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Abstract 

 
Researchers propose that experiencing and manipulating physical principles through objects 

allows young children to formulate scientific intuitions that may serve as precursors to learning 

in STEM subjects (Gur, 2011; Evangelou et al., 2010; Stoll et al., 2012). This may be especially 

true when children discover these physical principles through object affordances during play 

(Garvey, 1990; Van Meeteren & Zan, 2010). The present study investigated preschoolers’ 

spontaneous exploration of physical phenomena during their object play experiences. It consisted 

of biweekly naturalistic observations of 20 children’s free play, carried out over eight weeks in 

two Northeastern United States preschools. Results demonstrated that children encountered a 

variety of physical concepts, including magnetism, forces, energy, tension, friction, and simple 

machines, as they engaged in spatial-mathematical activities, planned and executed play 

sequences, problem-solved, and explored with objects available in their classrooms. The findings 

offer insights into the physical phenomena available to children through object play and how 

these opportunities can be used to support children in reasoning about the physical world. 
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Children’s Exploration of Physical Phenomena during Object Play 

 

 “Play is the highest form of research.”—Albert Einstein  

Introduction 
Anthropological and experimental research has established that play is prevalent in 

children’s lives across cultures (Callaghan et al., 2011; Sawyer, 2002; Schwartzman, 1976), and 

many researchers, parents, and teachers believe play experiences are beneficial for children 

(Singer, Golinkoff, & Hirsh-Pasek, 2006). Different categories of play—from dramatic play to 

games and sports—are thought to be associated with physical, cognitive, and socio-emotional 

competencies (Pellegrini, 2009). Nevertheless, despite its general appeal and after decades of 

cross-disciplinary research on the subject, there is still much about play and its role in 

development that is unknown (Lillard et al., 2013).  

One area of play that deserves further attention is the relationship between object play 

and young children’s development of scientific reasoning. Object play refers to children’s 

incorporation and manipulation of toys, everyday utensils and tools (e.g., pots and pans), natural 

materials (e.g., sticks, rocks, shells), and other found objects (e.g., beads, cloths) into their play 

activities (Bjorklund & Gardiner, 2010). Although object play may occur within a make-believe 

episode, it is different from dramatic play, in that the play behaviors focus on handling, 

exploring, and acting on an object as opposed to simply using the object as a prop in a play 

storyline. As Hughes (2012) puts it, during object play “children experience the world by 

exploring the tactile and cognitive properties of objects” (p. 83). This form of play constitutes 

10% to 15% of all behaviors in Western early childhood settings (Smith & Connolly, 1980 as 

cited in Bjorklund, 2012) and has been shown to be related to higher levels of problem-solving 

skills (e.g., Sylva, Bruner, & Genova, 1976), creativity (e.g., Johnson, Christie, & Wardle, 2005), 
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and spatial-mathematical reasoning (Caldera et al., 1999). Other scholars have suggested the 

possible role of object play in helping children discover and explore causal relationships and 

mechanisms embedded in objects (Bjorklund & Gardiner, 2010).  

Scientific reasoning refers to the knowledge, investigatory strategies, and logic of science 

(Zimmerman, 2010), and it appears that when it comes to physical phenomena, when children 

play with objects, they engage in the types of theory building and hypothesis testing that 

scientists engage in (Gopnik, 2012). Early developmental scholars like Piaget (1930) proposed 

that through concrete experiences with objects, children reason about the physical world and 

develop abstract notions of causality. One set of concepts ubiquitous during object play entails 

the physical principles (e.g., force, motion, and energy) that operate when children manipulate 

objects (Bairaktarova, Evangelou, Bagiati, & Dobbs-Oates, 2012). Researchers propose that 

encounters with these principles through tangible objects can assist young children in 

formulating abstract ideas that can serve as precursors to learning in STEM subjects (Gur, 2011; 

Evangelou, Dobbs-Oates, Bagiati, Liang, & Young Choi, 2010; Stoll, Hamilton, Oxley, Eastman, 

& Brent, 2012). 

An extensive body of research has investigated how children’s scientific reasoning may 

be related to the ways they manipulate and explore objects, but much of this research has been 

conducted in laboratory settings using objects operated by researchers and has focused mostly on 

the ways that children make causal judgments as opposed to how they explore specific physical 

concepts (e.g., Gopnik & Sobel, 2000; Legare, 2012; Schulz, Gopnik, & Glymour, 2007). 

Descriptive studies of object play in everyday environments are incredibly necessary (Pellegrini, 

2009) and critical if we are to understand the ways that children learn intuitively about the 

physical world through objects. The present study was conducted to investigate preschoolers’ 
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spontaneous exploration of physical phenomena during object play experiences in their 

classrooms.1  

Before reporting on the study methods and results, I set the theoretical foundation for this 

investigation. First, I briefly review literature that supports the claim that preschoolers can learn 

about physical phenomena in everyday pedagogical contexts. Second, I make a link to literature 

that establishes a relationship between play and children’s development of abstract scientific 

ideas. Third, I discuss how object play may be particularly unique in inciting preschoolers to 

reason about physical phenomena.  

Physical Concepts in Preschool 

 Dating back to Piaget (1930), researchers and educators have been interested in young 

children’s emerging physical knowledge—what some scholars have called intuitive physics 

(Wilkening & Cacchione, 2010)—and how these early understandings are translated into the 

formal knowledge of physics later in development. Researchers have investigated children’s 

understanding of a number of physics concepts, including time and speed, the trajectory of 

moving objects, force and weight, volume and density, and temperature (for a review see 

Wilkening & Cacchione, 2010). Over the decades, this work has illustrated that young children 

“organize their physical experiences in narrow but coherent explanatory frameworks” (p. 62) and 

that children are quite capable of interpreting and reasoning about basic physical principles 

(Vosniadou, 2002). This work has also shown the challenges children may face in making sense 

of physical concepts, how robust certain misconceptions about physical phenomena can be, and 
                                                           
1 Historically, “play” and “exploration” have been starkly contrasted in the play literature as two categorically 
different constructs (Hutt, 1966). Play is typically defined as an activity with no inherent purpose that is enjoyable in 
itself, while exploration is described as serious, goal-orientated investigation of objects or situations and their 
features, often elicited and maintained by the degree of novelty and complexity of the object or situation (Pellegrini, 
2009). Although there is room for a healthy debate on the topic of whether or not exploration constitutes play, this 
debate goes beyond the confines of the theoretical framework for the present study. In the remainder of this paper, I 
use exploration and play interchangeably to refer to a constellation of playful and investigatory behaviors that may 
be important for learning about objects and the physical laws that children encounter as they play with these objects. 
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the importance of pedagogical interventions to help children reconcile their early conceptions 

with more complex scientific explanations (Hadzigeorgiou, 2002). For instance, Vosniadou 

(2002) found that while kindergarteners described force as internal to objects and affected by 

weight, size, and position or as acquired within a moving object, only 9th graders incorporated 

the Newtonian ideas of gravitational force and the force of push/pull in their explanations. 

Nevertheless, even in cases when young children struggle to achieve accurate scientific 

explanations, they appear incredibly attuned to the physical principles in their environment (Gur, 

2011).    

Children’s ability to engage with physical science concepts has been vividly illustrated by 

examples of formal and informal preschool activities that relate to STEM content. Gross (2012) 

argued that children can learn about buoyancy, density, displacement, and porosity by playing 

and experimenting with sinking and floating objects or about cohesion and surface tension by 

exploring bubbles. Gross described that objects (e.g., measuring cup, droppers, colanders, 

spoons) are instrumental for engaging and facilitating children’s exploration of these phenomena. 

In an observational study, Fox (1997) analyzed the physics principles that emerged when young 

children played with swings—described in the study as life-sized pendulums—and found that 

children experimented with balance, force, gravity, resistance, and resonance as they worked to 

“align their own center of gravity with that of the swing” or as they applied force “in the same 

direction as the swing” in order to move (p. 5).  

Researchers have paid attention to the pedagogical factors that support children’s 

scientific learning in preschool. Hadzigeorgiou (2002) found that preschoolers demonstrated an 

understanding of mechanical stability in building a tower on an inclined plane using cans of 

various sizes and weights when they had previously played with similar materials in a structured 
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and guided manner. Drawing from Kamii and colleagues (1993) and Copple et al. (1984), 

Hadzigeorgiou reasoned that physical knowledge (such as mechanical stability) is most 

accessible to preschoolers when their experiences involve objects, actions on these objects, and 

observable reactions on the part of the objects that children can compare and contrast. 

Hadzigeorgiou’s study highlighted not only that children can gain an implicit understanding of 

physical phenomena but that this learning is most effective when objects are available and 

teachers can scaffold the learning. Along the same lines, Larsson (2013) described “science as an 

emerging form of knowledge in preschool” and carefully documented the myriad encounters that 

children had with friction in a Swedish preschool (e.g., playing with a tomato on a table or trying 

to get up a snowy hill) that presented opportunities (and missed opportunities) for teachers to 

scaffold children’s investigation of friction. According to Larsson, young children are able to 

develop an intuitive understanding of the physical world as they encounter objects and situations 

in their daily work and play in preschool settings, and that teachers can leverage these 

opportunities to build “bridges” to scientific understandings (p. 390).  

What can be gathered from the existing literature is that opportunities to bridge concrete 

experiences and abstract physics ideas are pervasive in the preschool environment: on the 

playground, when using water and sand tables, and in the block corner, for example (Gur, 2011). 

As has been reviewed, these opportunities often entail play with objects. The research also 

suggests that the goal of preschool experiences with physical science “is not to teach [explicit] 

scientific concepts, principles, or explanations. It is, rather, to provide opportunities for the child 

to act on objects and see how objects react, to build the foundation for physics” (Kamii & 

DeVries, 1993, p. 12). The present study, then, contributes to the growing interest in 

incorporating physical science in the preschool curriculum by illustrating how play—and 
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specifically play with objects—offers a meaningful context in which children organically 

encounter opportunities to reason about physical phenomena. As discussed next, it appears that 

the spontaneous, flexible, generative nature of play invites children to explore, reason, and learn 

about abstract ideas that may be fundamental to later science thinking. 

Play as a Context for Scientific Thinking 

What is it about play that invites children to engage in the kind of behaviors and thinking 

that may inform their development of scientific ideas? Henricks (2008) described play as a 

“laboratory of the possible” (p. 168). This metaphor seems to suggest that as young children 

play, they invent, discover, evaluate, and make sense of the causal patterns and scientific 

phenomena they encounter in flexible ways that have meaning beyond the play scenario; it 

suggests that children can derive ideas from these play experiences that can inform their 

interpretation of the real world.  

Cognitive developmental researchers have examined the actions, explanations, and 

questions children employ as they explore novel toys and physical phenomena in lab studies, and 

their findings suggest that children explore the physical world through play (Gopnik, 2012). 

These researchers have found that when children encounter novel objects and phenomena in 

playful situations, they ask questions (e.g., Legare, Mills, Souza, Plummer, & Yasskin, 2013) 

and entertain various hypotheses about their use (e.g., Legare 2012, 2014), formulate 

“experiments” and play more to disambiguate possible causes or effects (e.g., Cook, Goodman, 

& Schulz, 2011; Schulz & Bonawitz, 2007), and learn about the causal structure of objects 

through their own interventions (e.g., Sobel & Sommerville, 2010). For instance, in an 

experimental study, Legare (2012) found that when preschoolers encountered outcomes 

inconsistent with their prior experiences of whether or not particular blocks made a pair of boxes 
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light up (in the classic “blicket detector” paradigm), their exploratory behaviors were related to 

the causal explanations they provided. Children who provided causal function explanations about 

why a box lit up or not (e.g., “The blicket is not working anymore. It is broken,’’ ‘‘There isn’t 

energy power inside,’’ ‘‘All out of batteries’’) also played more, produced more variable play, 

and engaged in more spontaneous hypothesis-testing behaviors than their counterparts. 

Children’s manipulation and experience with the objects seemed closely linked to the causal 

explanations they were developing.  

In a similar “blicket detector” design study, Cook, Goodman, and Schulz (2011) 

presented preschoolers with a music box that would be activated by placing a pair of toy beads 

on the box; in some cases the beads were stuck together and in others the beads could come 

apart. Children were invited to play with the box and use the beads to make it go. Cook et al. 

found that when it was unclear which beads made the music box work (as when the beads were 

stuck together), children engaged in a series of exploratory behaviors (or “experiments”) that 

allowed them to isolate which bead caused the box to turn on. The authors’ conclusion was that 

the exploratory actions that children demonstrate in play are likely the same they exercise and 

develop when making sense of ambiguous physical phenomena in everyday situations.  

The evidence shows that children prove quite adept at formulating possible causal 

explanations, testing various mechanisms, and devising appropriate solutions for situations they 

experience during play (at least when this occurs in lab settings). This points to children’s ability 

to enact their existing ideas about how things work and make new connections between their 

play worlds and the real world. In the next section, I discuss why this may be especially the case 

when children play with objects.  
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Object Play and the Exploration of Physical Science Concepts 

In her book “Evocative objects: the things that we think with,” Turkle (2007) describes 

objects as provocations for ideas, feelings, and memories. According to this view, objects are 

conduits for making sense of ideas much bigger and more abstract than the tangible, concrete 

properties of the objects themselves. This is exactly the idea framing the present investigation of 

children’s object play and their reasoning about scientific phenomena. Developmental literature 

supports the notion that objects help to “instantiate and exemplify more abstract notions” and 

“[assist] in building more abstract thinking” (Evangelou et al., ¶ 4). Classical developmental 

scholars like Piaget, Froebel, and Montessori described objects as provocations for children’s 

inquiry into the physical realm. Froebel, the father of the kindergarten movement, believed that 

playing with objects had the potential to “introduce children to the physical forms and 

relationships found in nature” (Provenzo, Jr., 2009, p. 87). More recently, commenting on Fleer 

(2010), Larsson (2010) argued that “children are more able to learn science concepts if they get 

opportunities to explore physical objects and are not presented with correct scientific 

explanations at the outset” (p. 379). 

Young children are surrounded by objects in their environment that provide different 

affordances, features, and, functions that elicit manipulation, construction, and pretense 

(Bjorklund & Gardiner, 2010).2 Affordances refer to the “perceived and actual properties of [an 

object]…that determine just how the [object] could possibly be used” (Norman, 2002, p. 9). 

Ecological psychologists posit that object affordances and the ways individuals manipulate these 
                                                           
2 This claim about the availability of objects is one that has been mostly corroborated in Western, industrialized 
cultures and middle-income families. It is important to note that the presence of objects in a child’s environment can 
be affected by context-specific factors, such as culture and cultural beliefs about play, family or school economics, 
pedagogical philosophy, and social structure (Power, 2000). Thus, the present research may be most pertinent to 
children’s experiences in Western societies. That said, by and large, objects and artifacts (as broadly construed; not 
specifically toys) continue to be central to the human experience, are likely to feature to some extent in young 
children’s lives, and can mediate children’s interactions with the physical environment (Cole 1998; Cole & 
Gajdamaschko, 2007).  
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affordances inform their perceptions of an object’s underlying physical properties and the 

understandings they abstract from them (Gibson, 2000). The affordances that children discover 

and explore can help them generate evidence to formulate understandings about the actions and 

events that occur as they are manipulating objects during play. Gur (2011) explains it as follows, 

Children investigate the properties of objects through hands-on exploration. For example, 
materials such as cardboard tubes, lengths of plastic rain gutters, balls, and objects with 
wheels help children develop notions about the position and motion of objects. For 
another example, playing with measuring cups, funnels and eyedroppers foster the 
understanding of volume, weight, gravity and force (p. 940).  
 

Object properties, thus, appear to invite children to reason about intangible concepts within a 

tangible space. 

 One area of study that illustrates the development of abstract knowledge through object 

play is the literature on children’s play with blocks, staple manipulatives found in most preschool 

classrooms in the United States.  Children’s play with these simple, three-dimensional geometric 

building shapes has been linked to the development of convergent and divergent problem-solving 

skills (Pepler & Ross, 1981), spatial language (Ferrera, Hirsh-Pasek, Newcombe, Golinkoff, & 

Lam, 2011), logico-mathematical knowledge (Kamii, Miyakawa, & Kato, 2004), and spatial 

visualization abilities (Caldera et al., 1999) in young children. For example, Caldera et al. (1999) 

conducted in-depth observations of 60 preschool children’s structured and unstructured play with 

blocks and assessed the relationship between particular building behaviors and children’s spatial 

skills. Caldera et al. found that complexity of building strategies and interest and involvement in 

play activity were related to spatial visualization (i.e., ability to make mental manipulations of 

spatial information) and perceptual field independence (i.e., ability to focus on relevant features 

of an object outside of context). Although they acknowledged that their findings are not 

sufficient to establish a causal link, Caldera et al. suggested that the pattern of results was 
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“consistent with the hypothesis that experience in play activities influences children’s visual-

spatial skills” (p. 870). 

 Casey et al. (2008) tested the effect of two block-building play interventions on 

kindergarten’s performance on three spatial measures (i.e., block building, block design, and 

mental rotation). Compared to the control group, children in the intervention conditions scored 

higher on the spatial reasoning assessments (e.g., built structures with more three-dimensional 

features or more successfully copied a two-dimensional image with a set of blocks), thus 

supporting the idea that specific play behaviors with the blocks can lead to benefits in reasoning 

abilities. Similar results have been found in children’s development of mathematical and 

engineering concepts through block play (e.g., Kamii, Miyakawa, & Kato, 2004; Park, Chae, & 

Boyd, 2008; Samara & Clements, 2009; Van Meeteren & Zan, 2010).  

 Brophy and Evangelou (2007) found when building with blocks, “young children 

employed details of physical properties to allow them to create increasingly complex designs that 

worked within the governing properties of physics” (as cited in Van Meeteren & Zan, 2010, ¶ 9). 

Similarly, Van Meeteren and Zan (2010) described that when building ramps and pathways with 

blocks, children practiced engineering design and incorporated math, science, and technology 

knowledge and skills, all within the nonsequential context that characterizes play. Thus, as 

children plan and execute the construction of block structures within play—by stacking and 

balancing blocks, classifying them by color or shape, and comparing the relative size of different 

components of their structures—they appear to be engaging in cognitive exercises that foster 

spatial-mathematical reasoning and can facilitate later academic performance (Ferrera et al., 

2011). For example, Wolfgang, Stannard, and Jones (2001, 2003) found that complex block play 
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in preschool (as rated on the Lunzer Five Point Play Scale) had a significant relationship with 

math achievement measures in middle and high school. 

 Garvey (1990) explained that “objects serve as a link between the child and his 

environment” (p. 41), and this appears especially true as children observe physical phenomena in 

the course of their play. Playing with blocks is only one example of this link between the child 

and the environment but there are many others. Children can encounter all kinds of physical 

phenomena—from playing with gears to testing out impromptu balances—that may engage them 

in reasoning about unseen forces and mechanisms that are fundamental to other complex 

scientific concepts that they will encounter in the real-world and classroom settings. Perhaps not 

unlike the tinkering of scientists, in playing with objects, children observe phenomena that call 

for explanations, which they try to formulate (either implicitly or explicitly) by testing object 

properties and structure (Van Meeteren & Zan, 2010). Through the interaction with objects, 

young children uncover the possible functions of things that may tell them about scientific 

concepts that undergird these functions. When these play experiences can be guided in ways that 

highlight important physical properties, children may begin to build a repertoire of scientific 

notions that they can refer to as they interpret physical phenomena in the world (Hadzigeorgiou, 

2002).  

From the literature reviewed, we can conclude that during object play children encounter 

physical phenomena and, guided by object affordances and adults, are able to explore and reason 

about these phenomena in ways that interact with their growing understanding of the physical 

world. How this happens in everyday play experiences is the focus of the present study. 

Importantly, this study does not aim to determine the actual scientific conceptions that young 

children formulate but rather to identify the opportunities embedded in play experiences with 
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objects that can foster an understanding of the physical world. Knowing what kinds of physical 

phenomena emerge naturally as children explore objects will offer insights into how object play 

may be related to young children’s scientific reasoning more broadly. The study addresses the 

following research questions: 

1. What behavior sequences do preschoolers engage in as they manipulate objects and make 

sense of physical phenomena during play?  

2. What types of physical science phenomena emerge as preschoolers explore object 

affordances through their object play?  

Exploring these questions will offer insights into the physical phenomena available through 

object play and how adults can utilize these moments as opportunities to discuss and explore 

physical concepts with them. That said, this study does not claim to characterize the play 

experiences of children across all early childhood settings but rather to present a picture of 

children in a particular context, as elaborated below.  

Methods 

 Play is best understood within the contexts and settings that elicit and sustain it. 

Although we have gained a wealth of information about children’s play as well as the 

development of causal and scientific reasoning through behavioral studies (some of this evidence 

reviewed above), these experimental approaches seem to overlook the unprompted nature of 

play. Smith (2010) explains that, “Regarding incentives, an important criterion for play is that it 

is unconstrained and done for its own sake. Therefore, artificial (constrained or experimental) 

situations are in danger of destroying an important characteristic of play” (p. 13). For this reason, 

it was critical that the methodology used in the present study allow children to play as freely as 

possible while their interactions with objects were documented and allow for patterns in their 
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behaviors to emerge as they were observed over time.3 Thus, the study entailed naturalistic 

observations in preschool classrooms and emic and etic data analyses looking for recurring 

themes that addressed the research questions.  

Participants & Research Sites 

 Participants in the study were 20 children (ages 3-5) enrolled in two private preschool 

classrooms in the greater Boston area, with 10 children in each classroom. Although more 

children were present during classroom observations, only those who received parental/guardian 

consent were included in the observations. The sample (13 female, 7 male) represented an 

ethnically diverse group of children from middle-class to upper-middle-class families.  

The schools differed in specific pedagogies but both had an explicit commitment to 

providing children with free playtime and had an expressed emergent curriculum that allowed for 

flexibility in the activities and content covered during the school day. School A was a privately 

run children’s preschool program located in a suburb of Boston.4 The free play observations 

occurred in a dedicated playroom that had a play loft and shelves filled with books and play 

objects in labeled plastic bins. Each morning, the lead teacher put out a limited number of play 

objects that were available for children to play with as they arrived to school. The object 

selection often followed children’s interests and curricular themes (e.g., castles). Once the free 

play hour had passed, children transitioned to circle time in a different room of the school. 

School B was a university-affiliated children’s center located in a city just north of Boston. The 

preschool classroom was an open-format space separated into different areas using tables and 

bookshelves as partitions. Free play occurred in different stations around the room where 

                                                           
3 This is not to say that experimental manipulation or intervention has no place in teasing apart the relationship 
between children’s play and the reasoning they develop through and from these experiences. In fact, mixed-methods 
may be quite appropriate for investigating the complex relationship between play and development and will be 
employed in follow-up studies.   
4 Pseudonyms are used to refer to the school sites and children in this study. 
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teachers set out play objects. For example, there was a water table, a light table, a block corner, 

and a play loft where objects were rotated every day. Children transitioned to and from free play 

during the morning and afternoon periods of the program. 

The objects available in both classrooms were strikingly similar. Both classrooms had 

extensive sets of blocks, other building materials, and magnetic wood train sets. They also had 

objects that lent themselves more to dramatic play: dress-up materials; replicas of real-world 

objects, such as play food or trucks; and dollhouses and castles. However, these dramatic play 

objects were also used for object-oriented play. Finally, both classrooms had a number of more 

complex objects or sets of objects, such as a play crane and marble run equipment, that provided 

multiple entry points for children to explore interesting phenomena. These complex objects are 

discussed further in the results section. 

Procedures 

 The study was conducted over a two-month period with a total of 14 one-hour visits per 

classroom (four familiarization visits and 10 data collection visits). This long-term involvement 

allowed me to witness a diversity of play situations and consider alternative hypotheses about 

object play experiences as I recorded my observations and impressions over time. The careful 

recording of behaviors provided detailed, rich data that helped to reveal a “picture of what is 

going on” as children played (Maxwell, 2005, p. 110). Furthermore, having two school sites 

provided opportunities for comparisons between sites to check whether patterns of observations 

were corroborated or refuted across settings (Maxwell, 2005). 

I arranged to attend the classrooms during times in the day when the likelihood of 

observing children playing freely with toys and other objects would be maximized. Observations 

took place during the first morning hour in School A and during both morning and afternoon 
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periods at School B on a consistent weekly schedule (approximately, two visits per week in each 

classroom, excepting snow days and other scheduling conflicts). During the first four 

familiarization visits to the classrooms, I did not formally collect data but rather interacted with 

the children to build rapport, became acquainted with the play environment to help guide my 

observations, and made my presence in the classroom as routine as possible to avoid disturbing 

children’s play or unduly influencing their behaviors.  

Data collection took place over the next 10 visits. The purpose of these observations was 

to document children’s spontaneous exploration of physical phenomena during play with objects. 

During my visits, I walked around the classroom, observing children as they played and 

maintained detailed field notes of the kinds of objects they used and how the objects were being 

used in play. Following observational procedures described by Trawick-Smith (2010), I moved 

from one play area to another, observing children’s activities for five minutes at a time. This 

method of observation ensured that recordings were systematic and representative of the variety 

of object play activities children engaged in. During my focus in each area, I identified the 

children playing; documented the objects they used; and recorded their actions and any verbal 

exchanges or narratives that provided context for their behaviors. Given that children played 

individually or in small pods, it was possible to record the behaviors of several children in a 

given area. The observations focused on instances when children were investigating and 

manipulating object properties (e.g., pulling, banging, building) rather than using objects as 

dramatic play props. For example, children were recorded building a castle with blocks but were 

not recorded pretending to put a princess doll to sleep on a (block) bed.  

Data consisted of expanded field notes and digital video recordings, which served as 

alternative sources for data triangulation (Maxwell, 2005). Depending on the set up of the 
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classroom, the video recorder was placed in one location that captured the whole classroom 

(School A) or was carried along to the different play areas (School B), being mindful to reduce 

any disturbance to children’s play. Because of the differences in the setup of the play area in the 

two schools, the nature of video data collected varied slightly: videos from School A covered the 

entire play room, capturing most children’s behaviors at once, and videos from School B covered 

play actions in different areas of the room, capturing the behaviors of a few children at a time. 

During the data collection phase, written and voice-recorded memos of hypotheses, 

insights, and puzzles that emerged during the observations were developed which helped to 

address the research questions and guided data analyses described next. 

Data Analyses 

Field notes and videos were coded for two overarching categories: children’s behaviors 

and the physical science concepts that arose through children’s actions. The first phase of data 

analysis entailed emic, open coding of the data paying attention to children’s behaviors and 

emergent themes across observations that pointed to physics concepts. Emic analyses are 

employed to discover emergent patterns of reasoning or behavior that are not predetermined 

based on the existing literature but that might nonetheless be informative in interpreting the data 

(Charmaz, 2002). The author analyzed the entire field notes corpus. To ensure the reliability of 

the emic analysis, a second coder with limited knowledge of the research hypotheses but with 

basic science training employed the same open coding process on 50% of the video data, which 

was equivalent to five visits per school that were chosen for their representativeness of the object 

play experiences observed. Excluded data included visits where the majority of the play observed 

constituted dramatic play (e.g., children pretended to be princesses and knights) or the majority 

of time was spent doing a teacher-led activity (e.g., a science project). 
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During emic analysis, coders identified particular types of behavioral sequences that 

seemed pervasive in children’s play (e.g., construction) and possible physical concepts (e.g., 

friction, tension, force) that were being enacted through children’s activities. For example, in 

both classrooms, children had access to a magnetic train set where the different train pieces 

connected through magnets. Children spent time building the train track and matching up pieces 

to ensure that they fit together correctly. These types of constructing behaviors and others where 

children paid attention to spatial configuration, position, direction/orientation, proportion, or 

alignment were labeled as “spatial-mathematical behaviors.” Using this same train set, children’s 

manipulation of the trains and their experience of connecting the trains became an emergent code 

labeled “magnetism,” indicating that children were experimenting with the phenomenon of 

attracting and repelling magnetic forces.  

Emergent themes and categories that came up in both the field notes and video data were 

compared, discussed, and elaborated and discrepancies in interpretations were resolved. 

Although emic analysis entailed first impressions of “what might be going on,” emergent 

categories were compared to existing literature on young children’s play behaviors (e.g., Caldera 

et al., 1999) and learning of introductory physics concepts (e.g., Gross, 2012; Gur, 2011; Stoll et 

al., 2012). Agreed-upon and vetted categories were compiled into a coding scheme (Appendix A) 

used in a second phase of etic, top-down coding applied to the same video data used in emergent 

coding to determine relative frequencies and patterns of behaviors across the research sites.  

During etic coding, a primary coder scored videos using Atlas.ti qualitative analysis 

software, deciding on instances to be coded and applying the coding scheme.5 As coding 

progressed, code descriptions and scoring rules were clarified and revised in conversations with a 

                                                           
5 Given the facility of pausing and reviewing videos both emic and etic analyses of video data captured all children 
and all actions viewable within the camera frame.  
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second coder. Data were scored iteratively to reflect the latest decision rules until coding was 

finalized. To establish reliability of the coding scheme, the second coder scored 20% of the data 

and applied the finalized coding scheme to predetermined instances identified by the first coder. 

Reliability was assessed at 86% (κ = .85). Any disagreements in scoring were discussed and re-

coded until there was 100% agreement in all categories. A review of all coded instances was 

conducted to ensure that all scoring reflected the final coding scheme and rules.  

Results 

 Emic and etic analyses revealed a number of patterns that elucidated the kinds of 

behaviors children engaged in with objects and the science phenomena that emerged as children 

played. A total of 776 instances of behavior sequences (n = 312) and physics concepts (n = 464) 

were identified in the scored video data.6 There were more coding instances captured at School 

A (n = 526) than School B (n = 250), due to the positioning of the camera—given the set up of 

the classrooms and where the camera could be placed videos from School A covered the entire 

play room, capturing most children’s behaviors at once, and videos from School B covered play 

actions in different areas of the room, capturing the behaviors of a few children at a time. 

Relative frequencies of the behavior sequences that children employed when manipulating 

different objects and the scientific phenomena that seemed to emerge during these interactions 

are summarized in Table 1. Overall, spatial-mathematical (42%) and planning and executing 

behaviors (38%) accounted for the majority of behavior sequences scored. The frequency of 

different physical concepts was distributed across different categories, with magnetism (23%) 

forces (15%), and balance (11%) representing the most common categories—importantly, the 

frequency of magnetism was higher at School A as further considered below. Detailed 

                                                           
6 More than one code could be applied to any given excerpt of the video data, thus the instances here may have 
overlapped. 



 23 

descriptions of each of the behavioral sequences and physical concepts categories along with 

illustrative examples from observations are discussed next.  

 
Table 1. Frequencies (percentages) of object play behavior sequences and physics 
concepts across the two research sites.  
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Behavior Sequences 

 As can be expected, children engaged in myriad behaviors as they played with toys. They 

pushed, pulled, stacked, rolled, threw, held, and examined objects. They focused on singular 

objects to explore their multiple functions and combined objects to build structures. A systematic 

analysis of these behaviors yielded a number of different but not mutually exclusive categories of 

behaviors, behaviors that seemed to point to various modes of approaching and interacting with 

materials. These were almost never discrete actions but rather series of actions that seemed to 

point to similar intent or end goal, thus the label of behavior sequences. This is not to say that the 

behavior sequences reported here were all the categories of behaviors observed but they were 

behaviors that seemed to be repeated across school contexts and observations.  

The most common category of behavior sequences observed was spatial-mathematical 

behaviors (42%). The category name was chosen to indicate the types of behaviors that have 

been shown in the literature to foster spatial-mathematical reasoning. As children played with 

objects, they constructed with them, they fit them together, and connected them, paying attention 

to their spatial configuration, position, direction, and alignment. As discussed, there is a rich 

literature elucidating the benefits of playing and constructing with blocks but from the 

observations, it appears that similar spatial skills are being exercised through actions using a 

variety of objects, as illustrated in the following excerpt.  

Isabel builds the train track by putting one piece in after the other, aligning the appropriate 
shapes to snap the pieces in place, and building the track from two directions to form a loop. She 
tries to connect one piece that has a slight upward curve but has trouble fitting it in until Oscar 
walks over and helps her to insert it. Isabel pulls off this piece and replaces it with another one 
as she continues to build. She is close to finally connecting the train track from both sides and 
closing the loop, but before doing so, she opens up enough space to add one final track piece.7  
 

                                                           
7 Italicized text indicates that the excerpts have been taken from the field notes.  
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The careful work that Isabel demonstrated in picking the pieces that would fit together and being 

able to execute the appropriate spatial configurations that would eventually lead to a completed 

train track loop was evident in children’s play with a variety of toys, from Lincoln Logs, wooden 

blocks of all shapes and sizes, and Legos to magnetic trains and shapes, cardboard and plastic 

tubes, and Tinkertoy sets.  

 These spatial-mathematical behaviors also demonstrated planning and executing actions 

(38%). Although they did not always announce what their plan was, children appeared intent on 

a particular goal to achieve a finished product. Their behaviors seemed intentional and 

sequenced, and once they arrived at their end goal (e.g., closing a loop of the train track) their 

attention seemed to shift to a different object or aspect of their construction. This seems contrary 

to the typical definitions of play as having no end goal; however, within the flexible play 

environment, it appears that children were content working toward completing certain tasks that 

they had set for themselves. In the excerpt above, Isabel kept going back to the plastic tub where 

train tracks were held to retrieve the pieces that would allow her to finish building the track. She 

continued on this task until the loop was completely closed. There were interruptions to her 

process, as she interacted with other children or briefly played with other objects, but she kept 

coming back to the track until it was completely finished. Similarly, Rushaan and Bradley 

carefully connected track pieces, adding one after another until they completely enclosed the 

circuit. “We did it!” exclaimed Rushaan, suggesting that they had accomplished something they 

had intended to do all along. Hope announced that she was building a “booby trap,” and executed 

this plan as she built a structure with colorful wooden cubes, even despite several major 

collapses of her structure.  

Hope is building two columns with colored wooden cubes on the floor. She has four cubes in 
each column and one rectangular piece placed across both columns. Hope tries to build on top 
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of this structure. She puts a triangle on top and then moves it to the side in order to add another 
triangle next to it. She puts a log on top of the two triangles and tries to continue building. The 
structure falls and she exclaims, “Oh!” and then goes right back to building. The structure falls 
again and she goes right back to building again.  
 

Hope’s reaction of continuing to build despite the setbacks she encountered, and 

especially her focus on trying to figure out how to utilize the different shapes to build up, also 

demonstrated another category of behavior sequences labeled problem-solving behaviors (12%). 

This category referred to instances where the children encountered situations that required 

figuring out what needed to change or be fixed in order to proceed with a play sequence or 

predetermined plan. In these circumstances, children seemed to be trying to figure out a solution 

to a problem they encountered as they played. For example,  

Rushaan is building a square structure with Lincoln Logs but he finds a piece that doesn’t quite 
fit within his existing structure. He examines the piece, flips it, pushes it down, looks for a 
different piece, and goes through different potential matches until he finds the one that fits 
snuggly and completes the “room where the baby ninja dog sleeps.”  

 
This kind of problem-solving behavior required the ability to determine a desired outcome, and 

plan and execute a series of steps to achieve this outcome, not to mention the spatial-

mathematical reasoning required when building as Rushaan did. Of course, this is not to say that 

children necessarily identified the situation as a problem or were frustrated by the process. Given 

the context of play, they seemed to enjoy the challenge of learning about the object 

characteristics to figure out how to best resolve the hiccups they encountered.  

 One way that children seemed to learn about objects’ properties and features was through 

all sorts of exploratory behaviors (8%). Children were clearly fascinated by object properties and 

proactively investigated what objects were able to do so as to include these objects in their play. 

As already illustrated, when having to match up logs, train tracks, or wooden blocks, children 

paid close attention to the makeup of objects and examined them to determine how to best fit 
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them into the existing play sequences. This happened most markedly when introduced to new or 

unfamiliar items. For example, 

Emma is immediately enthralled by the pulley that the teacher introduced. She says, “This is so 
amazing. What does this machine do?” Emma seems very intent on figuring out what it does and 
even looks at the accompanying directions for it. The teacher demonstrates what the pulley can 
do and says, “This is what it does.” Emma continues looking at the pulley instructions for the 
pulley and putting the pulley pieces together accordingly. “Up and down,” she says as she pulls 
the pulley string from one side to the other around the pulley wheels… “It’s nothing. It’s a 
machine,” she tells another child who is also curious about this new object. Emma tries to pull 
the string onto the middle wheel by pulling it down from the other two top wheels, and tells 
another child what they need to do to get the pulley working. The string falls off and Emma says, 
“Wait, it broke.” She tries to use another string.  
 
After some continued exploration, Emma moved on to tying a string around a stuffed animal and 

pulling it around the carpet, testing the acoustics of a plastic tube, and playing with the marble 

run. However, having now explored the pulley, she came back to playing and experimenting 

with it in subsequent sessions when it was placed out.  

 As is evident in the overlap of examples across the different behavior categories and the 

fluid transitions from one description to the next, the various play behaviors occurred in tandem, 

illustrating the complex ways in which children come to know and play with objects.  

Physics Concepts 

As children manipulated objects in the ways described above, certain types of physical 

principles became apparent in their interactions with the objects.8 Magnetism (23%) was a 

prevalent phenomenon and during the duration of the study visits was almost entirely 

experienced through the use of the magnetic train set, although other magnet building sets were 

also present on different days. Magnets were common in both classrooms and the train set, in 

particular, often took primacy whenever it was put out.9 Children experienced attracting and 

                                                           
8 Please see Appendix A for the definitions of the scientific concepts discussed here.   
9 As is discussed later, the fact that the train set was put out more days during observations in one classroom than the 
other seems to account for some differences between the two schools in the frequency of instances of magnetism.  
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repelling forces as they built long lines of train cars by connecting the magnets or used one train 

to move another at a distance by taking advantage of the repelling force. They appeared quite 

used to the attracting and repelling forces and were able to name the phenomenon as they 

experienced it.  

Casey dumps all the trains from the container onto the carpet. She connects two trains together 
with the magnet and then connects a third truck piece. “This guy has a magnet,” she explains as 
she connects the third piece. 
 
Children seemed fascinated by their ability to link and unlink the magnets at will and by their 

ability to test the strength of the connections by creating train lines that were up to 15 train cars 

long. They pulled and pushed the trains along the wooden train track and even lifted their long 

train structures off the tracks to move to a different location. Emma, for example, lifted her train 

structure made up of seven cars and the magnets were able to hold together suspended in the air 

for a few seconds until they gave out and collapsed to the floor.  

 Children also took their long trains from the track onto the floor and back, which allowed 

them to experience changes in friction (4%). For example,  

Robert starts building a line of trains connected by the magnets on the carpet. He pulls the line 
apart to add another train, and then starts pulling the train structure around the room. The first 
and second trains disconnect as he pulls; he picks up the first piece and attaches it again. He 
continues pulling the trains around the room, “Coming through!” The front piece disconnects 
again and he puts it back on. He pulls the train onto the wooden track, slowly adding and 
reconnecting the pieces as they come up. He pulls the train around the track and then pulls the 
line off the track onto the carpet and continues pulling it around the room.  
 
In this excerpt, not only was Robert playing and testing the power of the magnets, but he was 

also experimenting with different forms of resistance. While pulling the trains along the wooden 

track required almost no effort, keeping the trains connected as he pulled them around the 

carpet—which added resistance—required additional care to avoid having the whole thing pull 

apart. Children had access to many materials that allowed them to experience varying levels of 
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resistance as they manipulated two surfaces that came into contact. In the following excerpt, 

Emma demonstrates her effort for managing and controlling friction as she tried to “ski” on the 

carpet. 

Emma is invited by a classroom friend to pull out wood blocks for skiing. Emma puts the blocks 
that her friend has already pulled out back on the shelf and pulls out longer ones for skiing. She 
says, “I know some long blocks for skiing.” She puts the blocks side-by-side, stands on them, and 
pretends to tie them. She slides them on the carpet carefully and slowly shuffles forward on them. 
She takes shorter blocks, steps on them, and pretends to tie them. She slides them forward as she 
stands on them. She takes even shorter blocks, stands on them, and slides forward. She’s then 
called over for snack.  
 
Instances like the ones described above, where children obviously encountered and manipulated 

the phenomenon of friction, were present throughout children’s object play. However, there were 

many other instances where children encountered the concept of friction where the phenomenon 

was less obvious (e.g, the trains moving smoothly on the train tracks). Analysis of this code 

focused on cases where friction was a salient aspect of children’s play—for example, as they 

experienced a change in friction (e.g., moving from the track to the carpet) or the resistance 

became the focus of their play (e.g., countering the resistance as they moved the object across the 

floor). Thus, the relative frequencies reported in Table 1, represent this more particular notion of 

friction as opposed to the more prevalent emergence of it throughout the observed interactions 

with objects.  

 Energy (6%) is another physical concept that was present constantly in the ways children 

manipulated and interacted with objects, and once again, the present analysis focused on those 

cases where the phenomenon was central in children’s play behaviors. Rushaan and Bradley 

explored both potential and kinetic energy as they played with marbles going down a cardboard 

ramp that they constructed in their classroom (this was referred to as the “marble run”). 

Rushaan puts the marble at the top of the ramp and lets it go down the ramp. He follows the 
marble with his eyes as it goes down the ramp, across the carpet, and eventually stops. He runs 
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after it and comes back to the ramp with marble in hand and lets the marble go down again and 
runs after it. As Rushaan places the marble at the top of the ramp, he makes sure the marble is 
on the very edge before letting it go. Bradley joins Rushaan and they both take turns putting their 
marbles on the ramp, letting it go, and running after it. On one of Rushaan’s turns, Bradley puts 
his hand halfway down the ramp and stops the marble’s downward motion. Rushaan pushes the 
marble with his hand to the end of the ramp. Bradley puts two marbles at the top of the ramp and 
let’s them both go down. “Let’s race. I go in front,” he tells Rushaan. Bradley lets four and then 
tree marbles of different sizes go down at a time. Their play continues, letting different marbles 
go down the ramp until they are called for snack time. 
 
In the excerpt, Bradley and Rushaan tested both, the potential energy of the marble at different 

points on the ramp as well as the kinetic energy of the moving marble (that eventually stopped 

due to friction). This experience of experimenting with potential and kinetic energy was also 

commonplace when children played with the trains and made them go up and down bridges 

along the tracks.  

 During these experiences with energy, children also encountered forces (15%), their own 

as they pushed an object, like the marble, or gravity, as they observed the pull of gravity acting 

on the marble as it came down a ramp. They experienced their force acting on handles and knobs 

that then propelled or initiated motion. For example, at School A, children had access to a play 

windmill as part of their train set that had a large red handle used to make the windmill go. 

Children appeared fascinated by the experience of making the windmill turn as a response of 

their force pushing down on the handle. They would walk by the windmill and pump the handle 

several times as they moved around in their play space, sometimes stopping to pay close 

attention to their actions on the windmill and others only stopping briefly to experience the 

action of pushing down on the lever to make the motion. The important aspect to note here is that 

through their play, children had a genuine and compelling interest in exploring the phenomenon 

of using their own force to change the motion of an object.  
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Children also encountered the force of gravity (9%), not only as they saw marbles or 

trains going down ramps, but also as they managed it when building block structures. As they 

carefully placed one block on top of the other and tried to build vertically, their structures often 

fell, and as described above, children took on the problem-solving challenge of figuring out how 

to make their structure stand. Addressing this challenge took (at least) an implicit notion of how 

gravitational pull acted on their structure in order to build a tower or castle that would stand, as 

illustrated in the next excerpt.10  

Mackenzie, Isabel, and Casey pull out wooden blocks and start building. Mackenzie grabs curve-
shaped blocks and puts them together, making three tubes of different sizes that she calls towers. 
“Let’s make one big one…but now can we stack them up like a big one?” asks Isabel referring to 
the smaller towers Mackenzie built. “Let’s make one big tower…not like these two,” Isabel 
repeats. Isabel and Mackenzie stack up the curved pieces and connect them to the rest of the 
castle. “Hey, that’s what you just made, Mackenzie,” Casey compares the tower Mackenzie and 
Isabel made with the curved blocks to a picture of a turret in a book on castles sitting out on a 
bench. Mackenzie places two flat pieces on the turret and as she does the turret collapses. “We 
can fix it. I know how to fix it guys. Don’t worry. I built this, I can fix it,” says Mackenzie and 
she immediately begins to rebuild the structure and Isabel joins her. They are both very careful 
to line up the thin edges of the curved blocks so they won’t fall again, although they continue to 
struggle to keep all the pieces up. Once they are able to keep the turret structure up, Mackenzie 
places the flat pieces on top and adds a cone. Mackenzie, Isabel, and Oscar build two structures 
with rectangular blocks around the turret to keep it from falling. “Help us stack,” says 
Mackenzie, inviting others to help build the supporting structures around the turret to keep it 
stable. “That might fall. Do not touch it,” warns Mackenzie as Sophia joins the building party. 
The teacher asks Mackenzie what the structures around the turret will do, and Mackenzie 
responds, “It’s going to make it stay up.” Sophia adds one more block on top of the turret, but 
Isabel nervously says, “No! We’re all done, Sophia,” apparently nervous that the block will 
make the structure topple over. Mackenzie reasons, “We can have that. We just need to make it 
balance. [She adds another block on the other side of the turret.] Can I please have two more 
bricks? [She adds them to the turret.] See it’s balancing,” as she places two piece. “But it will 
fall over. It has a lot of heavy weight,” says Isabel still nervous. Mackenzie adds a few more 
pieces before the turret is declared finished and the children focus on building another area of 
the castle.  
 
Aside from working against gravity, the children’s careful building behaviors required that 

children take special note of how the different blocks fit together and balanced, making sure that 

there was an even distribution of the weight to maintain their structure upright and steady.  
                                                           
10 Hood (1995, 1998) 
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The way Mackenzie, Isabel, Casey, Oscar, and Sophia navigated the task of building and 

maintaining the castle turret illustrates the complexity of their play. They enacted spatial-

mathematical, problem-solving, and planning and executing behaviors and had to engage with 

physical phenomena like gravity and balance (11%) (as well as mass and weight, which Isabel 

brought up spontaneously but were not codes that were used in the present study).  

Another physical concept that children also encountered in their play was tension (4%). 

Their interactions with tension often involved using a rope or string to pull on another object. 

These interactions were, at times subtle, as children pulled magnets up the crane or explored the 

properties of a pulley by pulling a thin rope back and forth on a wheel. In each of these cases, it 

was the tension created by the stretching of the ropes that allowed children to manipulate the 

objects the way they wanted. Other times, children’s manipulation of tension was more obvious 

and purposeful. For example, Oscar created a tight rope that served as a passage for pirate dolls 

by attaching a rope from a ship to an island.  

 “Hook onto the island,” says Oscar and uses the anchor to connect the ship to the island piece 
with a rope. He slowly moves the island away from the ship to stretch the rope enough to have a 
taut rope.  Casey walks a doll on the rope saying, “I can walk on a high wire.” 
 
Like in other situations illustrated thus far, Oscar had sufficient implicit knowledge of tension to 

inform the way he manipulated the objects to enact a desired play scenario. Interestingly, Casey 

also demonstrated awareness of the phenomenon of tension to recognize that the tension she was 

observing and experiencing in her play was akin to the tension of a high wire.  

Physics Concepts: Simple Machines 

Simple machines (e.g., levers, pulleys, ramps and inclined planes) made up a special 

category of physical phenomena that children encountered during object play. Simple machines 

help to change the direction of force or multiply force to make work easier and serve as the basic 
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building blocks of more complex objects we use on a daily basis (for example, a door on hinges 

works as a lever and a doorknob is an example of a wheel and axle). Basic physical concepts 

such as force, work, distance, and energy are illustrated by simple machines, and children in this 

study demonstrated that they were familiar with these mechanisms and incorporated them 

seamlessly in their play.  

For example, as Mackenzie and Isabel continued to build the block castle described 

above, Mackenzie had a question and an idea, “How can wheelchairs get in? We need a ramp to 

get up!” This puzzle prompted her not only to explore the idea of ramps and inclined planes 

(9%) but to enact her understanding to solve a challenge she had identified. 

Mackenzie looks at the blocks she has available on the shelf and picks two triangular blocks that 
have just the right shape to serve as ramps. She tests out a couple of positions until she finds the 
position that aligns the ramp along the castle wall. She places one block on either side of the 
wall. “Castles are for everyone,” Mackenzie concludes, indicating that she has addressed the 
accessibility issue.  
 
Mackenzie’s solution required the implicit understanding of ramps and how they are used. She 

was not only familiar with the idea that ramps are used for wheelchair access—although it is 

surprising that she was able to see the parallel between her everyday experiences and her play 

experiences—but she was also able to test and recognize the block shape that would provide just 

the right ramp access to the castle. Children also built their own ramps and tested the incline to 

allow for the desired outcome. Bradley used wooden blocks to position the cardboard ramp at 

just the exact incline he wanted for his marble run.  

Bradley is building a new marble run by using wooden blocks and placing the cardboard ramp 
on them. At first, the ramp extends out flat and the marble does not go very far. The ramp falls. 
As Bradley rebuilds the ramp, he uses blocks to produce an incline and then adds more blocks to 
one end to make the incline steeper. He lets go of the marble on one end and celebrates when the 
marble goes all the way through. He says, “I’m trying to figure this out,” as he continues adding 
and removing blocks to the structure.  
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Bradley encountered the concept of ramps and inclined planes and actively manipulated his ideas 

about the principles of ramps to build a marble run that would work to his satisfaction, again 

illustrating that his implicit notions informed his building, planning and executing, and problem-

solving behaviors.  

 Children also had opportunities to experience pulleys (5%) as was described earlier in the 

case of Emma and as is illustrated further in Casey’s play with a toy crane.  

Casey takes the crane and turns the knob to put the rope down. She connects the magnet at the 
end of the rope to a train and pulls it up by turning the knob. She says, “Look, I pulled it up,” as 
the rope and train attached to it come up.  
 
As they observed the trains coming up and down on the crane, children had visual evidence of 

the principle of a pulley to ease the movement of the rope (not to mention the principle of 

magnetism). The crane also represented two other simple machines: gears (working as an 

internal mechanism that connected the knob, the pulley, and the string) and wheel and axle 

(enabling children to turn the knob). Because gears were nonobvious mechanisms in most cases 

observed, this category was not analyzed systematically given that it was unlikely that children 

would have visual or direct access to the gears. The concept of wheel and axle (10%), on the 

other hand, was present in components of various objects that children could manipulate, 

including knobs and cranks that they could turn to make the object work. One particularly 

interesting instance of wheel and axle observed in both schools was a turntable in the train set 

that allowed children to change the direction of a train without having to lift it off the tracks. Not 

only were children quite adept at manipulating the wheel and axle that allowed them to move the 

train in a certain direction, but they also had the sense to place the turntable in an appropriate 

location (e.g., at the end of a train track or at an intersection) where it would be most useful.  
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Levers (5%) were also present as components of objects, such as handles, and were 

employed along with other simple machines, like wheel and axle, to operate more complex 

machines, such as a toy crane. They were also present as a drawbridge on hinges or as a seesaw 

that children manipulated. What stood out about children’s manipulations of levers and other 

simple machines was the ease with which children operated them. Very few times did children 

look perplexed by a machine in their classroom (except for when children encountered new 

objects, such as Emma’s first encounter with a new pulley toy in her classroom). For the most 

part, children were familiar with how objects in their classrooms were used and spent their time 

exploring the many ways they could employ them in their play. They tested the limits of the 

machine’s features—by moving the drawbridge up and down or testing the location of the 

fulcrum on a seesaw, for instance—with the nonchalance of expert users.  

Complex Objects and Affordances  

 As is apparent in the descriptions of children’s behavior sequences and the physical 

phenomena that emerged during object play, object features were closely linked to how objects 

were used and what concepts they exemplified. Magnet trains could be connected and provided 

children with the opportunity to experience and manipulate magnetism (repelling and attracting 

forces); blocks could be stacked and aligned permitting children to build structures and 

encounter concepts like gravity and balance. Each object had particular properties that informed 

children’s play behaviors, but perhaps most interesting were complex objects that were rich with 

affordances that children could explore and manipulate. Certain objects or structures stood out as 

unique examples of the role of affordances because of the multiple parts and access points that 

facilitated contact with various physical principles. The toy crane was an especially salient 

example of this. Both schools had a crane that had a knob to wind or unwind a string; a pulley-
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like system that enabled the string to come up and down the crane platform; and a magnet at the 

end of the string where they could connect magnetic train cars and pull them up. Given its 

multiple parts and mechanisms, the crane represented concepts like pulley, wheel and axle, 

magnetism, and tension. At any given point, children could explore one aspect of the pulley and 

its corresponding physical properties or play with all of them in tandem, seeing the interaction 

among the physical principles.  

 Another interesting case was the marble run observed in School B but present in both 

schools.11  A unique aspect of the marble run was that it could be constructed by children to vary 

along a number of features—length, angle, inclination, direction—that children manipulated and 

explored as they added pieces to it or utilized different marbles that varied in size. The flexibility 

of the different parts of the marble run engaged children in planning and executing, spatial-

mathematical, and problem-solving behaviors as they used blocks and other materials in their 

classrooms to explore (often elaborate) variations on the design of the marble run. And although 

at its most basic this contraption entailed children dropping a marble at one end and seeing it go 

down and across the carpet, it provided plenty of opportunities for children to explore principles 

of inclined planes and ramps, energy, gravity, and force.  

School Differences 

Because the emphasis of this study was not on comparing the two schools but rather 

representing the different opportunities that preschoolers may encounter as they play with 

objects, the results focus on the aggregate of observations across the two research sites. 

However, some relevant differences between the schools are worth mentioning to illustrate how 

                                                           
11 School B had two versions of the marble run: one, child-sized version was constructed using two long cardboard 
ramps that could be propped up against bookshelves and wooden blocks; the other version involved miniature 
wooden ramps that were connected and propped up using blocks. School A had the smaller version of the marble 
run available but children were not observed using it during the study.    
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much the affordances of the objects and the pedagogical environment appeared to interact with 

children’s play experiences.  

In many cases, the frequencies of different actions or concepts in each classroom were 

similar between schools; that said, noteworthy differences did exist in a number of categories 

and these seemed related to differences in the objects present and the nature of object play 

observed in each classroom (see Table 1). For example, exploratory behaviors were observed to 

a greater extent in School B (13%) than School A (6%) and this seemed to occur as a result of a 

teacher introducing a new object (a pulley system) to the play space in School B, which engaged 

children in investigatory behaviors that children did not tend to demonstrate with more familiar 

objects. Likewise, there were more instances of planning and executing behaviors in School A 

(43%) than School B (28%) and the difference appeared related to the fact that three School A 

sessions were dedicated to playing and building almost exclusively with train tracks or blocks 

while train tracks were only observed during one session and blocks were available as one of 

several choice centers in School B.  

Differences among the schools in the frequency of physical concepts that emerged are 

explained in a similar way. The higher frequency of encounters with magnetism in School A 

(30%) was mostly driven by the extensive experiences children had with magnetic trains 

compared to the relative lower frequency in School B (10%) where trains were available only on 

one of the observed days. In School B, the higher frequency of energy (13%), gravity (14%), and 

ramps and inclined planes (17%) was tied to the presence of the marble run.  

Given the responsiveness to children’s interests in both schools, it is possible that the 

differences observed also speak to the kinds of activities and objects that children had an 

expressed desire to see in their free play. This interaction between children’s preferences and the 



 38 

pedagogical choices around play is an area worth pursuing in future research. Despite these 

observed differences, however, the results provide a rich picture of the physical world that 

emerges through young children’s play with objects.   

Discussion 

The results described here illustrate the nature of children’s behaviors during object play 

and the myriad opportunities they have to engage with physical phenomena as they manipulate 

objects within the play context. However, the behaviors and physical concepts presented here are 

by no means exhaustive. Certain play behaviors and physical phenomena were not included in 

analyses because they did not emerge as prominent patterns within or between schools. Bouncing 

or throwing actions, mass and weight concepts, and physical principles involved in playing with 

water, for example, were certainly observed in children’s play but were not frequent, salient, or 

consistent in the data. The present investigation, thus, provides a picture of the world of 

possibilities that children have access to during object play to explore physical phenomena and 

the variety of events and ideas that adults can leverage to introduce young children to science, 

mathematical, and engineering principles through play.  

Pedagogical Context 

 Conspicuously missing in the results is an account of teachers’ participation in children’s 

play and the pedagogical context that surrounded play experiences. Children were observed 

during free play and spent much of their time in self-directed play activities; however, teachers 

and teacher choices, along with the larger school philosophy, resources, and priorities, were ever 

present in the kinds of play experiences children had access to and engaged in. Because play was 

valued as a learning tool in both schools, free play opportunities were carefully curated by 

teachers. Teachers had access to a wealth of materials and, every day, they chose what objects to 
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put out on the shelf or carpet with either an implicit or explicit learning goal for children’s 

interactions with these objects. They recognized the opportunities afforded by different objects 

and made choices based on those perceived provocations. As one teacher in School A described, 

teachers “intentionally alternate[d]” among objects that would invite instances of learning during 

play, being careful to attend to and incorporate children’s interests. Furthermore, teachers 

actively supported children’s play by managing interactions between children around a given toy 

or activity, suggesting play narratives that children would incorporate into their object 

manipulations, modeling play actions with objects, and providing additional props and materials 

to extend children’s play sequences. The teacher from School A explained that from her 

perspective, “the teacher’s role [in play] is critical because you can guide, model, and scaffold 

but then you have to know when to enter and when to exit [the play interaction].”  

The present study did not investigate the relationship between teacher or school 

characteristics and children’s play experiences, but this is likely an area that deserves further 

research if we are to understand how object play can be utilized to support young children’s 

learning of science concepts. Observations in other school contexts may give a different picture 

of what kinds of objects, play opportunities, or scientific content are available for children. 

Bairaktarova, Evangelou, and Bagiati, and Dobb-Oates (2012) found that when asked, “Do you 

identify and describe the characteristics of simple machines?,” 20% of Head Start teachers 

interviewed said that they did compared to 80% of teachers in university-affiliated preschools. 

Nevertheless, teachers from both school settings who responded affirmatively to this question 

described providing children with hands-on play experiences with simple machines like gears 

and ramps and engaging children in conversations about these simple machines. One hypothesis 

we can draw from existing literature as well as the findings of the present study is that teachers’ 
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ability to attentively observe children’s play and recognize physical concepts that may apply to 

children’s experiences is an important skill to scaffold children in further discovering and 

learning about these concepts. Citing Siraj-Blatchford (2001), Larsson (2013) explains that, 

“When children are attentive to the world around them, the teacher’s mission is to support their 

discovery and exploration of scientific phenomena [sic] and to involve them in investigations 

that allow them to collaborate and talk about science” (p. 379). How teachers can be prepared 

and supported to enact the instructional moves necessary to draw out the science embedded in 

play experiences with objects is a research area with important implications for improving 

preschool curriculum and instruction.     

The results also suggest directions to further investigate the link between children’s 

object play and their scientific reasoning. As expressed in the introduction, the results only point 

to the possible opportunities for learning about physical concepts but they do not demonstrate a 

relationship between these experiences and the ideas about the physical world children actually 

learn. Further research will elucidate this potential relationship. For example, a follow up study 

could investigate whether children’s experience playing with objects that afford interactions with 

certain physical phenomena is related to their ability to describe these scientific concepts or 

employ this knowledge to solve a behavioral task.  A pilot task conducted at the end of the 

current study investigated whether knowledge of a particular simple machine—a pulley—

transferred to a novel situation. Children were asked to help Sarah and Andrew (two play dolls) 

to get a picnic basket up to their tree house. They were then presented with a variety of materials, 

including a pulley system that could be used to solve this problem. Pilot data showed that 

children who had played more extensively with a pulley prior to the presentation of the tree 

house problem were more likely to choose the pulley system as their first option to help get the 
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picnic basket up the tree house. The task is being developed further but the data suggest a 

possibly meaningful link between the nature of children’s manipulation of objects during play 

and their knowledge and application of physical concepts.  

Conclusion 

Whether building a block castle or investigating the seemingly infinite potential of a 

cardboard box, young children can be found engrossed playing, discovering, and creating with 

the objects in their environment. The potential of objects to incite children to explore and think 

about physical phenomena (as they implicitly test friction and gravity, for example) provides an 

ideal setting to investigate how play might contribute to young children’s development of 

physical knowledge. The present study exemplifies children’s early experiences with physical 

phenomena in everyday play encounters with objects and the possible origins of later scientific 

conceptions. Further understanding the ways object play is supported in classrooms and how this 

may be related to children’s exercise of scientific thinking can inform how object play can be 

used as pedagogical tools to introduce STEM into the preschool curriculum.    
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 Appendix A 
 
Coding scheme including code names, descriptions, and examples for behavior sequences and physics concepts. 
 

Behavior Sequences 
Code Description Example12 

Spatial-Mathematical Behaviors The child manipulates objects paying 
attention to their spatial configuration, 
position, direction/orientation, proportion, or 
alignment. This may include, constructing, 
fitting, or connecting things together. 

Child is playing with train tracks and 
struggles to fit them together. She takes the 
previous tracks apart and puts them back 
together.  

Problem-Solving Behaviors  The child encounters a situation that requires 
figuring out what needs to change or what 
needs to be fixed in order to proceed with the 
play sequence. The child is essentially trying 
to figure out a solution. 

Child is trying to fit a train sideways through 
a mountain tunnel but it doesn’t fit that way. 
The child switches the orientation of the train 
and now it goes through.  

Exploratory Behaviors  The child engages in trying different actions 
with the same set of toys in somewhat of a 
trial and error, iterative fashion. The child is 
exploring different ways of using a object or 
different features of the object. Features refer 
to surface, physical characteristics that 
children can explore. What the object is made 
of and its different parts. 

Child is playing with a pulley and she places 
the string over a wheel, and then wraps it 
around to a second wheel. The string falls off, 
and she replaces it on the first wheel again. 
She pulls up and down on the string around 
the wheel. She tries a new orientation of 
string on the pulley. Similar behaviors 
continue.  

Planning and Executing Behaviors The child lays out a plan to play with or 
manipulate the objects in a certain way and 
follows through. This planning and executing 
may be overtly described by the child or 
evident in the child’s actions.  

Child announces she will build a bridge and 
then works diligently to line up wooden blocks 
to build the bridge. Or a child is building a 
track and comes back to it a few minutes later 
and resumes building. Or a child gets up to 
find a piece and then returns to their project.  
Or they pause like they’re trying to figure out 
what to do next. 

                                                           
12Note that examples are hypothetical but are informed by real observations. 
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Physics Concepts 
Magnetism The child utilizes, manipulates, tests, 

explores, explains, or otherwise encounters 
magnets during play.  

Child creates a long line of trains connected 
by magnets and figures out how to pull the 
line without disconnecting the trains.   

Gravity The child encounters, manipulates, tests, 
explains, or otherwise explores gravity during 
play. Gravity refers to the “natural 
phenomenon by which all physical bodies 
attract each other. Gravity gives weight to 
physical objects and causes them to fall 
toward the ground when dropped.”13   

Child holds a ball and drops it from different 
heights and watches as the ball falls to the 
ground. Or, the child is building a tower and 
then tips over the top block to see it fall. 

Friction The child encounters, manipulates, tests, 
explains, or otherwise explores friction during 
play. Friction refers to the “force resisting the 
relative motion of solid surfaces, fluid layers, 
and material elements sliding against each 
other.” The most common type of friction 
during object play will likely be dry friction, 
which “resists relative lateral motion of two 
solid surfaces in contact.”13 This can include 
activities where the child shuffles, slides, 
pushes, pulls, or spins objects.14 

Child pulls trains along the carpet and 
experiences a different resistance on the 
carpet than she did on the train tracks.  

Tension The child encounters, manipulates, tests, 
explains, or otherwise explores tension during 
play. Tension refers to “a force related to the 
stretching of an object.”13  

Child attaches a rope to one object and then 
pulls it and attaches it to another object to 
create a tightrope.  

Balance The child encounters, manipulates, tests, 
explains, or otherwise explores balance during 
play. Balance refers to “an even distribution 
of weight enabling something to remain 
upright and steady.”15 

Child builds a block tower and carefully 
places the blocks on top of one another as she 
builds vertically, being careful not to knock 
over the structure. Or, the child creates an 
actual balance by putting two objects on 

                                                           
13 To make code descriptions accessible and intuitive for coders, language from Wikipedia entries for several of the physical concepts was used. This language 
was crosschecked with existing literature describing these concepts in preschool settings.  
14 Larsson (2013) 
15 To make the Balance code description accessible and intuitive for coders, language from the Google definition for this physical concept was used. This 
language was crosschecked with existing literature describing this concept in the preschool setting. 
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either side of a flat plank and trying to 
distribute the weight evenly.  

Forces The child encounters, manipulates, tests, 
explains, or otherwise explores concepts of 
force during play. Force refers to “any 
interaction which tends to change the motion 
of an object. Forces are also described as a 
push or pull on an object. They can be due to 
phenomena such as gravity, magnetism, or 
anything that might cause a mass to 
accelerate.”13  

Child might test the principle that there are 
equal but opposite forces at play by leaning 
two long blocks against each other and 
creating a triangular structure. Or, the child 
applies force on a moving marble to make it 
go faster. 

Energy The child encounters, manipulates, tests, 
explains, or otherwise explores concepts of 
kinetic and potential energy during play. 
Energy refers to “a property of objects, 
transferable among them via fundamental 
interactions, which can be converted in form 
but not created or destroyed.” This may 
include “the kinetic energy of a moving 
object” or “the potential energy stored by 
virtue of the position of an object.”13  

Child holds a train on top of a hill and then 
lets it go making it roll down the hill. Or, 
child holds a marble on top of a ramp and 
then lets it go. 

Physics Concepts: Simple Machines 
Simple Machines: Levers  The child utilizes, manipulates, tests, 

explores, explains, or otherwise encounters 
levers during play. This includes using or 
building seesaws and handles. “A lever is a 
simple machine that allows you to gain a 
mechanical advantage in moving an object or 
in applying a force to an object.”16 “A lever is 
a machine consisting of a beam or rigid rod 
pivoted at a fixed hinge, or fulcrum.”13  

Child uses the handle on a play windmill to 
make the windmill spin.  
 
 
 

Simple Machines: Wheel and Axle  The child utilizes, manipulates, tests, 
explores, explains, or otherwise encounters 
knobs during play. “Wheel and axle in a 

Child turns a knob to open up a door in a play 
castle.  
  

                                                           
16 Kurtus (2014)  
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simple machine consisting of a wheel (or 
crank) and an axle that turn on the same axis. 
Steering wheels, doorknobs, and screwdrivers 
are wheel-and-axle devices.”17 

Simple Machines: Pulleys The child utilizes, manipulates, tests, 
explores, explains, or otherwise encounters 
pulleys during play. A pulley refers to “a 
wheel on an axle that is designed to support 
movement and change of direction of a cable 
or belt along its circumference. Pulleys are 
used in a variety of ways to lift loads, apply 
forces, and to transmit power.”13  

Child plays with a crane, which uses a string 
around a wheel to pull a toy car up.  
 
 

Simple Machines: Ramps and Inclined 
Planes 

The child utilizes, manipulates, tests, 
explores, explains, or otherwise encounters 
ramps during play. “An inclined plane is a flat 
supporting surface tilted at an angle, with one 
end higher than the other, used as an aid for 
raising or lowering a load.”13  

Child builds a ramp to make it “easier” for 
play dolls to access the castle. Or, child tests 
out the angle of a ramp to ensure that her 
marble goes to the spot she desires.  

                                                           
17 To make the Wheel and Axle code description accessible and intuitive for coders, language from the howstuffworks entry for this physical concept was used. 
This language was crosschecked with existing literature describing this concept in the preschool setting. 
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