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John Y. Campbell and Pierre Perron

PRINCETON UNIVERSITY AND NBER/PRINCETON UNIVERSITY AND
CRDE

Pitfalls and Opportunities: What
Macroeconomists Should Know about
Unit Roots*

1. Introduction

The field of macroeconomics has its share of econometric pitfalls for the
unwary applied researcher. During the last decade, macroeconomists
have become aware of a new set of econometric difficulties that arise
when one or more variables of interest may have unit roots in their time
series representations. Standard asymptotic distribution theory often
does not apply to regressions involving such variables, and inference
can go seriously astray if this is ignored. In this paper we survey unit
root econometrics in an attempt to offer the applied macroeconomist
some reliable guidelines. Unit roots can create opportunities as well as
problems for applied work. In some unit root regressions, coefficient
estimates converge to the true parameter values at a faster rate than they
do in standard regressions with stationary variables. In large samples,
coefficient estimates with this property are robust to many types of
misspecification, and they can be treated as known in subsequent empiri-
cal exercises. On the other hand, such estimates may have poor finite-
sample properties. A second goal of this paper is to indicate how applied
researchers can exploit unit root econometric opportunities in finite sam-
ples of the size typically encountered in macroeconomics.

The early literature on unit roots concentrated on the univariate prop-
erties of macroeconomic time series. The seminal paper of Nelson and

*This paper was presented at the NBER Macroeconomics Conference, Cambridge, MA,
March 8-9, 1991. We are grateful to Kevin Carey for research assistance, and to Olivier
Blanchard, Jon Faust, Bruce Hansen, David Hendry, Seren Johansen, Rick Mishkin, Joon
Park, and James Stock for helpful comments on the first version.
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Plosser (1982), for example, carried out tests for unit roots in 14 individ-
ual time series. There is a great deal of subsequent work in this spirit,
concerned, for example, with the persistence of fluctuations in real GNP
(Campbell and Mankiw, 1987; Christiano and Eichenbaum, 1989; Coch-
rane, 1988; Perron, 1989a). We begin this paper with a thorough review
of univariate unit root econometrics in Section 2.

It is characteristic of macroeconomics, however, that different time
series are related by identities or behavioral models; therefore we empha-
size multivariate unit root methods in this survey. Consider for example
the system of five variables (m,, y,, p,, i, b)), where m, is the log nominal
money stock, y, is log nominal output, p, is the log price level, i, is the
short-term nominal interest rate, and b, is a long-term nominal bond
yield. The variables in this system can be combined to form an ex post
real interest rate r, = i, — Ap,, the nominal interest rate less the inflation
rate. Now suppose that one wishes to analyze the unit root properties of
the nominal interest rate, the inflation rate, and the real interest rate.
Because of the identity linking these variables, if any two of them are
stationary then the third variable must also be stationary. Univariate unit
root tests cannot take account of this fact, which complicates inference.

The five variables listed above may also be linked together by behav-
ioral relationships. Most practical work in macroeconometrics has the
objective of estimating these relationships and testing hypotheses about
them. Three obvious examples are as follows. First, one may wish to
estimate a money demand function by regressing the log nominal
money stock on the log price level, log nominal output, and the nominal
interest rate, or by regressing the log real money stock on log real output
and the nominal interest rate. Second, one may wish to test for Granger
causality from money to output (either in nominal or real terms), in
systems that may or may not include the nominal interest rate. Third,
one may wish to test a hypothesis about the relationship between short-
term and long-term nominal interest rates, such as the expectations
theory of the term structure. It turns out that each of these empirical
exercises is importantly affected by unit root econometric issues. At the
end of this survey we return to these examples and show how the
principles we discuss apply to them.

The organization of the paper is as follows. After the univariate discus-
sion in Section 2, we review multivariate methods in Section 3. Both the
univariate and multivariate sections of the paper first discuss alternative
representations of time series with unit roots, and then discuss testing
procedures. Section 3 also discusses in some detail how one can estimate
cointegrated models. We do not attempt to provide a complete theoretical
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review and we do not give full details of the various procedures.! Rather
we discuss intuitively the main econometric procedures that are currently
available and their relative strengths and weaknesses. We give extensive
references to sources where further details can be found. We also occasion-
ally state some “rules” to help structure the discussion. These should be
viewed as useful guidelines or rules of thumb, and not as formal proposi-
tions. Throughout the paper we emphasize two themes. First, the proper
handling of deterministic trends is a vital prerequisite for dealing with
unit roots. Second, there are serious conceptual difficulties in distinguish-
ing unit root processes from stationary processes in finite samples. De-
spite this fact, we argue that unit root econometric methods have many
practical uses.

2. Review of Univariate Procedures and Issues

2.1 REPRESENTATION OF A TIME SERIES WITH AND WITHOUT A
UNIT ROOT

It is often useful to think of a macroeconomic time series y, as the sum of
several components with different properties. We begin by writing

v.=1TD, + Z, (2.1)

Here TD, is a deterministic trend in y, and Z, is the noise function or
stochastic component of y,. The unit root hypothesis concerns the behav-
ior of the noise function, but the specification of the deterministic trend
is crucial in testing this hypothesis. In principle a wide variety of specifi-
cations are possible, but the leading postulate is that TD, is linear in time
t, that is

TD, = x + &t. 2.2)

We shall work primarily with the specification (2.2), but below we discuss
some alternatives that have recently been proposed. For simplicity, we
assume that the noise function Z, can be described by an autoregressive-
moving average process:

A(L)Z, = B(L)e, 2.3)

1. Recent theoretical surveys include Dickey, Bell, and Miller (1986), Perron (1988), Diebold
and Nerlove (1990), Dolado, Jenkinson, and Sosvilla-Rivero (1990), and Phillips and
Loretan (1991). Stock and Watson (1988b) is a particularly readable introduction with a
macroeconomic perspective.
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where A(L) and B(L) are polynomials in the lag operator L of order p and
q, respectively, and e, is a sequence of i.i.d. innovations.2 The noise
function Z, is assumed to have mean zero, as the deterministic trend TD,
includes the mean of y,. We also assume that the moving average polyno-
mial B(L) has roots strictly outside the unit circle. Equation (2.3) summa-
rizes the univariate dynamics of the process Z,. In this section we refer to
the system (2.1)-(2.3) as a data-generating process (DGP) even though it
may simply summarize the univariate implications of a more complex
multivariate system.

We can now distinguish two alternative models for y,. In the trend-
stationary model the roots of A(L), the autoregressive polynomial, are
strictly outside the unit circle so that Z, is a stationary process and y, is
stationary around a trend. In the difference-stationary model, Z, has one
unit autoregressive root and all other roots strictly outside the unit circle.
In this case AZ, = (1 — L)Z, is a stationary process and Ay, is stationary
around a fixed mean. The unit root hypothesis is that y, is difference-
stationary. The trend-stationary and difference-stationary models are of-
ten referred to as zeroth-order and first-order integrated models, or 1(0)
and I(1) models, respectively.?

To understand the meaning of the unit root hypothesis, it is useful to
further decompose the noise function Z, into a cyclical component C, and
a stochastic trend TS,.4 The cyclical component is assumed to be a mean-
zero stationary process. The stochastic trend incorporates all random
shocks that have permanent effects on the level of y,. The sum of the
deterministic trend TD, and the stochastic trend TS, is the overall trend.
It is common in empirical macroeconomics to try to isolate the cyclical
component C, by subtracting from y, the trend components TD, and T8,.

In the trend-stationary model, the decomposition of Z, into stochastic
trend and cycle is trivial, because Z, is already assumed to be stationary
so it satisfies the conditions assumed for the cycle C,. In this case the
stochastic trend TS, is zero and the cycle C, equals the noise Z,. In the
difference-stationary model, things are more complicated. When the

2. One could, of course, allow more general processes to characterize the noise function,
such as “mixing type conditions,” which permit some degree of heterogeneity and a
richer class of serial correlation (see, e.g., Phillips, 1987; Phillips and Perron, 1988).
However, the issues involved are easier to illustrate using the traditional ARMA(p,q)
framework.

3. For simplicity we focus our discussion on the case of I(0) versus I(1) variables, which is
the main case of interest to macroeconomists. This excludes the possibility of multiple
unit roots, but most of the issues we discuss apply equally well to that case. For a
general testing procedure allowing an arbitrary number of unit roots see Pantula (1989)
and Dickey and Pantula (1987).

4. Note that the possibility of stochastic seasonal nonstationarity is beyond the scope of
this paper.
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polynomial A(L) in (2.3) has a unit root, we can write A(L) = (1 — L)A*(L)
where A*(L) has roots strictly outside the unit circle. The first difference
AZ, follows the stationary ARMA process A*(L)AZ, = B(L)e,. Following
Beveridge and Nelson (1981), we can construct the following decomposi-
tion. Let Y(L) = A*(L)'B(L) be the moving-average representation of the
first difference of Z,. The notation (1) denotes the sum of the moving-
average coefficients. We define ¢*(L) = (1 — L) '[¢(L) — ¥(1)], and find
that AZ, satisfies AZ, = [y(1) + (1 — L)y*(L)le,. Then by applying the
operator (1 — L)™' we can write

Z, =TS + C, = ¢(1)S, + ¢*(Le,, (2.4)

where S, = Z/_,¢;is a zero mean random walk. Here the trend function for
the variable y, contains not only the deterministic trend TD,, but also a
stochastic component TS, = ¢(1)S,, which affects the intercept of the
trend in each period. This stochastic trend is obtained from the sum of
the moving average coefficients for AZ,, which is equivalent to the long-
run effect of a unit shock e, on the level of the noise Z,. The noise or
cyclical component is C, = ¢*(L)e,, constructed to have no long-run effect
on the level of Z,.

The decomposition (2.4) can be used to develop measures of the impor-
tance of the stochastic trend TS, for the behavior of the variable y,. Camp-
bell and Mankiw (1987) propose that the coefficient (1) is a natural
measure of persistence in y,, because it is the ratio of the long-run effect
of an innovation ¢, to the immediate effect. When y«(1) > 1, the long-run
impact of a univariate shock to y, is greater than the immediate impact;
when /(1) < 1, on the other hand, shocks tend to die out. The case
where y, is a random walk has /(1) = 1, while the trend-stationary model
for y, is the limiting case where (1) = 0. Cochrane (1988) proposes a
related measure of persistence, which is the ratio of the variance of
innovations in TS, to the variance of innovations in y,. It is straightfor-
ward to show that this variance ratio can be written as y(1)’0%/03,. The
quantity (1) is also closely related to the spectral density of the change
in y,, evaluated at frequency zero. We use the notation 4,,(0) to denote
this spectral density. Then we have h,,(0) = ¥(1)’d?, the numerator of
Cochrane’s variance ratio.

The trend-stationary and difference-stationary processes described
above can be thought of as reduced form models. It is possible to derive
these processes as reduced forms of a structural unobserved compo-
nents model (see Harvey, 1985; Clark, 1987,1989; Watson, 1986; among
others). Consider, for example, an unobserved components model that
represents y, as the sum of a random walk with drift and an independent
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stationary process. When the innovation variance of the random walk is
zero, y, is trend-stationary. More generally, the reduced form of this
model is a difference-stationary process with constraints (see Clark,
1987; Watson, 1986). Of particular relevance is the constraint that ¢(1) in
(2.4) is less than 1, i.e., that the long-term effect of innovations is no
greater than the immediate effect. (Of course this constraint can be re-
laxed in more general unobserved components models.)

More recently, various nonlinear structural models have been pro-
posed. These yield nonlinear reduced forms rather than the linear trend-
stationary or difference-stationary reduced forms discussed so far. They
try to capture the idea that two fundamentally different types of shocks
are present. Some, which might be called “big shocks,” occur infre-
quently and affect the trend function of the series in a permanent way.
The others, call them “regular shocks,” occur every period and may or
may not affect the level of the series permanently. The unit root issue, in
this context, centers on whether the “regular shocks” have a permanent
effect on the level of the series.

One such class of models has been proposed by Hamilton (1989). His
structural model makes y, the sum of a nonlinear trend function and a
linear ARIMA process with a root on the unit circle. The trend function
is a random walk with a drift that switches between low and high values
according to a first-order Markov process. Lam (1990) has derived a
computational algorithm for a slightly more general version of this
model where a unit root is not imposed a priori on the linear part of the
process. Unfortunately technical difficulties are such that no procedures
are yet available to test whether the linear part of the process does have a
unit root or not.

Perron (1989a) has suggested that a time series structure with very
infrequent changes in slope can be a useful approximation in empirical
applications, indeed a simple one-time change in slope can be enough to
characterize many series of interest. By restricting the number of changes
in slope a priori, one can circumvent the technical difficulties with unit
root tests in the Hamilton-Lam framework and obtain asymptotically
valid tests of the null hypothesis that the linear part of the process con-
tains a unit root. In this restrictive, but empirically useful, framework the
reduced form of the series is described by (2.1) with the deterministic
component given by TD, = k + 8yt + &,(t — Tg) - 1(t > T), where 1(-) is the
indicator function and Ty is the time of the change in the slope of the trend
function. If a unit root is present in Z, the trend function also contains a
stochastic component in a manner similar to the usual difference-
stationary process.

A similar model can be derived for series with infrequent changes in
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intercept. Again, it was argued in Perron (1989a,1990a) that such a
model with a single change can be a useful approximation in practice. In
this restricted framework, it becomes possible to test the unit root hy-
pothesis for the linear part of the process by specifying the deterministic
component of the trend function as

TD, = Kk, + Kk,1(t > Ty) + ot. (2.5)

Thus the reduced form models described in Perron (1989a) can be viewed
as approximations to structural models where infrequent changes in the
intercept and/or slope are modeled stochastically as in Hamilton (1989) or
Chen and Tiao (1990). The implicit assumption is that, in the given data
set of interest, there is only one such “big shock.” Of course, with other
types of series or a longer span of data, it may be necessary to allow for
more than one change.

2.2 TESTING FOR A UNIT ROOT

We begin by considering the simplest case where the noise component Z,
(the series y, less its deterministic trend) is an AR(1) process with no
moving average component, i.e., Z, = ¢Z, ; + e, This process can be
rewritten as

AZ, = wZ, , +e, (2.6)

where 7 = ¢ — 1. Here the null hypothesis of a unit root is given by 7 =
0, while trend-stationarity implies that 7 < 0. This simplified framework
is not realistic for most empirical applications, but it makes many of the
issues easier to discuss. Later we outline how the procedures are modi-
fied if allowance is made for additional serial correlation.

2.2.1 Basic Tests of the Null Hypothesis of a Unit Root In testing the unit
root hypothesis, it is important to draw a clear distinction between the
maintained DGP and the regression equations that are used to test the
null hypothesis. An important issue that often causes confusion is the
appropriate treatment of the deterministic trend in y, in these regression
equations.

We use the notation DV, (deterministic variables) for the set of variables
that appears in the deterministic trend under the maintained DGP. In
most applications DV, = {1}, a constant, or DV, = {1, t}, allowing a first-
order polynomial in t. However DV, can be more complicated; for exam-
ple, the nonlinear structural model with a deterministic change in the
intercept at date T has DV, = {1, ¢, 1(t > Tj)}. Since we are interested in
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the properties of the noise function, a natural strategy is first to
“detrend” the series and analyze the time series behavior of the esti-
mated residuals. We use the notation 7, for the residuals of a projection
of y, on a set of deterministic regressors DR,. The unit root hypothesis can
be tested by estimating the pair of regressions:

y, = 7DR, + ¥, 4y, = mj,_, + u, (2.7)

and using the t-statistic for testing 7 = 0, denoted t,. The natural choice
of regressors DR, is just the set of variables DV, that appears in the
deterministic trend under the maintained data generating process; how-
ever we discuss below what happens when DR, differs from DV,.

When the deterministic trend is linear in time (DV, = {1} or {1,}), this
two-step procedure will be asymptotically equivalent to a conventional
one-step procedure where deterministic regressors DR} are included in
the autoregression,

Ay, = 7'DR} + 7y, , + u, (2.8)

and where DR} = DR,. The regressors DR} must include all the elements
of DR, for this asymptotic equivalence to hold. In particular, consider the
case where DV, = DR, = {1,t}. The one-step procedure will be asymptoti-
cally equivalent to the two-step procedure only if the regressors DR} in
(2.8) include the trend t. The coefficient on the trend is —&w, which is
zero under the null hypothesis of a unit root but is nonzero under the
alternative hypothesis that y, is trend-stationary. Thus the trend t must
be included to enable the regression equation (2.8) to nest both the null
hypothesis and the alternative hypothesis.

When the deterministic trend function TD, is nonlinear, the relation-
ship between the one-step procedure (2.7) and the two-step procedure
(2.8) is more complicated. In the case of a trend with a single change in
intercept as described in (2.5), where DV, = {1, t, 1(t > Ty)}, the two-step
procedure with DR, = DV, is equivalent to the one-step procedure with
DR} = {1, t, 1(t > Tg), D(T}),}, where D(Ty), is one for t = Ty + 1 and zero
otherwise. The extra regressor D(Tg), must be included in the one-step
procedure to allow a proper nesting of the null and alternative hypothe-
ses, but this is not necessary in the two-step procedure. In the case of a
trend with a change in slope, the two-step and one-step procedures may
not be equivalent even asymptotically. For simplicity, in what follows we
discuss the properties of two-step procedures, which are also the proper-
ties of one-step procedures in the usual case of a linear deterministic
trend.
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Once deterministic regressors have been chosen, we can test the impli-
cations of the unit root hypothesis for the regressions (2.7) or (2.8). We
shall concentrate on the behavior of the t-statistic for testing 7 = 0 in
(2.7) or (2.8) even though it is not the only statistic of interest in this unit
root context. For example, the “normalized bias” T7 also provides a
valid test statistic as it is independent of nuisance parameters.>

The first important point to note is that the asymptotic distribution of
t., under the null hypothesis of a unit root, depends on the deterministic
terms included as regressors. Assume for the moment that the included
deterministic regressors contain at least all the deterministic components
in the data generating process for y,.

Rule 1: Suppose that the deterministic regressors DR, used to construct i,
in (2.7) contain at least the deterministic variables DV, included in the
maintained data generating process. Then under the null hypothesis of a
unit root, the asymptotic distribution of ¢, is nonnormal and varies with
the set DR,. In the case where the maintained DGP has a linear trend, the
same result holds for regression Equation (2.8) when the deterministic
regressors DR} include at least the variables DV,.

Critical values for the asymptotic distribution of ¢, can be found in the
following sources for different sets of included deterministic regressors.
For DR, = {0}, {1} or {1, t}, see Fuller (1976); for DR, ={1,t, #, . . . ,t;p =
2, ..., 5}, see Ouliaris, Park, and Phillips (1989); for DR, = {1, 1(t > Tj)},
see Perron (1990a); for DR, = {1, t, 1(t > Tg)}, {1, t, (t — Tp)1(t > Tp)} and
{1, t, 1(t > Ty), t 1(t > Ty)}, see Perron (1989a).6 The basic reason for the
dependence of the null asymptotic distribution on the included deter-
ministic regressors is the fact that the specified trend function needs to
be estimated. If the true coefficients of the DGP were known, only a
single set of critical values would be needed, namely that where DR, =
{0}, the null set. The tabulated critical values also have important implica-

5. Asymptotic critical values of the normalized bias can be found in the same sources given
below for the critical values of t.. The normalized bias forms the basis for a transformed
test statistic proposed by Phillips and Perron (1988) and discussed below. Dickey and
Fuller (1981) consider individual ¢-statistics on the coefficients of the deterministic com-
ponents; these are, however, of little practical use because their null distribution de-
pends on nuisance parameters. More useful are likelihood ratio statistics considered by
Dickey and Fuller such as a test for the joint hypotheses that 7 = 0 and & = 0in (2.8) with
DR, = {1,t} as in (2.2). However simulation experiments reported in Dickey and Fuller
(1981) suggest that these statistics have lower power than .

6. Finite sample and asymptotic critical values are also available for tests of the unit root in
models with a structural change in intercept and/or slope when the date of the change is
assumed unknown; see Banerjee, Lumsdaine, and Stock (1990), Perron (1990b), Perron
and Vogelsang (1990), and Zivot and Andrews (1990).
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tions for the power of unit root tests, that is, the probability that the tests
reject the null hypothesis of a unit root when a trend-stationary alterna-
tive hypothesis is true. We summarize these implications in the follow-
ing rule.

Rule 2: Under the null hypothesis of a unit root, the left-tailed critical
values of the asymptotic distribution of ¢, increase in absolute value with
the number of included deterministic regressors.

Things are different when the set of included deterministic regressors
does not contain all the components of the deterministic trend. Of par-
ticular interest is the following.

Rule 3: Suppose that DR, omits a variable in DV, that is growing at a rate
at least as fast as any of the elements of DR,. Then under the null
hypothesis of a unit root, the statistic ¢, in (2.7) can be normalized in
such a way that its asymptotic distribution is standard normal. In the
case where the maintained DGP has a linear trend, a similar result de-
scribes the set of regressors DR} and the distribution of ¢, in the one-step
regression (2.8).

Rule 3 applies most obviously to the case where a nonzero linear trend
is present in the DGP but is omitted from the deterministic regressors
DR, (Perron and Phillips, 1987; West, 1988). It also applies when the DGP
contains higher-order polynomial trends that are omitted from the re-
gression (Sims, Stock, and Watson, 1990).

It is important not to misinterpret Rule 3. The rule seems at first to
suggest that one could increase the power of unit root tests by omitting
certain deterministic regressors that are present in the data generating
process. Consider for instance using the t-statistic for testing 7 = 0 in a
regression without a trend in the case where the DGP is a unit root
process with drift. In this case the asymptotic distribution is normal and
the critical values are smaller (in absolute value) than the nonnormal
asymptotic critical values obtained when a trend is included as a regres-
sor. However there are two reasons why this approach is misguided.
First, the finite sample distribution of ¢, is not invariant to the values of
the parameters of the trend and for small values the normal approxima-
tion may be inadequate. Second, and more important, this procedure
leads to tests whose power goes to zero as the sample size increases.
This is an extreme form of inconsistency (an inconsistent test being
defined as one whose power against fixed alternatives does not go to
one as the sample size increases). This is stated in the following rule.
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Rule 4: (1) Assume that DR, omits a variable in DV, that is growing at a
rate at least as fast as any of the elements of DR,. Then the power of the
statistic , in (2.7) goes to zero as the sample size increases. (2) Suppose
that DR, fails to include a variable in DV, that is nontrending (e.g., a
mean or a change in mean). Then ¢, in (2.7) is a consistent test but the
finite sample power is adversely affected and decreases as the coefficient
on the omitted component increases. Similar results apply to the set of
regressors DR} in the one-step procedure (2.8).

It is best to illustrate these results with a few examples. For part (1),
consider first the case where the DGP is a stationary process around a
deterministic trend function of the form TD, = k + &t and only a
constant is included as a deterministic regressor. This case is discussed
in Perron (1988). Now consider applying the regression equation Ay, =
¢ + my,_, + e. If the DGP contains a trend component, the only way to
fit this trend is to have 7 = 0, in which case c becomes the coefficient &
on the trend.” In a similar way, if the DGP specifies a trend function
with a changing slope, a test of the unit root constructed using only a
constant and a time trend as deterministic regressors will yield an
inconsistent test. For an example of part (2), suppose no deterministic
regressors are included but the DGP specifies that y, has a nonzero
mean, then the power of the test will decrease to zero as the mean
increases (in absolute value). Similarly, if the DGP specifies a change in
the intercept of the trend function at some date and no regressors are
included to account for it, the power of the test will decrease as the
magnitude of the change in mean increases.

Rule 4 shows the importance of including as many deterministic re-
gressors as there are deterministic components in the trend function of
the data-generating process. Otherwise the test will at best lose finite-
sample power or at worst have power that goes to zero as the sample
size increases. On the other hand, it is desirable not to include extrane-
ous deterministic regressors. The following rule states the general behav-
ior when extraneous regressors are included.

Rule 5: Suppose that t; is constructed using a set of deterministic regres-
sors, DR,, that includes at least all the deterministic components under
the relevant DGP. The power of a test of the unit root hypothesis against
stationary alternatives decreases as additional deterministic regressors
are included.

7. Kleidon (1986) runs unit root tests on aggregate earnings and dividends omitting a time
trend. These tests are an example of this problem in practice.
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The statement in rule 5 is partially justified by the statement in rule 2
that the critical values increase (in absolute value) with the number of
extraneous deterministic regressors. However, this must be counterbal-
anced by the fact that, in finite samples, there is a downward bias away
from zero in the estimate of 7 and this bias increases as the number of
extraneous deterministic regressors increases. The justification for the
statement in rule 5 comes from various published and unpublished simu-
lation studies (see, e.g., Schwert, 1989; Dejong, Nankervis, Savin, and
Whiteman, 1990a).

Rules 4 and 5 suggest that care must be exercised in choosing the
appropriate deterministic regressors to include to have tests with reason-
able power properties. When it is not clear which set of deterministic
regressors to include, a sequential testing procedure may be useful. Such
a sequential testing strategy is described in Perron (1988) for the case
where the class of trend functions under the DGP includes either no
component, a constant, or a constant and a trend. Briefly, it was argued
in that paper that a proper testing strategy should start from the most
general trend specification (in that context, a first-order trend polyno-
mial) and test down to more restricted specifications. In the more gen-
eral case where the deterministic trend component is allowed to contain
more than a simple first-order polynomial in time, such a sequential
testing procedure cannot yet be applied given that the distribution
theory for the relevant statistics has not been derived. Experimentation
with various trend specifications should be guided by the following
general rule, which summarizes our discussion of deterministic compo-
nents.

Rule 6: A nonrejection of the unit root hypothesis may be due to
misspecification of the deterministic components included as regressors.

2.2.2 Issues Concerning Power and Frequency of the Data Applied research-
ers are often faced with choices among different types of data set for a
given time series. This can occur, in particular, when data are available at
different sampling frequencies for different lengths of time. For in-
stance, it is common to have quarterly observations for the period after
World War II, while monthly observations may be available starting in
the early 1960s. On the other hand, data covering longer horizons are
often available only at an annual frequency. An annual data set might
typically contain around 100 observations, while a quarterly data set
might contain more than 160 and a monthly one over 300. It is then
natural to ask which data set would allow the greatest discriminating
power. Is a greater number of observations better in terms of power?
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It turns out that for tests of the unit root hypothesis versus stationary
alternatives the power depends very little on the number of observations
per se but is rather influenced in an important way by the span of the
data. For a given number of observations, the power is largest when the
span is longest. For a given span, additional observations obtained using
data sampled more frequently lead only to a marginal increase in power,
the increase becoming negligible as the sampling interval is decreased
(see Shiller and Perron, 1985; Perron, 1990c).® In most applications of
interest, a data set containing fewer annual data over a long time period
will lead to tests having higher power than if use was made of a data set
containing more observations over a short time period. These results
show that, whenever possible, tests of the unit root hypothesis should
be performed using annual data over a long time period. This conclusion
is reinforced by the fact that seasonal adjustment procedures often create
a bias toward nonrejection of the unit root hypothesis (see Ghysels and
Perron, 1990; Jaeger and Kunst, 1990).

On the other hand, long historical data series may pose other prob-
lems. First, it may be the case that the quality of historical data is ques-
tionable and that the early methods of construction spuriously induce a
bias against one or the other hypothesis. For instance, Jaeger (1990)
argues that before World War II the method of linear trend interpolation
was common and may induce a bias in favor of rejecting the unit root
hypothesis. Second, using a long sample of data increases the possibility
that the series of interest is affected by a major structural change in the
process characterizing either the trend function or the noise component.
The presence of such a structural change would bias the test in favor of
the unit root hypothesis. Hence, though using a data set over the longest
period possible is desirable in terms of power properties, care must be
taken in interpreting the results.

2.2.3 Extensions to Processes with Additional Correlation We now consider
extensions that are necessary when allowance is made for possible addi-
tional serial correlation in the noise component of the DGP. We consider
the case where the noise function Z, obeys the ARMA(p,q) process (2.3),
A(L)Z, = B(L)e, rather than the AR(1) model (2.6). The points made
above remain valid in this more general setting but a new issue arises,

8. Perron (1989b, 1990c) also considers testing the random walk hypothesis using a test of
randomness applied to the first-differences of the data. Such a test is commonly used in
finance. He shows that such a test has a power function that is dominated by unit root
tests on levels. Also the power decreases to the size of the test as the number of
observations increases with a fixed span of data. Hence in this case too many observa-
tions destroy the power of the test.
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namely that the asymptotic distribution of the statistic ¢, in first-order
autoregressions such as (2.7) or (2.8) depends on the correlation struc-
ture of the data. Hence, modifications are necessary to get rid of this
dependency on nuisance parameters. Two approaches seem natural, a
parametric and a nonparametric one.

Dickey and Fuller (1979) and Said and Dickey (1984) consider a para-
metric correction motivated by the case of a pure AR(p) process, i.e.,

A(L)Z, = e, where A(L) =1 —a,L — - - - —a,L”. In this case, we can write
AZ, = 7Z,_ , + 2,’-;%7]AZ,_]-, where 7 = 3¥_a, — 1 is the difference between
the sum of the autoregressive coefficients and one, while y, = —2F_;, a;.

As before, the noise component Z, has a unit root if 7 = 0. The regres-
sion equation (estimated by OLS) then takes the form

¥, = 7DR, + 7, 4ay, = my,_ + 2;;171’4?"1' +u, (2.9)
or
Ay, = 7DR} + my,_, + Z5,y4y,; + u, (2.10)

where k = p — 1. Here DR, and DR} are vectors of deterministic regres-
sors as discussed above. In the case of a pure AR(p), the asymptotic
distribution of ¢, obtained from (2.9) or (2.10) is the same as the asymp-
totic distribution of ¢, obtained using a first-order autoregression with
AZ, = wZ,_, + e, In the more general case where the noise component is
an ARMA(p,q), Said and Dickey (1984) suggest that the process can be
approximated by a high-order autoregressive process, in which case the
regression specifications (2.9) and (2.10) remain appropriate. The techni-
cal condition for such a procedure to remain asymptotically valid is that
the order of the estimated autoregression, k, increases to infinity at a
suitable rate as the sample size increases to infinity.

In practice, the choice of the truncation lag parameter k is an issue.
First, even in the pure AR(p) case, the order p is usually an unknown
variable. In the general ARMA(p,q) case, the theoretical conditions for
the asymptotic validity of the procedure are not informative enough to
guide any choice in finite samples. This problem is of importance be-
cause it is often the case that the outcome of the test depends on the
particular choice of this truncation lag parameter. Several factors may
explain such a sensitivity. First, too few lags may adversely affect the size
of the test. Second, the introduction of too many lags may reduce power
(because of more parameters being estimated and a reduced number of
effective observations, given the need for additional initial conditions).
Finally, as k changes, the initial conditions also change. This last factor
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may be of importance given the noninvariance of the power function of
the statistics to the initial conditions (see, e.g., DeJong, Nankervis,
Savin, and Whiteman, 1990b). These factors point to the importance of
choosing the truncation lag parameter judiciously. The choice of a fixed
k, independent of the data, is likely to be inappropriate. The following
data-dependent procedure is easy to implement and is likely to yield
tests with better size and power properties.

SUGGESTED PROCEDURE TO SELECT k*  Start with some upper bound on k,
say k. chosen a priori. Estimate an autoregression of order k.. If the
last included lag is significant (using the standard normal asymptotic
distribution), select k = k.. If not reduce the order of the estimated
autoregression by one until the coefficient on the last included lag is
significant. If none is significant, select k = 0.

Such a procedure is studied in some detail by Hall (1990). It is in fact
motivated by the pure AR(p) case. In the case of an AR(p), such a proce-
dure will select k greater than or equal to the true order with probability
one asymptotically and the distribution of t, will be the same as in the fixed
k case, provided the upper bound k,_,, is selected greater than the true
order. In the general case where moving-average components are present
no general consistency results are available yet. We conjecture, however,
in analogy with the Said-Dickey (1984) extension, that the asymptotic
distribution would remain unchanged provided the upper bound k_,,
increases at a suitable rate as the sample size increases to infinity. Simula-
tion evidence presented in Hall (1990) suggests that such a data-based
method induces little size distortion in finite samples. It is important,
however, to note that the sequential method must proceed from a general
model to more specific ones. An alternative procedure would be to select
the order by starting from a parsimonious specification and including
additional lags until the last one is significant, but this is not asymptoti-
cally valid and leads to more serious size distortions in finite samples.

An alternative way to handle additional serial correlation in the noise
process Z, has been proposed by Phillips (1987) and Phillips and Perron
(1988). Their approach is to add to the original unit root test statistic a
correction factor that eliminates the dependency of the asymptotic distri-
bution on the serial correlation of Z,. The correction uses a nonparamet-

9. Of course, this is not the only possible data dependent procedure for selecting k. Any
procedure that selects k at least as large as the correct autoregressive order asymptoti-
cally, for example by using an information criterion or a joint F-test of significance on
additional lags, will be adequate. The rule-stated here has the advantage of simplicity,
but additional work is needed on the finite-sample properties of alternative procedures.
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ric estimate of the spectral density of AZ, at frequency zero, measured
relative to the sample variance of AZ,. This nonparametric estimate is a
weighted sum of the autocovariances of AZ, where the weights are
chosen in such a way that the estimated spectral density is positive by
construction. Phillips and Perron derive transformed versions of both
the normalized bias T4 and the t-statistic f;, but the former is preferable
as it is more powerful.

These test statistics are easy to implement and asymptotically valid
under quite general conditions. However, several simulation studies
have shown that they have serious size distortions in finite samples
when the data-generating process has a predominance of negative
autocorrelations in first differences (see, e.g., Schwert, 1989; Phillips and
Perron, 1988; DeJong, Nankervis, Savin, and Whiteman, 1990b). This
suggests that the Phillips—Perron tests may be less reliable than the
Dickey-Fuller methodology where a parametric correction is applied.
An important fact that leaves some hope for this class of statistics is that
simulation evidence suggests their size-adjusted power is substantially
higher than the power of augmented Dickey-Fuller statistics. Therefore
an important topic on the research agenda is to find a way to modify the
Phillips—Perron procedure in such a way as to alleviate the size problem
while retaining good power properties. Preliminary investigation by
Stock (1990) seems to indicate that some improvements are possible on
this front. We discuss some of this evidence in the next subsection.

2.2.4 Alternative Approaches to the Unit Root Issue  So far we have followed
the bulk of the existing literature by focusing on the properties of coeffi-
cients and ¢-statistics in autoregressions for the variable y,. Recently some
authors have explored the implications of the unit root model compared
to those of a trend-stationary model by looking at the asymptotic behav-
ior of the series {y,} itself. In many ways this is a simpler approach.
Suppose for the moment that the DGP contains no deterministic
component so that y, = Z,, a zero mean ARMA(p,q) model. If y, contains
a unit root, we have, under general conditions, that T~"?y; converges in
distribution to an appropriately scaled Brownian motion. Under the
hypothesis that y, does not contain a unit root, we have T""%y; converg-
ing to zero. Stock (1990) has used this idea to develop a class of statis-
tics to test the null hypothesis of a unit root. The statistics can easily be
extended to allow for deterministic components in the trend function
by running preliminary regressions of y, on the deterministic variables.
Just as before the asymptotic distribution of these statistics varies with
the set of deterministic components included. Stock suggests, among
other tests, modifications of the Sargan-Bhargava (1983) and Phillips—
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Perron (1988) procedures based on an autoregressive spectral density
estimator. Simulation evidence suggests that the size problem is allevi-
ated while the power is greater than that of most available statistics.
This is an interesting avenue for further research.

This idea of using the different behavior of sample moments of the
data under the hypotheses of a unit root and of stationarity extends in a
natural way to provide statistics for the null hypothesis of stationarity
versus the alternative hypothesis of a unit root. Consider for instance the
quantity T-*?Zty,. Under the hypothesis that y, is a zero mean stationary
process, this converges to a nondegenerate normal distribution with a
variance that is a function of the spectral density of y, at frequency zero.
Under the hypothesis that y, follows a unit root process, this statistic
explodes. Park and Choi (1988) suggest a test for the null hypothesis of
stationarity that uses superfluous regressors. Their test can be seen as
exploiting the behavior of the statistic discussed here. We give further
details in a multivariate context below.

2.3 THE NEAR-OBSERVATIONAL EQUIVALENCE OF TREND- AND
DIFFERENCE-STATIONARY PROCESSES

In the last section we discussed the possibility of testing both the null
hypothesis of a unit root process and the null hypothesis of a trend-
stationary process. This naturally leads us to ask what is the relation
between these two classes of models and what is the importance of
specifying one or the other hypothesis as the null.

We first recall from our discussion of the Beveridge-Nelson decompo-
sition that a unit root process is one for which the spectral density of the
first difference, h,,(0), is nonzero. A trend-stationary process, by con-
trast, has h, (0) = 0. This means that the unit root hypothesis is a compos-
ite null hypothesis, which has the following interesting implication.

Rule 7: In finite samples, any trend-stationary process can be approxi-
mated arbitrarily well by a unit root process (in the sense that the
autocovariance structures will be arbitrarily close).

This point has been highlighted by Blough (1988) and Cochrane (1991).
The idea is quite simple. For any trend-stationary process, we have h, (0)
= 0. A unit root process with h,,(0) = €, say, with € > 0 can arbitrarily
approximate a trend-stationary process provided e is chosen small
enough relative to the sample size. The following example illustrates this
point in a straightforward way. Consider an ARMA(1,1) process:

Y=oy, +u, + 0u, . (2.11)



158 - CAMPBELL & PERRON

This process is difference stationary when ¢ = 1and —1 < 6 < 1, but
trend stationary (with a zero trend) when -1 < ¢ <land -1<6<1.
Consider the case where the trend-stationary process has ¢ = 8 = 0 (so
the series is white noise), while the unit root processhas¢ =1, ~1 <8<
1 [so the series is an IMA(1,1) with a negative moving average coeffi-
cient]. For any finite sample size, the trend-stationary process will be
approximated arbitrarily well by the difference-stationary process (in the
sense that they will have an arbitrarily close autocovariance structure)
provided 6 is close enough to but not equal to —1. This fact has the
following interesting implication concerning the power of unit root tests
in finite samples.

Rule 8: In finite samples, any test of the unit root hypothesis against
trend-stationary alternatives must have power no greater than its size.

Rule 8 is simply an implication of the fact that the probability distribu-
tions of the statistics of interest are continuous in the parameters of the
process for y,. Therefore, given rule 7, the finite sample distribution of
any statistic under a particular trend-stationary process can be arbitrarily
close to the finite sample distribution of the statistic under a difference-
stationary process that approximates the trend-stationary process. In
terms of the example (2.11), the critical values of a unit root test must be
chosen such that the probability of rejection is less than or equal to the
size of the test for any value of the parameter 6 in the interval (-1 < 6 <
1). But when 6 is arbitrarily close to —1 the unit root process is indistin-
guishable from a trend-stationary process, so the test must have power
equal to its size against such a process. Using a rejection region based on
the asymptotic distribution therefore means that any test will have an
exact size greater than its nominal size for some part of the parameter
space permitted under the null hypothesis. Schwert (1989) presents
Monte Carlo results that illustrate this point.

Some have argued that this problem occurs because testing the null
hypothesis of a unit root versus the alternative of a trend-stationary
process implies testing a composite null hypothesis [h,,(0) # 0] versus a
point alternative [h,,(0) = 0]. The argument is then that the problem
could be avoided by reversing the null and the alternative and testing
the null hypothesis of trend-stationarity versus the alternative hypothe-
sis of a unit root process. This argument is, however, incorrect as one
can always express the trend-stationary hypothesis as a composite null
and the unit root hypothesis as a point alternative. Consider, for exam-
ple, the following measure. Let hl denote the half life of a shock ¢, on the
level of the series y,. Consider now the quantity hI™". For any difference-
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stationary process hl™' = 0 while for any trend-stationary process
hi™' > 0. By analogy with rule 7 we have the following.

Rule 9: In finite samples, any unit root process can be approximated
arbitrarily well by a trend-stationary process (in the sense that the
autocovariance structures will be arbitrarily close).

This result follows because for any unit root process there will exist a
trend-stationary process for which shocks have effects on the level of {y,}
that are arbitrarily close to being infinite. For example in the simple first-
order autoregressive model, y, = ¢y,_; + ¢, the random walk process can
be arbitrarily well approximated, in any finite sample, by a stationary pro-
cess with ¢ less than but close to one. Following the same logic as in the
case of tests of the null hypothesis of a unit root, we have the following.

Rule 10: In finite samples, any test of the trend-stationarity hypothesis
against unit root alternatives must have power no greater than its size.

The special feature of importance here is that for any trend-stationary
process there is a difference-stationary process that approximates it arbi-
trarily well in finite samples and vice versa. It is this dual relationship
stated in rules 7 and 9 that creates a problem beyond what one usually
encounters in hypothesis testing. Given the statements in rules 8 and 10,
should we altogether abandon the idea of trying to discriminate between
a unit root process and a trend-stationary process? Some have argued
that we should (e.g., Christiano and Eichenbaum, 1989). We favor a
more pragmatic answer to this question, namely that we should still try
to distinguish these two classes of processes while keeping in mind that
strictly speaking we may reach incorrect conclusions if the DGP belongs
to a particular subset of the parameter space.

For the argument that follows, consider the usual framework where
the unit root is the null hypothesis. When applying any test of the unit
root using asymptotic critical values, it must be the case that the test has
an exact size greater than the nominal size for difference-stationary pro-
cesses that are within some neighborhood region of the class of trend-
stationary processes.’® The magnitude of this region decreases as the

10. One might think that this neighborhood could be conveniently parameterized in terms
of the quantity h,,(0). Unfortunately this is not the case because one can take a unit root
process with any value of h,,(0) and find a trend-stationary process that approximates it
arbitrarily well in a finite sample. It might be possible to characterize the neighborhood
region in terms of the behavior of the spectral density function near the zero frequency,
but more work is needed on this topic.
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sample size increases. A given testing procedure is said to have better
finite sample properties than another procedure if the region where the
size becomes greater than its nominal counterpart is smaller for a given
sample size T. In any event, unit root tests must be viewed in a context
where the parameter space under the null hypothesis is restricted (the
more so with smaller sample sizes). The same comments apply to tests
of the null hypothesis of trend-stationarity.

Why should we be willing to use procedures that yield improper
inference for some part of the parameter space? The answer is a prag-
matic one. For practical purposes it does not really matter if we label a
difference-stationary process with coefficient h,,(0) close to zero as a
trend-stationary process, or if we label a trend-stationary process with
extremely persistent shocks as a difference-stationary process. Indeed
these kinds of errors may even have practical advantages.

To illustrate this last point we conducted a small Monte Carlo experi-
ment. We considered the family of ARMA(1,1) processes given in (2.11).
We simulated both difference-stationary ARMA(1,1) processes that are
close to being trend-stationary, and trend-stationary ARMA(1,1) pro-
cesses that are close to being difference-stationary. The former processes
have ¢ = 1 and 6 approaching —1 (for the Monte Carlo experiment we
chose 6 = —0.5, —0.8, —0.9, —0.95, and —0.98). The latter processes
have ¢ approaching 1 (we set § = 0 and chose ¢ = 0.5, 0.8, 0.9, 0.95, and
0.98). For each data-generating process, we drew 5000 samples of length
100 and ran standard unit root tests with estimated linear trends. We
calculated the augmented Dickey—Fuller ¢, statistic and the Phillips—
Perron transformation of the normalized bias T4, denoted by Z(r). For
the former we used the lag length selection procedure described in the
text, setting k., = 6; for the latter we set k = k.. Table 1 reports the
fraction of 5000 runs in which the unit root test statistics exceeded their
asymptotic 5% critical values.

Two points are very clear from this exercise. First, when the true DGP
has a unit root but is close to being stationary, the unit root tests have
severe size distortions: They reject the true null hypothesis too often. To
take the most extreme case, when ¢ = 1 and 9 = —0.98, the unit root
hypothesis is falsely rejected at the 5% level at least 98% of the time. The
reason for this is of course that in a finite sample the process looks very
much like white noise; the unit root component, which dominates
asymptotically, has only a small effect in a sample of length 100. Second,
when the true DGP is stationary but has a root close to unity, then the
unit root tests have very little power. If we compare the integrated case ¢
= 1 and 6 = 0 with the stationary case ¢ = 0.98 and 6 = 0, for example,
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Table1 UNIVARIATE MONTE CARLO RESULTS

Fraction of rejections

Data . at 5% level Out-of-sample mean squared error
generating
process Said—  Phillips— Said—  Phillips—
(¢,0) Dickey Perron Levels Differences Dickey Perron
1, —0.98 0.98 1.00 1.06 1.23 1.06 1.06
1.06 1.24 1.07 1.06
1, —0.95 0.96 1.00 1.05 1.21 1.06 1.05
1.12 1.26 1.13 1.12
1, —0.90 0.91 1.00 1.08 1.17 1.09 1.08
1.38 1.39 1.37 1.38
1, —0.80 0.71 1.00 1.15 1.12 1.15 1.15
2.48 2.11 2.31 2.48
1, —0.50 0.28 0.77 1.15 1.06 1.10 1.14
9.87 7.07 7.54 8.96
1,0 0.09 0.06 1.13 1.05 1.06 1.06
34.3 25.2 25.6 25.4
0.98, 0 0.10 0.06 1.13 1.06 1.07 1.07
28.0 21.6 21.8 21.8
0.95, 0 0.14 0.11 1.11 1.06 1.08 1.08
17.4 16.0 16.1 16.1
0.90, 0 0.29 0.25 1.10 1.09 1.10 1.10
9.54 10.4 10.2 10.3
0.80, 0 0.70 0.73 1.08 1.14 1.11 1.11
4.23 5.78 4.98 4.85
0.50, 0 0.96 1.00 1.08 1.23 1.08 1.08
1.60 2.16 1.61 1.60

Notes: This table reports the results of a Monte Carlo experiment with 5000 replications. Samples of
length 100 were generated from the process X, = ¢X,_; + u, + 6u,_;, with standard normal innovations
u; and values of ¢ and 6 given in the first column. Said-Dickey t, and Phillips~Perron Z() unit root
tests were performed on each sample, using estimated trends and selecting lag length by the procedure
described in the.text, with the maximum lag length k,, = 6. The second and third columns of the table
report the empirical rejection probabilities of nominal 5% tests.

At the end of each sample, 1- and 20-period-ahead forecasts were formed using an autoregressive
model in levels, and an autoregressive model in differences. For each model lag length was chosen
using the selection procedure described in the text, with the maximum lag length k., = 6. For each
sample and forecast horizon, out-of-sample mean squared errors of forecast were calculated using 25
draws of the data-generating process. The table reports average out-of-sample mean squared errors
across all replications, for the levels model, the differences model, and two mixed models. The mixed
models use the levels model when the Said-Dickey or Phillips—Perron unit root test rejects, and the
differences model otherwise. For each data generating process, the first row gives the results for one-
period-ahead forecasts, and the second row gives the results for 20-period-ahead forecasts.
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we find that the rejection rate is no more than 1% greater for the station-
ary case than for the unit root case.

So far these Monte Carlo results are quite standard (see, for example,
Schwert, 1989). However we now show that the cases in which the unit
root tests give false answers are also ones in which these false answers
may have some practical utility. For each of our artificial data samples,
we estimated an autoregressive forecasting model in levels and another
autoregressive model in differences. In the former model a linear trend
is estimated, while in the latter model the mean of the differenced data is
estimated. We chose the lag length for each model using the lag length
procedure described in the text, with k_,, = 6. Then we used the models
estimated up through period 100 to form out-of-sample forecasts one
period ahead and 20 periods ahead, that is forecasts of y,, and y,,,. We
drew 25 realizations of y,,, and y,,, from the true DGP, and calculated out-
of-sample mean squared errors of forecast for the simulation. Finally we
averaged across all 5000 simulations to get average mean squared errors
at horizons one and 20 for the levels and differences forecasting models.
These average mean squared errors are reported in the fourth and fifth
columns of Table 1. For each DGP, the mean squared errors for one-
period-ahead forecasts appear above those for 20-period ahead forecasts.

The main point to note is that near-stationary unit root DGPs are better
forecast using stationary forecasting models, while near-integrated sta-
tionary DGPs are better forecast using integrated forecasting models.
Among the DGPs we consider, stationary forecasting models are superior
for all processes with ¢ = 1 and 6 = —0.90, while unit root forecasting
models are superior for all processes with 8 = 0 and ¢ = 0.90 (one period
ahead) or 0.95 (20 periods ahead). The table also reports the average out-
of-sample mean squared errors for mixed strategies. These use the levels
forecasting model when the Said—-Dickey or Phillips—Perron tests reject at
the 5% level, and the differences forecasting model otherwise. For most
DGPs, the mixed strategies have mean squared errors that are close to
those of the best pure forecasting model.!! These results illustrate that
unit root test procedures can be practically useful for improving the qual-
ity of macroeconomic forecasts, even in small samples where they have
only a limited ability to distinguish unit root processes from stationary
processes. The example studied here is simple, but we believe it illustrates
a fairly general principle.

11. There are some DGPs for which the unit root tests do not achieve the best possible
mean squared errors. For example when ¢ = 1 and 6 = —0.8, the unit root tests tend to
reject the null even though the best forecasting model is a difference stationary model.
However this phenomenon tends to occur in cases where the difference in forecasting
performance between the unit root and trend stationary models is small.
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Unit root tests have some other uses in finite samples. They can be
helpful if one wishes to know whether stationary or integrated asymptotic
distributions provide a better approximation in a particular application.
Consider for example an AR(1) model. The limiting distribution of the
least-squares estimator of the autoregressive parameter has a normal
asymptotic distribution if the autoregressive parameter is less than one. If
this parameter is close to one, however, the unit root asymptotic distribu-
tion actually provides a better finite-sample approximation than the
asymptotically correct normal distribution (Evans and Savin, 1981). In
more general contexts also, it may be better to use integrated asymptotic
theory for near-integrated stationary models, and stationary asymptotic
theory for near-stationary integrated models. In principle, of course, it
would be better to have recourse to the exact finite sample distribution but
in practice this can rarely be calculated analytically. Unit root tests are a
simple alternative to extensive Monte Carlo simulations, which are usu-
ally needed to calculate finite sample distributions.

Unit root tests can also help researchers to impose plausible restric-
tions on more structural time series models. Unit root restrictions may
help to increase the efficiency of estimates (i.e., reduce mean squared
error) even if the variables in the model do not have true unit roots but
are near-integrated. This is just a restatement of the general principle,
familiar in the case of zero restrictions, that imposing false restrictions
may help reduce the mean squared error of estimates. False restrictions
increase the bias of forecasts, but they may reduce the variance by
enough that the mean squared error is actually reduced. The Monte
Carlo experiment described above illustrates this phenomenon in a
univariate context, but the general principle is perhaps even more impor-
tant in multivariate time series models.

3. Review of Multivariate Procedures and Issues

This section discusses issues related to unit roots in a multivariate con-
text. Throughout we shall consider the properties of a vector y, of n
variables, for each of which a sample of size T is available. The discus-
sion is organized into four main sections: (1) representation and charac-
terization of the models describing the evolution of the vector y, with
particular emphasis on the issue of cointegration among their elements,
(2) testing procedures related to cointegration, (3) estimation and infer-
ence in multivariate models with cointegration, and (4) a discussion
about situations where these techniques are necessary and where they
are not.
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3.1 REPRESENTATION OF MULTIPLE TIME SERIES WITH SOME
UNIT ROOTS

3.1.1 Basic Concepts of Cointegration We start with an (n X 1) vector of
variables y,. To keep the framework simple, we suppose that each ele-
ment of this vector has a representation given by

Yy =TDy + Z,; A(L)Z, = B(L)e,, (i=1...,n (3.1)

where TD, is the deterministic component of variable i, Z, is its noise
function modeled as an ARMA process, and the innovation ¢, is N(0, o?).
This is the same model we considered in the previous section. As before,
we assume that y, contains at most one autoregressive unit root and that
the remaining roots are strictly outside the unit circle.’? Note that the
model (3.1) allows all variables to have nonzero deterministic trends. For
simplicity of exposition we suppose that the deterministic component of
each series can be modeled by a first-order trend polynomial, i.e., TD, =
k + 8t where k and 6 are now (n X 1) vectors rather than scalars. This is
the main case that has been studied in the literature.

A central concept in the analysis of a set of nonstationary variables is
that of cointegration due to Granger (1981, 1983) and Granger and Weiss
(1983) and discussed in more detail in Engle and Granger (1987). The
idea is that even though each series may have a unit root, there may
exist various linear combinations of the variables that are stationary.
Stated more precisely, we have the following definition.

Definition 1: A vector of variables defined by (3.1) is said to be cointe-
grated if there exists at least one nonzero n-element vector B, such that
Biy, is trend-stationary. B; is called a cointegrating vector. If there exist r
such linearly independent vectors, B(i = 1, . . ., r), we say that {y,} is
cointegrated with cointegrating rank r. We then define the (n X r) matrix
of cointegrating vectors 8 = (B,, . . . , B,). The r elements of the vector
B'y, are trend-stationary and B is called the cointegrating matrix.

An important fact to note about cointegrating vectors is the following:

Rule 11: The cointegrating vectors are identifiable at most up to a scale
transformation. That is, if By, is 1(0), then cBjy, is also I(0) for any
constant ¢ # 0.

12. The analysis could be made more comprehensive by allowing the possibility of multi-
ple unit roots. We refrain from considering this more general case for two reasons.
First, it would make the interpretation of the issues involved more difficult to convey
without adding much insight. Second, the case of practical interest is that where each
series is either integrated of order one or is trend-stationary.
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Additionally, there are a few things to note about definition 1. First,
this definition allows the linear combinations of the variables that elimi-
nate the unit roots to have nonzero linear trends. This corresponds to
the notion of “stochastic cointegration” in Ogaki and Park (1990). A
stronger definition of cointegration, called “deterministic cointegration”
by Ogaki and Park, would require that the same vectors B; that eliminate
the unit roots also eliminate the deterministic trends from the data. For
deterministic cointegration the matrix 8 must be such that both 8'TD, is a
constant and also B'Z, is I(0). When the deterministic trend is linear in
time, this requires that 8’6 = 0.3

Second, definition 1 does not require that each of the individual series
be integrated of order one; some or all series can be trend-stationary. In
this respect definition 1 differs from the definition given in Engle and
Granger (1987). The motivation for our more general definition is that in
practice a researcher is often faced with a vector of series that can be quite
different in nature incorporating some variables with I(1) noise compo-
nents and others with I(0) noise components. Allowing the presence of
trend-stationary variables has important implications. If y, contains a
trend-stationary variable it is trivially cointegrated, the cointegrating vec-
tor being the unit vector which selects the stationary variable. If all the
series are trend-stationary, the system is again trivially cointegrated since
any linear combination would yield a trend-stationary variable. Animpor-
tant point to note is the following.

Rule 12: In the case where at least one integrated variable is present,
there cannot exist more than n — 1 linearly independent cointegrating
vectors.

To see this, suppose first that there are two variables, one being I(0)
and the other I(1). Since a nonstationary variable cannot be combined
with a stationary variable to yield a stationary variable, the only cointe-
grating vector is the unit vector (or a scale transformation) that selects
the I(0) variable. Suppose now that there are two I(1) variables and that
the normalized linear combination y,, + ay,, is 1(0). The cointegrating
vector (1 a) is then unique (up to a scale transformation) since if another
cointegrating vector existed, it could be combined with the first to imply
that both the original variables were I(0). This line of reasoning extends
to systems of higher dimensions. This feature will prove of some impor-

13. An example of a system that is stochastically cointegrated but not deterministically
cointegrated is a system where the individual variables are log real output levels of
countries with different deterministic rates of population growth, and stationary log
differences of per capita output.
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tance when discussing the properties of models involving cointegrated
systems.

3.1.2 Why Is Cointegration Interesting? Before turning to the detail of
cointegrated systems it is useful to provide some motivation for studying
them. At first sight the idea of cointegration among variables may seem
to be an unlikely special case. If one has a set of integrated variables, it
may seem highly restrictive to assume that some linear combination of
them is stationary. In fact, however, the idea of cointegration has become
extremely popular in macroeconomic analysis precisely because it arises
naturally in multivariate macroeconomic models with unit root driving
processes.

There are two main mechanisms that can give rise to cointegration in a
macroeconomic model. To understand these, we first mention the
Granger Representation Theorem that relates cointegration to the exis-
tence of an error-correction representation for the data (to be discussed
more precisely below). In the error-correction representation, the station-
ary linear combination of the model variables Granger causes changes in
at least some of the variables. As always, this Granger causality can arise
either from true causality or because some variables in the model are
forecasting others.

The first mechanism is one of true causality. This is emphasized in the
work of the “LSE School” (Phillips, 1954; Sargan, 1964; Davidson,
Hendry, Srba, and Yeo, 1978; Ddvidson and Hendry, 1981; Hendry, 1986)
and by Engle and Granger (1987). These authors envisage a sluggish
adjustment to some long-run equilibrium described by economic theory.
The short-run adjustment is a “servo-mechanism” that econometricians
are free to model pragmatically. As Granger (1986, p. 213) puts it,

At the least sophisticated level of economic theory lies the belief that certain pairs
of economic variables should not diverge from each other by too great an extent,
at least in the long-run. Thus, such variables may drift apart in the short-run or
according to seasonal factors, but if they continue to be too far apart in the long-
run, then economic forces, such as a market mechanism or government interven-
tion, will begin to bring them together again.

Any model that imposes a deterministic long-run relationship between
two integrated macroeconomic variables, but that allows the variables to
deviate in the short-run, will display cointegration.

The second mechanism by which cointegration can arise involves fore-
casting rather than true causality. As described in Campbell and Shiller
(1987, 1988a), if one variable is first-order integrated and another variable
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is a rational forecast of future values of the first variable, then the two
variables will be cointegrated. In general, when the forecasts are based on
a multivariate information set, the stationary linear combination of the
two variables will Granger cause at least the variable being forecast, and
possibly the variable that embodies agents’ forecasts as well. The term
structure of interest rates provides an example. If short-term interest rates
are I(1) and term premia are stationary, then long-term and short-term
interest rates will be cointegrated, with Granger causality from the yield
spread to changes in both short-term rates and long-term rates. This
Granger causality need not reflect any causal mechanism relating short
rate changes to past slopes of the term structure.

Cointegration can also arise in models with forward-looking, optimiz-
ing agents and I(1) forcing variables. For example, a real business cycle
model with a Cobb-Douglas production function and a random walk
technology shock implies that log consumption, log investment, and log
output are cointegrated (King, Plosser, and Rebelo, 1988). Here both the
two mechanisms discussed above are at work.

3.1.3 Some Useful Representations We now discuss a number of alterna-
tive representations of multivariate systems with unit roots and possible
cointegration. These are necessary background for the methods of test-
ing and estimation to be discussed subsequently.

THE AUTOREGRESSIVE AND ERROR-CORRECTION REPRESENTATIONS  Follow-
ing the work of Sims (1980a), vector autoregressive (VAR) systems have
become an increasingly popular device to model the stochastic proper-
ties of a multivariate system. It is therefore useful to analyze how, if at
all, the possibility of unit roots and cointegration affects the estimation
and interpretation of VAR models. In keeping with our practice of sepa-
rating the trend function from the noise function, we start with the
following reduced form representation:

y=k+ot+2Z; ALZ=e, (3.2)

where « and 6 are n-element vectors of fixed coefficients. A(L) is a matrix
lag polynomial of order p such that A(L) =1 — AL — AL>~ - - - — AL
The A; are (n X n) matrices of fixed coefficients and the disturbances are
assumed to be distributed normally with mean 0 and covariance matrix
2. Just as in the univariate case, this vector autoregressive system of
order p can be viewed as an approximation to a more general multi-
variate ARMA process. For the issues to be discussed, there is little loss
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of generality in considering VAR models. Following Dickey and Fuller
(1979) in the univariate case, we can write (3.2) as follows:

4y, = p + My, — 8(t-1)] + 2}‘=11_;‘A}/t—;' + e, 3.3)

wherek=p -1, =23 A —1,and I, = -3 A forj=1, ... k The
constant vector u is related to the drift vector § and the other parameters
of the model, as discussed further below. The matrix II is the multi-
variate analog of the coefficient 7 in the univariate case (2.10), which
measured the sum of the autoregressive coefficients less one. In the
univariate case, a unit root is present if the sum of the AR coefficients is
one, equivalently if # = 0. In the present multivariate case, the corre-
spondence between unit roots and the nature of the matrix II is not as
straightforward. Many of the issues concerning cointegration can be
analyzed by simply using (3.3) and searching for conditions on the na-
ture of the variables y, and the matrix II such that both sides of (3.3) are
stationary. Since we do not consider processes with more than one unit
root, the left-hand side of (3.3) is stationary. The right-hand side will also
be stationary if and only if the components of I1[y,_, — §(t—1)] are station-
ary. There are three cases of interest and they relate to the rank of the
matrix I1. In the following discussion, we use the notation y} to denote
y, — 8t, the deviation of the series from their deterministic trends.

Consider first the case where IT is of full rank n. For all the elements of
My, , — 8(t—1)] = Iy}, to be stationary we need all n linearly indepen-
dent combinations of y} , formed by the rows of II to be stationary. Given
rule 12 it must then be the case that all the elements of y, are stationary
around the trend vector 8t. This case corresponds to the standard VAR
model where no restrictions are imposed on the reduced form represen-
tation. Here standard VAR analysis applied to the level of the series is
the appropriate estimation strategy. Consider now the case where the
only way to make IIy}_, stationary is to have the rank of II be zero. This
implies that IT = 0, an (n X n) matrix of zeros, and that there are no linear
combinations of the variables y, that are trend-stationary. In this case
(3.3) becomes a VAR in first-differences.

The case of particular interest is when IT is neither of rank zero nor of
full rank. Denote the rank of II by r. Then there exist (n X r) matrices «
and B such that

II=ap'. (3.9)

To have Ily;, stationary, it must be the case that 'y}, is stationary.
Hence B is the matrix whose columns are the linearly independent
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cointegrating vectors and the rank of the matrix I corresponds to the
cointegrating rank of the system of variables y, (using definition 1). In
the stronger case of deterministic cointegration, where we require that
Ily,_, is stationary, B'y,_; must be stationary so we require 8’6 = 0. In
analogy with rule 11, which applied to a single cointegrating vector, we
have the following important fact.

Rule 13: The parameters of @ and B are not identified since for any
nonsingular matrix F the matrices aF and B(F')"' yield the same matrix
II. This implies that the data can give information only about the space
spanned by the columns of B (the cointegrating space) and the space
spanned by a.

One solution to this identification problem is to normalize one element
of each column of B, for example by imposing a unit coefficient on one
variable in each equation. Johansen (1989a) points out, however, that
this is valid only if we have a priori knowledge that the coefficient
associated with that variable is nonzero. In practice this may be unap-
pealing. Fortunately, it is often unnecessary to separately identify the
parameters of a and B; but care must be taken to avoid testing hypothe-
ses about these parameters when they have not been identified by nor-
malization or other prior restrictions (Park, 1990b).

Before describing how one can interpret the matrix «, it is useful to give
an interpretation of the vector B'y}. Each column of the matrix 8 can be
viewed as describing some long-run relationship between the integrated
series in the vector y. The fact that we require 'y} only to be stationary (as
opposed to constant or white noise) means that allowance is made for the
possibility of serially correlated but temporary divergences from this rela-
tionship. Accordingly, the elements of B'y} are sometimes called “equilib-
rium errors,” the equilibrium relation being described by the cointe-
grating vectors. Of course, as discussed in Section 3.1.2, this use of the
term equilibrium should not be confused with the common use in macro-
economics to refer to the outcome of a market-clearing economic model.
Equilibrium errors can arise in the most classical of macroeconomic mod-
els, as discussed by King, Plosser, and Rebelo (1988).

We now introduce the notation z, , = By}, = B'[y,., — 8(t—1)], and
rewrite (3.3) as

Ay, = p + az,_, + S, FAy,_ + e, (3.5)

Equation (3.5) describes what we referred to in Section 3.1.2 as an error-
correction model. It specifies that the change in y, depends not only on
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the lagged values of these changes but also on the equilibrium error that
occurred in the previous period. Viewed in this error correction frame-
work the matrix a can be interpreted as a measure of the speed by which
the system corrects last period’s equilibrium error. The matrix a is often
called the adjustment matrix, although of course it need not arise from
costs of adjustment.

The error-correction model (3.5) implies that when both unit roots and
cointegration are present, an unrestricted VAR in the first-differences of
y,is misspecified because the lagged equilibrium errors z,_, are omitted as
regressors. An unrestricted VAR in the levels of y, is not misspecified but
involves a loss of efficiency because some restrictions are omitted,
namely the reduced rank of the matrix ITin (3.3). We note also that it is
possible to rewrite the error-correction model (3.5) as a VAR, not in first
differences or levels of the original series, but in the levels of r equilib-
rium errors z, and the differences of n — r of the original series. This
representation is used in Campbell and Shiller (1987, 1988b). We summa-
rize the major points discussed so far in the following rule.

Rule 14: In the general VAR process (3.3) three cases are possible: (1)
rank(/l) = nin which case all variables are trend-stationary and the appli-
cation of an unrestricted VAR in levels is appropriate; (2) rank(/I) = 0 (or IT
= 0), in which case no cointegrating relation exists and the application of
an unrestricted VAR in first-differences is appropriate; and (3) 0 < rank(I1)
= r < n, in which case at least one integrated variable and one
cointegrating relation are present. In the latter case an unrestricted VAR
(either in levels or in differences) is inappropriate but the data can be
described by an error-correction model of the form (3.5) or by a VAR in r
stationary combinations and n — r differences of the original variables.

One final point about the error-correction representation is empha-
sized by Johansen (1989a,b). In general the error-correction model (3.5)
contains an unrestricted constant vector u. When the series y, are not
trending (6 = 0), however, one can show that u = —IIk = —aB'k, where
k is the vector of intercepts in (3.2). In this case (3.5) can be rewritten as

4y, = a(B'y,-; — B'x) + 2;;1[;‘4%-; te,. (3.6)

In the representation (3.6), constant terms appear only because the equi-
librium errors have nonzero means $'k. These need to be subtracted
from the equilibrium errors on the right-hand side of (3.6) in order to
satisfy the condition that the unconditional mean of Ay, is zero when
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there are no trends in y,. Johansen (1989a,b) emphasizes that the restric-
tion in (3.6), as compared with (3.5), can affect estimation and testing.

THE MOVING AVERAGE REPRESENTATION It is useful at this point to con-
sider how cointegration restricts the moving-average representation of
the first-differences of the data. By analogy with the earlier univariate
analysis, we use the notation W(L) to denote the moving average repre-
sentation of the first difference of the multivariate noise process Z: AZ, =
¥(L)e,. In general ¥(L) is a matrix polynomial in L of infinite order and
can be written in the form ¥(L) = £7,¥ L), where ¥, = I. The first
difference of the data can be written as

(1 - Ly, = 8 + ¥(L)e.. 3.7)

A multivariate version of the Beveridge—Nelson decomposition (2.4) en-
ables us to rewrite (3.7) as

y, = u* + 8t + W1)S, + ¥*(L)e, (3.8)

where as before S, is defined by S, = X[_, (this is now a vector of n
random walks), and ¥*(L) is defined to equal (1 — L)"'[¥(L) — ¥(1)]. The
vector u* is a vector of constants. Multiplying both sides of (3.8) by the
matrix 8’ and using the definition of z,, the vector of equilibrium errors,
we have

z, = B'pt + BY1)S, + B (L)e,. 3.9)

Given that the left-hand side of (3.9) is stationary we require its right-hand
side to be likewise. The first term is a constant and the third term is
stationary given the properties of ¥*(L), but the second term involves the
random walk component S,. Therefore we need B’ ¥(1) = 0. Since B8 is an
(n X r) matrix, this implies that the rank of ¥(1)is n — r. It is also easy to
verify (see Engle and Granger, 1987) that ¥(1)a = 0, expressing a relation-
ship between the matrix sum of the moving-average coefficients and the
adjustment matrix. These results, which we summarize in the following
rule, are helpful in discussing the nature of some testing procedures.

Rule 15: In the moving-average representation of the first-differences of
the data (3.7), the presence of a cointegrating relation among the compo-
nents of the vector y, implies that ¥(1), the matrix of the sum of the
moving average coefficients, is singular. If there are r linearly indepen-
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dent cointegrating vectors, ¥(1) is of rank n — r and the following rela-
tion holds: 8'¥(1) = 0 and ¥(1)a = 0.

THE LONG-RUN COVARIANCE MATRIX ~ Consider again the first-differenced
representation of the data given by (3.7). The existence of cointegrating
relationships implies restrictions on the long-run covariance matrix of
this vector of first-differences. To be more precise, we mean by the long-
run covariance matrix the spectral density matrix evaluated at frequency
zero which, following the notation used for the univariate case, we
denote as h,,(0). This long-run covariance matrix is related to Z, the
covariance matrix of the vector ¢, and to ¥(1), the matrix sum of the
moving-average coefficients, as follows:

hy,(0) = W(1)SW(L)'. (3.10)

We stated this relationship for the scalar case when discussing the
Beveridge—Nelson decomposition in Section 2. Since 8'¥(1) = 0, as dis-
cussed in the last subsection, we have g'h,,(0) = 0, which means that the
rank of the matrix h,,(0) is n — r. This fact has been used by Phillips and
Ouliaris (1988, 1990) to derive testable implications associated with
cointegration. We summarize the facts of practical interest as follows.

Rule 16: The long-run covariance matrix of the first-differenced data,
h4,(0), will be of full rank only if no cointegrating relation exists among
the variables y,. If there exist r cointegrating relations h,,(0) is singular
and has rank n — r.

This singularity of the long-run covariance matrix when cointegration
is present corresponds to the fact that the first difference of a stationary
univariate series has zero long-run variance. In the multivariate case
considered here, the long-run covariance matrix will also be singular if
one of the series is stationary since this implies the presence of a
cointegrating relation (though a trivial one). The relation between the
univariate and multivariate case is probably best understood by noting
that if all the series are stationary then h,,(0) is the null matrix. This holds
because in this case there are n cointegrating vectors and hence the rank
of h,(0) is zero.

THE COMMON TREND REPRESENTATION  An interesting specification put
forward and used to derive test statistics by Stock and Watson (1988a) is
the so-called common trend representation. It highlights the fact that if »
cointegrating relations exist among a set of n variables [all of which could
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be I(1)], then the variables can be written as linear combinations of n
linear trends, n — r pure random walks, and n stationary random terms.
To see this, recall that Equation (3.8) gives the stochastic trend in the
vector y, as ¥(1)S,, where S, is a vector of n random walks. Stock and
Watson show that since ¥(1) has rank n — 7, the stochastic trend in (3.8)
can be rewritten in terms of n — r random walks. This is the common
trend representation.

In the stronger case of deterministic cointegration, we have the addi-
tional restriction that 8’6 = 0, where § is the vector of linear trends in the
series y,. Since also B’ ¥(1) = 0, 6 lies in the column space of ¥(1) and can
be written as a linear combination of ¥(1), i.e., § = ¥(1)6*. (3.8) now
becomes

yo= u* + WS + ¥(Le, (3.11)

where S} = §*t + Z/_se, is a vector of n random walks with drift §*. Again,
Stock and Watson show that this can be reduced to a representation with
n — r random walks. When the original series y, are trending, then the
common random walks have nonzero drifts; they have zero drifts when
the original series are not trending (6 = 0). We summarize the common
trend representation in the following.

Rule 17: A multivariate system with r cointegrating vectors represented
by the matrix 8 with corresponding adjustment matrix a can be written
as n trends, plus n — r random walks (“common trends”), plus n station-
ary components. When the cointegration is deterministic (8'6 = 0), the
system can be represented as n — r random walks, plus n stationary
components. These random walks generally have nonzero drifts, but
they have zero drifts when the series y, are not trending (6 = 0).

3.2 TESTING FOR COINTEGRATION

In this section we review some of the statistical procedures that can be
used to test hypotheses about cointegration. We show how each proce-
dure uses one of the different representations outlined in the previous
section. In Sections 3.2.1 and 3.2.2 we discuss procedures that are de-
signed to distinguish a system without cointegration from a system with
at least one cointegrating relationship. These procedures do not try to
estimate the number of cointegrating vectors. Then in Section 3.2.3 we
consider procedures that test for a particular number of cointegrating
relationships. A last subsection briefly discusses issues related to the size
and power of the tests. In testing for cointegration, just as in testing for a
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unit root in a univariate context, the treatment of deterministic regres-
sors is important. Throughout our discussion we emphasize this point.

3.2.1 Tests Based on a Static Regression THE FRAMEWORK OF THE STATIC
REGRESSION  Tests based on a static regression are probably the most
popular class of tests for cointegration. These tests give a special role to
one of the variables in a vector y,, which is chosen to be the dependent
variable in the regression. The tests try to distinguish the hypothesis that
there is no cointegration between the dependent variable and the regres-
sors, from the hypothesis that there is at least one cointegrating relation-
ship between the dependent variable and the regressors. The procedures
presume that any I(0) variables in the original vector y, have been removed
from consideration before the procedure begins, so that all remaining
variables are I(1). Hence, each of the individual variables must pass a unit
root test before being included in the static regression. The cointegration
tests are conditional on this pretesting procedure. In principle, their criti-
cal values should be adjusted to account for pretesting, but no theory is
currently available that would allow us to do this.

We partition the variables in y, as (yy, y,), where y,, is a scalar I(1)
variable and y,, is an m-element vector of I(1) variables. We also assume
that if there exists a cointegrating relationship, the variable y;, has a
nonzero coefficient in the cointegrating vector. Since cointegrating vec-
tors are identifiable only up to scale, we may without loss of generality
set this coefficient to 1. The hypothesis of cointegration then asserts that
there exists an m-element vector of coefficients 6 such that y;, — 0'y,,
is I(0), i.e., the cointegrating vector is 8’ = (1 —6'). Assume for the
moment that it is known a priori that the mean of the linear combination
Yy — 0'y,, is 0 and consider the following regression equation:

Yu=0yy + u,. (3.12)

The hypothesis that y;, and y,, are not cointegrated can now be stated
as the hypothesis that there does not exist any vector of coefficients 6
such that u, = y,, — 6y, is 1(0). The hypothesis that y;,, and y,, are
cointegrated is that a vector of coefficients can be found such that v, is
1(0). Note that even if no such vector of coefficients exists, there still
could be cointegration among the variables y,, on the right-hand side of
(3.12).

RESIDUAL-BASED TESTS In (3.12), a test of the null hypothesis versus the
alternative hypothesis amounts to a unit root test on the equation errors.
Since we do not observe the errors u,, we must use some estimates of
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their values. A straightforward approach is to apply OLS to (3.12) and
conduct a unit root test on the estimated residuals, #,, as a proxy for the
true residuals.

In principle, any test for a unit root versus stationarity applicable in a
univariate context can be used as a test for no cointegration versus
cointegration when applied to the series #,. These include the aug-
mented Dickey—Fuller method, the tests proposed by Phillips and
Perron (1988) or the tests suggested by Stock (1990) that were discussed
in Section 2. Just as in the univariate analysis, it is important to include a
constant in the static regression if the alternative hypothesis of cointegra-
tion allows a nonzero mean for 8'y,, and a trend in the static regression if
the alternative hypothesis is “stochastic cointegration,” allowing a non-
zero trend for B'y,. The critical values of the unit root tests on #, depend
on whether a constant and/or a time trend are included in the static
regression. In addition it is important to note that the critical values are
not the same as those for unit root tests applied to raw data. They
depend on the number of integrated regressors in (3.12) and whether or
not these regressors are trending. We give some intuition for this when
we discuss “spurious regression” below. These points are summarized
in the following rule.

Rule 18: When unit root tests are applied to the estimated residuals from
regression (3.12), their asymptotic distribution under the null hypothesis
depends on whether a constant and/or a time trend are included in
(3.12). In addition they depend on the number of integrated regressors,
that is the dimension of the vector y,,, and the nature of the deterministic
trends in y,,. The asymptotic distribution is never identical to the case
where the unit root tests are applied to raw data.

Phillips and Ouliaris (1990) and Engle and Yoo (1987) have tabulated
critical values for the augmented Dickey-Fuller ¢ test and the Phillips—
Perron Z(#r) and Z(t;) tests applied to residuals from (3.12), where the
dimension of the vector y,, ranges from 1 to 5. In the case where the
regressors may contain deterministic trends, care must be exercised in
using these tabulated critical values. This issue has been investigated by
Hansen (1990b), and we summarize his results as follows. If the static
regression includes a time trend, parts (c) of Phillips and Ouliaris’ tables
are appropriate and the tests are for stochastic cointegration. If the static
regression includes only a constant and the regressors do not contain
deterministic trends, parts (b) of Phillips and Ouliaris’ tables are appro-
priate. Finally consider the case where the static regression includes only
a constant but the regressors contain deterministic trends so that one is
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testing for deterministic cointegration among trending variables. Here
parts (c) of Phillips and Ouliaris” tables are appropriate but one should
use the critical values for m — 1 regressors instead of m regressors.!

A DIGRESSION ON SPURIOUS REGRESSION  If there is no cointegration be-
tween the dependent variable and the regressors of (3.12), then the
regression is described as “spurious.” This term was introduced by
Granger and Newbold (1974) who gave special attention to the case
where a random walk (y,,) is regressed on an independent random walk
(¥a)- Since these variables are not cointegrated, the residuals are I(1) and
this results in a low value of the Durbin—-Watson statistic. Granger and
Newbold (1974) also documented the fact that in such a regression the R?
statistic will typically be high giving the impression of a good fit.

This phenomenon has been theoretically investigated by Phillips
(1986) who shows that in a spurious regression the following results
hold as the sample size increases to infinity: (1) the Durbin—Watson
statistic converges to 0, (2) the R? of the regression converges to a ran-
dom variable, and (3) the t-statistics on the coefficients of the vector 6
diverge. To understand these results intuitively, consider two indepen-
dent random walks. If one could observe an increasing number of sam-
ples drawn from these stochastic processes with a fixed initial condition,
then the correlation of the samples would be zero. But instead one
observes a single sample of increasing length from each process. In this
single sample random shocks have effects that never die out, so the
regression coefficient of one time series on the other and the R? converge
to random variables rather than to zero.

The characteristics of spurious regression help one to understand why
unit root tests on static regression residuals have critical values which
depend on the number of regressors (rule 18). Under the null hypothesis
of no cointegration, the static regression contains m spurious regressors
whose coefficients have random limits. This affects the asymptotic distri-
bution of the static regression residuals, and hence the null distribution
of the unit root test statistics.

Granger and Newbold (1974) proposed a rule of thumb for detecting
spurious regression. It states that, in an estimated regression, an R’
higher than the Durbin—Watson statistic should be viewed as a warning
of a spurious relationship (see Hendry, 1980, for an interesting illustra-
tion). In light of the theoretical apparatus that is now available, this rule

14. In an interesting recent contribution, Hansen (1990a) has suggested working with the
estimated residuals from a Cochrane—Orcutt version of the static regression that allows
for AR(1) errors. Hansen’s test statistics have the advantage that their limiting distribu-
tions are always the same as those of univariate unit root tests.
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of thumb should be viewed as a preliminary sign that a more formal
cointegration analysis is warranted. It also highlights the importance of
residual diagnostic statistics such as the Durbin—Watson as indicators of
possible misspecification. Nevertheless, though the Durbin-Watson sta-
tistic is a useful preliminary indicator it cannot be used as the basis of a
formal test statistic for cointegration as suggested by Engle and Granger
(1987). The reason is that under the null hypothesis of no cointegration,
the asymptotic distribution of the Durbin-Watson statistic depends on
nuisance parameters such as the correlations among the first differences
of the variables included in the regression. This important practical re-
sult is stated in the following rule.

Rule 19: The Durbin—Watson statistic should not be used as the basis of a
test of the null hypothesis of no cointegration versus the alternative
hypothesis of cointegration.

TESTS BASED ON THE SIGNIFICANCE OF SPURIOUS REGRESSORS  The idea of
spurious regression has been used in several recent papers by Park and
Choi (1988), Park, Ouliaris, and Choi (1988), and Park (1990a) to derive
tests for cointegration. These tests have the advantage that they can be
formulated either with a null of no cointegration or with a null of cointegra-
tion. Consider the following version of (3.12) with added regressors:

Yie = TDR + 0'yy + @'y + @5y + Uy (3.13)

Here DR, is a vector of deterministic regressors that capture the determin-
istic trend of the variables y,, and y,,. s,, is a vector of g nonstationary
deterministic functions that are of a higher order than the variables in
DR,. For example, if (y,, y,) are characterized by a first-order linear
trend, DR, = {1,#} and s,, could include the regressors {#, £, . . . , #*1}.
The vector s, is a p-element vector containing variables that are inte-
grated of order one. The specific assumptions needed about these regres-
sors depend on whether the null hypothesis being tested is that of no
cointegration or that of cointegration.

Consider first the case where the null hypothesis is the familiar one of
no cointegration. Here we assume that 4s,, = w,, where w, is asymptoti-
cally uncorrelated with the errors u, of regression (3.13). An obvious
choice for such a regressor is a computer generated random walk. De-
note by F(¢,,¢,) the Wald statistic for the joint hypothesis that ¢, = 0 and
¢, = 0. Park et al. show that the Wald statistic normalized by the sample
size, F(¢,,¢,)/T, has a nondegenerate asymptotic distribution under the
null hypothesis, but converges to zero under the alternative hypothesis;
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thus it is a consistent test of the null against a cointegrated alternative.
The critical values depend on (1) the number of nonstationary regressors
in y,, (m), (2) the number of nonstationary regressors in s,, (p), and (3) the
number and specific form of the nonstationary deterministic regressors
included in the vector s;,. Asymptotic critical values can be found in the
papers mentioned above.

Consider now testing the null hypothesis of cointegration versus the
alternative hypothesis of no cointegration. The same regression Equa-
tion (3.13) can be used if it is assumed that the superfluous stochastic
regressors included in the vector s,, are not cointegrated with the vari-
ables in y,,. The same Wald statistic for testing the joint hypothesis ¢; = 0
and ¢, = 0 can be used as the basis of the test. Indeed, it can be shown
that F(¢,, ¢,) (not divided by T) has a nondegenerate asymptotic distribu-
tion under the hypothesis of cointegration but diverges to infinity under
the hypothesis of no cointegration. Unfortunately the limiting distribu-
tion under cointegration depends on nuisance parameters involving the
serial correlation of the variables, but Park (1990a) shows how to trans-
form the Wald test in such a way that its limiting distribution converges
to a y* with (p + gq) degrees of freedom.

The intuition behind these tests is that under the null hypothesis of no
cointegration neither the variables of interest (y,) nor the superfluous
regressors (s;, and s,) have a long-run relation with the dependent vari-
able y,,. Hence the regression is spurious and from our earlier discussion
the t or F statistics associated with all the regressors, including the super-
fluous ones, will diverge. Under the hypothesis that the dependent
variable y,, is cointegrated with the variables y,, the regression is not
spurious, and the t or F statistics for the superfluous regressors will
asymptotically reflect their insignificance as in a standard regression
framework. However, Park’s corrections are necessary to account for the
presence of possible correlation between the errors and the regressors.

3.2.2 Cointegration Tests on the Long-Run Covariance Matrix We now de-
scribe some tests that exploit the fact that any cointegrating relationship
among the variables y, implies a singular long-run covariance matrix
h,,(0), as defined in Section 3.1.3. These tests still do not attempt to
estimate the number of cointegrating relationships, but some tests of this
type avoid the assumption of the previous section that a particular vari-
able y,, has a nonzero coefficient in the cointegrating vector.

For notational convenience we partition h,,(0) as follows in accordance
with the partition on y, such that y, = (y,, y,) with y,, a scalar and y,, an
m vector:
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hy(0) = 0 = { @y Wy } , (3.14)

wy (),

and define w;; ., = w;; — w,{})w,,, a measure of the long-run variance of
Ay,,, conditional on the elements of Ay,. (If the elements of £ were
variances and covariances rather than spectral densities at frequency
zero, then w,; ., would be the variance of the error in a regression of Ay,
on Ay,,). We have that w,, ., = 0if y,,and y,, are cointegrated. Letting det(-)
denote the determinant, it can be shown that

~det[h,,(0)] = wy, ., det((2y,). (3.15)

When there is no cointegration among the elements of y,,, det({2,,) # 0.
In this case h,,(0) is singular if and only if w,; ., = 0. Phillips and Ouliaris
(1990) use this framework to propose what they call the “variance ratio
test.” It is an appropriately scaled version of an estimate &, ., of the
quantity w;; .,. This test statistic by itself does not offer any generalization
over the statistics discussed earlier, but the same framework can be used
to construct statistics that test the null of no cointegration against the
alternative of at least one cointegrating vector without specifying a priori
any specific element of y, as having a nonzero coefficient. The idea is to
directly test whether h, (0) = (2 is singular. Phillips and Ouliaris propose
a “multivariate trace statistic” for this purpose.

In constructing these tests, constants and/or linear trends should be
included in the system if they appear in the data-generating process. As
always the presence of these deterministic regressors affects the critical
values for the tests. In addition, the critical values depend on the num-
ber of variables in the system. Phillips and Ouliaris present tabulated
critical values for any number of regressors in y,, between 1 and 5. Note
also that the estimates of the long-run covariance matrix in these proce-
dures must be based on the residuals from a regression of y, on y,_,.
Under the null hypothesis of no cointegration this is equivalent to using
the first-differences of the data since the least-squares estimator of the
matrix of coefficients converges to the identity matrix. But under the
alternative hypothesis of cointegration this equivalence breaks down,
and the regression residuals must be used to ensure the consistency of
the test statistic.

3.2.3 Tests for Cointegrating Rank We now consider testing procedures
that allow the investigator to estimate the number of cointegrating vec-
tors. We start with a procedure suggested by Johansen (1988, 1989a), and
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then describe the approach of Stock and Watson (1988a). Both proce-
dures allow one to specify as the null hypothesis an arbitrary number of
cointegrating vectors provided that this number is less than the number
of cointegrating vectors allowed under the alternative hypothesis. For
example, in a three-variable system one can test the null hypothesis of
one cointegrating vector against the alternative hypothesis that there are
two or three cointegrating vectors, the latter corresponding to the hy-
pothesis that all series are trend-stationary. These procedures also do not
impose any prior assumption that some or all of the series investigated
are I(1). Therefore they contain as a special case a univariate test for a
unit root versus stationary alternatives.

Johansen’s procedure applies maximum likelihood to the autoregres-
sive model discussed in Section 3.1.3, assuming that the errors are
Gaussian. More specifically the estimated model is given by

Ay, = p + Iy, + ZL LAy, +e, (3.16)

where ¢, ~ N(0, ). This is the autoregressive representation (3.3) with
the added assumption that cointegration is deterministic, i.e., 116 = 0, or
that the series are driftless, i.e., 8 = 0. This assumption allows the
system to contain I(1) or stationary variables (or linear combinations of
variables), but it rules out trend-stationary variables (or linear combina-
tions of variables) with nonzero trends. Johansen’s method tries to esti-
mate the rank of the matrix II, the matrix of coefficients on the lagged
levels in (3.16). Recall that when there are r cointegrating relationships,
the rank of I1 is equal to r.

We first consider how to construct a likelihood ratio test of the null
hypothesis of r cointegrating vectors versus the alternative hypothesis of
n cointegrating vectors. Under the alternative hypothesis IT is unre-
stricted and the maximum likelihood estimates of the coefficients of
(3.16) are obtained by OLS. Under the null hypothesis the matrix IT is
restricted by the relationship IT = aB’. Maximum likelihood estimates of
the matrices I'; (i = 2, . . . , k) and the vector u can again be obtained by
OLS. However, the maximum likelihood estimates of a, 8, and = are
different and are obtained by solving an eigenvalue problem. Here we
simply sketch the basic idea of the procedure, as details are given in
Johansen (1988, 1989a). If the matrix 8 were known, then a could be
obtained by first regressing Ay, and y,_, on lagged changes Ay, ,, then
taking the residuals (indicated by tildes) and regressing Ay, on B'7,_;.
Maximum likelihood estimates of B are obtained by minimizing the deter-
minant of the covariance matrix of the residuals of this second stage
regression; this is equivalent to choosing r eigenvectors corresponding to
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the r largest eigenvalues of a particular matrix. The maximized likelihood
function is multiplicative in these eigenvalues, so that a likelihood ratio
test statistic can be computed from them. Johansen calls this the “trace
statistic.” Its asymptotic distribution is not given by standard theory,
because under the null hypothesis the calculated eigenvalues corre-
spond to n — r nonstationary common trends rather than stationary
linear combinations of the data. The asymptotic distribution depends on
n — r, and is tabulated in Johansen (1989b) and Johansen and Juselius
(1990) for values of n — r between 1 and 5. Johansen also considers a
likelihood ratio statistic for the null hypothesis of r cointegrating vectors
versus the alternative of r + 1 cointegrating vectors. This is called the
“maximum eigenvalue statistic.” The asymptotic critical values again are
nonstandard, depend on the number of nonstationary components
(n — r), and have been tabulated for n — r ranging from 1 to 5.

In applying the Johansen approach it is essential to handle determinis-
tic trends with some care, because the critical values of the test depend
on the trend characteristics of the data. Note first that the system (3.16)
excludes time as a regressor so it can be used only to test for determinis-
tic cointegration. Furthermore, the Johansen test calculates eigenvalues
that under the null hypothesis are associated with common trends
rather than stationary linear combinations of the data. To understand the
importance of this, recall that an omitted nonzero trend in a univariate
unit root test causes the t-statistic on the lagged level variable to have a
standard normal distribution rather than a Dickey—Fuller distribution
(rule 3). Analogously, the critical values of the Johansen test depend on
whether the omitted drifts in the common trends are zero or not. If they
are zero, this implies non-trending data which in turn implies the restric-
tion u = — af}’'k as shown in Equation (3.6). In summary, there are three
possibilities: (1) trending data (6 # 0), (2) nontrending data (6 =0, u =
—af’k) with the statistic calculated using an autoregression with an
unrestricted intercept term, and (3) nontrending data with the statistic
calculated using an autoregression imposing the restriction u = ~ af'«.
A conservative procedure for determining the cointegrating rank is to
use the maximal critical values over all the cases. A sequential procedure
to estimate both r and the presence or absence of trends is also possible
(Johansen, 1991). The Johansen approach could be generalized to allow
stochastic cointegration in the null hypothesis by including linear trends
in (3.16), but no tables of critical values have yet been published.

An alternative test for cointegrating rank has been proposed by Stock
and Watson (1988a). Their approach is implicitly based on trying to
estimate the rank of the matrix ¥(1), the sum of the matrix coefficients in
the moving-average representation of the series in first differences. As
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we discussed in Section 3.1.3, the rank of ¥(1) is equal to n — r under the
hypothesis that there are r cointegrating vectors. This is also the number
of common trends in the representation discussed in Section 3.1.3.
Hence estimating the rank of the matrix ¥(1) is equivalent to estimating
the number of common trends present in the set of variables under
study. Stock and Watson estimate the common trends under the null
hypothesis that n — r of them are present and test whether these con-
structed series show further evidence of cointegration. To estimate the
common trends, Stock and Watson suggest using principal components
analysis. The idea is to choose the n — r linear combinations of y, with the
largest variance as the estimated common trends. The intuition for this
procedure is that the common trends are I(1) so their variance increases
with the sample size and will asymptotically dominate the variance of
the stationary linear combinations of the data.

Once the vector of common trends has been estimated, Stock and
Watson regress the vector on its own first lag to obtain a coefficient
matrix P. The limiting distribution of the coefficient estimates depends
on the serial correlation of the data. Stock and Watson consider both a
nonparametric correction similar to that used by Phillips and Perron
(1988) and a vector autoregressive parametric correction similar to that
used by Dickey and Fuller (1979).15 To test the hypothesis of n — r
common trends versus m common trends, Stock and Watson calculate
the m + 1 smallest eigenvalue of the corrected least squares estimator P,
and test whether its real part is different from one. Stock and Watson
have tabulated the asymptotic critical values of the normalized eigen-
value under the null hypothesis. These critical values depend on two
parameters, the number of common trends under the null hypothesis,
n — r, and the number of common trends under the alternative hypothe-
sis, m. Critical values are tabulated for n — r and n — m ranging from 1 to
6. Note that a test of the null hypothesis of no-cointegration versus the
alternative of cointegration can be obtained by specifying r = 0 and m =
n — 1. Similarly a univariate test for a unit root can be obtained by
specifying n = r = 1 (in which case there is no need to estimate the
vector of common trends since it is the univariate series itself) and m =
0. In the latter case the nonparametrically corrected statistic reduces to
that proposed by Phillips and Perron (1988). The Stock-Watson ap-
proach allows the investigator to remove constants and/or linear trends
from the data. As always, this affects the asymptotic critical values and
should be done whenever constants and/or trends are present in the

15. They recommend the parametrically corrected version for reasons of size robustness
similar to the univariate case.
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data-generating process. The way the detrending is performed depends
on the hypothesis being tested. For testing stochastic cointegration, the
original data should be detrended, while to test for deterministic
cointegration, the estimated common trends should be detrended.6

3.2.4 Some Comments about Size and Power It is useful, in closing this
section, to return to the near-observational equivalence issue discussed
in Section 2.3. Recall that in the univariate case we argued that the trend-
stationary and integrated processes are classes for which each member
of one class can be arbitrarily well approximated, in finite samples, by a
member of the other class. The same principle applies when comparing
the classes of cointegrated and noncointegrated processes. Every cointe-
grated process can be arbitrarily well approximated, in finite samples, by
a noncointegrated process and vice versa. To make this point more pre-
cise, consider a set of variables that displays no cointegrating relation-
ship. Then the matrix of the sum of the autoregressive coefficients IT has
rank zero. Any such process can be arbitrarily well approximated by a
cointegrated process for which the matrix IT has “nearly zero rank.”
Conversely, consider a process that is cointegrated in which case the
matrix of the sum of the moving-average coefficients, ¥(1), is singular.
Any such process can be arbitrarily well approximated by a system with
no cointegrating relationship with a matrix ¥(1) “nearly singular.”

In the case of multiple time series, this argument can be taken one
step further. A system with r cointegrating vectors can be arbitrarily
well approximated, in finite samples, by a system with any number of
cointegrating vectors. Consider approximating a process with r cointe-
grating vectors by a process with a smaller number of cointegrating
vectors, say m (m < r). With r cointegrating vectors, the matrix ¥(1) has
rank n — r. In finite samples there will exist a process with ¥(1) of rank
n — m that is a close approximation if its matrix ¥(1) is nearly of rank
n — r. Conversely, a process with r cointegrating vectors can be well
approximated by a process with a greater number of cointegrating vec-
tors, say m* > r. The II matrix for such a process has rank m* but is
“nearly of rank r.”

This discussion suggests that it may be difficult to distinguish pro-
cesses that exhibit cointegration from those that do not, and more so to
estimate precisely the exact number of cointegrating relationships. If in

16. There is as yet little work comprehensively comparing the finite sample behavior of
alternative tests for cointegration. An exception is Gregory (1991), who analyzes a wide
variety of procedures within a linear-quadratic model. He recommends the Dickey—
Fuller ADF and Phillips Z(7) tests applied to static regression residuals as analyzed by
Phillips and Ouliaris (1990).
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fact the goal of cointegration tests is to uncover the “true relation among
the variables,” these issues are disconcerting. As in the univariate case,
our response is a pragmatic one. In many applications the goal is not to
uncover the “true number” of cointegrating relationships per se but
rather to have a useful guide in imposing restrictions that may lead to
more efficient estimation. Viewed in this light, it is inconsequential if we
label a process that really has m cointegrating vectors but is “nearly”
cointegrated of order r as one having r cointegrating vectors. The testing
procedures described can play a useful role in identifying these (possibly
approximate) restrictions and may permit more precise estimates of the
coefficients governing short-run dynamics.

3.3 ESTIMATION OF MULTIVARIATE MODELS WITH
COINTEGRATION

We now consider methods for optimal estimation of the parameters in a
multivariate model with cointegration. First recall that in the error-
correction representation (3.5), the changes in a given variable are func-
tions of lagged changes in all the variables and the r lagged equilibrium
errors z,_;. Suppose first that both the number of cointegrating vectors r
and the true coefficients in the matrix 8 are known a priori. The equilib-
rium errors z, are then known quantities (when the drifts § are either
known or zero), and optimal estimation of (3.5) is simply OLS applied
equation by equation. In practice, however, both r and 8 are unknown
quantities. Methods for estimating 7, the number of cointegrating rela-
tionships, were discussed in the last subsection. In all the methods that
we shall discuss concerning the estimation of the other parameters, it is
important to note that the value r is chosen as the estimated value from
one of these procedures. Methods for estimating 8 and the other parame-
ters of the model treat the estimated value of r as if it were the true value,
so inference is conditioned on that value of r. This point is summarized
in the following.

Rule 20: In all the procedures that follow the number of cointegrating
vectors used to specify the estimation procedure is treated as known
even though, in practice, it is obtained from a testing procedure and
hence is a random variable. In principle this pretesting affects the appro-
priate distribution theory underlying the estimates, even asymptotically.

It is not known whether this pretesting problem is of any practical
importance. We believe that it is not likely to be serious. In any event, no
theoretical results are currently available that might shed light on this
problem and we shall accordingly ignore it. Conditioning on the number
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of cointegrating vectors amounts to imposing some long-run restric-
tions. In a sense even if the true value of 7 is different from the estimated
value, it may still be the case that the restrictions imposed allow esti-
mates with greater precision. Once one conditions on the number of
cointegrating vectors there remains the issue of estimating (1) the
cointegrating vector 8, and (2) the coefficients related to the short-run
dynamics (a, u, and the I'). Two main approaches are available in the
literature: (1) estimating the cointegrating vector and the short-run dy-
namics jointly, and (2) estimating them separately. Within each approach
there is also the issue of estimating the system as a whole versus estimat-
ing the system equation by equation. It turns out that each: of these
methods yields consistent estimates, but these can have quite different
finite sample and asymptotic properties. To understand the issues in-
volved it is useful to review a simple method that was suggested by
Engle and Granger (1987). For simplicity we consider the case where
there is a single cointegrating vector that has a nonzero coefficient on a
variable y,; this coefficient can then be normalized to equal one. All the
other variables in the system, y,,, are assumed to be I(1).17

Engle and Granger (1987) suggest a two-step procedure where the
cointegrating vector is estimated in the first step. The method is simple
and appealing. To estimate the cointegrating vector, just apply OLS to
the static regression:

Yy = 7DR, + 0'yy + u,. (3.17)

Once OLS estimates 8 have been obtained from (3.17), one can construct
an estimate of the vector By, where 8 = [1 —#']. The parameters associ-
ated with the short-run dynamics can then be estimated by OLS on each
equation of the error-correction representation (3.5), with B'y, substi-
tuted for B'y, and trends added if necessary. The second step of this
method involves OLS estimation of a model with generated regressors.
Following the work of Pagan (1984), one might suspect that standard
errors would need to be adjusted to account for the use of generated
regressors. However, this is not the case here as shown by Stock (1987)
and Engle and Granger (1987). The relevant facts are stated as follows.

Rule 21: OLS estimates of the parameters of the cointegrating vector
obtained using (3.17) are consistent and converge at rate T to the true
values. Furthermore, the parameter estimates obtained from OLS on

17. If some of the variables in the system are I(0), they can be ignored in the first step,
which estimates the cointegrating vector and reintroduced in the second step, which
estimates the short-term dynamics.
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(3.5) using the estimated B'y, are consistent, asymptotically normal, and
have the same asymptotic distribution that would prevail if one applied
OLS to (3.5) using the true values g'y,.

The important point in rule 21 is that the estimate of the cointegrating
vector converges to its true value at rate T instead of the usual rate T'2
This is the reason why using estimated values in the second step regres-
sion leads to the same outcome (asymptotically) as if one were able to
use the true values. The reason why the estimates converge at rate T,
even in the presence of substantial serial correlation in the errors and
correlation across variables, is that the residuals are I(1) for all parameter
values except those corresponding to the cointegrating vector. Hence as
the sample size increases, the variance of the residuals grows without
bound for all combinations of parameters other than those in the
cointegrating vector.

These results are appealing, but simulation studies show that in finite
samples the OLS procedure can lead to severe biases which often decrease
only slowly with the sample size (see, in particular, Banerjee etal., 1986).18
Hence, it appears that the rate T convergence result is not sufficient to
ensure parameter estimates with good finite sample properties. As we
will discuss below this is due to the fact that the least-squares estimate of
the cointegrating vector obtained from (3.17) is not asymptotically opti-
mal. Another disadvantage of the OLS procedure is the following:

Rule 22: OLS estimates of the parameters of the cointegrating vector in
(3.17) have an asymptotic distribution that depends on nuisance parame-
ters. Therefore, one should not attempt to test hypotheses about the
cointegrating vector using these estimates unless the effect of the nui-
sance parameters is taken into account.

The nuisance parameters in rule 22 are of two types.” First, there is
the serial correlation of the errors u, in (3.17). This can be dealt with fairly
easily using a nonparametric correction like the ones discussed above for
the Phillips—Perron univariate unit root test or the Stock—Watson cointe-
gration test. Second and more important, the asymptotic distribution of
T(B — 0) is affected by the endogeneity of the regressors y,,. If the innova-

18. This study concentrates on the properties of the estimates of the cointegrating vectors
and not the estimates of the parameters in (3.5). The estimates of the cointegrating
vectors are indeed those of primary interest. If one has good estimates of these quanti-
ties the estimates of the parameters of the short-run dynamics should be well behaved.

19. For an extensive treatment of asymptotic distribution in models with unit roots and
cointegration, see Park and Phillips (1988, 1989).
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tions in y;, do not Granger cause the innovations in y,, this problem
disappears. Thus we have the following.

Rule 23: 1If the error u, in (3.17) is serially uncorrelated and the innova-
tions in y;, do not Granger cause the innovations in y,,, then the asymp-
totic distribution of T(8 — ) is free of nuisance parameters. Furthermore,
the OLS estimate 8 is asymptotically optimal and standard hypothesis
tests such as Wald tests on the parameters of 6 are asymptotically distrib-
uted as chi-squared random variables.

These conditions under which OLS on (3.17) yields optimal estimates
are highly restrictive. Accordingly, there is a need to derive alternative
estimation procedures that are asymptotically optimal in the general
case. Phillips (1991b) discusses optimal inference in cointegrated sys-
tems and shows that Full Information Maximum Likelihood (FIML)
methods yield asymptotically optimal estimates if they incorporate the
correct prior restriction that n — r unit roots are present in the system.2
In this case an optimal asymptotic theory of inference applies and hy-
potheses can be tested using the usual chi-squared distribution.?

The intuition behind the optimality of FIML is first that it accounts
parametrically for serial correlation in the static regression errors. More
importantly, it is a system estimation method that accounts for the pres-
ence of endogeneity and feedback among the variables. It is important to
note that the unit roots in the model need to be imposed a priori and not
estimated. FIML is not optimal when it is applied to a system that does
not impose unit roots, such as an unrestricted VAR. An example of FIML
fully restricted by the a priori imposition of unit roots is the method
proposed by Johansen (1988, 1989a) and Ahn and Reinsel (1990) for the
case of a Gaussian multivariate autoregressive system. We showed in
Section 3.2 how one can implement this procedure to estimate the pa-
rameters of the model, in particular those of the cointegrating matrix.2
Johansen also discusses the algorithm implied by FIML in the case where
restrictions are imposed on the cointegrating matrix 8, the adjustment
matrix «, or both. It is then possible to form likelihood ratio tests that are
asymptotically distributed chi-squared. Wald tests of restrictions on ei-
ther a or B are also asymptotically chi-squared. Ahn and Reinsel (1990)

20. For a discussion of asymptotic optimality for inference in time series models, see
Jeganathan (1988).

21. Phillips (1991a) also considers system estimation procedures in the frequency domain.
These also share the property of being asymptotically optimal. We omit their discussion
here. For an application, see Corbae, Ouliaris, and Phillips (1990).

22. Simulation evidence on the finite sample performance of Johansen’s (1988) maximum
likelihood procedure is presented in Gonzalo (1989).
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consider a two-step reduced rank procedure that is asymptotically
equivalent to FIML.

Despite the availability of the Johansen procedure, there are several
reasons to consider single equation estimation methods. First, such
methods are often easier to apply. Second, knowledge of the presence
of unit roots is usually obtained via a pretesting procedure that, if
properly taken into account, could affect the asymptotic properties of
subsequent estimates. Such pretesting issues are likely to be more se-
vere in systems estimation than in single equation estimation proce-
dures. Third, in the Johansen approach as in any system estimation
procedure, the estimates of one equation are sensitive to possible
misspecification in another equation.

In discussing single equation methods, for simplicity we first return to
the assumption that there is only one cointegrating vector. The aim of
the single equation methods is to find an estimator of the coefficients of
this vector that has optimal properties and for which hypotheses can be
tested using the normal or chi-square asymptotic distribution. Once the
estimates of the cointegrating vector are available one can construct an
estimate of the equilibrium error z,, substitute it into the error-correction
regression (3.5), and then estimate that regression by OLS. To our knowl-
edge, there exist three single equation estimation methods for the
cointegrating vectors that have the same asymptotic distribution as the
FIML estimates, and hence that are asymptotically optimal. These are
due to Phillips and Hansen (1990);2 Saikkonen (1990); Stock and Watson
(1989b); and Phillips and Loretan (1989). They vary according to whether
the corrections for serial correlation in the residuals of (3.17) and the
presence of endogeneity are of a parametric or nonparametric nature.
Phillips and Hansen’s procedure is fully nonparametric; Saikkonen and
Stock and Watson correct for endogeneity in a parametric way while the
correction for serial correlation is nonparametric; and Phillips and
Loretan’s procedure is fully parametric. These methods are asymptoti-
cally equivalent.

The fully nonparametric procedure of Phillips and Hansen (1990)
starts with the OLS estimates obtained from (3.17). Two nonparametric
corrections are applied to the OLS estimator to give it the same asymp-
totic distribution as the FIML estimator. The first correction deals with
the presence of serial correlation in the residuals of (3.17) and is akin to
the Phillips—Perron (1988) correction. The second correction uses a nor-
malized nonparametric estimate of the long-run covariance between the

23. Park (1988) considers a closely related estimation method called “canonical cointegra-
tion regression” that eliminates nuisance parameter dependencies nonparametrically.
His procedure also generalizes easily to a multivariate context.
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innovations in y,, and the innovations in y,, to deal with the presence of
Granger causality from y,, to y,. The t-statistics for (3.17) can also be
corrected in this way. Phillips and Hansen (1990) and Phillips and
Loretan (1989) present simulation results showing that this estimator has
rather poor finite sample properties (greater bias and mean squared
error than simple OLS) when the model contains negative serial correla-
tion. This is analogous to the behavior of the Phillips—Perron (1988) tests
for a unit root as documented by Schwert (1989) and others. Otherwise,
the estimator performs relatively well compared to OLS but less well
than the following two procedures which incorporate some parametric
structure.

The methods of Saikkonen (1990) and Stock and Watson (1989b) share
with the approach of Phillips and Loretan (1989) a common parametric
correction for the effect caused by the endogeneity of the regressors.
Recall that the asymptotic distribution of the least-squares estimator in
(3.17) is affected by the presence, in the general case, of Granger causal-
ity from the innovations in y;, to the innovations in y,,. From the work of
Sims (1972) on testing for causality we recall the following fact. If a
variable w;, Granger causes another variable w,, then w, can be ex-
pressed as a linear combination of past, present, and future values of w,,.
The idea behind this result is that if w,, Granger causes w,,, future values
of w,, will contain information that is useful in predicting w,,. Saikkonen,
Stock and Watson, and Phillips and Loretan exploit this idea to propose
a parametric correction to the least-squares regression (3.17) that asymp-
totically eliminates the effect of this endogeneity on the distribution of
the least-squares estimator of 8. The idea is simply to add to the regres-
sion leads and lags of the first-differences of the regressors y,. This
yields the regression

Yy = 7DR, + 0y, + d,(L) Ay, + dz(L—l) Ay, + v, (3.18)

whered, (L) = 2 d L*and d,(L™") = £ d,L " Inprinciple the polynomials
d,(L) and d,(L™") have infinite order, but in practice one needs to truncate
the infinite sum. This can be done using standard asymptotic distribu-
tion theory to eliminate insignificant additional lags to arrive at a parsi-
monious representation.

Equation (3.18) still has the problem that the residuals v, are serially
correlated, which affects the asymptotic distribution of the least-squares
estimate of 6. Stock and Watson (1989b) propose two different methods
for dealing with this. The first one uses OLS estimates of 6 in (3.18), but
corrects standard errors and Wald test statistics nonparametrically for
the effect of serial correlation. The second method uses generalized
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least-squares on (3.18). A preliminary OLS regression estimates the corre-
lation structure of the residuals v, parametrically. This is then used to
construct the GLS estimator. In this case hypothesis tests on the coeffi-
cients of the cointegrating vector can be performed using the standard
(unmodified) Wald test whose asymptotic distribution is then chi-
squared.

Phillips and Loretan (1989) instead use a parametric correction to obtain
a regression equation with uncorrelated residuals. They include.lags of
the equilibrium error in the regression (3.18) leading to the specification:

Yy = T DR, + 0'yy + dy(L) (Y1 —0'yy) + dy(L)Ay,, + dy(L)Ay, + e, (3.19)

where e, is now a serially uncorrelated sequence and d(L) = 27 ,d, L is an
infinite lag polynomial in L, which as before is truncated in practice.
Equation (3.19) differs from a single equation of an error-correction repre-
sentation in that leads of Ay,, are included in the regression. Also in
(3.19) the coefficients 6 enter nonlinearly so the equation must be esti-
mated by nonlinear least-squares. The nonlinear least-squares estimator
of 6in (3.19) has the same asymptotic distribution as the FIML estimator
so that hypotheses can be tested using the standard chi-squared distribu-
tion. Phillips and Loretan present some preliminary simulation evidence
about the performance of this single-equation estimator. They remark
that hypothesis tests on the coefficients of the cointegrating vector ap-
pear to be sensitive to overfitting the lag length in (3.19). They suggest
successively eliminating insignificant regressors in the spirit of Hendry’s
methodology (see Hendry, 1987; Hendry and Richard, 1982).

Our discussion of single-equation methods has considered' the case
where there is a single cointegrating vector in the system. In general
there may be r cointegrating vectors. In this case any of the single-
equation methods can be applied to a stacked system of r equations,
each with a different dependent variable. The choice of r dependent
variables, out of the n available, represents a normalization of the
cointegrating vectors. This generalization is of course more complicated
than estimating a single regression equation, but it may still be easier to
apply than the Johansen system estimation method, as it requires only
multivariate (linear or nonlinear) least-squares procedures. Of course, to
use this approach one must know or estimate r, the cointegrating rank.
Hypotheses about r can be tested following Stock and Watson (1988a) or
Johansen (1989a), but if the Johansen approach is used for this purpose

24. Note that Stock and Watson (1989b) also consider the more general case where the
variable can be integrated of any order with or without deterministic trends.
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then it is easy to use it to estimate the cointegrating vectors as well. In
this case the only remaining advantage of the single-equation methods is
that they may be more robust to misspecification of the system. No
comprehensive simulation study of the finite sample properties of alter-
native estimation procedures is yet available. It does seem that any of
the optimal methods are better than using static OLS to estimate
cointegrating vectors, but it is not at all clear how one should choose
among the available optimal methods. More work is needed on this
topic, especially on the robustness of each procedure to misspecification.

3.4 WHEN ARE COINTEGRATION METHODS NECESSARY?

In the previous sections we have developed in some detail the theory of
representation, testing, and estimation for cointegrated systems. It is
important to acknowledge, however, that there may be circumstances
where macroeconomists can avoid using the cointegration methods we
have described.

First, economic theory sometimes determines not only the existence,
but also the parameters of cointegrating vectors. For example, when two
variables in a model are measured in logs it is common to find that the
log ratio of the variables is stationary, so that the variables are cointe-
grated with cointegrating vector 8 = [1 —1]. This occurs for example in
real business cycle models with unit root shocks (King, Plosser, and
Rebelo, 1988). Campbell and Shiller (1987, 1988b) have modeled asset
price determination with unit root processes for dividends; when the
model is formulated in levels, the cointegrating vector between prices
and dividends is a function of the unknown discount factor, but an
approximate log-linear model gives a known cointegrating vector equal
to [1 —1]. When cointegrating vectors are known, the estimation and
inference problem becomes fairly trivial. One can form the equilibrium
errors z, = B'(y, — &t), substitute them into the error-correction model
(3.5), and estimate the model using OLS equation by equation. No non-
standard asymptotic theory is needed for testing hypotheses about the
other parameters of the model. The a priori restrictions on the cointe-
grating vectors can be tested using univariate unit root test statistics on
the equilibrium errors.

Even when the cointegrating vectors have unknown parameters, one
can often avoid using cointegration methods if one is not directly inter-
ested in these parameters. Consider estimating an unrestricted VAR in
levels and testing hypotheses about the VAR coefficients. Sims, Stock,
and Watson (1990) point out that the asymptotic distribution of the test
statistics is standard whenever the hypotheses can be expressed as re-
strictions on I(0) regressors. This result is given in the following.
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Rule 24: In an unrestricted VAR system in levels, parameter estimates
have standard asymptotic distributions whenever the system can be
written in such a way that the parameters appear on I(0) variables.
Hypothesis test statistics have standard distributions whenever the hy-
potheses can be expressed as restrictions on I(0) variables.

At an intuitive level, this result should not be surprising. We have
already seen that cointegrating vectors can be estimated in a preliminary
regression, and can then be treated as known in subsequent OLS estima-
tion of the error-correction representation. Because the estimates of
cointegrating vectors converge rapidly to their true values, uncertainty
about the cointegrating vectors does not affect the asymptotic distribu-
tion of the other parameters of the model (rule 21). The Sims, Stock, and
Watson result extends this to the case where the cointegrating vectors
are estimated simultaneously with the other parameters of the model,
rather than in a first step, and where the unit roots are estimated rather
than imposed on the system.

The practical usefulness of this result will depend very much on the
circumstances of a particular macroeconomic investigation. Sims, Stock,
and Watson discuss some leading examples. If one is testing for the
significance of additional lags in a VAR, the final lag coefficients can
always be written as coefficients on differences. This means that tests for
lag length do not suffer from unit root problems even in a VAR in levels.
The same holds more generally for restrictions that involve only a subset
of the lagged levels that appear in the VAR. Tests for Granger causality
from a variable y,, to another variable y;, are more problematic because
they involve all the lagged levels of y,, in a regression of y;, on lags of
itself and y,,. Thus Granger causality test statistics have unit root distribu-
tions unless y,, is cointegrated with y;,.

The macroeconomic literature on the permanent income hypothesis
also offers some examples. Hall (1978) and Flavin (1981) formulated a
version of the permanent income hypothesis in which consumption fol-
lows a martingale. The model also implies that consumption and income
are cointegrated (Campbell, 1987). Hall tested the model by regressing
consumption on lagged levels of consumption and income, and testing
whether the coefficients on variables other than the first lag of consump-
tion were jointly significant. This can be expressed as a test on coefficients
of changes in consumption and stationary combinations of consumption
and income; therefore Hall’s test is valid even when income has a unit root
(Stock and West, 1988). Flavin (1981), on the other hand, tested the model
by regressing the change in consumption on lagged levels of detrended
income and testing the joint significance of the coefficients. This test
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rejects too often asymptotically when income has a unit root, and rejects
too often in finite samples even when income is stationary but has a root
close to unity (Mankiw and Shapiro, 1985).

In some cases it is possible to learn about the questions at hand, while
still benefitting from rule 24, by adapting the hypotheses to be tested.
For example one can test the hypothesis that K — 1lagged levels of y,, do
not help to forecast y,, in a regression that includes K lagged levels of y,,
and y,,. If this hypothesis is rejected, one has found evidence of Granger
causality from y,, to y;, without running the standard test that is subject
to unit root problems. Issues related to unit roots need be confronted
only if this hypothesis is not rejected. This is an example of the general
principle that one should try to test hypotheses of direct interest using
procedures that are unaffected by extraneous characteristics of the prob-
lem such as the presence or absence of unit roots.

The above example involves estimation of a levels model, but one can
sometimes avoid cointegration methods by working in differences. In the
Hall (1978) version of the permanent income hypothesis, the joint process
for consumption and income is an error-correction model, with a
cointegrating vector that is unknown if one observes only a subset of total
consumption (Campbell, 1987). Nevertheless one can test the model by
regressing changes in consumption just on lagged changes in income and
lagged changes in consumption. The omission of the error-correction
term may affect the power of the test, but will not affect its size.

There remain many cases where cointegration methods have an impor-
tant role to play in applied macroeconomics. First, researchers are often
interested in testing for the presence of unit roots in a system of vari-
ables related by identities or behavioral models. Univariate unit root
tests can yield different results, depending on which variables are
chosen for the tests. In this situation a system approach such as that of
Ahn and Reinsel (1990), Johansen (1988, 1989a,b), Park (1988), or Stock
and Watson (1988a) can be useful. Second, economic models sometimes
have underlying parameters that appear both in the cointegrating vec-
tors and in the coefficients governing the short-run dynamics of the
model. Kashyap and Wilcox (1990), for example, estimate an inventory
model in which the parameters of firms’ cost functions determine both
the cointegrating vector between inventories and sales and the short-run
dynamics of these variables.

4. Conclusion

We now return to the example with which we started this paper, and
briefly discuss some of the implications of our analysis for estimation
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and hypothesis testing of the five-variable system X, = (m,, y,, p,, i, b).
We note first that there is some evidence that the first three variables in
this system need to be differenced twice to render them stationary, that
is, they are I(2) rather than I(1). One might suspect that this is due to a
unit root in the inflation rate Ap, rather than I(2) behavior of real money
and output, and indeed King, Plosser, Stock, and Watson (1991) argue
that a transformed system X{ = (m, — p, y, — p, 4p, i, b) contains
variables all of which are I(1). Here is a case where macroeconomic
theory suggests certain cointegrating vectors that can be applied to the
data; standard univariate unit root test statistics can be applied to the
elements of X} to test King, Plosser, Stock, and Watson’s hypothesis.

In the introduction we mentioned three macroeconometric exercises
that could be undertaken on the system X}. First, one might want to
estimate a money demand function relating the real money stock
m, — p, to real output y, — p, and nominal interest rates i, and b,. Our
review of multivariate systems with unit roots has shown that a critical
issue is whether the real money stock is cointegrated with the other I(1)
variables in the vector X}. If there is no cointegration, then the money
demand regression is spurious and standard t and F tests on the esti-
mated coefficients are meaningless. If there is cointegration, on the
other hand, the parameters of the money demand regression can be
estimated superconsistently by any of the methods discussed in Section
3.3. The estimated coefficients will be robust to the presence of mea-
surement error and endogeneity of the regressors; this circumvents
many of the standard problems in the money demand literature, such
as which concepts of the money stock, real economic activity, and the
interest rate to use, and how to adjust for endogenous responses of
activity and nominal interest rates to the money supply process. It is
also important to note that economic theory tells us which variables
enter the cointegrated money demand relationship but does not deliver
strong prior restrictions on the parameters of this cointegrating vector
(the income elasticity and interest semielasticity of money demand);
thus this is a case where the superconsistency result may have some
practical benefits for macroeconomics.

Unfortunately the empirical evidence on cointegration of real money,
real output, and nominal interest rates is mixed. King, Plosser, Stock,
and Watson (1991) find evidence that these variables are cointegrated,

25. As always, this evidence is somewhat sensitive to assumptions made about trends and
to the exact data series and sample period used. Stock and Watson (1989a), for exam-
ple, argue that the growth rate of log M1 is trend-stationary with a positive trend in
postwar U.S. data, whereas King, Plosser, Stock, and Watson (1991) argue that the
growth rate of log M2 is I(1) with no trend in a similar data set.
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but Friedman and Kuttner (1990) argue that this evidence largely disap-
pears in recent data as a result of the well-known change in the behavior
of velocity in the early 1980s. Both these papers use log-linear determinis-
tic trends; it is also possible that real money, output, and interest rates
are cointegrated with a broken deterministic velocity trend. This illus-
trates another theme of our survey, that the treatment of deterministic
trends is inseparable from the treatment of unit roots in macroeconomic
data.

A second macroeconometric exercise follows Sims (1972, 1980a,b) to ask
whether the real money stock Granger causes real output. It turns out that
Granger causality tests from money to output are sensitive to whether
output and money are used in raw form, or are detrended or differenced
before the tests are conducted (Bernanke, 1986; Eichenbaum and Single-
ton, 1986; Christiano and Ljungqvist, 1988; Stock and Watson, 1989a).
They are also sensitive to the inclusion of nominal interest rates in the
system (Sims, 1980b). These findings should not be surprising given the
result of Sims, Stock, and Watson (1990) summarized in our rule 24. If real
money and real output are I(1) variables, then Granger causality tests
have a nonstandard distribution if the series are not cointegrated, but a
standard distribution if they are cointegrated. If there is a cointegrating
vector relating real money, real output, and nominal interest rates, but no
cointegrating vector between real money and real output alone, then the
distribution of Granger causality tests on levels will depend on whether
nominal interest rates are included in the system.

A final exercise is to test the expectations theory of the term structure.
This states that the long-term interest rate can be written as a constant,
plus the expected discounted value of future short-term interest rates.
When the short rate is I(1), the expectations theory implies that the long
rate is also I(1). One might think that in this case the theory could be
tested as a set of restrictions on a VAR in differences (Sargent, 1979).
Unfortunately this strategy runs into problems because the expectations
theory also implies that the spread between long rates and short rates is
stationary, so long rates and short rates are cointegrated with cointegra-
ting vector [1 —1]. This means, first, that no well-behaved VAR represen-
tation exists for differenced long and short rates, and second, that the
expectations theory puts restrictions on levels that cannot be tested by
looking only at differences (Campbell and Shiller, 1987). The theory can
be tested using an error-correction model, which is conveniently trans-
formed into a VAR for the yield spread and the change in the short-term
interest rate.

These examples illustrate some of the possible applications of multi-
variate unit root methods in macroeconometrics. Some of these methods
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are still relatively new and have not yet found wide application in
macroeconomics, but we expect that over the next few years they will
become as well established as the now familiar test procedures for unit
roots in univariate time series.
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Comment

JOHN H. COCHRANE!
University of Chicago and NBER

This paper is an outstanding survey of unit root econometrics. It is an
enormous and confusing literature, and Campbell and Perron’s 24 rules
are a tremendous and very practical condensation. If you decide to run
unit root tests, this is a good place to start.

Rather than pick on rule 22, or survey some fields that the authors left
out of this already massive paper (such as the Bayesian view or fractional
unit roots), I will devote my comments to some reservations on practical
usefulness. The bottom line is that, as much as I admire this paper as a
survey of what econometricians know about unit roots, I am not yet con-
vinced that this is what macroeconomists should know about unit roots.

For the moment, there are two broad uses of unit root econometrics,
and I think it is best to organize my thoughts about what macroeconom-
ists need to know about unit root econometrics by how they use it.

1. University of Chicago and NBER. I thank Jim Stock and Mark Watson for helpful discus-
sions in preparing these comments.
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