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Predicting ligand-binding function in families of
bacterial receptors
Jason M. Johnson* and George M. Church†

Graduate Program in Biophysics and Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115

Communicated by David S. Eisenberg, University of California, Los Angeles, CA, December 29, 1999 (received for review November 3, 1999)

The three-dimensional fold of a new protein sequence can often be
inferred directly from sequence homology to a protein of known
structure. The function of a new protein sequence is more difficult
to predict, however, since homologues can have different molec-
ular and cellular functions. To develop and automate computa-
tional methods for determining molecular function, we have an-
alyzed ligand-binding specificity in two related families of binding
proteins. One of these families includes Escherichia coli lactose
repressor and ribose-binding protein, and the other includes E. coli
sulfate- and phosphate-binding proteins. These proteins have
similar folds but varying specificity, binding many different small
molecules, including mono- and disaccharides, purines, oxyanions,
ferric iron, and polyamines. Starting from template structural
alignments, alignments of over 90 sequences per family were
generated by iterative database searches with hidden Markov
models. Phylogenetic trees were made of full-length sequences
and of subsets of residues lining the binding cleft, to determine
whether subbranches of the trees correlate with ligand-binding
preference. Automated analyses of residues in the binding pocket
were also used to predict ligand-binding function for many un-
characterized database sequences and to identify specific side
chain–ligand contacts in proteins without solved structures. Our
results demonstrate the utility of anchoring functional annotation
within a protein family context.

The need for computational assignment of gene function is
becoming more pressing as the number of new sequences far

surpasses our ability to perform experiments to determine their
functions. Initiatives for targeted three-dimensional structure de-
termination for proteins of unknown fold (1, 2), coupled with
advances in threading and other fold prediction methods, will soon
lead to correct automated fold assignment for most new protein
sequences. These advances will not as readily lead to correct
functional annotation, however, since many different molecular and
cellular functions may be associated with the same protein fold.

The functional annotation of a new protein is often transferred
from the homologous protein with the highest BLAST score.
Because of the modularity of protein domains and divergence of
function in paralogous proteins, this practice has led to many
incorrect annotations and the propagation of annotation errors
in sequence databases (3–5). Annotation accuracy may be
improved by considering the evolutionary history of each protein
family (6) or by requiring a match to particular functional
residues in a sequence motif, in addition to overall homology, in
order for functional annotation to be transferred. These methods
generally require careful analysis of a particular family of
sequences and have found the most success in recognizing
conserved catalytic residues in the active sites of enzymes (7–10).

Many proteins, however, have molecular functions that are
defined by noncatalytic interactions with ligands or other pro-
teins. Function is more difficult to derive from sequence in these
families, because there may not be strictly conserved residues
responsible for the common binding function. This is the case for
several related families of periplasmic binding proteins (PBPs) in
bacteria, which serve as receptors for many different ligands.
One family of these proteins includes Escherichia coli ribose-
binding protein (RbsB) and also the effector-binding domains of

E. coli lactose repressor (LacI), purine repressor (PurR), and
trehalose repressor (TreR). A second family, with distant se-
quence homology to the first and a slightly different three-
dimensional fold, includes E. coli sulfate-binding protein (SubI)
and molybdate-binding protein (ModA). Altogether there are
more than a dozen different protein–ligand complexes in these
two families whose structures have been solved crystallographi-
cally. Despite the diversity of ligands, these proteins have
virtually identical backbone structures surrounding the ligand-
binding cleft, implying that residue side chains within the binding
pocket are critical determinants of specificity.

We have analyzed ligand specificity for the RbsByLacI and SubI
families to develop methods of structure–function classification
from sequence that are generally applicable to families of receptors
and binding proteins as well as to enzymes. Starting with multiple
structural alignments, we constructed multiple sequence align-
ments of diverse family members with an iterated approach using
profile hidden Markov models (HMMs). We have previously
developed programs to automate the merger of structural infor-
mation with multiple sequence alignments (11) and continue this
work here with software that automates the integration of ligand-
binding information from known structures with multiple align-
ments. These programs allowed direct comparison of binding-site
residues across the two families, facilitating the prediction of
ligand-binding function for several unannotated sequences and
prediction of specific residue–ligand contacts in proteins without
solved structures. Phylogenetic classifications of the families and of
subalignments of binding-site residues were also used to identify
clusters of protein sequences with similar binding pockets. Our
results also offer to functional and structural genomics efforts an
example of how densely the space of protein folds must be sampled
with experimental results to predict molecular function for families
of receptors.

Several other computational methods have been used to relate
sequence and function for proteins of known structure, including
hierarchical analyses of residue conservation patterns (12, 13)
and multivariate analysis (14, 15). Two of these methods, EVO-
LUTIONARY TRACE (13) and SEQUENCE SPACE (15), have been
used recently to address the important problem of identifying
interaction surfaces and other functional residues in proteins of
known structure. While these methods use prior knowledge of
protein functional classes to predict the location of binding sites,
the methods we apply here use prior knowledge of the binding-
site residues to predict protein function.

Abbreviations: PBP, periplasmic binding protein; RbsB, ribose-binding protein; LacI, lactose
receptor; SubI, sulfate-binding protein; ModA, molybdate-binding protein; IPTG, isopro-
pyl-D-thiogalactoside ; HMM, hidden Markov model; PDB, Protein Data Bank.
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Methods
Multiple Alignments. Multiple alignments were constructed by iter-
ative HMM searches of Swiss-Prot (16) and GenBank (17) nonre-
dundant databases by using HMMER 2.1 (18), starting from seed
multiple structural alignments. For the LacIyRbsB family, the
initial structural alignment was generated using the Homology
module of INSIGHTII (Molecular Simulations, San Diego). Only the
effector-binding domains were used from the repressors. For the
SubI family, the seed multiple structural alignment was generated
by DALIyFSSP (19), with a few corrections made by hand in the loop
regions. Automated HMM searches and multiple sequence align-
ment were performed for the SubI family by using ALIGNMENT-
BUILDER, which was written in Perl to use HMMER 2, with starting
HMMSEARCH E-value of e2130, step factor e20, and final E-value of
e210. The alignment model was allowed to converge at each E-value
step before decreasing the stringency of the search, and sequences
more than 90% identical to model sequences were not included.
ALIGNMENTBUILDER was run first with Swiss-Prot, then the align-
ment was checked by hand for concurrent alignment of close
homologues and to eliminate a few gaps in loop regions. A new
HMM was then constructed from this alignment, and ALIGNMENT-
BUILDER was run on the nonredundant database with the same
parameters. One additional ALIGNMENTBUILDER step was then
performed to a final convergence at E 5 1.0e29. The ‘‘withali’’
option of HMMER 2 was used for all HMMALIGN steps to avoid model
drift as new sequences were added. Sequence edition was per-
formed by using SEAVIEW (20).

Ligand-Binding-Site Analysis. Binding-site residues for each struc-
ture were defined as those with a side-chain heavy atom , 4.5
Å from the ligand. We included a-carbon atoms in the side-chain
definition so that glycine residues that form part of the binding
pocket were not excluded. Residues with side chains making a
crystallographically defined water-mediated hydrogen bond
were also considered part of the binding pocket. Contacts to both
sugar anomers were included for 1byk (21) and 1abe (22), and
contacts from 2gbp (23) were included in the analysis of the
nearly identical structure 1gca (24). Contacts to trehalose and
trehalose-6-phosphate were included for 1byk, and contacts to
the bound phosphate moiety that coordinates the iron atom in
1mrp (25) were also included. Hydrogen bonds from backbone
atoms were ignored.

A series of Perl programs was written to automate the
comparison of alignment sequences to each known binding site.
A protein sequence was added to the list of possible matches for
a given structure if it had binding-site identity . 50% or
similarity . 65%. The output list was ordered by using a score
based on the following measures: percentage identity and sim-
ilarity to binding-site residues, the number of standard devia-
tions of these from the mean over all sequences in the alignment,
and whole-domain percentage identity and similarity.

Binding-site residue matches were determined by the presence
of appropriate interacting chemical groups at each alignment
position. Hydrophobic and van der Waals contacts were evalu-
ated by size and hydrophobicity in the context of the structure.
Binding-site residues with side chains projecting away from the
binding site or out into solvent, or residues whose only contact
is a water-mediated hydrogen bond, were not included in the
determination of binding-site matches (the nonshaded columns
in Figs. 4 and 5).

Phylogenetic trees for whole-domain alignments and binding-
site subalignments were created with PHYLIP Ver. 3.5c (J.
Felsenstein and Department of Genetics, University of Wash-
ington, Seattle) with 300–500 bootstrap replicates using the
neighbor-joining method and the Pam–Dayhoff distance matrix.
Multiple alignments, dendrograms, and tables of binding-site

matches are available at http:yywinslow.med.harvard.eduy
johnsony.

Results and Discussion
We analyzed two evolutionarily related classes of PBP-like
proteins with slightly different topological arrangements of a
central b-sheet core (26). Both Type I and Type II PBPs are
bilobate ayb structures with a central ligand-binding cleft (Fig.
1). The residues lining the binding cleft are distributed through-
out the primary amino acid structure, such that there is no local
sequence motif that may be associated with a particular binding
function. PBP sequence alignments were created with an itera-
tive HMM-based approach, starting from initial alignments of
closely related structures (see Methods). Two structural align-
ments were used as starting sequence alignment models, one of
Type I PBP structures most similar to E. coli ribose-binding
protein and the effector domain of LacI, and one of Type II PBP
structures similar to E. coli sulfate-binding protein. We used
structural alignments as seeds for larger HMM-based sequence
alignments to increase sequence diversity in the alignments
without compromising alignment accuracy.

LacIyRbsB Family Alignment. The Protein Data Bank (PDB; ref. 27)
structures 1tlf, 2dri, 1abe, 1byk, 1gca, 1rpj, and 1wet were used
for the starting LacIyRbsB family HMM; each has less than 3.0
Å rms deviation (Ca) relative to the structure of E. coli RbsB
(2dri) over a minimum of 240 residues. These structures were
solved with bound isopropyl-D-thiogalactoside (IPTG), ribose,
arabinose, trehalose-6-phosphate, galactose, allose, and gua-
nine, respectively (21, 22, 24, 28–31). Sequences were added
gradually to the alignment model, which was checked manually
after every iteration to ensure that the seed structures main-
tained alignment across structurally conserved regions (SCRs),
that closely related sequences aligned to the model with con-
current gaps, and that new alignment gaps made structural sense
(e.g., to avoid unnecessary insertions in SCRs). The final se-
quence alignment for this family of Type I PBPs comprised 102
sequences with 20% average sequence identity.

LacIyRbsB Family Phylogenetic Tree. A phylogenetic tree was gen-
erated from this alignment to identify clusters of similar protein
domains (Fig. 2), and statistically significant branches were
compared with previously recognized functional subdivisions of
the family. Although we refer to these dendrograms as phylo-
genetic trees, we are using this technique only to cluster similar
sets of residues rather than to make inferences about the
evolutionary history of these proteins. Known periplasmic re-
ceptors segregate on one significant branch, apart from known
DNA-binding proteins, even though the DNA-binding domains
of the transcriptional regulators were not included in the mul-

Fig. 1. Ribbon structure of the effector-binding domain of trehalose repres-
sor, a member of the LacIyRbsB family, with b-strands in yellow and a-helices
in violet (21). Trehalose (not shown) binds in the central cleft between the two
lobes. The figure was created with MOLSCRIPT (45).
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tiple alignment. Thus, for example, ribose PBPs such as
RBSBoECOLI do not cluster with ribose-binding repressors
(RBSRoECOLI, RBSRoHAEIN, and RBSRoBACSU), and xy-
lose PBPs (e.g., XYLFoECOLI) do not cluster with xylose
operon repressors (e.g., XYLRoECOLI). However, within each
of the two broad functional categories, several statistically
significant smaller clusters appear to correlate with known or
hypothesized ligand preferences (see Fig. 2). Several exceptions
to this are also apparent. For example, Gram-negative ribose
repressors (RBSRoECOLI and RBSRoHAIEN) are more sim-
ilar to Gram-negative purine repressors (e.g., PURRoHAEIN)
than they are to the Gram-positive ribose repressor
RBSRoBACSU. Further, some proteins annotated as sucrose
operon repressors (e.g., SCRRoSALTY) cluster with fructose
repressors, others cluster with the Bacillus subtilis ribose repres-
sor (e.g., SCRRoPEDPE), and yet another, SCRRoSTAXY,
clusters with trehalose-binding regulatory proteins. Thus, the
clusters of the whole-domain phylogenetic tree are generally not
predictive of common ligand-binding function, except in the
outermost branches, where sequence identity approaches 50%
or more. In addition, proteins that bind the same ligand are
frequently found in different whole-domain phylogenetic clusters.

LacIyRbsB Family Binding-Site Phylogenetic Tree. We hypothesized
that the residues lining the binding cleft of this family might be
better predictors of ligand-binding function than whole-domain
sequences. For each solved structure in the alignment, residues
with side chains within 4.5 Å of their respective ligands were
identified, and the columns of the multiple alignment that

contained these binding-site residues were extracted. This com-
posite set of 32 contact alignment positions compiled from seven
structures, which we will refer to as the binding-site subalign-
ment, was then used for phylogenetic clustering.

With only 32 alignment positions, the binding-site subalign-
ment produces fewer statistically significant clusters than the
whole-domain alignment, which has over 400 alignment posi-
tions. However, clusters present in the whole-domain phylogeny
that were also significant in the binding-site phylogeny (Fig. 2,
yellow and green boxes) correlate well with known ligand
preferences. Only the cluster that includes E. coli ribose and
purine repressors is obviously representative of multiple ligand
types. The other clusters from the whole-domain phylogeny that
appear to represent multiple ligands, including all of the sucrose
repressor clusters, have subdivided into smaller clusters in the
binding-site subalignment that are more likely to represent
common binding functions. One group of two sequences,
CYTRoECOLI and MALRoCLOBU, was significant at the
binding-site level but was not in the whole-domain phylogeny.
CytR is known to be regulated by cytidine (32), and MalR in
Clostridium butyricum is involved in regulation of 4-a-
glucanotransferase (33). The significance of binding-site simi-
larity between these two proteins is unclear.

Matches to Ligand-Binding Sites of Known LacIyRbsB Family Struc-
tures. The set of contact residues for each known structure was
also compared with each sequence in the multiple alignment to
look for matches. Fig. 3 shows the results of this sequence
comparison for E. coli LacI, highlighting two proteins that match
the LacI ligand-binding residues with the highest similarity. The
first, a protein that has been annotated as LacI from Klebsiella
pneumoniae, is 40% identical to E. coli LacI over the whole
domain, but is almost 90% identical over the set of ligand-
binding residues, strongly supporting its functional annotation.
The second, an ORF from Streptomyces coelicolor (GenBank
accession no. 3367755), is less than 30% identical to LacI over
the whole domain, but has a very similar binding site (Fig. 3,
arrows). The alignment of the LacI binding-site residues with
LACIoKLEPN and 3367755 is shown in Fig. 4. This level of
analysis adds support to the hypothesis that these two proteins

Fig. 2. Three methods for predicting groups of functionally related se-
quences, applied to the LacIyRbsB family. Significant clusters from a phyloge-
netic tree of the LacIyRbsB family, created from the final whole-domain
multiple alignment by using PHYLIP (see Methods), are indicated with black
solid lines. Tree roots not present in $30% of the bootstrap replicates were
removed. Known PBPs fall into one significant phylogenetic cluster (Left). The
remaining sequences are likely to be effector-binding domains of DNA-
binding proteins. Proteins are labeled with Swiss-Prot or GenBank accession
numbers and with boldface type for solved PDB structures. The bound ligands
are the following: RBSB, ribose; YJCX, allose; DGAL, glucoseygalactose; ARAF,
arabinose; PURR, guanine; LACI, IPTG; TRER, trehalose. The second clustering
method is indicated by yellow boxes. These sequence groups were present in
$30% of bootstrap replicates for the subalignment of ligand-binding resi-
dues. A third method of function prediction is indicated by blue boxes; these
are sequences whose aligned binding-site residues are capable of matching
the ligand-binding interactions of a known structure. Green shading indicates
overlap between yellow and blue groups. Only one cluster, the binding-site
matches to E. coli RBSBoECOLI, includes both DNA-binding proteins and PBPs,
indicated by a connecting dotted line. Asterisks identify sequences that did
not fall into a significant cluster in the whole-domain phylogeny but that
belong to a significant cluster using one of the other two methods.

Fig. 3. Scatter plots of sequence identity (a) and similarity (b) of each
sequence in the multiple alignment to the LacI effector-binding domain. The
vertical axes show identityysimilarity over the whole domain, whereas the
horizontal axes show identityysimilarity over the ligand contact subset of 17
residues (see text). Gray circles highlight proteins previously predicted or
known to bind lactose. Arrows indicate positions of the ORF with GenBank
accession no. 3367755.
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bind ligands similar to lactose, because the hydrophobic and
hydrogen-bonding interactions made by the side chains of E. coli
LacI to IPTG could be replicated by the aligned residues from
both homologues. Molecular modeling of 3367755 based on the
LacI binding site indicates that an arginine residue can be
accommodated at position 76 with small conformational changes
to neighboring residues. However, the incorporation of a tryp-
tophan residue at position 191 would require either a ligand
smaller than IPTG or major conformational changes to neigh-
boring residues, suggesting that lactose may not be the natural
ligand for 3367755.

Given an input multiple alignment and list of protein–ligand
contacts (generated from PDB files), our ligand analysis soft-
ware creates plots such as Figs. 3 and 4 for each known structure.
The sets of binding-site matches to proteins of known structure
for the LacIyRbsB family are diagrammed relative to the
phylogenetic grouping methods in Fig. 2. No binding-site
matches were found for allose-binding protein or arabinose-
binding protein within the 102 alignment sequences.

Sequences with binding-site residues similar to E. coli RbsB
are shown in Fig. 5 as a second example. We will refer to a
sequence that has residues capable of duplicating the RbsB–
ribose interaction at every contact position as having a ‘‘binding-
site match’’ to RbsB. The sequences in Fig. 5 that cannot match
the RbsB–ribose interaction at a particular alignment position
either do not bind ribose or do not bind ribose with the same set
of binding interactions as RbsB. Interestingly, the ribose operon
repressor (RbsR) from B. subtilis has a binding-site match to
RbsB, despite appearing in a different phylogenetic cluster when
the full domains are used as input (Fig. 2). We thus predict that
this Gram-positive repressor binds ribose with the same set of

protein–ligand contacts as the periplasmic ribose-binding pro-
tein in E. coli. Oddly, the ribose repressors from E. coli and
Haemophilus influenzae (not shown) do not have the same set of
binding interactions with ribose, since they have mismatches at
RbsB positions 90 and 137. Two other B. subtilis DNA-binding
proteins, DegA, which may regulate the degradation of phos-
phoribosylpyrophosphate amidotransferase (34), and the se-
quence with GenBank accession no. 2612909, a regulatory
protein of (otherwise) unknown function, may also be hypoth-
esized to bind molecules similar to ribose as a result of this
analysis. These two proteins also did not cluster with RbsB in the
whole-domain phylogeny. Finally, it is worthy of note that this
level of functional sequence analysis also succeeds in separating
the ligand-binding functions of the purine and ribose repressors.
Although these sequences clustered together in both phylo-
genetic analyses, neither can match the other’s binding-site
residues.

SubI Family Alignment. The six structures used for the PBP Type
II structural alignment were 1sbp, 1ixh, 1mrp, 1pot, 1wod, and
1atg. These are the most similar structures in the PDB to 1atg
(rms deviation # 4.0 over a minimum of 209 residues), and bind
sulfate, phosphate, ferric iron, polyamines, molybdate, and tung-
state (25, 35–39). A program was written to increase the auto-
mation level of iterated HMM-based alignment building, using
parameters and strategies that proved useful in the LacIyRbsB
family alignment and in previous alignments of divergent protein
families (11). ALIGNMENTBUILDER uses HMMER algorithms to
find and incorporate all database sequences with E-values below
a given threshold into the alignment model, repeating until
convergence. It then gradually decreases the search stringency,
converging at each new E-value until it reaches a user-defined
threshold (see Methods). Some manual adjustments were made
to the alignment to ensure concurrent alignment of close ho-
mologues. The final alignment for the SubI family, which con-
verged at E 5 1e29, contained 94 sequences with 17% average
pairwise sequence identity.

SubI Family Domain and Binding-Site Phylogenetic Trees. Fig. 6 shows
the significant clusters derived from whole-domain phylogenetic
analysis of the SubI family multiple alignment. Groups correlate
fairly well with known functions. For example, one cluster
contains several proteins previously annotated as iron binding
(including FBPoNEIGO, HITAoHAEIN, 1651916, and
3978164), and another contains known sulfate and thiosulfate
receptors (e.g., SUBIoSALTY and CYSPoECOLI). A phyloge-
netic tree of the SubI family binding-site subalignment was also
constructed. This analysis identified five significant clusters of
sequences that were subsets of significant whole-domain phylo-
genetic groups and one new cluster of phosphate-binding pro-
teins (2182813 and 541315; see Fig. 6). Further, one sequence of

Fig. 4. High-scoring sequence matches to the ligand-binding residue set of LacI, showing that residues in contact with IPTG are largely preserved for the
sequence that has been annotated as ‘‘LacI’’ in Klebsiella pneumoniae and for ORF 3367755. A simple scoring scheme was used to order the output on the basis
of subset and whole-domain sequence similarity. Numbers below the alignment indicate the interacting hydroxyl groups of the IPTG structure (below). Columns
that are not highlighted correspond to residues that have a side-chain atom #4.5 Å from IPTG, but which do not appear to make direct contact. Asterisks indicate
less plausible residue substitutions in the binding site (see text).

Fig. 5. High-scoring sequence matches to the 4.5-Å ligand-binding residue
set of E. coli ribose-binding protein. Residues that cannot duplicate the
chemical interaction of RBSBoECOLI with ribose at a particular alignment
position are circled. Sequences with circled residues are not considered to have
binding-site matches. Two lower-scoring sequences that qualify as binding-
site matches are DEGAoBACSU and 2612909 (below the dotted line).
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unknown ligand-binding preference, Y131oHAEIN, may be hy-
pothesized to bind iron because of its phylogenetic linkage at the
whole-domain and binding-site levels to AfuA of Actinobacillus
pleropneumoniae (1469286), which is an iron-binding PBP (40).

Matches to Ligand-Binding Sites of Known SubI Family Structures. As
with the LacIyRbsB family, the binding-site residues of each
known structure were compared with all aligned sequences.
Proteins with binding-site matches to known SubI family struc-
tures, that is, those with reasonable residue matches at all contact
positions, are shown in Fig. 6 inside blue boxes. These clusters
represent predictions both of ligand-binding specificity and of
side chain–ligand interactions. Eight of the sequences with
binding-site matches do not currently have ligand-binding an-
notation in GenBank, and four of these eight are not members
of significant phylogenetic clusters. Thus, the ligand-binding
functions of these proteins are not likely to have been predicted
correctly from whole-domain sequence similarity alone. It was
somewhat surprising to observe that proteins binding the similar
ligands sulfate, molybdate, and phosphate, using the same fold
and backbone conformation (2.7 Å average pairwise Ca rms
deviation), can be classified readily into functional groups on the
basis of sequence. Each of these functional groups, however, uses
a different and conserved constellation of amino acids to
accomplish the binding interaction. Full lists of binding-site
matches and new function predictions for the SubI and LacIy
RbsB families are available at http:yywinslow.med.harvard.eduy
johnsony.

As a final example of our results, binding-site matches to
E. coli molybdate-binding protein ModA, a SubI family member,
are depicted in Fig. 7. Many of these binding-site matches are
already known to bind molybdate, but four of the matching
sequences are from putative or hypothetical proteins of un-
known binding function (GenBank accession nos. 5019354,
2650554, 2128717, and 3256537). Further, all four proteins have
whole-domain sequence identity to ModA between 18% and

30%, in the range where transfer of functional information
between homologues is highly error prone. The effector domains
of E. coli purine and ribose repressors, for example, are 42%
identical but bind structurally unrelated ligands.

Evaluation of Methods for Classifying Sequences into Ligand-Specific
Groups. In summary, three classification methods were used to
separate the sequences of these families into ligand-specific
groups. The first method, domain-level sequence similarity or
identity, was useful in identifying new family members, mapping
the sequence space of the family, and generating hypotheses
about functional relatedness among phylogenetic branches.
Whole-domain sequence similarity was not a particularly reliable
indicator of ligand-binding function, however. We observed
significant clusters with very different ligand-binding functions,
as well as many proteins with the same ligand-binding preference
that were not clustered together at a significant level.

Information about the location of the binding site for a group
of sequences can clearly improve ligand-prediction methods.
This is demonstrated in Fig. 7, which shows that molybdate
receptors have higher sequence identity in the ligand-binding
pocket than in the binding domain as a whole. The second
method, binding-site phylogenetic analysis, was thus useful in
eliminating false positives from whole-domain functional group-
ings, because proteins that do not bind the same ligand did not
co-cluster at the binding-site level. This method also served to
group proteins of similar ligand-binding sites but unknown
binding function.

The third method, matching sequences to the binding sites of
known structures across a multiple alignment, is likely to be the
most reliable way to identify ligand-binding function, because it
requires chemical similarity for all protein–ligand contact resi-
dues. One of the most striking examples is the RbsR sequence
from B. subtilis, RBSRoBACSU, which is only 22% identical to
E. coli RbsB over the whole domain but is easily identified
through automated methods as a match to the ribose-binding site
of RbsB by this approach (Fig. 5). This technique is limited only
by the number of known structures within a family and the
ligand-binding diversity of those structures. Some true matches
will be missed by this method, however, because one noncon-
served contact residue does not necessarily signify a different
function. Another potential pitfall of any homology-based func-
tional annotation method is that conserved residues do not
always have the same function, even when binding similar
ligands. The chemically similar ligands galactose and glucose
interact with conserved residues of arabinose-binding protein
and glucose-ygalactose-binding protein, for instance, but the
sugars are bound in completely different orientations (41).
Finally, all of the methods described here are limited by the
availability of accurate multiple alignments.

Fig. 6. Comparison of three functional clustering methods for the SubI
family of periplasmic binding proteins. Solid black lines designate clusters
from the whole-domain phylogenetic tree present in $30% of the bootstrap
replicates. Phylogenetic clusters from the binding-site subphylogeny (yellow
boxes) were considered significant if present in $25% of the replicates. A
lower value was used for the SubI family because there are fewer contact
positions in the alignment. Binding-site matches to the six known structures
are shown with blue rectangles (see text), and green shading represents
overlap between blue and yellow clusters. Asterisks identify sequences that
did not fall into a significant cluster in the whole-domain phylogeny but that
match the binding-site residues of a known structure.

Fig. 7. Scatter plot of sequence identity of each protein in the SubI family
multiple alignment to ModA of E. coli, over the whole domain and over the
12 binding-site residues of ModA. Sequences with a binding-site match to
ModA are highlighted with gray circles for previously annotated molybdate
receptors or in red for sequences without a molybdate-binding annotation.
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Implications for Functional and Structural Genomics. Our analysis of
these two protein families demonstrates the challenge of extend-
ing predictions of three-dimensional structure to predictions of
molecular function. For each protein of known structure in the
LacIyRbsB and SubI families, an average of only five sequences
from the alignment could be associated with confidence to the
same ligand-binding function. Using the information from these
structures in combination with multiple alignments, we were able
to assign 55% of sequences in the two families to a group of
common ligand-binding function, either by a binding-site match
to a known structure or through the phylogenetic analysis of
binding-site residues. However, several of these groups do not
have a representative with a solved structure or known ligand-
binding function. These groups of unknown ligand preference
are good targets for future experiments, because the ligand-
binding function of several proteins could be derived from the
results of a single experiment.

The application of two of the methods we have described
requires prior knowledge of the binding site or active site of a
protein family to predict molecular function. With the growth of
structure and sequence databases, we will soon be able to
associate most sequences with solved structures, but for how
many of these folds will binding sites be known? Russell et al.
(42) have estimated that it is currently possible to predict the
binding sites of 51% of newly solved structures, either by
homology to proteins with known binding sites or by classifying
them within a ‘‘superfold’’ of analogous structures that have the
same binding-site locations. Thus, our methods should be ap-
plicable to most enzyme or receptor families of known structure.
Overall, however, our results imply that for three-dimensional
folds associated with many different functions, sequence space

must be densely sampled with structures and experiments to
assign molecular function to all members of the fold family.

One way to extend the methods presented here would be to
construct homology models for each sequence in the alignment
and then search for three-dimensional binding-site similarity to
known structures or other homology models. Fetrow and
Skolnick have recently demonstrated the utility of these low-
resolution homology models for detecting enzyme active sites
(43). Methods that transfer functional assignments between
nonhomologous proteins (see ref. 44) may also be used to
complement the homology-based methods described here and
are particularly valuable when structural information is not
available.

In conclusion, we have shown that many new ligand-binding
annotations can be made computationally by combining binding-
site structural information with multiple sequence alignments.
These methods are applicable to receptors as well as enzymes
and do not require localized sequence motifs. Moreover, the
techniques described here will be straightforward to add to
large-scale automated annotation algorithms used for new
genomic data and will be particularly useful in assigning residue-
specific function within other families of receptors. At a mini-
mum, automated methods of functional annotation should check
for residue conservation in the binding sites of receptors and the
active sites of enzymes when assigning molecular function within
families of known structure.
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