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Abstract

The representation of serial position in sequences is an important topic in a variety of cognitive 

areas including the domains of language, memory and motor control.  In the neuropsychological 

literature, serial position data have often been normalised across different lengths, and an 

improved procedure for this has recently been reported by Mactynger and Shallice (2009).  

Effects of length and a U-shaped normalised serial position curve have been criteria for 

identifying working memory deficits.  We present simulations and analyses to illustrate some of 

the issues that arise when relating serial position data to specific theories.  We show that critical 

distinctions are often difficult to make based on normalised data.  We suggest that curves for 

different lengths are best presented in their raw form, and that binomial regression can be used to 

answer specific questions about the effects of length, position and linear or non-linear shape that 

are critical to making theoretical distinctions.
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The organisation of serial behaviour has been a topic of interest to psychologists since at least 

Lashley’s seminal paper (Lashley, 1951).   Organising behaviour in time is important in many 

different domains, including speech (e.g. Page, Madge, Cumming, & Norris, 2007; Acheson & 

MacDonald, 2009; Gupta, Lipinski, Abbs, & Lin, 2005), spelling (e.g. Caramazza, Miceli, Villa, 

& Romani, 1987; Goldberg & Rapp, 2008; Glasspool & Houghton, 2005; Wing & Baddeley, 

1980), short-term memory (e.g.Atkinson & Shiffrin, 1971; Brown, Preece, & Hulme, 2000; 

Burgess & Hitch, 1999; Henson, 1998b; Lewandowsky & Murdock, 1989; Lewandowsky, 1999; 

Murdock, 1968; Page & Norris, 1998; and many others), perception (e.g.Tydgat & Grainger, 

2009; Mason, 1982),  motor control (Agam, Bullock, & Sekuler, 2005) and executive function 

(Schneider & Logan, 2005).   Systematic changes in accuracy across position is an important 

kind of data reported from empirical studies in these areas, and computational models of the same

data typically fit serial position curves in the process of showing that they give an adequate 

account of the empirical results.  

We are interested, here, in how data from serial position curves is summarised and 

analyzed.   Summary measures are critical when confronting theories and data in order to focus 

on critical differences in complex results.  Summary measures inevitably trade off simplicity and 

loss of information.  What is critical is that the summary measure preserves the information that 

is necessary for confronting theories.  Our starting point is the method for summarising data from

serial position curves that was originally reported by Wing and Baddeley (1980) in their study of 

handwritten spelling errors.  This type of analysis has been widely applied in studies of errors 

made by aphasic patients in spelling and in speech (e.g. Buchwald & Rapp, 2006; Schwartz, 

Wilshire, Gagnon, & Polansky, 2004; Caramazza, Papagno, & Ruml, 2000; Ward & Romani, 

1998b; Gagnon & Schwartz, 1997; Kay & Hanley, 1991; Neils, Roeltgen, & Greer, 1995; 
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Papagno & Girelli, 2005; Cipolotti, Bird, Glasspool, & Shallice, 2004; Buchwald & Rapp, 2004; 

Cotelli, Abutalebi, Zorzi, & Cappa, 2003; Croisile & Hibert, 1998).   Recently, Mactynger and 

Shallice (2009) showed that there are some systematic distortions of the serial position curve that 

the Wing and Baddeley  method can introduce (see also accompanying response Wing & 

Baddeley, 2009), and they suggested an alternative method that we have also used and in a study 

of spelling errors made by deaf participants, and speech errors made by aphasic patients (Olson, 

1995; Olson & Caramazza, 1999).

We discuss dimensions that are important for confronting serial position data—that is, 

data that report accuracy at each position for items of different lengths—with theories that 

describe how position information is represented and maintained. Our goal will be to illustrate 

some of the complexity involved in relating theoretical dimensions like capacity  and 

interference to differences in length and serial position in empirical data.  We start by defining 

dimensions that distinguish different theories of serial behaviour.  We show that these dimensions

do create differences in serial position data, but that the relationships cannot be read directly from

the raw data, and they would often be lost through normalisation.  Finally, we illustrate some 

alternative analyses that can be used to relate serial position data to theories. 

Serial position data have been examined most closely for tasks thought to involve a 

working memory component.  These include, in particular, studies of serial learning or recall 

(e.g. Robinson & Brown, 1926; Healy, 1974; Henson, 1999; Nairne, 1991; and many others), but 

also, in the neuropsychological literature, studies of the graphemic and phonological buffers 

(Caramazza, Miceli, & Villa, 1986; Caramazza et al., 1987; Schiller, Greenhall, Shelton, & 

Caramazza, 2001; Shallice, Rumiati, & Zadini, 2000; Ward & Romani, 1998a).    Theoretically, a

working memory system should have capacity limitations.  Empirically, it has repeatedly been 

found that initial and final positions are recalled better than medial positions in short-term 

memory tasks.  These two observations have been combined, in the neuropsychological 
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literature, to produce criteria considered diagnostic (among others) for an output buffer:  there 

should be effects of length and a U-shaped function of accuracy across position (Caramazza et 

al., 1987).   

The association between these effects and the characteristics of working memory is 

perfectly reasonable, but their reification as diagnostic criteria also poses certain problems:  The 

connection between these effects and mechanisms of working memory is neither completely 

diagnostic nor simple.  Nonetheless, these two dimensions will remain fundamental to our 

discussion.  We will be interested in the source of effects of length because of the connection 

between length effects and capacity limits and we will be interested in differences in accuracy for

different serial positions because of the connection between serial position effects and either 

interference or short- and long-term contributions to serial production.

Critical dimensions -- Length effects

Working memory should have capacity limitations.  Capacity, in the everyday sense, is an

absolute limit.   Items within the capacity of the system can be processed, but anything above the 

capacity limit will fail.   However, in short-term memory experiments, it is the items from the 

middle of the list, not the most recent items, that are hard to remember.   An absolute limit could 

still create this serial position function if initial items are well retained and the most recent items 

are added to the end of a memory buffer, overwriting items from the middle of the list as they are

added (Phillips, Shiffrin, & Atkinson, 1967).

A capacity limit, however, could be manifested in more than one way.  It could also 

involve a reduction in processing efficiency for all items.   Under this definition, addition of any 

items above some limit (which can be as low as a single item) makes all items in the buffer more 

difficult to process.   An important prediction, that is common to both of these capacity limits, is 

that serial position curves for longer stimuli should be vertically displaced from the curves for 

shorter stimuli. Shorter stimuli should have an advantange across all (or nearly all) positions. 
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This definition of capacity will allow us to distinguish effects of capacity from effects of position 

in our analyses below.

We have said that length effects should be produced by capacity limits, but the reverse is 

not exclusively true.  In other words, a significant effect of length in an analysis does not 

unambiguously indicate a capacity limit.  This is because not only capacity limitations produce 

length effects.  In fact, a constant probability of error at each position will produce length effects 

in the number of whole sequences correct (item=letter, sequence=whole words, in the buffer 

context, or item=word, sequence=whole lists, in the short-term memory context).  The 

p(sequence correct) = p(item correct)sequence length, so that with p(item correct)=.9, p(sequence 

correct) = .73, .66, .59, .53, .48 for lengths 3-7.   Thus, the number of sequences correct is not 

particularly diagnostic of capacity limitations.  For a decline with length to indicate a capacity 

limit, the decline must exceed the decline predicted by a constant probability of error.   We have 

previously called this a super length effect (Romani, Olson, Ward, & Ercolani, 2002).

A more sensitive measure of a length effect is to count the probability of error at each 

position (or the probability that items are preserved, see Olson, Romani, & Halloran, 2007). Even

if we consider the probability that items are correct at each position, however, pure effects of 

position, which we would not associate with a capacity limitation, can produce length effects.    

By pure effects of position, we mean that the probability that an item is correct (p(item correct)) 

changes with position, but that the probability correct for any given position is not different for 

sequences of different lengths (see Figure 1a).  Pure effects of position produce length effects 

when the probability correct declines with position because longer sequences have later positions 

where the probability correct continues to go down, giving a lower average p(correct) for the 

whole string.  Pure effects of length, instead, will be found when the probability of error doesn’t 

change with position (so there are no position effects), but longer sequences have higher rates of 

error at all positions (see Figure 1b).   These are particularly diagnostic of capacity limitations, 
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and we will present an example of how a limitation in capacity in an implemented model 

produces exactly this kind of pure effect of length below.  

______________________

Figure 1 about here

_______________________

Critical dimensions -- Nonlinear serial  position effects

Better performance at the beginning and end of a word or list has been repeatedly 

observed in serial recall and also in patients with hypothesized phonological or graphemic buffer 

impairments (Caramazza et al., 1987; Healy, 1974; Murdock, 1968; Shallice et al., 2000).  In the 

short-term memory literature the advantage for early items (the primacy effect) has been thought 

to occur because early items can be rehearsed often enough to enter long-term memory, where 

they are protected from decay.  The advantage for recent items (the recency effect), instead, 

occurs because information in a short-term memory store decays over time (Atkinson et al., 

1971).  Items in the middle of the list suffer more from decay than do the final items, but have not

been rehearsed often enough to enter long-term memory, producing a U-shaped function with 

position.  This idea can be seen in a more recent form in the association between primacy and 

semantic abilities and recency and phonological abilities in aphasic patients (Martin & Saffran, 

1997;  see also Davelaar, Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005; Martin, 

Shelton, & Yaffee, 1994).

The influence of two gradients working in opposite directions appears, subsequently, in 

models where the gradients provide a two-dimensional code, rather than being associated with 

two different memory systems (Henson, 1998b; Houghton, 1990).   In these models, the U-

shaped function is partly the result of the two-dimensional code becoming less distinct for 

positions in the middle of the list, and partly it results from end effects (see discussion of end 

effects below).
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U-shaped serial position curves have recently been explicitly attributed to interference 

rather than separate memory components (e.g.), and in the Henson and Houghton models, in fact,

it is interference that produces more errors in the middle of the list.  By interference, we mean 

that adjacent items impose a cost on each other.   In the following discussion, interference 

usually occurs because the representation of position for near items is more similar than it is for 

far items.  There is some probability that an item in position X+1 or X-1 will be retrieved instead 

of the item in position X because of this overlap in positional codes.  Clearly, the strongest 

effects of interference should involve adjacent items, on this account, but interference could also 

involve items that are further away from the target position (e.g. X±2).  Errors in serial recall, in 

fact, show an effect of nearby positions very strongly (Henson, Norris, Page, & Baddeley, 1996). 

It is important to note that first and last positions do not suffer from as much interference 

as internal positions because there are items on only one side of these positions.  These end 

effects create the U-shaped function.  The extent of the end effects gives a measure of the 

distance over which items interact.  If only adjacent items interefere with each other, there will 

only be an advantage for only the first and last items of a list (Figure 2).   This creates a relatively

shallow U-shape (Figure 2a).   The U deepens as items interact over a larger distances (Figure 2b;

for details of the calculations used to create the curves, see Appendix 1).

______________________

Figure 2 about here

_______________________

As was the case for length, measuring the shape of the serial position curve in practice is 

more complicated than specifying the shape in theory.  The shape that the curve assumes in 

empirical data is influenced by several factors, including any bias against producing items more 

than once (e.g. after an anticipation error), the tendency for anticipations to precipitate reciprocal 

perseverations and the method used to score errors.   We illustrate these factors below.
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The dynamics of production that influence what happens after an error has been made can

change the shape of the serial position function.  Models making use of interference and end 

effects often assume, as an implementational detail, that once an item has been produced, it is 

inhibited and does not have the possibility to be produced again.  If  the position 3 item is 

produced early in position 2 it cannot be produced again in position 3 (Brown et al., 2000; 

Burgess et al., 1999; Farrell & Lewandowsky, 2002; Henson, 1998b; Page et al., 1998). This 

prohibition against repeating responses is justified based on data that show that participants in 

serial recall tasks are reluctant to repeat items, even when this is necessary for correct recall 

(Henson, 1998a).   The prohibition influences the form of the serial position curve because an 

item produced too early necessarily creates an error in two positions—the position where the item

was produced early and the position where it should have been produced, but now can no longer 

occur.  This effect of errors can accumulate.  If item 3 is produced too early, items 2 and 4, both 

errors, may be the only competitors for position 3.  If item 4 is produced in position 3, this creates

another error at position 4.    The important consequence for the shape of the serial position 

function is that it has a clear primacy gradient but the recency portion of the curve is reduced 

(Figure 3a), or eliminated (Figure 3b).  When non-final responses produce the final position too 

early, this, by necessity, also creates an error in the final position.   The amount by which the 

recency effect is reduced depends on how probable it is that item four is produced, as opposed to 

item two, once item 3 has been produced too early.

______________________

Figure 3 about here

_______________________

The recency effect reappears if, after an anticipation error, there is a high probability that 

a reciprocal perseveration error will create a swap. When this is the case, the final position is less 
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likely to get produced as part of a set of related errors (i.e. errors stay local and do not 

accumulate), and so the final position shows a recency effect that mirrors the primacy effect.  

Swaps are common if there is a primacy gradient that makes earlier items stronger than later ones

(as in Henson, 1998b; Houghton, 1990; Page et al., 1998; see Figure 4). 

______________________

Figure 4 about here

_______________________

Clearly, the specific dynamics of production that generate and then follow errors are 

important to the shape of the serial position curve.  These are important aspects of the production 

system itself.  A factor external to the model that also affects the shape that the serial position 

curve assumes is the method used to score errors.  In the discussion above, we categorized 

responses as errors according to what the model knows.   If a 5-item list is produced as 1345- 

(where ‘-‘ is a “no response” error, and occurs when the only unused item, number 2, is too 

weakly activated to be produced in position 5), items 3, 4 and 5 have all been produced too soon, 

and, according the what the model knows, these responses should all be counted as errors.  From 

a point of view external to the model, however, it will appear simply that item 2 has been deleted,

and items 3, 4 and 5 have been produced correctly.  

A natural method of scoring assumes that the smallest number of changes possible created

the error or that the largest possible number of items are in the correct position.  Finding the 

longest increasing subsequence in a sequence of numbers implements this scoring procedure (see 

limits to this method in Tichy, 1984).  If we re-score the sequences from Figure 3b from the point

of view of a naïve observer using an algorithm for the longest increasing subsequence (Gusfield, 

1997), there is no primacy portion of the curve, and a strong recency portion (Figure 5).  The 

reason for stronger recency effects is clear from the example.  Items that the model produces too 

early will sometimes be counted as correct by a longest increasing substring algorithm.   If we 
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use a stricter criterion, however, and count items as correct only when they are in the correct 

numerical slot, the primacy and recency portions of the curve will have the shape we plotted in 

Figure 3b.  Which criterion is actually “correct” is not possible to determine from outside the 

model.  If the omission of position 2 was a true deletion and the other items were produced in 

their correct positions, then the first scoring procedure reflects the actual set of errors.  If position

2 was omitted and 3, 4 and 5 were produced early, then the second procedure reflects the actual 

set of errors.  What we have shown is that any one scoring procedure does not necessarily 

produce the set of transformations that actually turned the target into the response, and that the 

shape of the serial position curve depends, in part, on the scoring procedure.1  For the purposes of

theory testing,  what is important is that model data and empirical data are scored using the same 

procedure.

______________________

Figure 5 about here

_______________________

The effects we have outlined in this section are especially important when a substantial 

portion of errors are exchanges (as in serial recall; e.g. Henson, 1998b), and, to some extent, 

when items do not often appear more than once in a response.  Understanding how the shape and 

position of serial position curves can be created by effects of capacity, edge effects, interference 

and scoring is important, however, because factoring these effects is necessary to relate serial 

position curves to theories, and because, as Ferrall and Lewandowsky  (2002) note, the factors we

have noted here can often be responsible for the shape of serial position curves rather than 

mechanisms that are more prominent in the models themselves (e.g.  oscillations in the case of 

OSCAR; Brown et al., 2000).

In this section, we have seen that theoretically important factors like capacity limits, the 

presence and spread of interference and the suppression of previous responses influence the 
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position and shape of serial position curves.   In the following section we will examine what 

happens to critical information from serial responses when data are normalised.  Initially, we will

do this using theoretical examples.  We will show, however, that our theoretical concerns also 

apply to implemented models and/or existing data.  Finally, we will discuss alternatives for 

analysing serial position data given the complexities we have outlined.

Normalized data and critical dimensions

Critical dimensions we have identified in the discussion above include the effect of length

independent of position, and the form of non-linear position effects determined by primacy and 

recency.   Are these critical dimensions represented in normalised data?  

Clearly, effects of length and position cannot be distinguished using normalised data.  

Normalisation collapses data from different lengths and positions onto a single curve.  The 

vertical displacement between curves that is critical for measuring length effects is eliminated.

Normalised data are more successful in characterising the shape of the serial position 

curve over position, but here, too, there are factors to be aware of.  Determining whether or not 

recency effects are present and exactly how many items are advantaged cannot be guaranteed 

based on normalised data.  Substantial recency effects that increase with length but are restricted 

to a single item produce a serial position curve (Figure 6a) that is very similar to the serial 

position curve produced when a decline in performance with position slows at later positions but 

there are no recency effects (Figure 6b).   The similarity of the curves in Figures 6a and b are the 

consequence of compressing the number of positions in the longest sequences into fewer 

normalised positions, as has typically been the case in analyses that follow Wing and Baddeley’s 

(1980) approach.  In the case we illustrate here, up to 9 positions were collapsed to 5 normalised 

positions.

______________________

Figure 6 about here



Serial position data    13      

_______________________

Differentiating single item recency effects from effects that extend over more items is 

also difficult using normalised data.  Figure 7 illustrates normalised curves for recency effects 

that involve one and two items.  The extent of the recency effect in the normalised curves does 

depend on the extent of the recency effect in the data, but it also depends on the number of 

positions that the data are normalised to.  Normalising to more positions extends the recency 

effect for the same unstandardised data.

______________________

Figure 7 about here

_______________________

Critical dimensions in implemented models and empirical data

These illustrations using hypothetical data call into question the utility of normalising data

when distinguishing critical factors in ordered production tasks, but are these factors important in

actual models of ordered production?  Below we present several examples using implemented 

models and/or empirical data to show that the dimensions that we have identified as critical really

do show variation of the kind we have described above, and we suggest that using normalised 

data may not be the best way of confronting theories and data.

Capacity

Our first illustration involves two different ways of coding position that have both been 

used in the literature (Glasspool, Shallice, & Cipolotti, 2006; Page et al., 1998).  One model 

shows clear capacity limits and the other clear position effects.  We show that the capacity 

limited model produces vertically displaced serial position curves, and the model with clear 

position effects but no capacity limit (in the range we explore) produces serial position effects 

without vertically displaced curves for different lengths.   Both models will produce effects of 
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length and U-shaped serial position curves in standard analyses, so the presence or absence of 

these effects does not distinguish them.  Characteristics of their unstandardised serial position 

curves do, however, allow the important aspects of these models to be distinguished.

Our first model codes serial position with a series of Gaussian curves that are spread over 

a limited number of coding units (in our case 100).    This approach is similar to the serial 

position units that are used by Glasspool, Shallice and Cipolotti (2006) in their model of the 

graphemic buffer.   The position units are part of a system that accomplishes letter production (in 

spelling) by using an associative memory to produce individual letters in a word in the proper 

order based on a whole word input and a changing set of position codes.   In the short-term 

memory literature, Henson has called these models “positional theories,” and they have a variety 

of implementations (Brown et al., 2000; Burgess et al., 1999; Conrad, 1965; Lee & Estes, 1977). 

In our particular implementation, when a smaller number of positions needs to be encoded, the 

Gaussian curves are broader, and they become increasingly narrow as more positions need to be 

distinguished (Figure 8; this method was chosen to maximise the stability and redundancy of the 

codes for each length, but other coding schemes, e.g. Gaussian codes with a single width, 

produce the same critical outcomes).  We assume that errors are made when noise shifts the 

position codes on the encoding units (i.e. noise shifts the Gaussian peaks left or right along the 

set of encoding units).  The noisy position code produced by the model is compared with the 

noise-free codes for each position.  This simulates the effect of passing a noisy position code to 

the associative memory we described above (as in Glasspool et al., 2006).  The position that 

produces the largest dot product of noisy and noise-free codes is assumed to be the position 

reported by the associative memory.

______________________

Figure 8 about here

_______________________
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The width of the noise distribution does not change as different length items are encoded 

by the model.  For this reason, noise more strongly affects the positional codes for longer items, 

which are more crowded together than shorter items.  In addition, the code for the initial position 

can only be confused with items to the right (and conversely, the final position with items to the 

left), making initial and final positions less prone to transposition errors.  The data reported here 

assume that positions are not inhibited once produced (i.e. they can be produced again), and they 

are scored according to what the model knows, since, for the moment, we are interested in how 

the model functions without other limitations, and not how it compares to empirical data.

Results for 1000 simulated trials at each length are shown in Figure 9. The noise 

distribution for these trials has a mean of 0 and a standard deviation of 5 units. There are evident 

end effects for the first and last positions, creating U-shaped position curves.  Curves for shorter 

items are above those for longer items.  This pure effect of length results from filling the capacity

of the memory system.  As positional codes for longer lengths become more crowded, they are 

more easily confused at every position.  Aside from the end effects, there are no effects of serial 

position.  Interior positions are equally susceptible to error.

______________________

Figure 9 about here

_______________________

A contrasting model that produces effects of serial position but not length is a simplified 

version of Page and Norris’ Primacy Model (1998).  This model assumes there is a primacy 

gradient that orders items.  Early items in a sequence are more highly activated than later items. 

At each point when the an item needs to be produced, the model chooses the item that is most 

strongly active and then suppresses it so that it can’t be reactivated (following Page and Norris’ 

assumptions).  In addition, the overall level of activation slowly decays over time, so that the 
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constant decrease of activation between items gets smaller as time goes on.  Noise is added to the

activation values to simulate transposition errors. 

Figure 10 shows the results of 1000 simulated trials at each length.  Activation values 

started at 1 and decreased by 0.1 for each position.  All activations decayed by e-0.2 as each item 

was produced.  Added noise had a mean of 0 and a standard deviation of 0.05.  In this range, 

where production is relatively accurate for early positions, there is little or no indication of 

capacity effects, but accuracy decreases with position in accordance with the primacy gradient.  

The lack of capacity effects is not surprising.  As long as the difference between items along the 

gradient remains relatively robust, capacity is not a limiting factor.  If activation decay were 

stronger, bringing all items closer together, or if noise were greater, capacity would become a 

more evident factor, as would be appropriate for intuitions about how the model operates (i.e. it is

not capacity limited until codes become increasingly confusable).  In the data we present here, 

there is a recency effect limited to a single item which occurs because transpositions tend to be 

reciprocal as a result of the primacy gradient (see discussion above) and the last item can only 

exchange with the item to its left.

______________________

Figure 10 about here

_______________________

These two models, based on existing theories, illustrate that different ways of representing

position can produce essentially pure effects of position and pure effects of length, and that these 

differences in the models can be distinguished in the raw serial position curves.  The important 

differences would be obscured, however, if we normalised the data prior to analysis.  We now 

turn to problems related to measuring the presence of absence of non-linearity (the U shape) in 

serial position data.
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Non-linearity 

The presence of the U-shape in the serial position curve has been considered diagnostic of

a response buffer in the neuropsychological literature, and is a very common feature of short-

term memory data (Murdock, 1968).   There are also, however, neuropsychological patients who 

make errors involving single segments but do not show the improvement in performance for final

items (Glasspool et al., 2006; Ward et al., 1998b; Romani, Galluzzi, & Olson, submitted; Schiller

et al., 2001).  Ward and Romani (1998b) attributed this pattern to a separate locus, involving 

weaker activation of temporary representations from the lexical level.  They argued for this 

source based on stronger effects of frequency and imageability, and based on a substantial 

number of lexical substitution and semantic errors.  Glasspool et al. (2006) called this pattern a 

“Type B” graphemic buffer disorder, but also attributed the pattern to degraded input to the 

buffer level.  

Based on the similarity between the U-shaped function for slips of the pen (Wing et al., 

1980) and the error function of patients, Schiller et al. (2001) argued that the U-shaped function 

is the result of noisy input to the buffer that exacerbates the normal pattern and the linear decline 

represents damage to the buffer itself.  Despite some differences in interpretation, what all of 

these authors agree on is that some patients show improvement with the final units of a sequence 

(the U-shaped serial position function) and others do not, and that this difference is theoretically 

important. 

We have already noted that normalised serial position curves for data with substantial 

advantages for final items and curves for data without final-item advantages can be very similar.  

Several factors influence the presence and strength of non-linearity in the normalised curve.  

One factor is the consistency of shape for short and long curves.  If they do not share the 

same shape, the normalised data will be a mixture of the long and short curves.  As we have seen 

above, if advantages for final items only emerge strongly in longer stimuli and the normalised 
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serial position curve is based on fewer positions than the long stimuli have, recency effects for 

longer items can be masked by shorter items (the converse would also hold, if the U-shape were 

present only for shorter items).  This may be a particular worry for stimulus sets where shorter 

items outnumber longer items, as could naturally arise in data from different word lengths, where

word length is not specifically controlled.   Another way in which different shapes could emerge 

in word-based tasks is as a result of structural factors.  If, for example, a U-shaped function 

operated over syllables rather than words, or if vowels and consonants had systematically 

different error rates, curves for long and short words would be expected to differ.  If consonants 

were selectively preserved in responses, curves for short words, which in English are likely to 

have consonant initial and final portions, would produce a single U, while curves for longer 

words, which would be likely to have a consonant in the middle of the item, would producing a 

double U shape.  The normalised data would have a single bowed shape, masking the informative

heterogeneity of the underlying curves.

A second factor is the number of positions that data are normalised to.  U-shaped data that

are normalised to more positions will be more clearly non-linear than data normalised to fewer 

positions.  This is a simple consequence of the number of points available to describe the curve.  

The issue is important when non-linearity is statistically tested based on normalised data.  One 

way of testing the degree of curvature would be to fit an equation that has linear and quadratic 

components to the normalised curve and to use the significance of the quadratic component as a 

test of non-linearity.  Table 1 shows the significance of the quadratic component when the data 

displayed in Figure 6a are normalised to different lengths.  As the number of points increases, the

significance of the quadratic term increases.

______________________

Table 1 about here

______________________
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The number of points that curves are normalised to is also important if the extent of the 

initial or final advantage is theoretically important.  For example, the degree of interference 

determines the extent of the initial and final advantage when interference is the primary factor 

that produces a U-shape.  Interference confined to a single item on either side of the intended 

position produces primacy/recency effects for only a single initial or final item.  Interference that 

extends over more items allows the intial/final advantage to extend further from the ends of the 

curve (in a modest way). Interference, by itself, can only produce symmetrical end effects. Other 

sources of a U-shaped function, a primacy gradient (Page et al., 1998), opposing gradients 

(Henson, 1998b; Houghton, 1990) or structurally different memory systems (Atkinson et al., 

1971), can predict asymmetric and/or more extensive advantages for initial and/or final items.    

When data are normalised, however, the number of points that are advantaged at the beginning or

end of a curve depends as much on the number of normalised positions as it does on the number 

of positions that are advantaged in the raw data.  When the extent of initial or final effects is 

theoretically important, this is best measured using unstandardised data.

In this section we have seen that theoretically important aspects of serial position curves 

cannot always be recovered unambiguously from normalised data.  The match between theory 

and data can be more easily judged based on the raw serial position curves for each length.  

One major appeal for normalising serial position is that it simplifies presentation and 

analysis.  If we abandon normalisation, can effects of length, position and linearity be tested in a 

transparent and reliable, but reasonably straightforward way?  We present some options for 

analysis in the next section.

Analysis of serial position data

Analysis of raw serial position curves for different lengths can be done without too much 

difficulty using binomial regression.   This is the good news.  The bad news is that there is often 

no simple recipe that relates a particular serial position shape or location to a theoretical model.  
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We have seen, for example, that the method of scoring can substantially change the shape of 

serial position curves.  What is important is that results from a theoretical model be developed 

under the same criteria as the actual data when model and data are compared (We might want to 

score sequences by stopping at the first error, or by using the longest set of items in the right 

relative order.  We would not want to score model results using model internal criteria, that in our

example above would be closest to stopping at the first error, but then use the longest set of items

in the right relative order for participant data).  

We will illustrate binomial regression methods using the data from the simplified primacy

model and the Gaussian coding model that we presented above (Figures 9 and 10).    As we have 

shown, the primacy model produces position effects, but not effects of length and the Gaussian 

coding model produces length effects but not position effects.  Both models have clear end 

effects.

When preparing data for analysis, an item’s ordinal position, the stimulus length and a 

binary code that indicates whether or not that position was preserved in the response must be 

coded.   These data are predicted by a binomial regression model that has terms for length and 

position.  Statistically evaluating length and position effects, however, can be complicated by end

effects.  The advantage for initial and final positions in a three item sequence is much greater 

than the advantage in a nine item sequence because initial and final positions make up 2/3 of the 

data when length=3 and 2/9 of the data when length=9.  This can produce a length effect even if 

medial positions show no difference with length.  For example, the data from the primacy model 

(Figure 9) produce both length and position effects if end effects are not accounted for (model:  

correct = length + position;  length, z = -3.46, p<.001; position, z=-15.0, p<.001).   One way to 

test for effects of length and position that are not artifacts of end effects is to use dummy 

variables that code 1 for initial position and 0 otherwise and 1 for final position and 0 otherwise, 

and include these terms the model.  This allows initial and final positions to be fit independently 
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of medial positions.  If we reanalyse data from the primacy and Gaussian coding models using 

the model correct = length + position + initial + final, the primacy model shows clear effects of 

position but not length (length, z = 0.371, p=.71; position, z=-12.7, p<.001) and the Gaussian 

coding model shows clear effects of length but not position (length, z=-9.86, p<.001; position, 

z=.175, p=.861).

The method to choose for evaluating non-linearity depends on the kind of non-linearity 

that needs to be evaluated.  If the expectation is that there will be advantages for only initial 

and/or final positions, dummy coding, as we did above, can be used, and the significance of the 

terms for initial and final positions can be reported.  For example, the effects of initial and final 

position in the Gaussian coding model are clear using this method (initial, z=6.77, p<.001; final, 

z=6.70, p<.001).  If the initial and/or final advantage extends over more positions, comparing 

quadratic and linear models of the data may be more appropriate.  If the quadratic term in a 

model like correct = length + pos + pos2  is significant, this indicates a reliable non-linearity.  As 

is always the case, statistical significance is not a direct indicator of theoretical significance.  

The magnitude of the non-linearity is important.  A small, but significant, non-linearity, 

may be less important than a more substantial non-linearity that has the same level of 

significance.  In general, it is worth paying attention to the value of the coefficients generated by 

the model. For example, the coefficients for initial and final positions in the Gaussian coding 

model are 0.965 and  0.952.  This shows us that the initial and final advantages are symmetrical, 

which is theoretically significant.

What do the parameters 0.965 and 0.952 mean, however, in terms of percentage error, 

which is the measure we are interested in?  The binomial regression model is based on a logistic 

function, so the change in probability of error as the parameters change is not constant over the 

range modelled.  This makes coefficients from logistic models more complicated to interpret than

the parameters of linear models.  An easy approximation to the rate of change in the probability 
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of error for a unit change in a parameter value, however, is given by B * p * (1-p) where B is the 

coefficient we are interested in and p is the average proportion of items correct (Agresti, 2002).  

Taking the initial parameter from above (0.965) and the average proportion correct (about 0.75) 

leads us to expect a primacy advantage of about .965 * .75 * .25 =  .18, or 18%, which is a bit of 

an overestimate (12% is the mean value from the data), but shows that the difference is 

substantial.  

Here, the end effect is something that can be read fairly easily from the data (taking the 

average primacy advantage over all lengths).  Evaluating the size of the end effect may be more 

critical and less clear when the end effect and some other effect, like a primacy gradient, overlap, 

as is the case in the primacy model.  Binomial regression will help separate the general 

downward trend that affects all positions from any exaggerated decline that affects only the initial

position.  In this situation, the formula illustrated above is helpful.  Separating effects in this way 

is especially important when the expectation is that end effects will be symmetrical for initial and

final positions.

In general, we advocate presenting serial position data in their raw form.  When the data 

have systematic structure they are not difficult to interpret, and when the structure is not 

systematic this should be a warning about the stability of any conclusions drawn from them.  We 

suggest that specific theoretical questions can be statistically explored using binomial regression. 

In the neuropsychological context, theoretical development has progressed to the stage where 

simple classification of patients, for example, as buffer patients or not, can give way to an 

exploration of the more specific properties of a deficit that produces segmental errors, and 

analytic tools are available to support this enterprise.  Specific mathematical models of short-term

memory have been very useful, already, for directing empirical work in that area (Brown et al., 

2000; Burgess et al., 1999; Henson, 1998b; Page et al., 1998; Murdock, 1993; Botvinick & Plaut,

2006; Nairne, 1990), and normalised data are less commonly reported for STM studies.  Here, 
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too, however, the links between the mechanisms responsible for effects and the effects 

themselves could sometimes be more transparent (as Farrell et al., 2002 note).  Of course, with 

patients it is important to interpret serial position data in the context of the patient’s more general 

pattern of performance (e.g. number of lexical or semantic errors, effects of frequency and 

imageability, etc.), and our focus here should not distract from that important point.

When specific quantifiable models are to be contrasted, perhaps the best method of 

approaching the problem is to formalise the models statistically and produce likelihood estimates 

for the data based on the models. Then, formal model selection procedures (see Burnham & 

Anderson, 2002) can be used to decide whether any one model gives a clearly superior account of

the data.  In this approach it is important to note that there may not be a binary decision about a 

“winning” model.  Instead the level of support for each model is quantified, which is appropriate,

and signals when the data do not clearly distinguish between models.  Describing this process, 

however, is beyond the scope of the present article.

Discussion

Although our starting point has been to examine the effects of normalising serial position 

data, our eventual aim has been broader.  We have illustrated some of the complexity involved in 

relating serial position data to underlying theories.   There are several important issues that we 

have highlighted.  The differing theoretical roles of capacity and interference or capacity and 

short and long-term contributions to memory mean that length and position effects need to be 

distinguished and evaluated.   Capacity limitations produce vertical displacements between 

curves for different lengths, while position effects create overlapping curves for different lengths,

but systematic changes with position.   Since normalising collapses data from different lengths, 

length and position effects cannot be distinguished using normalised data.  Normalised data often

preserve the general shape of serial position curves, but critical information like the extent of the 

recency portion (if any) will not be preserved in a way that is independent of the parameters used 
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to normalise the data.  Likewise, statistical tests based on normalised data are also problematic.  

Both the shape of the curve and the significance of any non-linearity depends on both the data 

and the number of positions used in the normalisation procedure.  When comparing data from 

quantitative models and empirical data it is important to match scoring procedures, since different

scoring procedures (e.g. model internal vs. model external) can have substantial effects on the 

shape of the serial position curve.  Finally, serial position information should not be used in 

isolation from the surrounding empirical context.  In patient studies, for example, the types of 

errors that patients make and the factors that influence their performance should be considered 

along with serial position data.

Does normalisation ever have a role based on these considerations? Normalised data may 

be useful when what is needed is a compact summary of the serial position pattern, when the 

normalised pattern accurately reflects the underlying data, and when a detailed match between 

specific theories and the data is not at issue.  

If we need to make judgements that have specific theoretical consequences, like whether a

memory buffer is involved in a pattern of errors, we would suggest theoretical and analytic 

developments allow us to go beyond the resolution that normalised data allow.  Graphing serial 

position curves for different lengths is somewhat more complex than presenting a single 

normalised curve, but the general shape is usually recognizable and raw data preserve detail that 

is theoretically important.  

Binomial regression allows specific hypothesis about the influence of length, position and

shape to be tested.  Specific quantitative models in this area often make predictions about the 

gross shape of serial position data that are similar and will be hard to distinguish at a general 

level.  These models may still, however, be distinguishable based on more detailed comparisons. 

When the likelihood of data given the models can be quantified, this presents a powerful way to 

contrast models.  We are optimistic that, in the context of a dialogue between quantitative 
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theories and empirical data, data from serial position curves will continue to be informative as 

they are applied to the questions that Lashley raised over 50 years ago.



Serial position data    26      

Table 1

Significance of the quadratic component when the data from Figure 6a are normalised to different lengths.
Larger numbers of normalised points result in a clearer quadratic component.

Number of 
normalised 
positions

t-value for 
quadratic 
term

p-value

5 2.63 .12
6 2.87 .06
7 3.24 .03
8 3.56 .02
9 3.90 .008
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         (a)         (b)

Figure 1
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                                                       (a)                                                                                                              (b)
Figure 2
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                                             (a)                                                                                        (b)
Figure 3
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Figure 4
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Figure 5
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                                           (a)                                                                                     (b)
Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure captions

Figure 1.  Serial position curves for pure effects of serial position (a) and pure effects of length 
(b).  Curves for pure effects of serial position have been jittered from the position of complete 
overlap so curves for different lengths are visible.

Figure 2.  U-shaped serial position curves generated by interference.  In (a), the probability of an 
item being reported in the correct position, X, is .4 and the probability of an item from position 
X-1 or X+1 being reported instead of X is .3.  In (b), the probability of an item being reported in 
the correct position X, is 0.4.  The probability of X+1, X-1 or X+2, X-2 being reported instead of 
X is 0.2 and 0.1, respectively.

Figure 3.  Serial position curves identical to those in Figure 2 except that once an item has been 
reported, it is suppressed, and cannot be reported twice in the same response (e.g. if the sequence 
12345 starts with the error 13, 3 cannot also be produced again in the correct position, making the
error 13345 impossible).

Figure 4.  Recency effects created by a primacy gradient that encourages swaps.  The probability 
of report across the positions X-2, X-1, X (target position), X+1, X+2 was 0.3, 0.25, 0.2, 0.15, 
0.1.

Figure 5.  The serial position curve that results when sequences from the model that produced 
Figure 3b are scored from the point of view of a naïve observer (rather than from a model-
internal point of view).  Scoring uses the longest increasing subsequence.

Figure 6.  Normalised serial position curves (in black) for (a) one item recency that increases 
with position and (b) no recency, but accelerating primacy effect.  Unstandardised serial position 
curves are in grey.

Figure 7.  Normalised serial position curves (in black) for (a) one item recency effects and (b) 
two item recency effects.

Figure 8.  Gaussian position codes using 100 units to code (a) 3 positions and (b) 9 positions.  
Position codes are narrower when coding more positions over the same number of units.

Figure 9.  Results from 1000 trials at each length coding position with noisy Gaussian position 
codes.  Noise shifted the position of Gaussian distributions right or left.  Noise had a mean of 0 
and a standard deviation of 5 units.

Figure 10.  Results from 1000 trials at each length from a simplified primacy model (based on 
Page et al., 1998).
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Endnotes

1This is a concrete example of a situation long recognized in the computer science literature 
devoted to matching text patterns (see algorithms for Levenshtein or edit distance, e.g. Gusfield, 
1997).  Reconstruction of the changes that produce a response from a target cannot be done with 
certainty.  Since an infinite number of transformations are possible, any one can only be assigned 
a value that indicates its likelihood, and scoring errors is an optimization problem that involves 
picking the changes that are most likely to have occurred given the target and response.
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Appendix

For each position in a sequence, a probability was assigned that the position was correct, or that 
adjacent positions were produced instead (e.g. the target position, position 2, was assigned a 
probability of 0.4 of being produced correctly, positions 1 and 3 were each assigned a probability 
of 0.3 of being produced in error).  The resulting template of probabilities (templates used were 
0.3, 0.4, 0.3 and 0.1, 0.2, 0.4, 0.2, 0.1; correct position in bold) was applied to each position 
across a sequence.  Where the template went beyond the beginning or end of a list it was 
normalised (e.g. in position 1, an error to the left is not possible, so the probability of 0.4 for the 
1st position and 0.3 for the second position were normalised to probabilities of 0.4/0.7 = .57 and 
0.3/0.7 = 0.43 were used for the 1st and 2nd positions.
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