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Abstract

Objective—To evaluate a new approach for creating a composite measure of cognitive function,

we calibrated a measure of general cognitive performance from existing neuropsychological

batteries.

Methods—We applied our approach in an epidemiologic study and scaled the composite to a

nationally representative sample of older adults. Criterion validity was evaluated against standard

clinical diagnoses. Convergent validity was evaluated against the Mini-Mental State Examination

(MMSE).

Results—The general cognitive performance factor was scaled to have a mean=50 and SD=10 in

a nationally representative sample of older adults. A cut-point of approximately 45, corresponding

with an MMSE of 23/24, optimally discriminated participants with and without dementia

(sensitivity=0.94; specificity=0.90; AUC=0.97). The general cognitive performance factor was

internally consistent (Cronbach's alpha=0.91) and provided reliable measures of functional ability

across a wide range of cognitive functioning. It demonstrated minimal floor and ceiling effects,

which is an improvement over most individual cognitive tests.

Conclusions—The cognitive composite is a highly reliable measure, with minimal floor and

ceiling effects. We calibrated it using a nationally representative sample of adults over age 70 in

the US and established diagnostically relevant cut-points. Our methods can be used to harmonize

neuropsychological test results across diverse settings and studies.
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Introduction

Despite its central role in the daily lives of older adults, there is no widely used,

standardized method of assessing overall or global cognitive function across a wide range of

functioning. Over 500 neuropsychological tests exist for clinical and research purposes (1).

This tremendous diversity complicates comparison and synthesis of findings about cognitive

functioning across a broad range of performance in multiple samples in which different

neuropsychological batteries were administered. Although test batteries are used to examine

domain-specific cognitive function, summary measures provide global indices of function

(2). Brief global cognitive tests such as the Mini-Mental State Examination (MMSE) and

others are limited by prominent ceiling effects and skewed score distributions (3-6), thus

evaluating a limited range of cognitive function. These measurement properties substantially

hamper the capacity to measure longitudinal change, since score ranges are limited and a

point change has different meanings across the range of values (3,7). Summary measures of

general cognition, if properly calibrated, may be more sensitive to impairments across a

broader range of cognitive function and be more sensitive to changes over time (8).

Approaches to creating summary cognitive measures have been limited and controversial.

One approach involves standardizing scores of component cognitive tests, which are then

averaged into a composite (9,10). Although widely used, this approach is limited because

standardizing variables does not address skewed response distributions, does not allow

differential weighting of tests, and ultimately does not facilitate comparisons of findings

across studies. An alternative approach uses latent variable methods to summarize tests. The

tests are weighted and combined in a composite measure that has more favorable

measurement properties including minimal floor and ceiling effects, measurement precision

over a wide range of function, and interval-level properties that make the composite optimal

for studying longitudinal change (e.g., 8,11).

In a previous study, Jones and colleagues (12) used confirmatory factor analysis to develop a

general cognitive performance factor from a neuropsychological battery (13). This measure

was shown to be unidimensional and internally consistent (Cronbach's alpha=0.82). The

factor was defined by high loadings on six of the ten component tests. The cognitive factor

was designed to be sensitive to a wide range of cognitive function from high functioning to

scores indicative of dementia. Scores were normally distributed and reliable (reliability

index>0.90). With these properties, the general cognitive performance factor provides a

robust approach to assess cognitive function over time.

Despite these clear advantages, an important limitation of the general cognitive performance

factor is that its scores are not yet clinically interpretable or generalizable across studies. To

address this limitation, the aims of the present study were to: (1) calibrate a general

cognitive performance factor to a nationally representative sample of adults over age 70 in

the US, (2) validate the general cognitive performance factor against reference standard
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clinical diagnoses, (3) examine convergent validity of the cognitive performance factor

score, and (4) identify clinically meaningful cut-points for the cognitive factor score. Our

overall goal was to create a clinically meaningful measurement tool, and importantly, to

demonstrate an approach that is generalizable to other different neuropsychological test

batteries on a broader scale.

Materials and Methods

Study samples

Participants were drawn from the Successful AGing after Elective Surgery (SAGES) study

and the Aging, Demographics, and Memory Study (ADAMS), a substudy of the Health and

Retirement Study. SAGES is a prospective cohort study of long-term cognitive and

functional outcomes of hospitalization in elective surgery patients. After recruitment, a

neuropsychological battery was administered to participants just before surgery and peri-

annually for up to three years. Because data collection was ongoing at the time of this study,

we used pre-operative data for the first 300 patients enrolled. Eligible participants were at

least 70 years of age, English-speaking, and scheduled for elective surgery at one of two

academic teaching hospitals in Boston, MA. Exclusion criteria included evidence of

dementia or delirium at baseline. Study procedures were approved by the Institutional

Review Board at the Beth Israel Deaconess Medical Center.

ADAMS is a nationally representative sample of 856 older adults in the United States

interviewed in 2002-2004 (14). Its parent study, the Health and Retirement Study, is a

longitudinal survey of over 20,000 community-living retired persons. ADAMS, which began

as a population-based study of dementia, initially identified a stratified random sample of

1,770 participants; 687 refused and 227 died before they were interviewed, yielding 856

participants. Participants with probable dementia and minorities were over-sampled. We

used survey weights to account for the complex survey design and to make estimates

representative of adults over age 70 in the US (15). ADAMS was approved by Institutional

Review Boards at the University of Michigan and Duke University.

Measures

Neuropsychological test batteries—In SAGES, a neuropsychological test battery was

administered during an in-person evaluation that consisted of 11 tests of memory, attention,

language, and executive function. We used ten tests from the ADAMS battery, of which

seven were in common with SAGES (Table 1). As explained in more detail in the statistical

analysis, our modeling approach allows cognitive ability to be estimated based on responses

to any subset of cognitive tests (16).

Clinical diagnoses—Clinical diagnoses, grouped as normal cognitive function, cognitive

impairment-no dementia (CIND), and all-cause dementia, were assigned in ADAMS by an

expert clinical consensus panel (14,17). Diagnoses were determined after a review of data

collected during in-home participant assessments, which included neuropsychological and

functional assessments from participants and proxies. A diagnosis of dementia was based on

the Diagnostic and Statistical Manual of Mental Disorders III-R and IV (18,19) and for the
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present study included probable and possible AD, probable and possible vascular dementia,

dementia associated with other conditions (Parkinson's disease, normal pressure

hydrocephalus, frontal lobe dementia, severe head trauma, alcoholic dementia, Lewy Body

dementia), and dementia of undetermined etiology. CIND was defined as functional

impairment that did not meet criteria for all-cause dementia or as below-average

performance on any test (17). CIND included participants with Mild Cognitive Impairment

or cognitive impairment due to other causes (e.g., vascular disease, depression, psychiatric

disorder, mental retardation, alcohol abuse, stroke, other neurological condition).

MMSE—The MMSE is a brief 30-point cognitive screening instrument used to assess

global mental status. The MMSE is widely used in clinical and epidemiologic settings. Its

validity as a screening test for all-cause dementia in clinical populations has been previously

established (20,21). George (22) recommended cut-points of 23/24 for moderate cognitive

impairment and 17/18 for severe cognitive impairment. These cut-points have been widely

applied in clinical and research settings (21-25). MMSE 9/10 has also been used to indicate

severe impairment (26). Although not a preferred test for identification of Mild Cognitive

Impairment (21), cut-points of 26/27 (23,27,28) and 28/29 (29) have been used for that

purpose. Although the MMSE has poor measurement properties and ceiling effects, we used

is as a standard for comparison in this study because it remains widely used and its scores

and cutoffs are well-recognized.

Statistical analyses

We used descriptive statistics to characterize the SAGES and ADAMS samples. Analyses

were subsequently conducted in four steps: (1) score the general cognitive performance

factor in SAGES and calibrate it to ADAMS using item response theory (IRT) methods, (2)

assess criterion validity of the general cognitive performance factor using reference standard

clinical ratings in ADAMS, (3) assess convergent validity of the general cognitive

performance factor with the MMSE, and (4) identify cut-points on the general cognitive

performance factor corresponding to published MMSE cut-points.

Score the general cognitive performance factor in SAGES and calibrate to
ADAMS—We calculated internal consistency of the cognitive tests in SAGES using

Cronbach's alpha (13). The Cronbach's alpha statistic has a theoretical range between 0 and

1, with 1 indicating high internal consistency. A generally accepted reliability for analysis of

between-person group differences is ≥0.80 and for within-person change is ≥0.90 (13). Next,

we calculated the general cognitive performance factor in SAGES from a categorical

variable factor analysis of cognitive tests. The general cognitive performance factor score

was scaled to have a mean of 50 and standard deviation (SD) of 10 in the US population

over age 70. The factor analysis is consistent with the IRT graded response model, and

facilitated precise estimation of reliability across the range of performance (30-33). In IRT,

reliability is conceptualized as the complement of the squared standard error of

measurement (SEM) (34). The SEM is estimated from the test information function, which

varies over the range of ability. We described the precision of the measure over the range of

general cognitive performance using the standard error of measurement calculated based on

the IRT measurement model (35,36).
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To scale the general cognitive performance factor in SAGES to the nationally representative

ADAMS sample, we took advantage of tests in common between studies to calibrate scores

in SAGES to ADAMS (3). We categorized cognitive tests into up to 10 discrete equal-width

categories (37) to avoid model convergence problems caused by outlying values (38) and to

place all tests on a similar scale (12) (see Supplemental Table 2). Tests in common between

studies were categorized based on the sample distribution in ADAMS. We assigned model

parameters for anchor tests in the SAGES factor analysis based on corresponding estimates

from the ADAMS-only model that used population-based survey weighting. This procedure

allowed us to scale the general cognitive performance factor to reflect the general population

of US adults aged 70 and older. Importantly, because the IRT model handles missing data

under the assumption that cognitive performance data are missing at random conditional on

variables in the model, general cognitive performance can be calculated for each participant

based on responses to any subset of cognitive tests as long as not all test scores are missing.

The factor score is the mean of the posterior probability distribution of the expected a priori

latent trait estimate. The posterior probability distribution refers to the conditional density of

the latent cognitive performance trait given observed cognitive test scores. Because the

factor is computed on the basis of all available information in a participant's response

patterns, it can be computed regardless of missing tests (39).

We conducted diagnostic procedures using Monte Carlo simulation by generating 100,001

hypothetical observations with the MMSE and all SAGES and ADAMS cognitive measures.

Simulated cognitive test distributions matched those of our empirical samples. This

simulation allowed us to rigorously compare SAGES and ADAMS scores to the overall

general cognitive performance factor using correlations and Bland-Altman plots to examine

systematic differences between the measures (40).

Criterion validity of the general cognitive performance factor—To evaluate

criterion validity for distinguishing dementia and CIND, we used logistic regression. We

report overall areas under the curve (AUC) for the general cognitive performance factor and

diagnostic characteristics for the score that maximized sensitivity and specificity (41).

Convergent validity of the general cognitive performance factor—We correlated

the general cognitive performance factor with MMSE using Pearson correlation coefficients.

Link the general cognitive performance factor and MMSE—The MMSE is a

widely used screening test for global cognitive status. Because of its widespread use, many

clinicians and researchers are familiar with its scores. Thus, the MMSE provides a set of

readily recognizable cutpoints which we utilized as guideposts for comparison with the

general cognitive performance measure. To produce a crosswalk between the general

cognitive performance factor and MMSE, we used equipercentile linking methods to

correlate scores (42). This step allowed the direct comparison of general cognitive

performance factor scores that correspond to MMSE scores. Equipercentile linking identifies

scores on two measures (MMSE and general cognitive performance factor) with the same

percentile rank, and assigns general cognitive performance a value from the reference test,

MMSE, at that percentile. This approach is appropriate when two tests are on different
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scales, and is most useful when the distribution of the reference test is not normally

distributed (43).

Results

In SAGES (n=300), most participants were female (56%), white (95%), on average 77 years

old (range 70, 92), and had at least a college education (70%)(Table 1). Few had dementia

(n=5, 1.7%) or CIND (n=19, 6.3%). By comparison, in ADAMS (n=856), which is

representative of persons over age 70, participants were mostly female (61%), white (89%),

on average 79 years of age (range 70, 110), and 37% had at least a college education.

Relative to SAGES, the ADAMS sample was older (P<0.001), more ethnically diverse

(P=0.001), less highly educated (P<0.001), and had higher levels of cognitive impairment

(n=308, 13.7% had dementia and n=241, 22.0% had CIND).

Derivation of the general cognitive performance factor in SAGES and calibration to
ADAMS

By design, the general cognitive performance factor in ADAMS had a mean of 50 and

standard deviation (SD) of 10. The general cognitive performance factor in SAGES was 0.9

SD above the national average, reflecting their higher education and younger average age.

The cognitive tests in ADAMS were internally consistent (Cronbach's alpha=0.91). The

reliability of the general cognitive performance factor, derived based on the standard error of

measurement, was above 90% for scores between 40 and 70, which included 84% of the

ADAMS sample. Correlations between the general cognitive performance factor and items

from SAGES were above 0.80, with the exception of HVLT delayed recall (r=0.65). The

tests represent multiple domains including memory, executive function, language, and

attention, suggesting the factor represents general cognitive performance and is not

dominated by a particular cognitive domain. Figure 1 demonstrates that general cognitive

performance factor scores in SAGES and ADAMS were normally distributed; on average,

SAGES participants had higher levels of cognitive function.

Using simulated data, the correlation between the study-specific general cognitive

performance factor for SAGES and ADAMS was above 0.97. Bland-Altman plots further

revealed no systematic bias across the range of general cognitive performance scores,

suggesting the general cognitive performance factor was not measured differently across the

two studies (Supplemental Figure 1).

Criterion validity of the general cognitive performance factor

Figure 2 shows receiver operating curves for distinguishing dementia and CIND in

ADAMS. The general cognitive performance factor score that best discriminated dementia

participants from cognitively normal participants was less than 44.8 (sensitivity = 0.94;

specificity = 0.90; Figure 2, right panel). This cut-point correctly classified 94% of the

sample. The area under the curve (AUC) was 0.97. The general cognitive performance

factor score that best discriminated CIND participants from cognitively normal participants

was less than 49.5 (sensitivity = 0.80, specificity = 0.76; Figure 2, left panel). This cut-point

correctly classified 79% of the sample (AUC=0.84).
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The AUC for the general cognitive performance factor was significantly greater than the

AUC for each constituent test (Supplemental Table 1). The only exception was for

immediate word recall, which was superior for predicting dementia.

Convergent validity of the general cognitive performance factor

The correlation between the general cognitive performance factor and the MMSE was 0.91

in ADAMS (P<0.001), indicating strong evidence of convergent validity.

Crosswalk between general cognitive performance factor and MMSE

The equipercentile linking procedure is illustrated in Figure 3. Scores for the general

cognitive performance factor and MMSE were matched based on percentile ranks. For

example, a score of 24 on the MMSE, for example, has the same percentile rank as a score

of 45 on the general cognitive performance factor.

After equipercentile-linking the general cognitive performance factor with the MMSE, the

score corresponding to an MMSE cut-point of 23/24 was <45.2, or 0.48SD below the

national average (Table 2). This cut-point was nearly identical to the score that best

discriminated participants with and without dementia (Figure 2). General cognitive

performance factor scores of <50.9 and <40.7 corresponded to MMSE scores of 26/27 and

17/18, respectively. Table 2 provides sensitivity, specificity, positive and negative predictive

values, and likelihood ratio positive and negative statistics for predicting dementia and

CIND for general cognitive performance factor scores corresponding to MMSE scores of 29,

27, 24, 18, and 10. The general cognitive performance factor cut-point of 45.2 correctly

classified 90% of persons with dementia (sensitivity) and 93% of persons without dementia

(specificity). This cut-point is moderately strong for confirming dementia (positive

predictive value = 73%; likelihood ratio positive = 12.8) and has excellent negative

predictive value (98%).

We constructed a crosswalk to show scores on the general cognitive performance factor and

corresponding scores on the MMSE (Figure 4). Irregular levels between each score on the

MMSE and the limited observable range of MMSE evident in this figure underscores the

broader range and better interval scaling properties of the general cognitive performance

factor.

Discussion

We developed a unidimensional factor of cognitive performance in the SAGES study, scaled

it to national norms for adults over 70 years of age living in the US, and evaluated its

criterion and convergent validity. When validated against reference standard diagnoses for

dementia, the score of approximately 45 has a sensitivity of 94% and specificity of 90%

(AUC=0.97), indicating outstanding performance. Convergent validity with the MMSE was

excellent (correlation=0.91, P<0.001). Cognitive tests comprising the general cognitive

performance factor are internally consistent (Cronbach's alpha=0.91). The factor is highly

precise across most of the score range (reliability>0.90). To enhance the clinical relevance

of the scores, we provided correlations with widely used scores for the MMSE. Notably, the

Gross et al. Page 7

Neuroepidemiology. Author manuscript; available in PMC 2015 January 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



score of 45 was the optimal cut-point for dementia and also corresponded to an MMSE of

23/24.

General cognitive performance factors previously have been shown to have minimal floor

and ceiling effects, measurement precision over a wide range of cognitive function, and

interval scaling properties that make it an ideally suited measure of change (12,31). We

replicated these findings, and identified meaningful cut-points to further enhance the

potential utility of the measure. Strengths of this study include calibration of the cognitive

composite to a large, nationally representative sample of older adults in which rigorous

reference standard clinical diagnoses were available. With this sample, we were able to

evaluate criterion and convergent validity of the general cognitive performance factor for

detecting cognitive impairment and demonstrate its favorable test performance

characteristics.

Several caveats merit attention. First, the general cognitive performance factor is not

intended to diagnose dementia or MCI. It simply provides a refined cognitive measure,

which like any cognitive measure represents only one piece of the necessary armamentarium

for establishing a clinical diagnosis. Second, seven tests were in common to calibrate

cognitive composites in ADAMS and SAGES, and Bland-Altman plots confirmed they were

similar between studies. Although we are convinced that the general cognitive performance

factors developed in the two samples were equivalent, further research is needed to

determine minimum sample sizes, number of cognitive tests available in common between

studies, and the degree of correlation among tests needed to estimate a reliable composite in

a new sample. Existing research suggests that fewer than five anchor items in an IRT

analysis such as ours is enough to produce reasonably accurate parameter estimates (44);

one previous study used one item in common to calibrate different scales (45). Third, some

criterion contamination is potentially present in our evaluation of criterion validity because

the general cognitive performance factor in ADAMS is a unique combination of shared

variability among test items that were available to clinicians when assigning clinical

diagnoses. However, comparison of AUC's in Supplemental Table 1 for the general factor

and individual cognitive tests revealed the former performed better than most of its

constituent parts. Fourth, positive and negative predictive values in our study are dependent

on base rates, and may differ in other samples. Fifth, while reliability of the general

cognitive performance factor was excellent across a range of performance that included 84%

of the ADAMS population, results suggest it is less reliable at more impaired levels. Future

calibration efforts should consider cognitive tests that are sensitive to impairment in

populations with more severe degrees of dementia. A final caveat is that our approach is not

intended to replace examination and interpretation of individual neuropsychological tests.

Such examination remains an important approach to examine domain-specific cognitive

changes to assist with clinical diagnosis and to understand pathophysiologic correlates of

various cognitive disorders.

An important implication of the present work is the potential of deriving the general

cognitive performance factor to other samples with neuropsychological batteries that have

overlap with the battery used in ADAMS. Extrapolation of these methods holds the potential

for harmonizing batteries to enhance comparability and even synthesize results across

Gross et al. Page 8

Neuroepidemiology. Author manuscript; available in PMC 2015 January 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



studies through integrative data analysis. This method would thus address a substantial

limitation for combining existing studies using disparate neuropsychological batteries (46).

Harmonizing samples together with different research designs and demographic

characteristics provides opportunities to make findings more generalizable. Without this

common metric, or at least one test in common across studies, to conduct integrative

analysis, one must resort to comparing multiple data points from normative tests that

potentially measure diverse cognitive domains.

The need for uniform measures of cognitive function, derived using rigorous psychometric

methods, has been recognized by national groups (47). Uniform, psychometrically sound

measures are a central focus of the NIH PROMIS and Toolbox initiatives. Our study is

consistent with these goals. The innovative approach demonstrated here used psychometric

methods to generate a unidimensional general cognitive performance composite with

excellent performance characteristics that can be used to measure cognitive change over

time and across study. We established clinically meaningful, population-based cut-points.

This measure, and the methods used to create it, holds substantial promise for advancing

work to evaluate progression of cognitive functioning over time. Perhaps most importantly,

our methods can facilitate future strategies to integrate cognitive test results across

epidemiologic and clinical studies of cognitive aging.

Conclusions

We created a composite factor for general cognitive performance from widely used tests for

neuropsychological functioning using psychometrically sophisticated methods. We used

publicly available neuropsychological performance data from the Aging, Demographics, and

Memory Study to calibrate general cognitive performance to a nationally representative

sample of adults age 70 and older in the US. This calibration enabled us to describe

cognitive functioning in our study on a nationally representative scale. The general cognitive

performance factor was internally consistent, provided reliable measures of functional

ability across a wide range of cognitive functioning, and demonstrated minimal floor and

ceiling effects. It also demonstrated criterion validity: a cut-point of approximately 45,

corresponding with an MMSE of 23/24, optimally discriminated participants with and

without dementia (sensitivity=0.94; specificity=0.90; AUC=0.97). Our approach has broad

applicability and usefulness to directly compare cognitive performance in new and existing

studies when overlapping items with the ADAMS neuropsychological battery are present.

These methods can facilitate interpretation and synthesis of findings in existing and future

research studies.
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SAGES Successful AGing after Elective Surgery

ADAMS Aging, Demographics, and Memory Study

CIND Cognitive impairment without dementia

MMSE Mini-Mental State Examination

AUC area under the curve
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Figure 1. Distribution of General Cognitive Performance Score in SAGES and ADAMS
ADAMS: Aging, Demographics, and Memory Study; SAGES: Successful AGing after

Elective Surgery
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Figure 2. Receiver Operator Characteristic Curves for General Cognitive Performance
Predicting CIND and Dementia: Results from ADAMS (n=856)
Legend. In right panel, the general cognitive performance score that best discriminated

dementia participants from other participants was less than 44.8 (sensitivity = 0.94;

specificity = 0.90; right panel). This cut-point correctly classified 93.8% of the sample. The

area under the curve (AUC) was 0.97. In the left panel, the general cognitive performance

score that best discriminated CIND participants from cognitively normal participants was

less than 49.5 (sensitivity = 0.80, specificity = 0.76; Figure 1, left panel). This cut-point

correctly classified 78.5% of the sample. The AUC was 0.84.

CIND: Cognitive impairment without dementia.
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Figure 3. Corresponding Scores and Percentile Ranks for the General Cognitive Performance
Factor and MMSE
Legend. General cognitive performance scores are shown on the top axis. MMSE scores

with the proportion of participants in ADAMS falling below each score are shown on the

bottom x axis. Dotted lines show that approximately 25% of participants have below a 45 on

the general cognitive performance factor and below 24 on the MMSE.

MMSE: Mini-Mental State Examination.

Gross et al. Page 15

Neuroepidemiology. Author manuscript; available in PMC 2015 January 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Crosswalk Between MMSE and General Cognitive Performance Factor: Results from
ADAMS (n=856)
Legend. Crosswalk of scores on the MMSE to the general cognitive performance factor. The

left side of the crosswalk shows MMSE scores (range 0 to 30) and the right side shows

corresponding general cognitive performance scores. To facilitate comparison of the

distribution of general cognitive performance scores against MMSE scores, y-axes are

plotted on an inverse normalized percentile scale. Original units are labeled. We used data

from the Monte Carlo simulation because the distribution of the observed data did not

permit a finely graded linkage between the MMSE and general cognitive performance

factor.

MMSE: Mini-Mental State Examination; GCP: General Cognitive Performance
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Table 1
Neuropsychological Test Batteries in the SAGES and ADAMS Samples

SAGES
(n=300) Mean

± SD

ADAMS
(n=856*)

Mean ± SD

Cognitive domain Test description or effect
size for group difference†

Demographic

 Age, mean ± SD 76.9 ± 5.1 79.0 ± 6.0 0.35

 Age range, years 70, 92 70, 110

 Race, White, n (%) 286 (95.0) 658 (89.3) 0.02

 Years of education, n (%) 0.96

  High school or less 91 (30.3) 638 (62.9)

  College 124 (41.3) 167 (28.7)

  Graduate 86 (28.4) 51 (8.4)

 Sex, female, n (%) 167 (55.6) 501 (60.6) 0.2

Cognitive status, n (%)

 Cognitively normal 276 (92.0) 307 (50.6)

 Cognitive impairment without
dementia

19 (6.3) 241 (35.7)

 Alzheimer s disease 5 (1.7) 308 (13.7)

Neuropsychological test variables

Trails A (Time to complete, seconds)
(48)

42.1 ± 15.1 65.0 ± 45.3 Processing speed Connect a series of
numbers

Trails B (Time to complete, seconds)
(48)

183.7 ± 57.2 154.6 ± 72.7 Processing speed, task-switching Connect an alternating
series of letters and
numbers

Digit Span Forwards (Total number of
digits) (49)

9.9 ± 2.2 8.6 ± 2.1 Attention Repeat a series of pre-
specified random digits
forwards

Digit Span Backwards (Total number
of digits) (49)

6.3 ± 2.1 5.4 ± 2.2 Attention Repeat a series of pre-
specified random digits
backwards

Semantic Fluency (Number of items)
(50)

21.4 ± 6.0 14.5 ± 5.3 Language, executive function Name as many items as
possible in one minute from
a preselected category

Phonemic Fluency (Number of items)
(50)

34.7 ± 12.5 29.3 ± 11.8 Language, executive function Name as many items as
possible in one minute that
begin with letters F, A, or S
(3 trials).

Boston Naming Test - 15 items
(Number of items) (51)

13.3 ± 2.1 13.3 ± 2.2 Language Name objects in a series of
drawings

Symbol Digit Modalities (Total
number of correct numbers) (52)

-- 30.3 ± 11.3 Attention, executive function Match numbers to a series
of symbols

Digit Symbol Substitution (Total
number of correct symbols) (49)

36.0 ± 10.2 -- Attention, executive function Match symbols to a series
of numbers

CERAD word recall – immediate
(Number of words) (53)

-- 16.0 ± 5.8 Episodic memory Sum of 3 trials of recalled
words from a 10-word list
of unrelated nouns

HVLT sum of recall – immediate
(Number of words) (54)

21.3 ± 5.1 -- Episodic memory Sum of 3 trials of recalled
words from a 12-word list
of 4 groups of 3
semantically related nouns
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SAGES
(n=300) Mean

± SD

ADAMS
(n=856*)

Mean ± SD

Cognitive domain Test description or effect
size for group difference†

CERAD word recall – delayed
(Number of words recalled) (53)

-- 0.7 ± 0.4 Episodic long-term memory Recalled words from a
delayed recall trial

HVLT sum of recall – delayed
(Number of words) (54)

0.8 ± 0.3 -- Episodic long-term memory Recalled words from a
delayed recall trial

Visual Search and Attention (Number
of targets) (55)

43.0 ± 9.5 -- Visuospatial function Search for a target letter
amidst other letters

*
In ADAMS, means and percentages calculated using population weights to account for complex sampling. Raw numbers are shown for race,

education, sex, and cognitive status.

†
Cohen's d for mean differences and Cohen's h for proportions.

SD: Standard deviation; WMS: Wechsler Memory Scale; HVLT: Hopkins Verbal Learning Test; SD: standard deviation; CERAD: Consortium to
Establish a Registry for Alzheimer's Disease; MMSE: Mini Mental State Examination; SAGES: Successful Aging after Elective Surgery; ADAMS:
Aging, Demographics, and Memory Study.

Missing data. In SAGES, 0.3% of the sample was missing Trails B, Digit Symbol Substitution, and Boston Naming; there was no missingness in
any other cognitive variables. In ADAMS, 10% were missing Trails A, 19% were missing Trails B, 6% were missing Digit Span Forward, 7%
were missing Digit Span Backward, 3% were missing Semantic Fluency, 2% were missing Boston Naming, 16% were missing Symbol Digit
Modalities, 3% were missing CERAD word recall, 4% were missing delayed CERAD word recall, and 8% were missing Phonemic Fluency.
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