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ABSTRACT  
 
OBJECTIVES: To characterize the microbial environment of workers in academic mouse 

research facilities using endotoxin, 16S qPCR, and 16S amplicon sequencing. To determine 

whether the work microbiome contributes to the human microbiome of workers. 

METHODS: We performed area air sampling from the animal rooms, dirty, middle, and setup 

cage wash locations in four academic mouse research facilities. 10 workers in the dirty cage 

wash area underwent personal air sampling as well as repeated collection of nasal, oral, and skin 

samples before and after the work shift. Environmental samples underwent measurement of 

endotoxin, mouse allergen, bacteria copy number via 16S qPCR, and microbial identification via 

16S rDNA sequencing. 16S rDNA sequencing was also performed on human samples before and 

after the work shift. SourceTracker was used to identify the contribution of the work microbiome 

to the human microbiome. 

RESULTS: Median endotoxin levels ranged from undetectable to 1.0 EU/m3. Significant 

differences in mouse allergen levels, bacterial copy number, microbial richness, and microbial 

community structure were identified between animal, dirty, middle, and setup cage wash 

locations. Endotoxin levels had only a moderate correlation with microbial composition. 

Location within a facility was a stronger predictor of microbial community composition (R2 = 

0.41, p = 0.002) than facility. The contribution of the work microbiome to the human 

microbiome of workers was estimated to be 0.1 ± 0.1% for the oral microbiome; 3.1 ± 1.9% for 

the nasal microbiome; and 3.0 ± 1.5% for the skin microbiome. 

CONCLUSIONS: The microbial environment of academic animal care facilities varies 

significantly by location rather than facility. Endotoxin is not a proxy for assessment of 

environmental microbial exposures using 16S qPCR or 16S rDNA sequencing. The work 



microbiome contributes to the composition of the nasal and skin microbiome of workers; the 

clinical implications of this observation should be further studied.  

 



Introduction 
High level microbial exposures are common in many work settings and linked to health effects. 

[1] Historically, microbial toxins such as endotoxin has been used as the measure of 

environmental microbes in health-related studies, with exposure limits in some countries based 

on these metrics. [2] However, epidemiologic studies on the relationship between endotoxin 

exposure and respiratory health have reported conflicting associations, with one recent analysis 

of three large European asthma birth cohorts finding a protective effect of endotoxin exposure in 

the Spanish cohort, no effect of endotoxin exposure in the German cohort, and a harmful effect 

of endotoxin exposure in the Dutch cohort despite similar approaches to environmental 

assessment and outcome definition.[3] These results raise the question of whether there are 

alternate ways to measure environmental microbial exposure that may better explain the 

observed variation in health effects. 

Newer molecular methods to measure microbes have emerged based on the observation that the 

16S ribosomal RNA (rRNA) gene is present in every bacteria, yet has distinct polymorphisms 

that can serve as a “fingerprint” for bacterial identity. [4] In recent years, due to the advent of 

next-generation sequencing and large databases linking the 16S ribosomal rRNA gene sequences 

(16S rDNA) to bacterial identity, it is now possible to rapidly identify the community of 

microbes present in a sample. Studies on the environmental microbiome mostly relate to 

pediatric studies, and have identified a link between environmental microbial exposure measured 

in this way and asthma. These studies have suggested that early life exposure to a high diversity 

of microbes is protective against atopy and asthma development,[5] but conversely, in 

established asthma, exposure to a high diversity of microbes is associated with increased asthma 

severity.[6] Simultaneously, there is a growing recognition that the human microbiome is 



associated with asthma, with studies suggesting that the composition of the gut microbiome in 

early life predicts asthma development [7]. Other studies have examined the airway microbiome, 

and found differences in sputum microbial composition between asthmatics and non-asthmatics, 

[8] and further identified associations between the airway microbiome and corticosteroid 

responsiveness in asthma. [9] 

Few studies, however, have examined the influence of the environmental microbiome on the 

human microbiome in adults. This may be related to observations that the human microbiome 

undergoes rapid changes only early in life during a time of rapid colonization, [10] after which it 

appears largely stable. [11] Yet, a few observational studies contradict the idea that the adult 

human microbiome cannot be perturbed by environmental microbial exposures. These studies 

largely revolve around animal exposures. A wide variety of animals are known to be a reservoir 

for methicillin resistant Staphylococcus aureus (MRSA). MRSA colonization is a known 

occupational hazard for veterinarians and technicians with animal contact compared to control 

subjects without animal contact. [12]  An intriguing study in an agricultural region of North 

Carolina found that subjects living in census blocks with higher densities of swine also had 

higher rates of MRSA colonization in their nares; none of the subjects were livestock workers, 

precluding direct occupational exposures as the explanation.[13] A recent study of poultry 

abattoir workers found a substantial differences in the gut microbiome of workers over a five 

month period.[14] It is clear that acquisition of bacteria from animal-related work is a potential 

occupational hazard. 

We chose to study the effect of environmental microbial exposures on the human microbiome in 

animal care workers. Up to 125,000 workers are exposed to laboratory animals as part of their 



occupation in the United States[15]. A quarter of workers report upper respiratory symptoms due 

to laboratory animal exposure, [16, 17] with a subset developing occupational asthma. [18] 

While any exposure (even indirect) to laboratory animals is associated with the development of 

symptoms, [19] workers involved in the direct care of animals including washing dirty cages 

have been shown to be at the highest risk for developing laboratory animal related allergy or 

asthma, likely due to the magnitude of their workplace exposures[20]. 

The purpose of this study was first to determine whether traditional methods of measuring 

microbial exposure using endotoxin can serve as a reasonable surrogate for sequencing-based 

measures of microbial exposure; historically, the vast majority of occupational studies rely on 

endotoxin measurement, and it is important to understand whether future studies relying on 

sequencing of microbial DNA can be extrapolated to settings with high endotoxin levels. 

Secondarily, our goal was to determine whether the human microbiome of animal care workers 

is impacted by the microbes in their work environment. We hypothesized that 1) measures of 

airborne endotoxin (found only in gram-negative bacteria) is not a surrogate for bacterial copy 

number (measured using real-time polymerase chain reaction of the 16S rRNA gene, or qPCR), 

nor is it a surrogate for bacterial identity and community structure (measured with amplicon 

sequencing of the 16S rRNA gene); 2) Similar to the human microbiome, locations with specific 

functions in each animal care facility (analogous to a body site) is a stronger predictor of 

microbial community structure than is facility (analogous to an individual person); 3) A 

proportion of the human microbiome in animal care workers can be traced to their work 

microbiome. 

Materials and methods 



Environmental sample collection 

Four academic research mouse facilities participated in this study. For our first aim, we sampled 

four locations with distinct functions within each facility; a representative animal room as well as 

the dirty, middle, and setup portions of the cage wash area (see S1 Fig.). Animal rooms are 

where the mice are housed, typically 4 mice per cage with 3 of the 4 facilities having ventilated 

cages. Within the cage wash areas, the dirty location is where the contents of used cages 

(including mouse fecal matter) are dumped, and cages subsequently placed in an industrial 

washer. In the middle location, washed cages are set in racks to dry. In the setup location, dried 

cages are filled with wood chip litter (Alpha Chip, Northeastern Products, Warrensburg, New 

York) and food (Pico Lab Mouse 5058 High Fat Chow or Pico Rodent 5053 Maintenance Chow, 

St. Louis, Missouri) before autoclaving.  

Area sampling was performed in each location of each facility. Paired irradiated sterile 

endotoxin-free 0.45 µm polycarbonate filters in closed faced cassettes (Zefon, Ocala, FL) were 

attached to area samplers (BGI, Butler, NJ) at a pump flow rate of 2.5 liters per minute and 

placed within one meter of workers for 8 hours during standard work hours. Paired field blanks 

were collected, consisting of sterile filters brought to the field site but not attached to a sampling 

pump, and subsequently underwent the same downstream analysis procedures. 

Human sample collection  

For our second aim, we recruited 10 workers working in the dirty cage wash area of the four 

facilities. Inclusion criterion was current work in a dirty cage wash area of the involved animal 



care facilities. Exclusion criterion was use of antibiotics, corticosteroids, or immune-suppressing 

medications in the prior six months. Informed consent was obtained from all participants and the 

protocol was approved by the Institutional Review Board of Boston Children’s Hospital 

(protocol # IRB-P00015250).  Prior to the start of their work shift, we obtained the following 

samples:  nasal samples by rubbing sterile nylon flocked swabs (Puritan, Guilford. ME) in each 

anterior nare, oral wash by having workers swish 5 mL of sterile saline in their mouths then spit 

into a sterile specimen cup, and skin samples by rubbing sterile nylon flocked swabs (Puritan, 

Guilford. ME) in the retro-auricular crease for 30 seconds. These procedures were repeated 

immediately after the work shift. Exhaled nitric oxide and pre-bronchodilator spirometry was 

also performed. Personal air samples were obtained from each participant as follows: Paired 

irradiated sterile endotoxin-free 0.45 µm polycarbonate filters in closed faced cassettes (Zefon, 

Ocala, FL) were attached to personal sampling pumps (Casella, Buffalo, NY) at a pump flow rate 

of 2.5 liters per minute.  These samplers were worn by each participant for the duration of their 

8-hour work shift. 

All filters and biologic specimens were immediately placed on dry ice after sample collection, 

then stored at -80 degrees Celsius subsequent processing and analysis in a single batch. 

Sample processing  

For each pair of filters, one filter was eluted with pyrogen-free water and 0.05% TWEEN-20 for 

endotoxin analysis using the Limulus Amebocyte Lysate assay (Bio-Whittaker, Walkersville, 

MD), and mouse allergen analysis (Mus m 1) using the MARIA assay (Indoor Biotechnologies, 

Charlottesville, VA). The other filter, as well as all biological specimens, underwent microbial 



DNA extraction. Bacterial genomic DNA extraction methods used were adapted from the 

methods developed for the NIH-Human Microbiome Project. [21] Briefly, bacterial genomic 

DNA was extracted using MO BIO PowerSoil DNA Isolation Kit (MO BIO, Carlsbad, CA) 

following the manufacturer’s instructions. One sixth of each filter was used due to the small size 

of the beadbeating tubes.  Extracted DNA concentrations were measured by Qubit (Life 

Technologies, Carlsbad, CA) for subsequent normalization of quantitative PCR results. 

Quantitative PCR (qPCR) 

 qPCR on extracted DNA from area air samples was performed in a QuantStudio 7 Flex Real-

Time PCR System using MicroAmp Fast Optical 96-well and 384-well reaction plates (0.1ml), 

MicroAmp optical adhesive film, (all Applied Biosystems) and PerfeCTa SYBR Green FastMix, 

Low Rox (Quanta Biosciences). Each reaction contained 10ul of 2X Master Mix, 4 ul of DNA 

template, 625 nM of each primer (IDT), and PCR grade water to a final volume of 20 ul. 

Amplification was comprised of a 10 minute activation step at 95°C, followed by 40 cycles of 

95°C for 10 s, 60°C for 30 s, and a fluorescence measurement.  Melting curve analysis was done 

by monitoring fluorescence throughout incremental increases of temperature from 60°C to 95°C.  

The qPCR primers (1369F-1492R) [22] target regions flanking V9 of the 16S rRNA gene. The 

standard curve was made using a serially diluted plasmid that contains nt 1369 to 1492 of an E. 

coli 16S rRNA gene. The concentrations of unknowns are calculated from CT values using the 

equation generated from plotting the standard curve. All samples are run in triplicate, including 

the standard curve, a set of non-template controls (NTC), and inhibitor controls (known positives 

+ unknown DNA).  



16S amplicon sequencing 

 The 16S rDNA V4 region was amplified by polymerase chain reaction and sequenced on the 

Illumina MiSeq platform using the 2x250 bp paired-end protocol yielding paired-end reads that 

overlap almost completely. The primers used for amplification [23] contain adapters for MiSeq 

sequencing and single-end barcodes allowing pooling and direct sequencing of PCR products. 

Positive and negative controls were included in the run, including a field blank from air 

sampling. 

Bioinformatics processing and statistical analysis 

 Endotoxin, 16S rDNA copy number, and mouse allergen quantities from each filter were 

divided by the total volume of air sampled to obtain concentrations in endotoxin units per cubic 

meter (EU/m3), copy numbers per cubic meter (copies/m3), or nanograms per cubic meter 

(ng/m3), respectively. Summary statistics were calculated using median [interquartile range] 

given the skewed distribution of the measurements, and the Kruskal-Wallis rank sum test was 

used to test for differences in each exposure metric between locations and facilities. 

For sequencing data, reads were merged using USEARCH v7.0.1090 with no mismatches 

allowed and a minimum 50 bp overlap between reads. An expected error filter of 0.05 was 

applied. Reads were iteratively clustered to 97% similarity using UPARSE [24] and de novo 

chimera removal was performed. UCHIME [25] was applied for reference based chimera 

removal. All remaining reads were mapped to the SILVA database (version 123) [26] to 



determine taxonomy. Any reads that did not map to bacteria were excluded from subsequent 

analysis.  

The resulting operational taxonomic unit (OTU) table, taxonomy table, and covariate table were 

merged using phyloseq [27] for downstream analysis including data transformation and 

calculation of diversity indices. In order to filter out potentially spurious taxa due to sequencing 

error, only OTUs present in at least 5% of samples (e.g. based on our sample size, OTUs present 

in at least 5 samples) were retained. Measures of alpha diversity were calculated including 

observed OTUs, Chao 1, Shannon, and inverse Simpson indices. A sensitivity analysis was 

performed on OTU tables rarefied to an equal sequencing depth of 1000 reads per sample to 

determine whether uneven sequencing depth affected diversity measures. To test the hypothesis 

that measures of alpha diversity differed across location, linear models with location and facility 

were used as predictors.  

Given concerns that rarefaction is considered statistically inadmissible [28], we pursued an 

alternate workflow to address uneven sequencing depth across samples [29]. To detect 

dissimilarity between samples, we calculated measures of beta diversity (weighted unifrac) on 

relative rather than absolute taxon abundance, and used permutational multivariate analysis of 

variance (PERMANOVA) as implemented in the vegan package [30] to test the hypothesis that 

location within a facility is a significant predictor of microbial community structure, while 

simultaneously adjusting for facility. Differences in microbial community composition across 

location was subsequently performed at the phylum level; we performed analysis of variance on 

the top three phyla identified across samples (Firmicutes, Proteobacteria, Cyanobacteria), 

adjusting for multiple testing with a Bonferroni correction. In order to identify taxa that are 



differentially abundant between locations within a facility, we first performed a variance 

stabilizing transformation as implemented in DESeq2, [31] followed by hierarchical multiple 

testing as implemented in the structSSI package, [32] an approach that takes advantage of the 

inherent structure present in microbial composition data. This allowed us to identify the 

differential abundance of microbes with greater power.  

To determine the extent to which endotoxin can serve as a proxy for 16S rDNA copy number or 

the richness and evenness of microbial communities as determined by 16S rDNA sequencing, 

Spearman correlation was calculated between these measures. 

In order to determine the proportion of a worker’s microbiome that is attributable to his work 

environment, we used SourceTracker [33], a Bayesian community-wide microbial source 

tracking algorithm, to estimate the proportion of the oral, nasal, and skin microbiome attributed 

to the work microbiome of each participant before and after a standard 8-hour work shift in the 

dirty location of the cage wash area.  “Sink” samples were considered to be oral, nasal, and skin 

samples collected from the 10 participants before and after their work shift; “Source” samples 

were air samples from personal air samplers worn by each participant during a standard 8-hour 

work shift. The analysis was stratified by pre- and post-shift samples. 

Plotting was performed with the ggplot2 [34] package. All analyses were performed in R 3.3.2. 

Two-sided p values of <0.05 were considered significant. 

Results 



Sequencing was successfully performed on all environmental and human samples (see S2 Fig. 

for sequencing depth by sample type and rarefaction curves). The field blank showed negligible 

contamination (see S1 Table).  

For our first aim evaluating the occupational microbial environment in these mouse facilities, we 

analyzed sixteen paired samples from four locations within four facilities. Average endotoxin 

levels were low (Table 1), with median levels ranging from undetectable to 1.0 EU/m3, with no 

statistically significant differences between locations (p = 0.28) although there was a trend 

towards higher endotoxin levels in the dirty cage wash areas. There were significant differences 

in 16S rDNA gene copy number between locations (p = 0.04), with the highest levels detected in 

the dirty cage wash area. Mouse allergen levels were also highest in the dirty cage wash area (5.6 

[4.8 - 11.2] ng/m3), with significant differences between location (p = 0.01). While we observed 

differences in these exposures between locations, there were no statistically significant 

differences in each of these exposures when comparing between facilities.  

Table 1. Summary measures of endotoxin, mouse allergen, and 16S rDNA copies per cubic 

meter of air sampled by location (animal, dirty, middle, set up locations). Values depicted 

are median [interquartile range]. Average endotoxin levels were low and not statistically 

different between locations, although measures of total bacterial count with quantitative PCR of 

16S rDNA showed significant differences in bacterial counts between locations, with the highest 

counts in the dirty location. Spearman correlation between endotoxin and 16S rDNA copies was 

0.62. Mouse allergen levels were also significantly different across location. 

 

Measure Location p-value 



 Animal Room Dirty (Area) Middle Set Up  

Endotoxin, EU/m3 0 
 [0 – 0.2] 

1.0  
[0.8 – 1.2] 

0.7  
[0.4 – 1.1] 

0.5  
[0.2 – 1.0] 

0.28 

16S rDNA, copies/m3 2,598.7  
[1951.9 - 4842.0] 

28,396.0  
[25374.7 - 30853.6] 

4,256.1  
[2943.3 - 5064.7] 

4,031.2  
[2068.1 - 5531.2] 

<0.001 

Mouse allergen, 
ng/m3 

1.2  
[0.7 – 2.0] 

5.6  
[4.8 - 11.2] 

0.3  
[0.2 – 0.5] 

0.3  
[0.2 – 0.5] 

0.01 

Observations 4 4 4 4  

 

 

16S rDNA sequencing revealed significant differences in microbial diversity and community 

composition of microbes between locations, with distinct communities determined by location 

within facility rather than by facility. We identified significant differences in richness as 

measured by observed OTUs (p = 0.009 for location, p = 0.44 for facility) and Chao 1 (p = 0.006 

for location, p = 0.46 for facility), although there were no statistically significant differences in α 

diversity measures that reflect both richness and evenness such as the Shannon (p = 0.39 for 

location, p = 0.76 for facility) and inverse Simpson (p = 0.29 for location, p = 0.60 for facility) 

indices. A sensitivity analysis using rarefied OTU tables did not change these results, with 

location being significantly associated with observed OTUs (p = 0.02) and Chao 1 (p = 0.01). 

When looking at microbial community composition (Fig 1), there were statistically significant 

differences in the relative abundance of Firmicutes (p = 0.006), Proteobacteria (p = 0.03), and 

Cyanobacteria (p = 0.04) between locations. The top taxa that were differentially abundant 

between locations is depicted in S2 Table. When evaluating the dissimilarity of microbial 

communities using PERMANOVA (Fig 2), location within a facility was a strong predictor of 

microbial community structure (i.e. animal vs. dirty vs. middle vs. setup locations, R2 = 0.41, p = 

0.002) , whereas facility was not associated with microbial community structure (i.e. facility 1 

vs. facility 2 vs. facility 3 vs facility 4, R2 = 0.14, p = 0.59). 



 

Fig 1. Microbial community composition measured by 16S rDNA sequencing shows 

significant differences between locations despite no differences in measured endotoxin 

levels. Relative abundance is plotted on the x axis, with each color representing a unique 

phylum, whereas location is plotted on the y axis. Fig 1a shows average relative abundance by 

location, Fig 1b shows relative abundance in each sample stratified by location. Although 

endotoxin levels were not significantly different between locations, statistically significant 

differences in community richness and relative abundance of Firmicutes (p = 0.006), 

Proteobacteria (p = 0.03), and Cyanobacteria (p = 0.04) were identified between locations. 

Fig 2. Principle coordinates analysis using weighted unifrac as the measure of dissimilarity 

shows that microbial community structure differs between locations in a facility rather 

than between different facilities. Microbial communities that are more similar will be closer 

together. Each color indicates a location within each facility (animal, dirty, middle, set up 

locations), while text represents each facility. Note that colors (indicating location) visually 

cluster together, not text (indicating facility). Statistical testing with permutational analysis of 

variance (PERMANOVA) indicates that location is a stronger predictor of microbial community 

structure (R2 = 0.41, p = 0.002) than facility (R2 = 0.14, p = 0.59).   

 

In order to determine the extent to which endotoxin levels can serve as a proxy for other 

measures of the microbial environment, we calculated the Spearman correlation between 

endotoxin levels and other microbial measures. We found a modest correlation between 

measured endotoxin and 16S rDNA copy number (Spearman ρ = 0.54, p = 0.09). Similarly, 



correlation between measured endotoxin levels and various measures of alpha diversity was 

modest as follows: Spearman ρ = 0.47, p = 0.14 for Observed OTUs; Spearman ρ = 0.46, p = 

0.15 for the Chao 1 index; Spearman ρ = 0.67, p = 0.02 for the Shannon index; Spearman ρ = 

0.59, p = 0.06 for the Inverse Simpson index. Notably, correlation between measured endotoxin 

and mouse allergen levels was low (Spearman ρ = 0.35, p = 0.30) 

For our second aim, we evaluated whether the work microbiome of workers had an impact on the 

human microbiome of workers, and whether the human microbiome of exposed workers in the 

dirty cage wash areas changed during a standard 8-hour work shift (see Table 2 for 

characteristics of workers). The work microbiome obtained from personal air sampling along 

with the nasal, oral, and skin microbiome of these ten workers is as depicted in S3 Fig. We used 

SourceTracker to identify the proportion of “contamination” in each worker’s oral, nasal, and 

skin microbiome attributed to the work microbiome of each participant. This was done for 

human samples collected both before and after a standard 8-hour work shift in the dirty location 

of the cage wash area (Fig 3). The average proportion of each worker’s pre-shift microbiome 

attributed to their work microbiome as a source was as follows: 0.1 ± 0.1% for the oral 

microbiome; 3.1 ± 1.9% for the nasal microbiome; 3.0 ± 1.5% for the skin microbiome. The 

average proportion of each worker’s post-shift microbiome attributed to their work microbiome 

as a source was as follows: 0 ± 0% for the oral microbiome; 3.7 ± 2.1% for the nasal 

microbiome; 14.1 ± 28.5% for the skin microbiome. The change in the proportion of the 

worker’s microbiome when comparing post- vs. pre- shift samples did not reach statistical 

significance (p = 0.14 for the oral microbiome, p = 0.41 for the nasal microbiome, and p = 0.23 

for the skin microbiome). 



Table 2. Characteristics of study participants. 

Characteristic Mean ± SD or N (%) 

Participants 10 
Age (years) 46.5 ± 11.9 
Men 10 (100%) 
Body mass index (kg/m2) 29.5 ± 7.6 
Years worked 10.4 ± 2.2 
Doctor diagnosis of asthma 3 (30%) 
Doctor diagnosis of hayfever 5 (50%) 
Lifetime nonsmoker 3 (30%) 
Current smoker 4 (40%) 
Pack-years 11.3 ± 3.6 
  
FEV1 (liters) 2.8 
% predicted FEV1 87.0 ± 15.3 
FVC (liters) 3.6 
% predicted FVC 85.6 ± 17.6 
FEV1/FVC < 0.70 2 (20%) 
+ Bronchodilator response 2 (20%) 
Exhaled nitric oxide (ppb) 19.4 ± 14.6 
  
Work-related symptoms 3 (30%) 
Cross-shift change in FEV1 (mL) a 40 ± 179.7 
Cross-shift change in exhaled nitric oxide (ppb) 2.8 ± 5.3 
a Two subjects had pre- or post-shift spirometry that did not meet ATS criteria for 
reproducibility and so were excluded from the analysis 

 

Fig 3. Proportion of human microbiome tracked to work environment as a source. Using 

SourceTracker [33], a Bayesian community-wide microbial source tracking algorithm, we 

estimated the proportion of the oral, nasal, and skin microbiome attributed to the work 

microbiome of each participant before (pre-shift, inner circle) and after (post-shift, outer circle) a 

standard 8-hour work shift in the dirty location of the cage wash area. 10 participants working in 

the dirty cage wash areas of the four facilities had human microbiome samples collected before 

and after their work shift; during their work shift, each wore personal air samplers to obtain 

measures of their work microbiome. For example, the proportion of subject 3’s skin microbiome 



attributed to his work microbiome increased from 6.2% (inner circle) to 93.2% (outer circle) 

after his work shift (column 3, row 3). Differences in the pre- and post-shift proportion of the 

oral, nasal, and skin microbiome did not reach statistical significance. 

Of note, there were no significant differences in community structure of the environmental 

microbiome in the dirty cage wash areas as measured by area samplers vs. personal samplers 

worn by the participants (R2 = 0.05, p = 0.95, see S4 Fig. for relative abundance of major phyla 

in area vs. personal samplers). 

Discussion 
We have demonstrated that in this study, unsurprisingly, endotoxin is not a reliable proxy for 

measures of microbial load assessed with quantitative PCR, and endotoxin is not a reliable proxy 

for microbial diversity as measured by 16S amplicon sequencing. Microbial community structure 

in these facilities is predicted by location within each facility rather than by facility, and likely 

reflects the specialized functions of each location. A non-zero proportion of the worker’s nasal 

and skin microbiome in these facilities can be traced to the worker’s environment as a source; 

though there were fluctuations in this proportion after as compared to before a work shift, these 

changes did not reach statistical significance. Taken together, these data suggest that it may be 

important to incorporate microbial DNA sequencing in future studies on occupational microbial 

exposure, as measurement of endotoxin alone is not a proxy for overall microbial quantity or 

identity. Occupational microbial exposures appear to influence the human microbiome of 

workers, and further research is required to determine if this has implications for health effects 

independent of microbial toxin exposure. 



To our knowledge, this is the first environmental study that has characterized the microbial 

environment of animal care facilities using 16S rDNA sequencing. Prior studies have identified 

high levels of endotoxin as well as mouse allergen in this work environment, [35] and found a 

correlation between endotoxin exposure and respiratory symptoms that is independent of 

allergen exposure. [35] Although we report lower mouse allergen and endotoxin levels than prior 

studies, the major determinant of the environmental microbiome in the animal rooms and dirty 

cage wash area is likely the presence of mice. The mouse gut microbiome is well characterized 

[36] and the major phyla present in the mouse gut are also those we report in the animal rooms 

and dirty cage wash areas, suggesting that our results will likely generalize to other mouse 

facilities. The middle cage wash area had a striking presence of Deinococcus Thermus, bacteria 

that tend to be resistant to environmental extremes. This may be related to the use of heated 

water (up to 180 degrees Fahrenheit) to wash the cages as they pass from the dirty to middle cage 

wash areas. The setup area had the highest relative abundance of Cyanobacteria when compared 

across locations. Cyanobacteria obtain their energy through photosynthesis, and while it may be 

unexpected that these bacteria would be present when all the mouse facilities surveyed were 

located in basements, we suspect the source of the Cyanobacteria is from the woodchip bedding 

used for the mouse cages, as the setup area is where the cleaned cages are filled with litter and 

food before autoclaving.  Because the function of each location within the mouse facility is 

different, it is not surprising that we found that differences in microbial structure between 

locations within a facility. 

There are few studies evaluating the effect of animal-related work on the human microbiome, 

though none have simultaneously measured both the environmental microbiome as well as the 

human microbiome in these occupational studies. Respiratory colonization of livestock workers 



by strain-specific MRSA has been described [37, 38]. A stool microbiome study was performed 

in poultry abattoir workers where stool was serially collected during the peak season of 

Campylobacter infection in chickens in Sweden. [14] Of 31 workers, 7 acquired Campylobacter, 

and furthermore there were significant changes in the gut microbiome of all workers over a 5-

month period, supporting the idea that work-related transmission of microbes to humans does 

occur. However, there was no control group in this study, making it difficult to disentangle 

seasonal effects from those due to occupational microbial exposures, and the environmental 

microbiome was not assessed, making it difficult to pinpoint the etiology for the observed 

changes in the gut microbiome.  

Surprisingly, few studies have directly compared endotoxin against qPCR of 16S rDNA copy 

number and 16S rDNA sequencing. Traditionally, occupational microbial exposures have most 

frequently been approximated with measurement of endotoxin, which is present only in gram-

negative bacteria [39]. Some investigators have assumed that high endotoxin levels can serve as 

a proxy for high total microbial exposures, or exposure to high microbial diversity [40]. Our 

study does not support this assumption. There is one study in settled dust from homes that has 

compared bacterial load using qPCR against measurement of endotoxin and found at best a 

moderate correlation between qPCR and endotoxin[41]; this is consistent with our findings. A 

recent study comparing endotoxin, 16S qPCR, and 16S rDNA sequencing in settled dust found 

inconsistent associations between these measures with asthma severity. [6] A low diversity of 

microbial exposure as measured by 16S rDNA sequencing was associated with decreased asthma 

symptoms, whereas bacterial concentration as measured by 16S qPCR was not associated with 

symptoms, and endotoxin exposure was associated with a trend towards increased asthma 



symptoms. This highlights the observation that each of these measures likely reflect a different 

aspect of microbial exposure, and are not interchangeable. 

There are mechanistic reasons for why it may be relevant for human health to identify microbes 

in the environment using sequencing rather than only measuring microbial toxin quantity. The 

measurement of microbial exposures in most epidemiologic studies have focused on the 

measurement of endotoxin. The most widely used assay for endotoxin is the Limulus amebocyte 

lysate assay, [42] an assay based on the principal that endotoxin initiates an enzymatic clotting 

cascade in blood of Atlantic horseshoe crabs. While a sensitive assay for the detection of 

endotoxin, it is unclear that potency measured in this way translates to human responses.[43] A 

recent publication demonstrated that endotoxin from different bacterial species elicits opposing 

responses in humans. Endotoxin from Escheria coli elicited a robust cytokine response in human 

peripheral blood mononuclear cells, while endotoxin from Bacteroides dorei inhibited the ability 

of Escheria coli endotoxin to stimulate a cytokine response. [44] This example highlights the 

importance of determining microbial identity rather than just measuring toxin levels when 

determining associations with human health.  

A strength of our study is the direct comparison of three measures of microbial exposure in an 

occupational environment, as well as the simultaneous measure of the environmental and human 

microbiome. We did not have evidence of high abundance contamination, a common problem in 

microbiome studies.[45] The use of each worker as their own control is a strength; repeated 

measures of workers over a short period of time (an 8 hour work shift) limits confounding by 

seasonal factors, although we did not control for variability from short term environmental 

influences such as food intake that occurred during this time period.  For both human and 



environmental samples, we used methods for sample collection, DNA extraction, sequencing, 

and initial data processing that reflects methods used in the Human Microbiome Project [21] and 

Earth Microbiome Project {Gilbert, 2014 #221}, allowing comparability with other studies. Our 

study has a few limitations.  Our sample size was small, which limits our power to detect 

differences between environmental samples and between pre- and post-shift human samples. 

Because of our small sample size, this study was not designed to link measures of microbial 

identity or microbial community structure to health effects. Although we used each worker as 

their own control to detect changes in their microbiome over the course of a work shift, we did 

not have an unexposed control group to define what is normal variation in the human 

microbiome. However, our finding that a proportion of the source of even the pre-shift skin and 

nasal microbiome of workers can be traced to their work environment offers preliminary 

evidence for the concept that the adult human microbiome can be impacted by microbes in their 

work environment. Perhaps the major limitation of our study is that due to the short time period 

over which workers were tested, we do not know how durable the changes in the human 

microbiome from work exposures are. Our study design using prevalent hire workers tested over 

a work shift was due to feasibility; on average, less than one new worker is hired annually within 

these four facilities, and most new hires have previously worked in animal care, preventing us 

from using newly hired workers to study the long-term effects of microbial exposure from 

animal care work. Despite these limitations, we do demonstrate that a proportion of each 

worker’s pre-shift skin and nasal microbiome can be traced to their work environment as a 

source, and show that endotoxin cannot serve as a proxy for microbial DNA qPCR and 

sequencing.  A prior randomized experimental study in which healthy adults ingested a specific 

strain of Lactobacillus for one week found persistent increases in the stool of this strain three 



weeks after the last exposure.[46] This suggests that it is possible that introduction of new 

environmental microbes can have persistent effects on a healthy adult human microbiome. We 

hope to address these shortcomings in future work, but our study raises important questions 

about how work-related microbial exposures may alter colonization patterns of the human 

microbiome through a non-toxin mediated mechanism. 

In summary, we demonstrate that the microbial structure of academic animal care facilities varies 

significantly by location rather than by individual facility; these differences are not well 

approximated with measurement of endotoxin levels, limiting our ability to extrapolate from 

prior occupational studies relying only on endotoxin for exposure assessment. We find evidence 

that a non-zero proportion of the nasal and skin microbiome of workers can be traced to their 

work environment as a source. This opens up the possibility that work-related microbes may 

impact health through a mechanism other than microbial toxin exposure. Further research on the 

long-term stability of changes in the adult human microbiome due to occupational microbial 

exposure, the factors that impact susceptibility to colonization by microbes in the work 

environment, and the health effects of the workplace microbiome, should be considered. This 

approach has the potential to change how we set safe microbial work exposure standards in the 

future. 
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Supporting information  

 

S1 Fig. Representative pictures of each location within an animal care facility. A typical 

animal room and dirty, middle, and set up areas of cage wash are depicted. Animal rooms are 

where the mice are housed. Within the cage wash areas, the dirty location is where litter and food 

pellets of used cages are dumped, and cages subsequently placed in an industrial washer. In the 

middle location, washed cages are set in racks to dry. In the setup location, dried cages are filled 

with clean litter and food.  

S2 Fig. Rarefaction curves (a) and number of reads by sample type (b). Color of bars 

indicates sample type. 

S3 Fig. Microbiome of work environment obtained from personal air sampling as well as 

the oral, nasal, and skin microbiome of 10 workers in the dirty location of the four animal 

care facilities. Relative abundance depicted at the phylum level. 

S4 Fig. Microbial community composition comparing area vs. personal samplers in dirty 

cage wash area. Relative abundance depicted at the phylum level. Statistical testing with 

permutational analysis of variance (PERMANOVA) showed no significant differences in 

community composition of the environmental microbiome in the dirty cage wash areas as 

measured by area samplers vs. personal samplers worn by the participants (R2 = 0.05, p = 0.95). 

S1 Table. Results from field blank. A pair of field blank samples using filters from the same 

batch as actual samples, but was not connected to a sampling pump, underwent endotoxin 

analysis and 16S sequencing. Endotoxin levels were below the limit of detection in the field 

blank. 17 reads were identified on 16S sequencing. 



S2 Table. OTUs that are differentially abundant in the environmental microbiome between 

locations of animal care facilities. Hierarchical multiple testing was performed on variance 

stabilized data from area air samples to identify taxa that were differentially abundant across 

locations within a facility, adjusting for multiple testing. 

 


