescence events would need to occur

before the process returns to state R0, regardless of the placement of the recombination

events on the two chromosomes. This model also features an additional state I, which

is entered when some portion of the chromosome between the focal loci coalesces prior

to either of the focal loci. Upon entering I it becomes impossible for the process to

re-enter the initial, fully-linked state (R0), so the remaining times until coalescence at

the focal loci become independent exponential random variables with mean 1. If Ri

is the state in which neither focal locus has coalesced and i recombination events have

occurred between the focal loci, the transition rate into I is i − 1. This is due to the

fact that each recombination event after the first produces an additional pair of lineages

that can coalesce to take the process to I. For each state Ri, i ≥ 1, the number of

lineages that can coalesce to take the process to Ri−1 is i, and the rate of transitioning

to Ri+1 through recombination is ρ. As with the ARG and SMC, transitions to CL

and CR occur at rate 1 whenever the process is in state Ri, i ≥ 1.

3.2.2 Joint probability density functions

For the ARG, SMC, and SMC’, let R0(t) represent the probability that the two-locus

ancestral coalescent process is in state R0 at time t, and let R+(t) represent the prob-

ability that the process is in any state Ri at time t, where i ≥ 1 (including I for the

SMC’). For the three coalescent models we compare here, the general form of the joint

density of coalescence times at the two focal loci is
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Figure 3.2: Panel A shows a schematic of the ARG back-in-time Markov process for two loci. Panel
B shows schematic of the SMC back-in-time Markov jump chain for two loci. In both cases the
process starts in state R0 and transitions to other states occur with the rates indicated by arrows
between states.

fT1,T2(t1, t2) =



R0(t1) t1 = t2

R+(t1)e
−(t2−t1) t1 < t2

R+(t2)e
−(t1−t2) t1 > t2.

(3.2)

For the ARG and the SMC, the number of states is finite and R0(t) and R+(t) can

be solved using matrix exponentiation. For the SMC’, there are an infinite number

of states, representing the possibility of an infinite number of recombination events

occurring between the two focal loci. To solve for the probability Rj(t) that the SMC’

process is in state Rj at time t, one can use the forward Kolmogorov equation (for
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Figure 3.3: Schematic of the SMC’ back-in-time Markov jump chain for two loci. Dashed arrows
show transition rates that apply for all Ri. State I is the state in which some portion of the
chromosome between the two focal loci has coalesced but neither focal locus has coalesced. The red
lines in states R2 and R3 show the coalescence events that take the process to state I.

i ≥ 1)

R′
j(t) = ρRj−1(t) + (j + 1)Rj+1(t)− (2j + 1 + ρ)Rj(t). (3.3)
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Through substitution, the solution to (3.3) can be shown to be

Rj(t) = R0(t)

[ρ
2(1− e−2t)

]j
j!

. (3.4)

To find R0(t), we note that it is equal to fT1,T2(t, t) (see Eq. (3.2)). In turn,

fT1,T2(t, t) = fT1(t)P (T2 = t|T1 = t), (3.5)

where fT1(t) = e−t is the marginal distribution of coalescence times at the first (or sec-

ond) locus and P (T2 = t|T1 = t) = e−ρλ(t) is the probability of no change in coalescence

times given the coalescence time t at the first locus. Here λ(t) = 1
4

(
1− e−2t + 2t

)
is the

exponential rate of encountering a change in coalescence time along the chromosome

given that the local coalescence time is t [8]. Thus R0(t) is given by

R0(t) = e−te−ρλ(t). (3.6)

This completes the solution of Rj(t). Using Figure 3.3,

R+(t) = I(t) +

∞∑
j=1

Rj(t), (3.7)

where I(t) is the probability that the process is in state I at time t. Using (3.4) and

(3.6) we get

∞∑
j=1

Rj(t) = R0(t)
∞∑
j=1

[ρ
2(1− e−2t)

]j
j!

= e−te−
ρ
4
(1+2t−e−2t)

[
e

ρ
2 (1−e

−2t) − 1
]
.

(3.8)
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Next, I(t) satisfies the forward Kolmogorov equation

I ′(t) =
∞∑
j=2

(j − 1)Rj(t)− 2I(t), (3.9)

the solution to which is

I(t) = e−2t

∫ t

0
e2u

∞∑
j=2

(j − 1)Rj(u)du

= e−2t

∫ t

0
R0(u)

{
2e2u + e

ρ
2 (1−e

−2u) [(ρ− 2)e2u − ρ
]}
du

= e−2t

{
1− e

1
4(−2t(ρ−2)+ρ−e−2tρ)

− e−
ρ
4 2

ρ−4
2 (−ρ)−

ρ−2
4

[
Γ

(
ρ− 2

4
,−ρ

4

)
− Γ

(
ρ− 2

4
,−e

−2tρ

4

)]}
.

(3.10)

Here, Γ(a, b) =
∫∞
b xa−1e−xdx is the incomplete gamma function.

Together (3.6), (3.7), (3.8), and (3.10) give the joint distribution (3.2) for the SMC’.

For the ARG and SMC, the expressions for R0(t) and R+(t) in the joint distribution

(3.2) can be obtained by exponentiating the rate matrices implicit in Figure 3.2. For

the SMC, the joint distribution can also be derived using the representation (3.1).

Figure 3.4 compares the joint coalescence time distributions under the SMC and

SMC’, displaying the differences of these joint distributions with the joint distribution

of the ARG. The SMC’ provides a much better fit to the ARG joint distribution for the

range of recombination rates compared. Both the SMC and the SMC’ underestimate

the density of outcomes where T1 = T2, but this underestimation is substantially less

under the SMC’.

To summarize the difference between the joint distributions more precisely, we cal-
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Figure 3.4: Comparison of the difference in joint density of coalescence times fT1,T2(t1, t2) between
the SMC and ARG (top row) and SMC’ and ARG (bottom row). Comparisons are made for three
different rates of recombination between the two focal loci (ρ = 0.1, 1.0, 5.0).

culated the total variation distance between the SMC and ARG and between the SMC’

and ARG across a range of recombination rates. The total variation distance between

the SMC and the ARG is defined as

TV (SMC,ARG) =
1

2

∫ ∞

0

∫ ∞

0

∣∣∣fSMC(t1, t2)− fARG(t1, t2))
∣∣∣ dt2dt1, (3.11)

where fSMC(t1, t2) and fARG(t1, t2) are the joint densities fT1,T2(t1, t2) defined under

the SMC and ARG, respectively. The total variation distance between the SMC’ and

ARG is similarly defined. Figure 3.5 shows the total variation distance from the ARG

for the SMC and SMC’ over a range of recombination rates. Total variation distances

were calculated numerically. For both the SMC and SMC’, the total variation distance
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was maximized at some intermediate recombination rate, approximately ρ = 1.1 for the

SMC and ρ = 3.2 for the SMC’.
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Figure 3.5: Total variation distance between the SMC and ARG (solid line) and the SMC’ and
ARG (dashed line) as a function of recombination rate. Total variation distances were calculated
numerically.

It is interesting to note that the walk on the states R0, R1, R2, ..., constitutes a birth-

death process with killing, where birth events correspond to additional recombination

events taking the process from Ri to Ri+1, death events correspond to coalescence

events that take the process from Ri to Ri−1, and killing events, which take the process

to an absorbing state, here correspond to coalescence events that take the process to

CL, CR, or I. Under this formulation, the birth rate is constant λi = ρ, the death

rate is linear µi = i, and the killing rate is linear γi = i + 1. This class of processes

was studied by van Doorn and Zeifman [60], who demonstrated a different approach

for calculating Ri(t). This alternative approach (not shown) confirms our derivation of
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(3.6).

3.2.3 Conditional distribution of coalescence times

In this section we consider the distribution of coalescence times at one locus given the

coalescence time at the other. The conditional density of T2 given T1, fT2|T1(t2|t1),

can be calculated by dividing the joint distribution fT1,T2(t2, t1) by e−t1 , the marginal

distribution of coalescence times at the left locus:

fT2|T1(t2|t1) =
fT1,T2(t1, t2)

e−t1
. (3.12)

Hobolth and Jensen [59] introduced a framework for modeling the distribution of T2

given T1 using a time-inhomogeneous continuous-time Markov chain. (Note that the

model called SMC’ in Hobolth and Jensen [59] is an SMC’-like model of two loci that is

not based on the continuous-chromosome SMC’. It is different from the SMC’ model we

consider here.) This framework can be extended to the SMC’, producing the continuous-

time Markov chain shown in Figure 3.6. Within this framework, a coalescence time T2

at the right locus is generated back in time conditioned upon a coalescence time T1 at

the left locus.

Figure 3.7 compares the conditional density fT2|T1(t2|t1) of coalescence times t2 at

the right locus conditioned upon the coalescence times t1 at the left locus for different

values of t1 and recombination rate ρ. The conditional density under the SMC’ is much

closer to the density produced by the ARG than is the conditional density under the

SMC.
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3.2.4 Probability of coalescence times being equal

In the two-locus, back-in-time ancestral models, T1 and T2 are equal when the state CB

is entered through R0 rather than CL or CR. That is, the coalescence times are equal

when a coalescence event occurs between two ancestral lineages each carrying ancestral

material at both of the focal loci. The probability P (T1 = T2) can be obtained by
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Figure 3.7: Comparison of densities of coalescence times t2 at the right locus conditioned upon
coalescence times t1 at the left locus. Conditional densities fT2|T1
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and SMC’ models for three different rates of recombination between the two loci (ρ = 0.1, 1.0, 5.0)
and three different conditioned-upon coalescence times t1 at the left locus (t1 = 0.1, 1.0, 4.0). The
area under each curve is P (T2 ̸= t1|T1 = t1); the conditional probabilities P (T2 = t1|T1 = t1) are
not shown.

analyzing the ancestral processes introduced in Section 3.2.1. For the SMC and SMC’,

P (T1 = T2) can also be obtained by considering the original, sequential formulations of

McVean and Cardin [10] and Marjoram and Wall [11], respectively.

For the ARG, Simonsen and Churchill [58] showed that the probability that T1 is

equal to T2 is

PARG(T1 = T2) =
ρ+ 18

ρ2 + 13ρ+ 18
. (3.13)

Under the SMC, representation (3.1) shows that

PSMC(T1 = T2) =
1

1 + ρ
. (3.14)

Under the SMC’, the probability that T1 is equal to T2 is most easily obtained by

considering the sequential formulation of Carmi et al. [8]. Under this formulation,

when the local coalescence time is t, the distance until a change in the coalescence time
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(measured in units of the scaled recombination parameter ρ) is exponentially distributed

with rate parameter λ(t) = 1
4

(
1− e−2t + 2t

)
, as above. Thus

PSMC’(T1 = T2) =

∫ ∞

0
e−te−ρλ(t)dt

= 2ρ/2e−ρ/4(−ρ)−
1
2
− ρ

4

[
Γ

(
2 + ρ

4

)
− Γ

(
2 + ρ

4
,−ρ

4

)]
.

(3.15)

The first line in (3.15) follows from the fact that the marginal distribution of coalescence

times at the left locus is e−t, and given the left coalescence time t, the probability that

the same coalescence time extends a distance at least ρ to the right is e−ρλ(t). This

equation was also derived by Eriksson et al. [61] using a similar approach (see their Eq.

(10)). Figure 3.8 compares P (T1 = T2) for the ARG, SMC, and SMC’.

3.2.5 Covariance of coalescence times

The covariance between coalescence times, Cov[T1, T2], is a measure of the dependence

between coalescence times and is informative about the scale over which features of the

genome become independent. Under the ARG,

Cov[T1, T2] =
ρ+ 18

ρ2 + 13ρ+ 18
(3.16)

[62, 63]. Under the SMC,

Cov[T1, T2] =
1

1 + ρ
(3.17)

[10].

For both the ARG and the SMC, P (T1 = T2) is equal to Cov[T1, T2]. This can be
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shown to hold in general for two-locus coalescence models where the marginal distribu-

tion of coalescence times is exponential with rate 1. Using the definition of covariance:

Cov[T1, T2] = E[T1T2]− E[T1] E[T2]

= E[T1T2]− 1.

(3.18)

The expectation E[T1T2] can be derived using the fact that (a− b)2 = a2 + b2 − 2ab:

2E[T1T2] = E[T 2
1 ] + E[T 2

2 ]− E[(T1 − T2)
2]

= 2 + 2− E[(T1 − T2)
2|T1 ̸= T2]P (T1 ̸= T2)

= 4− 2P (T1 ̸= T2).

(3.19)

The final equality in (3.19) follows from the fact that |T1 − T2| has an exponential

distribution with rate 1 when T1 ̸= T2. Therefore E[T1T2] = 2− P (T1 ̸= T2) and

Cov[T1, T2] = E[T1T2]− 1

= 2− P (T1 ̸= T2)− 1

= 1− P (T1 ̸= T2)

= P (T1 = T2).

(3.20)

Thus Figure 3.8 compares both P (T1 = T2) and Cov[T1, T2] under the ARG, SMC, and

SMC’.
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Ohta and Kimura [64] introduced the approximation

σ2d =
E[D]

E[p1(1− p1)p2(1− p2)]
(3.21)

of the linkage disequilibrium measure

r2 = E

[
D

p1(1− p1)p2(1− p2)

]
, (3.22)

where D = p12−p1p2 is the standard measure of linkage disequilibrium at two partially

linked loci, p1 and p2 are allele frequencies at the two loci, and p12 is the frequency of

gametes carrying both of the alleles represented by p1 and p2. McVean [65] showed that

σ2d could be expressed in terms of the covariances of coalescence times:

σ2d =
Cij,ij − 2Cij,ik + Cijkl

Cij,kl + 1
. (3.23)

Here Cij,kl = Cov[T
(ij)
1 , T

(kl)
2 ] is the covariance of the coalescence time at the first locus

sampled from haplotypes i and j and the coalescence time at the second locus sampled

from haplotypes k and l. The above proof that P (T1 = T2) = Cov[T1, T2] applies to

Cij,kl as well, regardless of whether i is the same as k or j is the same as l, since the

marginal coalescence time at a single locus is still exponentially distributed with rate 1

regardless of the initial configuration. We were unable to solve for these probabilities

under both the SMC and SMC’.

In order to calculate the necessary covariances, McVean and Cardin [10] used the

simplifying assumption that all recombination occurred at the same point between the

two loci. We note that this assumption makes the SMC’ equivalent to the ARG. Mar-

joram and Wall [11] simulated mean values of r2 at different genomic distances under
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the ARG, SMC’, and SMC, showing that the SMC’ is more similar to the ARG in mean

r2 values than was the SMC.
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Figure 3.8: Comparison of P (T1 = T2) for the ARG, SMC, and SMC’. For these three models, this
probability is equal to Cov[T1, T2] (see text).

Covariance of coalescence times when ρ is small

It is interesting to consider Cov[T1, T2] = P (T1 = T2) when ρ is small. For the ARG, con-

sideration of (3.13) shows that Cov[T1, T2] = PARG(T1 = T2) = 1− 2ρ/3 +O(ρ2). Like-

wise, for the SMC, (3.14) shows that Cov[T1, T2] = PSMC(T1 = T2) = 1− ρ+O(ρ2). For

the SMC’, the integral representation of PSMC’(T1 = T2) in (3.15) allows for the calcu-

lation of this quantity as a first-order expansion in ρ:
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Cov[T1, T2] = PSMC’(T1 = T2) =

∫ ∞

0
e−te−ρλ(t)dt

=

∫ ∞

0
e−t
[
1− λ(t)ρ+O(ρ2)

]
dt

= 1− ρ

∫ ∞

0
e−tλ(t)dt+O(ρ2)

= 1− 2ρ

3
+O(ρ2).

(3.24)

Thus, Cov[T1, T2] (or P (T1 = T2)) is the same up to order ρ2 under the ARG and SMC’.

3.2.6 Coalescence times at recombination sites

In this section, we show that the joint distribution of coalescence times on either side of a

recombination event is the same under the SMC’ and marginally under the ARG, and we

derive this distribution. Consider the continuous-time Markov chains representing the

two-locus ARG and SMC’ models (Figs. 3.2A and 3.3, respectively) in the limit ρ → 0

and conditioning on the first event being a recombination event. These models represent

the joint distribution of coalescence times on either side of a recombination event under

the ARG and SMC’. In both of these conditional continuous-time Markov chains, the

waiting time until the first event, conditional on that event being a recombination event,

has an exponential distribution with rate 1 + ρ, which converges to 1 as ρ → 0. After

that first recombination event, the rate of all additional recombination events converges

to zero in the ρ → 0 limit, so all of the remaining events must be coalescence events,

each of which occurs with rate 1. Under the ARG and the SMC’, the coalescence events

that are possible from state R1 are the same. Thus, the joint distribution of coalescence

times at recombination sites is the same under the SMC’ and the ARG.

Figure 3.9A shows the two-locus continuous-time Markov chain representing this
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conditional process representing coalescence times on either side of a recombination

event under the the ARG and SMC’. This Markov chain starts in a special initial state

R∗
0, out of which the first event is always a recombination event, which happens with

rate 1, as described above. In previous sections, we used T1 and T2 to represent the

coalescence times at two loci some fixed distance apart. To avoid confusion, in this

section we use S and T to represent the coalescence times on the left and right sides of

a recombination event, respectively.

Recombination events are visible in sequence data only if they change the local coa-

lescence time. Thus, it is of special interest to condition on S ̸= T in the above model

in order to derive the joint distribution of coalescence times on either side of a change

in coalescence times under the ARG and SMC’. Conditioning on S ̸= T , the transition

out of R1 must be into either CL or CR. These transitions occur with conditional rate

3/2, since the total rate of leaving R1 is three in the unconditional model, and two of

the ways of leaving R1 result in the coalescence times being different.

The model representing coalescence times on either side of a change in coalescence

times (i.e., where at recombination sites where S ̸= T ) is shown in Figure 3.9B. Under

this model, the joint distribution of S and T is that of

(S, T ) ∼
(
X1 +X2 +RX3, X1 +X2 + (1−R)X3

)
, (3.25)

where X1 ∼ Exp(1), X2 ∼ Exp(3), R ∼ Bernoulli(1/2), X3 ∼ Exp(1), and each random

variable is independently distributed. The joint density function of S and T under this

72



model is

fS,T (s, t) =


3
4

(
1− e−2s

)
e−t s < t

3
4

(
1− e−2t

)
e−s s > t,

(3.26)

and the marginal density function of S (or T ) is

π(s) =
3

8
e−s

(
2s+ 1− e−2s

)
. (3.27)

The conditional distribution of T given S is

fT |S(t|s) =
fS,T (s, t)

π(s)
=


2(1−e−2t)
1−e−2s+2s

t < s

2e−(t−s)(1−e−2s)
1−e−2s+2s

t > s.

(3.28)

Equations (3.26), (3.27), and (3.28) hold marginally at recombination sites where

the coalescence time changes under both the ARG and SMC’. Equations (3.27) and

(3.28) were derived for the SMC’ by Carmi et al. [8, see eqns. (8) and (9), respectively],

confirming our derivation here.

Note that the model representing the joint distribution of coalescence times at re-

combination sites under the SMC is equivalent to the model in Figure 3.9B with the

transition rates from R1 to CL and CR equal to 1 instead of 3/2. Under this model for

the SMC, the joint distribution of coalescence times on either side of a recombination

event is that of

(S, T ) ∼ (X1 +X2, X1 +X3), (3.29)
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where X1, X2, and X3 are all mutually independent exponential random variables with

rate 1. The joint density of S and T under the SMC is

fS,T (s, t) =


e−t(1− e−s) s < t

e−s(1− e−t) s > t

(3.30)

and the marginal density of S (or T ) is

π(s) = se−s. (3.31)

Under the SMC, the conditional distribution of T given S is

fT |S(t|s) =
fS,T (s, t)

π(s)
=


1−e−t

s t < s

e−(t−s)(1−e−s)
s t > s,

(3.32)

which confirms the derivation of Li and Durbin [12, cf. their Eq. (S6)].

SMC’ as canonical first-order Markov approximation to ARG

Under the sequential formulation of each model considered here, the infinitesimal proba-

bility of a recombination event occurring in the interval (x, x+dx) given the coalescence

time s at x is s dx. This fact, together with the fact that the joint distribution of coa-

lescence times at recombination sites is the same under the ARG and SMC’ (whether

or not the coalescence time changes), implies that the conditional distribution of coa-

lescence times at point x+ dx given the coalescence time at point x is the same under

the SMC’ and ARG.

This result demonstrates that the pairwise SMC’ is the canonical first-order Markov
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approximation to the pairwise ARG. Given an infinite-order Markov chain {Xi, i =

0, 1, 2, ...}, where the distribution of each Xj depends on all previous Xi, i < j, the

canonical k-order Markov approximation to {Xi} is the Markov chain {X [k]
i } satisfying

P (X [k]
n |X [k]

n−1 = xn−1, . . . , X
[k]
n−k = xn−k) = P (Xn|Xn−1 = xn−1, . . . , Xn−k = xn−k).

(3.33)

That is, the transition probabilities under the k-order canonical Markov approximation

are equal to the transition probabilities conditional on the previous k states under the

infinite-order chain. See Schwarz [66], Fernández and Galves [67], and Gallo et al. [68] for

examples of mathematical studies of canonical Markov approximations of infinite-order

Markov chains.

Here we informally extend the terminology of canonical Markov approximations to

continuous processes. The SMC’ is the canonical first-order Markov approximation

to the ARG because the distribution of coalescence times at x + dx conditional on

the coalescence time at x is the same under the ARG (an infinite-order, sequentially

non-Markovian continuous process) and the SMC’ (a first-order sequentially Markov

continuous process).

3.2.7 Asymptotic bias of the population-size estimators under SMC

and SMC’

Given the joint density of pairwise coalescence times at recombination sites under the

ARG, it is possible to determine the asymptotic bias of maximum-likelihood estimators

of population size derived from the pairwise SMC and SMC’ likelihood functions. These

likelihood functions give the probability of observing a sequence of pairwise coalescence
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Figure 3.9: Two-locus continuous-time Markov chains representing the ARG and SMC’ models in
the ρ→ 0 limit, conditional on the first event being a recombination event. These models represent
the joint distribution of coalescence times at recombination sites in the ARG and SMC’. The state R∗

0

represents a special starting state out of which the first event is always a recombination event. Panel
A shows the process unconditional on whether S = T , and Panel B shows the process conditional
on S ̸= T . The model representing the joint distribution of coalescence times at recombination sites
under the SMC is equivalent to the model in Panel B with the transition rates from R1 to CL and
CR equal to 1 instead of 3/2.

times and corresponding segment lengths across a chromosome under the SMC and

SMC’ models. Related likelihood functions (allowing for variable historical population

size) are implicitly maximized in the PSMC and MSMC inference procedures [12, 17,

respectively]. These inference procedures are hidden Markov model (HMM) methods

in which the local coalescence times (or genealogies) and segment lengths are hidden

states inferred from sequence data. Here, we consider the estimators that would be

obtained if the hidden states in these models were actually observable [see also 69]. We

are motivated by the fact that any properties of the estimators we consider here are

likely to be properties of the full HMM-based inference procedures.

To investigate the asymptotic properties of these estimators, we assume that data
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are generated under the ARG, such that at a fixed point the distribution of pairwise

coalescence times is exponential with rate equal to 1 and an ancestral segment of length

l recombines back in time at rate ρl/2. Here, segment lengths are measured in units

of the true scaled recombination parameter ρ. Data generated under this model can

be represented as a sequence of pairwise coalescence times and corresponding segment

lengths: {(ti, li) : 1 ≤ i ≤ k}.

We are interested in estimating a single relative population size η (defined relative

to the true population size, N), which must be incorporated into the transition density

function q(t|s) at recombination sites under the SMC and SMC’. Under the SMC, this

transition density function is

qSMC(t|s; η) =


1
s (1− e−t/η) t < s

1
se

−(t−s)/η(1− e−s/η) t > s.

(3.34)

This is equivalent to the conditional density (3.32) above with the addition of a relative

population size parameter. Under the SMC’, the transition function is

qSMC′(t|s; η) =


2
η (1−e

−2t/η)
1+ 2s

η
−e−2s t < s

2
η
e−(t−s)/η(1−e−2s/η)

1+ 2s
η
−e−2s t < s,

(3.35)

which is equivalent to the conditional density (3.28) with a relative population size

parameter included.

Under the SMC, given the local coalescence time t, the distance along the chromo-

some until the nearest recombination event (measured in units of ρ) is exponentially

distributed with rate t [10]. The likelihood function for a single relative population size
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η under the SMC is thus

LSMC(η|{(ti, li)}) =
1

η
e
− t1

η

k∏
i=2

qSMC(ti|ti−1; η)
k∏
i=1

tie
−tili

∝ 1

η
e
− t1

η

k∏
i=2

qSMC(ti|ti−1; η).

(3.36)

Under the SMC’, the likelihood function for a relative population size η is

LSMC′(η|{(ti, li)}) =
1

η
e
− t1

η

k∏
i=2

qSMC′(ti|ti−1; η)

k∏
i=1

λ(ti, η)e
−λ(ti,η)li , (3.37)

where λ(t, η) = 1
4

[
η(1− e−2t/η) + 2t

]
is the exponential rate of encountering recombi-

nation events that change the coalescence time when the local coalescence time is t (see

above and Carmi et al. [8]). Note that under the SMC, the length li of a segment is

independent of the relative population size η given the local coalescence time ti. This

is not true for the SMC’, since the probability that the coalescence time changes at a

recombination site depends on the population size.

For a given set of observations {(ti, li)}, the maximum-likelihood estimate η̂ of the

relative population size under the SMC is

η̂ = argmax
η

L(η|{(ti, li)}) = argmax
η

1

η
e
− t1

η

k∏
i=2

qSMC(ti|ti−1; η). (3.38)

As the length of the chromosome increases and the number of coalescence-time changes

goes to infinity, the asymptotic maximum-likelihood estimate η̂∗ of the relative popu-

lation size under the SMC is
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η̂∗ = lim
k→∞

argmax
η

1

η
e
− t1

η

k∏
i=2

qSMC(ti|ti−1; η)

= lim
k→∞

argmax
η

{
log

(
1

η
e
− t1

η

)
+

k∑
i=2

log [qSMC(ti|ti−1; η)]

}

= lim
k→∞

argmax
η

k∑
i=2

log(qSMC(ti|ti−1; η))

= argmax
η

EARG

[
log(qSMC(T |S; η))

]
= argmax

η

∫ ∞

0

∫ ∞

0
πSMC′(s)qSMC′(t|s; 1) log (qSMC(t|s; η)) dtds

≈ 0.95.

(3.39)

Here the penultimate equality holds only if there is ergodic (i.e., law-of-large-numbers-

like) convergence of the sequence of pairs of coalescence times on either side of a recom-

bination site under the ARG. In Appendix C, we show that the continuous-chromosome

pairwise ARG is ergodic. That is, the mean coalescence time across a long chromosome

converges to the mean coalescence time at a single point along the chromosome. We

are unable to prove the ergodicity of the sequence of pairs of coalescence times at re-

combination sites where the coalescence time changes; instead, we note that (3.39) is

supported by simulation (see below). We also note that Wiuf [70] proved the ergodicity

of the discrete-locus ARG under a variety of neutral demographic models. A simi-

larly in-depth proof may also apply to (3.39) in the context of continuous-chromosome

models, but we do not explore the point further.

In (3.39), the ultimate equality follows from the fact that the joint distribution of

coalescence times is marginally the same at recombination sites under the ARG and

the SMC’. Numerical maximization of the double integral shows that the maximum-
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likelihood estimate of a single population size N under the pairwise SMC is asymptoti-

cally biased, with the asymptotic estimate being approximately 0.95N .

Under the ARG, the stationary distribution of lengths between recombination events

that change the local coalescence time (i.e., the identity-by-descent segment length

distribution) is slightly different from that of the SMC’. (They are different because

subsequent recombination events “heal” with slightly different probabilities under the

ARG, while under the SMC’, each subsequent recombination event heals with the same

probability.) Under the ARG, the identity-by-descent (IBD) length distribution is not

currently known. Given that under the SMC’ the maximum-likelihood estimator for

a relative population size involves the observed lengths, it is not currently possible

to calculate the asymptotic bias of the pairwise SMC’ maximum-likelihood estimator

of a single population size. However, the IBD length distribution under the ARG

is approximated very closely by the SMC’ IBD length distribution [8], so the SMC’

estimator is likely to be nearly asymptotically unbiased.

We propose the following estimator, which should be asymptotically unbiased for

data generated by the ARG:

η̂′ = argmax
η

1

η
e
− t1

η

k∏
i=2

qSMC′(ti|ti−1; η). (3.40)

This estimator is unbiased under the same assumption that was used to calculate the

asymptotic bias of the SMC above, which is that the sequence of pairs of coalescence

times are ergodic across an infinitely long chromosome.

We confirm the asymptotic bias of the SMC estimator and the apparent lack of

asymptotic bias of the SMC’ estimator and η̂′ by simulation. Figure 3.10 shows 100

simulated estimates calculated using the SMC, SMC’, and SMC’-lengths-only likelihood
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functions. Each estimate was calculated using 100 independent pairs of chromosomes

simulated under the ARG, with each chromosome of total length 4Nl = 1000, where

N is the diploid size and l is the length in Morgans. To calculate these estimators for

multiple chromosomes, all likelihood functions were multiplied across independent pairs

of chromosomes. The same set of simulations was used to produce the estimators for

all three likelihood functions.
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Figure 3.10: Maximum-likelihood estimates of relative population size with three different Markov
chain likelihood functions. For each simulation, the segment lengths and coalescence times were taken
from 100 independent pairs of chromosomes, with each chromosome being of length ρ = 4Nr = 1000
simulated under the ARG. A maximum-likelihood estimate was calculated using the SMC, SMC’,
and times-only SMC’ likelihood functions (equations (3.36), (3.37), and (3.40), respectively). The
true scaled population size is η = 1, shown with the dashed blue line. The predicted asymptotic
bias of the SMC likelihood function (η̂ = 0.95) is shown with a solid blue line. The sample mean of
the estimates calculated with each likelihood function is shown with a solid red line. A total of 100
simulated datasets were analyzed.
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3.3 Discussion

We have proposed a model that describes the pairwise coalescence times at two fixed loci

evolving under the SMC’ model of coalescence with recombination. We analyzed this

model to derive quantities that have not been derived previously for the SMC’, including

the joint density of coalescence times (unconditional and conditional), the probability

that the coalescence times are the same, and the covariance of the two coalescence times,

which was shown to be equal to the probability that the coalescence times are the same

for the ARG, SMC, and SMC’. We compared these quantities against those produced

by the ARG and SMC models. In every comparison, the difference between the ARG

and the SMC’ was much less than the difference between the ARG and the SMC.

We also showed that the conditional distribution of coalescence times at point x+dx

given the coalescence time at x is the same under the ARG and SMC’. This implies that

the SMC’ is the canonical first-order approximation to the pairwise ARG. However,

this correspondence is true only of the continuous-chromosome models. If instead the

ARG is a model of the genealogies at a sequence of discrete loci, then the first-order

canonical Markov approximation is the Markov approximation obtained by modeling

a conditional ARG between every successive pair of loci. This model was studied by

Hobolth and Jensen [59], who referred to the model as a “natural” Markov approx-

imation to the ARG. Chen et al. [71] presented a method of simulating data under

higher-order sequentially Markov approximations to the ARG, where the ARG of some

number of preceding loci is retained in the process of generating the marginal genealogy

at a given locus. They showed by simulation that higher-order approximations generate

times until most recent common ancestry that are more consistent with the ARG than

do lower-order approximations, but little theoretical work on these higher-order Markov
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approximations has been done.

We showed that the maximum-likelihood estimate of a single population size under

the pairwise SMC is asymptotically biased, producing an estimate of about 95% of the

true population size. Given the current widespread use of the SMC model in population-

genomic inference methods [12, 13, 14, 16, 56], there is an apparent need to re-examine

the consequences of using the simpler SMC model instead of the slightly more compli-

cated SMC’ model. For example, it will be important to consider whether including

the possibility of varying population sizes, as for example is done in the PSMC HMM

inference method [12], will increase or decrease asymptotic bias. In this context, using

the SMC as a basis for a likelihood function may also bias the estimates of the timing

of population size changes, since the longer segments produced by the ARG will seem

younger when they are modeled under the SMC.

From the arguments that led to the development of the models in Figure 3.9, it seems

that variable population size or population substructure will not change the fact that

the joint distribution of coalescence times at recombination sites is the same under the

SMC’ and marginally under the ARG. Changing the population size to a function η(t)

and the recombination rate to a function ρ(t) = ρ0η(t) does not change the previous

arguments, so long as ρ(t) → 0 as the distance ρ0 between the two loci goes to zero.

For example, regardless of population size, the waiting time until the conditioned-upon

recombination event will be the same under the SMC’ and ARG, and the remaining

coalescence events would always be distributed identically between the SMC’ and ARG.

Similarly, when there are more than two haplotypes sampled, it seems that the joint

distributions of genealogies on either side of a recombination event would be the same

between the SMC’ and the ARG marginally. These ideas need to be properly explored

in future studies.
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The SMC’ is the model underlying two recently introduced population-genetic infer-

ence methods: the multiple SMC (MSMC) method of Schiffels and Durbin [17] (which

simplifies to a PSMC’ inference procedure when the number of haplotypes is two) and a

procedure based on the distribution of distances between heterozygous bases, introduced

by Harris and Nielsen [52]. In each case it was acknowledged that the SMC’ provided

more accurate results than the SMC. In light of the results we present here, we suggest

that whenever a first-order sequentially Markov coalescent model is needed, the SMC’

should be used whenever the calculations are possible.
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4
Inference of demographic and

reproductive history using a triploid

sequentially Markov coalescent model

One of the most persistent questions in evolutionary biology is why organisms reproduce

sexually. Diploid sexual organisms produce offspring that share only half of their genes

with a given parent, and for organisms with two sexes, only the female offspring of

sexual organisms with two sexes are directly capable of producing additional offspring.

An asexual organism experiences neither of these costs, so the abundance of sexual
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reproduction in the face of these enormous reproductive costs suggests that in the long

term sex must be highly beneficial [reviewed in 72]. Many theories have been put forward

to explain the maintenance of sex in the face of such costs [73], and empirical studies of

a variety of organisms in the laboratory and in nature have tested these theories [e.g.

74, 75, 76, 77].

One organism that is especially well suited for the study of the costs and benefits of

sex is the freshwater New Zealand snail Potamopyrgus antipodarum. P. antipodarum

features both obligately sexual, diploid populations and obligately asexual, polyploid

lineages. Sexual and asexual snails are often found in the same lake under equivalent

ecological conditions, and there appears to have been many independent derivations of

asexual lineages from sexual ancestors [78]. These factors make P. antipodarum unique

among species used as models for investigating the costs and benefits of sexual versus

asexual reproduction.

In order to understand these costs and benefits in P. antipodarum, it is necessary

to have a clear picture of the evolutionary history of reproductive mode in the species.

A previous analysis of mitochondrial gene sequences suggests that asexual lineages are

derived from sexual ancestors and that these transitions have occurred several times,

independently in different lakes [78]. This same study found that the timing of these

transitions was highly variable between lineages, with some lineages apparently derived

from sexual ancestors in the ancient past. This is notable because it is often assumed

that asexual lineages rapidly accumulate deleterious mutations and are thus evolutionary

“dead ends” [79]. These conclusions were based on mitochondrial clock calculations, so

they give only a rough account of the history asexual reproduction in the species.

In this chapter, I present a method for inferring the time of transition from sexual to

asexual reproduction in triploid organisms, jointly with the population size history of
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the diploid sexual ancestor of the asexual lineage. The method uses a hidden Markov

model (HMM) based on the SMC’ model of recombination and coalescence [11], and

it takes as input the unphased genome sequence of a triploid organism. An effort to

sequence the complete genomes of more than 20 sexual and asexual P. antipodarum

lineages is currently underway, including 12 triploid asexual lineages. The first public

assembly is expected within two months, and I am a part of the team sequencing the

genomes and have access to the sequence data. Below, I present the method, which I

call “triploid SMC” or “TSMC”, and then demonstrate that it is able to recover the

transition time and sexual population history in simulated data. I also discuss the

possibility of adding additionally biologically relevant features to the inference model,

including an initial period of diploid asexuality before a change in ploidy to triploid

asexuality and the action of gene conversion in the asexual lineage.

This work is ongoing and at this point only theoretical. When the genome sequences

become available, I will apply the TSMC method to the triploid asexual lineages to infer

the range of transition times in P. antipodarum. This will be a part of a more expansive

manuscript on the demographic and phylogeographic history of P. antipodarum, to be

written in collaboration with Peter Fields. As we are presenting this work prior to

publication in a peer-reviewed journal, we request that anyone wishing to use the ideas

in this chapter first contact the authors.

4.1 Theory and Results

Like a number of other recent demographic inference methods [e.g., 12, 13, 17], we

infer the demographic history of a population by constructing a hidden Markov model

(HMM) in which the hidden variable at each point along the genome is the local gene

genealogy describing the ancestry of the sampled genomes at that position, and the
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observed variable is the alignment of the sampled genomes at that point. In our case,

we are modeling the genome of a triploid organism, so each hidden state represents a

gene genealogy with three leaves.

Define N(t) as the size of the (diploid) ancestral sexual population at time t, going

back in time, with t in units of 2N(0). Let N(0) be the size of this population at the

point in time when the focal triploid asexual lineage was formed from three chromosomes

sampled randomly from the diploid, sexual population. Let λ(t) = N(t)/N(0) be the

relative population size at time t.

At each location along the genome, the gene genealogy will look like the example

genealogy shown in Figure 4.1. There will be some period of length Td, measured in

units of 2N(0), between the present and the time at which the triploid clonal lineage was

formed. During this interval, the three branches of the genealogy are frozen together in

the same clonal lineage, undergoing no coalescence and no recombination. (This ignores

the possibility of gene conversion in the asexual lineage, which is discussed below.)

Going further back in time past the sexual-to-asexual transition time, in the sexual

ancestral population, each pair of lineages will coalesce at rate λ(t)−1, as in a typical

coalescent model.

The triploid genomes will be unphased, so we need to incorporate an averaging across

phasing into our model. This is accomplished by recording only the first and second

coalescence time (in the three-leaved genealogy) as the hidden state at each position.

These two coalescence times, with the triploid divergence time Td (which is the same

everywhere along the genome), are sufficient to calculate the emission probabilities of

observing a particular alignment of the sequences at a position in the genome.
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Td

T3

T2past

present

Figure 4.1: Example gene genealogy at a focal point along a triploid asexual genome. During the
asexual phase of the lineage’s history, no coalescence or recombination occurs and the three sampled
lineages are captive together in the same lineage of clonal individuals (gray lines). Going back in
time, after the transition between sexual and asexual reproduction, coalescence and recombination
occurs according to standard coalescent models.

Define Ω(u, v) as the cumulative coalescent rate between times u and v:

Ω(u, v) =

∫ v

u

dt

λ(t)
. (4.1)

The state of the TSMC at each point along the genome is described by the vector

t = (t3, t2), where t3 is the time of the first coalescence event and t2 is the time of the

second coalescence event amongst the three lineages in a triploid genome, each measured

from the sexual to asexual transition time. The equilibrium joint distribution of (t3, t2)

is

π(t3, t2) =
3

λ(t3)λ(t2)
e−3Ω(0,t3)e−Ω(t3,t2). (4.2)

We use the SMC’ [11] to calculate the transition kernel between different local ge-

nealogies (pairs of coalescence times) across the genome. We average across phasing

by considering all the different ways that a transition under the SMC’ could change
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the vector of coalescence times (s3, s2) to (t3, t2) at a recombination site. Let q(t|s)

be this transition kernel. The following gives the transition densities in terms of un-

solved integrals. In each expression, integration is performed over possible locations of

recombination events that could lead to the indicated change in states.
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q(t|s) =

For t3 = s3; t2 > s2:

∫ s3

0

du

2s2 + s3
e−3Ω(u,s3)e−2Ω(s3,s2)

1

λ(t2)
e−Ω(s2,t2) + 2

∫ s2

s3

du

2s2 + s3
e−2Ω(u,s2)

1

λ(t2)
e−Ω(s2,t2)

For t3 = s3; t2 < s2:

∫ s3

0

du

2s2 + s3
e−3Ω(u,s3)

1

λ(t2)
e−2Ω(s3,t2) + 2

∫ t2

s3

du

2s2 + s3

1

λ(t2)
e−2Ω(u,t2)

For t3 < s3; t2 = s3:

∫ t3

0

du

2s2 + s3
e−3Ω(u,t3)

2

λ(t3)

For t3 < s3; t2 = s2:

2

∫ t3

0

du

2s2 + s3

2

λ(t3)
e−3Ω(u,t3)

For t3 > s3; t2 = s2:

2

∫ s3

0

du

2s2 + s3
e−3Ω(u,s3) 2

λ(t3)
e−2Ω(s3,t3)
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For t3 = s2; t2 > s2:

2

∫ s3

0

du

2s2 + s3
e−3Ω(u,s3)e−2Ω(s3,s2)

1

λ(t2)
e−Ω(s2,t2)

For t3 = s3; t2 = s2:

3

∫ s3

0

du

2s2 + s3

1

3

[
1− e−3Ω(u,s3)

]
+

∫ s3

0

du

2s2 + s3
e−3Ω(u,s3)

1

2

[
1− e−2Ω(s3,s2)

]
+ 2

∫ s2

s3

du

2s2 + s3

1

2

[
1− e−2Ω(u,s2)

]
.

(4.3)

Each part is implicitly multiplied by a delta function to limit the density to points

where the parameters are assumed to be equal to each other. For example, the first

part of q(t|s) is implicitly multiplied by δ(t3 − s3), and the last part is multiplied by

δ(t3 − s3)δ(t2 − s2).

4.2 Piecewise constant transition probabilities

Like other HMM methods based on the sequentially Markov coalescent [12, 13, 17,

but see also 80], we will assume that the size of the sexual, ancestral population is

piecewise constant, such that the population changes size at times (T1, . . . , Tn) and

the size between Ti and Ti+1 is a constant N(0)λi. Define T0 = 0, Tn+1 = ∞ and

∆i = Ti+1 − Ti. Let α(t) be the index of the time interval to which t belongs, i.e.,

α(t) = maxi{i : Ti ≤ t}. Then the cumulative coalescent rate between u and v can be
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written

Ω(u, v) =


v−u
λα(u)

α(u) = α(v)

Tα(u)+1−u
λα(u)

+
∑α(v)−1

i=α(u)+1
∆i
λi

+
v−Tα(v)

λα(v)
α(u) < α(v).

(4.4)

Under a piecewise constant population size history, the equilibrium joint density of

(t3, t2) is now approximately

π(t3, t2) =
3

λα(t3)λα(t2)
e−3Ω(0,t3)e−Ω(t3,t2). (4.5)

Assuming a piecewise constant population size history allows the integrals in (4.3) to

be written in terms of simple functions. We present these equations in Appendix F.

There are several integrals of the form
∫ y
x e

−kΩ(u,y)du in Equation (4.3). Assuming a

piecewise population size history, this integral can be written

∫ y

x
e−kΩ(u,y)du =

e−kΩ(Tα(x)+1,y)

1− e
−

k(Tα(x)+1−x)
λα(x)

 λα(x)
k

+

α(y)−1∑
i=α(x)+1

e−kΩ(Ti+1,y)

[
1− e

− k∆i
λi

]
λi
k
+

1− e
−

k(y−Tα(y))
λα(y)

 λα(y)
k

.

(4.6)

The full derivation of this equation is given in Appendix E.

With this equation, we can calculate all of the transition probabilities in the transition

kernel (4.3). These are given in Appendix G.
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4.3 Discrete approximation to the triploid SMC’ coalescent pro-

cess

In order to construct a hidden Markov model from these transition densities, it is nec-

essary to discretize the coalescent process described above. Let the discrete state (i, j),

i ≤ j, correspond to the continuous states in which Ti < t3 < Ti+1 and Tj < t2 < Tj+1.

We first calculate the equilibrium probability πi,j that the continuous-time coalescent

process with piecewise population history is in (i, j), i < j:

πi,j =
3

2
e−3Ω(0,Ti)e−Ω(Ti+1,Tj)

(
e

−∆i
λi − e

−3∆i
λi

)[
1− e

−
∆j
λj

]
. (4.7)

If j = n, we let ∆j = ∞ and 1− exp(−∆j/λj) = 1. We also calculate πi,i:

πi,i =
1

2
e−3Ω(0,Ti)

(
2− 3e

−∆i
λi + e

− 3∆i
λi

)
. (4.8)

For i = n, again we let ∆i = ∞ and thus πn,n = exp(−3Ω(0, Tn)).

To calculate the transition probabilities at recombination sites under our discrete

approximation to the continuous-time coalescent process, we will assume that when

the process is in the state (i, j) (as described above), the local coalescence times are

(Ei,j [t3],Ei,j [t2]), where Ei,j [t3] and Ei,j [t2] are the marginal expected coalescence times

of t3 and t2, respectively, under the continuous-time, piecewise-constant population

history model. The marginal expectation of t3 in the interval (i, j), i < j is

Ei,j [t3] =
3

4πi,j
e−3Ω(0,Ti)

(
1− e

−
∆j
λj

)
e−Ω(Ti+1,Tj)

[
(λi + 2Ti)e

−∆i
λi − (λi + 2Ti+1)e

−3∆i
λi

]
.

(4.9)

94



With j = n, this is

Ei,j [t3] =
3

4πi,n
e−3Ω(0,Ti)e−Ω(Ti+1,Tn)

[
(λi + 2Ti)e

−∆i
λi − (λi + 2Ti+1)e

−3∆i
λi

]
. (4.10)

The marginal expectation of t2 in (i, j), i < j is

Ei,j [t2] =
3

2πi,j
e−3Ω(0,Ti)e−Ω(Ti+1,Tj)

(
e

−∆i
λi − e

−3∆i
λi

)(
λj + Tj − (λj + Tj+1)e

−
∆j
λj

)
,

(4.11)

and with j = n, this is

Ei,n[t2] =
3

2πi,n
e−3Ω(0,Ti)e−Ω(Ti+1,Tn)

(
e

−∆i
λi − e

−3∆i
λi

)
(λn + Tn) (4.12)

We must also calculate the marginal expectations of t3 and t2 in the state (i, i):

Ei,i[t3] =
1

12πi,i
e−3Ω(0,Ti)

(
4(3Ti + λi) + e

− 3∆i
λi (6Ti+1 + 5λi)− 9e

−∆i
λi (2Ti + λi),

)
(4.13)

and for i = n, this expectation is

En,n[s3] = Tn +
λn
3
. (4.14)

The marginal expectation of t2 in the discrete state (i, i), i < n is

Ei,i[t2] =
1

6πi,i
e−3Ω(0,Ti)

(
e
− 3∆i

λi (3Ti+1 + λi) + 6Ti + 8λi − 9e
−∆i

λi (Ti+1 + λi)

)
, (4.15)

and for i = n, this expectation is

En,n[s2] = Tn +
λn
3

+ λn. (4.16)
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4.3.1 Discrete q
(
(k, l)|(i, j)

)
transition function

To calculate the transition probabilities from (discrete-time) state (i, j), to state (k, l),

we integrate the continuous-time transition kernel (see eqn. 4.6) over the interval cor-

responding to (k, l), replacing s3 and s2 with their conditional expectations Ei,j [s3] and

Ei,j [s2] respectively. Thus

q
(
(k, l) | (i, j)

)
=

∫ Tk+1

Tk

∫ Tl+1

Tl

q
(
(t3, t2)| (Ei,j [s3],Ei,j [s2])

)
dt2dt3. (4.17)

Note that in any single transition, either the first or second coalescence time changes, but

not both. This simplifies the calculation of these integrals. The discrete-time transition

probabilities are given in Appendix G.

4.3.2 Emission probabilities

We encode the genotype at every position in the genome as one of three different values:

0, 1, and 2. The state 0 represents a homozygous site, and 1 (2) represent sites where

one (two) of the three chromosomes have a derived (i.e., non-ancestral) copy at that

position.

To form the observed chain in our HMM, we consider all the genotypes in a stretch

of b base pairs and categorize that stretch of the sequence with a state 0, 1, 2, or 3.

The state 0 means that the stretch of b base pairs is completely homozygous. The state

1 means that there is at least one site that has a 1 genotype and none that have a 2

genotype. Likewise, the state 2 means that at least one site has a 2 genotype, and none

have a 1 genotype. The state 3 means that at least one site had a 1 genotype and at

least one site had a 2 genotype.

With observed states coded this way, the emission probabilities given local coalescence
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times t3 and t2 are

ek(t3, t2, Td) =



e−
θb(2t2+t3+3Td)

2 k = 0

e−
θb(t2−t3)

2

(
1− e−

θb(2t3+t2+3Td)
2

)
k = 1(

1− e−
θb(t2−t3)

2

)
e−

θb(2t3+t2+3Td)
2 k = 2(

1− e−
θb(t2−t3)

2

)(
1− e−

θb(2t3+t2+3Td)
2

)
k = 3.

(4.18)

As above, Td is the asexual divergence time, i.e., the time in the past when the asexual

lineage was derived from a sexual ancestor. The above probabilities assume that t3 and

t2 are measured continuously. In practice, we discretize time, so for a particular hidden

state (i, j), we replace t3 with Ei,j [t3] and t2 with Ei,j [t2].

Classifying observed states this way requires that each polymorphism be polarized

against an outgroup. If this is not possible, then the states can be recoded as 0 and 1,

where 0 is a stretch of b completely homozygous base pairs, and 1 is a stretch of b base

pairs with at least one polymorphic position. In this case the probabilities become

ek(t3, t2, Td) =


e−

θb(2t2+t3+3Td)
2 k = 0

1− e−
θb(2t2+t3+3Td)

2 k = 1.

(4.19)

The parameter b can be tuned to match the observed polymorphism. If the change

in ploidy Td generations ago also involved a change in mutation rate, this new mutation

rate will be unidentifiable, that is, impossible to distinguish from a proportionally scaled

Td. Thus Td should be viewed as a compound parameter.
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4.4 Description of Hidden Markov Model

The transition probabilities q
(
(k, l)|(i, j)

)
are the probabilities of transitioning from

state (i, j) to state (k, l) at sites of ancestral recombination. They can be used to obtain

the the transition matrix
{
P(i,j),(k,l)

}
, where

P(i,j),(k,l) =

(
1− e−

ρ
2

(
2Ei,j [t2]+Ei,j [t3]

))
q
(
(k, l)|(i, j)

)
(4.20)

is the probability of transitioning from state (i, j) to state (k, l), (i, j) ̸= (k, l), un-

conditional on there being an ancestral recombination event at this site. This follows

from the fact that recombination events are encountered across the genome at rate
ρ
2 (2Ei,j [t2] + Ei,j [t3]) when the local state is (i, j). Diagonal entries of this matrix are

obtained by subtracting the sum of the off-diagonal elements from 1.

We define a hidden Markov chain {Xi} that is governed by this transition matrix. The

observed process {Yi} represents the emissions, taking values 0 through 3 as described

above. We use the EM algorithm to iteratively maximize the expectation of the full

likelihood

P (X,Y |θ) = ex1(y1)πx1

T−1∏
i=1

Pxi,xi+1exi+1(yi+1), (4.21)

where yi is the observed state at position i, and xi is the state of the hidden chain

at position i, and T is the length of the sequence. In practice we maximize the log-

likelihood

logP (X,Y |θ) = log (ex1(y1)) + log(πx1) +
T−1∑
i=1

log
(
Pxi,xi+1

)
+ log

(
exi+1(yi+1)

)
. (4.22)
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We integrate over the states of the hidden chain by pairing the expectation-maximization

(EM) algorithm with the forward-backward algorithm for calculating likelihoods with

these chains, modified to avoid underflow errors. Following Li and Durbin [12], we

constrain the number of free population size parameters to be less than the number of

discretized time intervals, such that population sizes are repeated over multiple adjacent

time intervals according to a user-specified pattern. As in [12], the boundaries of the

time intervals were placed at

ti = 0.1(e
i
n
log(1+10Tmax) − 1) (4.23)

for intervals i ∈ {0, 1, . . . , n}. We tested additional spacing schemes for these time

intervals and found that they had little effect on the accuracy of inference.

In summary, the free parameters inferred by the triploid SMC inference procedure

include: the recombination rate ρ, scaled by 4N(0) and implicitly multiplied by b, the

number of base pairs considered in a single emission state; the mutation rate θ, scaled

by 4N(0); the triploid transition time Td, implicitly proportional to any change in the

genomic mutation rate since the transition from sexual to asexual reproduction; {λi},

the free population size parameters, constrained such that the first, λ0, is equal to 1;

and Tmax, the lower boundary of the final time interval (as used in Eq. 4.23), included

to improve the fit of the inferred population sizes at discretized intervals to the actual

population history.

Because the number of states (i, j) grows quadratically in the number of discretized

time intervals n, the complexity of the forward-backward algorithm for the TSMC is

O(n4L/b), where L is the number of base pairs considered. We find that the TSMC

requires substantially greater runtimes than the PSMC, for which the forward-backward
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algorithm is of complexity O(n2L/b). In practice, this requires us to limit the number of

discretized time intervals. It may be possible to reduce the complexity of the forward-

backward algorithm by exploiting symmetries in the coalescent process, as demonstrated

by [81], but we find that the running times and accuracy of inference are reasonable

without these optimizations.

4.4.1 Inference on Simulated Triploid Asexual Genomes

We tested the triploid SMC inference procedure using simulated triploid genomes. To

generate triploid genomes, we simulated three chromosomes under the standard neu-

tral, sexual coalescent with recombination [30] and then added singleton mutations

(accumulated after the transition to asexual reproduction, sometimes referred to as the

“Meselson effect” [e.g., 82]) at Poisson rate 3θTd/2 uniformly across the genome and

across the three chromosomes to simulate the effects of the lineages being captive to-

gether in the same asexual lineage for a time interval of length Td. Simulations were

carried out using msprime [83] and custom scripts.

We simulated genomes of asexual triploid lineages of different ages and having sex-

ual ancestors with different population size histories. Figure 4.2 shows the inferred

sexual-to-asexual transition time and ancestral population sizes for four different asex-

ual lineage ages (0, 5000, 10000, and 20000 generations), a sexual ancestral population

size of N = 10000, a mutation rate of 1.5 × 10−8 per base pair per generation, and a

total genome length of 100 Mbp. The EM algorithm was run for 20 iterations and three

free population sizes were inferred. Time was discretized into 16 intervals. The inferred

transition times and population sizes were fairly accurate, but the procedure showed a

slight bias towards underestimating the age of the asexual lineage and overestimating

the sexual population size at the onset of asexual reproduction.
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Figure 4.2: Inferred demographic history of asexual lineages of different ages with constant-sized
ancestral sexual populations. Each panel shows the inferred sexual-to-asexual transition time and
population size history of the sexual ancestor for five replicate simulations. The true values are shown
with a thick gray dashed line, and the inferred history of each replicate simulation is shown with
a differently colored thin solid line. Vertical lines show the inferred transition time, and horizontal
lines to the right of the transition show the inferred population size history of the sexual ancestor. In
each simulation, the size of the sexual ancestral population was N = 10000, the mutation rate was
1.5× 10−8 per generation per base pair, and the recombination rate was 1.0× 10−8 per generation
per base pair. Each simulated genome was 120 Mbp in length.

In order to test whether inference of the sexual-to-asexual transition time is con-

founded by variable population sizes in the ancestral sexual population, we simulated

scenarios in which the sexual ancestral population changed in size. When we simulated

the demographic history given as an example in Figure 2 of [12], featuring three changes

in population size and including a severe bottleneck, the timing and magnitude of these

transitions were well inferred, on average, as was the timing of the transition to asex-

ual reproduction (Fig. 4.3A). On the other hand, in simulations in which the asexual

lineage was derived from a sexual population undergoing extreme exponential growth,

the TSMC showed a slight bias towards overestimating the age of the asexual lineages

(Fig. 4.3B). This can be explained by the fact that coalescence is infrequent in very large

populations, just as it does not occur at all in asexual lineages. There is presumably

some information in linkage patterns that can be used to distinguish an exponentially

growing sexual ancestral population from an extension of the asexual phase of repro-

duction, since recombination does occur in the sexual ancestor, no matter the size, and
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Figure 4.3: Inferred demographic history of asexual lineages whose sexual ancestors experienced a
population bottleneck or exponential growth before the onset of asexual reproduction. True (gray
lines) and inferred (colored lines) population sizes are displayed as in Figure 4.2. In each simulation,
the mutation rate is 1.5×10−8 per base pair per generation, and the recombination rate is 1.0×10−8,
with a total genome size of 120 Mbp. The top row (A) shows inferred population histories for
asexual lineages whose ancestors underwent a population bottleneck prior to the onset of asexual
reproduction. The bottom row (B) shows inferred population histories for asexual lineages whose
sexual ancestral population was growing exponentially at the onset of asexual reproduction.

does not occur in the asexual lineage. However, it seems that the TSMC cannot use this

information to distinguish asexual reproduction from a rapidly growing sexual ancestral

population.

We tested the power to distinguish asexual lineage ages on a finer scale by carrying

out simulations where the asexual lineages varied between 0 and 1000 generations in

age, with a sexual ancestral population of constant size N = 10000. The TSMC tended

to overestimate the age of the asexual lineage by a few hundred generations (Fig. S7).

In these simulations, at most 5% of the heterozygous sites, on average, are due to

mutations during the asexual period, and there is little signal to distinguish lineages

of different ages. In simulations where the the asexual lineage is young and the sexual
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ancestor underwent a bottleneck prior to the onset of the asexual lineage, the TSMC

was unable to distinguish between the large recent population size in the sexual ancestor

and an extension of the period of asexual reproduction (Fig. S8). Thus care is needed

in the interpretation of the inferred lineage age for any recently derived triploid asexual

lineage.

In simulations, we know the true per-generation mutation rate, so we can scale by the

actual value to write scaled parameters in units of generations. In a real application to

data from P. antipodarum, the true mutation rate is unknown, so inferred parameters

will be scaled by an unknown population size. Thus it is most realistic to view our

application of the TSMC as a way of generating a qualitative understanding of the

different timings of transitions from sexual to asexual reproduction in triploid asexual

P. antipodarum lineages.

4.4.2 Diploid asexual lineages and transitions from diploid to triploid

asexual reproduction

Across a range of species, asexual reproduction is associated with polyploidy, and in

P. antipodarum most of the known asexual lineages are triploid or tetraploid. However,

there is one diploid isofemale lineage that has never produced a male in the laboratory

and is thus putatively asexual (M. Neiman, personal communication). Thus one hy-

pothesis is that asexual lineages tend to form as diploids and then rapidly transition

from diploidy to triploidy as asexual lineages after being triploidized by a sexual haploid

sperm. A subsequent transition to tetraploidy may be caused by the incorporation of

an additional haploid sperm into the genome.

Conveniently, the age of a diploid asexual lineage can be inferred using the standard

PSMC method [12], which features an option that is perfectly suited for inferring the
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age of a diploid asexual lineage. This is the -T option (called the “divergence time”

parameter by the authors), which is disabled by default and appears to have been

intended to infer the timing of divergence between two isolated populations. If this is

the intended usage, it does not allow for recombination during the period of isolation (as

it should) and will produce unreliable estimates in that context. However, it is perfectly

suited for studying the age of diploid asexual lineages, and accurately recovers the age

of a diploid asexual lineage in simulations (not shown). We will apply the PSMC with

this option enabled to the diploid genomes from the P. antipodarum genome sequencing

project.

To test the hypothesis that triploid asexual lineages are derived from diploid asexual

lineages via incorporation of haploid sperm from a sexual male, we modified the transi-

tion probabilities of our hidden Markov chain to reflect this scenario. In particular, we

allowed for an additional period in which two chromosomes are frozen together in the

same (diploid) asexual lineage and a third chromosome is found in a sympatric sexual

population, undergoing recombination (Fig. 4.4). The updated transition probabilities

are given in Appendix H. In the version of the TSMC with this additional diploid asexual

period, in addition to inferring the total asexual time Td, we also infer the time of the

transition to triploid asexual reproduction, D3. For notational convenience, we assume

that the first transition, to diploid asexual reproduction, happens at time D2 = 0 and

then the subsequent transition to triploid asexual reproduction happens at time D3 < 0

so that −D3 is actually the length of the diploid asexual interval (see 4.4). This allows

us to measure time in the diploid sexual population starting from t = D2 = 0.

Testing the modified TSMC with simulated genomes of triploid asexual lineages that

were first diploid asexual lineages, we found that the the timing of the two transitions

were accurately recovered only when the total asexual time was small and the triploid
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Figure 4.4: Example gene genealogy for an asexual lineage that was diploid and later become triploid
by incorporation of a haploid, sexual sperm. T3 and T2 represent the two coalescence times in the
interval in which all three chromosomal lineages are sexual, as before. The time D2 = 0 is the time
of the initial transition to sexual reproduction, and D3 < 0 is the (negative of the) length of the
interval before the diploid asexual lineage transitions to triploid asexual reproduction, measured in
units of 2N(0), the sexual population size at the time of transition to diploid asexual reproduction
from sexual reproduction. In the figure, black lines show the sexual branches of the gene genealogy
that contribute to the total rate of recombination.

period was substantially longer than the diploid period (Fig. S9). In other scenarios, the

relative timing of the diploid and triploid transitions was not reliably inferred. These

changes to the SMC’ calculations underlying the HMM transition probabilities affect

only the linkage patterns in the model — the marginal distribution of gene genealogies

remains the same. Furthermore, the additional recombination allowed during the period

of diploid asexual reproduction makes only minor changes to the linkage patterns. Given

that SMC-based methods are known to be poor at inferring recombination rates [12, 17,

also observed with TSMC], it is perhaps not surprising that the TSMC does not do well

at inferring these additional parameters. However, it is encouraging that the total time

spent as an asexual lineage is still inferred accurately with the inclusion of separate

diploid and triploid asexual transition times (Fig. S9).
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4.5 Discussion

We have created a SMC-based HMM model for demographic inference with triploid

genomes. To our knowledge, it is the first SMC-based HMM demographic inference

procedure that models the full gene genealogy under the standard coalescent for more

than two sequences. The Bayesian MCMC method of Palacios et al. [80] models the

genealogies of many chromosomes under the SMC’, but it takes an ancestral recom-

bination graph as input rather than genetic sequence data. DiCal [13] models the

genealogies of multiple chromosome sequences, but it bases its calculations on a ge-

nealogical process approximating the coalescent, derived from an approximation to the

standard Wright-Fisher diffusion. MSMC [17] allows multiple sequences but models

only the most recent coalescence time in its HMM. We are able to model the full coa-

lescent with three sequences in part because we average over phasing. This permits us

to model only the first and second coalescence time in a genealogy with three leaves,

reducing the number of states in our HMM by a factor of six. Surely much information

is lost by discarding phasing, but since the triploid P. antipodarum genomes will be

unphased, in our application there would be no point to modeling phased genomes.

We have neglected to account for the possibility of gene conversion in the asexual

P. antipodarum lineages. In the context of sexually reproducing organisms, gene con-

version can be modeled as a special type of recombination [84]. In the context of clonal

asexual lineages, gene conversion occurring in an asexual lineage acts analogously to

coalescence, since each gene conversion event copies one sampled, captive chromosome

onto another. Flot et al. [85] studied this process in (diploid) bdelloid rotifers and

used Monte Carlo simulations to infer parameters related to gene conversion. Recently,

Hartfield et al. [86] studied theoretical single-locus coalescence patterns in facultatively
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reproducing organisms undergoing gene conversion. In order to incorporate gene con-

version into an SMC-based HMM model like the PSMC or TSMC, it would be necessary

to have a sequentially Markov model of gene conversion in clonally reproducing asexual

organisms. The gene conversion process is not Markov [87], but a first-order Markov

approximation can be made. In diploid organisms, it is necessary to model only the

local pairwise coalescence time, as in the PSMC [12], and transition probabilities and

two-locus properties should be relatively straightforward to calculate after assuming

that the process is first-order Markov. To include gene conversion in the TSMC model,

it would be necessary to create a triploid version of the gene conversion ancestry model,

which is substantially more complex than the diploid version.

Although it is likely that asexual P. antipodarum experience some gene conversion,

and it would be of biological interest to infer the parameters of gene conversion in

this species, at present we do not to model gene conversion in the TSMC. We predict

that any inferred asexual lineage ages will be biased downwards in the presence of gene

conversion, since any gene conversion that occurs during the asexual phase will look like

coalescence, which we assume can occur only during the sexual phase of reproduction

in the TSMC. Ancient asexual lineages have been proposed in P. antipodarum [78], and

it is ancient asexual lineages that are supposed to be unlikely under the assumption

that asexual reproduction is an evolutionary dead end [79]. Since gene conversion will

likely cause a downward bias in the estimated age of an asexual lineage, we view the

TSMC as being conservative in identifying ancient asexual lineages in the presence of

gene conversion in asexual lineages.

We expect that the TSMC will be useful in the study of other organisms featuring

triploid apomictic asexual reproduction. Triploid apomictic reproduction is encountered

in a variety of taxa, including lizards [88], fish [89], and various plants [e.g. 90, 91, 92].
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Many other apomictic asexual organisms are diploid or tetraploid. To infer the history

of asexual reproduction in diploid asexual lineages, it is possible to use the PSMC with

the -T option enabled, as discussed above. (Additional modifications would need to

be made to properly accommodate gene conversion.) An SMC-based HMM approach

could be devised to study the evolutionary and population genetic history of tetraploid

asexual lineages, but modeling the genealogies fully would involve a significant increase

in the number of states in the HMM. Without phasing, the number of states to consider

would increase by a factor of approximately 2n (where n is the number of discrete time

intervals) over our implementation of the TSMC, and with phasing it would increase

by substantially more. This would increase runtimes substantially, although, again,

improvements may be possible by exploiting symmetries in the coalescent [81].

Besides gene conversion, one possibility that has not been addressed here is the oc-

currence of cryptic or infrequent sexual reproduction. If there is a history of infrequent

sex in an asexual lineage, any inference procedure involving a coalescent-based HMM

would need to be adapted to allow for the possibility of additional recombination and

coalescence during the asexual part of a lineage’s history. Exactly how this could be

achieved depends on whether the occasional sex is with sexual individuals or other

mostly asexual individuals. We expect that either situation could be accommodated by

a suitably modified SMC model, but we leave this for future work.
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A
Pedigrees and biased estimators of θ

Estimates of the population-scaled mutation rate θ = 4Nµ will be downwardly biased

if there is recent IBD in the sample, since sequences will be identical with an artificially

inflated probability, and this resembles coalescence prior to any mutation between the

two identical sequences.

Suppose that we sample two copies of a DNA sequence from each of n diploid in-

dividuals from a panmictic population. As in the main text of Chapter 1, we index

these sequences with In := {1m, 1p, 2m, 2p, . . . , nm, np}. Let PIn be the set of partitions

of In. Each pedigree P induces a set of sample reconfigurations R(P) ⊆ PIn , where

each partition r ∈ R(P) represents a possible outcome of segregation through the re-

cent sample pedigree. Each reconfiguration r ∈ R(P) contains |r| non-empty, disjoint
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subsets, each representing a distinct lineage that survives after segregation through

the recent pedigree. Associated with each pedigree is also a probability distribution

Pr(r | P), r ∈ R(P) representing the Mendelian probabilities of the different sample

reconfigurations.

We consider the bias of three estimators of θ that are unbiased in the absence of

recent IBD. One estimator of θ we consider is Watterson’s [1975] estimator

θ̂S =

∑L
i=0 S

(i)

a2nL
, (A.1)

where 2n is the (diploid) sample size, S(i) is the number of segregating sites at locus i,

L is the number of loci, and a2n =
∑2n−1

i=1 1/i. The expected value of θ̂S given pedigree

P is

E
[
θ̂S | P

]
=

∑
r∈R(P)

E
[
θ̂S | r

]
Pr(r | P)

=
∑

r∈R(P)

E

[
S(1)

a2n
| r

]
Pr(r | P)

= θ
∑

r∈R(P)

a|r|

a2n
Pr(r | R(P)).

(A.2)

This follows from the fact that when there are |r| lineages after segregation through the

recent pedigree, the expected number of segregating sites for that sample is θ
∑|r|−1

i=1
θ
i =

θa|r|.

A second estimator of θ is π̂, the mean number of differences between all pairs of
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sequences in a sample, which can be written in terms of the site-frequency spectrum:

π̂ =
1(
2n
2

) 2n−1∑
i=1

i(2n− i)ξ̂i, (A.3)

where ξ̂i is the number of derived alleles present in i out of 2n sequences in the sample.

To calculate the expected value of π̂ given P, it is necessary to consider how IBD in the

recent pedigree changes the site frequency spectrum. Define S(n) := {A ⊆ Ω : Ω ∈ PIn}

and ψ : PIn × N → S(n) as

ψ(Ω, i) := {ω ⊆ Ω :
∑
g∈ω

|g| = i}. (A.4)

That is, ψ(Ω, i) is the set of all subsets of the partition Ω such that the total size of all

the groups in each subset is i. For example, for n = 3 and

Ω = {{1m, 1p, 2m} , {2p, 3m} , {3p}} ,

we have

ψ(Ω, 1) = {{{3p}}}

ψ(Ω, 2) = {{{2p, 3m}}}

ψ(Ω, 3) = {{{1m, 1p, 2m}}, {{2p, 3m}, {3p}}}

ψ(Ω, 4) = {{{1m, 1p, 2m}, {3p}}}

ψ(Ω, 5) = {{{1m, 1p, 2m}, {2p, 3m}}}.
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Then the expectation of ξ̂i given reconfiguration r ∈ R(P) is

E
[
ξ̂i | r

]
=

∑
ω∈ψ(r,i)

θ

|ω|
( |r|
|ω|
) , (A.5)

since each segregating site that is present in i present-day lineages must have occurred

on the branch ancestral to the post-IBD lineages represented by some ω ∈ ψ(r, i). The

expected number of mutations occurring on a branch subtending |ω| lineages is θ/|ω|,

and the expected fraction of such mutations that occur on the branch ancestral to the

lineages in ω is 1/
( |r|
|ω|
)
, by exchangeability. This gives the expectation of π̂ conditional

on the pedigree:

E [π̂ | P ] =
∑

r∈R(P)

E [π̂ | r] Pr(r | P)

=
1(
n
2

) ∑
R∈P

Pr(R | P)

n−1∑
i=1

i(n− i) E[ξ̂i | r]

=
θ(
n
2

) ∑
r∈R(P)

Pr(r | P)
n−1∑
i=1

i(n− i)
∑

ω∈ψ(r,i)

1

|ω|
(|R|
|w|
)

(A.6)

A third estimator of θ is ξ̂1, the number of singletons in the sample. The conditional

expectation of ξ̂1 given a pedigree P is

E
[
ξ̂1 | P

]
= θ

∑
r∈R(P)

|ψ(r, 1)|
|R(P)|

Pr(r | P), (A.7)

since only those mutations that occur on lineages that have not coalesced with any other

lineages in the early pedigree can produce singletons.

To validate these calculations, we performed simulations of 200 loci sampled from
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individuals whose pedigree includes some degree of IBD or inbreeding. The simulations

confirm the calculated biases for the different estimators of θ (Fig. S5).
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B
Pedigrees and biased estimators of M

In a constant-sized structured population with two demes and a constant rate of migra-

tion M = 4Nm between demes, the expected within-deme and between-deme pairwise

coalescence times are

E[Tw] = 2 (B.1)

E[Tb] = 2 + 1/M, (B.2)
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Let πw and πb be the within-deme and between-deme mean pairwise diversity, respec-

tively. Since E[πw] = θE[Tw] and E[πb] = θE[Tb], one estimator of M is

M̂ =
π̂w

2(π̂b − π̂w)
. (B.3)

If some individuals in the sample are recently admixed, M̂ will be biased. In general

it is not possible to calculate E[M̂ ], but it can be approximated by

E[M̂ ] ≈ E[π̂w]

2(E[π̂b]− E[π̂w])
. (B.4)

We sample two sequences from each of n1 individuals from deme 1 and n2 individuals

from deme 2, defining n = n1 + n2 as the total (diploid) sample size. The sample is

again indexed by In = {1m, 1p, . . . , nm, np}, and we assume that the first 2n1 of these

indices correspond to sequences sampled from deme 1 and the last 2n2 from deme 2.

In the context of a two-deme population, each group in the partitioned sample r ∈

R(P) is labeled 1 or 2 to indicate which deme the lineage is found in after segregation

back in time through the recent sample pedigree. For two-deme reconfiguration r, let

d(r, i, j), i, j ∈ {1, 2}, be a function that gives the number of lineages originally sampled

from deme i that are found in deme j after segregation through the recent sample

pedigree.

Assume that the recent sample pedigree contains admixture but no IBD. In this case,

we can write the expectations of π̂w and π̂b conditional on reconfiguration r as
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E [π̂w | r] = 1(
2n1

2

)
+
(
2n2

2

)×
{
θE[Tw]

2∑
i=1

2∑
j=1

(
d(r, i, j)

2

)
+

θE[Tb] [d(r, 1, 1)d(r, 1, 2) + d(r, 2, 2)d(r, 2, 1)]

}
(B.5)

and

E [π̂b | r] =
1

4n1n2
×{

θE[Tb]
(
d(r, 1, 1)d(r, 2, 2) + d(r, 1, 2)d(r, 2, 1)

)
+

θE[Tw] [d(r, 1, 2)d(r, 2, 2) + d(r, 2, 1)d(r, 1, 1)]

}
.

(B.6)

The approximate expectation of M̂ conditional on a pedigree P can be calculated

using (B.5) and (B.6) together with

E[π̂w | P ] =
∑

r∈R(P)

E[π̂w | r] Pr(r | P)

and

E[π̂b | P ] =
∑

r∈R(P)

E[π̂b | r] Pr(r | P).

Simulations of infinite-sites loci taken from samples with a single admixed ancestor con-

firm these calculations (Fig. S6). This method of approximating E[M̂ | P ] could be

extended to accommodate recent sample pedigrees that contain both IBD and admix-

ture, but we do not pursue this here.
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C
Pairwise ARG is ergodic

Here we show that the pairwise ARG is sequentially ergodic. Let {t(x)}x≥0 represent the

random pairwise coalescence time at point x along two aligned, continuous, infinitely-

long chromosomes modeled by the ARG. Let time be scaled such that the marginal

distribution of t(x) is exponential with rate 1 for all x ≥ 0, and thus E[t(x)] = 1.

Let the distance across the chromosome be measured such that a segment of length l

recombines apart back in time at rate l/2. (Equivalently, a recombination event happens

in the chromosome interval (x, x+ dx) in the time interval (t, t+ dt) with infinitesimal

probability dx dt.)

One useful property of t(x) is that it is strongly stationary. That is, the joint dis-

tribution of {t(x)}a≤x≤b is the same as the joint distribution of {t(x)}a+h≤x≤b+h for all
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0 ≤ a < b and h > 0. To see that this is the case, consider the Wiuf and Hein (1999)

algorithm for constructing an ARG sequentially across the chromosome: at a given

point, a genealogy is drawn from the marginal distribution of genealogies, and then

the algorithm proceeds across the chromosome generating recombination events and ge-

nealogies, where at each point along the chromosome, such events are drawn from the

conditional distribution given all previous coalescence and recombination events. The

initial point from which the marginal genealogy is drawn has no effect on the resulting

joint distribution of genealogies.

The pairwise ARG is defined to be ergodic if

lim
L→∞

E

[(
1

L

∫ L

0
t(x)dx− E[t(0)]

)2
]
= 0. (C.1)

For a stationary process with covariance function r(x), to demonstrate ergodicity it is

sufficient to show that

lim
L→∞

1

L

∫ L

0
r(x)dx = 0. (C.2)

(See Itō [94].) Condition (C.2) is met if limx→∞ r(x) = 0. This follows from the fact

that for K < L,

1

L

∫ L

0
r(x)dx =

1

L

∫ K

0
r(x)dx+

1

L

∫ L

K
r(x)dx. (C.3)

The first term of the right-hand side disappears in the L→ ∞ limit if r(x) is bounded,

and the second term can be made smaller than any arbitrary ϵ > 0 by choosing a

sufficiently large K [cf. 95, p. 478].
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Under the ARG, the covariance between t(0) and t(x), x > 0, is

r(x) =
x+ 18

x2 + 13x+ 18
. (C.4)

Since limx→∞ r(x) = 0, condition (C.2) is met and the pairwise ARG is thus sequentially

ergodic: the mean coalescence time across a long chromosome converges to the mean

coalescence time at a single point. A similar proof could be given for the discrete-locus

ARG with evenly spaced loci, which has a covariance function of the same form as

the continuous-chromosome ARG. In this case, the integrals would be replaced by the

corresponding sums.
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D
Distribution of IBD segment lengths

under the SMC’ model of coalescence and

recombination

Let G be the Meijer G-function, ψa(b) = da+1

dba+1 log(Γ(b)) be the polygamma function,

and Γ(a, b) =
∫∞
b ta−1e−tdt be the incomplete gamma function. Note that log(−x) =

iπ + log(x) for x > 0. The function fL(l) gives the density of lengths of IBD segments

and returns real values. Then
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fL(l) = 2
l
2
−4e−l/4(−l)−

l
4
− 5

2 l

{
8l G4,0

3,4

− l

4

∣∣∣∣ 2, 2, 2

1, 1, 1, l+6
4

− 8l G3,0
2,3

− l

4

∣∣∣∣ 2, 2

1, 1, l+6
4


− 32G3,0

2,3

− l

4

∣∣∣∣ 2, 2

1, 1, l+10
4

− l2Γ

(
l + 2

4
,− l

4

)

+ l2Γ

(
l + 2

4

)[
4
(
l2 + l + 3

)
+ l log(−l/4) (4l + l log(−l/4) + 4)+

l

[
lψ(0)

(
l + 2

4

)2

+ lψ(1)

(
l + 2

4

)
− 2 (2l + l log(−l/4) + 2)ψ(0)

(
l + 2

4

)]]
− 8lΓ

(
l + 6

4
,− l

4

)
− 16Γ

(
l + 10

4
,− l

4

)}
.
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E
Integral of cumulative coalescent rate

under piecewise constant population size

There are several integrals of the form
∫ y
x e

−kΩ(u,y)du in Equation (4.3). Assuming a

piecewise population size history, we present a derivation of the solution to this integral

in several steps.
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∫ y

x
e−kΩ(u,y)du =

∫ Tα(x)+1

x
e−kΩ(u,y)du+

α(y)−1∑
i=α(x)+1

∫ Ti+1

Ti

e−kΩ(u,y)du+

∫ y

Tα(y)
e−kΩ(u,y)du

=

∫ Tα(x)+1

x
exp

−k

(Tα(u)+1 − u
) 1

λα(u)
+

α(y)−1∑
j=α(u)+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

 du+

α(y)−1∑
i=α(x)+1

∫ Ti+1

Ti

exp

−k

(Tα(u)+1 − u
) 1

λα(u)
+

α(y)−1∑
j=α(u)+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

 du+

∫ y

Tα(y)

exp

(
−k(y − u)

1

λα(u)

)
du

=

∫ Tα(x)+1

x
exp

−k

(Tα(x)+1 − u
) 1

λα(x)
+

α(y)−1∑
j=α(x)+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

 du+

α(y)−1∑
i=α(x)+1

∫ Ti+1

Ti

exp

−k

(Ti+1 − u)
1

λi
+

α(y)−1∑
j=i+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

 du+

∫ y

Tα(y)

exp

(
−k(y − u)

1

λα(y)

)
du

= exp

−k

 α(y)−1∑
j=α(x)+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

∫ Tα(x)+1

x
exp

(
−k
(
Tα(x)+1 − u

) 1

λα(x)

)
du+

α(y)−1∑
i=α(x)+1

exp

−k

α(y)−1∑
j=i+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

∫ Ti+1

Ti

exp

(
−k (Ti+1 − u)

1

λi

)
du+

∫ y

Tα(y)

exp

(
−k(y − u)

1

λα(y)

)
du

= exp

−k

 α(y)−1∑
j=α(x)+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

[1− exp

(
−
k
(
Tα(x)+1 − x

)
λα(x)

)]
λα(x)

k
+

α(y)−1∑
i=α(x)+1

exp

−k

α(y)−1∑
j=i+1

∆j

λj
+ (y − Tα(y))

1

λα(y)

[1− exp

(
−k∆i

λi

)]
λi
k
+

[
1− exp

(
−
k
(
y − Tα(y)

)
λα(y)

)]
λα(y)

k
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= e−kΩ(Tα(x)+1,y)

1− e
−

k(Tα(x)+1−x)
λα(x)

 λα(x)
k

+

α(y)−1∑
i=α(x)+1

e−kΩ(Ti+1,y)

[
1− e

− k∆i
λi

]
λi
k
+

1− e
−

k(y−Tα(y))
λα(y)

 λα(y)
k

(E.1)
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F
TSMC transitions under piecewise

constant population size model

The following gives the different parts of the transition kernel q(t3, t2|s3, s2) under the

triploid SMC’ with a piecewise constant population history as described in the text.

For t3 = s3; t2 > s2:

1

2s2 + s3
e−2Ω(s3,s2) 1

λα(t2)
e−Ω(s2,t2)

{ α(s3)−1∑
i=0

e−3Ω(Ti+1,s3)

[
1− e

− 3∆i
λi

]
λi
3
+1− e

−
3(s3−Tα(s3))

λα(s3)

 λα(s3)
3

}
+

2

2s2 + s3

1

λα(t2)
e−Ω(s2,t2)×
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{
e−2Ω(Tα(s3)+1,s2)

1− e
−

2(Tα(s3)+1−s3)
λα(s3)

 λα(s3)
2

+

α(s2)−1∑
i=α(s3)+1

e−2Ω(Ti+1,s2)

[
1− e

− 2∆i
λi

]
λi
2

+

1− e
−

2(s2−Tα(s2))
λα(s2)

 λα(s2)
2

}

For t3 < s3; t2 = s3:

1

2s2 + s3

2

λα(t3)


α(t3)−1∑
i=0

e−3Ω(Ti+1,t3)

[
1− e

− 3∆i
λi

]
λi
3

+

1− e
−

3(t3−Tα(t3))
λα(t3)

 λα(t3)
3



For t3 < s3; t2 = s2:

2

2s2 + s3

2

λα(t3)


α(t3)−1∑
i=0

e−3Ω(Ti+1,t3)

[
1− e

− 3∆i
λi

]
λi
3

+

1− e
−

3(t3−Tα(t3))
λα(t3)

 λα(t3)
3



For t3 > s3; t2 = s2:

2

2s2 + s3

2

λα(t3)
e−2Ω(s3,t3)


α(s3)−1∑
i=0

e−3Ω(Ti+1,s3)

[
1− e

− 3∆i
λi

]
λi
3

+

1− e
−

3(s3−Tα(s3))
λα(s3)

 λα(s3)
3



For t3 = s2; t2 > s2:

2

2s2 + s3
e−2Ω(s3,s2)

1

λα(t2)
e−Ω(s2,t2)

{
α(s3)−1∑
i=0

e−3Ω(Ti+1,s3)

[
1− e

− 3∆i
λi

]
λi
3
+
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1− e
−

3(s3−Tα(s3)
)

λα(s3)

 λα(s3)
3

}

For t3 = s3; t2 = s2:

1

2s2 + s3

s3 −
α(s3)−1∑
i=0

e−3Ω(Ti+1,s3)

[
1− e

− 3∆i
λi

]
λi
3

−

1− e
−

3(s3−Tα(s3)
)

λα(s3)

 λα(s3)
3

+

1

2s2 + s3

1

2

[
1− e−2Ω(s3,s2)

]{ α(s3)−1∑
i=0

e−3Ω(Ti+1,s3)

[
1− e

− 3∆i
λi

]
λi
3
+1− e

−
3(s3−Tα(s3))

λα(s3)

 λα(s3)
3

}
+

1

2s2 + s3

[
s2 − s3 − e−2Ω(Tα(s3)+1,t2)

(
1− e

−
2(Tα(s3)+1−s3)

λα(s3)

)
λα(s3)

2
−

α(t2)−1∑
i=α(s3)+1

e−2Ω(Ti+1,t2)

(
1− e

− 2∆i
λi

)
λi
2

−

(
1− e

−
2(t2−Tα(t2)

)
λα(t2)

)
λα(t2)

2

]
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G
Discrete-time approximations to TSMC

transition probabilities

Here we present the transition probabilities from state (i, j) to (k, l) in our discrete-time

approximation to the continuous-time TSMC model. Multiple steps are shown for the

derivation of the first part, and only the final form of the expression is shown for the

other parts.
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For i = k < j < l, (t3 = s3 ; t2 > s2):

=
1

2s2 + s3
e−2Ω(s3,s2)

1

λα(t2)
e−Ω(s2,t2)

{
α(s3)−1∑
i=0

e−3Ω(Ti+1,s3)

[
1− e

− 3∆i
λi

]
λi
3
+1− e

−
3(s3−Tα(s3))

λα(s3)

 λα(s3)
3

}
+

2

2s2 + s3

1

λα(t2)
e−Ω(s2,t2)×

{
e−2Ω(Tα(s3)+1,s2)

1− e
−

2(Tα(s3)+1−s3)
λα(s3)

 λα(s3)
2

+

α(s2)−1∑
i=α(s3)+1

e−2Ω(Ti+1,s2)

[
1− e

− 2∆i
λi

]
λi
2

+

1− e
−

2(s2−Tα(s2)
)

λα(s2)

 λα(s2)
2

}

=

∫ Tk+1

Tk

∫ Tl+1

Tl

1

2Ei,j [s2] + Ei,j [s3]
e−2Ω(Ei,j [s3],Ei,j [s2])

1

λl
e−Ω(Ei,j [s2],t2)×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
δ(t3 − s3)dt2dt3+∫ Tk+1

Tk

∫ Tl+1

Tl

2

2Ei,j [s2] + Ei,j [s3]

1

λl
e−Ω(Ei,j [s2],t2)×{

e−2Ω(Ti+1,Ei,j [s2])

[
1− e

−
2(Ti+1−Ei,j [s3])

λi

]
λi
2

+

j−1∑
a=i+1

e−2Ω(Ta+1,Ei,j [s2])
[
1− e−

2∆a
λa

] λa
2
+

[
1− e

−
2(Ei,j [s2]−Tj)

λj

]
λj
2

}
δ(t3 − s3)dt2dt3
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=

∫ Tl+1

Tl

1

2Ei,j [s2] + Ei,j [s3]
e−2Ω(Ei,j [s3],Ei,j [s2])

1

λl
e−Ω(Ei,j [s2],t2)×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
dt2+∫ Tl+1

Tl

2

2Ei,j [s2] + Ei,j [s3]

1

λl
e−Ω(Ei,j [s2],t2)×{

e−2Ω(Ti+1,Ei,j [s2])

[
1− e

−
2(Ti+1−Ei,j [s3])

λi

]
λi
2

+

j−1∑
a=i+1

e−2Ω(Ta+1,Ei,j [s2])
[
1− e−

2∆a
λa

] λa
2
+

[
1− e

−
2(Ei,j [s2]−Tj)

λj

]
λj
2

}
dt2

=
1

2Ei,j [s2] + Ei,j [s3]
e−2Ω(Ei,j [s3],Ei,j [s2])

1

λl
×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
×∫ Tl+1

Tl

e−Ω(Ei,j [s2],t2)dt2+

2

2Ei,j [s2] + Ei,j [s3]

1

λl

{
e−2Ω(Ti+1,Ei,j [s2])

[
1− e

−
2(Ti+1−Ei,j [s3])

λi

]
λi
2
+

j−1∑
a=i+1

e−2Ω(Ta+1,Ei,j [s2])
[
1− e−

2∆a
λa

] λa
2

+

[
1− e

−
2(Ei,j [s2]−Tj)

λj

]
λj
2

}
×

∫ Tl+1

Tl

e−Ω(Ei,j [s2],t2)dt2

=
1

2Ei,j [s2] + Ei,j [s3]
e−2Ω(Ei,j [s3],Ei,j [s2])

1

λl
×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
e−Ω(Ei,j [s2],Tl)×

∫ Tl+1

Tl

e−Ω(Tl,t2)dt2 +
2

2Ei,j [s2] + Ei,j [s3]

1

λl

{
e−2Ω(Ti+1,Ei,j [s2])

[
1− e

−
2(Ti+1−Ei,j [s3])

λi

]
λi
2
+

j−1∑
a=i+1

e−2Ω(Ta+1,Ei,j [s2])
[
1− e−

2∆a
λa

] λa
2

+

[
1− e

−
2(Ei,j [s2]−Tj)

λj

]
λj
2

}
e−Ω(Ei,j [s2],Tl)×

∫ Tl+1

Tl

e−Ω(Tl,t2)dt2 130



=
1

2Ei,j [s2] + Ei,j [s3]
e−2Ω(Ei,j [s3],Ei,j [s2])

1

λl
×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
e−Ω(Ei,j [s2],Tl)×

∫ Tl+1

Tl

e
− t2−Tl

λl dt2 +
2

2Ei,j [s2] + Ei,j [s3]

1

λl

{
e−2Ω(Ti+1,Ei,j [s2])

[
1− e

−
2(Ti+1−Ei,j [s3])

λi

]
λi
2
+

j−1∑
a=i+1

e−2Ω(Ta+1,Ei,j [s2])
[
1− e−

2∆a
λa

] λa
2

+

[
1− e

−
2(Ei,j [s2]−Tj)

λj

]
λj
2

}
×

e−Ω(Ei,j [s2],Tl)

∫ Tl+1

Tl

e
− t2−Tl

λl dt2

=
1

2Ei,j [s2] + Ei,j [s3]
e−2Ω(Ei,j [s3],Ei,j [s2])

1

λl
×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
e−Ω(Ei,j [s2],Tl)×

λl

(
1− e

−∆l
λl

)
+

2

2Ei,j [s2] + Ei,j [s3]

1

λl

{
e−2Ω(Ti+1,Ei,j [s2])

[
1− e

−
2(Ti+1−Ei,j [s3])

λi

]
λi
2
+

j−1∑
a=i+1

e−2Ω(Ta+1,Ei,j [s2])
[
1− e−

2∆a
λa

] λa
2

+

[
1− e

−
2(Ei,j [s2]−Tj)

λj

]
λj
2

}
×

e−Ω(Ei,j [s2],Tl)λl

(
1− e

−∆l
λl

)
(G.1)

Here we assume that ∆n = ∞ and thus e−∆n/λn = 0.
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For i = k < l < j (t3 = s3; t2 < s2):

=
1

2Ei,j [s2] + Ei,j [s3]

1

λl{
i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
×

e−2Ω(Ei,j [s3],Tl)
λl
2

(
1− e

− 2∆l
λl

)
+

2

2Ei,j [s2] + Ei,j [s3]

1

λl

([
1− e

−
2(Ti+1−Ei,j [s3])

λi

]
λi
2

)
e−2Ω(Ti+1,Tl)

λl
2

(
1− e

− 2∆l
λl

)
+

2

2Ei,j [s2] + Ei,j [s3]

1

λl

[
l−1∑

a=i+1

[
1− e−

2∆a
λa

] λa
2
e−2Ω(Ta+1,Tl)

λl
2

(
1− e

− 2∆l
λl

)]
+

2

2Ei,j [s2] + Ei,j [s3]

1

λl

λl
2

[
∆l −

λl
2

(
1− e

− 2∆l
λl

)]
(G.2)

For k < i = l < j (t3 < s3; t2 = s3):

=
1

2Ei,j [s2] + Ei,j [s3]

2

λk

{
λk
3

[
1− e

− 3∆k
λk

] k−1∑
a=0

[
1− e−

3∆a
λa

] λa
3
e−3Ω(Ta+1,Tk)+

λk
3

[
∆k −

λk
3

(
1− e

− 3∆k
λk

)]} (G.3)

For k < i < j = l (t3 < s3; t2 = s2):

=
2

2Ei,j [s2] + Ei,j [s3]

2

λk

{
λk
3

[
1− e

− 3∆k
λk

] k−1∑
a=0

[
1− e−

3∆a
λa

] λa
3
e−3Ω(Ta+1,Tk)+

λk
3

[
∆k −

λk
3

(
1− e

− 3∆k
λk

)]} (G.4)
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For i < k < j = l (t3 > s3; t2 = s2):

=
2

2Ei,j [s2] + Ei,j [s3]

2

λk
×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
×

e−2Ω(Ei,j [s3],Tk)
λk
2

[
1− e

− 2∆k
λk

] (G.5)

For i < j = k < l (t3 = s2; t2 > s2):

=
2

2Ei,j [s2] + Ei,j [s3]
e−2Ω(Ei,j [s3],Ei,j [s2])

1

λl
×{

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

}
×

e−Ω(Ei,j [s2],Tl)λl

[
1− e

−∆l
λl

] (G.6)

Here again we assume ∆n = ∞ and thus e−∆n/λn = 0.

The following cases require special consideration. For i = k = l < j and t3 = s3; t2 <

s2. (We also need to consider t3 < s3; t2 = s3, and the total probability for this discrete

transition will be the sum of these.)

=
1

2Ei,j [s2] + Ei,j [s3]

{
1

λk
×[

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
(
1− e−

3∆a
λa

) λa
3

+

(
1− e

−
3(Ei,j [s3]−Ti)

λi

)
λi
3

]
×

λk
2

[
1− e

−
2(Tk+1−Ei,j [s3])

λk

]
+ Tk+1 − Ei,j [s3]−

λk
2

[
1− e

−
2(Tk+1−Ei,j [s3])

λk

]}
(G.7)
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For i = k = l < j and t3 < s3; t2 = s3:

=
1

2Ei,j [s2] + Ei,j [s3]

2

λk

{
k−1∑
a=0

[
1− e−

3∆a
λa

] λa
3
e−3Ω(Ta+1,Tk)

λk
3

[
1− e

−
3(Ei,j [s3]−Tk)

λk

]
+

λk
3

(
Ei,j [s3]− Tk −

λk
3

[
1− e

−
3(Ei,j [s3]−Tk)

λk

])}
(G.8)

Another case that requires special consideration is i < k = l = j. For i < k = l = j

and t3 > s3 ; t2 = s2:

=
2

2Ei,j [s2] + Ei,j [s3]

1

λk
e−2Ω(Ei,j [s3],Ei,j [s2])×(

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

)
×

λk

[
1− δ(k − n)e

−
Tk+1−Ei,j [s2]

λk

] (G.9)

The delta function is a way to ensure correctness when k = l = j = n.

When i < k = l = j and t3 = s2 ; t2 > s2:

=
2

2Ei,j [s2] + Ei,j [s3]

1

λk
e−2Ω(Ei,j [s3],Ei,j [s2])×(

i−1∑
a=0

e−3Ω(Ta+1,Ei,j [s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,j [s3]−Ti)

λi

]
λi
3

)
×

λk

[
1− δ(k − n)e

−
Tk+1−Ei,j [s2]

λk

] (G.10)
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For i = j = k < l and t3 = s3; t2 > s2:

=
1

2Ei,i[s2] + Ei,i[s3]
×{

e−2Ω(Ei,i[s3],Ei,i[s2])
1

λl

[
i−1∑
a=0

e−3Ω(Ta+1,Ei,i[s3])
[
1− e−

3∆a
λa

] λa
3
+[

1− e
−

3(Ei,i[s3]−Ti)
λi

]
λi
3

]
e−Ω(Ei,i[s2],Tl)λl

[
1− δ(l − n)e

−∆l
λl

]
+

2

λl

λi
2

[
1− e

−
2(Ei,i[s2]−Ei,i[s3])

λi

]
e−Ω(Ei,i[s2],Tl)λl

[
1− δ(l − n)e

−∆l
λl

]}
(G.11)

For i = j = k < l and t3 = s2; t2 > s2:

=
2

2Ei,i[s2] + Ei,i[s3]
e−2Ω(Ei,i[s3],Ei,i[s2])

1

λl

(
e−Ω(Ei,i[s2],Tl)λl

[
1− e

−δ(l−n)∆l
λl

])
×(

i−1∑
a=0

e−3Ω(Ta+1,Ei,i[s3])
[
1− e−

3∆a
λa

] λa
3

+

[
1− e

−
3(Ei,i[s3]−Ti)

λi

]
λi
3

)

(G.12)

Another case that requires special consideration: k < i = j = l. This includes either

t3 < s3; t2 = s2 or t3 < s3; t2 = s3. For k < i = j = l and t3 < s3; t2 = s2:

=
2

2Ei,i[s2] + Ei,i[s3]

2

λk

{
λk
3

(
1− e

− 3∆k
λk

)
×(

k−1∑
a=0

[
1− e−

3∆a
λa

] λa
3
e−3Ω(Ta+1,Tk)

)
+
λk
3

[
∆k −

λk
3

(
1− e

− 3∆k
λk

)]} (G.13)

For k < i = j = l and t3 < s3; t2 = s3:
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=
2

2s2 + s3

1

λk

(
k−1∑
a=0

[
1− e−

3∆a
λa

] λa
3
e−3Ω(Ta+1,Tk)

λk
3

[
1− e

− 3∆k
λk

]
+

λk
3

[
∆k −

λk
3

(
1− e

− 3∆k
λk

)]) (G.14)

The diagonal case of k = i ; l = j is calculated by subtracting the sum of the off-

diagonal entries from unity.
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H
TSMC transition functions for a triploid

asexual lineage that was previously

diploid

Here we consider the possibility that the asexual triploid lineages were first diploid

sexual lineages and were subsequently fertilized by a a haploid sexual sperm, making

a triploid asexual lineage. The goal is to infer the time between this diploid asexual

phase and the triploid asexual phase, along with everything else that was considered in

inference previously. In this case, the state at each position along the genome is the
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vector (t3, t2,W ), where W ∈ {0, 1} is an indicator for whether the branch introduced

by the triploidizing sperm subtends one of the diploid sexual branches coalescing at

t3 (W = 1) or t2 (W = 0). The time at transition to diploid asexuality is defined as

D2 = 0, and the transition to triploid asexuality is defined as D3 < 0. See Fig. H.1 for

an illustration of these states.

Having to keep track of W doubles the number of states, and since the complexity of

the forward-backward algorithm is squared in the number of states, the runtime should

increase by ∼ 4.

2n sex

2n asex

3n asex

triploidizing sperm lineage

A
2n sex

2n asex

3n asex

triploidizing sperm lineage

B

Figure H.1: Illustration of TSMC states when modeling first a transition to diploid asexual repro-
duction and then a transition to triploid asexual reproduction. Two states with the same coalescence
times t3 and t2 but with the triploidizing sperm’s lineage subtending a branch that coalesces with
the others (in the diploid sexual phase) at t2 (panel A, W = 0) and at t3 (panel B, W = 1). D2 = 0
is the time of transition to diploid asexuality, and D3 < 0 is the time of the transition to triploidy.

The transition probabilities of the hidden model largely remain the same. A few

changes occur:

1. In all previous probabilities, the factor (2t2+ t3)−1 is replaced by the reciprocal of

the new total sexual tree length, (2t2 + t3 −D3)
−1, recalling that D3 < 0. These

factors are included unchanged all the way through the derivations and are still

present in the final discrete transition probabilities, so they can just be replaced

with the new factor.
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2. Certain transitions will now change W as well. For example, if W = 0, (recall,

the sexual lineage joins a branch that coalesces at t2), the transition (s3, s2) →

(t3 < s3, t2 = s3) implies that now W = 1.

3. Additional recombination probability must be included, arising from recombina-

tion events that occur on the triploidizing sperm’s sexual lineage between t = D3

and t = 0.

To do this properly, it will also now be necessary to model the population size changes

that occur in the sexual population during the diploid asexual phase, since the triploidiz-

ing sperm’s lineage will experience those demographic changes. However, the only prob-

abilities that depend on these population sizes are the “healing” probabilities specific to

the SMC’, meaning that only the “effective recombination rate” for this single lineage

will depend on this part of the demographic history. For this reason, we will assume

that the diploid sexual population containing the triploidizing sperm is constant in size.

This approximation would be unnecessary under the SMC model (vs. the SMC’), since

healing is impossible under the SMC.

In general, we can expect there to be very little information about the length of

this hypothesized diploid asexual interval in the triploid asexual’s present-day genome.

Including this additional period of diploid asexuality doesn’t change the emission prob-

abilities or the equilibrium distribution of (t3, t2) at all; it changes only the transition

probabilities of the hidden model by affecting the probability of recombination.

The following are the “supplemental” probabilities of transition at the site of a re-

combination event, due to recombination events happening along the lineage of the

triploidizing sperm in the time interval (D3, D2).
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For t3 = s3; t2 > s2, W = 0, and W ′ = 0:

∫ 0

D3

du

2s2 + s3 −D3
e−Ω(u,0)e−3Ω(0,s3)e−2Ω(s3,s2) 1

λ(t2)
e−Ω(s2,t2)

For t3 = s3; t2 < s2, W = 0, and W ′ = 0:

∫ 0

D3

du

2s2 + s3 −D3
e−Ω(u,0)e−3Ω(0,s3) 1

λ(t2)
e−2Ω(s3,t2)

For t3 < s3; t2 = s3, W = 0, and W ′ = 1:

∫ 0

D3

du

2s2 + s3 −D3
e−Ω(u,0) 2

λ(t3)
e−3Ω(0,t3)

For t3 < s3; t2 = s2, W = 1, and W ′ = 1:

∫ 0

D3

du

2s2 + s3 −D3
e−Ω(u,0)e−3Ω(0,t3) 2

λ(t3)

For t3 > s3; t2 = s2, W = 1, W ′ = 1:

∫ 0

D3

du

2s2 + s3 −D3
e−Ω(u,0)e−3Ω(0,s3)

2

λ(t3)
e−2Ω(s3,t3)

For t3 = s2; t2 > s2, W = 1, and W ′ = 0:

∫ 0

D3

du

2s2 + s3 −D3
e−Ω(u,0)e−3Ω(0,s3)e−2Ω(s3,s2)

1

λ(t2)
e−Ω(s2,t2)

Let the relative population size between D3 and D2 be λd. As before, replace s3

with Ei,j [s3] and s2 with Ei,j [s2]. The following gives the different parts of the dis-

crete transition probabilities with this extended state space. In each, q(i, j, k, l) is the
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previous transition probability, calculated without the extension of the state space to

both a transition to diploid asexual reproduction and a transition to triploid asexual

reproduction. We provide the several steps for derivation of the final expression for the

first part, and for the other parts we provide only the final expression.

For i = k < j < l, (t3 = s3 ; t2 > s2), W ′ =W :

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l)+

δ(W )
1

2s2 + s3 −D3
λd

(
1− e

D3
λd

)
e−3Ω(0,s3)e−2Ω(s3,s2) 1

λl

∫ Tl+1

Tl

e−Ω(s2,t2)dt2

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l)+

δ(W )
1

2s2 + s3 −D3
λd

(
1− e

D3
λd

)
e−3Ω(0,s3)e−2Ω(s3,s2) 1

λl
e−Ω(s2,Tl)

∫ Tl+1

Tl

e−Ω(Tl,t2)dt2

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l)+

δ(W )
1

2s2 + s3 −D3
λd

(
1− e

D3
λd

)
e−3Ω(0,s3)e−2Ω(s3,s2) 1

λl
e−Ω(s2,Tl)λl

(
1− e

−∆l
λl

)
=

2s2 + s3
2s2 + s3 −D3

q(i, j, k, l)+

δ(W )
1

2s2 + s3 −D3
λd

(
1− e

D3
λd

)
e−3Ω(0,s3)e−2Ω(s3,s2)e−Ω(s2,Tl)

(
1− e

−∆l
λl

)
(H.1)

As above we assume that ∆n = ∞ and thus e−∆n/λn = 0.

For i = k < l < j (t3 = s3; t2 < s2) and W =W ′:

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l)+

δ(W )
1

2s2 + s3 −D3
λd

(
1− e

D3
λd

)
e−3Ω(0,s3)e−2Ω(s3,Tl)

1

2

(
1− e

− 2∆l
λl

) (H.2)
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For k < i = l < j (t3 < s3; t2 = s3), W = 0, W ′ = 1:

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l)+

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

2

3
e−3Ω(0,Tk)

(
1− e

− 3∆k
λk

) (H.3)

For k < i = l < j (t3 < s3; t2 = s3), W = 1, W ′ ∈ {0, 1}:

=
1

2

2s2 + s3
2s2 + s3 −D3

q(i, j, k, l) (H.4)

For k < i < j = l (t3 < s3; t2 = s2) and W ′ =W :

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l)+

δ(W − 1)

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

2

3
e−3Ω(0,Tk)

(
1− e

− 3∆k
λk

) (H.5)

For i < k < j = l (t3 > s3; t2 = s2) and W ′ =W :

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l)+

δ(W − 1)

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

e−3Ω(0,s3)e−2Ω(s3,Tk)

(
1− e

− 2∆k
λk

) (H.6)
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For i < j = k < l (t3 = s2; t2 > s2) and W = 1:

=
2s2 + s3

2s2 + s3 −D3

1

2
q(i, j, k, l)+

δ(W ′)

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

e−3Ω(0,s3)e−2Ω(s3,s2)e−Ω(s2,Tl)

(
1− e

−∆l
λl

) (H.7)

For i < j = k < l (t3 = s2; t2 > s2) and W = 0, W ′ = 1:

=
2s2 + s3

2s2 + s3 −D3
q(i, j, k, l) (H.8)

For i = k = l < j and t3 = s3; t2 < s2 and W =W ′:

=
2s2 + s3

2s2 + s3 −D3
qG(i, j, k, l)+

δ(W )

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

e−3Ω(0,s3) 1

2

(
1− e

−
2(Tl+1−s3)

λl

) (H.9)

Here, qG(i, j, k, l) is the contribution of (G.7) to q(i, j, k, l) where i = k = l < j.

For i = k = l < j and t3 < s3; t2 = s3, W = 0, and W ′ = 1:

=
2s2 + s3

2s2 + s3 −D3
qG2(i, j, k, l)+

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

2

3
e−3Ω(0,Tk)

(
1− e

− 3(s3−Tk)

λk

) (H.10)

Here, qG2(i, j, k, l) is the contribution of (G.8) to q(i, j, k, l) where i = k = l < j.
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For t3 < s3; t2 = s3, W = 1, W ′ ∈ {0, 1}:

=
1

2

2s2 + s3
2s2 + s3 −D3

qG2(i, j, k, l) (H.11)

For i < k = l = j (t3 > s3 ; t2 = s2) and W =W ′:

=
2s2 + s3

2s2 + s3 −D3
qH(i, j, k, l)+

δ(W − 1)

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

e−3Ω(0,s3)e−2Ω(s3,Tk)

(
1− e

− 2(s2−Tk)

λk

) (H.12)

Here, qH(i, j, k, l) is the contribution of (G.9) to q(i, j, k, l) where i < k = l = j.

For i < k = l = j and t3 = s2 ; t2 > s2, W = 0, W ′ = 1:

=
2s2 + s3

2s2 + s3 −D3
qH2(i, j, k, l) (H.13)

Here, qH2(i, j, k, l) is the contribution of (G.10) to q(i, j, k, l) where i < k = l = j.

For i < k = l = j and t3 = s2 ; t2 > s2, W = 1, W ′ ∈ {0, 1}:

=
1

2

2s2 + s3
2s2 + s3 −D3

qH2(i, j, k, l)+

δ(W ′)

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

e−3Ω(0,s3)e−2Ω(s3,s2)

(
1− [1− δ(l − n)]e

−
Tl+1−s2

λl

) (H.14)

For i = j = k < l and t3 = s3; t2 > s2, W ′ =W :

=
2s2 + s3

2s2 + s3 −D3
q(I)(i, j, k, l)+

δ(W )

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

e−3Ω(0,s3)e−2Ω(s3,s2)e−Ω(s2,Tl)

(
1− e

−∆l
λl

) (H.15)

144



Here, qI(i, j, k, l) is the contribution of (G.11) to q(i, j, k, l) where i = j = k < l.

For i = j = k < l and t3 = s2; t2 > s2, W = 0, W ′ = 1:

=
2s2 + s3

2s2 + s3 −D3
qI2(i, j, k, l) (H.16)

Here, qI2(i, j, k, l) is the contribution of (G.12) to q(i, j, k, l) where i = j = k < l.

For i = j = k < l and t3 = s2; t2 > s2, W = 1, W ′ ∈ {0, 1}:

=
1

2

2s2 + s3
2s2 + s3 −D3

qI2(i, j, k, l)+

δ(W ′)

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

e−3Ω(0,s3)e−2Ω(s3,s2)e−Ω(s2,Tl)

(
1− e

−∆l
λl

) (H.17)

For k < i = j = l and t3 < s3; t2 = s2, W ′ =W :

=
2s2 + s3

2s2 + s3 −D3
qJ(i, j, k, l) + δ(W − 1)

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

2

3
e−3Ω(0,Tk)

(
1− e

− 3∆k
λk

)
(H.18)

Here, qJ(i, j, k, l) is the contribution of (G.13) to q(i, j, k, l) where k < i = j = l.

For k < i = j = l and t3 < s3; t2 = s3, W = 0, W ′ = 1:

=
2s2 + s3

2s2 + s3 −D3
qJ2(i, j, k, l) +

λd

(
1− e

D3
λd

)
2s2 + s3 −D3

2

3
e−3Ω(0,Tk)

(
1− e

− 3∆k
λk

)
(H.19)

Here, qJ2(i, j, k, l) is the contribution of (G.14) to q(i, j, k, l) where k < i = j = l.

For k < i = j = l and t3 < s3; t2 = s3, W = 1, W ′ ∈ {0, 1}:

=
1

2

2s2 + s3
2s2 + s3 −D3

qJ2(i, j, k, l) (H.20)
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Supplementary Material

Figure S1: Distributions of coalescence times in two-deme populations with N = 100 individuals
in each deme. Each panel shows a distribution of coalescence times for a particular value of the
migration rate M = 4Nm. For panels in the left column, two individuals were sampled from the
same deme (“within-deme” sampling), and in the right column two individuals were sampled from
different demes.
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Figure S2: Distributions of coalescence times in two-deme populations with N = 1000 individuals
in each deme. Each panel shows a distribution of coalescence times for a particular value of the
migration rate M = 4Nm. For panels in the left column, two individuals were sampled from the
same deme (“within-deme” sampling), and in the right column two individuals were sampled from
different demes.
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Figure S3: Total variation distance between pairwise coalescence time distributions in pedigrees
versus standard theory. For each point on the grid, the total variation distance from the prediction
of standard theory was averaged over 20 pedigrees with the corresponding N and M .

Figure S4: Distinct Wright-Fisher pedigree shapes with two or fewer IBD or admixture events in
a two-deme population. Only relationships involved in IBD or admixture events are shown. All
pedigrees have non-overlapping generations, and sampled individuals (white circles) are living in the
present generation. To produce all distinct pedigrees, it is necessary to consider all the ways of
indexing the individuals involved in the IBD and admixture events, as well as the all of the possible
timings of these events.
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Figure S5: Estimates of θ = 4Nµ based on 100 replicate simulations of 200 loci segregating
through sample pedigrees featuring identity by descent. Blue lines indicate theoretical predictions
for individual pedigrees and estimators. Red horizontal lines indicate sample means, and red vertical
lines indicate twice the standard error of the mean. The true value of θ = 1.0 is indicated by the
dashed line. Note that for the first pedigree, with n = 2, the three estimators are equivalent.
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Figure S6: Estimates of M from the estimator given by (B.3) in replicate simulated genetic datasets
of 100 loci segregating through sample pedigrees containing recent admixture. Blue lines indicate
theoretical predictions for individual pedigrees. Red horizontal lines indicate sample means, and red
vertical lines indicate twice the standard error of the mean. The true value of M = 0.2 is indicated
by the dashed line. P (A) indicates the probability of admixture in the indicated pedigrees.
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Figure S7: Inferred demographic history of asexual lineages of different ages with constant-sized
ancestral sexual populations. Each panel shows the inferred sexual-to-asexual transition time and
population size history of the sexual ancestor for five replicate simulations. The true values are shown
with a thick gray dashed line, and the inferred history of each replicate simulation is shown with
a differently colored thin solid line. Vertical lines show the inferred transition time, and horizontal
lines to the right of the transition show the inferred population size history of the sexual ancestor. In
each simulation, the size of the sexual ancestral population was N = 10000, the mutation rate was
1.5× 10−8 per generation per base pair, and the recombination rate was 1.0× 10−8 per generation
per base pair. Each simulated genome was 120 Mbp in length.
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Figure S8: Inferred asexual lineage age and ancestral sexual population history for recently derived
asexual triploid lineages whose sexual ancestors underwent a bottleneck just prior to the onset of
asexual reproduction. Each panel shows the inferred sexual-to-asexual transition time and population
size history of the sexual ancestor for five replicate simulations. The true values are shown with a
thick gray dashed line, and the inferred history of each replicate simulation is shown with a differently
colored thin solid line. Vertical lines show the inferred transition time, and horizontal lines to the right
of the transition show the inferred population size history of the sexual ancestor. In each simulation,
the size of the sexual ancestral population was N = 10000, the mutation rate was 1.5 × 10−8 per
generation per base pair, and the recombination rate was 1.0 × 10−8 per generation per base pair.
Each simulated genome was 120 Mbp in length.
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Figure S9: Inferred lengths of diploid and triploid asexual reproduction intervals for triploid asexual
lineages that were formed when a diploid asexual lineage incorporated a haploid, sexual sperm. Each
panel shows inference made from five replicate simulations of asexual lineages with a particular length
of triploid and diploid asexual reproduction. The two vertical dashed lines show the true diploid and
triploid transition times (triploid to the left, diploid to the right), measured from the present. The
two vertical lines of a particular color show the inferred starts of diploid and triploid reproduction, and
the horizontal colored lines show the inferred population size history of the diploid asexual ancestor.
The true population size is N = 10000, the mutation rate is µ = 1.5×10−8, the recombination rate
is r = 1.0× 10−8, and 100 Mbp was simulated for each replicate genome.
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