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Abstract

Semaphorins are known modulators of axonal sprouting and angiogenesis. In the retina, we

identified a distinct and almost exclusive expression of Semaphorin 3F in the outer layers.

Interestingly, these outer retinal layers are physiologically avascular. Using functional in vitro

models, we report potent anti-angiogenic effects of Semaphorin 3F on both retinal and choroidal

vessels. In addition, human retinal pigment epithelium isolates from patients with pathologic

neovascularization of the outer retina displayed reduced Semaphorin 3F expression in 10 out of 15

patients. Combined, these results elucidate a functional role for Semaphorin 3F in the outer retina

where it acts as a vasorepulsive cue to maintain physiologic avascularity.
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1. Introduction

Semaphorins were originally identified as neuronal guidance cues for axonal pathfinding

[1,2]. Most semaphorins are membrane-bound ligands with the exception of soluble class 3

semaphorins [3]. Beyond their role in axonal guidance, semaphorins have been identified as

playing pivotal roles in tumor-associated angiogenesis [4]. Their dual function in guiding

both neuronal as well as vascular cells renders semaphorins particularly interesting in retina

research as the neuro-vascular interface plays a decisive role in both normal retinal

development, homeostasis and pathology [5]. Recently, we and others have identified a

novel role for class 3 semaphorins in pathologic angiogenesis of the inner retina [6,7].

© 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
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The inner retina consists of the ganglion cell layer (GCL), the inner plexiform layer (IPL)

and the inner nuclear layer (INL) and is supplied with oxygen and nutrients via the three-

layered retinal blood vessel plexus [8]. Important examples of neurovascular diseases

affecting these inner retinal layers are diabetic retinopathy, retinal vessel occlusion and

retinopathy of prematurity [9,10]. In contrast, the deeper layers of the retina are supplied via

an entirely different vascular plexus. Both the outer nuclear layer (ONL), which is formed

by the photoreceptor cell nuclei, and the retinal pigment epithelium (RPE) obtain their

oxygen and nutrients from choroidal capillaries running directly beneath the neurosensory

retina. Importantly, these outer retinal layers themselves are avascular (Fig. 1A).

The exact mechanisms that maintain physiologic avascularity of the outer retina are

unknown. Thus, identifying the molecular players that prevent vessels from entering the

outer retina may provide valuable insight for designing therapeutic strategies to counter

neovascular eye diseases in which the physiologic avascularity of the outer retina is

breached. Examples of such disorders include the exudative form of age-related macular

degeneration (AMD), in which choroidal capillaries invade the avascular outer retina from

below [11]. In other diseases like retinal angiomatous proliferation (RAP), retinal vessels

invade the outer retinal layers from above [12]. In both cases, plasma leakage, edema and

hemorrhage from pathologic vessels in the outer retina can lead to a rapid decrease in visual

acuity.

The aim of this study was to investigate if class 3 semaphorins play a role in upholding the

physiologic avascularity of the outer retina by repelling retinal and choroidal capillaries

from this region. We first performed a screening analysis of murine semaphorin expression

in retina and RPE, followed by validation in specimens from human donor eyes. Our

expression of Semaphorin 3F (Sema3F) in the outer retinal layers in both mice and humans.

Functional experiments demonstrated pronounced anti-angiogenic effects of Sema3F on

human retinal endothelial cells and choroidal explant sprouting. Combined, these results

provide evidence that Sema3F is expressed selectively in the avascular outer retina and

exerts anti-angiogenic effects on retinal and choroidal capillaries.

2. Material and methods

2.1. Laser capture microdissection

Eyes were enucleated from C57 BL/6 wildtype mice at indicated time points during normal

postnatal development and embedded in optimal cutting temperature (OCT) compound. The

eyes were sectioned at 12 μm in a cryostat, mounted on ribonuclease (RNase)-free

polyethylene naphthalate glass slides (11505189, Leica), and immediately stored at −80 °C.

Slides containing frozen sections were fixed in 50% ethanol for 15 s, followed by 30 s in

75% ethanol, before being washed with diethyl pyrocarbonate (DEPC)-treated water for 15

s. Sections were stained with fluoresceinated Isolectin B4 (Alexa Fluor 594, Invitrogen, 1:50

dilution in lmMCaC-I2 in PBS) and treated with RNase inhibitor (Roche) at 25 °C for 3

min. Retinal layers were then laser-microdissected with the Leica LMD 6000 system

(LeicaMicrosystems) and collected directly into lysis buffer from the RNeasy Micro kit

(Qiagen).
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2.2. RT-PCR and quantitative real-time PCR analysis

Eyes were rapidly enucleated and whole retinas (or laser-captured neovessels/layers) were

processed for RNA extraction using Qiagen columns, followed by treatment with

deoxyribonuclease (DNase) I (Qiagen) to remove any contaminating genomic DNA. The

DNase-treated RNA was then converted into complementary DNA (cDNA) with reverse

transcriptase (Invitrogen). PCR primers were designed with Primer Bank and National

Center for Biotechnology Information (NCBI) Primer Blast software. Quantitative analysis

of gene expression was generated with an ABI Prism 7700 Sequence Detection System and

the SYBR Green Master Mix kit, and gene expression was calculated relative to cyclophilin

A expression.

2.3. Western blotting

Retinal samples were obtained as described above. Pooled retinal lysate (30 mg) from three

different animals was loaded on an SDS–polyacrylamide gel, separated by electrophoresis

(SDS–PAGE) and electroblotted onto a polyvinylidene difluoride (PVDF) membrane. After

blocking, the membranes were incubated overnight with 1:500 rabbit antibody to mouse

Sema3F (Abeam). Membranes were washed and subsequently incubated with 1:2000

horseradish peroxidase-conjugated anti-rabbit secondary antibody (Amersham) for 1 h at

room temperature.

2.4. Immunohistochemistry

For immunohistochemistry, eyes were enucleated from mice or human donor post mortem

and fixed in 4% paraformaldehyde at room temperature for 1 h. Eyes were then embedded in

OCT-compound and sectioned in a cryostat. Primary antibody targeting murine or human

Sema3F were from rabbit (Abeam and Millipore, respectively). Secondary fluorescent

labeled antibodies were anti-rabbit (Arcis anti-rabbit fluorescent secondary antibody).

2.5. Microvascular sprouting from retinal endothelial cell spheroids

Human retinal endothelial cells (HRECs) were obtained from Cell Systems and used from

passage 2 to 5 for sprouting experiments. Cells were cultured as monolayers at 37 °C and

5% CO2 in a humidified atmosphere in complete medium (Cell Systems). The preparation of

endothelial cell spheroids was performed as described [13,14]. Briefly, cells were harvested

from subconfluent monolayers by trypsinization and suspended in complete medium

containing 10% fetal bovine serum (FBS) and 0.25% (w/v) carboxy-methylcellulose

(Sigma). Five hundred cells were seeded together in one hanging drop to assemble into a

single spheroid within 24 h at 37 °C and 5% CO2. After 24 h, spheroids were harvested and

used for sprouting analysis in a matrix of type I collagen. Briefly, 30 endothelial cell

spheroids per group were seeded into 0.5 ml of collagen solution in non-adherent 24-well

plates, with a final concentration of rat type I collagen of 1.5 mg/ml. Freshly prepared gels

were transferred rapidly into a humidified incubator (37 °C, 5% CO2), and after the gels had

solidified, 0.1 ml of serum-free medium (Cell Systems) was added per well containing

VEGF ± Sema3F recombinant protein (RnD Systems). After 24 h, gels were

photomicrographed and spheroid sprouting assessed quantitatively using Adobe Photoshop.

Results are expressed as means ± S.E.M.
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2.6. Microvascular sprouting from choroidal explants

Choroidal explant experiments were performed similar to previously described experiments

[15]. Briefly, eyes from normal C57BL/6 adult wildtype mice were enucleated and

immediately processed for isolation of the RPE/choroid compartment. Equally sized pieces

were placed in a matrix of type I collagen and incubated in 37 °C and 5% CO2 for 72 h. All

explants were stimulated with VEGF-A (20 ng/ml) ± Sema3F recombinant protein.

Photographs of individual explants were taken and the area covered by microvascular

sprouting was quantified using digital imaging software analysis.

2.7. CNV-RPE

CNV membranes had been obtained from patients in a time before intravitreal anti-VEGF

injections became the gold standard for treating exudative AMD and were characterized

before [16]. In brief, CNV membranes had been surgically excised and RPE was cultivated

from these membranes. All CNV RPE cells were isolated using the same protocol. Care was

taken to use lowest possible passage numbers. However, some passaging of cells was

necessary in order to yield sufficiently clean RPE cultures. The isolation and passaging

protocol is outlined in detail in Schlunck et al. (2002) [16]. Control RPE cells were isolated

from a healthy donor eye, not a CNV membrane, but otherwise cultured and treated in the

same way as CNV RPE. For measuring Sema3F expression, we had 15 CNV-RPE RNA

aliquots from 15 different AMD patients available. For additional experiments investigating

other angiogenesis-associated genes, 10 samples were left for analysis. Reverse transcript

ion and qPCR were performed as described above. Results are presented normalized to actin

expression. Ratios were calculated using the ΔΔcT method.

3. Results and discussion

Based on our hypothesis that vasorepellent class 3 semaphorins play a role in upholding

physiologic avascularity in the outer retina, we first performed an expression analysis of

different class 3 semaphorins in murine retina using laser-capture microdissection followed

by qPCR (Fig. 1B). Both Sema3A and Sema3F were expressed in the murine retina. For

Sema3B, 3C and 3D we did not detect replicable expression levels in retinal laser-capture

samples. Interestingly, Sema3A and Sema3F showed a very distinct and non-overlapping

distribution pattern in the murine retina. Sema3A was exclusively found in the inner retina

(ganglion cell layer and inner nuclear layer). Sema3F, in contrast, was predominantly

expressed in the outer retina with most robust expression in the RPE layer. For Sema3A,

expression in the inner retina is in line with earlier data from our group showing pronounced

expression of Sema3A in hypoxic ganglion cells of the inner retina secondary to oxygen-

induced retinopathy (OIR) [6]. In contrast to the hypoxic situation in the OIR model,

Sema3A expression in ganglion cells during normal development is relatively low.

However, physiologic Sema3F expression in the outer retina is significantly higher,

suggesting a housekeeping role for Sema3F but not Sema3A during normal tissue

homeostasis of the outer retina (Fig. 1B). The laser-capture expression profile for Sema3F in

the developing mouse retina was replicated in independent experiments using adult mice at

P60 (Fig. 1C).
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Importantly, the receptors for Sema3F, neuropilin 2 (Nrp2) [17] and PlexinA3 [18], are both

expressed on retinal endothelial cells in vivo as confirmed by laser-capture microdissection

(Fig. 1D). Sema3F is thus able to bind and signal in retinal endothelial cells, exerting its

angiorepellent effect. Selective Sema3F mRNA expression in the outer retina was verified

using Western blot protein expression analysis in both developing and adult mice (Fig. 1E).

Consistent with results from qPCR, Sema3F was consistently expressed at its highest levels

in the RPE layer. These quantitative data were further confirmed by immunohistochemical

analysis that localized Sema3F at the outer photoreceptor/RPE interface (Fig. 1F).

Additionally, the murine expression data were tested for their potential translational impact

with the analysis of Sema3F expression in human retina from a healthy donor eye (Fig. 2).

Consistent with the murine expression results, Sema3F in normal human retina localized to

the outermost retinal layers and RPE (Fig. 2A, C, and E). Negative controls without primary

antibody showed only slight background fluorescence from blood cells trapped in choroidal

capillaries (Fig. 2B and D).

We next investigated whether Sema3F might plays a functional role in upholding the

physiologic avascularity of the outer retina. To this end, one would expect Sema3F to exert

anti-angiogenic functions on both retinal as well as choroidal capillaries to prevent them

from invading into the avascular outer retina from either above (retinal vessels) or below

(choroidal vessels). First we explored the effect of Sema3F on retinal endothelial cells using

a 3D in vitro model in which human retinal endothelial cells (HRECs) were cultivated as

spheroidal cell aggregates and placed in a collagen matrix. Upon angiogenic stimulation

with VEGF, HREC spheroids sprout into the surrounding matrix; addition of Sema3F

significantly reduced this VEGF-induced HREC sprouting. These results identify an anti-

angiogenic effect of Sema3F on retinal endothelial cells (Fig. 3A). Using a second

functional approach, we tested the effect of Sema3F on choroidal neovascularization in an in

vitros prouting model of choroidal explants (CEs). Upon stimulation with VEGF, CEs

sprout into the surrounding matrix protruding extensions of choroidal capillaries. Addition

of Sema3F to VEGF-stimulated CEs significantly reduced explant sprouting, confirming the

anti-angiogenic properties of Sema3F on choroidal endothelial cells (Fig. 3B). Combined,

these functional experiments demonstrate a pronounced anti-angiogenic effect of Sema3F on

both retinal as well as choroidal endothelial cells.

If this anti-angiogenic role of Sema3F played a functional role in vivo, one would expect

reduced Sema3F expression in patients with pathologic neovascularization of the outer

retina. We therefore investigated Sema3F expression in RPE cells isolated from patients

with choroidal neovascularization (CNV) in exudative AMD. In these patients, the

physiologic anti-angiogenic barrier in the outer retina is breached and pathologic choroidal

vessels invade into the outer retina. The RPE cells from CNV membranes were obtained

from surgically excised CNV membranes at a date before intravitreal anti-VEGF injections

became the gold standard for treating exudative AMD and were characterized before [16].

Our results show that in 10 out of 15 CNV-RPE isolates Sema3F expression was indeed

reduced compared to human RPE from a healthy donor eye (hRPE; Fig. 3C). While these

qPCR results can only serve as an indication, they suggest that reduced Sema3F expression

plays a role in the breakdown of the anti-angiogenic barrier in the outer retina of some (but
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not all) patients with exudative AMD. In addition, further experiments revealed that changes

in Sema3F expression were not consistently associated with changes in other known

angiomodulatory factors, thus suggesting an independent angiomodulatory role for Sema3F

(Fig. 4).

In summary, our data demonstrate a distinct expression pattern for Sema3F in outer retina

and RPE that is consistent over time and may play a role in maintaining outer-retinal

avascularity. Functionally, both retinal as well as choroidal endothelial cell growth is

inhibited by Sema3F. These results render Sema3F a promising candidate to investigate

further as a potentially important player in regulating physiologic outer retina avascularity.

Clinically, changes in Sema3F expression or function may play a role in diseases like wet

AMD where the avascularity of the outer retina is breached and choroidal neovessels invade

into the subretinal space. Therapeutically, Sema3F may provide a natural endogenous

natural inhibitor against pathological chorioretinal neovascularization in these patients.
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Fig. 1.
Physiologic avascularity of the outer retina and expression of Sema3F. (A) The inner retinal

layers are supplied by three layers of retinal capillaries (stained green for CD31, blue for cell

nuclei). The outer retina consisting of photoreceptors (outer nuclear layer; ONL) and retinal

pigment epithelium (RPE) is physiologically void of blood vessels and obtains its oxygen

and nutrient supply from the underlying choroidal vasculature. (B) Left: Exemplary retina

cross-section demonstrating laser-capture of retinal layers. Right: qPCR quantification of

laser-captured layers demonstrating selective expression of Sema3A in ganglion cell layer

(GCL) and inner nuclear layer (INL) while Sema3F is expressed selectively and at much

higher levels in ONL and RPE of the outer retina (n = 3 retinas; error bars represent SEM).

(C) qPCR analysis on laser-captured layers from adult mice (postnatal day 60) confirms

selective expression of Sema3F in ONL and RPE of the outer retina (n = 3 retinas; error bars

represent S.E.M.). (D) Laser-capture of retinal vessels followed by qPCR reveals expression
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of the Sema3F receptors Nrp2 and Plexin A2 on retinal endothelial cells in vivo. (E)

Western blot analysis confirms high Sema3F levels in RPE at both time points (P17 and

P60) on protein level (n = 3 retinas). (F) Immunohistochemistry on murine retina at P17

further confirms localization of Sema3F in the outer retina at the photoreceptor/RPE

interface.
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Fig. 2.
Sema3F expression in normal human retina. (A, C, E) In analogy to the results seen in

murine eyes, Sema3F localizes to the outer retinal border at the photoreceptor/RPE interface

in human retinas. Images show representative samples at three different magnifications. (B,

D) Negative controls without primary antibody demonstrate only weak background

fluorescence. Note the complete lack of the specific Sema3F hyperfluorescent band at the

photoreceptor/RPE interface despite increased exposure time in negative control images.

Some red blood cells trapped in choroidal capillaries display autofluorescence in the

negative control images.
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Fig. 3.
Sema3F inhibits angiogenic sprouting of both retinal and choroidal endothelial cells. (A)

Human retinal endothelial cells (HRECs) cultivated as multicellular spheroids sprout into

the surrounding collagen matrix when stimulated with VEGF (25 ng/ml; set to 100%).

Addition of Sema3F (900 ng/ml) significantly reduces angiogenic sprouting of VEGF-

stimulated HREC-spheroids. p = 0.003, n = 5. (B) VEGF-induced angiogenic sprouting from

murine choroidal explants is similarly reduced by recombinant Sema3F. p = 0.002, n = 4.

(C) Relative expression of Sema3F in RPE isolated from a healthy human donor eye (hRPE;

set to 1) and CNV-RPE isolated from 15 different patients with choroidal neovascularization

(CNV) in exsudative age-related macular degeneration (AMD). Numbers M61 to M174

refer to individual patient numbers. In 10 out of 15 CNV-RPE isolates Sema3F expression

was reduced compared to hRPE.
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Fig. 4.
Relative expression of a panel of angiogensis-related genes in RPE isolated from a healthy

human donor eye (hRPE; set to 1) and CNV-RPE. Angiopoietin 1 (Ang-1), angiopoietin 2

(Ang-2), VEGF-A, VEGF-C, fibroblast growth factor 2 (FGF2) and pigment epithelium

derived factor (PEDF) are all expressed differentially in isolated CNV-RPE samples.

However, expression of these factors is not directly linked to Sema3F expression changes

displayed in Fig. 3C. These findings suggest that Sem3F expression changes are not

secondary to changes in one of these known angiomodulatory factors.
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