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Understanding quantum dynamics away from equilibrium is an outstand-

ing challenge in the modern physical sciences. It is well known that out-of-

equilibrium systems can display a rich array of phenomena, ranging from self-

organized synchronization to dynamical phase transitions1,2. More recently, ad-

vances in the controlled manipulation of isolated many-body systems have en-

abled detailed studies of non-equilibrium phases in strongly interacting quantum

matter3–6. As a particularly striking example, the interplay of periodic driv-

ing, disorder, and strong interactions has recently been predicted to result in

exotic “time-crystalline” phases7, which spontaneously break the discrete time-

translation symmetry of the underlying drive8–11. Here, we report the experi-

mental observation of such discrete time-crystalline order in a driven, disordered

ensemble of ∼ 106 dipolar spin impurities in diamond at room-temperature12–14.

We observe long-lived temporal correlations at integer multiples of the funda-

mental driving period, experimentally identify the phase boundary and find that

the temporal order is protected by strong interactions; this order is remarkably

stable against perturbations, even in the presence of slow thermalization15,16.

Our work opens the door to exploring dynamical phases of matter and control-

ling interacting, disordered many-body systems17–19.

Conventional wisdom holds that the periodic driving of isolated, interacting systems

inevitably leads to heating and the loss of quantum coherence. In certain cases, however,

fine-tuned driving can actually decouple quantum degrees of freedom from both their local

environment13 and from each other20. Recently, it has been shown that strong disorder,

leading to many-body localization (MBL)21,22, allows a system to retain memory of its

initial state for long times, enabling the observation of novel, out-of-equilibrium quantum

phases3,5,23. One example is the discrete time crystal (DTC)8–11, a phase which is nominally

forbidden in equilibrium24,25. The essence of the DTC phase is an emergent, collective,

subharmonic temporal response. While this phenomenon resembles the coherent revivals

associated with dynamical decoupling12, its nature is fundamentally different as it is induced

and protected by interactions rather than fine-tuned control fields. It is especially intriguing

to investigate the possibility of DTC order in systems that are not obviously localized26. This

is the case for dipolar spins in three dimensions, where the interplay between interactions

and disorder can lead to critical sub-diffusive dynamics16,27.
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We experimentally investigate the formation of discrete time-crystalline order in an en-

semble of nitrogen vacancy (NV) spin impurities in diamond. Each NV center has an

electronic S = 1 spin, from which we isolate an effective two level system by applying an

external magnetic field. These isolated spin states can be optically initialized/detected and

manipulated via microwave radiation12,14 (see Fig. 1a and Methods). Our sample has a high

concentration (45 ppm) of NV centers, giving rise to strong long-range magnetic dipolar

interactions16. The spins are also subject to multiple sources of disorder owing to lattice

strain, paramagnetic impurities and the random positioning of NV centers. A strong, reso-

nant microwave field is used to control spin orientations, resulting in an effective Hamiltonian

(in the rotating frame),16

H(t) =
∑
i

Ωx(t)S
x
i + Ωy(t)S

y
i + ∆iS

z
i +

∑
ij

(Jij/r
3
ij)(S

x
i S

x
j + Syi S

y
j − Szi Szj ). (1)

Here, Sµi (µ ∈ {x, y, z}) are Pauli spin-1/2 operators acting on the effective two-level system

spanned by the spin states |ms = 0〉 and |ms = −1〉, Ωx(y) is the Rabi frequency of the

microwave driving, ∆i is a disordered on-site field with approximate standard deviation

W = 2π × 4.0 MHz, rij is the distance between spins i and j (average nearest-neighbor

separation r0 ∼ 8 nm), and Jij are the orientation dependent coefficients of the dipolar

interaction. We note that the average interaction, Jij/r
3
0 ∼ 2π × 105 kHz16, is significantly

faster than typical spin coherence times14.

In order to probe the existence of time-crystalline order, we monitor the spin dynamics

of an initial state polarized along the +x̂ direction. We begin by applying continuous

microwave driving (spin locking) along x̂ with Rabi frequency Ωx = 2π × 54.6 MHz for a

duration τ1 (Fig. 1a). Next, we rotate the spin ensemble by an angle θ around the ŷ axis

using a strong microwave pulse with Ωy = 2π × 41.7 MHz for duration τ2 = θ/Ωy � τ1.

This two-step sequence defines a Floquet unitary with a total period T = τ1 + τ2 and is

repeated n times, before the polarization P (nT ) along the x̂ axis is measured. The resulting

polarization dynamics are analyzed in both the time and frequency domain. Repeating these

measurements with various values of τ1 and θ allows us to independently explore the effect

of interactions and global rotations.

Figure 1b-d depict representative time traces and the corresponding Fourier spectra,

S(ν) ≡ ∑
n P (nT )ei2πnν , for various values of τ1 and θ. For relatively short interaction

time τ1 = 92 ns and nearly perfect π-pulses (θ ≈ π), we observe that the spin polarization
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P (nT ) alternates between positive and negative values, resulting in a sub-harmonic peak at

ν = 1/2 (Fig. 1b). In our experiment, the microwave pulses have an intrinsic uncertainty

0.9% stemming from a combination of spatial inhomogeneity in the microwave fields, on-site

potential disorder, and the effect of dipolar interactions (see Methods). These eventually

cause the oscillations to decay after∼ 50 periods. While such temporal oscillations nominally

break discrete time-translation symmetry, their physical origin is trivial. To see this, we

note that for sufficiently strong microwave driving, Ωx � W,Jij/r
3
0, the dynamics during

τ1 are governed by an effective polarization-conserving Hamiltonian16, Heff ≈
∑

i ΩxS
x
i +∑

ij(Jij/r
3
ij)S

x
i S

x
j . During τ2, the evolution can be approximated as Rθ

y ≈ e−iθ
∑

i S
y
i . When

θ = π, this pulse simply flips the sign of the x̂ polarization during each Floquet cycle,

resulting in the ν = 1/2 peak. However, this 2T -periodic response originates from the

fine tuning of θ and should not be robust against perturbations. Indeed, a systematic

change in the average rotation angle to θ = 1.034π causes the 2T -periodicity to completely

disappear, resulting in a modulated, decaying signal with two incommensurate Fourier peaks

at ν = 1/2 ± (θ − π)/2π(Fig. 1c). Remarkably, we find that a rigid 2T -periodic response

is restored when interactions are enhanced by increasing τ1 to 989 ns, suggesting that the

ν = 1/2 peak is stabilized by interactions. In this case, we observe a sharp peak in the

spectrum at ν = 1/2 and the oscillations in P (nT ) continue beyond n ∼ 100 (Fig. 1d),

indicating persistent subharmonic temporal response.

The robustness of this apparent periodic order is further explored in Fig. 2. With an

interaction time τ1 = 790 ns and θ = 1.034π, the polarization exhibits an initial decay fol-

lowed by persistent oscillations over the entire time window of our experimental observations

(Fig. 2a). We perform a Fourier transform on sub-sections of the time-trace with a sweeping

window of size m = 20 (Fig. 2a) and extract the intensity of the ν = 1/2 peak as a function

of the sweep position, nsweep (Fig. 2b). The ν = 1/2 peak intensity clearly exhibits two

distinct decay timescales. At short times, we observe a rapid initial decay corresponding to

non-universal dephasing dynamics, while at late times, we observe a slow decay. Only near

the phase boundary (θ = 1.086π), the lifetime is significantly decreased. We fit the slow

decay to an exponential to extract a lifetime for the periodic order. As shown in Fig. 2c, for

θ = 1.034π, this lifetime increases with the interaction time (τ1) and eventually approaches

the independently measured spin depolarization time T ρ1 ∼ 60 µs. This demonstrates that

for sufficiently long interaction times, the observed periodic order is only limited by cou-
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pling to the environment27. We associate this with DTC order8–11. Remarkably, within the

DTC phase, the lifetime is essentially independent of θ, indicating exceptional robustness

(Fig. 2d).

We carefully examined if the observed periodic order could arise from an accidental XY

sequence13 or from inhomogeneous dephasing resulting from the effective single-particle dis-

order in the dressed state basis. To avoid the former, τ1 is always choosen as an integer

multiple of 2π/Ωx. For the latter, while it was shown that disorder alone is insufficient for

stabilizing DTC in the absence of interactions8–11, we verified this experimentally; imple-

menting a rotary echo sequence that reduces such dephasing, we find no change in the DTC

lifetime and actually an enhancement in the DTC fraction (see Methods and Extended Data

Fig. 1). In principle, fast Markovian dephasing could also lead to apparent periodic order

at extremely small values of θ − π by eliminating coherences along both ŷ and ẑ, leaving

only x̂ polarization dynamics. In such a case, the decay rate of periodic order should in-

crease quadratically with θ−π. However, this explanation is inconsistent with the observed

robustness of DTC lifetime for a range of θ − π (Fig. 2d) and the independently measured

dephasing rate (see Methods).

To experimentally determine the DTC phase boundary, we focus on the long-time behav-

ior of the polarization time traces (50 < n ≤ 100) and compute the “crystalline frac-

tion” defined as the ratio of the ν = 1/2 peak intensity to the total spectral power,

f = |S(ν = 1
2
)|2/∑ν |S(ν)|2 (see Methods). Figure 3a shows f as a function of θ for

two different interaction times. For weak interactions (τ1 = 92 ns), f has a maximum at

θ = π but rapidly decreases as θ deviates by ∼ 0.02π. However, for stronger interactions

(τ1 = 275 ns), we observe a robust DTC phase which manifests as a large crystalline fraction

over a wide range 0.86π < θ < 1.13π. We associate a phenomenological phase boundary

with f = 10% and observe that the boundary enlarges with τ1, eventually saturating at

τ1 ≈ 400 ns (Fig. 3b). The phase boundary can also be visualized as the vanishing of the

ν = 1/2 peak and the simultaneous emergence of two incommensurate peaks (Fig. 3c).

The rigidity of the ν = 1/2 peak can be qualitatively understood by constructing ef-

fective eigenstates of 2T Floquet cycles, including spin-spin interaction. We approximate

the unitary time evolution over a single period as UT = Rθ
ye
−iHeffτ1 and solve for a self-

consistent evolution using product states as a variational ansatz. To this end, we consider

the situation where a typical spin returns to its initial state after 2T : |ψ(0)〉 ∝ |ψ(2T )〉 =
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e−iθS
y
eiφiS

x
e−iθS

y
e−iφiS

x|ψ(0)〉, and self-consistently determine the interaction-induced ro-

tation angle φi ≡
∑

j Jij/r
3
ij〈Sxj 〉τ1 ≈ J̄iτ1〈ψ(0)|Sx|ψ(0)〉, where |ψ(0)〉 is the initial spin

state and J̄i =
∑

j Jij/r
3
ij (see Methods). One expects φi to change sign after each Flo-

quet cycle, since the average polarization 〈ψ(0)|Sx|ψ(0)〉 should be flipped. Intuitively, the

self-consistent solution can be visualized as a closed path on the Bloch sphere (Fig. 3d),

where each of the four arcs corresponds to one portion of the 2T periodic evolution. When

θ = π, such a solution always exists. More surprisingly, even when θ 6= π, a closed path

can still be found for sufficiently strong interactions, |J̄iτ1| > 2|θi − π|; in such cases, the

deviation in θ away from π is compensated by the dipolar interactions (Fig. 3d). We obtain

a theoretical phase boundary by numerically averaging the self-consistent solution over both

disordered spin positions and local fields. The resultant phase boundary is in reasonable

agreement with the experimental observations for short to moderate interaction times τ1,

but overestimates the boundary at large τ1 (dashed line, Fig. 3b, see Methods).

Finally, Fig. 4 demonstrates that the discrete time-translation symmetry can be further

broken down to Z3
9–11,28, resulting in DTC order at ν = 1/3. Here, we utilize all three

spin states of the NV center. We begin with all spins polarized in the |ms = 0〉 state

and evolve under the bare dipolar Hamiltonian for a duration τ1 (see Methods). Next, we

apply two resonant microwave pulses, each of duration τ2, first on the transition |ms = 0〉 →
|ms = −1〉 and then on the transition |ms = 0〉 → |ms = +1〉. In combination, this sequence

of operations defines a single Floquet cycle with period T = τ1 + 2τ2. As before, we measure

the polarization, P (nT ), defined as the population difference between the |ms = 0〉 and

|ms = −1〉 states (Fig. 4a). When each of the applied microwaves corresponds to an ideal

π-pulse, this sequence realizes a cyclic transition with Z3 symmetry (Fig. 4b), which is

explicitly broken by any change in the pulse duration. The Fourier spectra of P (nT ) for

various pulse durations and two different values of τ1 are shown in Fig. 4c. With weak

interactions (τ1 = 35 ns), the position of the peaks is extremely sensitive to perturbations,

but with sufficiently strong interactions (τ1 = 387 ns) the peaks are pinned to a rigid value of

ν = 1/3 despite large perturbations, indicating the observation of ν = 1/3 DTC. The lifetime

of the observed ν = 1/3 DTC is shorter than that of the ν = 1/2 DTC, consistent with the

presence of additional dynamics in the full dipolar Hamiltonian (see Methods). The ability

for our system to exhibit stable period-tripling distinguishes it from bifurcations in driven,

classical systems where period-tripling is typically accompanied by regions of chaos29.
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Our observation of DTC order cannot be simply explained within current theoretical

frameworks based upon either localization8–11 or pre-thermalization23,26. In particular, the

present system with long-range dipolar interactions is not expected to be localized in either

the static or driven case. In the static case, it has been previously demonstrated that our

system exhibits slow thermalization associated with critical dynamics16. In the driven case,

the long-time evolution is governed by the average Hamiltonian D ≈∑i(Jij/r
3
ij)S

x
i S

x
j +(θ−

π)/T
∑

i S
y
i , which likewise does not yield localized dynamics15,30. We further note that the

effective Hamiltonian of the Z3 DTC includes not only Ising-type interactions but also spin

exchange interactions, providing additional channels for thermalization (see Methods).

In principle, even in the absence of localization, time-crystalline order can persist for a

long, but finite, pre-thermal time-scale23,26. Within this time-scale, the spin system relaxes to

a pre-thermalized state, defined as the thermal ensemble ofD with a temperature determined

by the energy density of the initial state. Since our initially polarized state is effectively at

infinite temperature with respect to D (owing to the anisotropy of the dipolar couplings),

one does not expect to observe pre-thermal DTC order. This is in contrast to our actual

observations, which show that the DTC lifetime is limited by the depolarization time T ρ1

due to coupling with the environment27 (Fig. 2c). We have explicitly verified that the DTC

order is not significantly affected by varying the initial polarization (see Methods). One

possible explanation is that due to slow critical thermalization16, the spins in our system do

not reach even a pre-thermal state. Finally, the interplay between coherent interactions and

dephasing in open systems at long times could also play a role. Detailed understanding of

such mechanisms requires further theoretical investigation.

A number of remarkable phenomena in quantum dynamics have recently been observed in

engineered many-body systems consisting of ten to a few hundred particles3–6. Our present

observations indicate that robust DTC order can occur in large systems without fine-tuned

interactions and disorder, even in the regime where localization is nominally not expected

to occur. Our work raises important questions about the role of localization, long-range

interactions and coupling to the environment in driven systems and opens up several new

avenues for fundamental studies and potential applications. In particular, it should be

possible to extend these studies to realize novel dynamical phases in more complex driven

Hamiltonians, and to explore if such novel phases can be used to create and stabilize coherent

quantum superposition states for applications such as quantum metrology17–19.
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METHODS

A. Experimental details

Our sample and experimental setup have been previously described16. We utilize a dia-

mond sample containing a high concentration (∼ 45 ppm) of NV centers, corresponding to

an average NV-NV separation of 5 nm. For a single crystalline orientation of NV centers,

selected by applying an external magnetic field, this corresponds to an average separation

of 8 nm, resulting in a typical dipolar interaction strength of 2π × 105 kHz. The system

furthermore exhibits strong on-site energy disorder, owing to the effects of lattice strain,

the random position of NV centers as well as the presence of scattered paramagnetic impu-

rities (consisting mainly of P1 centers and 13C nuclear spins). For each NV, the effective

random field ∆i is therefore a function of its local environment, including interaction effects

of neighboring NV centers. This results in an approximately Gaussian distribution with

standard deviation W = 2π × 4.0 MHz. We extract W by measuring the linewidth of an

ESR spectrum with sufficiently weak microwave driving strength to avoid power broaden-

ing. In order to control the experimental probe volume, we fabricate a diamond nanobeam

structure (∼ 300 nm × 300 nm × 20 µm) and confocally address a region of ∼ 300 nm

diameter using a green laser (532 nm). This realizes an effective three dimensional excita-

tion volume containing ∼ 106 NV centers. By applying an external magnetic field along one

of the diamond crystal axes, we spectrally isolate one group of NV centers and selectively

address an effective two-level system between the |ms = −1〉 and |ms = 0〉 spin states via

coherent microwave radiation. The addition of a microwave IQ-mixer allows for arbitrary

rotations around any linear combination x̂ and ŷ.

B. Experimental sequence

Initial polarization of NV centers into |ms = 0〉 is performed via laser illumination at a

wavelength of 532 nm, a power of 50 µW and a duration of 100 µs. Subsequent application of

a microwave (−π/2)-pulse along the ŷ axis is used to coherently rotate the spin ensemble into

|+〉 = (|ms = 0〉+ |ms = −1〉)/
√

2. The spins are then subjected to continuous driving at a

Rabi frequency 2π×54.6 MHz along the x̂ axis for a duration τ1. This so-called spin-locking

technique suppresses two-spin (flip-flip and flop-flop) processes due to energy conservation
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as well as to decouple spins from their environment16. In our sample, this technique leads

to spin lifetimes of T ρ1 ∼ 60 µs27. Finally, we apply a short microwave pulse along the ŷ

axis over an angle θ ∼ π. We repeat this Floquet cycle with various values of θ, controlled

by changing the Rabi driving strength as well as the pulse duration. The imperfection in

microwave manipulations (for initialization into |+〉 as well as rotation angles θ) amounts

to 0.9%, arising from a combination of spatial inhomogeneity of the driving field (0.8%)

as well as on-site potential disorder (0.6%). Following a coherent time evolution, the spin

state of the NV ensemble is optically detected by applying a final (π/2)-pulse along the ŷ

axis and measuring the population difference in the |ms = 0〉 and |ms = −1〉 basis. The

polarization is defined as P = P0 − P−1 with Pa denoting the population in spin state a,

by calibrating the NV fluorescence using a Rabi oscillation contrast measurement. To avoid

heating of the sample, resulting in drifts in the Rabi frequency, a waiting time of 600−900µs

is implemented before the sequence is repeated. The minimum spacing between microwave

pulses is maintained at 1 ns.

To understand the effect of different initial states on the DTC phase, we replaced the

initial (−π/2)-pulse with a (−π/3)-pulse. This results in the preparation of a global spin

state, which is rotated from the x̂ axis by π/6. Despite this change, the measured DTC

lifetime (47.6 ± 2.4µs) agrees well with that of the polarized spin state (49.2 ± 3.3µs),

demonstrating that DTC order is insensitive to the initial state.

C. Experimental identification of phase boundary

To identify the position of the phase boundary in our experiment, we define the crystalline

fraction f as f = |S(ν = 1
2
)|2/∑ν |S(ν)|2. Error bars in f are calculated via error propa-

gation in consideration of the noise floor in the Fourier spectrum; each measured spectrum

contains a background noise level σn, resulting in a variation of f as,

δf = f

√√√√(σn/|S(ν =
1

2
)|2
)2

+

(
Nσn/

∑
ν

|S(ν)|2
)2

− 2Nσ2
n/

(
|S(ν =

1

2
)|2
∑
ν

|S(ν)|2
)
,

(2)

where N = 50 is the number of points in the Fourier spectrum. This gives rise to an

uncertainty in the DTC fraction: f ∈ [f − δf, f + δf ] (Fig. 3a). To extract the phase
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boundary, we use a phenomenological, super-Gaussian function

Fτ1(θ) =

 fmax
τ1

exp
[
−1

2

(
|θ−θ0|
σ−

)p]
, θ ≤ θ0

fmax
τ1

exp
[
−1

2

(
|θ−θ0|
σ+

)p]
, θ ≥ θ0

(3)

where σ±, θ0, p are the characteristic width, central position and the power of the super-

Gaussian fit, and fmax
τ1

is the maximum value of the DTC fraction for a given duration τ1.

The proposed function naturally captures the observed asymmetry in the phase boundary.

We define the phase boundary as the rotation angle θ± where Fτ1(θ±) = 0.1, i.e. θ± =

θ0±σ±
[
2 ln(fmax

τ1
/0.1)

] 1
p . Errors in the phase boundary are derived from the fit uncertainties.

D. Theoretical description

As a variational ansatz, we consider the time evolution of a homogeneous product state of

the form |Ψ〉 = |ψ0〉⊗N with |ψ0〉 = cos(θ0/2)|+〉+sin(θ0/2)eiφ0|−〉, where |±〉 = (|ms = 0〉±
|ms = −1〉)/

√
2. The qualitative behavior does not change even if we allow spins to be ori-

ented in different directions. An approximate eigenstate for the time evolution over two peri-

ods is obtained by solving the equation for a single spin, |ψ0〉 = e−iθS
y
eiφiS

x
e−iθS

y
e−iφiS

x|ψ0〉
with a self-consistently determined φi = J̄i〈ψ0|Sx|ψ0〉 where J̄i =

∑
j Jij/r

3
ij is the total

strength at site i. The sign of φi is flipped in the second evolution as the spin polarization

along the x̂ direction alternates in each cycle. Note that we have ignored the effects of the

on-site disorder potential ∆i, interactions during global rotations and rotations induced by

Ωx. This is justified due to the high microwave driving strength Ωx(y) � W and Ωxτ1 being

integer multiples of 2π. (The effects of on-site disorder are fully included in the numeri-

cal computations.) A non-trivial solution (θ0 6= ±π) is obtained if the first two rotations

result in a vector that is rotated by π along the ŷ axis (Fig. 3d), which is satisfied when

φ0 = mπ − φi/2 with m ∈ Z and cot θ0 = −(−1)m tan(θ/2) sin(φi/2). Solving for cos2 θ0

yields

cos2 θ0 =
tan2(θ/2) sin2(φi/2)

1 + tan2(θ/2) sin2(φi/2)
. (4)

Using φi = J̄iτ1 cos θ0, one can show that a solution exists only when | tan (θ/2)J̄iτ1/4| > 1,

implying that |θ−π| < |J̄iτ1/2| in the vicinity of θ ≈ π. The linear dependence of the phase

boundary is consistent with the phase diagram provided in Ref.11. As long as a solution

13



exists, small variations in θ correspond to a smooth deformation of the closed trajectory.

Therefore, the existence of such a closed path stabilizes the time-crystalline phase. We

emphasize that such a 2T -periodic path is a consequence of interactions; without the change

of sign in φi, the eigenstates of the unitary evolution over one or two periods coincide, and

therefore, unless the rotation angle is fine-tuned, T -periodic motion cannot be broken into

a 2T period. The eigenstates of unitary evolution over one period can be obtained as even

and odd linear combinations, (|Ψ〉 ± e−iεiU1|Ψ〉)/
√

2, where U1 = ⊗i(e−iθS
y
i e−iφiS

x
i ), and the

quasi-energy eigenvalue is given by ei2εi = 〈Ψ|(U1)2|Ψ〉.
To estimate the phase boundary, we numerically solve the self-consistency equation. Here,

we include the effects of on-site disorder potential ∆i in all four rotations as well as the disor-

der in J̄i arising from the random positions of NV centers. The distribution of J̄i is simulated

for 1000 spins, randomly distributed in three dimensions with an average separation r0 and

minimum cutoff distance rmin = 3 nm (limited by NV-NV electron tunneling27). Instead of

cos(θ0), we solve for a self-consistent distribution for cos(θ0), where 〈Sx〉 is defined as the

mean of the distribution. The average order parameter 〈cos2 θ0〉 is computed for various

values of τ1 and θ and compared with a threshold value of 0.1 in order to identify the phase

boundary. The experimental and numerical phase boundaries are asymmetric about θ = π.

We attribute this to the inherently asymmetric distribution of the effective rotation angle,

θi ≈ τ2

√
Ω2
y + ∆2

i + J̄i
2
, which causes the transition to occur earlier for positive deviations

θ − π.

While we assumed φi to be a classical variable in this analysis, the interaction induced

rotation angle is an operator φ̂ that exhibits quantum fluctuations and leads to non-trivial

quantum dynamics. Under such dynamics, spins get entangled, resulting in mixed state

density matrices. These effects cannot be ignored in the case of long interaction times,

effectively limiting the present description. We believe that the diminished range of θ in the

experimentally obtained phase diagram (Fig. 3b) is related to this effect.

E. Rotary echo sequence

Certain features similar to DTC order could potentially arise from spatially inhomoge-

neous microwave driving along the x̂ axis during the spin-locking sequence. This leads to

variations in the effective, single-particle disorder in the dressed state basis, which could give

14



rise to an effective self-correcting dynamical decoupling that might resemble DTC order13.

In particular, in the spin-locking sequence, spins precess along the axis (Ωx(ri) + J̄i)x̂+ ∆iẑ,

with effective Rabi frequency Ωeff
x,i =

√
(Ωx(ri) + J̄i)2 + ∆2

i , where Ωx(ri) is the spatially

inhomogeneous Rabi frequency, J̄i is the mean-field Ising interaction, and ∆i characterizes

the quasi-static on-site disorder. In the case of strong driving (Ωx � ∆i, J̄i), this precession

axis is determined by Ωx and spins undergo dephasing dominated by global microwave in-

homogeneities. If the net rotation during one spin-locking cycle is an odd integer multiple

of π, this could accidentally lead to an XY-sequence13 that may result in 2T -periodicity. In

our measurements, we always choose τ1 as an integer multiple of 2π/Ωx to minimize such

effects.

While it has been shown theoretically that disorder alone is insufficient (in the absence of

interactions) for stabilizing DTC order8–11, to experimentally demonstrate that the acciden-

tal decoupling is not responsible for the observed DTC ordering, we implement a so-called

“rotary echo” sequence, where after half the interaction time τ1, the microwave driving is

flipped from Ωx to −Ωx (Extended Data Fig. 1a). In the limit of strong driving, such a

sequence eliminates the phase acquired between the two dressed states for each spin, re-

gardless of the exact value of Ωx. As shown in Extended Data Fig. 1b, the DTC lifetimes

at late times are nearly identical between the cases of the rotary echo and continuous +x̂

driving. Moreover, the rotary echo spin polarization maintains a larger amplitude at late

times, excluding the possibility of self-correcting dynamical decoupling as the origin of the

observed DTC.

F. Markovian dephasing effects on discrete time crystalline order

The presence of the sub-harmonic peak at ν = 1/2 at small values of θ − π can, in

principle, also be explained based on fast Markovian dephasing in the dressed state basis.

Indeed, for sufficiently fast dephasing, coherences along both ŷ and ẑ will be eliminated after

each rotation, Rθ
y. Thus, the only evolution that remains is the population dynamics along

x̂, which exhibits 2T-periodicity from the alternating sign. Microscopically, such strong

dephasing could potentially originate from either dipolar interactions between the spins or

from coupling to an external (Markovian) environment.

Intuitively, the result of such dephasing can be understood as an “effective” projective
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measurement of polarization along x̂ in each Floquet cycle, reminiscent of the quantum Zeno

effect. In order to quantify and distinguish such dephasing-induced sub-harmonic rigidity,

we consider the dynamics (over one Floquet period) of a single spin undergoing Markovian

dephasing, with super-operator D̂[ρ] = −γ
2

(ρ− 4SxρSx) and dephasing rate γ. Assuming

θ − π � 1, evolution falls into two well known limits. In the under-damped limit (weak

dephasing), S(ν) exhibits two Lorentzian peaks at ν = ±η with a linewidth set by γτ1,

where τ1 is the spin-locking duration and cos(2πη) = cos θ(1 + eγτ1)/2. In the over-damped

limit (strong dephasing), S(ν) (at late times) exhibits a peak at ν = 1/2 with a linewidth

(in Floquet units)

Γ ≈ (θ − π)2

2 tanh(γτ1/2)
. (5)

These over-damped oscillations of the spin polarization exhibit sign flips between the even

and odd cycles, leading to a sub-harmonic Fourier response reminiscent of DTC.

While strong Markovian dephasing can indeed result in a ν = 1/2 sub-harmonic peak,

we observe three distinct experimental signatures clearly showing that our observations are

not governed by this effect. First, the linewidth, Γ (Eq. 5), of the sub-harmonic peak should

be quadratically sensitive to the deviation of θ from π. This is in stark contrast with our

experimental observations shown in Fig. 2d, where this linewidth Γ is essentially independent

of θ within the DTC phase. Second, according to the dephasing model (Eq. 5), the lifetime

of the 3T-periodic DTC is expected to be longer than that of the 2T-periodic DTC due to

enhanced dephasing (from a lack of spin-locking) in the bare basis27. However, we observe

the exact opposite behavior. Finally, Markovian dephasing requires an effective environment

with a relatively fast sub-µs correlation time. This is also inconsistent with our experimental

observations. In particular, we performed Rabi oscillation decay measurements with a rotary

echo sequence, resulting in a lower bound of 1.5µs on the Markovian dephasing time T2.

This time scale still includes contributions from static on-site disorder and interactions, and

thus the Markovian dephasing rate is, in fact, significantly slower than this. Indeed, we have

independently extracted the typical timescales of disorder fluctuations in our system16, and

we find that they are similar (60µs) to depolarization timescale under spin-locking dynamics.

Effects resulting from such slow dephasing should be completely negligible within a typical

Floquet period. Thus, we conclude that fast dephasing alone does not explain the observed

DTC order.
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At the same time, in the time crystalline order description based on interacting spin

models8–11, the time crystalline order is expected to be robust and is not expected to exhibit

any functional dependence on the angle θ, in complete agreement with experimental obser-

vations. This is also the case for our self-consistent description. We finally note that the

interplay between coherent interactions and dephasing could potentially play a role in sta-

bilizing DTC order at longer interaction times. Detailed understanding of such mechanisms

require further theoretical investigation.

G. Derivation of Effective Hamiltonian for Z3 symmetry breaking phase

Using microwave driving resonant with two different transitions (Fig. 4a), we realize

dynamics involving all three spin states and observe a robust 3T -periodic time-crystalline

order. The unitary matrix of the time evolution during the fundamental period T is given

as

U3 = e−i
∑

i(σ
i
−1,0+σi

0,−1)θ/2e−i
∑

i(σ
i
+1,0+σi

0,+1)θ/2e−iH2τ , (6)

where σia,b ≡ |ms = a〉〈ms = b| for spin-i and H2 = Hdis + Hint is the effective Hamilto-

nian of NV centers for all three spin states including on-site disorder potentials Hdis =∑
i ∆

+
i σ

i
+1,+1 + ∆−i σ

i
−1,−1 and dipolar interactions for spin-1 particles16

Hint =
∑
ij

Jij
r3
ij

[
−σ

i
+1,0σ

j
0,+1 + σi−1,0σ

j
0,−1 + h.c.

2
+ (σi+1,+1 − σi−1,−1)(σj+1,+1 − σj−1,−1)

]
. (7)

We note that this Hamiltonian is obtained in the rotating frame under the secular ap-

proximation. The Hamiltonian H2 conserves the total population in any of the three

spin states, Pa =
∑

i σ
i
aa with a ∈ {0,±1}. If each microwave pulse realizes a π-pulse

(θ = π), their combination results in a cyclic transition Rπ
3 : |ms = +1〉 7→ −|ms = −1〉 7→

i|ms = 0〉 7→ |ms = +1〉, and the population Pa becomes periodic over three periods.

Under such evolution, the effective Hamiltonian over three periods is given by Dπ
3 =

[H2 + (Rπ
3 )−1H2R

π
3 + (Rπ

3 )−2H2(Rπ
3 )2] /3, in which on-site disorders average to zero, and the

interactions are modified to

Dπ
3 =

∑
ij

Jij
r3
ij

[∑
a

σiaaσ
j
aa −

1

3

∑
a6=b

σiabσ
j
ba

]
. (8)
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The first term describes Ising-like interactions that shift energy when any pair of spins are

in the same state, and the second term corresponds to spin-exchange interactions that allow

polarization transport. These additional exchange interactions may lead to a shorter DTC

lifetime as compared to the ν = 1/2 DTC. For small perturbations in the microwave pulse

angle ε = θ − π, the effective dynamics, to leading order, are governed by

Dπ+ε
3 ≈ Dπ

3 +
ε

3τ

∑
j

(
σj+1,0 + σj−1,0 + iσj+1,−1 + h.c.

)
, (9)

which explicitly breaks the conservation laws for Pa.
Data availability The data generated during this study is available from the corresponding

author upon request.
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FIG. 1. Experimental setup and observation of time-crystalline order. a, NV centers

in a nanobeam fabricated from black diamond are illuminated by a focused green laser beam

and irradiated by a microwave source. Spins are prepared in the (|ms = 0〉+ |ms = −1〉)/
√

2 state

using a microwave (−π/2)-pulse along the ŷ axis. Subsequently, within one Floquet cycle, the spins

evolve under a dipolar interaction and microwave field Ωx aligned along the x̂ axis for duration τ1,

immediately followed by a global microwave θ-pulse along the ŷ axis. After n repetitions of the

Floquet cycle, the spin polarization the x̂ axis is read out. We choose τ1 as an integer multiple

of 2π/Ωx to minimize accidental dynamical decoupling13. b-d, Representative time traces of the

normalized spin polarization P (nT ) and respective Fourier spectra, |S(ν)|2, for different values of

interaction time τ1 and θ: (b) τ1 = 92 ns, θ = π, (c) τ1 = 92 ns, θ = 1.034π, and (d) τ1 = 989 ns,

θ = 1.034π. Dashed lines in c indicate ν = 1/2 ± (θ − π)/2π. Data are averaged over more than

2 · 104 measurements. 19
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FIG. 2. Long-time behavior of time-crystalline order. a Representative time trace of the

normalized spin polarization P (nT ) in the crystalline phase (τ1 = 790 ns and θ = 1.034π). The

time-dependent intensity of the ν = 1/2 peak is extracted from a short-time Fourier transformation

with a time window of length m = 20 shifted from the origin by nsweep. b Peak height at ν = 1/2

as a function of nsweep for different pulse imperfections at τ1 = 790 ns. Lines indicate fits to the

data using a phenomenological double exponential function. The noise floor corresponds to 0.017,

extracted from the mean value plus the standard deviation of
∑

ν |S(ν)|2 excluding the ν = 1/2

peak. c Extracted lifetime of the time-crystalline order as a function of the interaction time τ1,

for θ = 1.034π. Shaded region indicates the spin life-time T ρ1 = 60 ± 2 µs (extracted from a

stretched exponential27) due to coupling with the external environment. d Extracted decay rate

of the time-crystalline order as a function of θ for different interaction times, τ1= 385 ns (circle),

586 ns (square) and 788 ns (triangle). Only very weak dependence on θ− π is observed within the

DTC, contrary to a dephasing model (Methods). In c, d, vertical error bars display the statistical

error (s. d.) from the fit and empty symbols mark data near the time-crystalline phase boundary.
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FIG. 3. Phase diagram and transition. a Crystalline fraction f as a function of θ obtained

from a Fourier transform at late times (50 < n ≤ 100). Vertical error bars are limited by the

noise floor (see Methods), horizontal error bars indicate the pulse uncertainty of 1%. Grey lines

denote a super-Gaussian fit to extract the phase boundary (see Methods). In a, b, red diamonds

mark the phenomenological phase boundary, identified as a 10% crystalline fraction. Horizontal

error bars denote the statistical error (s. d.) from the fit. The colors of the round data points

in b represent the extracted crystalline fraction at the associated parameter set. The dashed line

corresponds to a disorder-averaged theoretical prediction for the phase boundary. Asymmetry in

the boundary arises from an asymmetric distribution of rotation angles (see Methods). c Evolution

of the Fourier spectra as a function of θ for two different interaction times, τ1 = 385 ns (top) and

τ1 = 92 ns (bottom). d Bloch sphere indicating a single spin trajectory of the 2T -periodic evolution

under the long-range dipolar Hamiltonian (red) and global rotation (blue).
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FIG. 4. Z3 time-crystalline order. a Experimental sequence to demonstrate a 3T -periodic dis-

crete time-crystalline order. A single Floquet cycle is composed of three operations: time evolution

under long-range dipolar Hamiltonian and rapid microwave pulses for two different transitions. b

Visualization of the 3T -periodicity in the polarization dynamics for the case of θ = π. c Fourier

spectra of the polarization dynamics for two different interaction times and for three different ro-

tation angles θ: 1.00π (red), 1.086π (blue) and 1.17π (yellow). Dashed lines indicate ν = 1/3, 2/3.
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Extended Data Figure 1. Effect of rotary echo sequence. a Experimental sequence: during

the interaction interval τ1, the phase of the microwave driving along x̂ is inverted after τ1/2. b

Comparison of time traces of P (nT ) in the presence (left) and absence (right) of an x̂/-x̂ rotary echo

sequence at similar τ1 and θ (left: τ1 = 379 ns, θ = 0.979π; right: τ1 = 384 ns, θ = 0.974π). The

rotary echo leads to more pronounced 2T -periodic oscillations at long time. Microwave frequencies

used in the rotary echo sequence: Ωx = 2π × 52.9 MHz, Ωy = 2π × 42.3 MHz.
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