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Immune Modulation by Exosomes in Trichomonas vaginalis infection 

Abstract 

      Exosomes and their microRNA cargo have been shown to modulate immune gene 

expression in the context of cancer; however, they are still a largely uncharted territory in the 

context of reproductive tract immunology. We used a human in-vitro model of the most common 

non-viral infection of the lower female reproductive tract caused by the protozoan parasite 

Trichomonas vaginalis (TV) to begin unveiling the role of exosomes in the host-microbe 

interactions in this anatomic compartment. We isolated exosomes from monocultures of different 

TV strains and from vaginal epithelial-TV co-cultures and investigated their effects on the acute 

immune response by bystander upper reproductive tract endocervical epithelial cells and peripheral 

blood mononuclear leukocytes (PBMC). It has previously been shown that TV carries 

endosymbiotic dsRNA Trichomonas vaginalis virus (TVV), which amplifies inflammatory 

responses to TV via TLR3 signaling. Our experimental data showed that the immuno-

inflammatory effects of exosomes derived from TVV-positive parasites differ from those derived 

from TVV-negative parasites, including TVV-cured isogenic strains, suggesting a new role of the 

virus in the host-parasite interactions. The effects of exosomes derived from vaginal-TV co-

cultures were also different from those from TV alone, suggesting a contribution of the human 

vaginal epithelium. Exosomes derived from TVV-uninfected or TVV-cured parasites but not from 

TVV-infected parasites activated NF-κB and induced selective proinflammatory cytokine 

expression in bystander endocervical epithelial cells. Similarly, in PBMC, exosomes from  TVV- 

cured but not from the isogenic naturally TVV-infected parasites upregulated a myriad of 

proinflammatory cytokines. Exosomes from TV-infected vaginal cells suppressed cytokine 
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upregulation induced via Toll-like receptor signaling and the suppression of proinflammatory 

cytokines was selectively and specifically induced when the parasites were TVV positive.  The 

TV exosomes were also capable of abrogating T cell activation by IL-2/PHA as demonstrated by 

proportion of naïve CD4+CCR7+ cells. These findings suggest that the viral infection of the 

protozoan parasites affects the exosomal content and function and may serve to suppress human 

host immunity at the time of establishing the protozoan infection. The differential roles of 

protozoan and infected host exosomes in underlying inflammatory damage and reproductive 

outcomes require further studies. 
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Chapter 1: BackgroundEpidemiology of Trichomoniasis: 

A common sexually-transmitted infection, trichomoniasis poses a pressing public health 

concern, due not only to its prevalence and highly  disparate distribution down socioeconomic and 

ethnic lines, but also to its effects on reproductive outcome.  

Trichomoniasis presents in the clinic as vaginal discharge, pruritus, odor and irritation in 

females and urethritis in males(1).  While long regarded as simply a nuisance, trichomoniasis has 

recently been linked to adverse events in reproductive health, before and during pregnancy and for 

both mother and child. Trichomonas infection most commonly occurs in women of child-bearing 

age, frequently co-presents with bacterial vaginosis (a dysbiotic syndrome of the vaginal 

microflora) and both of these conditions have been linked to poor reproductive outcomes (2, 3). 

Although trichomoniasis and other reproductive infections have been treated with metronidazole 

since the 1960s, the use of this drug has been correlated with adverse pregnancy events and 

Trichomonas vaginalis antibiotic resistance has been increasing in recent years (2). Once infected, 

patients face increased risk of HIV, high-risk HPV infection and subsequent cervical cancer risk 

as well as infertility (2, 4). A screening of women in a cancer clinic showed that compared to 

women without the infection, those with TV had a higher risk of contracting HPV and a 

significantly higher risk of contracting the most pathogenic strains of the virus (4). During 

pregnancy, T. vaginalis could have adverse effects on fetal development including low birth 

weight, pre-term birth and vertical transmission from mother to child (2, 5).  

Trichomoniasis affects more than 200 million individuals globally and has a higher rate of 

occurrence than gonorrhea and chlamydia combined, as many as 30% of patients presenting with 

re-infection upon follow-up (2, 6). TV infection is second-most common STD and second most 
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common cause of lower genital tract infection world-wide (4).  It is already the most common non-

viral venereal disease and the number of cases could actually be significantly higher since it is 

estimated that 80% of cases are asymptomatic (1, 2).  

Incidence of trichomoniasis can be as high as 51% in some urban communities as well with 

a majority of cases presenting in resource-limited settings (2). In urban STI clinics, the prevalence 

of trichomoniasis is 20% of all cases seen and it comprises 50% of all curable infections worldwide 

(7). Because trichomoniasis is a recurrent infection, it is a serious burden on a vulnerable 

demographic (5). Furthermore, prevalence amongst adolescents has been increasing (2).  

Biology of Trichomoniasis 

Trichomoniasis is a disease caused by the sexually-transmitted urogenital parasite 

Trichomonas vaginalis (TV), which preys on the epithelial cells in the reproductive tract and is 

best adapted to the vaginal mucosal environment for long term survival (2). Trichomoniasis is 

often seen in women with bacterial vaginosis (BV) – a condition characterized with a shift in 

proportion of bacteria in the female reproductive tract in favor of potentially pathogenic anaerobic 

species (3). BV is one of the most common syndromes in women of child-bearing age who seek 

primary care. It is contingent on the complex interplay between the host microbiota and the 

immunoendocrine system. BV increases the susceptibility towards trichomoniasis and together TV 

and BV exacerbate inflammation and associated risks of poor reproductive outcomes, cancer and 

other STIs e.g. HIV (2-4). 

T. vaginalis is a flagellated anaerobe that is remarkably capable of surviving in the acidic 

and microbially fortified reproductive mucosa for several years (2).  T. vaginalis was first 

described in 1836 by French physician-scientist Alfred Donné upon miscroscopic observations of 
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cervico-vaginal discharges. It was long thought that T. vaginalis was a harmless commensal and 

was not until 80 years later that it was even linked to vaginitis (2). Although there have been 

observations of trichomonads in epithelial and sub-epithelial tissues, the parasite is largely 

extracellular (8). Despite its early discovery, research to understand this parasite and its 

interactions with other members of the microflora is still an area of emerging research. 

T. vaginalis is a peculiar protozoan in several respects. It has a large and repetitive genome. 

It utilizes hydrogenosomes instead of mitochondria to accomplish fermentative carbohydrate 

metabolism (6). Furthermore, T. vaginalis is able to produce enzymes of both prokaryotes and 

eukaryotes, a specific subset of which allows it to evade immune detection (2).  

T. vaginalis infection can be divided into four stages: adhesion, contact-dependent 

cytolysis, phagocytosis and intracellular digestion (9). T. vaginalis swarms around host cells to 

attack and can cause cellular injury in under an hour of co-incubation (10). T. vaginalis is capable 

of lysing many different types of cells, including host epithelial cells and lymphocytes as well as 

other bacteria to establish its pathogenic niche (9, 10). The infection is diagnosed by multiple 

methods, the oldest and most specific but less sensitive being wet mount under microscope, 

followed by a rapid antigen test and more recently by nucleic acid amplification test (NAAT). 

Trichomonas and its own viral infection 

In another layer of immunological complexity, T. vaginalis can itself be infected by a virus 

(Trichomonasvirus, TVV) (5, 7).  Many genera of protozoa and fungi carry endosymbiotic viruses 

(7). These viruses act to chronically but non-cytopathically infect their hosts and can potentially 

confer evolutionary advantage and aid pathogenicity (7).   
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Named for its host, Trichomonasvirus is a member of the family Totiviridae, icosahedral 

virions ranging in diameter from 30-40nm (7). The virions are transmitted vertically as T. vaginalis 

undergoes binary fission (7) or also likely after meiosis by mating (11) . There are currently four 

known species of Trichomonasvirus genus (8) and T. vaginalis is capable of being stably infected 

by multiple TVV species concurrently (7). The viral genome consists of a single dsRNA (4300-

4900bp) with smaller satellite dsRNA present (~500bp) (9).  Although it is unclear how these 

satellite dsRNA function in TVV, in other members of the Totiviridae family this molecular 

information encodes advantageous toxins that aid host pathogenicity (7). TVV is known to alter 

the T. vaginalis profile of cysteine proteases, a known virulence factor for the species, which are 

instrumental for the degradation of human immune proteins such as immunoglobulins, 

complement and adhesion molecules (7). 

Trichomonasvirus is sensed by TLR3 which triggers phosphorylation of IRF-3, and a 

cascade of proinflammatory cytokines and chemokines implicated in pre-term birth and HIV 

susceptibility (5).Thus, in addition to the T. vaginalis itself, the virus exacerbates the inflammatory 

milieu by upregulating pro-inflammatory pathways, virus stress response genes and chemokines 

by genital tract epithelial cells (2, 5).  The virus also exacerbates the inflammatory response to BV 

bacteria (5). Because treatment by metronidazole does not improve reproductive outcome, it is 

believed that metronidazole allows for the release of the virus from inside of T. vaginalis, thus 

increasing exposure, immune activation and inflammatory damage (7). Because Trichomonasvirus 

activates a different pathway of innate immunity from T. vaginalis itself, it also allows the immune 

response to be diverted from anti-parasitic response to a misguided anti-viral response (to a virus 

that does not even infect human cells).  
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Immunity against Trichomonas vaginalis 

The innate immune response plays a key role in sensing and responding to T. vaginalis. 

Epithelial cells, such as those used in this study, constitute an important defense mechanism 

against the parasite by acting as a physical barrier (1). Epithelial cells sense T. vaginalis upon 

direct contact via galectin-mediated pathways and in the absence of TLR-4 while leukocytes sense 

the parasite virulence factors via TLR-4 and in both TV can induce the expression of COX-2, TLR 

2, 4 and 9 via the MAPK pathway (2). There is also an interesting synergistic effect between 

inflammatory events in response to T. vaginalis and pathogens of bacterial vaginosis (BV) 

combined. In a study of pregnant women who presented with both types of infection, researchers 

found higher levels of serum IL-1β and neutrophilic infiltrates in vagina compared to those singly 

infected with bacterial vaginosis (2). When exposed to T. vaginalis in vitro, leukocytes respond by 

producing IL-8, leukotrienes, reactive nitrogen intermediates and inducible NOS (iNOS) (2). A 

study conducted on prostate stromal cells also showed that the parasite induced a pro-inflammatory 

response, upregulating the levels of pro-inflammatory cytokines as well as activating TLR4, ROS 

and NF-κB expression (8). The dominant inflammatory cells found from vaginal discharge of 

infected patients are neutrophils. Researchers have shown that TV lysis of neutrophils actually can 

induce an anti-inflammatory response in macrophages, which limits and leads to the resolution of 

infection (12). Other studies have shown that the macrophage exposure to T. vaginalis suppresses 

NF-κB induction and is largely anti-inflammatory (13). Research in this Lab has shown that 

binding of the major surface TV lipophosphoglycan (LPG) to galectin-1 and -3 and the levels of 

soluble galectins in the extracellular environment can both regulate the inflammatory response by 

the vaginal epithelial cells (14). Taken as a whole, the pro- or anti-inflammatory nature of the 

immune response depends largely on the cell type in question and the mucosal context. However, 
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T. vaginalis is unequivocally capable of garnering a robust response from several components of 

the innate immune system, which is central for clearing the infection.  

However, the adaptive immune response to T. vaginalis is considerably more complex. In 

T cells, macrophages, and dendritic cells, exposure to T. vaginalis induces the production of 

immunosuppressive cytokines IL-10, TGF-β as well as apoptosis (2). T. vaginalis infection 

challenge experiments in mouse models increased serum levels of IgA, IgG, Th1 cytokines in 

addition to Nitric Oxide Species in circulation (2).  The antibodies were present both in the sera 

and mucosal sites in the animals (2). Although antibodies specific to T. vaginalis are produced 

upon exposure to the parasite, patients often lack a robust adaptive immune response to the parasite 

and suffer many recurrent infections (2).  

A study conducted by this lab has shown that the Trichomonas lipophosphoglycan (LPG), 

similarly to LPS found on bacteria, is capable of inducing a robust and specific inflammatory 

response (2). Because LPG is sufficient for inducing an inflammatory response and does not 

change structurally over the course of the parasite’s development, it provides and interesting and 

novel target for vaccine development against this elusive parasite  (2). Antibodies to LPG have 

been found in pregnant women who had suffered trichomoniasis Multiple studies have identified 

protein immunogens on the TV surface and antibodies against TV proteins have been found in 

patients with prostate cancer (15). In both cases the antibody presence was merely evidence for 

exposure to TV that was associated with pathologica sequelae e.g. preterm birth or cancer. A study 

conducted at Yonsei University of Medicine also identified antigenic surface proteins from T. 

vaginalis that are relevant to cytoadherence via membrane fractionation and immunoscreening of 

a cDNA expression library however  there role in immunity and human disease is still to be 
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established (16). Taken as a sum, these studies indicate that the pathogenic success of Trichomonas 

is not due to an inability to be sensed by the adaptive immune system. 

Although there is evidence that the adaptive immune system can recognize T. vaginalis, 

the chronicity and frequency recurrence of the infection suggest evasion of the immune effectors 

by the parasite. Cysteine proteases produced by T. vaginalis are regarded as virulence factors for 

various strains because they are capable degrading IgG, IgM and IgA, inducing the apoptosis of 

vaginal epithelial cells and other immune cells and thus attenuating the adaptive response (2). 

Furthermore, imaging studies have shown that T. vaginalis is able to acquire host CD59 (a 

complement lysis restricting factor) and use it to avoid lysis by the complement system (1, 17). 

More studies show that surface proteins that T. vaginalis shares with other parasites are capable of 

undergoing a conformational change to avoid detection by immunoglobulins (1).  While some in-

vitro studies on murine models have shown protective immunity via vaccination (18). A murine 

model of Trichomonas infection suggests that the parasite induces CD4+ T-cell infiltration and 

used this as the basis to argue that a whole-cell TV vaccine conferred protective immunity (19). 

However, these results have  yet to be satisfactorily translated into human (6). Because of this 

dearth of protective long-lasting adaptive immunity, studies have primarily focused on the innate 

immune response to T. vaginalis.  

Exosomes:  

Exosomes, extracellular vesicles 50-100nm in diameter, are a mechanism of intercellular 

communication of emerging interest. Extracellular vesicles contain a specific composition of 

lipids, mRNA, regulatory miRNA, and functionally-active cytosolic proteins depending on both 

the source and target cells(20). Exosomes are formed when intraluminal vesicles fuse with the cell 

membrane and are responsible for transporting a variety of molecular cargo from between cells. 
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They are an important mechanism for cell-cell communication (20).  Exosomes can regulate gene 

expression and alter fate of their targets depending on their contents. They can cause targets to 

become activated, differentiated or de-differentiated according to the molecular information 

received. The generation of extracellular vesicles has been shown both in vitro and in vivo without 

affecting target cell viability (21).  

Studies suggest that extracellular vesicles can be used as a means of communication 

between various parasite species, perhaps to promote growth and transmission and manipulate the 

microenvironment (22). In the context of Trichomonas infection specifically, data from Twu et al. 

found that extracellular vesicles contain strain-specific proteins that affect the ability of TV to 

adhere to target cells (22, 23). Proteomics of purified preparations from T. vaginalis monoculture 

found a 70% overlap with mammalian exosome markers which suggests that TV is indeed capable 

of producing exosomes (22).  

Definitively identifying exosomes has been a substantial challenge for researchers. 

Because exosomes constitute a heterogeneous population of extracellular vesicles, size and density 

alone cannot be used as strict criteria for their isolation and researchers often utilize a combination 

of various methods. Exosome membranes are highly enriched in tetraspanins, a class of proteins 

named for their four membrane-spanning domains. Tetraspanins are involved in cell adhesion, 

motility, invasion or membrane fusion in addition to signaling, protein trafficking (20). 

Tetraspanins are able to form clusters and interact with a large variety of transmembrane and 

cytosolic signaling proteins.  Several tetraspanins, (CD9, CD63, CD81, CD82, CD151) have a 

broad tissue distribution and are widely used as exosomal markers (20). CD63 and CD81 

expression in particular have been most frequently confirmed on the surfaces of exosomes leading 
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to the use of them as “classical” markers of exosomes. However, there is still contention in the 

field about how to best differentiate and confirm populations of extracellular vesicles as exosomes.  

Traditional methods of identification, such as flow cytometry, have had limitations in terms 

of sensitivity. Often, these small vesicles are lost in the “noise” (21). However, emerging 

technology such as Nanoparticle Tracking Analysis (NTA) has allowed researchers to quantify 

exosomes with more precision, though it is still recommended to use a combination of various 

methods to confirm vesicle populations (21, 24). Due to their stability in biofluids, exosomes could 

have a potentially important role as a diagnostic for various disease states or as a vector for 

therapeutics (21).  

MicroRNA: Function, Biogenesis and Role in Immunity 

MicroRNA (miRNA) are short sequences of RNA (~20bp), normally produced by the cell 

during RNA transcription and are exosomal content of interest for their potential role in post-

translational regulation of gene expression. miRNA are transcribed the same way as protein-coding 

genes via RNA polymerase II and are in fact a normal by-product of transcription. Primary miRNA 

(pri-miRNA) consisting of several hundred nucleotides in a hairpin-like structure, are first 

produced within the nucleus and are modified with a 5’-cap and 3’poly-A tail. Pre-miRNA are 

then exported out of the nucleus and cleaved in the cytosol by Dicer into a double-stranded 

complex. This duplex then associates with the RNA-induced silencing complex (RISC) and then 

one strand may be degraded or both strands may remain functional. The miRNA-RISC complex 

then can associate with mRNA transcripts to mark them for degradation or make them inaccessible 

for protein translation (25, 26). Perfect base-pairing between mRNA transcript and miRNA is not 

necessary to silence gene expression, partial sequence complementation is sufficient (25).  
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MicroRNA were first identified in C. elegans but have been reported in a wide variety of 

organisms from single-cell algae to humans. This suggests that miRNA comprise an evolutionarily 

ancient and conserved means of modifying gene expression post-transcriptionally (25). MiRNA 

are implicated to be involved in many processes, from normal development and cell processes to 

oncogenesis (26). They have also been implicated in the initiation of the immune response, neural 

development, DNA repair, apoptosis, oxidative stress (25). Furthermore, miRNA are ubiquitously 

present in body fluids such as blood and urine, each with distinct miRNA profiles, suggesting that 

they could be a mechanism for extracellular communication (26, 27). MiRNA have been found to 

be stable in various adverse conditions such as extreme pH, freeze-thaw cycles and are protected 

from RNAse activity (25). MicroRNA expression profiles are dynamic and vary in female patients 

throughout the course of their cycle (26).  

MicroRNA are capable of modulating the activation and function of innate immune cells. 

It is believe that miRNA are responsible for tolerogenic endomentrial dendritic cell phenotype 

during the periconceptional period (28). It is also possible that microRNA are critical in the 

initiation of an adaptive immune response (or lack thereof). After depleting miRNA through a 

Dicer null mutation, the number of CD4+ and CD8+ T cells significantly decreased. miRNAs have 

also been shown to contribute to Treg differentiation and function. Taken as a whole, microRNA 

may play a key role in establishing the adaptive immune response (28). 

Because miRNAs are capable of dynamically regulating gene expression, they are believed 

to contribute to various reproductive pathologies. In order to support embryonic implantation and 

full-term development, the reproductive tract must be tolerogenic before implantation, during the 

peri-conceptual period and throughout the pregnancy. It is thought that miRNAs play a role in 

establishing tolerance at conception and play important role in pregnancy, implications for 
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endometrial receptivity, implantation, placental function and labor (28). MicroRNA have been 

shown capable of modulating the function of both innate and adaptive immune cells as well as 

programming immune cells that are critical in the early stages of pregnancy. Sequencing has shown 

that the expression of specific miRNA(miR-223 and miR-34) are up-regulated in cervical tissue 

during full-term parturition, suggesting that miRNA can contribute to differentiating normal term 

vs. pre-term labor. Studies have correlated immune-associated miRNA with miscarriage/pre-

eclampsia; suggesting that dysregulated miRNA expression may impact the immune environment 

during pregnancy (28).  Because of the role of miRNA in ovarian function, placental function, 

uterine receptivity, pregnancy detection, embryonic development, current research suggests that 

circulating miRNA profiling could hopefully be used as a potential non-invasive diagnostic in the 

future. 

Unresolved immunology questions 

Treatment with metronidazole exacerbates inflammatory responses in-vitro due to release 

of TVV (5) and mycoplasma, a member of the disturbed BV microflora frequently carried by the 

parasite (15). These findings offer an explanation for the failure of metronidazole to prevent poor 

reproductive outcome in infected pregnant women (5). The elucidation of the full mechanism of 

the immune response towards T. vaginalis and its virus would allow better strategies for prevention 

of preterm birth and many other risks associated with trichomoniasis. Trichomoniasis is highly 

recurrent. The lack of effective acquired immunity against T. vaginalis has shifted attention toward 

studying the innate immune response. The evasion of innate and adaptive immunity may be the 

target of collaboration between TV, TVV and BV species and create a symbiotic network of 

pathogens. Not much is known of these interactions in the context of mucosal or systemic immune 
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cells. In this thesis we investigated a proposed mechanism that involves exosomal content 

dependent on TV and its endosymbiont TVV (Schema 1). 

 

Schema 1: Proposed hypothesis of the findings of this study. In our model of T. 
vaginalis (TV) infection there are two potential sources of exosomes, one from the T. 
vaginalis itself and the other from infected epithelial cells. In this study we describe 
differential immune effects of different preparations of exosomes as measured by NF-
κB, cytokine, chemokines and immune cell activation markers. We hypothesized that 
the subset of exosomes derived from axenic TV monocultures (those that lack 
Trichomonasvirus) will be different in their impact of immunity from those derived 
from Trichomonasvirus-infected TV. We also hypothesized that exosomes derived 
from TV-infected vaginal cells will mediate distal immune effects of TV infections e.g. 
regulate immunity in recipient bystander cells from the upper reproductive tract 
(uterine endocervical epithelium) and peripheral mononuclear cells in a manner 
dependent on Trichomonasvirus infection.  
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Chapter 2: Data and Methods 

Short Introduction: 

The overall goal of this study was to determine the effect, if any, of exosomes on the innate 

immune response. We first needed to optimize our protocol for isolating exosomes from cell culture. 

Although the use of isolation reagent alone yielded usable Nanotracking results (Fichorova lab, 

unpublished data), after consulting with the company we decided to also use Exosome Spin Columns 

(Invitrogen) to further purify samples by removing small particles (MW<3000).  

Previous experiments have shown that the number of exosomes produced is significantly 

increased in the TV-epithelial cell infection model compared to other microbes, both pathogenic and 

symbiotic (Fichorova lab unpublished data). This suggested an important role of exosomes during TV 

infection but this does not address whether it is the exosomes from TV itself or from infected cells that 

are being released and influencing bystander cells. To address this, we decided to isolate exosomes 

both from specific TV strains as well as vaginal epithelial cell infection using the same strains. We 

also stained isolated epithelial cells and TV and used exosomes isolated from supernatants from the 

TV-vaginal co-culture to try and determine differences between different treatment conditions via flow 

cytometry analysis. 

We decided to investigate the effect of exosome preparations on two different target cell types: 

endocervical cells, which represent the upper reproductive tract (the uterine cervix) in close proximity 

to the infected vaginal cells in vivo, and peripheral blood mononuclear cells, which would be present 

in circulation. We initially tested various dilutions of the exosomal preparations to determine the 

highest dilution that maintained the effect in the absence of target cell toxicity and used that exosomal 

concentration per target cell for all remaining experiments. We investigated both intracellular levels of 
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gene expression and metabolism (MTT, caspase-3, Luciferase-NFκB) as well as several soluble 

mediators. 

We also have tried to characterize our extracellular vesicle populations by various methods, 

including proteomics, flow cytometry, fluorescence microscopy and nanotracking. 

Figure 1: Experimental Overview. Exosomes were isolated from five sources: (1) TVV- or  TVV+ 

strains of T. vaginalis (TV) in monocultures, (2)  human vaginal epithelial cell co-culture with TVV- 

or TVV+ TV strains (infection model), (3) human vaginal epithelial cell monocultures (no TV), and 

(4&5) both TV and epithelial cell culture medium as controls. After isolation, exosomes were 

characterized using both flow cytometry and nanotracking analysis. Exposure experiments were also 

conducted on two bystander, non-infected cell types to characterize the immune response to 

exosomes. Endocervical cells were used to assess early (24h) cytokine response as well as NF-κB 

activation, using a Luciferase reporter assay. Peripheral Blood Mononuclear cells (PBMCs) were 

used to assess innate and adaptive immune response parameters. Early (24h) cytokine production 

was assayed and T cell differentiation was assessed using Flow Cytometry.  
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Glossary of terms: 
 

Media Used:  

AB-: Antibiotic-free keratinocyte serum-free medium (Gibco); epithelial cell medium 

D6.0: TV growth medium 

 

Strains of Trichomonas vaginalis (TV):  

Trichomonasvirus positive (TVV+): UR1, 347V+ 

Trichomonasvrius negative (TVV-): PJ, 347V- (TVV cured isogenic derivative of 347v+) 

 

Cells: 

VK2/E6E7: vaginal epithelial cells, immortalized with HPV genes E6E7 

End/NF-κB: endocervical epithelial cells, immortalized with HPV genes E6E7, stably transfected 

with a Luciferase reporter gene linked to NF-κB 

Ect1/E6E7: ectocervical epithelial cells, immortalized with HPV genes E6E7  

 

Adjuvants: 

Poly(I:C): TLR-3 agonist, dsRNA mimic, meant to simulate the presence of virus 

IL-2+Phytohaemoglutinin (PHA): blood cell stimulation  

 

Cytokines: 

IL: Interleukin 

RANTES: CCL5  
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Materials 

Table 1: PBMC donors 

Donor ID Demographics Used in Experiment: 

544.011717 Male, Latino  

Age: 30yo 

Blood Type: O+ 

1.17.2017 

KP49306 Caucasian Female  

Age: 26yo 

Blood type: A- 

2.1.2017 

KP49695 A.A. Female,  

Age: 24yo 

Blood type: AB+ 

3.16.2017 

 

Table 2: Immortalized Epithelial Cell lines 

Abbreviation Anatomic location Function 

VK2/E6E7 Human lower reproductive tract: Vaginal epithelial 

cells immortalized with HPV 16 E6E7  

Primary infected Cell  

Ect/E6E7 Human upper reproductive tract, Ectocervix uteri: 

Ectocervical epithelial cells, immortalized with 

E6E7 

Primary infected Cell 

(fluorescent 

microscopy only) 

End/E6E7 Human upper reproductive tract, Endocervix uteri: 

Endocervical epithelial cells, immortalized with 

HPV 16 E6E7  

Bystander cell 
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Table 3: Assays 

Analyte(s) Target protein location Measure of:  

IFN-α, IL-1β, IL-2, IL-4, 

IL-6, IL-10, IL-12p70, 

IL-13, IL-17A, TNF-α 

Extracellular, soluble mediators Early inflammatory events 

(Acute phase cytokines, 

potent pro-inflammatory 

cytokines, T helper cell 

induction) 

Luciferase-NF-κB Intracellular, nuclear Relative NF-κB activation 

MTT Proliferation Intracellular, mitochondrial Cell proliferation and 

metabolism 

IL-8/RANTES 

 

Extracellular, soluble mediator Immune activation; 

differential profiling between 

TVV+ and TVV- T. vaginalis 

strains 

Caspase-3 Intracellular, cytosolic Apoptosis 

 

Table 4: Flow Cytometry Kits and Stains 

Name Target Cell Function 

SytoRNA Select Green 

Fluorescent Protein (Fisher 

Scientific) 

VK2/E6E7 Stains for RNA in target cells 

TFL4 (Oncoimmunin) T. vaginalis Incorporates into cell 

membrane of target cells 

DuraClone IM T-Cell Subset 

(Beckman Coulter) 

PBMC Binding to cell surface 

expression markers as 

indicators of lymphocyte 

differentiation (phenotyping) 
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I. Exosome Isolation 
Epithelial Cell Culture: 

Immortalized vaginal epithelial cell (VK2/E6E7) (29) were cultured in antibiotic-free, keratinocyte 

serum-free medium (AB-), supplemented with bovine pituitary extract, epidermal growth factor, 

and calcium chloride as described (29). Cells were trypsinized and grown to confluency in T175 

cell culture flasks.   

T. vaginalis Culture:  

All T. vaginalis (TV) strains were cultured in modified Diamond’s medium (D6.0) with 10% heat 

inactivated donor equine serum and iron. (5). TV was harvested in late log phase (24h) by 

centrifugation (1000xg for 5 min) and re-suspended to a seed density of 4x105 TV/ml in AB- 

epithelial cell growth medium.  

Infection Model: 

Vaginal epithelial cells were overlaid with 25 ml of suspension of T. vaginalis (4x105 TV/ml). Cell 

cultures were incubated under anaerobic conditions on a shaker at 50rpm, 35°C for 24h  (5).  

Exosome Isolation:  

Exosomes were isolated using the Total Exosome Isolation Reagent (Invitrogen). After 24h of 

incubation, the reagent was added to cell culture supernatants in a 1:2 ratio. Samples were 

incubated overnight at 4°C. The following day, samples were centrifuged at 10,000xg for 1 hour 

at 4°C. Exosome pellets were then re-suspended in either PBS or appropriate media (epithelial or 

PBMC growth medium) for further purification. Appropriate volume for re-suspension was 

determined by normalizing to the surface are of epithelial cell growth.  

Purification with Spin columns: 

Exosome Spin Columns (Invitrogen) were used to remove small molecules and particulates from 

exosome samples (MW<3000). Spin columns were rehydrated with 650µl of PBS and centrifuged 

twice at 760xg for 2min at room temperature. Samples were immediately overlaid 100µlat a time 

over the gel barrier and spun down at 760xg and collected. Columns were washed with PBS three 



 

19 

 

times between sample spins to ensure sample purity. Once purified, samples were filtered through 

0.22 µm filters and frozen at -20°C. 

II. Exosome Characterization: 
Exosome Preparation for Nanotracking: 

Exosome preparations were equilibrated to room temperature and diluted in sterile PBS that had 

been filtered through 0.22 µm vacuum filter. Preparations were diluted 1000x and 50,000x to reach 

final volumes between 0.5 and 1ml.  

Nanotracking parameters: 

Exosome preparations were quantified using the ZetaView (Particle Metrix) by translational 

diffusion size distribution. Particle concentration and size distribution was extrapolated from 

eleven video scans of samples, two measurements per scan, for a total of 22 data points per 

treatment.  

Preparation of Epithelial Cells for Flow Cytometry analysis: 

Vaginal cells were seeded in 6-well flat-bottom plates at a density of 1.2x106 cells/ml and grown 

to confluency. Immediately preceding infection, vaginal cells were stained using Syto RNA-select 

Green Fluorescent Dye (Thermo Fisher) for 30 min, protected from light. Cells were then washed 

three times with PBS and cultured in KSFMC-AB-.  

Staining TV:  

T. vaginalis was stained using the TFL4 (OncoImmunin). TV was first spun down at 1000xg for 

5 min and then washed with PBS. TV was incubated in a 1:3000 dilution of the dye for 1 hour, 

protected from light. TV was then spun down at 1000xg for 5 min and washed in PBS to remove 

dye. TV was then adjusted to a concentration of 8x105 TV/ml in epithelial cell growth medium 

and overlaid over epithelial cells, for a final concentration of 4x105 TV/ml upon incubation for 

24h.  

Preparation for Flow Cytometry: 
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Cell supernatants were collect and centrifuged at 1000xg for 5 min to remove cells and debris. 

Supernatants were vacuum-filtered through a 220 nm filter to remove any remaining larger 

particles. Samples were analyzed using the Becton Dickinson SORP FACSAria, using polystyrene 

beads as size controls and a sample of epithelial cell medium to control for medium auto-

fluorescence.  

Preparation for Fluorescent Microscopy: 

Ectocervical cells (Ect1/E6E7) were first seeded into glass chamber slides. Cells were stained the 

next day using Syto RNA-select Green Fluorescent dye (Thermo Fisher) following the protocol 

outlined above in “Staining Epithelial Cells”. Cells were then washed three times with sterile, 

filtered (0.22 µm) PBS, and cultured in AB- medium. T. vaginalis cells were prepared as in 

“Exosome Isolation: T. vaginalis preparation”.  

III. Endocervical Experimental Procedures:  
Cell Culture:  

Immortalized endocervical epithelial cell (End1/E6E7) (29) were cultured in antibiotic-free, 

keratinocyte serum-free medium (AB-), supplemented with bovine pituitary extract, epidermal 

growth factor, and calcium chloride. Cells were seeded into 96-well flat-bottom plates at a density 

of 5x105 cells/ml and grown to confluency.  

Exosome Exposure:  

Cells were cultured in the presence or absence of Poly(I:C) at a concentration of 10µg/ml. 

Exosome preparations were diluted 10x on the plate. Cells were then incubated 24h under 

anaerobic conditions using an AnaeroPack-Anaero (Mitsubishi) sachet in a sealed chamber on a 

shaker at 50rpm, 35°C.   

NFkB Activation Luciferase Reporter Assay: 

After 24 h of exposure to exosomes and TLR stimulation, supernatants were collected, cells were 

lysed with GloLysis buffer and luciferase activity was determined using the Bright-Glo Luciferase 

Assay System by manufacturer’s protocol (Promega, Madison, WI) as described. 
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MSD Assays:  

Concentrations of soluble mediators IL-8 and RANTES were measured in cell culture supernatants 

simultaneously using an MSD duplex assay, Sector Imager 2400, and Workbench software.  

IV. PBMC Experiments:  
PBMC Isolation: 

PBMCs were isolated from fresh whole blood obtained from donors at the Research Blood 

Components LLC (Brighton, MA) using density gradient separation. To remove plasma, blood 

was centrifuged at 3000rpm at 4°C for 20 min. Cells were then re-suspended with sterile PBS and 

overlaid onto Ficoll Histopaque. Samples were then centrifuged at 400xg for 40min at room 

temperature. The mononuclear cell layer was then quickly transferred into tubes containing sterile 

PBS, spun at 400xg for 5 min at room temperature and washed with PBS and re-suspended in 

RPMI medium with L-Glutamine and 20% heat inactivated Fetal Bovine Serum (FBS). Cells were 

then counted using an automated cell counter and adjusted to a final working concentration of 

2x106 cells/ml.  

PBMC Exposure Experiments:  

PBMCs were cultured in the presence or absence of human IL-2 (Roche Diagnostics) and purified 

Phytohaemagglutinin (PHA), each in a ratio of 1:1000 in growth medium. PBMCs were then 

cultured in round-bottom 96-well plates. Exosomes were then added to wells at a 10x dilution on 

plate. Cells were then incubated at 37°C, 5% CO2, and cell supernatants were collected at 24h and 

48h post-treatment.  

Viability Assay:  

Epithelial cell and PBMC viability was measured using the CellTiter96 MTT proliferation assay, 

a non-radioactive assay in which MTT (a yellow tetrazole) is reduced to a purple formazan product 

in metabolically active cells.  

Lysis for Caspase analysis:  
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Cells were centrifuged at 400xg for 10 minutes at room temperature. Working on ice, Tris Lysis 

buffer containing a protease cocktail (MSD) was added to cells. Plates were incubated while being 

shaken vigorously at 4°C for 15 min and subsequently collected.   

MSD Assays:  

Concentrations of numerous cytokines produced were measured in either cell culture supernatants 

or lysates simultaneously using an MSD multiplex assay, Sector Imager 2400, and Workbench 

software.  

Preparations of PBMCs for Flow Cytometry: 

PBMCs were isolated from fresh whole blood and incubated for 24h in the presence or absence of 

IL-2 and PHA (1:1000). After 24h of stimulation, cells were centrifuged at 400xg for 10min at 

room temperature. Cells were corrected to a concentration of 4x106 cells/ml in PBMC growth 

medium. Exosomes were then added to PBMC cultures at a 10x dilution from the stock and 

incubated overnight in round bottom tubes, on a shaker (50rpm) at 35°C under anaerobic 

conditions. After stimulating PBMCs with exosomes overnight, samples stained and prepared for 

flow cytometry using the DuraClone IM T Cell Subset Kit (Beckman Coulter), per manufacturer’s 

protocol. Samples were immediately analyzed without fixation. Samples were run on the CytoFlex 

LX (Beckman-Coulter).  
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Results:  
 

Validation the in vivo Infection Model: 

In order to characterize the response of primary infected epithelial cells, supernatants 

collected prior to exosome isolation were assayed for production of pro-inflammatory cytokines 

IL-8 and RANTES (Fig 2). Results from two separate isolation experiments are shown from 

2.13.17(2A+2B) and 1.10.2017 (2C+2D). In both experiments, vaginal epithelial cells exposed to 

any TV strains or stimulation by Poly(I:C) produced higher levels of IL-8 compared to those that 

were not infected (2A+2C).  However, only those epithelial cells exposed to TVV+ strains of TV 

or the dsRNA mimic Poly(I:C) produced high levels of RANTES. Epithelial cells exposed to TVV-  

strains produced comparable amounts of RANTES compared to uninfected cells. This suggests 

that the exposure to TVV- strains of TV do not induce viral inflammation via TLR3. These findings 

are align to those previously described by the lab (5).  
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Figure 2: Confirmation of the infection model via cytokine profiling of vaginal epithelial cells. In the 

presence of TVV+ TV strains or stimulation by dsRNA mimic (Poly(I:C)), there is an increased 

production of RANTES (CCL5) by vaginal epithelial cells (VK2). Graph results single values from 

two exosome isolation experiments 2.13.17 (A+B) or 1.10.17 (C+D).   

A) IL-8 profile of vaginal cells exposed to TVV+ TV, TVV- TV or  Poly(I:C) (2.13.17) 

B) RANTES profile of vaginal cells exposed to TVV+ TV, TVV- TV or  Poly(I:C) 

C) IL-8 profile of vaginal cells exposed to TVV+ TV or  TVV- TV (1.10.17) 

RANTES profile of vaginal cells exposed to TVV+ TV or TVV- TV (1.10.17) 

 

  

A

. 

B 
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Characterization of Microvesicles Populations:  

In order to characterize the isolated microvesicle populations, exosome preparations from 

isogenic T. vaginalis strains (347V+ and 347V-) and from D6.0 iron-supplemented medium 

without cells were quantified by size and frequency distribution using the ZetaView (Particle 

Metrix) for translational diffusion size distribution (Fig 3). Population curves were built from 11 

independent sample scans, each with two counts, for a total of 22 data points per sample. Exosome 

preparations from D6.0 medium yielded an average concentration of 2.3x1010 particles/ml with 

most particles of a diameter of 67.4 nm and an average diameter of 68.3 nm (Fig 3A, Table 5). 

Exosome preparations from 347V- yielded a concentration of 1.6x1010 vesicles/ml with a vesicle 

population centered around a diameter of 106.9 nm, with an average diameter of 108.9 nm (Fig 

3B, Table 5). Exosome preparations from 347V+ yielded a concentration of 2.3x1012 particles/ml 

with a population peak at 76.6 nm and an average diameter of 81.4 nm (Fig 3C, Table 5). A 

compilation of all microvesicle population distributions prior to dilution corrections is shown in 

Figure 3D. These averages both agree with values determined previously in the lab (Fichorova lab, 

unpublished data) and are in line with exosome populations currently defined in the literature (27, 

30, 31). 
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Figure 3: Nanoparticle Tracking Analysis of TV-derived exosomes. Exosomes from monocultures of 

(A) D6.0 medium without TV, (B) 347V- , (C) 347V+exosomes and a (D) comparative curve. In the 

comparative curve, D6.0 microvesicles are shown by the blue curve, 347V- microvesicles are shown 

in green and 347V+ vesicles are shown in yellow. The comparative curve is prior to dilution corrected. 

All samples were diluted in filtered sterile Phosphate buffered saline (PBS) and processed using video 

analysis of 2 data cycles in 11 scanning areas for a total of 22 measurements taken per sample.  

 

Table 5: Summary of difference between extracellular vesicle populations after dilution 

correction. 

Exosome Source Concentration 

(particles/ml) 

Average Diameter 

(nm) 

Population peak 

(nm) 

D6.0 Iron-

supplemented 

medium, no TV 

2.33x1010  68.3  67.4 

347V- 1.6x1010 106.9 108.9  

347V+ 2.3x1012 81.4 76.6  
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Exosome Characterization by Flow Cytometry: 

Exosome preparations from all treatment conditions were also quantified using flow 

cytometry, using the FACSAria II (Fig 4). To characterize the predominant source of exosomes in 

co-culture preparations, two different fluorescent dyes were used in the in vivo infection model 

using live T. vaginalis. Vaginal epithelial cells were stained with SytoRNAselect and T. vaginalis 

was stained using TFL4. Polystyrene size controls and medium autofluorescence are shown in Fig 

4A. Four experimental conditions were tested, uninfected vaginal cells (4B), T. vaginalis 

monoculture (4C), infected epithelial cells (4D) and epithelial cells stimulated with dsRNA mimic 

Poly(I:C) (4E).  Although both experiments using yielded a relatively low fluorescent staining 

efficiency when quantified by flow cytometry, significant populations with a diameter around 102 

nm were present in all experimental treatments, indicating the presence of extracellular vesicles of 

a similar size to exosomes defined in the literature (30, 32). In addition, these experiments showed 

SytoGreen and TFL4 positive particles in the exosome size range simultaneously present in the 

vaginal-TV co-cultures suggesting that both the parasite and host cells contribute to the exosome 

pool in the infection model (Figure 4D) as hypothesized in Schema 1. Vesicle populations 

previously isolated using this method have been validated via both nanotracking analysis and anti-

CD63 gold staining (Fichorova lab, unpublished data). These results indicate that while there is a 

significant microvesicle population contained in cell supernatants, the staining procedure must still 

be optimized.  

Staining of Cells for Fluorescence Microscopy: 

In order to validate the incorporation of the fluorescent dyes into the cell membranes, 

ectocervical epithelial cells and T. vaginalis cells were stained and prepared for fluorescent 
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microscopy. A representative bright field image is shown in Figure 5. Due to a technical problem 

that occurred during the handling of microscopic samples, we were unable to obtain high resolution 

fluorescent images. However, the phase contrast image shown in Figure 5 demonstrates the 

physiologic density of cells in our model with preserved epithelial morphology suitable for that 

functional analyses that followed.  

 

Figure 4: Flow Cytometry analysis of supernatants containing stained microvesicles. Monocultures 

of TV and epithelial cells were stained with fluorescent dyes. Epithelial cells were incubated with Syto 

RNAselect GFP for 30 minutes. TV was incubated with TFL4 for 1 hour. Both samples were then 

washed three times with PBS before co-culture for 24h. Cell supernatants were collected from 

monocultures and co-cultures, spun down at 1000xg for 5 minutes to filter out TV and cell debris 

before vacuum filtration through 220nm filter.  Samples were run on the Becton Dickinson SORP 

FACSAria II, using (A) polystyrene beads to control for size and epithelial cell medium as a control 

for background fluorescence. Treatments include (B) VK2 cells alone, showing fluorescent 

microparticles in the SytoGreen spectrum only, (C) TV cells alone, showing only TFL4 positive 

particles, (D) VK2+TV co-culture showing both SytoGreen and TFL4 positive particles, and (E) VK2 

cells stimulated with dsRNA mimic Poly (I:C) showing StoGreen positive particles. Plots represent 

the results of one experiment of two. 



 

29 

 

  

Figure 5: Fluorescence Microscopy of in vitro model of Trichomonas infection (ectocervical cells + 

347V+), bright field image. Differential morphology is visible: TV is present as smaller adherent cells 

(blue arrow); ectocervical epithelial cells are flattened, larger and have created a monolayer.  
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Effect of Exosomes on PBMC viability: 

In order to characterize PBMC proliferative potential and viability, an MTT proliferation 

assay was conducted 48h post-treatment with exosomes (Fig 6). Four different medium treatments 

were used: (1) the complete absence of stimulation (6A), (2) the presence of Poly (I:C) but absence 

of IL-2/PHA (6B), (3) the presence of IL-2/PHA but absence of Poly (I:C) (6C), and (4) the dual 

presence of both IL-2/PHA and Poly (I:C) (6D). With the exception on one exosome preparation 

derived from TVV-TV monocultures in one experiment, which showed a slight proliferative effect 

(p<0.05), there was no significant effect of TV monoculture-derived or TV medium (Diamond 

6.0)-derived exosomes compared to PBMC medium control. Furthermore, no treatments with 

exosomes derived from vaginal-TV co-cultures induced a significant change in PBMC 

viability/proliferation within the 24h-treatment period (Figure 7). Taken as a sum, this suggests 

that TV-derived exosomes do not have a cytopathic effect and may in fact actually stimulate cell 

proliferation.   
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Figure 6: PBMC Viability in response to treatment with exosomes derived from TV monocultures. 

Viability was measured at 48h post-treatment using an MTT Proliferation Assay. Treatments include 

(A) PBMCs in the absence of stimulation, (B) PBMCs in the presence of stimulation by Poly(I:C), (C) 

PBMCs in the presence of stimulation by IL-2/PHA and (D), PBMCs in the presence of dual 

stimulation of IL-2/PHA and Poly(I:C).  Results analyzed using a one-way ANOVA, p<.05, Dunnett 

post hoc. (*) denote treatments that differ significantly from PBMC Media control (no exosomes), by 

p<.05. Results are graphed as triplicates from one experiment of two. 
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Figure 7: PBMC Viability in response to treatment with exosomes derived from TV-vaginal co-

cultures. Viability was measured at 24h post-treatment using an MTT Proliferation Assay. 

Treatments include (1) PBMCs in the absence of stimulation, (2) PBMCs in the presence of 

stimulation by MALP, and (3) PBMCs in the presence of stimulation by IL-2/PHA. Results analyzed 

using a one-way ANOVA, p<.05, Dunnett post hoc. Results are graphed as triplicates from one 

experiment of two. 
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Epithelial cell viability: 

In order to characterize epithelial cell viability in response to exosome exposure, an MTT 

proliferative assay was conducted on vaginal epithelial cells 24h after treatment with both TV-

derived and co-culture exosomes (Fig 8). Cells were incubated in the (A) absence or (B) 

presence of Poly(I:C).  “Spun” further purified using exosome spin columns (Invitrogen) as 

opposed to their “Unspun” counterparts. In the absence of TLR stimulation, cells exposed to 

spun exosomes from vaginal cell monoculture, as well as several TV-co-culture exosome had 

higher percent viability than the medium control wells (no exosomes) as analyzed by a two-way 

ANOVA, p<.05, Dunnett post-hoc. In the presence of TLR stimulation by Poly(I:C), only 

unspun exosomes derived from co-culture of vaginal cells and 347V+ increased cell viability 

significantly compared to medium control wells (two-way ANOVA, p<.05, Dunnett post-hoc). 

Interestingly, unspun exosomes derived from co-culture of vaginal cells and TVV+ strain UR1 

did significantly decrease cell viability compared to medium control wells (two-way ANOVA, 

p<.05, Dunnett post-hoc). However, this was the only exosome source that did adversely affect 

cell viability and these exosomes were not used in further experiments.  
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Figure 8: Epithelial cell viability in response to exosomes derived from TV monocultures and vaginal-

TV co-cultures. Viability was measured 24h post treatment using an MTT Viability assay. 

Treatments include cells co-cultured with exosomes in the (A) Absence or (B) Presence of stimulation 

by Poly (I:C). “Spun” exosomes were further purified using Exosome Spin Columns (Invitrogen). 

“Unspun” exosomes did not undergo further purification. Treatments are shown as triplicates from 

one experiment of two. Results were analyzed using a two-way ANOVA, p<.05, Dunnett post-hoc, as 

compared to the Medium Control (No Exosomes). (*) indicate results significant p<.05, (**) indicate 

p<.01, (***) p<.001, (****) p<.0001.   
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T. vaginalis exosomes modulate NF-κB expression in by-stander upper reproductive tract 

epithelial cells: 

In order to quantify NF-κB activation, a luciferase assay was run on endocervical cells 

(End/NF-κB) 24h post-treatment (Fig 9).  

When added to resting cells (Fig. 9A), both PJ and 347V- exosomes significantly increased 

NF-κB expression (p<.05, one-way ANOVA, Dunnett post-hoc test). None of the other exosome 

treatments differed significantly from the medium control.  

In cells co-stimulated with the TLR3 agonist Poly (I:C) (Fig. 9B), the TVV- TV 

monoculture (PJ and 347V) exosomes and the Vk-UR1 co-culture exosomes, significantly 

decreased NF-κB activation  (p<.05, one-way ANOVA, Dunnett post-hoc test. The remaining 

exosome preparations did not cause a statistically significant activation of NF-κB. The decreased 

activation in the presence of TV-UR1 exosomes may be due to the cytopathic effect of this one 

preparation. However, the TVV-TV and the remaining TVV+ exosome preparations did not cause 

any significant effect on cell viability and therefore their effects on NF-kB activation appears to 

be toxicity-independent. The Poly (I:C) control yielded significantly higher NF-κB expression than 

the AB- control (over 1.5 fold increase, demonstrated by the dotted line in Fig. 9B), indicating the 

success of the cell stimulation.  

These results indicate that exosomes from TVV- but not TVV+ strains of T. vaginalis 

induce NF-κB activation in resting bystander (non-infected) epithelial endocervical cells, which 

are anatomically in close proximity to the primary vaginal site of infection. When comparing 

isogenic strains, the strain infected with TVV virus (347V+) did not increase NF-κB activation 
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whereas its non-infected counterpart (347V-) did significantly increase NF-κB activation, 

suggesting a potential immunoprotective anti-inflammatory role of Trichomonasvirus infection.  

In cells primed with poly (I:C) stimulation however, this pattern reverses. In the presence 

of poly (I:C) (synthetically mimicking the effect of TVV), the same exosomes that were previously 

pro-inflammatory now seemed to counter-balance the poly (I:C) effect suggesting that the parasite 

may use the exosome mechanism to specifically suppress the NF-kB activation to its own 

symbiotic virus thus aiding its task to evade host  immunity. 
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Figure 9: NFkB activation in response to exosomes. Activation of NFkB was measured in endocervical 

cells using a Luciferase reporter assay 24h post-treatment with exosomes in the (A) Absence or (B) 

Presence of stimulation via Poly(I:C). Results are shown as triplicate values from two experiments. 

Treatments were analyzed using a one-way ANOVA, p<.05, Dunnett post-hoc, as compared to the 

Medium control and Poly(I:C) control respectively. (*) indicate results significant p<.05, (**) indicate 

p<.01, (***) p<.001, (****) p<.0001. 
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T. vaginalis exosomes alter endocervical cytokine profile:  

In order to assess immune response of endocervical epithelial cells to exosomes, levels of 

proinflammatory cytokines were assayed in cell supernatants. Levels of IL-8 production (Fig. 10) 

and RANTES (Fig. 11) were assayed from supernatants collected 24h after treatment with 

exosomes. Results are shown as fold-change from average medium control pooled from two 

independent experiments. As expected from prior research in this lab, the endocervical epithelial 

cells responded to poly (I:C) with vigorous upregulation of IL-8 (10-fold, Fig. 10 ) and RANTES 

(30-fold, Fig. 11) production compared to resting medium controls. 

In the absence of poly (I:C), the only exosome preparation that significantly and 

consistently increased IL-8 but not RANTES was the one isolated from the TVV cured isogenic 

TV strain 347v- (one-way ANOVA, p<0.05, Dunnett post-hoc). Similarly, although more variably, 

the vaginal-347v- co-culture exosomes induced IL-8 but not RANTES. In the presence of poly 

(I:C) all preparations of TV monocultures induced IL-8 but so did the TV culture medium control 

(Fig. 10) suggesting a non-specific effect of possibly vesicle components of the serum-

supplemented medium in this case. These effects were not observed with RANTES where the 

effects of exosomes were inconsistent between experiments (Fig. 11). 

Taken as a whole, these results support the hypothesis that exosome control on production 

of inflammatory cytokines is dependent on the viral status of the T. vaginalis strain in question. 

Exosomes derived from TVV- strain 347V- consistently yielded higher production of IL-8 but not 

RANTES compared to its isogenic TVV+ counterpart. Because there is no significant difference 

in the RANTES production by the endocervical bystander cells, it is unlikely that viral 

contamination of samples is a driving factor in target cell responses. Since RANTES is specific 
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for anti-viral epithelial response as previously shown by Fichorova’s Lab (5), its lack of 

upregulation by 347v- in contrast to IL-8 supports our hypothesis that once TVV infected the TV 

strains develop mechanisms to specifically suppress anti-viral response in order to aid the virus in 

its immune evasion mission.   
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Figure 10: Endocervical IL-8 response to exosome treatment. Cytokine levels were assayed in cell 

supernatants collected 24h post-treatment with exosomes. Results are shown as triplicate values from 

two experiments (A) compiled from both medium treatments, cells in the (B) absence and (C) 

presence of Poly(I:C) stimulation. Results were analyzed using a two-way ANOVA (A only) and one-

way ANOVA (B+C); p<.05, Dunnett post-hoc, as compared to the Medium control (No Exosomes).  

(*) indicate results significant p<.05, (**) indicate p<.01, (***) p<.001, (****) p<.0001.  
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Figure 11: Endocervical cytokine response (RANTES) in response to exosome treatment. Cytokine 

levels were assayed in cell supernatants collected 24h post-treatment with exosomes. Results are 

shown as triplicate values from two experiments (A) compiled from both medium treatments, cells in 

the (B) absence and (C) presence of Poly(I:C) stimulation.  Results were analyzed using a two-way 

ANOVA (A only) and one-way ANOVA (B+C); p<.05, Dunnett post-hoc, as compared to the Medium 

control (No Exosomes).  (*) indicate results significant p<.05, (**) indicate p<.01, (***) p<.001, (****) 

p<.0001.  
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Effect of T. vaginalis monoculture exosomes on PBMC cytokine profiles:  

To determine the effect of T. vaginalis monoculture exosomes on peripheral blood 

mononuclear cells, cells were treated with exosomes in the presence or absence of IL-2/PHA, and 

the presence or absence of poly(I:C), as well as in the absence of both types of stimuli and cell 

supernatants were collected to assay levels of cytokines and chemokines (Fig 12-16).  

Although there was no significant difference by exosome treatment, measurements of IL-

2 production do indicate higher levels of cytokines in well where exogenous IL-2/PHA was added 

as stimulation (Fig 12). 
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Figure 12: PBMC IL-2 response to exosomes. Cytokine levels were assayed in cell supernatants 

collected 20h post-treatment with exosomes, in the absence of IL-2/PHA or in the presence of by IL-

2/PHA that followed 24h pre-stimulation by IL-2/PHA. Results are shown as duplicate values from 

one of two experiments. Treatments were analyzed using a two-way ANOVA, p<.05, Dunnett post-

hoc, as compared to the PBMC Medium control (No Exosomes).  (*) indicate results significant p<.05, 

(**) indicate p<.01, (***) p<.001, (****) p<.0001.  
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In order to assess the acute phase response, we considered the production of IL-1β and 

TNF-α. Both cytokines were specifically and significantly upregulated in cells exposed to 

exosomes from the TVV- TV strains regardless of IL2/PHA stimulation (exemplified by 347v- in 

Fig. 13) (two-way ANOVA, p<.05, Dunnett post-hoc). No other exosome treatments differed 

significantly when compared to PBMC medium control (no exosomes).  

Similarly and consistently with the effects of TV monoculture exosomes on endocervical 

cells, IL-8, which is a chemokine downstream from NF-kB and IL-1β and TNFα signaling, was 

upregulated in the PBMC cells by 347v- but not 347v+ exosomes (Fig. 14A, p<0.001, two-way 

ANOVA, p<.05, Dunnett post-hoc). Again, consistently with the results obtained with 

endocervical cells, the TV exosomes failed to upregulate RANTES (Fig. 14B). 

When measuring immune-regulatory cytokines produced in early stages of inflammation, 

IL-4 (Fig. 15A) an IL-6 (Fig. 15B) were significantly upregulated by IL-2/PHA and regardless of 

IL-2/PHA stimulation, also by exosomes derived from the TVV- TV strain (347 v-). IL-4 and Il-6 

were upregulated to a much lower extend by exosomes derived from serum-supplemented medium 

(D 6.0) and the isogenic TVV+ TV (347v+), the latter showing some modest activity in IL-2/PHA 

stimulated cells only (two-way ANOVA, p<.05, Dunnett post-hoc).  

In order to assess the potential effect of exosomes on adaptive immunity, we considered 

the production of two cytokines characteristic of T helper cell subsets: IL-10 and IL-17A (Fig 16). 

The patterns were similar to those obtained for IL-4 and IL-6. Both cytokines were upregulated by 

cells exposed to TVV- exosomes (347v-) compared to medium control (no exosomes), regardless 

of IL-2/PHA stimulation (two-way ANOVA, p<0.05, Dunnett post-hoc). The TVV+TV exosomes 

(347 v+) upregulated both cytokine only in cells stimulated with IL-2/PHA. The exosomes derived 
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from serum-supplemented medium (D6.0) also more than two-fold weaker upregulating effect, 

similar to that of the 347v+ exosomes, and also in IL-2/PHA stimulated cells only, suggesting that 

the effect of the 347v+ was not specific for TV.  

Taken as a whole, these results indicate a selective cytokine upregulating effect of 

exosomes derived from the TVV-cured TV strain which was absent in the isogenic TVV+ 

counterpart, supporting our hypothesis of the role of TVV in exosome-regulated immunity. More-

specifically, the results suggest an immunosuppressive effect of TVV since the exosomes from 

TVV infected parasites largely mimicked the medium controls.  
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Figure 13: Acute phase cytokine response to exosomes. (A) IL-1 β and (B) TNF-α levels were assayed 

in cell supernatants collected 20h post-treatment with exosomes, in the absence of IL-2/PHA or in the 

presence of by IL-2/PHA that followed 24h pre-stimulation by IL-2/PHA. Results are shown as 

duplicate values from one of two experiments. Treatments were analyzed using a two-way ANOVA, 

p<.05, Dunnett post-hoc, as compared to the PBMC Medium control (No Exosomes).  (*) indicate 

results significant p<.05, (**) indicate p<.01, (***) p<.001, (****) p<.0001. 
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Figure 14: IL-8 (A) and RANTES (B) response to exosome treatment. Cytokine levels were assayed 

in cell supernatants collected 20h post-treatment with exosomes, in the absence of IL-2/PHA or in the 

presence of by IL-2/PHA that followed 24h pre-stimulation by IL-2/PHA. Results are shown as 

duplicate values from one of two experiments. Treatments were analyzed using a two-way ANOVA, 

p<.05, Dunnett post-hoc, as compared to the PBMC Medium control (No Exosomes).  (*) indicate 

results significant p<.05, (**) indicate p<.01, (***) p<.001, (****) p<.0001. 
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Figure 15: Pro-inflammatory cytokine response to exosomes. (A) IL-4 and (B) IL-6 levels were 

assayed in cell supernatants collected 20h post-treatment with exosomes, in the absence of IL-2/PHA 

or in the presence of by IL-2/PHA that followed 24h pre-stimulation by IL-2/PHA. Results are shown 

as duplicate values from one of two experiments. Treatments were analyzed using a two-way 

ANOVA, p<.05, Dunnett post-hoc, as compared to the PBMC Medium control (No Exosomes).  (*) 

indicate results significant p<.05, (**) indicate p<.01, (***) p<.001, (****) p<.0001. 
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Fig 16: PBMC Fig #: PBMC production of characteristic T-helper cell cytokines.  (A) IL-17A and (B) 

IL-10  levels were assayed in cell supernatants collected 20h post-treatment with exosomes, in the 

absence of IL-2/PHA or in the presence of by IL-2/PHA that followed 24h pre-stimulation by IL-

2/PHA. Results are shown as duplicate values from one of two experiments. Treatments were 

analyzed using a two-way ANOVA, p<.05, Dunnett post-hoc, as compared to the PBMC Medium 

control (No Exosomes).  (*) indicate results significant p<.05, (**) indicate p<.01, (***) p<.001, (****) 

p<.0001. 
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Effect of vaginal-T. vaginalis co-culture exosomes on PBMC cytokine profiles:  

To determine the effect of vaginal-T. vaginalis co-culture exosomes on peripheral blood 

mononuclear cells, cells were treated with exosomes in the absence or presence of IL-2/PHA, and 

the presence or absence of MALP-2, as well as a standard TLR-2/TLR6 ligand known to 

upregulate pro-inflammatory pathways in PBMCs. In these experiments the PBMCs were not pre-

stimulated but rather exposed directly to all stimuli for 24h and cytokines assessed in cell culture 

supernatants in parallel with flow cytometry. The most dramatic effect was seen for all cytokines 

and chemokines tested in the presence of MALP-2 stimulation (Fig 17).   

As expected MALP-2 significantly upregulated all measured cytokines and chemokines in 

resting PBMCs. Interestingly, the exosomes from the exosomes derived from vaginal cells infected 

with TVV+ strains (347v+ strain featured in Fig. 17) were efficient in abrogating all cytokines (IL-

12p70, IL-1β, TNFα, IL-17A, IL-2, IL-6, IL-4 and IL-10),  and the chemokines (IL-8 and MCP-

1) responses to MALP-2 in comparison to exosomes derived from uninfected vaginal epithelial 

cells (“Vk alone exosomes”).   

Compared to non-exosome treated MALP-2 stimulated vaginal cells, the Vk alone 

exosomes had no effect on their own with two exceptions: 1) they selectively upregulated IL-6, 

and 2) they selectively suppressed MALP-2 induced MCP-1 (P<0.001); however, the exosomes 

generated from 347v+ infected vaginal cells suppressed MCP-1 even further compared to Vk alone 

exosomes (P<0.001).  The effects of the 347v- exosomes were closely mimicked by exosomes 

produced in response to poly (I:C) in the cases of IL-12p70, IL-17A, IL-2, IL-6, IL-4, IL-10 and 

IL-8, implicating the TLR3 signaling pathway in regulating the vaginal exosome content. The 

exosomes derived from the vaginal cells infected with the TVV-cured TV did not suppress 
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proinflammatory cytokines and chemokines but suppressed predominantly T cell immune-

regulatory cytokines e.g. IL-2, IL-6, IL-10, and IL-17A. On the other hand, the most powerful 

proinflammatory mediators IL-1β, TNFα and IL-8 were suppressed exclusively by exosomes 

released in the context of the TVV+TV vaginal infection suggesting a synergistic effect of TV and 

TVV.  

Taken together, these data support our hypothesis that TVV infection has a significant 

impact on the exosome content released in the context of the human vaginal infection. More 

specifically, these data suggest that the TVV infection supports an immunosuppressive phenotype 

and that TV and TVV act in concert to suppress leukocyte immune response via exosome content. 
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Figure 17. Acute phase cytokine response to exosomes derived from vaginal-TV co-cultures in the 

presence of MALP-2. Results are triplicate measurements from one in two experiments, analyzed by 

ANOVA, Dunnet’s pot-hoc.  
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Effect of T. vaginalis Exosomes and live TV on Lymphocyte differentiation: 

In order to determine the effect of both live TV and TV-derived exosomes on lymphocyte 

differentiation, peripheral blood mononuclear cells were incubated in the presence or absence of 

stimulation, TV and TV derived exosomes. A prototype gating schematic provided by the company 

is shown in Figure 18.  

 

Figure 18: Gating schamatic used in cell Flow Cytometry Analysis. This was included in the 

manufacturer’s instructions of the Duraclone IM T cell Subsets Kit (Beckman Coulter). The first 

gate is set on CD45+ cells to isolate the Leukocyte population. Then, a gate is placed on the CD3+ 

population, which defines the T-cell population. Gates are then set to denote CD4+ and CD8+ 

populations. Using the CD4+ population, a variety of different phenotypes can be determined, such 

as exhaustion state (PD1+ cells) or formation of memory (CCR7+ or CD45RA).  Analysis was 

conducted on Beckman-Coulter CytoFlex LX. 
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In order to assess the effect of IL-2/PHA stimulation, we compared three major subsets of 

cells between the cells in the absence (Fig.19A B), or presence (Fig. 19C, D) of IL-2/PHA 

stimulation. In unstimulated cells, CD3+ lymphocytes comprised 75% of the total population of 

cells (19A) and of the CD3+ population, 16.96% were CD8+ cytotoxic cells and 67.42% were 

CD4+ cells (19B). In comparison, cells stimulated with IL-2/PHA have a CD3+ population of 

73.68%, which is comparable to the unstimulated cells (19C). At 16.52% CD8+ cells, this subset 

is also comparable between the two treatments (19B+D). However, the CD4+ population of the 

IL-2/PHA stimulated cells only comprised 2.87% of the CD3+ population, a substantial decrease 

from 67.42% in the unstimulated cells. The effect of IL-2/PHA can also be observed in the 

proportion of naïve versus memory T cells. In unstimulated PBMCs, the predominant population 

of cells is CCR7+CD45RA+, which traditionally characterizes naïve T cells (19A). In comparison, 

in response to IL-2/PHA stimulation, the naïve T cell population decreased within 48h to 8.33% 

(20B). Taken as a sum, these results indicate that stimulation of PBMCs by IL-2/PHA could have 

a potentially adverse effect on the relative proportion of CD4+ cells detectable by flow cytometry 

but also on the relative percentage of the naïve T cell population.  

We then examined the effect of TV infection on PBMC differentiation. Figure 21 shows 

the cell populations of (A) unstimulated PBMCs, (B) PBMCs exposed to live 347V- (the cured 

TVV- strain) and (C) live 347V+ (the naturally infected TVV+ strain). Compared to the 

unstimulated control cells, cells infected with live TV both had lower proportions of CD3+ cells 

and somewhat mimicked the effects of IL2/PHA stimulation by demonstrating lower proportions 

of CD3+CD4+ cells. PBMCs infected with 347V- had 18.49% CD3+ cells and PBMCs infected 

with 347V+ had 48.27% CD3+ cell, both of which are lower than 75.38% in the unstimulated 

controls. This suggests a potential role of TV infection to deplete the CD3+ population. Compared 
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to unstimulated controls, infection by both strains of TV skewed the proportion of CD8+ to CD4+ 

cells. In the unstimulated control the percentage of CD8+ cells (out of all CD3+ cells) is 16.96% 

compared to a CD4+ percentage of 67.42% (21A, bottom). In cells treated with 347V-, CD4+ cells 

comprised 29.90% of CD3+ cells the CD8+ cells were 25.43%. In cells treated with 347V+, CD4+ 

cells comprised 20.82% of CD3+ cells and CD8+ cells 9.67%. In both treatment conditions with 

TV, CD4+ cells comprised a smaller relative proportion of the CD3+ lymphocytes. 

We also wanted to assess the effect (if any) of the exosomes from serum-supplemented 

medium (D6.0 medium) on T cell differentiation, since our TV monocultures exosomes were 

derived from TV cultures in D6.0 medium. In Figure 22, we compared cells stimulated with IL-

2/PHA for 24h and then treated for another 24h in the presence of IL-2/PHA with either medium 

mock (no exosomes) control or exosomes isolated from D6.0 growth medium without cells. In the 

medium-mock treated cells, the CD3+ population was 73.68% of the total cell population (22A) 

compared to D6.0 exosome treated cells which had a CD3+ population of 74.55% (22D). The 

proportion of CD8+ cells is 16.52% in mock treated cells (22B) compared to 16.42% in those 

treated with D6.0 exosomes (22E). The proportion of CD4+ cells is 2.87% in mock treated cells 

(22B) compared to 2.80% in those treated with D6.0 exosomes (22E). The similarities between 

the treatments were upheld in the proportion of naïve and memory phenotypes (22C+22F).  In 

sum, the D6.0 exosome treated PBMCs appeared to have a similar proportion of phenotypes 

compared to those cells treated with IL-2/PHA alone (no exosome mock), suggesting that any 

differences we see in the forthcoming exosome treatments with TV derived exosomes were 

unlikely due to the effect of the TV growth medium.  

Finally, we assessed the effect of TV-derived exosomes on T cell differentiation (Fig 23-

25).  
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We first examined the proportion of CD3+ cells among the CD45+ cells. Compared to cells 

treated with mock exosome doses (23A), cells treated with exosomes from both 347V- (23B) and 

347V+ (23C) produced similar proportions of CD3+ cells. All treatments stimulated with IL-

2/PHA had a similar proportion of CD3+ cells compared to the unstimulated (no IL-2/PHA, no 

exosome) control as well (23D).  

We then examined the populations of CD4+ and CD8+ cells among the CD3+ cell 

population (Fig 23). The proportion of CD8+ cells was consistent amongst all treatments. 

However, compared to the no exosome control, there was slightly higher percentage of CD4+ in 

cells treated with 347V- and 347V+ exosomes, 3.44% and 5.47% respectively, compared to 2.87% 

(Fig 24B+C). While this increase did not fully recover the 67.42% CD4+ population seen in 

unstimulated cells (Fig 24D), it is interesting to see this slight shift in proportions happening after 

only 24h stimulation.  

We also compared the differentiation of T cell memory subsets (Fig 25). Compared to the 

mock-dose (no exosome) control, there were higher percentages of naïve T cells 

(CD45RA+CCR7+) in all TV exosome treatments. Cells stimulated with IL-2/PHA only had a 

naïve T cell population of 8.33% (Fig 25A, upper right quadrant). This number increased to 

16.37% in cells treated with 347V- exosomes (Fig 25B) and 21.99% in cells treated with 347V+ 

exosomes (Fig 25C). While this also does not completely align with unstimulated cells, which 

have a naive population of 51.42% (Fig 25C), it is interesting to note that treatment with TV-

exosomes is sufficient to double the percentage of naive T cells, perhaps acting by suppressing the 

effect of IL-2/PHA stimulation. Although further experiments are needed to validate these results, 

they support the immunosuppressive cytokine profiles and the potential role of TV-exosomes to 

oppose T cells differentiation.  
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Figure 26 graphically summarizes the compilation of effector and memory phenotypes 

across all treatments as a percentage of the CD3+CD4+ population. In unstimulated cells, naive T 

cells are the dominant population and this percentage dramatically decreases when cells are 

stimulated by live TV strains either infected or uninfected by TVV. In the context of live TV 

encounter, the central T cell population also increases. Although live TV does not infect leukocytes 

and does not enter the blood circulation, the effect of live TV on PBMC suggests that they similarly 

affect immune cells in mucosal inflammatory infiltrates and thus these effects should be further 

studied. In the presence of stimulation by IL-2/PHA the naïve cell population decreases, compared 

to the unstimulated control. However, in IL-2/PHA stimulated cells treated with TV exosomes, 

naive T cells appear to be rescued.  Taken as a whole, these findings suggest that exosomes could 

function to mask infection by quelling the activation of naive T cells.    
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Figure 19: PBMC Flow Cytometry Effect of IL-2 on CD3+ cells (A+C) and CD4 and CD8 populations 

(B+D). PBMCs were incubated for ~48h with medium in the absence (A+B) or presence (C+D) of 

stimulation by IL-2/PHA. After 48h of incubation, cells were stained using Duraclone IM T cell 

Subset Kit (Beckman-Coulter) and immediately analyzed, without fixation. Cells were run on the 

CytoFlex LX (Beckman-Coulter) and all samples are normalized to 25,000 events. Plots represent the 

results of an independent experiment.   



 

58 

 

 

 

Figure 20: Effect of IL-2/PHA on memory populations. Cells were incubated for 48h in the absence 

(A) or presence (B) of stimulation by IL-2/PHA. After 48h of incubation, cells were stained using 

Duraclone IM T cell Subset Kit (Beckman-Coulter) and immediately analyzed, without fixation. Cells 

were run on the CytoFlex LX (Beckman-Coulter) and all samples are normalized to 25,000 events. 

Plots represent the results of an independent experiment.   
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Figure 21: Effect of live TV (and TVV status) on T-cell populations. Cells were cultured for 24h in 

the absence of IL-2/PHA and the (A) absence of TV, (B) presence of TVV- strain 347V- or (C) TVV+ 

strain 347V+. Top plots show populations of CD3+ lymphocytes out of the entire population of cells. 

The bottom plots represent the population of CD4+ and CD8+ cells from the CD3+ population. After 

a total of 48h of stimulation, cells were stained using Duraclone IM T cell Subset Kit (Beckman-

Coulter) and immediately analyzed, without fixation. Cells were run on the CytoFlex LX (Beckman-

Coulter) and all samples are normalized to 25,000 events. Plots represent the results of an 

independent experiment.   
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Figure 22: Effect exosomes derived from serum-supplemented TV medium (D6.0) on PBMC 

differentiation markers. Cells were stimulated with IL-2/PHA for 48h and 24h with (A+B+C) 

medium alone (a mock dose, no exosomes) or (D+E+F) exosomes isolated from D6.0 TV growth 

medium. (A+D) show the population of lymphocytes from all cells isolated (B+E) show populations 

of CD4+ and CD8+ cells and (C+F) show populations of memory T cells. After a total of 48h of 

stimulation, cells were stained using Duraclone IM T cell Subset Kit (Beckman-Coulter) and 

immediately analyzed, without fixation. Cells were run on the CytoFlex LX (Beckman-Coulter) and 

all samples are normalized to 25,000 events. Plots represent the results of an independent experiment.  
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Figure 23: Effect of TV exosomes on PBMC CD3+ differentiation. Cells were stimulated with IL-

2/PHA for 24h, followed by 24h incubation in IL-2/PHA supplemented medium in the (A) absence of 

exosomes, (B) presence of exosomes from TVV- strain 347V-, (C) presence of exosomes from TVV+ 

strain 347V+. (D) Shows PBMCs that were not stimulated with either IL-2/PHA or exosomes. After 

a total of 48h of stimulation, cells were stained using Duraclone IM T cell Subset Kit (Beckman-

Coulter) and immediately analyzed, without fixation. Cells were run on the CytoFlex LX (Beckman-

Coulter) and all samples are normalized to 25,000 events. Plots represent the results of an 

independent experiment. 

 

 

Figure 24: Effect of TV exosomes on PBMC CD4 and CD8 T cell populations. Cells were stimulated 

with IL-2/PHA for 24h, followed by 24h incubation in IL-2/PHA supplemented medium in the (A) 

absence of exosomes, (B) presence of exosomes from TVV- strain 347V-, (C) presence of exosomes 

from TVV+ strain 347V+. (D) Shows PBMCs that were not stimulated with either IL-2/PHA or 

exosomes. After a total of 48h of stimulation, cells were stained using Duraclone IM T cell Subset Kit 

(Beckman-Coulter) and immediately analyzed, without fixation. Cells were run on the CytoFlex LX 

(Beckman-Coulter) and all samples are normalized to 25,000 events. Plots represent the results of an 

independent experiment. 
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Figure 25: Effect of TV exosomes on naïve and effector memory populations. Cells were stimulated 

with IL-2/PHA for 24h, followed by 24h incubation in IL-2/PHA supplemented medium in the (A) 

absence of exosomes, (B) presence of exosomes from TVV- strain 347V-, (C) presence of exosomes 

from TVV+ strain 347V+. (D) Shows PBMCs that were not stimulated with either IL-2/PHA or 

exosomes. After a total of 48h of stimulation, cells were stained using Duraclone IM T cell Subset Kit 

(Beckman-Coulter) and immediately analyzed, without fixation. Cells were run on the CytoFlex LX 

(Beckman-Coulter) and all samples are normalized to 25,000 events. Plots represent the results of an 

independent experiment. 
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Figure 26: Effect of live TV, and TV-derived exosomes on memory populations. Cells were incubated 

in the presence or absence of IL-2/PHA stimulation for 48h of which 24h in the presence or absence 

of exosomes. Results are shown as percentages of the CD3+CD4+ cell population. Graph represent 

the results of an independent experiment. 

 

Brief Discussion:  
The study was one of the first to perform a comparative functional characterization on 

exosomes from a variety of sources and their effects on the early inflammatory events in 

reproductive infections. Furthermore, this study aims to shed the light on differences of TVV 

infection state on the pathogenic inflammatory potential of different isolates/strains of 

Trichomonas vaginalis.  
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Our nanotracking analysis and flow cytometry characterization studies of our exosome 

preparations confirmed the presence of microvesicles in the size range of exosomes previously 

defined in the literature.  

We determined that the exosomes largely do not have an adverse effect on epithelial cell 

or PBMC viability.  

In bystander uninfected upper reproductive tract endocervical epithelial ccells, exosomes 

from TVV- strains of T. vaginalis, including a TVV-cured naturally infected strain, had a specific 

and significant pro-inflammatory effect in resting cells, upregulating the transcription factor NF-

κB and selectively the pro-inflammatory chemokine IL-8, but not RANTES. In the presence of the 

TVV viral mimic (synthetic dsRNA poly(I:C)), the same exosomes that were before pro-

inflammatory instead significantly and specifically downregulated NF-κB and IL-8.  

In isolated PBMCs, regardless of stimulation by IL-2/PHA, exosomes derived from 

monocultures of the cured TVV- strain but not its isogenic infected counterpart, significantly 

upregulated the production of many key proinflammatory cytokines. Acute phase response 

cytokines IL-1β and TNF-α were specifically upregulated as well as immunoregulatory cytokines 

IL-6 and IL-4, and even cytokines indicative of a T helper cell response, such as IL-17A and IL-

10.   

In PBMCs stimulated with a TLR2/6 ligand, exosomes derived from vaginal epithelial cell 

cultures infected with the TVV positive strain induced a profound immunosuppressive responses, 

some of which mimicked exosomes from viral mimic (polyI:C) treated vaginal cell, some appeared 

to be common for TVV infected and TVV-cured TV and some appeared to be a synergistic effect 

of TV and TVV as they were absent in the viral mimic. 
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Flow Cytometry conducted on PBMCs also yielded interesting results, showing that TV 

exosomes have the capacity to counter the stimulating effect of IL-2/PHA treatment. All exosomes 

derived from TV increased the relative proportion of naive T cells when compared to cells without 

exosomes, indicating that perhaps exosomes constitute a common mechanism of suppressing the 

adaptive immune response against the parasite.  

Taken as a whole, these findings support our hypotheses and show that exosomes derived 

from T. vaginalis have an undeniable capacity to modulate both the innate and adaptive immune 

response. When comparing isogenic strains 347V+ and its virus-cured counterpart 347V-, the loss 

of the virus correlated with an increase in pro-inflammatory potential in terms of early, innate 

cytokine production. This suggest that Trichomonasvirus plays a potential role in suppressing host 

immunity and could contribute to chronic infection for the humans and evolutionary advantage for 

its parasitic host.  
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Chapter 3: Discussion and Perspectives 

Limitations of the Study:  

While the findings of this research thesis are promising, they are somewhat inevitably 

limited in scope.  

In our experiments, we were able to isolate peripheral blood mononuclear cells with 

relatively high yield from fresh whole blood obtained from a commercial source within several 

hours of collection time. However, we were able to confirm donor demographics from this source 

only after the experiments were conducted. Thus we had two female donors (one African American 

and one Caucasian), one male donor and the demographics of the last donor are still to be 

confirmed. In future experiments, donors should consistently be females of reproductive age to be 

most relevant to the public health concern at hand. There is evidence to suggest that sex hormones 

modulate the immune response, with testosterone being largely immunosuppressive and 

estrogen/progesterone being largely immunoenhancing (33). More specifically, there is evidence 

to suggest that the sex hormones are capable of skewing the helper-T cell responses. Researchers 

propose that testosterone suppresses TH2 adaptive immune responses in favor of TH1 responses 

whereas female sex hormones promote the TH2 response and suppress the TH1 response.  By 

using female donors matched menstrual cycle phase and hormonal contraceptives use in the future, 

we could account for sex hormones as a confounding factor in our results. In our study the donors 

were of reproductive age and we have not seen significant differences at baseline or after IL-2/PHA 

stimulation if our cytokine or flow cytometry profiles. 

To investigate the effect of Trichomonas vaginalis-derived monoculture and co-culture 

exosomes, we also studied a model of TV in isolation. While necessary to build an experimental 
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protocol and testable hypothesis, this is nonetheless simplified system. Under physiological 

conditions T. vaginalis is at the center of the nexus of reproductive tract infections, working in 

concert to increase colonization of the lower reproductive tract by anaerobic species (34, 35). 

While trichomoniasis has largely been seen as simply a nuisance, studies show an emerging role 

in enabling other chronic reproductive infections (34). Furthermore, previous studies indicate that 

other pathogenic protozoans may be capable to establish their infective niches via extracellular 

vesicles with evidence that there is communication within each species and potentially between 

species (36). Studies on TV-derived exosomes in the context of other pathogenic microbes or 

mixtures of exosomal sources would lead to new insights on the ways that the exosomes contribute 

to the microenvironment in perhaps a more physiologically relevant way.  

In this study, exosomes from TVV- T. vaginalis monoculture were effective in 

upregulating the production of pro-inflammatory cytokines, whereas this effect was abrogated in 

exosomes derived from TVV infected parasites and TV-epithelial cell co-culture using the same 

strains. These results could suggest that both TVV and the vaginal epithelial host cells modify the 

effect or content of TV exosomes. Further content analyses e.g. mRNA and proteomics studies 

would be needed to confirm or deny these hypotheses and identify which molecular pathways are 

synergistically targeted by exosomes in the context of TV and TVV infection.  

Although it is unlikely that our isolation procedure selected for cell-free virions from 

TVV+ T. vaginalis strains due to the non-lytic nature of the virus and the predominant size 

exceeding this of TVV, treatment of exosome samples with anti-viral staining antibodies could be 

used to confirm this finding. Although we have made preliminary attempts to stain both TV and 

epithelial cells with fluorescent dyes (Syto and TFL4), we had a low staining percentage when 

considering the microvesicle population as a whole using Flow Cytometry. Further work is needed 
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to optimize this staining procedure. Specific inhibitors of TVV signaling and other methods will 

also be applied in our future studies to investigate whether TVV dsRNA is part of the exosome 

signaling paradigm. 

It is also possible that our preparations contain a mixture of different types of extracellular 

vesicles, as would be expected under physiological conditions (30). Using a combination of 

rigorous characterization methods would strengthen our argument that there are exosomes present 

in the extracellular vesicle populations used.  

Contextualization: 

The interest in Trichomonas vaginalis research represents the paradigm shift in recent years 

as we gain a deeper understanding and appreciation for the far-reaching impact of the parasite. 

Despite discovering T. vaginalis in the early 1900s, our knowledge on the host immune response 

and implications of the parasite are still evolving. This project adds a layer of complexity to the 

picture by beginning to address how Trichomonasvirus contributes to the early inflammatory 

events, with potential insights into reproductive outcome.  

Although defining what exactly constitutes “exosomes” is still a topic of much debate (24), 

extracellular vesicles have been isolated from every prokaryotic and eukaryotic species studied 

thus far including many human parasites (36). In this study, we were able to isolate extracellular 

vesicles from T. vaginalis strains that were previously characterized by this lab to be of a similar 

in nature to mammalian exosomes (Fichorova lab, unpublished data). Furthermore, our work is in 

accordance with the findings of Twu et al, in that the exosomes isolated from TVV- strains were 

sufficient to induce a pro-inflammatory response in target recipient cells as measured by the 

production of  cytokines such as IL-6 and IL-8 (23, 36). Twu et al observed that TV-derived 
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exosomes recapitulated the full extent of IL-6 production as exposure to live TV; this is not in 

accordance with our findings which found the live TV, and especially TVV infected TV to be 100x 

more potent at producing IL-6 than TV-derived exosomes. By considering the relative proportion 

of cytokine production induced by exosomes derived from different strains our study expands upon 

previous findings but elaborating the differences between strains infected with TVV and those that 

are not. While exosomes derived from TVV- strains yielded an overall pro-inflammatory cytokine 

profile (23), TVV+ T. vaginalis derived exosomes suppressed the pro-inflammatory response 

attributable to the exosomes from axenic cultures and suppressed inflammatory response triggered 

by Toll-like receptor pathways. This suggests a potential anti-inflammatory role of the 

Trichomonasvirus in altering the exosomal content of the parasite. Other researchers have found 

that in addition to delivering protein and nucleic acids to target cells, TV-derived exosomes are 

capable of increasing the cytoadherence of the parasites (23). Other researchers have found that 

other protozoan parasites are capable of secreting extracellular vesicles that are pro-inflammatory, 

which is in line with some of our findings. Furthermore, recent studies have shown that exosomal 

content differs by strain and perhaps confer an evolutionary advantage (37).  The researcher 

postulates that the vesicles contribute to establishing an infective niche in the context of the 

microbiota as a whole (36).  

The methods used to characterize and quantify microvesicle populations are still in the 

early stages of development and optimization. Previous studies have shown that when working 

with exosome preparations, many dilutions are needed in order to account for a “swarm effect” 

and losing the vesicle data due to their size and interference with one another (38). This is in-line 

with our observations to optimize samples for characterization with Nanoparticle Tracking 
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Analysis, as samples needed to be diluted at least 5000x and one sample being diluted even further 

to 10,000x before vesicles were within the instrument’s reading range.  

Although the study of exosomes is still in its nascent stages, exosomes appear to be an 

important part of the gene regulatory networks particularly in the context of reproductive fitness. 

Functional studies suggest that exosomes (from many sources) contribute to the regulation of 

reproductive processes (39). Extracellular vesicles have been shown to be secreted from the 

embryo, oviduct epithelial cells, endometrium and placenta (40). Due to their ubiquitous nature, it 

is therefore unsurprising that placental, maternally-derived and embryonically-derived exosomes 

are all instrumental to the normal development of a healthy embryo.  

Several studies have shown that exosomes may constitute a mechanism of communication 

between the mother and developing embryo via the placenta (40-42). Western blots of maternally-

derived exosomes have been shown to contain proteins that play a role in fertilization and early 

pregnancy (40). A recent study has shown that exosomes derived from maternal macrophages are 

internalized by the placental tissue in a time and dose-dependent manner. Furthermore, this uptake 

induced the production of cytokines by the placenta, IL-6, IL-8, IL-10 and IL-12 (41). This study 

shows that exosomes if taken up by the blood circulation can be used to mediate placental immune 

responses during pregnancy.  

Embryonically derived exosomes also pose an interesting new avenue of research. The 

number of exosomes fluctuates based on developmental stage and can even be a marker of 

embryonic quality (32, 40). In a recent study conducted in Genoa, researchers found that there was 

a significant difference in the exosomes released by term and pre-term infants. Exosomes from 

mesenchymal stem cells are capable of conducting extramitochondrial aerobic respiration. 



 

71 

 

However, only exosomes derived from full-term newborns were able to synthesize ATP in this 

manner and exosomes derived from pre-term newborns lacked this potential for oxidative 

metabolism (43).  

Maternal and paternal exosomes also appear to play a role in regulating the success of 

implantation and embryonic development as well as longer-term development of disease. 

Exosomes have also been found in the follicular fluid and perhaps guide fertilization by regulating 

normal follicle maturation and meiosis resumption (44). This suggests that the maternal exosomes 

play a role in overall fertility. Furthermore, parental diet has also been shown to be a factor in 

altering the exosomal content and by extension playing a role in long-term embryonic development 

(45). A recent review summarizes that embryonic exposure to exosomes derived from male mice 

fed a high fat diet give rise to offspring with metabolic disorders and altered genetic patterns 

compared to controls (45). This study using a murine model of diabetes suggests that paternally-

derived exosomes might function to determine the metabolism of the developing embryo and has 

implications for inherited metabolic disorders. 

Taken as a sum, these findings suggest that the extracellular vesicle milleu may contribute 

significantly to the physiologic or pathologic development in the womb. Therefore, it is of interest 

to study exosomes as a marker of potential pathologic processes as a result of infection or even as 

a marker of uterine health and receptivity as a whole.  

Future of the field: 
As stated before, there is still many unknowns in the field of Trichomonas vaginalis 

research.  One author has stated that it is trichomoniasis is one of the CDC’s “neglected parasitic 

infections” especially considering the parasites implications in long-term reproductive health 
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(insert citation). However, because of this, there are many different experimental factors of interest 

to investigate regarding Trichomonas pathogenicity.  

An experimental condition of interest would be to use different levels of iron in the TV 

media. Previous studies have shown that iron has the capacity to change the proteome of TV 

hydrogenosomes, their mitochondria-like organelle used for substrate level phosphorylation (46). 

Since iron-levels change throughout menses, the effects of iron on the exosomal content of TV 

could lead to new insights about fluctuations in vulnerability to infection throughout the menstrual 

cycle.  

Because exosomes are incredibly stable and ubiquitous in many different types of bodily 

fluids, it is hoped that exosomes will one day be useful as a diagnostic tool of current disease state 

or to gauge reproductive potential. Biomarkers from exosomes isolated from clinical samples 

could perhaps be used as non-invasive means to diagnose patients in the early stages of various 

parasitic infections not only trichomoniasis. In the course of performing this study, we learned that 

new plates have been recently developed to quickly scan for various known markers for disease 

state currently known to be found in exosomes. The scanning procedure has been simplified so 

that it would be similar to performing an ELISA or any other immunoassay. While these tools are 

not commercially available or economically sustainable, it is an interesting avenue for 

technological advances.  

It is my hope that insights into the exosomes produced by different strains of T. vaginalis 

may be better used to inform treatment of trichomoniasis and perhaps one day a cost-effective 

preventative measure. Incidence of trichomoniasis has been on the rise in recent years and those 

affected are often in resource limited settings. There is evidence to suggest that metronidazole-
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resistant strains of T. vaginalis have been emerging and as of yet, physicians have no other 

recourse. Recurrent Trichomonas infections do not lead to protection nor shorter infections or less 

severe symptoms as one would expect of a robust adaptive immune response (47, 48).  

Furthermore, clearance of the infection does not guarantee that there are no adverse effects on 

reproductive health. The inflammatory damage wrought by the parasite has implications beyond 

just the symptoms of inflammation but can affect fertility and even fetal development.  

Development of vaccinations using murine and bovine models of trichomoniasis has 

yielded moderate success in conferring protective immunity. However, these results have not yet 

led to a viable human vaccine, as clinical trials have been inconclusive about the vaccine’s efficacy 

(47, 48). Trichomonas vaginalis has several sophisticated mechanisms of immune evasion 

(cytoadherence, cysteine proteases to degrade immunoglobulins, sequestration of host protein to 

avoid detection by complement). Exosomes pose the possibility of perhaps negating several 

pathways at once (17, 48).  Because of its involvement in several pathologic processes due to 

inflammatory damage, it is imperative that attention be brought to understanding how 

Trichomonas causes the inflammatory damage and the implications therein. 
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