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Abstract 

 

This project analyzes the relative benefits of electric vehicles (EV) as compared to 

their internal combustion engine (ICE) counterparts. Specifically, I contrast the air 

pollutant related social costs that can be quantified and assigned to each type of vehicle. 

These costs are based on the externalities (per metric ton) associated with carbon dioxide, 

sulfur dioxide, nitrous oxide, particulate matter, and volatile organic compounds. The 

difference in social costs is defined as the appropriate EV Subsidy, where a positive EV 

Subsidy indicates that the social costs for an electric vehicle are less than the social costs 

for an internal combustion engine vehicle. My research was centered around answering 

the question: What impact does the percentage of renewable energy have on the 

appropriate subsidy for an electric vehicle and how does the percentage of renewable 

energy impact the GHG mitigation potential for electric vehicles? I hypothesized that the 

negative environmental impact for a 100% renewable energy powered electric vehicle 

would be lower than the impact from an internal combustion engine vehicle with an 

efficiency of 80 miles per gallon, that the appropriate federal subsidy for a 100% 

renewable energy powered electric vehicle would be over $3,000 (when compared to an 

internal combustion engine vehicle with an efficiency of 25.4 miles per gallon), and that a 

100% renewable energy powered electric vehicle would produce 50% fewer greenhouse 

gas emissions than an internal combustion engine vehicle with an efficiency of 80 miles 

per gallon. 

 



	
	

I employed Argonne National Laboratory’s GREET Model, the AP2 Model, and a 

variety of meta-analyses to determine these social costs. Each cost is a function of a 

variety of factors. Social costs for the internal combustion engine vehicle strongly 

correlate with the vehicle’s miles per gallon, while the social costs for an electric vehicle 

strongly correlate with the percentage of renewable energy. Many studies look at a static 

grid, but I analyzed the impact that renewable energy has on the disparity in social costs 

between electric vehicles and gasoline-powered vehicles. Additionally, my model 

disaggregates grid-based and non-grid-based production costs, which allows production-

based social costs to accurately reflect that percentage of renewable energy that is entered 

into the model. I conclude that the environmental benefits of electric vehicles are directly 

related to the level of renewable energy in the grid. The EV Subsidy for the 2016 grid 

(13.3% renewable energy) and an average internal combustion engine vehicle (25.4 miles 

per gallon) was $2,376, while the EV Subsidy for a 100% renewable energy grid reached 

$3,988. A 100% renewable energy grid also produced an electric vehicle with 

significantly lower social costs than a gasoline-powered vehicle with an efficiency of 80 

miles per gallon (EV Subsidy = $1,071). 
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Chapter I  

Introduction 

 

The use of electric vehicles (EVs) has expanded significantly in the past five 

years: in 2012 there were 12,000 electric vehicles sold, while in 2015 it is estimated that 

430,000 were purchased (Shahan, 2015). The electric vehicle has been touted as a 

potential solution to anthropogenic climate change; although some have argued that 

electric vehicles running off the current grid are no cleaner than standard automobiles 

(Lomborg, 2013). This point is hotly debated (Holland, Mansur, Muller, & Yates, 2015), 

but there is no argument over the fact that the current grid produces a non-trivial amount 

of carbon emissions per kWh. This situation can be remedied by combining electric 

vehicles and low carbon renewable energy.  A nationwide fleet of electric vehicles would 

cause a significant increase in the demand for electricity, but this demand could be 

assuaged by a nationwide adoption of renewable energy programs (rooftop photovoltaics, 

grid-scale solar, wind power, hydropower). Subsequently, the carbon emissions related to 

the new renewable energy would be dramatically less than combusting gasoline, in 

addition to the emissions of other pollutants (including sulfur dioxide, nitrous oxide, 

particulate matter, and volatile organic compounds). Thus, a combination of electric 

vehicles and renewable energy has the potential to be a potent climate change mitigation 

strategy. 

There is undeniably merit to this proposition, yet society cannot ignore the fact 

that electric vehicles are only as “clean” as the grid they are tied to. A wholesale adoption 
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of electric vehicles would lead to a large increase in electrical demand, and subsequently, 

would be responsible for the greenhouse gas emissions associated with this increase. 

Thus, the climate change mitigation potential of an electric vehicle is directly linked to 

the grid from which it draws its energy: a low carbon grid will lead to low carbon vehicle. 

However, multiple studies, including a recent working paper by the National Bureau of 

Economic Research (NBER), analyzes the efficacy of electric vehicles based solely on 

our current grid. This is a severe research gap, as we cannot fully understand the potential 

for electric vehicles unless we pair them with a grid that unlocks their capability.  

 

Research Significance and Objectives 

Therefore, my research objectives are to: 

• Demonstrate how a combination of electric vehicles and renewable energy can be 

used to dramatically decrease transportation-related carbon emissions, and 

consequently, mitigate climate change 

• Establish the correlation between the appropriate subsidy for electric vehicles and the 

percentage of renewable energy 

This study analyzed data from the National Renewable Laboratory (NREL), the 

U.S Environmental Protection Agency (EPA), and other government sources to 

determine the environmental impact related to driving electric vehicles. This impact is 

greatly influenced by the mixture of electricity generation that powers the grid, and thus, 

I researched the environmental impact related to five different electricity generation 

scenarios: our current grid (in 2016), a grid with 20% renewable energy, a grid with 50% 

renewable energy, a grid with 80% renewable energy, and a grid that is comprised of 
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100% renewable energy. Argonne National Laboratory’s GREET model was used to 

calculate the pollutants per kWh that would be associated with each scenario (Argonne 

National Laboratory, 2015). There are undeniable social costs related to pollutants such 

as carbon dioxide (CO2), sulfur dioxide (SO2), nitrous oxide (NOX), volatile organic 

compounds (VOCs), and particulate matter (PM). The costs for these pollutants may lie 

outside the standard market, but they are still quantifiable. A popular model called the 

AP2 Model was used to determine the social costs per kWh for each pollutant. These 

costs were summed to determine the social cost (externality) per kWh that is associated 

with each of the above-mentioned energy scenarios. A similar process was followed to 

determine the social cost per gallon of gasoline burned in a standard internal combustion 

engine vehicle. These unit-based social costs were distributed over 150,000 miles to 

estimate the social cost for an electric vehicle (for each electricity generation scenario) 

and an internal combustion engine vehicle (kWh/100 miles and miles per gallon 

efficiencies will also be taken into account). The difference between these social costs 

represents the social benefit that could be derived from a specific driving scenario and a 

comparison of these scenarios elucidates the true benefits of electric vehicles as we move 

toward a low-carbon grid. 

This study will provide value to policymakers of all levels, as it addresses the 

feasibility of a transition to a low-carbon transportation model. The current grid does not 

allow electric vehicles to reach their full climate change mitigation potential, but the 

results of this study may encourage policymakers to implement the changes that would 

facilitate a low-carbon future. The true significance of this study does not relate to where 

we are now, but to where we are headed. 
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Background 

The COP21 Conference in Paris reasserted the world’s drive to reduce greenhouse 

gas emissions. Many of the goals that emerged from the conference are not binding and 

are not attached to specific mechanisms for reducing greenhouse gas emissions (United 

Nations Conference on Climate Change, 2015). Thus, there is still a significant amount of 

debate surrounding the most effective means for reducing emissions.  

Countless proposals exist for how the United States of America should reduce 

emissions, but many of the ideas relate to two key areas: power plants and transportation.  

The Obama Administration’s recent “Clean Power Plan” is one example of the prior 

Administration’s efforts to reduce the emissions related to America’s power plants. This 

is no small feat, as power plants account for 2,215 million metric tons of yearly 

emissions, which is 31% of America’s total greenhouse gas emissions. A large portion of 

this electricity powers the nation’s commercial and residential buildings, which account 

for 34% of America’s greenhouse gas emissions. Yet, transportation comes in at a close 

second, accounting for 27% of greenhouse gas emissions (Environmental Protection 

Agency, 2013). Transportation’s large share of total greenhouse gas emissions makes the 

industry a prime target for anyone who is looking for a means to reduce overall 

emissions. 

 

Electric Vehicles 

An “electrification” of the American automobile fleet is one of the key ideas for 

reducing transportation related emissions. The Obama Administration had a goal of 

putting 1 million electric vehicles on the road (Institute for Energy Research, 2011) and 
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the state of California instituted multiple programs that incentivize electric vehicle 

adoption (DriveClean, 2015). Additionally, the federal government currently gives a 

$7,500 tax credit to anyone who purchases a new electric vehicle, and there are multiple 

states that offer monetary incentives in addition to the federal subsidy (IRS, 2015). These 

subsidies exist to promote the sale of electric vehicles and the zero “tail-pipe” emissions 

that they embody. 

The public has responded to the government’s push for electric vehicles and sales 

of electric vehicles have increased dramatically over the past five years. This growth is 

not exclusive to the United States: the worldwide census of electric vehicles reached the 

one million mark in September of 2015 (Shahan, 2015).  One of the key drivers of growth 

has been the proliferation of electric vehicle options. There were initially few choices for 

individuals who wanted to purchase an electric vehicle, but this is no longer the case. 

Multiple manufacturers now offer electric vehicles and exciting new options from Tesla, 

Chevrolet, BMW, and Ford have hit the market. Chevrolet recently announced at the 

Consumer Electronics Show in Las Vegas that they would be producing the first $30,000 

electric vehicle with a 200-mile range and the first “Chevrolet Bolts” were able to hit the 

market in late 2016. This is a key price point and experts suspect that it will go a long 

way toward bringing electric vehicles to the masses (Davies, 2016). 

 

Electricity Generation and Emissions 

The news surrounding electric vehicles is not all positive and they do have their 

detractors.  Some experts have bemoaned the high prices and limited range, but the new 

electric vehicle options from manufacturers have begun to silence these critics. Each year 



	
	

6 

the electric vehicle options become cheaper and offer significantly greater range. Hence, 

a far more credible concern relates to the emissions that can be attached to each electric 

vehicle. While electric vehicles do not produce any direct greenhouse gas emissions, they 

are powered by stored electricity that comes from the local grid.  

This has allowed individuals such as Bjorn Lomborg to make the case that electric 

vehicles are actually dirtier than standard internal combustion engine vehicles (Lomborg, 

2013). His argument is centered on a 2012 life-cycle analysis (LCA) comparing electric 

and conventional vehicles (Hawkins, Majeau-Bettez, & Stromman, 2013). This LCA 

estimated that the production phase for electric vehicles was responsible for over double 

(30,000 compared to 14,000 lbs) the carbon dioxide emissions of conventional vehicles. 

Lomborg believes that it will take an individual 80,000 miles to recoup the difference in 

production-related carbon dioxide emissions, as electric vehicles are only responsible for 

6 fewer ounces of carbon dioxide emissions per mile (Lomborg, 2013). Lomburg’s 

opinions have drawn strong rebuttals from other experts. Max Baumhefner of the 

National Resource Defense Council took issue with this conclusion and referred to 

another LCA by the Argonne National Laboratory that estimated production-related 

carbon dioxide emissions (for EVs) to be nearly three times less than the number cited by 

Lomborg (Baumhefner, 2013). Additionally, Don Anair of the Union of Concerned 

Scientists criticized Lomborg’s assumption that the vast majority of electricity would 

come from coal power (Anair, 2015). While Lomborg’s critique may be imperfect, there 

is no denying the fact that power plant emissions must be accounted for when measuring 

the environmental impact of an electric vehicle. 
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The environmental impact of an electric vehicle also varies from region to region. 

An analysis of American energy generation shows that greenhouse gas emissions per 

kWh vary widely from state to state (U.S. Energy Information Administration, 2015). 

Thus, a car driving in Washington (where most electricity comes from hydropower) will 

account for far fewer greenhouse gas emissions per mile than a car driving in Ohio 

(where most electricity comes from coal power). A National Bureau of Economic 

Research (NBER) working paper quantified the wide range of environmental benefits 

from driving an electric vehicle. For example, the benefit was as high as $3,025 in 

California and as low as -$4,773 in North Dakota (Figure 1).  

 

 
Figure 1. Marginal damage for gas and electric cars by county. Left image is for gas-
powered cars and the right image is for electric vehicles. Red signifies more damage and 
green signifies less damage. Data source: Holland et al., 2015. 
 
 

This analysis looked at the externalities from air pollution that can be tied to 

driving a vehicle. The paper quantified the damage done by emissions of carbon dioxide, 

particulate matter, and other pollutants and used this information to determine the level of 

externalities per kWh (for electric vehicles) and per gallon (for internal combustion 

automobiles). Some may consider these results to reflect negatively on electric vehicles, 
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but in truth, the NBER results demonstrate the potential of an electric vehicle when it is 

tied to a low-carbon grid (Holland et al., 2015). Hence, the true beauty of electric vehicle 

technology is not its current state, but what it can become when tied to renewable energy 

resources. The modern electric vehicle should by no means be looked at as a finished 

product, but as a facilitator of positive change. 

 

The Coupling of Renewable Energy and Electric Vehicles 

An electric vehicle’s potential for positive environmental impact is truly unlocked 

when the vehicle is tied to clean energy. There is no theoretical means for an internal 

combustion engine to run off of renewable energy; even a hybrid car with an efficiency 

of 100mpg is still burning gasoline and emitting carbon dioxide.  This does not have to be 

the case for an electric vehicle. A car that is running on solar, wind or hydropower will 

have marginal greenhouse gas emissions that approach zero (Moomaw, Burgherr, 

Lenzen, Nyboer, & Verbruggen, 2011). This clearly illustrates the importance of 

coupling electric vehicles with an adoption of renewable energy. 

Multiple low-carbon sources of energy generation exist that could be used to 

charge an electric vehicle. Wind, solar, and hydropower all have many positive 

characteristics. For example, rooftop photovoltaics can produce a tremendous amount of 

energy and it is estimated that the United States could produce 818 TWh (Lopez, 

Heimiller, Blair, & Porro, 2012). Thus, it is theoretically possible that a residential 

adoption of photovoltaics could happen simultaneously with the adoption of electric 

vehicles. In some cases, this is already happening: a 2014 survey of electric vehicle 

owners in California showed that 32% of respondents already had photovoltaic systems 
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on their home and 15% were planning to install systems in the near future (California Air 

Resources Board, 2014). One can imagine a future where every house has a photovoltaic 

panel on the roof and an electric vehicle in the garage.  

The low-carbon renewable energy sector extends far beyond photovoltaics. 

Concentrated solar power (CSP) is another form of solar energy that uses solar energy to 

produce steam that turns a turbine. (NREL, 2016).  NREL (2015) and the EIA (2015) 

both predict that there will be large increases in the capacity of CSP as the United States 

moves toward a higher percentage of renewable energy. Wind power is another energy 

source that possesses the ability to generate electricity while emitting minimal levels of 

pollution.  

 

 
Figure 2. Land-based wind power over time. The cost of wind power (blue bar graphs) 
has decreased exponentially, while wind capacity (orange line) has increased 
exponentially. Data source: U.S. Department of Energy (2016). 
 
 

The per kWh cost of wind power has dropped precipitously since 1980, while 

overall wind capacity has increased year after year (Figure 2). In 2015, wind power added 

more electricity generating capacity than any other type of power plant (EIA, 2015). 

Furthermore, the United States’ first off-shore wind power plant went online in 2016 and 

the sector represents an untapped resource that could see significant growth in the coming 
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decades (Mai et al., 2012). On the other hand, hydropower is not expected to grow as 

quickly as wind or solar power. This does not imply that hydroelectric power plants 

should be ignored, as hydropower was the leader in generating capacity among all 

renewables in 2015 (EIA, 2016). Both NREL and the EIA predict that wind and solar 

power will eventually overtake hydropower, but hydropower plants will remain a key 

part of the American grid for the foreseeable future. A common thread among all 

renewables is the ability to produce energy with marginal emissions (carbon dioxide and 

other criteria pollutants) that approach zero. This is true for wind power, photovoltaics, 

hydropower, geothermal, and concentrated solar power (CSP). It is important to note that 

this does not indicate that renewable energy is completely pollutant free, as it is necessary 

to look at renewable energy from a life-cycle assessment standpoint to truly determine 

the pollutants per kWh. This is due to the fact that upstream emissions still exist (from 

production, transportation, and sectors) even when marginal emissions approach zero.  

 

Renewable Energy and the Modern Grid 

Electric vehicles and renewable energy technologies have a mutually beneficial 

relationship, but unfortunately, the supply and demand curves for electric vehicles and 

most forms of renewable energy do not align. Most electric vehicles charge at night 

(when owners are back from work), while wind power can fluctuate throughout the day 

and photovoltaic panels produce electricity only during daylight hours (Fattori, Anglani, 

& Muliere, 2014).  A sample kWh demand curve for a single household is displayed in 

Figure 3. The graph displays a natural increase in demand during the later afternoon and a 

decrease in demand during the night. This is a common demand curve that reflects an 
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increase in electricity demand during the hours that occupants are home, while decreasing 

during nighttime hours. 

 

 
Figure 3. Sample supply and demand curves (No EV or PV). This displays a sample 
demand curve, with no electric vehicle charging and no photovoltaic generation. 
 
 

The demand curve is dramatically altered when an electric vehicle is added to the 

picture. The impact of an electric vehicle charging can be seen in Figure 4 (sample 

assumes a complete charge of a 20kWh battery, providing upwards of 80 miles of range). 

The charging of the electric vehicle raises the non-photovoltaic (non-PV) energy demand 

during the night, which leads to a slight smoothing of the curve. 

 

 
Figure 4. Sample supply and demand curves (EV but no PV). This displays a sample 
demand curve, with nighttime electric vehicle charging, but no photovoltaic generation. 
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While an electric vehicle can lead to a smoothing of the demand curve, 

photovoltaic panels only exacerbate the variability of the supply curve. Furthermore, 

photovoltaic panels can significantly lower the non-PV demand during the day, moving 

this demand a significant distance from its mean output (Figure 5). 

The current level of technology in the American grid can only support a limited 

amount of renewable energy due to its inherent volatility (Fattori, Anglani, & Muliere, 

2014). However, this is not a death knell for the potentially symbiotic relationship 

between electric vehicles and renewable energy.  

 

 
Figure 5. Sample supply and demand curves (EV and PV). This displays a sample 
demand curve, with nighttime electric vehicle charging and daytime rooftop photovoltaic 
generation. 
 
 

Technology is rapidly changing, and what seems improbable today, may seem 

commonplace in the near future. A recent study suggests that by the year 2050 the grid 

will be capable of utilizing 80% renewable energy. This will be accomplished through the 

implementation of “smart grid” technologies that facilitate a more effective distribution 
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of energy and through an increase in grid-scale battery facilities (Mai et al., 2012). This 

study (NREL, 2009, pg. 2) specifically states that: 

Within the limits of the tools used and scenarios assessed, hourly simulation 
analysis indicates that estimated U.S. electricity demand in 2050 could be met 
with 80% of generation from renewable electricity technologies with varying 
degrees of dispatch-ability, together with a mix of flexible conventional 
generation and grid storage, additions of transmission, more responsive loads, and 
changes in power system operations. 
 
This scenario is very different than humankind’s quest to produce a fusion power 

plant or to warp space-time. While both of those goals are theoretically possible, the 

technology to achieve them does not currently exist. On the other hand, the technology 

exists to facilitate a renewable energy future: photovoltaics, battery storage, off shore 

wind. Thus, this “future reality” needs to factor in to any analysis of technologies that 

rely on electricity (i.e. electric vehicles). 

 

The Grid of the Future 

While the grid of today may do a poor job taking advantage of technologies such 

as photovoltaics, CSP, wind power, and electric vehicles, the grid of tomorrow may be 

built around such technologies. This so-called “smart grid” could use the batteries within 

electric vehicles to send electricity back to the grid when demand is high and charge 

when demand is low (Habib, Kamran, & Rashid, 2015). Additional home-based battery 

systems will allow households to store excess energy from photovoltaics during the day 

and use the additional energy at night (Ritte, Mischinger, Strunz, & Eckstein, 2012). 

These systems would facilitate a smoothing of the demand curve and allow renewables to 

charge electric vehicles in a time-delayed manner. Thus, one can make an argument that 
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an improved grid could expedite the transition toward a nationwide fleet of renewable 

energy charged electric vehicles. 

 

Externalities and the Social Cost of Carbon 

 Renewable energy is commonly regarded as more expensive than other non-

renewable forms of energy (Figure 6); however, this assumption does not take into 

account many of the true costs related to electricity generation. 

There is the standard market transaction that takes place when a consumer 

purchases electricity: the utility sells electricity to the consumer for a specified price and 

the consumer purchases the electricity for said price. This transaction is easy to 

understand, as the costs are clearly laid out for the consumer. 

 

 
Figure 6. Levelized cost of electricity. Energy costs are calculated using NREL 
methodology, a 3-10% discount rate, and a 30-year lifetime. (copied from Klein & 
Whalley, 2015). 
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Unfortunately, there are numerous costs that do not show up on the electricity bill. 

These costs are “external” to the market transaction and are referred to as “externalities.” 

These externalities include the negative impacts to tourism (as a result of fossil fuel 

extraction), deaths from coal-train accidents, climate change-related costs, and impacts to 

human health, all of which are undeniably true costs. Hence, it is important to quantify 

the true costs related to each source of electricity generation.  

 

The Relationship Between Renewable Energy and Externalities 

Holland et al. (2015) calculate the appropriate electric vehicle subsidy by 

analyzing the externalities associated with our current grid. The study takes an 

impressively detailed look at electricity generation throughout the country, but it gives 

little attention to the dynamic nature of this generation: i.e. the grid of today is different 

than the grid of tomorrow. While the study does an exhaustive analysis of the differences 

in externalities from one county to another, it pushes the potential of our future grid to 

one line in the sensitivity analysis. Furthermore, the sensitivity analysis for a “future 

grid” only makes the assumption that all coal power plants will be replaced with natural 

gas (Holland et al., 2015). This is a great starting point, but it begs to be explored further. 

What happens if we approach 50% renewable energy? What if we approach NREL’s 

prediction of 80% renewable energy? What happens if the grid becomes carbon neutral? 

These scenarios may be far from reality, but the knowledge of these potentialities should 

guide our policies in the way that a map guides us to where we are going, not to where 

we currently reside. 
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Broad cultural realizations can, at times, lead humankind toward a flurry of 

innovation. Americans first had to realize that they were capable of going to the moon 

before they could be pushed to develop the multitude of technologies that would facilitate 

the journey. This same ideology holds true for renewable energy and electric vehicles. 

Transportation accounts for 1,806 million metric tons of American greenhouse gas 

emissions (27% of total) and renewable energy-powered electric vehicles could 

drastically reduce this number (EPA, 2013).  Thus, it is important to understand the 

relationship between “clean energy” and the environmental impact of electric vehicles. 

This knowledge could be a catalyst for developing the technologies that would turn our 

capability, into reality. 

 

Research Questions, Hypotheses, and Specific Aims 

Therefore, my primary research question is: What impact does the percentage of 

renewable energy have on the appropriate subsidy for an electric vehicle and how does 

the percentage of renewable energy impact the GHG mitigation potential for electric 

vehicles? I will explore this question by testing the following hypotheses: 

1. The negative environmental impact for a 100% renewable energy powered 

electric vehicle will be lower than the impact from an internal combustion engine 

vehicle getting 80 miles per gallon. 

2. The appropriate federal subsidy for a 100% renewable energy powered electric 

vehicle will be over $3,000 when compared to an internal combustion engine 

vehicle with an efficiency of 25.4 miles per gallon (July 2016 average), and over 
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$1,000 when compared to an internal combustion engine vehicle with an 

efficiency as high as 80 miles per gallon. 

3. A 100% renewable energy powered electric vehicle will produce 50% fewer GHG 

emissions than an internal combustion engine vehicle with an efficiency of 80 

miles per gallon. 

 

Specific Aims 

The above-mentioned hypotheses necessitated the following specific research 

aims: 

1. Creating a model to quantify the per kWh negative externality for air pollution on 

an electric vehicle. 

2. Quantifying the per gallon negative externality for air pollution on an internal 

combustion engine vehicle. 

3. Determining the appropriate federal subsidy for an electric vehicle, as a function 

of specific criteria: percentage of renewable energy used to charge the battery, 

cost of carbon, average miles per gallon for standard automobiles, and average 

kWh per 100 miles for an electric vehicle. 
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Chapter II 

Methods 

 

The primary focus of this study is to quantify the impact that the percentage of 

renewable energy has on the externalities associated with driving an electric vehicle. The 

environmental impact of an electric vehicle can then be compared to the impact of an 

internal combustion engine vehicle, elucidating the difference in social costs between 

these two types of vehicles (represented as the EV Subsidy). This analysis of the social 

costs for electric vehicles and internal combustion engine vehicles necessitated the 

creation of the following models: a model predicting the relationship between the 

percentage of renewable energy and the composition of the United States grid, a pollutant 

cost model, an emissions model for electric vehicles, an emissions model of internal 

combustion engine vehicles, and the EV Subsidy Model. 

 

Renewable Energy and the United States Grid 

It was necessary to create a model where a continuous input variable for 

renewable energy percentage (RE) could be entered into the model and it would output an 

accurate percentage breakdown for the corresponding grid. For example, an input of 50% 

renewable energy would output the percentages for wind, photovoltaic, concentrated 

solar power (CSP), biomass, geothermal, hydroelectric, oil, natural gas, coal, and nuclear 

power that would appropriately fit a grid with 50% renewable energy. I created three 

possible models and chose the model with the most accurate predictive qualities. 
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Proportional Model 

The Proportional Model is based off of the EIA’s 2016 percentages for wind, 

photovoltaic, concentrated solar power (CSP), biomass, geothermal, hydroelectric, oil, 

natural gas, coal, and nuclear power (EIA, 2016). 

 

Table 1. Percentage of electricity generation by generation type for 2016. 
Electricity Generation Type Percentage 

Wind 4.70% 
Photovoltaic 0.30% 
Concentrated Solar (CSP) 0.30% 
Hydropower 6.00% 
Geothermal 0.40% 
Biomass 1.60% 
Total Renewable: 13.30% 
Oil 1.00% 
Natural Gas 33.00% 
Coal 33.00% 
Nuclear 20.00% 
Total Non-Renewable: 87.00% 

 
 

In this model, hydroelectric power is held constant, as it is unrealistic to assume 

that hydroelectric power would increase proportionally with the rest of the renewable 

energy technologies. The EIA predicts that hydropower will remain nearly constant 

between 2016 and 2040 due to limited resources and the economic cost of building new 

dams (EIA, 2015). However, in this model, all other electricity generation types increase 

proportionally to one another. This was accomplished by determining the percentage of 

each energy generation source respective to the percentage of renewable energy or 

percentage of non-renewable energy (Table 1). It should be noted that the EIA data does 

not add up to exactly 100%. Fortunately, this was not a problem, as it was only necessary 
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to determine their percentages relative to one another and the Proportional Model outputs 

values that add up to 100%. 

 

Table 2. Percentage of renewable energy electricity generation for 2016. 
Electricity Generation Type Percentage 

Wind 35.34% 
Photovoltaic 2.26% 
Concentrated Solar (CSP) 2.26% 
Hydropower 45.11% 
Geothermal 3.01% 
Biomass 12.03% 

 
 

Hydroelectric power was removed from the computation (Table 3) due to the fact 

that the percentage of hydropower will stay constant throughout the model. The other 

types of renewable energy generation (wind, photovoltaic, CSP, geothermal, and 

biomass) were then divided by the total percentage for non-hydroelectric renewable 

energy to determine their relative percentages (Table 3). 

 

Table 3. Percentage of non-hydro renewable energy electricity generation for 2016. 
Electricity Generation Type                        Relative Percentage 
Wind 64.38% 
Photovoltaic 4.11% 
Concentrated Solar (CSP) 4.11% 
Geothermal 5.48% 
Biomass 21.92% 

 
 

The percentages in Table 3 were used to predict the breakdown for each possible 

renewable energy scenario. This was accomplished by subtracting the percentage of 

hydropower (HYD) from the percentage of renewable energy (RE) and multiplying the 
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remaining value by the relative percentages (variable IGridg; g representing the index for 

all individual electricity generation types) in Table 3. 

𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 𝑅𝐸 − 𝐻𝑌𝐷 	×	𝐼𝐺𝑟𝑖𝑑9 

A similar process was followed for non-renewable energy, as the percentage for 

each non-renewable energy source (oil, natural gas, coal, and nuclear) was divided by the 

total percentage of non-renewable energy to quantify their relative percentages (Table 4). 

 

Table 4. Percentage of non-hydro renewable energy electricity generation for 2016 
Electricity Generation Type Relative Percentage 

Oil 1.15% 
Natural Gas 37.93% 
Coal 37.93% 
Nuclear 22.99% 

 
 

The relative percentage for each non-renewable energy source was then multiplied by the 

overall value entered for non-renewable energy. 

𝑁𝑜𝑛𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 1 − 	𝑅𝐸 	×	𝐼𝐺𝑟𝑖𝑑9 

This model generates an output value for each electricity generation source that 

remains proportional to the 2016 values. For example, the percentage of wind power will 

always be close to an order of magnitude greater than the percentage of photovoltaics. 

The exception to this rule is hydropower, which is deliberately fixed to the 2016 value. 

This model exhibits one serious flaw: it is highly unlikely that the percentages of each 

renewable energy generation source will increase proportionally to their 2016 baseline. 

For example, the EIA predicts that solar power capacity (photovoltaic and CSP) will 

increase at a significantly greater rate than wind power capacity (EIA, 2016). It is also 
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possible that a specific source could increase initially, but level off after the renewable 

energy percentage reaches a certain level. None of these scenarios factor into the 

Proportional Model. 

 

National Renewable Energy Laboratory (NREL) Regression Model 

The National Renewable Energy Laboratory (NREL) Regression Model is based 

on their 2015 Renewable Electricity Futures Study. The study explores high-penetration 

renewable energy scenarios and how these scenarios could be implemented. A potential 

breakdown for the percentage of each major energy generation type was included in the 

study and it detailed how each of these individual percentages would relate to multiple 

high-penetration renewable energy percentage scenarios (Table 5). 

 

Table 5. NREL high penetration renewable energy projections. 
% RE Nuclear Coal Natural Gas Biomass Geo Hydro CSP PV Wind 

30.00% 10.67% 49.22% 9.65% 4.47% 3.99% 8.49% 0.03% 2.43% 11.03% 

40.00% 10.61% 42.90% 5.87% 6.13% 4.20% 9.48% 0.05% 3.10% 17.66% 

50.00% 10.54% 34.39% 4.19% 7.12% 4.21% 9.91% 0.59% 4.59% 24.47% 

60.00% 10.08% 25.68% 3.36% 10.48% 4.19% 10.14% 2.11% 5.00% 28.96% 

70.00% 9.80% 16.55% 2.79% 13.83% 4.15% 10.93% 3.05% 5.40% 33.50% 

80.00% 8.02% 8.68% 2.57% 15.20% 4.11% 11.36% 6.60% 6.44% 37.01% 

90.00% 4.74% 2.93% 1.86% 14.81% 4.01% 12.48% 11.58% 7.07% 40.53% 

 
 

The NREL Regression Model takes these values (Table 5) and uses the program 

XLSTAT to model the relationship between the independent variable (RE) and the 

dependent variable (the percentage for each energy generation type). All NREL values 

were entered into Excel, in addition to the 2016 EIA percentages (Table 1). The program 
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XLSTAT was used to determine the best-fit non-linear regression equation for each of 

the electricity generation types. 

Multiple non-linear regressions were run in XLSTAT for each generation type 

(see Appendix 1) and the equation with the highest r2 value was chosen for use in the 

model. All coefficients of determination were 0.97 or greater and the equations followed 

the NREL predictions with limited residuals. Then each of the regression-based formulas 

were used to output the appropriate percentages for each electricity generation type, 

based on the input percentage of total renewable energy. The only exception was oil, as 

NREL does not give data for oil power plants. Consequently, I fixed oil at 1/33 of coal 

power to reflect the oil-to-coal ratio that we see in 2016 (EIA, 2016).   

 

Table 6. Formulas for electricity generation projections. 
Electricity Generation 

Type 
Function Formula R2 

Wind Logit 0.4264
1 + 𝑒C.DEFEGH.IJEJ∗LM

 
0.997 

Photovoltaic Logit 0.2933 +
−0.3078

1 + ( 𝑅𝐸
2.6905)

F.EEHI
 

0.990 

CSP Logit 
4.6571 +

−4.6571

1 + ( 𝑅𝐸
1.8971)

U.ICCJ
 

0.996 

Geothermal Logit 0.0414
1 + 𝑒J.HHIUGVC.JWHE∗LM

 
0.998 

Biomass Logit 0.1725
1 + 𝑒V.FFDVGH.EUIH∗LM

 
0.979 

Hydropower Logit 0.4497 +
−0.4634

1 + ( 𝑅𝐸
0.4237)

F.VIWI
 

0.979 

Natural Gas Logit 0.0127 +
−0.7392

1 + ( 𝑅𝐸
0.1167)

C.WEUC
 

0.999 

Coal Cubic 3.9423𝑅𝐸V − 7.1886𝑅𝐸C + 3.3008𝑅𝐸
+ 0.0162 

0.992 

Nuclear Quintic −8.0419𝑅𝐸H + 23.2378𝑅𝐸U − 26.6279𝑅𝐸V
+ 14.9043𝑅𝐸C − 4.0460𝑅𝐸
+ 0.5301 

0.999 
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This model produces little deviation from the expected values, but in most cases 

the combined values for all renewable energy percentages will be slightly different than 

the input renewable energy percentage (Table 7). For example, when 13.3% is entered 

into the model, the sum of the values for all renewable energy sources equals 13.87%. 

This problem is solved by indexing the output values (OutputRE) for each energy source 

(g) to the input percentage of renewable energy (RE).  

𝐼𝑛𝑑𝑒𝑥𝑒𝑑	𝑅𝐸% =	
𝑂𝑢𝑡𝑝𝑢𝑡𝑅𝐸9
(𝑂𝑢𝑡𝑝𝑢𝑡𝑅𝐸9)9

×𝑅𝐸 

 

Table 7. Renewable energy generation percentages for 2016, based on regression 
formulas. 

Electricity Generation Type Percentage 
Wind 5.14% 
Photovoltaic 0.55% 
Concentrated Solar (CSP) 0.002% 
Geothermal 0.41% 
Biomass 1.68% 
Hydro 6.09% 
Total 13.87% 

 
 

Each percentage of renewable energy is divided by the regression-based total for 

renewable energy and then this value was multiplied by RE. This computation ensures 

that all output values will sum to the input value for renewable energy percentage (RE). 

The same process is then followed for non-renewable energy. 

This model also has one very significant flaw: NREL includes values for coal 

power that are substantially higher than the current percentage of coal power and are far 

higher than the EIA’s predictions. While the EIA’s model does not look at high 

penetration renewable energy scenarios, it does predict the energy distribution through 
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2040, and these values contrast starkly to NREL’s coal power predictions (EIA, 2016). 

NREL’s percentage for coal is related to the fact that much of NREL’s study was done 

prior to 2015, when coal production accounted for a far greater percentage of the overall 

grid (NREL, 2015). 

The percentage of coal power has fallen tremendously in recent years and the EIA 

predicts that this trend will continue. Thus, it is unlikely that an increase in renewable 

energy will also coincide with a resurgence in the coal industry. The increase in coal 

power has a dramatic impact on the overall model for externalities associated with 

electric vehicles (demonstrated in the Results section), this results in a distortion of the 

central goal of this study: to determine the impact that renewable energy has on the 

environmental impact of electric vehicles. If this increase coincides with an increase in 

coal power, the potential benefit related to an increase in renewable energy will be 

confounded. 

 

Combined Model 

The Combined Model is based on the two prior models, as it uses the NREL-

based regressions to predict the percentages for renewable energy, while it uses the 

Proportional Model to predict the percentages for non-renewable energy. This is done to 

eliminate the confounding impact of disproportionally high coal power on the overall 

NREL Regression based model. The Combined Model allows for the individual 

renewable energy generation methods to increase at the rate that NREL has deemed 

appropriate for each of the high penetration renewable energy scenarios. However, the 

benefits of renewable energy are not obscured by a dramatic increase relative to 2016 
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coal power output. An even more accurate model might include a decrease in coal power 

relative to natural gas, but within the scope of this study. The goal of this study is to 

isolate the variable for “renewable energy” and understand its impact on the 

environmental benefits of electric vehicles, ceteris paribus. Everything considered, the 

Combined Model is the best option for achieving this goal. 

 

Social Cost: Electric Vehicle 

This study is focused on the following pollutants: carbon dioxide (CO2), sulfur 

dioxide (SO2), nitrous oxide (NOX), particulate matter (PM 2.5), and volatile organic 

compounds (VOCs). These pollutants are at the forefront of environmental policy 

discussions and are responsible for the majority of air pollution-related damages (Holland 

et al., 2015). The study hinged on assigning a monetary value to the emissions of the 

above pollutants. I used the Environmental Protection Agency’s (EPA) social cost of 

carbon (SCC), which was determined by the United States Government’s Interagency 

Working Group on the Social Cost of Carbon (EPA, 2015). The EPA offers multiple 

costs of carbon based on different base years and discount rates, but all costs are given in 

2007 dollars. I have chosen the year 2016 and a discount rate of 2.5% to get the value of 

$57 per metric ton of carbon dioxide (EPA, 2015). This value was converted to 2016 

dollars to arrive at a final value of $66.26 per metric ton of carbon dioxide (Bureau of 

Labor Statistics, 2016). 

The Air Pollution Emission Experiments and Policy(APEEP) Model was used to 

determine the per unit damages associated with SO2, NOX, PM 2.5, and VOCs. This 

“integrated assessment model” lists the damages for each pollutant in each county in the 
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United States (Muller, Mendelsohn, & Nordhaus, 2011, p. 1659). The model utilizes EPA 

data and peer-reviewed dose response algorithms to monetize the social costs related to 

the above-mentioned pollutants. This is accomplished for each county in the United 

States by assessing the marginal impact (mortality and morbidity) related to an additional 

ton of pollutant at each location (Muller et al., 2011). Essentially, the APEEP model puts 

a price tag on the social costs of one ton of pollution in every county in the United States 

and lists these values in an Excel file (Muller, 2016). In this study, these values were 

converted from year 2000 dollars to 2016 dollars and the median value was used to 

represent the social cost of each pollutant. 

 

Table 8. Social cost of pollutants. 
Pollutant Source Social Cost per ton (2016 $) 

Carbon Dioxide EPA $66.26 
Sulfur Dioxide APEEP $2,459.92 
Nitrous Oxide APEEP $572.11 
Particulate Matter 2.5 APEEP $3,742.75 
Volatile Organic Compounds APEEP $368.63 

 
 

The monetary pollutant damages vary widely from county to county, but the 

median values (Table 8) make it possible to model the environmental impact of electric 

vehicles on a national scale. Furthermore, multiple sensitivity analyses and a Monte Carlo 

Simulation were performed to understand the impact related to costs of different 

pollutants. Particular attention was given to the impact that the social cost of carbon has 

on the overall environmental impact of electric vehicles and hence the appropriate 

subsidy for electric vehicles. 
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Power Plant Emissions 

Power plant emissions were evaluated from a life cycle assessment perspective. 

This was especially important for renewable energy, as the marginal emissions from 

photovoltaics, CSP, and hydropower approach zero. Argonne National Laboratory’s 

highly regarded life cycle assessment program “GREET 2015” was used to determine the 

emissions per kWh for coal (Figure 7), natural gas, oil, nuclear, and biomass power 

plants. 

 

 
Figure 7. GREET output data for non-distributed coal-fired power plants. This figure is 
taken from GREET 2015 and displays emissions data per kWh for the pollutants detailed 
in this study. 
 
 

GREET 2015 does not include LCA emissions data for the other renewable 

energy power plants. Therefore, a meta-analysis from Klein & Whalley (2015) was used 

to collect emissions data for photovoltaic, concentrated solar power, geothermal, and 
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hydroelectric power plants. Klein & Whalley’s paper provides meta-analysis data for 

CO2, SO2, NOX, and particulate matter for each type of renewable energy electricity 

generation and in each case the median/nominal value was recorded (Table 9). The meta-

analysis does not include data related to VOCs and it was necessary to retrieve this 

information from a National Energy Technology life cycle comparison (Skone, Littefield, 

Cooney, & Marriott, 2013) and a NEEDS Project report (Frankl, Menichetti, Raugei, 

Lombardelli, & Prennushi, 2005). 

 

Table 9. Power plant emissions. 
Electricity Generation 

Type 
CO2 (g) SO2 (g) NOX (g) PM2.5 (g) VOCs (g) 

Wind 11 0.046 0.043 0.008 0.00881 
Photovoltaic 48 0.307 0.178 0.308 0.088 
Concentrated Solar 
(CSP) 

35 0.042 0.107 0.017 0.0376 

Hydropower 7 0.035 0.008 0.013 0.000016 
Geothermal 58 0.08 0.025 0.026 0.000442 
Biomass 30.78354 0.65794 1.06312 0.61202 0.14984 
Oil 942.03924 3.08252 4.30114 0.13367 0.07418 
Natural Gas 444.40070 0.09501 0.41317 0.01361 0.07294 
Coal 962.93024 3.12123 1.23544 0.21081 0.08682 
Nuclear 10.48254 0.02019 0.02530 0.00190 0.00374 

Total: 2549.63627 7.48690 7.39917 1.34401 0.52239 

 
 

Social Cost per kWh 

The establishment of a cost per ton of pollutant and the quantity of pollutants per 

kWh facilitated the quantification of the social cost per kWh for each type of power 

generation. The pollutant data was collected in grams and milligrams, which necessitated 

a conversion to tons (see Appendix 2 for information on pollutant data per 150,000 

miles). Once the pollutants per kWh were converted to tons, I was able to multiply each 
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quantity (in tons) by the cost per ton of pollutant to arrive at a social cost per kWh for 

each pollutant and type of energy generation. For example, wind power produces 11 

grams of CO2 per kWh, which was divided by 1000000 to convert the value to tons. This 

was then multiplied by $66.26 (the social cost of carbon, per ton) to arrive at a value of 

$0.00072886. This indicates that each kWh of wind power produces $0.00072886 worth 

of damages that can be associated with carbon dioxide emissions. The costs of each 

pollutant were summed to determine the overall damages associated with one kWh of 

each electricity generation type (Figure 8).  

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦	𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝐶𝑜𝑠𝑡 = 	 𝑃𝐶	×	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
a

 

The formula for the “Electricity Generation Cost” uses the variable PC to 

represent the cost per ton of pollutant, the variable Emissions to represent the quantity of 

emissions per kWh, and k is used to designate the pollutant index (CO2, SO2, NOX, PM 

2.5, and VOCs). 

 

 
Figure 8. Social cost per kWh for different electricity generation sources. 
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The formula for Electricity Generation Cost (EGC) outputs the total social cost 

for the five specified pollutants (Table 10). This cost varies greatly from among power 

sources, as the EGC for coal power is $0.07301, while the EGC for hydro power is 

$0.00060. 

 

Table 10. Social cost per pollutant for each electricity generation type. 
Type CO2 SO2 NOX PM2.5 VOCs Total 

Wind  $0.000729   $0.000113   $0.000025   $0.000030   $0.000003   $0.00090  

Photovoltaic  $0.003180   $0.000755   $0.000102   $0.001153   $0.000032   $0.00522  

CSP  $0.002319   $0.000103   $0.000061   $0.000064   $0.000014   $0.00256  

Hydropower  $0.000464   $0.000086   $0.000005   $0.000049   $0.000000   $0.00060  

Geothermal  $0.003843   $0.000197   $0.000014   $0.000097   $0.000000   $0.00415  

Biomass  $0.002040   $0.001618   $0.000608   $0.002291   $0.000055   $0.00661  

Oil  $0.062420   $0.007583   $0.002461   $0.000500   $0.000027   $0.07299  

Natural Gas  $0.029446   $0.000234   $0.000236   $0.000051   $0.000027   $0.02999  

Coal  $0.063804   $0.007678   $0.000707   $0.000789   $0.000032   $0.07301  

Nuclear  $0.000695   $0.000050   $0.000014   $0.000007   $0.000001   $0.00077  

 
 

These costs were multiplied by the distribution of the national grid to determine 

the average national cost per kWh. For example, if wind power accounts for 4% of the 

national grid, then 4% would be multiplied by $0.00090 (Table 10).  

𝑆𝑜𝑐𝑖𝑎𝑙	𝐶𝑜𝑠𝑡	𝑝𝑒𝑟	𝑘𝑊ℎ = 	 𝐸𝐺𝐶9×	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	
9

 

The percentages were drawn from the Combined Model discussed earlier and vary based 

upon the input value for renewable energy percentage (RE). The summed value for all 

electricity generation types is equal to the Social Cost per kWh. 
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Social Cost for an Electric Vehicle 

The social cost for an electric vehicle comes into focus once the social cost per 

kWh has been determined. The next step was to calculate how many kWh would be 

needed over the lifetime of an electric vehicle. This number is a function of two values: 

efficiency and total miles. This study used 150,000 miles, because it was the value used 

in NBER’s 2015 white paper on the “Environmental benefits of electric vehicles” 

(Holland et al., 2015). The efficiency value of 32 kWh per 100 miles was used, as it is the 

weighted value for all 2016 model year electric vehicles that were also sold in 2015 (U.S. 

Department of Energy, 2016)).  

𝑆𝑜𝑐𝑖𝑎𝑙	𝐶𝑜𝑠𝑡	𝑓𝑜𝑟	𝑎𝑛	𝐸𝑉 = 	 𝐸𝐺𝐶9×	𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	×	
150000	×	𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

100
9

	 

The total mileage (150,000) times the efficiency (32 kWh per 100 miles) divided by 100 

is equal to the number of kWh that will be needed to power the vehicle over its lifetime.  

 

Social Cost: Internal Combustion Engine (ICE) Vehicle 

The gasoline emissions values were taken directly from the GREET 2015 

software program, which breaks down emissions by well-to-pump (WTP) and well-to-

wheels (WTW) emissions. I ran the simulation for the vehicle “Car: SI ICEV – E10 

(Type 1 Conventional Material” and the year 2016. This designation refers to GREET’s 

dataset for a standard internal combustion engine car using E10 gasoline (Figure 9). The 

WTW emissions were recorded, which take into account both WTP emissions and 

emissions from operation. This calculation was again based on 2016 technology and a 

lifetime range of 150,000 miles.  
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Figure 9. GREET emissions data for a standard internal combustion engine automobile. 

 

The per gallon emissions were then converted to lifetime emissions (Table 11). 

This was accomplished by determining the number of gallons that would be needed to 

power an ICE vehicle for 150,000 miles. This value was calculated by dividing 150,000 

by the average miles per gallon.   
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Table 11. Emissions per gallon of gasoline. 
Pollutant WTW per Gal (g) WTW per Gal  (tons) Emissions per 150,000mi (tons) 
CO2 10641.14 1.06E-02 62.841 
SO2 4.08 4.08E-06 0.024 
NOX 8.06 8.06E-06 0.048 
PM 2.5 0.42 4.21E-07 0.002 
VOCs 6.73 6.73E-06 0.040 

 
 

The University of Michigan (para. 3, 2016) tracks the “average sales-weighted 

fuel-economy rating of purchased new vehicles” based on data supplied by the EPA. This 

value has been steadily increasing and reached 25.3 miles per gallon in July 2016 (the 

most recent data at the time of writing). This value (25.3) was used in Table 11, but the 

variable for miles per gallon can be manipulated to determine the relationship between 

miles per gallon and the marginal benefits of an electric vehicle. This relationship is 

explored in the results section. 

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 = 	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	×	
150000
𝑀𝑃𝐺  

 

Social Cost for an ICE Vehicle 

The social cost for an ICE vehicle was calculated by multiplying the social cost 

per pollutant (PC) by the lifetime emissions per pollutant (Emissions) and summing the 

products for all pollutants (k).  

𝑆𝑜𝑐𝑖𝑎𝑙	𝐶𝑜𝑠𝑡	𝑓𝑜𝑟	𝑎𝑛	𝐼𝐶𝐸 = 	 𝑃𝐶a×	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠a×	
150000
𝑀𝑃𝐺

a

 

The same social costs per pollutant (Table 12) are used for both EV and ICE vehicles. 

These costs are based on median values derived from the APEEP model and refer to 

ground level emissions. 
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Table 12. Emissions and social cost per gallon of gasoline. 
Pollutant Emissions per Gallon (tons) Social Cost per Gallon ($) 

CO2 0.010641139 0.705081877 
SO2 4.08133E-06 0.010039723 
NOX 8.05942E-06 0.004610884 
PM 2.5 4.21083E-07 0.001576012 
VOCs 6.72513E-06 0.00247906 

 
 

Non-Operating Costs 

A non-trivial percentage of emissions for both electric vehicles and ICE vehicles 

occur outside the automobile’s operating phase. These additional emissions can be 

attributed to the vehicle’s components and the energy used during assembly, disposal, 

and recycling (ADR). This data was collected from GREET 2015, as the software breaks 

emissions down into multiple categories, including: components, ADR, and batteries. 

Once again, these emissions are based on 2016 technology and the 2016 grid. The vehicle 

“Car: SI ICEV – E10 (Type 1 Conventional Material)” was used to represent ICE 

vehicles and “Car: EV - Electricity (Type 1 Li-Ion/LMO Conventional Material)” was 

used to represent electric vehicles. 

The central objective of this research is to determine the impact that renewable 

energy penetration will have on the environmental benefits of electric vehicles. Thus, it is 

important that non-operating emissions do not remain static and rather are based upon 

any treatments made to the independent variable (renewable energy percentage). It was 

necessary to break the non-operating emissions down into grid-dependent and grid-

independent factions. I accomplished this by recording the initial emissions data and then 

altering the underlying assumptions within GREET 2015 so that the new grid produced 

zero emissions. 
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Table 13. Grid-based and non-grid based production emissions for an electric vehicle. 
EV Components 

Emissions 
2016 Grid 

WTP 
No Carbon Grid 

WTP 
WTP % from 

Grid 
CO2 40028.68995 26654.39259 33% 
SO2 224.763812 195.2109832 13% 
NOX 52.64059036 36.37567004 31% 
PM 10.84568612 8.560861129 21% 
VOCs 34.55493882 33.04337142 4% 

 
 

The decrease in emissions for each pollutant represents the percentage of 

emissions that could be attributed to the grid. For example, if 40mg of NOX was 

attributed to the “Components” in an ICE vehicle and this value decreased to 30mg in the 

zero carbon grid, it could then be assumed that 25% of emissions were derived from the 

grid (a sample of these values is shown in Table 13 and all values are included in 

Appendix 3).  

A percentage was calculated for each pollutant originating from the following 

categories: Components, ADR, and Batteries. These percentages (EV% and ICE%) 

facilitated a breakdown of the emissions into grid-dependent and grid-independent 

emissions. The non-operating emissions for a specific category (Components, ADR, and 

Batteries) were computed by multiplying the grid-dependent emissions by an emissions 

factor derived from the input level of renewable energy and adding this value to the grid-

independent emissions. 

𝐸𝑉	𝐶𝑜𝑠𝑡	 = 	 𝑃𝐶× 1	–	𝐸𝑉%a 	×	𝑃𝑟𝑜𝑑𝐸𝑉a + 𝑃𝑟𝑜𝑑𝐸𝑉a×	𝐸𝑉%a 	×	
𝐺𝑟𝑖𝑑a

𝐵𝑎𝑠𝑒𝐺𝑟𝑖𝑑a
	

a

 

𝐼𝐶𝐸	𝐶𝑜𝑠𝑡 = 	 𝑃𝐶× 1	–	𝐼𝐶𝐸%a 	×	𝑃𝑟𝑜𝑑𝐼𝐶𝐸a + 𝑃𝑟𝑜𝑑𝐼𝐶𝐸a×	𝐼𝐶𝐸%a 	×	
𝐺𝑟𝑖𝑑a

𝐵𝑎𝑠𝑒𝐺𝑟𝑖𝑑a
	

a
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The emissions factor ( lmnop
qrstlmnop

) adjusts based on the emissions per kWh for a 

given pollutant at the input renewable energy percentage (𝐺𝑟𝑖𝑑a) compared to the 

emissions per kWh for a given pollutant from the baseline 2016 grid (𝐵𝑎𝑠𝑒𝐺𝑟𝑖𝑑a). Thus, 

a 50% reduction in emissions per kWh for a given pollutant will result in a 50% reduction 

in grid-dependent emissions for said pollutant. The per-pollutant emissions were then 

multiplied by the social cost of each pollutant (PC) and these values were summed within 

each category. The social cost related to Components, ADR, and Batteries were added 

together to determine the overall non-operating costs associated with each type of 

vehicle. The non-operating costs were added to the operating costs and the outcome was 

the overall social cost of the vehicle. The disaggregation of production costs allows my 

model to produce a production-based externality that responds to increases in renewable. 

This is my key contribution to the literature, as other studies use models with static 

production-based externalities. 

 

Subsidy and Variables 

The recommended EV subsidy was simply calculated by subtracting the social 

cost of an EV from the social cost of an ICE vehicle. 

𝐸𝑉	𝑆𝑢𝑏𝑠𝑖𝑑𝑦 = 	𝑆𝑜𝑐𝑖𝑎𝑙	𝐶𝑜𝑠𝑡	𝑓𝑜𝑟	𝑎𝑛	𝐼𝐶𝐸 − 𝑆𝑜𝑐𝑖𝑎𝑙	𝐶𝑜𝑠𝑡	𝑓𝑜𝑟	𝑎𝑛	𝐸𝑉 

A variety of treatments were then applied to the above methodology to understand the 

impact that specific independent variables have on the environmental impact of electric 

vehicles (as quantified by the EV Subsidy). The entire model was built into Excel and the 

“data table” feature was used to manipulate different independent variables. These 
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variables included: percentage of renewable energy (RE%), miles per gallon, kWh per 

100 miles, and the cost of carbon. 

 

Monte Carlo Simulation 

Furthermore, a Monte Carlo simulation was run using the Excel-based SimVoi 

software. This simulation modeled the effect of pollutant pricing on the overall EV 

subsidy. The Monte Carlo simulation consisted of 10,000 iterations that randomly 

selected data for SO2, NOX, PM 2.5, and VOCs from the APEEP model (social pollutant 

cost data for each county in the United States). Due to the uncertainty related to the social 

cost of carbon, the Monte Carlo simulation also randomly pulled data from a list of peer-

reviewed “social costs of carbon.” This data was taken from the widely-cited meta-

analysis compiled by Havranek, Irsova, Janda, and Zilberman (2015). The meta-analysis 

included 809 estimates of the social cost of carbon from 101 different studies, although I 

only included the median value from each study. This was done to make sure that each 

study had the same probability of being selected during the Monte Carlo simulation (as 

opposed to favoring the studies with a large number of estimates). The individual social 

costs of carbon were then converted from 2010 dollars into 2016 dollars using the 

appropriate multiplier (1.11) taken from the Bureau of Labor Statistics (BLS, 2016). 

These specific values and the computations are listed in Ancillary Appendix 1. 

  



	
	

39 

 

Chapter III  

Results 

 

 Electric vehicles are touted as an environmentally beneficial technology and this 

study aims to quantify these benefits. An electric vehicle’s emissions are directly linked 

to the power grid from which it attains its electricity, and thus, this analysis looks at these 

benefits as a function of renewable energy. Furthermore, this study quantifies the carbon 

dioxide emissions associated with both electric vehicles and internal combustion engine 

vehicles. 

 

Carbon Dioxide Emissions 

I analyzed the carbon dioxide emitted during 150,000 miles of driving (operating 

phase), in addition to the emissions generated from production (production/non-operating 

phase). The GREET 2015 life-cycle assessment software indicated that an electric vehicle 

powered by the simulated 2016 power grid (13.3% renewable energy) would be 

responsible for 22.86 metric tons of carbon dioxide over its lifetime (Table 14). This 

number decreases significantly as the grid moves toward more renewable energy. An 

electric vehicle powered by 100% renewable energy (RE) would account for only 6.30 

tons of carbon dioxide (Table 14), which represents a 79.5% decrease in total carbon 

emissions. It is important to note that the production emissions also decrease as the 

percentage of renewable energy increases. This is due to the fact that the model 

disaggregates production emissions into “grid-based” and “non-grid-based emissions.” 
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The grid-based emissions are then linked to the percentage of renewable energy, which 

results in fewer production-based emissions as overall emissions per-kWh decrease (see 

Chapter II for greater detail). 

 

Table 14. Carbon emissions as a function of renewable energy. 
RE% Usage Emissions Production Emissions Total Emissions 

13% 22.86 7.968 30.83 
20% 21.19 7.756 28.95 
50% 13.63 6.793 20.42 
80% 6.07 5.832 11.90 

100% 1.10 5.200 6.30 
Note: Carbon dioxide emissions are in metric tons over the lifetime of the vehicle. 

 

The total carbon dioxide emissions exceed 165 metric tons (Table 15) for cars 

with an efficiency of 10 miles per gallon. This decreases to 68.38 metric tons for vehicles 

getting 25.4 miles per gallon (the July 2016 average) and eventually reaches 25.5 metric 

tons for vehicles with an efficiency of 80 miles per gallon (Table 15). 

 

Table 15. Carbon emissions as a function of miles per gallon. 
MPG Usage Emissions Production Emissions Total Emissions 

10 159.62 5.543 165.160 
20 79.81 5.543 85.351 
25 62.84 5.543 68.384 
40 39.90 5.543 45.447 
60 26.60 5.543 32.146 
80 19.95 5.543 25.495 

Note: Carbon dioxide emissions are in metric tons over the lifetime of the vehicle. 
Production emissions are not impacted by the efficiency of the vehicle (miles per gallon). 
 

 

 



	
	

41 

The Electric Vehicle (EV) Subsidy 

The EV Subsidy is defined as the difference between the externalities associated 

with driving an internal combustion engine vehicle and the externalities associated with 

driving an electric vehicle. These externalities are based on the negative impacts of the 

following pollutants: carbon dioxide, sulfur dioxide, nitrous oxide, particulate matter, and 

volatile organic compounds. A positive value for the EV Subsidy would indicate that the 

pollution-related externalities from driving 150,000 miles in an electric vehicle are less 

than the pollution-related externalities from driving the same distance in an internal 

combustion engine vehicle. 

 

Social Cost (SC) of Operating an Internal Combustion Engine Vehicle 

The externalities associated with the operating phase of an internal combustion 

vehicle is calculated by summing the social costs related to the five pollutants specified in 

this study. 

 

Table 16. Emissions data for internal combustion engine vehicles. 
Pollutant Emissions per 

Gallon (grams) 
Emissions per 
Gallon (tons) 

Social Cost 
per Ton 

Social Cost per 
Gallon 

Cost per 
150,000mi 

CO2 10641.1391 0.01064 $66.26 $0.705081  $4,163.87  
SO2 4.0813 4.08133E-06 $2459.91 $0.010039  $59.29  
NOX 8.0594 8.05942E-06 $572.11 $0.004610  $27.23  
PM 2.5 0.4210 4.21083E-07 $3742.75 $0.001576  $9.31  
VOCs 6.7251 6.72513E-06 $368.63 $0.002479  $14.64  

      
   Total SC: $0.723787  $4,274.34  

   SC Per 
Mile: 

 $0.0285   $0.03  
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A car operating at 25.40 miles per gallon (the July 2016 average) would produce 

$4,274.34 worth (Table 16) of air pollution-related costs (University of Michigan, 2016). 

The vast majority of these costs ($4,163.87) are attributed to the emissions of carbon 

dioxide, while only $9.31 of the costs are a result of damages from particulate matter. 

 

 
Figure 10. Social cost (usage phase) as a function of miles per gallon. 

 

The social cost related to driving a gasoline-powered automobile for 150,000 miles 

decreases significantly as the vehicle become more efficient (Figure 10). A car operating 

at 10 miles per gallon will cause $10,856.81 of damage during its usage phase, while a 

car operating at 40 miles per gallon will only cause $2,714.20 of damage. 

 

Social Cost of Operating an Electric Vehicle 

The social cost of an electric vehicle is a function of the power grid from which a 

vehicle derives its electricity. The pollutants per kWh vary greatly from power plant to 
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power plant (Figures 11 and 12), and thus, the air pollution-related externalities are 

dependent on the source of electricity generation. 

 

 
 Figure 11. Carbon dioxide emissions per kWh. 

 

 
Figure 12. Pollutants per kWh. 

 

The social cost per 150,000 miles is based on a mix that mirrors the current 2016 

national grid. The Combined Model adjusted this mix based on the percentage of 
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current proportions and high penetration renewable energy predictions from the National 

Renewable Energy Laboratory (NREL, 2015). 

 

Table 17. Power grid mix and social cost. 
Electricity 

Generation Type 
% Social Cost per kWH 

(EGC) 
Percentage 

Cost 
Cost per 

150,000 mi 
Wind 4.93%  $0.0008998   $0.0000444   $2.13  
Photovoltaic 0.53%  $0.0052227   $0.0000275   $1.32  
CSP 0.00%  $0.0025611   $0.0000000   $0.00  
Hydropower 5.84%  $0.0006032   $0.0000352   $1.69  
Geothermal 0.39%  $0.0041517   $0.0000161   $0.78  
Biomass 1.61%  $0.0066123   $0.0001063   $5.10  
Oil 1.00%  $0.0729906   $0.0007274   $34.91  
Natural Gas 33%  $0.0299939   $0.0098639   $473.47  
Coal 33%  $0.0730096   $0.0240101   $1,152.48  
Nuclear 20%  $0.0007672   $0.0001529   $7.34  

  Total SC for an EV:  $0.0349838   $1,679.22  
   SC Per 

Mile: 
 $0.01119  

 
Note: The “cost per 150,000 miles” column is a function of the “social cost per kWh” and 
the “percentage.” For example, Oil and Coal have nearly the same “social cost per kWh,” 
but the “cost per 150,000 miles” for Coal is far greater because Coal powers 33% of the 
grid while Oil powers only 1%. The “total social cost” represents the social cost for a 
vehicle that derives power from a grid that perfectly models the 2016 national grid. 
 
 

The model assumes an electric vehicle operating at 32 kWh per 100 miles, which 

is the weighted value of all 2016 model year electric vehicles (U.S Department of 

Energy, 2016). The outputs of this model are displayed in Table 17, which demonstrates 

that this electric vehicle would produce $1,670.22 of air pollution-related costs over its 

lifetime. 
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Table 18. Social cost as a function of the percentage of renewable energy. 
Percentage of RE Social Cost 

13%  $1,679.22  
20%  $1,550.31  
30%  $1,357.90  
40%  $1,165.49  
50%  $973.08  
60%  $780.66  
70%  $588.25  
80%  $395.84  
90%  $203.43  

100%  $11.02  
 
 

This number changes significantly if the percentage of renewable energy 

increases (Table 18). The social cost moves under $1000 when the percentage of RE 

reaches 50% and goes under $300 once the renewable energy (RE) percentage 

approaches 85%. Furthermore, a car running on 100% RE would account for only $11.02 

of air-pollution related damages. 

 

 
Figure 13. Social cost as a function of renewable energy. 
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For each 1% increase in RE%, the social cost decreases by $19.24. This inverse 

relationship demonstrates the impact that the RE% has on the social cost of an electric 

vehicle (Figure 13). An increase in renewable energy clearly leads to a decrease in air 

pollutants, and subsequently, a decrease in social costs. 

 

Non-Operating Costs 

Electric vehicles have greater production-based emissions (Table 19) due to the 

manufacturing of the battery pack. These packs require sophisticated components and 

their construction can be energy intensive; the cell components, cell manufacturing, and 

thermal management aspects of the battery all produce non-trivial levels of emissions 

(Kim et al., 2016). 

 

Table 19. Production emissions for electric and internal combustion engine vehicles. 
Total Emissions EV Emissions ICE Emissions 

CO2 53120.48861 36951.90469 
SO2 292.6073589 151.7208905 
NOX 72.50415397 47.63524604 
PM 15.10872758 9.708309352 
VOCs 48.41777038 39.68165126 

 
 

These emissions were converted into social costs, which resulted in $653.31 in 

social costs attributed to the production of an electric vehicle and $434.98 in social costs 

for a gasoline-powered vehicle (Table 20).  

 

 

 



	
	

47 

Table 20. Production social costs for electric and internal combustion engine vehicles. 
Emissions EV Costs ICE Costs 

Cost of CO2  $527.96   $367.26  
Cost of SO2  $107.97   $55.98  
Cost of NOX  $6.22   $4.09  
Cost of PM  $8.48   $5.45  
Cost of VOCs  $2.68   $2.19  
Total Non-Operating  $653.31   $434.98  

 
 

A significant portion of non-operating emissions are derived from the power grid, 

and thus, an increase in renewable energy will also decrease the non-operating costs 

(Figure 14). 

 

 
Figure 14. Non-operating costs as a function of renewable energy. 
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operating (production) costs are added together to determine the total social costs for 

each type of vehicle. 

 

Table 21. Social costs and the EV subsidy as a function of renewable energy. 
RE% ICE SC EV SC EV Subsidy 

13%  $4,709.24   $2,332.43   $2,376.81  
20%  $4,698.32   $2,197.30   $2,501.02  
30%  $4,682.03   $1,995.64   $2,686.38  
40%  $4,665.61   $1,792.57   $2,873.04  
50%  $4,649.21   $1,589.77   $3,059.44  
60%  $4,632.85   $1,387.40   $3,245.45  
70%  $4,616.51   $1,185.32   $3,431.20  
80%  $4,600.19   $983.33   $3,616.86  
90%  $4,583.87   $781.29   $3,802.57  
100%  $4,567.54   $579.13   $3,988.41  

 
 

The subsidy changes dramatically once the RE% is manipulated (Table 21). This 

is due to the fact that the social cost of an EV decreases at a far greater rate than the 

social cost of an ICE vehicle, as the percentage of renewable energy increases. 

 

 
Figure 15. Social costs as a function of renewable energy 
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The social costs for an internal combustion vehicle do decrease as the RE% 

increases (Table 21), which is a result of the decreasing social costs of production. A 

percentage of production emissions are derived from the power grid, and thus, a cleaner 

grid will lead to a nominal decrease (Figure 15) in overall emissions. Unfortunately, the 

vast majority of ICE emissions, and subsequently, the social costs associated with an 

ICE, are a result of operating the vehicle. These social costs are not directly impacted by 

the cleaner grid. This stands in stark contrast with the electric vehicle. The non-operating 

social costs for an EV decrease nominally as RE% increases, but the social costs related 

to the operation phase of the vehicle decrease significantly (Table 21). The operation of 

an electric vehicle is powered by the grid, and thus, the externalities associated with 

driving an electric vehicle mirror the externalities associated with the grid itself. 

 

 
Figure 16. EV subsidy as a function of renewable energy. 
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energy and we see an EV subsidy that nears $4,000 as the RE% reaches 100% (Figure 

16). 

 

Subsidy for an Electric Vehicle Powered by Photovoltaics 

A national grid powered by 80% or 100% renewable energy is still a nascent idea 

and it may be many years before such a scenario becomes reality. Fortunately, this does 

not prevent an individual from charging an electric vehicle with 100% renewable energy 

in the year 2016. Photovoltaic panels can be installed today on a homeowner’s roof 

which will provide the kWh necessary to power an electric vehicle. 

The emissions for a 100% renewable energy national grid will differ slightly from 

the emissions assigned to a vehicle powered solely from rooftop photovoltaics. This is 

due to the fact that a 100% renewable energy grid will include a mixture of renewable 

energy technologies and there is some emissions variation amongst renewables. For 

example, photovoltaic power produces 48 grams of carbon dioxide per kWh, while wind 

power produces 11 grams of carbon dioxide per kWh (Klein & Whalley, 2015). These 

differences may be minimal, but it is important to incorporate them into an accurate 

assessment of the benefits of photovoltaic-powered electric vehicles. 

 

Table 22. Photovoltaic emissions per-kWh. 
Electricity Generation 

Type 
CO2 
(g) 

SO2 
(mg) 

NOX 
(mg) 

PM2.5 
(mg) 

VOCs 
(mg) 

Photovoltaic 48 0.307 0.178 0.308 0.088 
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The life cycle assessment (LCA) based emissions for photovoltaics are incredibly 

low (Table 22), as all emissions are derived from the production of the panels. There a 

zero marginal emissions, but the LCA emissions cannot be ignored. 

 

Table 23. Emissions data for photovoltaic powered electric vehicles 
Pollutant Emissions per kWh (tons) SC per Ton SC per kWh Cost per 150,000mi 

CO2 0.000048  $66.26  0.00318048  $152.66  
SO2 3.07E-10  $2,459.92  0.00000076  $0.04  
NOX 1.78E-10  $572.11  0.00000010  $0.005  
PM 2.5 3.08E-10  $3,742.75  0.00000115  $0.06  
VOCs 8.8E-11  $368.63  0.00000003  $0.00  

     
  Total: 0.00318252  $152.76  

  Per Mile: 0.00000002  $0.0010  
 
 

These low emissions lead to a lifetime social cost of only $152.76 that can be 

assigned to the operation phase of the vehicle (Table 23). This stands in stark contrast to 

the externalities associated with operating an internal combustion engine vehicle: 

$4,273.34. The social costs for the internal combustion engine vehicle are nearly 28 times 

greater than the social costs for an electric vehicle powered by photovoltaics. The proper 

EV Subsidy was then determined by subtracting the social cost for a photovoltaic-

powered EV ($152.76) from the social cost of an internal combustion engine vehicle 

($4,273.34). Based on this analysis, an EV subsidy of $3,903.24 was deemed appropriate 

for a photovoltaic-powered electric vehicle. 
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Monte Carlo Simulation 

There is undoubtedly some variation and uncertainty related to the specific costs 

assigned to different pollutants. The APEEP Model used in this study assigns costs for 

sulfur dioxide, nitrous oxide, particulate matter and volatile organic compounds based on 

geographic location, but these costs differ significantly from county to county (Muller, 

2016). Furthermore, a meta-analysis of studies that analyzed the social cost of carbon 

demonstrates the uncertainty of this cost (Havranek, 2015). A Monte Carlo simulation 

considers this uncertainty in a probabilistic model. I used the SIMVOI software to create 

a simulation that consisted of 10,000 iterations, with each iteration randomly pulling data 

from the APEEP Model (Muller, 2016) and a meta-analysis on the social cost of carbon 

(Havranek, 2015). This data was entered into the EV Subsidy Combined Model and 

produced 10,000 different EV Subsidies; each of these subsidies was a function of the 

different costs that were randomly entered into it.  

 

 
Figure 17. Monte Carlo simulation for 2016 grid (13.3% RE). 
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The majority of outputs appear in the $2,000 to $6,000 range (Figure 17), with a 

median value of $3,384.9. This median value can be compared to the determined EV 

Subsidy from the Combined Model (including production) of $2,376.81 and the closeness 

of these values substantiates the accuracy of the EV Subsidy discussed earlier in this 

chapter. 

 

Table 24. EV subsidy percentile for Monte Carlo simulation. 
Percentile  Appropriate EV Subsidy 

(Combined):  
0.0% -$1,229.89  
0.5% -$251.29  
1.0% -$170.93  
2.5% -$47.63  
5.0%  $145.02  

10.0%  $485.26  
20.0%  $1,029.30  
30.0%  $1,771.57  
40.0%  $2,301.19  
50.0%  $3,384.49  
60.0%  $4,586.21  
70.0%  $7,346.21  
80.0%  $11,691.69  
90.0%  $20,776.32  
95.0%  $32,354.12  
97.5%  $53,034.88  
99.0%  $88,231.39  
99.5%  $96,891.25  

100.0%  $108,978.97  
 
 

The Monte Carlo simulation is an effective tool for corroborating the output that 

emerges from a multivariate model, but its value is not specific to this singular purpose. 

The Monte Carlo simulation also illustrates the potential variation that lies within the 
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system and the dangers that this presents. For example, 10% of the outputs (EV Subsidy) 

fell between -$1,229.89 and $485.26 (Table 24). This indicates that in 10% of the 

simulations the EV Subsidy was extremely low or negative. Alternatively, there were 

another 10% of the simulations where the EV Subsidy fell between $20,776.32 and 

$108,978.97 (Table 24). Thus, while it is possible that the EV Subsidy of $2,376.81 is 

slightly overestimating the benefits of an electric vehicle, it is also possible that this value 

is severely underestimating the benefits of an electric vehicle. 

Variance of 10th Percentile to Median: $485.26 - $2,376.81 = -$1,891.55 
Variance of 90th Percentile to Median: $20,776.32 - $2,376.81 = $18,399.51 

 
Therefore, the simulation produced 1000 values (10th percentile) that were at least 

$1,891.55 below the median value, while the simulation also produced 1000 values (90th 

percentile) that were at least $18,399.51 greater than the median value. Once again, this 

underscores the potential advantages of electric vehicles and the non-trivial possibility 

that the EV Subsidy is severely underestimating these advantages. 

 

Table 25. Measures of central tendency for Monte Carlo simulations 
RE% Minimum Maximum Median Mean 

13.30% -$1,229.89   $108,978.97   $3,384.49   $8,729.21  

20% -$905.77   $114,024.63   $3,501.01   $9,281.62  

50% -$1,957.70   $136,792.74   $4,220.21   $11,457.82  

80% -$667.31   $159,562.10   $4,988.34   $13,518.93  

100% -$374.37   $174,473.88   $5,474.66   $14,425.89  

Note: This table breaks down the measures of central tendency for each Monte Carlo 
Simulation. A separate simulation was run for each renewable energy scenario. 
 
 



	
	

55 

The Monte Carlo simulation was also run for a variety of different renewable 

energy penetration scenarios (Table 25). The median and mean values for these 

simulations increased as the percentage of renewable energy increased. This increase was 

expected and followed a similar pattern to what was demonstrated earlier in this chapter 

(when the percentage of renewable energy was manipulated). 

 
Figure 18. Monte Carlo comparison of different RE% scenarios 
 

The majority of values are clustered around the medians (Table 25), but a non-

trivial percentage of the simulations extend into the tens of thousands of dollars (Figure 

18). This variability presents the possibility that electric vehicles running on renewable 

energy are far more beneficial to society than initial reports may indicate.   

 

Monte Carlo Simulation for 100% Photovoltaic-powered EV 

The renewable energy percentage scenarios are future scenarios and data from 

this study can be used to guide society towards these percentages. On the other hand, it is 
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possible for an electric vehicle to be powered at home by electricity generated from 100% 

photovoltaics. Therefore, the Monte Carlo simulation for a 100% photovoltaic-powered 

EV can model a scenario that is applicable in 2016. 

 

Table 26. EV subsidy percentile for PV-powered EV Monte Carlo simulation. 
Percentage  EV Subsidy Including Production 

(100%PV):  
0.0% -$618.94  
0.5% -$496.53  
1.0% -$311.64  
2.5% -$192.10  
5.0%  $133.00  

10.0%  $601.33  
20.0%  $1,487.69  
30.0%  $2,692.10  
40.0%  $3,593.77  
50.0%  $5,333.62  
60.0%  $7,314.68  
70.0%  $11,714.81  
80.0%  $18,985.18  
90.0%  $33,454.14  
95.0%  $51,814.67  
97.5%  $86,687.95  
99.0%  $142,105.66  
99.5%  $175,376.11  

100.0%  $175,625.05  
 
 

The photovoltaic median value of $5,333.62 (Table 26) was nearly identical to the 

median value for the 100% renewable energy scenario ($5,474.66). Furthermore, 10% of 

the values were greater than $33,454.14 and 20% of the values were greater than 

$18,985.18. This affirms the possibility that solar-powered electric vehicles are more 

beneficial than we may realize. 



	
	

57 

 

 
Figure 19. Monte Carlo simulation for 100% photovoltaic scenario 

 

Carbon Dioxide Emissions 

The carbon dioxide emissions associated with an electric vehicle running on the 

2016 grid (13.3% renewable energy) were 55% less than an internal combustion engine 

with an efficiency of 25.4 miles per gallon (Table 27). This advantage disappeared when 

the electric vehicle was compared to an internal combustion engine automobile operating 

at 80 miles per gallon. In this scenario, the internal combustion engine vehicle was 

actually responsible for 21% fewer carbon emissions than the electric vehicle (Table 27). 

There are currently no cars on the market with efficiencies close to 80 miles per gallon, 

but it is important to compare the electric vehicle to an idealized version of the internal 

combustion engine vehicle. A 100% renewable energy grid is also an idealized scenario, 

but a comparison between these “utopian examples” can inform policy that will guide us 

down the path to an ideal transportation model. 
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Table 27. Carbon emissions comparison data for 2016 grid (13.3% RE). 
 25.4mpg 80mpg 

ICE Total LCA CO2: 68.38 25.49 
EV Total LCA CO2: 30.82 30.83 

CO2 Difference: 37.56 -5.34 
CO2 Percentage Difference: 55% -21% 

 
 

An electric vehicle running off of 100% renewable energy produces far fewer 

greenhouse gas emissions than a vehicle based on the current grid: 6.30 tons of carbon 

dioxide compared to 30.82 tons of carbon dioxide. This is also substantially less than an 

internal combustion engine vehicle operating at 25.4 miles per gallon (68.38 tons of 

carbon dioxide) or a vehicle getting 80 miles per gallon (25.49 tons of carbon dioxide). 

The electric vehicle running on 100% renewable energy impressively produces 73% 

fewer carbon dioxide emissions than an internal combustion engine automobile with an 

efficiency of 80 miles per gallon (Table 28).  This is greater than the 50% reduction that 

was hypothesized.  

 

Table 28. Carbon emissions comparison data for 100% RE grid. 
 25.4mpg 80mpg 

ICE Total LCA CO2 (Tons): 66.40 23.51 
EV Total LCA CO2 (Tons): 6.30 6.30 

CO2 Difference: 60.10 17.21 
CO2 Percentage Difference: 91% 73% 

 
 

While the 100% renewable energy scenario is purely academic, it is feasible for 

an electric vehicle in 2016 to be 100% powered by rooftop photovoltaics. An electric 

vehicle powered from 100% photovoltaics will be responsible for 10.27 tons of carbon 
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dioxide over its lifetime, which is 85% less than an internal combustion engine vehicle 

operating at 25.4 miles per gallon and 56% less than an internal combustion engine 

vehicle operating at 80 miles per gallon (Table 29). 

 

Table 29. Carbon emissions comparison data for the 100% PV-powered EV. 
 25.4 MPG 80 MPG 

ICE Total LCA CO2: 68.38 23.51 
EV Total LCA CO2: 10.27 10.27 

CO2 Difference: 58.11 13.24 
CO2 Percentage Difference: 85% 56% 

Note: This scenario is based off of photovoltaic panels operating in the year 2016, and 
thus, the production emissions are from the 13.3% RE grid. This causes the carbon 
dioxide emissions to be higher than the 100% RE scenario in Table 28. 
 
 

Environmental Impact of Electric Vehicles 

The EV Subsidy is computed by subtracting the negative environmental impact of 

an electric vehicle from that of an internal combustion engine vehicle. A positive value 

would indicate that the electric vehicle had a lesser impact on the environment, while a 

negative value would indicate that the internal combustion engine vehicle had a lesser 

impact. 

 

Table 30. Electric vehicle compared to ICE vehicle getting 25.4 mpg. 
RE% EV Subsidy MONTE CARLO 

Median Subsidy 
13.30%  $2,376.78  $3,384.49  

20%  $2,500.99  $3,501.01  
50%  $3,059.42  $4,220.21  
80% $3,616.83  $4,988.34  

100% $3,988.39  $5,474.66  
100% PV $3,907.52 $5,333.62 
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Table 31. Electric Vehicle compared to ICE vehicle getting 80 mpg. 
RE% EV Subsidy MONTE CARLO 

Median SUBSIDY 
13% -$540.46  -$657.36 
20% -$416.24  -$485.41 
50%  $142.18  $287.58 
80%  $699.60  $1,026.51 

100%  $1,071.15  $1,533.01 
100% PV $986.01 $1,286.45 

 
 

Table 30 reveals that an electric vehicle in all RE% scenarios will have a lesser 

environmental impact than an internal combustion engine automobile with an efficiency 

of 25.4 miles per gallon. On the other hand, an internal combustion engine vehicle 

operating at 80 miles per gallon has a smaller environmental impact than an electric 

vehicle charged from a grid with 13.3% or 20% renewable energy (Table 31). This did 

not hold true for other RE% scenarios, as all RE% scenarios with 50% renewable energy 

or greater showed a positive EV subsidy. As hypothesized in Hypothesis #2, an electric 

vehicle charged with 100% renewable energy will have a lesser environmental impact 

than an automobile operating at 80 miles per gallon (Table 31). The appropriate 2016 EV 

Subsidy for a 100% renewable-powered EV came in at $3,988.39, which was also greater 

than the $3,000 that was hypothesized (Table 30). 
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Chapter IV  

Discussion 

 

There are a variety of factors that impact the EV Subsidy, including: emissions 

data, the cost per pollutant, miles per gallon, and the kWh per 100 miles. It is essential to 

understand which factors impart the greatest impact on the subsidy and to analyze the 

uncertainty within these variables. The SIMVOI software package produces coefficients 

of determination for each of the input variables within the Monte Carlo simulations 

(Table 32). This data helps to illuminate the relationships between the input variables 

(costs per pollutant) and the output variable (EV Subsidy). 

 

Table 32. Monte Carlo simulation coefficients of determination. 13.3% RE scenario. 
 Cost of 

Carbon 
Cost of 

SO2 
Cost of 
NOX 

Cost of 
PM 

Cost of 
VOCs 

Appropriate EV 
Subsidy  

1.0000 0.0005 0.0001 0.0003 0.0000 

 
 

The Monte Carlo simulation in Chapter III produced coefficients of determination 

that highlighted the strong relationship between the social cost of carbon (SCC) and the 

EV Subsidy (Table 32). The impact of the cost of carbon was the primary determinant of 

the EV Subsidy and far exceeded the impacts of the other pollutants. This analysis did not 

take into account other input variables, such as “miles per gallon” and “kWh per 100 

miles,” but I was able to build upon the initial simulation to create a new Monte Carlo 

simulation that included these variables. This new Monte Carlo simulation pulled 
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pollutant cost data from the APEEP Model (Muller, 2016) and a meta-analysis for the 

social cost of carbon (Havranek et al., 2015), but it also randomly input data for “miles 

per gallon” and “kWh per 100 miles.” The data was selected using SIMVOI’s 

“RANDTRIANGULAR” function, which allows data to be selected from a triangular 

probability density function: the low, high. and “most likely” values were entered into the 

simulation. For “miles per gallon” a low value of 10, a high value of 80, and a most likely 

value of 25.4 were entered into the simulation. The “mostly likely” value of 25.4 was 

chosen because it represents that average miles per gallon (July 2016 value), while the 

low of 10 and high of 80 were chosen so that a wide range of values would be entered 

into the simulation. For “kWh per 100 miles” a low value of 20, a high value of 40, and a 

most likely value of 32 (weighted value of all 2016 model year electric vehicles) were 

input into the Monte Carlo simulation. 

 

Table 33. Monte Carlo simulation coefficients of determination. 13.3% RE scenario. 
Including efficiency inputs. 

 Cost of 
Carbon 

Cost 
of 

SO2 

Cost 
of 

NOX 

Cost 
of 

PM 

Cost of 
VOCs 

Mile 
per 

Gallon 

EV 
Efficienc

y 
Appropriate 
EV Subsidy 

0.2806 0.000
1 

0.0002 0.000
2 

0.0001 0.1313 0.0026 

Note: The above values represent the coefficients of determination related to each of the 
independent variables (columns) as they relate to the dependent variable (Appropriate EV 
Subsidy). 
 
 

Table 33 reveals that the cost of carbon still accounts for most of the variation in 

the EV Subsidy, but that “miles per gallon” is also significant. Hence, it is important to 

explore these two key inputs further. 
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Cost of Carbon 

The social cost of carbon (SCC) is the most significant determinant for the EV 

Subsidy. However, it is also an input that is mired in uncertainty. The strong correlation 

between the social cost of carbon and the EV Subsidy (difference between the social cost 

of an ICE and an EV) was illustrated in the Monte Carol simulation (Figure 20). 

 

 
Figure 20. Scatterplot for Monte Carlo simulation (13.3% RE scenario). This graph 
demonstrates the relationship between the appropriate EV Subsidy and the cost of carbon.	
 
 

The social cost of carbon has a greater impact on the EV Subsidy than any of the 

other pollutant costs, miles per gallon, or electric vehicle efficiency. While there is a 

relationship between the social cost of any of the pollutants and the EV Subsidy, the 

impact of carbon dioxide far exceeds that of the other pollutants. For example, a $10 
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increase in the social cost of carbon will increase the EV Subsidy by nearly $400, while a 

$1,000 increase in the social cost of sulfur dioxide will decrease the EV Subsidy by less 

than $30. Carbon dioxide is undoubtedly the main driver of the EV Subsidy and this is 

due to the fact that both EVs and ICE vehicles emit far more carbon dioxide than other 

pollutants (see Appendix 2). An electric vehicle running on the 2016 American grid 

would produce 22.96 metric tons of carbon dioxide over its lifetime (during the operation 

phase), while it would only produce 5.32 x 10-5 metric tons of sulfur dioxide over the 

same span of time. This indicates that an EV will be responsible for 429,311 times more 

carbon dioxide than sulfur dioxide over its lifetime (150,000 miles). 

 The relationship between the social cost of carbon and the EV Subsidy is 

perfectly linear: for every $1 increase in the social cost of carbon, the EV Subsidy 

increases by $37.56 (Figure 21). 

 

 
Figure 21. The EV subsidy as a function of the social cost of carbon. 

 

As illustrated in Figure 21, the EV Subsidy could rise to over $10,000 if the social 

cost of carbon exceeds $280. This value is not unprecedented, as other studies have 
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Figure 22. EV subsidy as a function of renewable energy and the social cost of carbon. 

 

These values continue to grow if the percentage of renewable energy increases 
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mean EV Subsidy value to greatly exceed the median EV Subsidy value. Botzen and van 

den Bergh (2014) make a strong case in “Nature Climate Change” that many SCC 

estimates are undervaluing the SCC by failing to account for the full external costs of 

carbon dioxide. Some of the costs that are unaccounted for include: biodiversity losses, 

impacts on long-term economic growth, political instability, extreme weather, and the 

possibility of low-probability/high impact climate change risks. Botzen and van den 

Bergh (2014) demonstrated that the inclusion of these costs would result in a social cost 

of carbon floor of at least $125, yet the true cost may exceed this value. Hence, I have 

incorporated the SCC value of $125 throughout my analysis. If the true cost of carbon is 

significantly greater than $125 per ton, it would mean that the current EV Subsidy is far 

too low. Furthermore, the risks of underpricing the social cost of carbon may be 

significantly less than the risks associated with overpricing it. This risk was demonstrated 

in the Monte Carlo Simulation, as low estimates for the SCC resulted in EV Subsidies 

(2016 grid) as low as -$1,229.89, while high estimates for the SCC led to EV Subsidies 

as high as $108,978.97 (see Table 25 in Chapter III). 

 

Miles per Gallon 

The social cost of carbon may have yet to enter the public lexicon, but “miles per 

gallon” is ubiquitous. The lesser known variable “SCC” had the most profound impact on 

the EV Subsidy, while “miles per gallon” had the second highest coefficient of 

determination among all the possible input variables entered into the Monte Carlo 

simulation. 
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Figure 23. Scatterplot for Monte Carlo simulation of the relationship between the EV 
subsidy and miles per gallon (13.3% RE scenario). 
 
 

The inverse relationship (r = -0.36) between miles per gallon and the EV Subsidy 

can be visualized in Figure 23. This relationship also occurred in my EV Subsidy model: 

I was able to manipulate the variable for miles per gallon to determine the outputs (EV 

Subsidy) for a range of ICE efficiencies (Figure 24).  

 

 
Figure 24. The EV subsidy as a function of miles per gallon. 
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The relationship between the EV Subsidy and the ICE efficiency is exponential: 

the impact on the EV Subsidy diminishes as the number of miles per gallon increases. 

Improving the efficiency from 10 mpg to 15 mpg reduces the EV Subsidy by $3,619, 

while increasing the efficiency from 40 to 45 mpg reduces the EV Subsidy by only $302. 

The environmental benefits of increased ICE efficiency are unequivocal, however this 

does not change one incredibly important fact: no matter how efficient an ICE vehicle 

becomes, it will still be combusting gasoline. A renewable energy powered EV can 

approach zero marginal emissions, while this is an unattainable goal for even the most 

efficient of ICE vehicles. 

 

 
Figure 25. The EV subsidy as a function of RE% and mpg. 
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A combination of low RE% and high ICE efficiency will produce an EV Subsidy 

that dips into negative territory (Figure 25). This indicates that ICE vehicles would be 

environmentally advantageous in these specific scenarios. These possibilities cannot be 

ignored, but it is important to remember that the vast majority of scenarios produce a 

positive EV Subsidy. Furthermore, the ideal ICE scenarios (high MPG, low RE%) 

produce slightly negative EV Subsidies, while the ideal EV scenarios (low MPG, high 

RE%) produce large positive EV Subsidies. 

 

Electric Vehicle Efficiency 

 The metric for electric vehicle efficiency (kWh per 100 miles) may initially seem 

counterintuitive, as a lower number indicates greater efficiency. This is due to the fact 

that a lower number is stating that it takes fewer kilowatt hours to travel the exact same 

distance (100 miles). 

 

 
Figure 26. EV efficiency and the EV subsidy 
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Thus, there is an inverse relationship (Figure 26) between “kWh per 100 miles” 

and the EV Subsidy: as the number of kWh per 100 miles’ increases, the appropriate EV 

Subsidy decreases. This relationship is not as significant as the relationship between the 

social cost of carbon and the EV Subsidy, or “miles per gallon” and the EV Subsidy, but 

it is not insignificant. 

An ideal EV Subsidy would take the efficiency of the automobile into account, 

however this may be difficult to implement. 

 

Table 34. Vehicle specific EV subsidy. 
Electric Vehicle kWh per 

100 Miles 
EV Subsidy ($66.26 
SCC) 

EV Subsidy ($125 
SCC) 

2016 BMW i3 27 $2639.15 $5055.08 
2017 Chevrolet Bolt 28 $2586.68 $4960.64 
2016 Nissan Leaf 30 $2481.72 $4771.77 
2016 Tesla Model S 
90D 

33 $2324.30 $4488.47 

 
 

Table 34 clearly shows the differences between vehicles that are currently 

available to purchase.  If the social cost of carbon is set at $66.26, this will amount to a 

$300 difference between a 2016 BMW i3 (the most efficient 2016 automobile) and a 

Tesla Model S 90D, but this increases to over $500 if the social cost of carbon is set at 

$125 (U.S. Department of Energy, 2016). Interestingly, the efficiency of an electric 

vehicle has a diminishing effect on the EV Subsidy as the percentage of renewable 

energy increases (Figure 27). 
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Figure 27. The EV subsidy as a function of RE% and EV efficiency 

 

Electric vehicles in high penetration renewable energy scenarios (50%+ RE) 
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benefits of an electric vehicle. 
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vehicle is responsible for more emissions, but the difference is not substantial. This is not 

the case when we look at batteries: an electric vehicle’s battery is responsible for 

approximately 1 ton of carbon dioxide, while a gasoline-powered automobile’s battery 

accounts for just under 0.04 tons of carbon pollution (GREET, 2015). 

 

 
Figure 28. Social cost breakdown: 2016 grid and miles per gallon.	This analysis is based 
on a grid with 13.3% renewable energy and an internal combustion engine vehicle with 
an efficiency of 25.4 miles per gallon. 
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battery scenarios where the battery needs to be replaced and where the battery is double 

the size and needs to be replaced. In Figure 28 we can see that the “Double kWh and One 

Replacement” scenario is responsible for $2,422 in social costs, while the ICE vehicle is 

responsible for $4,709 in social costs. 

 There is no denying that large battery packs and battery replacements are a 

legitimate environmental concern. It would be ideal to know exactly how long batteries 

would last and how many batteries will need to be replaced, as this could help to facilitate 

a more accurate EV Subsidy. However, most modern electric vehicles are less than five 

years old and there is not enough data to accurately assess the longevity of the batteries. 

Plug In America conducted one of the only studies on EV battery life; the study looked at 

Tesla Roadsters as they were the first long range electric vehicles on the road. A sample 

of 126 cars were analyzed and the conclusion was positive: it is expected that the battery 

pack will retain 80-85% of its capacity after 100,000 miles (Montavalli, 2013). This 

indicates that it is entirely possible that an electric vehicle could reach 150,000 miles 

without needing a replacement battery. 

 Battery longevity is a function of multiple factors. Overcharging, temperatures, 

and deep discharges all impact the lifespan of an electric vehicle’s battery. Fortunately, 

these are all variables that can be controlled by smart hardware and software. Modern 

electric vehicles can use onboard cooling mechanisms to keep the batteries at an 

acceptable temperature and use software to prevent the batteries from reaching 100% 

capacity. For example, the Tesla Model S will only charge to 100% if the owner 

manually asks it to and cars such as the Chevrolet Volt never use full capacity. 
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Furthermore, a battery’s lifespan is strongly correlated to the number of times that is fully 

discharged. Jim Montavalli (2013) writes:  

After 300 to 500 cycles at 100 percent depth of discharge, a lithium-ion cell’s 
capacity will drop to 70 percent. But partial discharge “reduces stress and 
prolongs battery life.” Drain the batteries consistently to only 50 percent, as is 
often the case with electric cars that get plugged in frequently, and life expectancy 
of a healthy battery zooms up to 1,200 to 1,500 cycles. That, of course, translates 
to 366,000 miles, but don’t expect numbers like that on your odometer. Other 
wild cards such as frequency of fast recharge can also affect battery life. (para. 9) 
 

This furthers the notion that many electric cars will never need a battery replacement, yet 

it does not change the fact that it is still important to measure the environmental impact of 

replacement batteries. 

 There are countless combinations of battery size and battery replacements, 

however I focused on three specific scenarios (Table 35): the standard battery in the 

GREET model with no replacements, double the kWh of the GREET model with no 

replacements, and double the kWh with one replacement (the double kWh scenario is 

essentially the same as a scenario with the standard kWh and one replacement, due to the 

fact that the battery emissions data is simply doubled). 

 

Table 35. Battery scenarios and the EV subsidy 
 Battery Total SC EV Total SC ICE Subsidy 
Standard GREET Battery  $89.52   $2,332.54   $4,709.32   $2,376.78  
With One Replacement  $179.05   $2,422.06   $4,709.32   $2,287.25  
Double kWh and One Replacement  $358.10   $2,601.11   $4,709.32   $2,108.20  

 
 

The social cost of an electric vehicle clearly increases (Table 35) if the battery 

size increases and/or the battery is replaced, and subsequently, leads to a decrease in the 

EV Subsidy. This decrease is minimal when compared to the overall EV Subsidy, as the 
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detrimental aspects of battery production do not compensate for the externalities related 

to burning gasoline. In the “double kWh and one battery replacement” scenario, the EV 

Subsidy continues to grow as the percentage of renewable energy increases (Figure 29). 

 

 
Figure 29. The EV subsidy as a function of RE% (double kWh and battery replacement).	
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Figure 30. The impact of mpg and RE% on the EV subsidy	(double kWh and one 
replacement). 
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that is less favorable for electric vehicles, as there is some variation among the studies 

that have looked at life-cycle emissions of lithium-ion batteries (Kim et al., 2016). The 

GREET model was used throughout this study, but its battery-related emissions data is 

lower than some of the other models. Research by Kim et al. (2016) indicates that the 

emissions per kWh of battery capacity may be significantly higher than what the GREET 

model outputs (see Ancillary Appendix 2). I took this data and entered it into the model 

to determine what the EV Subsidy would look like if battery emissions were significantly 

increased. 

 

 
Figure 31. Social cost breakdown: 2016 grid and mpg, and Kim et al. emissions data. 
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The emissions data from Kim et al. (2016) increases the total social cost of the “Double 

kWh and One Replacement” EV scenario to $3,962, yet it is still lower than the ICE 

vehicle’s social cost of $4,709. These figures are based on the 2016 grid (13.3% 

renewable energy) and they do not factor in the benefits of greater renewable energy 

penetration. 

 

 
Figure 32. The EV Subsidy as a function of RE%	(double kWh and battery replacement, 
and Kim et al. emissions data). 
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advantage of electric vehicles does diminish if the electric vehicle is compared to an 

extremely efficient internal combustion engine vehicle. 

 

 
Figure 33. The impact of mpg and RE% on the EV subsidy	(double kWh and one 
replacement). 
 
 

The combination of high miles per gallon and a disadvantageous battery scenario 

will move the EV Subsidy into negative territory (indicating that the ICE vehicle would 

be environmentally advantageous). The orange and blue regions of Figure 33 show the 

combinations that would result in a negative EV Subsidy, while all other regions would 

result in a positive EV Subsidy. The data demonstrates that it is possible for an internal 

combustion engine to have less of an environmental impact than its electric counterpart, 

but that the majority of scenarios still favor an electric vehicle. 
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 Climate change is the paramount environmental issue of our time, and thus, it is 

vital to step beyond the EV Subsidy and take a granular look at the greenhouse gas 

emissions that each battery is responsible for. The Kim et al. data is based on emissions 

per kWh of battery capacity, which facilitates an analysis of carbon dioxide emissions 

based on battery pack size. 

 

 
Figure 34. Carbon dioxide emissions per kWh of battery capacity (13.3% RE). 

 

Based on the 2016 grid (13.3% RE) and data from Kim et al. (2016), the carbon 

emissions for an EV (blue line) would remain less than ICE vehicles with efficiencies of 
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This changes if the battery needs to be replaced (orange line): the EV would be 
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mpg, but the carbon emissions for an EV with a battery larger than 55 kWh would exceed 

those of an ICE with an efficiency of 40 miles-per-gallon.  

 

 
Figure 35. Carbon dioxide emissions per kWh or battery capacity (100% RE). 
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renewable energy and highlights the symbiotic ways in which these technologies can be 

used to mitigate climate change. A detailed analysis of each RE% scenario can be found 

in Ancillary Appendix 3. Furthermore, an analysis of the carbon impact for currently 

available individual electric vehicles can be found in Ancillary Appendix 4. 

 

Table 36. Battery carbon emissions and social cost. 
RE% GREET CO2 (tons) GREET Cost  Kim et al. CO2 (tons) Kim et al. Cost 

13% 0.983  $89.52  4.512  $429.98  
20% 0.963  $88.12  4.422  $423.50  
50% 0.874  $81.78  4.012  $394.55  
80% 0.785  $75.45  3.603  $365.67  

100% 0.727  $71.24  3.334  $346.22  
Note: This table compares battery-related carbon emissions and the battery social costs 
from two datasets: GREET 2015 and Kim et al. 
 
 

The output variables in my study (carbon emissions, social costs, EV Subsidy) are 

all impacted by the data sets that are entered into the model and the input variables. This 

results in a range of possible outcomes, but in all scenarios there is one constant that 

remains true: increased RE% leads to lower battery-based emissions, battery-related 

social costs, and EV Subsidies. This relationship is displayed in Table 36, as the RE% has 

a profound impact on the carbon emissions and costs associated with both battery 

scenarios. My model allows the grid-based emissions from battery production to float 

with the percentage of renewable energy. An increase in RE% leads to a decrease in 

battery-related carbon emissions and socials costs, but the model does not reduce non-

grid emissions (see Appendix 3). Non-grid emissions will most likely decrease as well, 

however this is outside the scope of this study. It is noted that the impact that RE% has 

on production emissions is likely far greater than what is reported in Table 36. 
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 Batteries and their environmental impact will likely remain the most controversial 

aspect of electric vehicles. The results of this study clearly indicate that the vast majority 

of RE% and MPG scenarios will result in positive EV Subsidies and lower carbon 

emissions for the EV. Only a combination of high emissions data (such as Kim et al.), 

large battery packs, battery replacements, and high ICE efficiency will result in negative 

EV Subsidies. 

 

Type of Model 

 There are multiple variables within the EV Subsidy model that deserved extra 

scrutiny, but the model itself should not be ignored. My research focused on the impacts 

that renewable energy penetration would have on the social costs of electric vehicles, and 

thus, it was necessary to accurately predict the distribution of power plants in high 

penetration renewable energy scenarios. I created three possible models that 

accomplished this and the “Combined Model” has the most merit (see Chapter II for a 

detailed explanation of each model). The Combined Model has the best predicative 

attributes, but an analysis of all models demonstrates that the differences between the 

models is relatively minor (Figure 36). 

The differences between the Proportional Model and the Combined model are so 

minuscule that they cannot even be picked up by looking at Figure 36. The NREL Model 

deviates from the other models when the RE% grows from 15% to 70%. This is due to 

the NREL model’s inclusion of higher levels of coal power in its future scenarios. The 

problems with the NREL model are outlined in Chapter II. Most importantly, all models 

show the distinct positive relationship between RE% and the EV Subsidy. 
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Figure 36. EV subsidy as a function of renewable energy. This graph looks at the EV 
Subsidy based on three different models for grid prediction. 
 
 

Policy 

 The results of my research clearly demonstrate that the benefits of electric 

vehicles will continue to grow as the percentage of renewable energy increases. The 

majority of academic research and policy has centered on the current benefits of electric 

vehicles, but we cannot ignore the true benefits that lie in the future. An EV Subsidy will 

help to fix the market failure that results from the externalities within our transportation 

sector. Furthermore, the EV Subsidy can help to spur demand for electric vehicles and 

promote future growth. A proper EV Subsidy should account for the differences in social 

costs between supplementary goods (EV and ICE), and ideally, this will lead to an 

eventual takeover by the environmentally advantageous technology. Unfortunately, the 

transportation sector is complex and there are other barriers in place, such as: charging 

infrastructure, EV range, availability of models, and length of ownership. It is unlikely 

that a subsidy of any amount would initiate an immediate nationwide switch to electric 
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vehicles. Thus, there is an extra benefit to electric vehicles that are bought today: they 

increase demand for the infrastructure that will facilitate the sales of the progressively 

cleaner electric vehicles of tomorrow. 

 The current federal subsidy stands at $7,500 for any electric vehicle with a battery 

larger than 16 kWh (Berman, 2016). This value is greater than the value I determined for 

the appropriate EV Subsidy, however it is not recommended that the federal government 

decrease the current subsidy. Once again, the larger subsidy will help to encourage sales 

of electric vehicles that will, in turn, break down the barriers to entry for the EV market 

and facilitate the adoption of future electric vehicles. Furthermore, the Monte Carlo 

simulation demonstrated that there is significant variability within the system and that the 

possibility for underestimating the EV Subsidy is far greater than overestimating it. The 

mean values in the Monte Carlo simulation were significantly greater than the median 

values, indicating the greater danger for underestimation. 

 The current federal subsidy diminishes once a car manufacturer sells 200,000 

electric vehicles, as it is reduced to 50%, and then 25%, over the year following the 

milestone being reached (Internal Revenue Service, 2016)). This policy should be 

changed, as the efficacy of electric vehicles does not change once a certain sales 

threshold has been met. The opposite effect should actually take place: the subsidy should 

grow as the percentage of renewable energy grows. An ideal EV Subsidy would be linked 

to the percentage of renewable energy and would grow over time. It should only be 

abandoned once the percentage of electric vehicles has reached a critical mass and a 

nationwide EV infrastructure is put into place. 
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Increased Subsidy for PV and EV Combination 

 The EV Subsidy should be a centered around the disparity in externalities 

between electric vehicles and internal combustion engine vehicles. This is exactly why 

the EV Subsidy should be tied to the percentage of renewable energy and it is why the 

subsidy should not be capped at 200,000 vehicles per automaker. It is important to look 

to the future, but we should not ignore the fact that individuals can currently charge their 

vehicles with 100% renewable energy if their home has rooftop photovoltaic panels 

(assuming the car is charged during daylight hours or the home is fitted with batteries). 

 

Table 37. Comparison of EV subsidies.  
Scenario Subsidy 
EV Subsidy (13.3%RE, 2016 Grid):  $2,376.81  
EV Subsidy (100%PV):  $3,903.24  
Difference $1,526.43 

 
 

An EV powered by photovoltaics is responsible for a social cost that is $1,526.43 

(Figure 37) less than an EV powered by the standard 2016 13.3% RE grid. Thus, the 

federal EV Subsidy should be increased by $1,500 for individuals that can verify that 

they will be charging their car with photovoltaics. These technologies have a symbiotic 

relationship and can be cornerstones of a move toward a carbon neutral world. This 

additional subsidy would help to encourage the simultaneous adoption of both 

technologies. A study by the California Air Resources Board revealed that 32% of 

electric vehicle owners had photovoltaic panels on their roof and 16% were planning to 

buy panels in the near future (2014). This additional subsidy is empirically justified (see 

Chapter III) and would reward individuals for adopting both technologies. 
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Tax on Gasoline 

  The National Bureau of Economic Research white paper by Holland et al. 

clarifies that an EV subsidy is actually the second-best policy and that the first-best 

policy is a Pigovian tax. A Pigovian tax is “a per-unit tax set equal to the external damage 

caused by an activity, such as a tax per ton of pollution emitted equal to the external 

damage of a ton of pollution” which, in this context, can be exacted upon the externalities 

associated with both electric vehicles and internal combustion engine vehicles (Harris & 

Roach, 2013, p. 1652). Holland et al. support a differentiated tax on mileage for both 

types of vehicles (2013), but a gasoline tax would be much easier to implement. The 

appropriate EV Subsidy from this study represents the difference in externalities between 

electric vehicles and gasoline-powered vehicles. Instead of subsidizing electric vehicles, 

the value of the EV Subsidy could be used to tax internal combustion engine vehicles. 

The value could be broken down per gallon, which would allow the tax to be executed as 

a “gasoline tax.” This would serve two key advantages: it would be easy to implement 

and it would precisely target automobiles that pollute more (i.e. vehicles with poor 

efficiency).  

 The EV Subsidy was calculated based on an ICE vehicle with an efficiency of 

25.4 miles per gallon (the July 2016 average) and a lifespan of 150,000 miles (University 

of Michigan, 2016). The total number of gallons is therefore 5905.51 (150,000 miles / 

25.4 mpg). 

 
This quantity of gallons can then be divided into the appropriate EV Subsidy 

(which represents the disparity in externalities) to determine the “EV Subsidy per 

gallon,” which could be implemented as a tax per gallon on ICE vehicles. It is important 
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to point out that this value could be impacted by multiple factors, including the social 

cost of carbon and the percentage of renewable energy. 

 

 
Figure 37. Gasoline tax. This graph illustrates the relationship between RE% and the 
proposed gasoline tax. The blue bars represent the appropriate tax if carbon is priced at 
$66.26 per ton, while the orange bars represent the appropriate tax if carbon is priced at 
$125 per ton. 
 
 

Fortunately, my model can account for the possible variation in these input 

variables (RE% and SCC), as illustrated in Figure 37. The gasoline tax is clearly a 

function of both RE% and the social cost of carbon. Once again, this underscores the 

importance of accurately defining the social cost of carbon, while it also introduces the 

possibility that a gasoline tax should be tied to the current level of renewable energy. For 

example, each year a new gasoline tax could be calculated based on the previous year’s 

percentage of renewable energy. This would allow the gasoline tax to more accurately 

represent the current difference in externalities. 

 A gasoline tax has many advantages, but it is not a perfect solution. The tax 

burden would fall disproportionally on those that use a large quantity of gasoline, which 
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is how the tax is intended to work. But, in many cases, the ratio of gasoline expense to 

vehicle price would be much higher for lower-priced cars. An individual that purchases a 

$20,000 car might purchase the same number of gallons of gasoline as someone who 

purchases an $80,000 car. Both owners would pay the same amount in taxes because both 

cars would be responsible for a similar quantity of gasoline-related externalities, but it is 

likely that the tax would be far more burdensome for the individual who bought the 

$20,000 automobile. The tax would be environmentally fair, but regressive: the gasoline 

tax will account for a larger percentage of income for individuals in the lower income 

brackets. Furthermore, the impact of the tax will not be uniform throughout all income 

groups. A study by Tingting Wang and Cynthia Chen (2013) discovered that price 

elasticities of demand for gasoline vary based on income levels. This is due to the fact 

that households with greater income account for higher percentages of “discretionary 

driving,” which can be decreased easily if the price of gasoline increases. This is not the 

case for the lower income brackets, as a much larger percentage of their travel is non-

discretionary and cannot be easily reduced. More research needs to be done on the 

negatives that a gasoline tax could have on lower income groups and the possibility of 

subsidies to rectify this. 

 The gasoline tax would initially impact a far greater number of cars than an EV 

Subsidy. Electric vehicles currently make up a small portion of overall market share and 

the EV Subsidy is only applied to this small segment of the population. However, the 

gasoline tax would be applied to all gasoline-powered vehicles. The methodology for the 

EV Subsidy and the gasoline tax was based on a one-to-one comparison: the social cost 

of one internal combustion engine vehicle compared to one electric vehicle. 
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Unfortunately, the market is not split evenly between electric vehicles and internal 

combustion vehicles.  While the gasoline tax and EV Subsidy would be equitable in 

vehicle-to-vehicle analyses, the total revenue from the gasoline tax would be vastly 

greater than the total cost of the EV Subsidy. The solution to this problem would be to tax 

both vehicles based on their social cost. In this scenario we would see a tax on electric 

vehicles, but an even greater tax on internal combustion vehicles. Thus, there would be 

no monetary advantage for ICE owners to choose this option. 

 

Gas Tax Revenue 

 In 2015, Americans used 370 million gallons of gasoline per day for 

transportation, which amounts to over 138 billion gallons of gasoline (138,335,000,000) a 

year (U.S. Energy Information Administration, 2016). A gasoline tax of $0.40 to $1.27 

can then be multiplied by this quantity of gasoline to determine the yearly revenues from 

such a tax (Table 38). 

Even considering the 2016 renewable energy mix and a social cost of carbon of 

$66.26, the gasoline tax would generate billions of dollars of revenue. Unsurprisingly, 

this number increases substantially as the RE% and social cost of carbon increases. But, it 

is important to note that while the RE% should increase over time, the total revenue from 

a gasoline tax may not increase simultaneously. A properly implemented gasoline tax 

should decrease demand for gasoline and gasoline-powered vehicles. This is in addition 

to the assumption that the market penetration of electric vehicles is expected to increase 

significantly over the next 25 years. Bloomberg New Energy Finance predicts that 

electric vehicles will account for 35% of new car sales in 2040 (MacDonald, 2016). The 
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increase in EV sales, in addition to the projected increases in ICE efficiency (U.S. Energy 

Information Administration, 2016), should lead to a decrease in overall gasoline 

consumption. 

 

Table 38. Gasoline tax revenue as a function of RE% and SCC. 
 Social Cost of Carbon: $66.26 Social Cost of Carbon: $125 

RE% Tax Rate 
per Gallon 

Revenue Tax Rate 
per Gallon 

Revenue 

13.30%  $0.40   $55,675,374,719.34   $0.78   $107,353,344,408.12  
20%  $0.42   $58,585,040,973.33   $0.81   $112,640,499,527.55  
30%  $0.45   $62,927,108,366.97   $0.87   $120,543,144,422.07  
40%  $0.49   $67,299,630,717.22   $0.93   $128,525,208,286.72  
50%  $0.52   $71,665,980,091.45   $0.99   $136,504,067,890.09  
60%  $0.55   $76,023,230,050.88   $1.04   $144,466,393,351.56  
70%  $0.58   $80,374,245,254.63   $1.10   $152,409,207,678.25  
80%  $0.61   $84,723,307,661.53   $1.16   $160,331,818,611.02  
90%  $0.64   $89,073,662,365.66   $1.22   $168,232,860,171.64  

100%  $0.68   $93,426,915,009.48   $1.27   $176,110,734,772.26  
 
 

 The U.S Energy Information Administration (EIA) produces projections for 

yearly power plant distribution (see Ancillary Appendix 5) and transportation-related 

gasoline consumption (see Ancillary Appendix 6). These projections do not factor in a 

large-scale adoption of election vehicles, but they do account for increases in renewable 

energy and improved efficiency in internal combustion engine automobiles. I was able to 

use this data to calculate a gasoline tax, and tax revenue, based on the yearly projections. 
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Figure 38. EIA projection-based RE% and tax rates (EIA, 2016). 

 

The EIA projects that the percentage of renewable energy will increase steadily 

between 2016 and 2040 (Figure 38); this increase causes the per-gallon gasoline tax to 

increase as well. Yet, this increase in RE% does not supersede the projected decrease in 

gasoline consumption, and thus, the EIA-based tax revenue projection actually decreases 

between 2019 and 2040 (Figure 39). 

The projected gasoline tax revenue will undoubtedly decrease over time and this 

will be further exacerbated by any increase in electric vehicle adoption. Furthermore, a 

gasoline tax would inherently decrease the demand for gasoline, which would lead to an 

additional reduction in tax revenue (this reduction is not reflected in Figure 38 or Figure 

39). This does not take away from the fact that the tax would generate a significant 

amount of revenue that could be used to promote electric vehicle adoption and reduce 

carbon emissions. 
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Figure 39. EIA projection-based revenue from gasoline tax. 

 

Renewable Energy Development 

 The revenue generated from an additional gasoline tax could be used to develop 

and build new solar and wind farms around the country. This expansion would have a 

compounding benefit, as the increase in renewable energy would also increase the 

environmental benefits of electric vehicles. In 2015, the United States invested $56 

billion in clean energy, with most of the investment going towards new solar and wind 

plants (Mills & McCrone, 2015). 

The total yearly investment in clean energy (Figure 40) can be compared to the 

estimated yearly revenue from a new gasoline tax (Figure 39). A gasoline tax based on 

$66.26 SCC would produce revenue in line with the current total investment, while a 

gasoline tax based on $125 SCC would generate revenue that is nearly double the current 

level of investment in clean energy. These revenues could result in a clean energy 
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revolution if the vast majority of the proceeds were directed toward the construction of 

new renewable energy power plants. 

 

 
Figure 40. United States investment in clean energy. Data acquired from Bloomberg New 
Energy Finance. 
  
 

The capital necessary to install new renewable energy capacity varies based on 

technology and size (Table 39), but it can be assumed that the tax revenue would be used 

for large-scale 1MW+ power plants. The capital cost per megawatt-hour can then be 

divided into the tax revenue to quantify the number megawatts of power that could be 

installed if all of the revenue was directed toward building that type of renewable energy. 

In Table 40, this number was multiplied by the “capacity factor” and the number of hours 

per year to determine the megawatt hours that this new capacity would generate. 
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Table 39. Installed cost per kWh for renewables. 
Technology Mean Installed Cost (kWh) Cost per MW 
PV <10 kW $3,897  $3,897,000  
PV 10–100 kW $3,463  $3,463,000  
PV 100–1,000 kW $2,493  $2,493,000  
PV 1–10 MW $2,025  $2,025,000  
Wind <10 kW $7,645  $7,645,000  
Wind 10–100 kW $6,118  $6,118,000  
Wind 100–1000 kW $3,751  $3,751,000  
Wind 1–10 MW $2,346  $2,346,000  

Note: Data from the National Renewable Energy Laboratory (2016): 
http://www.nrel.gov/analysis/tech_lcoe_re_cost_est.html 
 
 

Table 40. Possible megawatt hours from tax revenue for photovoltaics and wind. 
 Cost 

per KW 
Cost per 
MW 

MW from 
Tax Revenue 

Capacity 
Factor 

MWH per 
Year 

PV 1–10 MW $2,025  $2,025,000  27494.01 25.8% 62138667.11 
Wind 1–10 
MW 

$2,346  $2,346,000  23732.04 32.2% 66941450.54 

 
 

 A common concern related to electric vehicles is that the increased electricity 

demand would strain the national power grid. This concern has been debunked 

(Montavalli, 2011), but a concerted expansion of renewable energy could help to alleviate 

any lingering fears. In 2016, there were 159,139 electric vehicles sold in the United 

States (Inside EVs, 2017). Based on the average yearly mileage of 13,476 and an 

efficiency of 32 kWh per 100 miles, electric vehicles sales increased national electricity 

demand by 686,258 megawatt hours (Table 41). 

 

Table 41. Electricity necessary to power new EV sales (2016). 
 Cars 

Sold 
Average 
Miles 

Average kWh per 
100 miles 

MWH 
Necessary 

MULTIPLE 

2016 EV 159139 13476 32 686258.29 97.55 
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This electricity demand is a small fraction of the increased renewable energy 

capacity that a gasoline tax could provide. If 100% of the revenue from a gasoline tax 

was directed to large-scale wind farms, the expansion in capacity would generate 97.55 

times as much power as would be necessary to power every new electric vehicle sold in 

2016. 

 

Table 42. Number of cars powered by an expansion in wind power. 
 kWh per 

100 
kWh per 
Year 

MWH per 
Year 

Cars Powered by Tax 

2016 BMW i3 27 3638.52 3.63  18,397,988.89  

2017 Chevrolet Bolt 28 3773.28 3.77  17,740,917.86  

2016 Nissan Leaf 30 4042.8 4.04  16,558,190.00  

2016 Tesla Model S 90D 33 4447.08 4.44  15,052,900.00  

Note: This table details the number of cars that could be powered by an expansion of 
wind power funded by a gasoline tax. The number varies based on the efficiency of the 
electric vehicle. 
 
 

A gasoline tax (at $66.36 per ton of carbon) would be able to fund enough new 

wind power to compensate for the additional electricity demand from over 15 million 

new electric vehicles (Table 41). This number exceeds 18 million if the new electric 

vehicles are as efficient as BMW’s i3 (Table 42). This is a purely hypothetical scenario, 

as the electricity demand from the new electric vehicles would not perfectly match the 

supply curve for wind power. But, Table 41 does demonstrate the potential of a gasoline 

tax and how those kilowatt-hours could be used to power a new fleet of electric vehicles. 

  If electric vehicles continue to be sold at a rate of 159,139 per year, the increase in 

power would far exceed the demand from new electric vehicles. Thus, if we focus on the 

marginal changes to the U.S. fleet of automobiles (159,139 new electric vehicles) and the 

US power grid (66941450 MWH increase in renewable energy), one can make a case that 
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each marginal electric vehicle will be powered by 100% renewable energy. Based on 

these assumptions, gasoline should be taxed at the 100% RE rate of $0.68 per gallon (at 

$66.26 SCC) instead of the 13.3% rate of $0.40 per gallon. This is just one perspective 

and one can also argue that the we should look at the aggregate as opposed to marginal 

changes. 

 

Expanded Nationwide Charging Network 

 The tax revenue would not need to be focused solely on the deployment of 

renewable energy and a portion of the proceeds could be used to create a nationwide 

charging network similar to Tesla Motor’s supercharging network. The vast majority of 

driving takes place within cities. An MIT study determined that the current fleet of low-

range electric vehicles could meet the demand of 87% of vehicle-days (Needell et al., 

2015). Another study by two Colombia doctoral students calculated that 98% of single-

trip drives were under 50 miles (Van Haaren, 2012). Thus, the new crop of long-range 

affordable electric vehicles (Chevrolet Volt, Tesla Model 3) include ranges that go far 

beyond what is necessary for city driving. The advantage of these vehicles is that their 

200+ mile ranges make interstate travel feasible, but this advantage can only be unlocked 

if the car is paired with an interstate fast-charging network. Tesla has already begun to 

create such a network, yet a nationwide public network of chargers could help to 

accelerate the adoption of electric vehicles. 
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Figure 41. Tesla supercharging network. This map shows the current Tesla Supercharger 
stations in North America and was taken from: https://www.tesla.com/supercharger 
 
 

Tesla’s Supercharger network allows cars to gain 170 miles of range per half hour 

of charging (Tesla, 2016). The chargers are strategically placed around the country to 

facilitate driving between cities and states (Figure 41) and the current (2016) network 

features 769 stations and 4,876 chargers. 

 There is some debate about the exact cost to build a Tesla Supercharger, but a 

2016 article by the research group Ark Invest indicates that the price hovers around 

$270,000 per station. Thus, for every billion dollars of tax revenue allotted to charging 

infrastructure, over 3,700 Supercharger-style charging stations could be built. A small 

portion of the revenue generated from a gasoline tax could create a charging network that 

would dwarf the network that Tesla currently has in place. This charging network could 

grow each year to accommodate the influx of new electric vehicles and would allow 

electric vehicles to travel around the country without worrying about range anxiety. 

 The applications for the gasoline tax revenue do not have to end with renewable 

energy and EV charging infrastructure. Part of the revenue could also be used to establish 

a “smart” grid and to build grid-scale battery facilities. Each of these technologies will be 
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essential to a carbon neutral grid, as they will help to facilitate the adoption of variable 

output renewable energy such as wind and solar. The National Renewable Energy 

Laboratory (NREL) predicts that 100 – 152 GW of battery deployment will be needed for 

an 80% renewable energy future and this number will need to be even higher if we are to 

achieve a 100% RE grid (NREL, 2016). 

 The ideal use for gasoline tax revenue would undoubtedly be a combination of the 

above-mentioned infrastructure: wind power, solar power, charging stations, grid-scale 

batteries, and a smart grid. The technologies would be built out incrementally as the 

revenue comes into the system. This revenue would decrease over time, due to the 

increased efficiency of ICE vehicles and the greater penetration of electric vehicles. This 

would not be a cause for concern, as a high RE% smart-grid and EV infrastructure could 

be in place before the tax dropped to nominal levels. The exact plan for this 

implementation is outside the scope of my study, but it should be researched extensively 

before any gasoline tax is put into place. 

 

Conclusion 

 A variety of factors play a role in defining the disparity in the environmental 

impacts between electric vehicles and their internal combustion engine counterparts (as 

quantified by the EV Subsidy). Each of these variables can be manipulated to determine 

their own role in the EV Subsidy, but one characteristic remains true for all scenarios: an 

increase in the percentage of renewable energy significantly decreases the social costs 

assigned to electric vehicles and causes the EV Subsidy to rise.  
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Table 43. Sensitivity analysis. 
  13.30% 20% 50% 80% 100% 
Cost of 
Carbon 

$20.00 SCC   $639.37   $683.65   $879.56   $1,074.88   $1,208.56  

 $66.26 SCC   $2,376.78   $2,500.99   $3,059.42   $3,616.83   $3,988.39  
 $125.00 SCC   $4,582.91   $4,808.62   $5,827.35   $6,844.55   $7,518.16  
 $200.00 SCC   $7,399.72   $7,755.02   $9,361.48   

$10,965.75  
 

$12,025.01  
        

Miles per 
Gallon 

10 MPG  $8,959.26   $9,083.47   $9,641.89   
$10,199.31  

 
$10,570.87  

 25.4 MPG  $2,376.78   $2,500.99   $3,059.42   $3,616.83   $3,988.39  
 40 MPG  $816.65   $940.86   $1,499.28   $2,056.70   $2,428.26  
 60 MPG -$88.09   $36.12   $594.55   $1,151.97   $1,523.52  
        

EV 
Efficiency 

36 kWh/100  $2,166.87   $2,306.08   $2,931.90   $3,556.59   $3,972.99  

 32 kWh/100  $2,376.78   $2,500.99   $3,059.42   $3,616.83   $3,988.39  
 28 kWh/100  $2,586.68   $2,695.90   $3,186.93   $3,677.07   $4,003.79  
 24 kWh/100  $2,796.58   $2,890.81   $3,314.45   $3,737.32   $4,019.18  
       

Battery 
Scenarios 

One 
Replacement 

 $2,287.25   $2,399.08   $2,901.81   $3,403.63   $3,738.15  

 Double kWh 
+ Replace 

 $2,108.20   $2,222.85   $2,738.25   $3,252.72   $3,595.68  

 Kim et al.  $2,036.32   $2,165.60   $2,746.64   $3,326.61   $3,713.41  
 Kim et al. +  $1,606.34   $1,742.10   $2,352.09   $2,960.94   $3,367.19  
 Kim et al. + +  $746.38   $895.10   $1,562.98   $2,229.59   $2,674.76  
       

Different 
Models 

Proportional  $2,376.79   $2,503.79   $3,067.22   $3,630.47   $4,008.23  

 NREL  $2,364.80   $2,150.69   $2,704.76   $3,665.20   $3,988.39  
 Combined  $2,376.78   $2,500.99   $3,059.42   $3,616.83   $3,988.39  

Notes: Kim et al. battery data is taken from the paper “Cradle-to-Gate Emissions from a 
Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis (2016).” Kim et al. 
+ includes a 64 kWh battery and Kim et al. ++ includes a 64 kWh battery and one 
replacement. 
 
 

The sensitivity analysis in Table 43 looks at a variety of scenarios (cost of carbon, 

mile-per-gallon, EV efficiency, different battery scenarios, and type of model) and how 
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the percentage of renewable energy impacts said scenarios. In each scenario there is a 

strong correlation between RE% and the EV Subsidy. The efficacy of electric vehicles is 

undoubtedly linked to the make-up of the grid and the percentage of renewable energy. 

Thus, it is important to look at electric vehicles not for what they are today, but for what 

they can become. 

Much of the literature has focused on the impact that renewable energy will have 

on the operating phase of an electric vehicle, but the impact on the production phase 

should not be ignored. My model is unique in that it disaggregates the “grid-based 

production emissions” from the “non-grid-based production emissions” and allows the 

“grid-based emissions” to float with the percentage of renewable energy.  

 

 
Figure 42. Production-based socials costs for an EV. 
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Many articles focus on the negative aspects of an electric vehicle’s production and 

center on the faulty assumption that these negatives are fixed in place. The reality is that 

these production emissions will decrease as the grid becomes cleaner (Figure 42). The 

full benefits of this reduction are not captured by my model, as it is likely that the non-

grid-based production emission’s will also decrease over time due to improved 

efficiencies. 

The transportation sector needs to be radically altered if society wants to truly 

combat the risks of climate change. Renewable energy-powered electric vehicles can be a 

key component of this revolution: an electric vehicle running on 100% renewable energy 

would be responsible for 6.30 tons of carbon dioxide over its lifetime, while an internal 

combustion engine with an efficiency of 25.4 miles-per-gallon would be responsible for 

66.40 tons of carbon dioxide (see Table 28 in Chapter III or Appendix 2). This is the 

direction that our society needs to move in and we have a moral obligation to encourage 

the technologies that will facilitate this positive change. An appropriate EV Subsidy 

and/or gasoline tax is but part of the solution. 

 

Recommendations and Summary 

 The outcomes of my research support the premise that electric vehicles have a 

positive impact on the environment (relative to internal combustion engine vehicles) and 

can play an important role in climate change mitigation. The benefits of electric vehicles 

do not diminish once a specific sales threshold is met and the current cap on electric 

vehicle subsidies is a perverse incentive that will promote additional market failure. The 

purpose of the EV Subsidy is to compensate for the externalities that exist within our 
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transportation economy. The number of sales per manufacturer has no bearing on the 

overall disparity between EV and ICE externalities, and subsequently, it should have no 

bearing on the number of cars that can take advantage of the EV Subsidy. The cap should 

be eliminated and the efficacy of the subsidy should be re-evaluated every 5 years. The 

subsidy should not be eliminated until the number of electric vehicles has reached a 

critical mass. 

 My model indicates that the difference in externalities between an electric vehicle 

and an internal combustion engine vehicle currently resides at $2,376.78 (2016 grid and 

July 2016 average mile per gallon). This number falls short of the current $7,500 federal 

tax subsidy, yet I recommend that the current $7,500 subsidy remain in place. My Monte 

Carlo simulations demonstrated that the variation in pollutant pricing leads to potential 

variation in outcomes (EV Subsidy). This variation is heavily weighted against the 

internal combustion engine vehicle: while the bottom 10% of the outputs (EV Subsidy) 

from the Monte Carlo Simulation fell between -$1,229.89 and $485.26 (2016 grid), the 

top 10% of the simulations fell between $20,776.32 and $108,978.97. This was a clear 

indicator that the possibility for underestimating the EV Subsidy is more severe than 

overestimating it and it is a strong reason for leaving the EV Subsidy at $7,500. 

 The underlying theme of my research has been the correlation between renewable 

energy and the EV Subsidy. My model demonstrated the positive relationship between 

the percentage of renewable energy and the EV Subsidy (Figure 43): an increase in the 

percentage of renewable energy results in an increase in the EV Subsidy. This correlation 

is the reason that I also recommend that we link the current EV Subsidy to the percentage 

of renewable energy. The EV Subsidy should be recalculated at the end of each year and 



	
	

104 

	
Figure 43. EV subsidy as a function of renewable energy. 
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Appendix 1  

Power Generation Regressions 

 

 
Figure 44. Wind power regression. XLSTAT was used for non-linear regressions for each 
power generation type. This was done to create an equation that would model the 
relationship between the percentage of each power generation type and the percentage of 
renewable energy. 
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Figure 45. Photovoltaic regression data part 1. 
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Figure 46. Photovoltaic regression data part 2. 
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Figure 47. Photovoltaic regression data part 3. 
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Figure 48. Concentrated solar power regression data part 1. 
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Figure 49. Concentrated solar power regression data part 2. 
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Figure 50. Concentrated solar power regression data part 3. 
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Figure 51. Concentrated solar power regression data part 4. 
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Figure 52. Geothermal regression data part 1. 
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Figure 53. Geothermal regression data part 2. 
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Figure 54. Geothermal regression data part 3. 
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Figure 55. Biomass regression data part 1. 
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Figure 56. Biomass regression data part 2. 
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Figure 57. Biomass regression data part 3. 
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Figure 58. Hydropower regression data part 1. 
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Figure 59. Hydropower regression data part 2. 
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Figure 60. Hydropower regression data part 3. 
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Figure 61. Coal power regression data part 1. 
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Figure 62. Coal power regression data part 2. 
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Figure 63. Coal power regression data part 3. 
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Figure 64. Natural gas regression data part 1. 
 
 
 
 
 



	
	

126 

 
Figure 65. Natural gas regression data part 2. 
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Figure 66. Natural gas regression data part 3. 
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Figure 67. Nuclear power regression data part 1. 
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Figure 68. Nuclear power regression data part 2. 
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Figure 69. Nuclear power regression data part 3. 
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Figure 70. Nuclear power regression data part 4. 
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Appendix 2 

Power Plant Emissions Data by Pollutant 

 

Table 44. Power plant emissions data for carbon dioxide. 

 
Note: The data in the following tables is based on the current 2016 American grid and an 
electric vehicle with an efficiency of 32 kWh per 100 miles. Pollutant data was collected 
from GREET 2015, Klein & Whalley (2015), the National Energy Technology 
Laboratory’s “Power Generation Technology Comparison from a Life Cycle Perspective” 
(Skone, Littefield, Cooney, & Marriott, 2013) and the NEEDS Project’s “Final report on 
technical data, costs and life cycle inventories of PV applications” (Frankl, Menichetti, 
Raugei, Lombardelli, & Prennushi, 2005). 
 
 

Table 45. Power plant emissions data for sulfur dioxide. 

 
 
Table 46. Power plant emissions data for nitrous oxide. 
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Table 47. Power plant emissions data for particulate matter 2.5. 

 
 

 

Table 48. Power plant emissions data for volatile organic compounds. 
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Appendix 3 

Vehicle Production-based Emissions 

 

Table 49. Production based emissions for electric vehicles. 

 
Note: This table displays the total emissions (from a vehicle built using the 2016 grid) 
and the emissions from a vehicle built using a zero-emissions grid (values were taken 
from GREET 2015). A comparison of these values was used to determine the percentage 
of emissions that are actually derived from the grid. Emissions for components, ADR 
(assembly, disposal, and recycling) and batteries were all looked at. 
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Table 50. Production based emissions data for internal combustion engine vehicles. 

 
Note: This table displays the total emissions (from a vehicle built using the 2016 grid) 
and the emissions from a vehicle built using a zero-emissions grid (values were taken 
from GREET 2015). A comparison of these values was used to determine the percentage 
of emissions that are actually derived from the grid. Emissions for components, ADR 
(assembly, disposal, and recycling) and batteries were all looked at. 
 
 

Table 51. Production based emissions comparison data. 
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Ancillary Appendix 1 

 Social Cost of Carbon Meta-Analysis 

 

Table 52. Social cost of carbon meta-analysis data. 
Name SCC $/ton   Median 

Value 
Nordhaus (1982) 1985.0 Nordhaus (1982) 1134.3 
Nordhaus (1982) 283.6    

Ayres & Walter (1991) 450.8 Ayres & Walter (1991)   
Nordhaus (1991) 914.6 Nordhaus (1991) 101.7 
Nordhaus (1991) 457.3    
Nordhaus (1991) 114.3    
Nordhaus (1991) 203.2    
Nordhaus (1991) 101.7    
Nordhaus (1991) 25.4    
Nordhaus (1991) 33.8    
Nordhaus (1991) 16.9    
Nordhaus (1991) 4.3    

Cline (1992) 245.5 Cline (1992)   
Haraden (1992) 72.6 Haraden (1992)   

Hohmeyer & Gaertner (1992) 6383.0     
Penner et al. (1992) 65.0 Penner et al. (1992)   

Haraden (1993) 7.2 Haraden (1993) 11.6 
Haraden (1993) 11.6    
Haraden (1993) 34.2    

Nordhaus (1993) 18.9 Nordhaus (1993)   
Parry (1993) 0.0 Parry (1993) 1.5 
Parry (1993) 0.2    
Parry (1993) 0.0    
Parry (1993) 0.2    
Parry (1993) 0.1    
Parry (1993) 0.5    
Parry (1993) 0.1    
Parry (1993) 0.8    
Parry (1993) 0.3    
Parry (1993) 2.0    
Parry (1993) 0.1    
Parry (1993) 0.3    
Parry (1993) 0.1    
Parry (1993) 0.5    
Parry (1993) 0.1    
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Parry (1993) 0.8    
Parry (1993) 0.3    
Parry (1993) 1.6    
Parry (1993) 0.7    
Parry (1993) 4.2    
Parry (1993) 0.1    
Parry (1993) 0.4    
Parry (1993) 0.1    
Parry (1993) 0.5    
Parry (1993) 0.2    
Parry (1993) 1.1    
Parry (1993) 0.3    
Parry (1993) 2.0    
Parry (1993) 0.9    
Parry (1993) 5.2    
Parry (1993) 0.3    
Parry (1993) 1.6    
Parry (1993) 0.4    
Parry (1993) 2.3    
Parry (1993) 0.8    
Parry (1993) 4.7    
Parry (1993) 1.5    
Parry (1993) 8.9    
Parry (1993) 3.9    
Parry (1993) 23.4    
Parry (1993) 1.2    
Parry (1993) 7.0    
Parry (1993) 1.8    
Parry (1993) 10.6    
Parry (1993) 3.5    
Parry (1993) 20.9    
Parry (1993) 7.1    
Parry (1993) 39.9    
Parry (1993) 17.3    
Parry (1993) 104.0    
Parry (1993) 115.9    
Parry (1993) 695.8    
Parry (1993) 174.3    
Parry (1993) 1045.4    
Parry (1993) 348.3    
Parry (1993) 2089.3    
Parry (1993) 664.1    
Parry (1993) 3984.3    
Parry (1993) 1732.8    
Parry (1993) 10396.7    

Peck & Teisberg (1993) 11.1 Peck & Teisberg (1993) 24.5 



	
	

145 

Peck & Teisberg (1993) 24.2    
Peck & Teisberg (1993) 24.5    
Peck & Teisberg (1993) 25.4    
Peck & Teisberg (1993) 24.2    
Peck & Teisberg (1993) 24.5    
Peck & Teisberg (1993) 3.8    
Peck & Teisberg (1993) 6.1    
Peck & Teisberg (1993) 13.3    
Peck & Teisberg (1993) 11.9    
Peck & Teisberg (1993) 21.2    
Peck & Teisberg (1993) 21.3    
Peck & Teisberg (1993) 19.3    
Peck & Teisberg (1993) 25.3    
Peck & Teisberg (1993) 24.2    
Peck & Teisberg (1993) 24.8    
Peck & Teisberg (1993) 24.8    
Peck & Teisberg (1993) 24.9    
Peck & Teisberg (1993) 64.0    
Peck & Teisberg (1993) 44.0    
Peck & Teisberg (1993) 36.1    
Peck & Teisberg (1993) 57.6    
Peck & Teisberg (1993) 27.5    
Peck & Teisberg (1993) 27.9    
Peck & Teisberg (1993) 31.4    
Peck & Teisberg (1993) 14.0    
Peck & Teisberg (1993) 49.9    

Reilly & Richards (1993) 51.3 Reilly & Richards (1993) 71.7 
Reilly & Richards (1993) 76.3    
Reilly & Richards (1993) 184.2    
Reilly & Richards (1993) 157.9    
Reilly & Richards (1993) 29.0    
Reilly & Richards (1993) 50.0    
Reilly & Richards (1993) 67.1    
Reilly & Richards (1993) 80.3    

Azar (1994) 179.4 Azar (1994) 717.8 
Azar (1994) 717.8    
Azar (1994) 1794.5    

Fankhauser (1994) 46.6 Fankhauser (1994)   
Nordhaus (1994) 17.2 Nordhaus (1994)   
Maddison (1995) 43.0 Maddison (1995)   

Schauer (1995) 6.3 Schauer (1995) 99.2 
Schauer (1995) 192.1    

Azar & Sterner (1996) 305.1 Azar & Sterner (1996) 323.01 
Azar & Sterner (1996) 717.8    
Azar & Sterner (1996) 269.2    
Azar & Sterner (1996) 502.5    
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Azar & Sterner (1996) 114.8    
Azar & Sterner (1996) 118.4    
Azar & Sterner (1996) 46.7    
Azar & Sterner (1996) 46.7    
Azar & Sterner (1996) 933.1    
Azar & Sterner (1996) 2117.5    
Azar & Sterner (1996) 825.5    
Azar & Sterner (1996) 1471.5    
Azar & Sterner (1996) 341.0    
Azar & Sterner (1996) 351.7    
Azar & Sterner (1996) 140.0    
Azar & Sterner (1996) 140.0    
Downing et al. (1996) 164.6 Downing et al. (1996) 110.5 
Downing et al. (1996) 56.3    

Hohmeyer (1996) 2463.3 Hohmeyer (1996)   
Hope & Maul (1996) 25.1 Hope & Maul (1996) 50.2 
Hope & Maul (1996) 86.1    
Hope & Maul (1996) 32.3    
Hope & Maul (1996) 68.2    
Hope & Maul (1996) 17.9    
Hope & Maul (1996) 104.1    

Nordhaus & Yang (1996) 15.0 Nordhaus & Yang (1996)   
Plambeck & Hope (1996) 10.8 Plambeck & Hope (1996) 52.04 
Plambeck & Hope (1996) 17.9    
Plambeck & Hope (1996) 28.7    
Plambeck & Hope (1996) 28.7    
Plambeck & Hope (1996) 75.4    
Plambeck & Hope (1996) 165.1    
Plambeck & Hope (1996) 1579.2    
Plambeck & Hope (1996) 114.8    

Cline (1997) 231.7 Cline (1997)   
Nordhaus & Popp (1997) 30.8 Nordhaus & Popp (1997) 21.9 
Nordhaus & Popp (1997) 13.0    

Eyre et al. (1999) 448.9 Eyre et al. (1999) 308.9 
Eyre et al. (1999) 184.9    
Eyre et al. (1999) 422.5    
Eyre et al. (1999) 195.4    

Roughgarden & Schneider (1999) 70.4     
Tol (1999) 158.6 Tol (1999) 143.9 
Tol (1999) 140.5    
Tol (1999) 52.1    
Tol (1999) 149.5    
Tol (1999) 147.3    
Tol (1999) 126.9    
Tol (1999) 917.6    
Tol (1999) 550.5    
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Tol (1999) 321.7    
Tol (1999) 815.6    
Tol (1999) 788.4    
Tol (1999) 652.5    
Tol (1999) 475.8    
Tol (1999) 389.7    
Tol (1999) 165.4    
Tol (1999) 435.0    
Tol (1999) 423.7    
Tol (1999) 353.4    
Tol (1999) 65.7    
Tol (1999) 58.9    
Tol (1999) 20.4    
Tol (1999) 63.4    
Tol (1999) 63.4    
Tol (1999) 56.6    
Tol (1999) 13.6    
Tol (1999) 13.6    
Tol (1999) 4.5    
Tol (1999) 13.6    
Tol (1999) 13.6    
Tol (1999) 13.6    

Nordhaus & Boyer (2000) 21.2 Nordhaus & Boyer (2000)   
Tol & Downing (2001) 68.9 Tol & Downing (2001) 39.7 
Tol & Downing (2001) 9.2    
Tol & Downing (2001) 120.9    
Tol & Downing (2001) 10.6    

Clarkson & Deyes (2002) 203.5 Clarkson & Deyes (2002)   
Newell & Pizer (2003) 16.0 Newell & Pizer (2003) 18.2 
Newell & Pizer (2003) 29.1    
Newell & Pizer (2003) 18.2    
Newell & Pizer (2003) 60.5    
Newell & Pizer (2003) 94.2    
Newell & Pizer (2003) 64.9    
Newell & Pizer (2003) 4.1    
Newell & Pizer (2003) 8.0    
Newell & Pizer (2003) 5.0    

Pearce (2003) 51.8 Pearce (2003)   
Uzawa (2003) 322.2 Uzawa (2003)   

Cline (2004) 394.1 Cline (2004) 110.5 
Cline (2004) 1019.9    
Cline (2004) 72.5    
Cline (2004) 110.5    
Cline (2004) 55.3    
Cline (2004) 31.9    
Cline (2004) 416.3    
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Cline (2004) 170.7    
Cline (2004) 88.4    

Hohmeyer (2004) 114.8 Hohmeyer (2004) 1116.2 
Hohmeyer (2004) 2117.5    
Link & Tol (2004) 179.0 Link & Tol (2004) 136.7 
Link & Tol (2004) 385.2    
Link & Tol (2004) 57.1    
Link & Tol (2004) 213.2    
Link & Tol (2004) 11.6    
Link & Tol (2004) 102.2    
Link & Tol (2004) 171.3    
Link & Tol (2004) 380.2    
Link & Tol (2004) 55.3    
Link & Tol (2004) 212.1    
Link & Tol (2004) 11.3    
Link & Tol (2004) 102.0    

Manne (2004) 601.5 Manne (2004) 312.8 
Manne (2004) 24.1    

Mendelsohn (2004) 4.0 Mendelsohn (2004)   
Mendelsohn (2004) 131.4 Mendelsohn (2004) 46.4 
Mendelsohn (2004) 24.9    
Mendelsohn (2004) -5.2    
Mendelsohn (2004) 40.8    
Mendelsohn (2004) 122.3    
Mendelsohn (2004) 24.9    
Mendelsohn (2004) -5.7    
Mendelsohn (2004) 38.5    
Mendelsohn (2004) 122.3    
Mendelsohn (2004) 29.5    
Mendelsohn (2004) -0.2    
Mendelsohn (2004) 45.3    
Mendelsohn (2004) 122.3    
Mendelsohn (2004) 22.7    
Mendelsohn (2004) -5.7    
Mendelsohn (2004) 38.5    
Mendelsohn (2004) 124.6    
Mendelsohn (2004) 24.9    
Mendelsohn (2004) -5.7    
Mendelsohn (2004) 40.8    
Mendelsohn (2004) 131.4    
Mendelsohn (2004) 27.2    
Mendelsohn (2004) -5.2    
Mendelsohn (2004) 40.8    
Mendelsohn (2004) 165.4    
Mendelsohn (2004) 36.3    
Mendelsohn (2004) -3.6    
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Mendelsohn (2004) 54.4    
Mendelsohn (2004) 213.0    
Mendelsohn (2004) 47.6    
Mendelsohn (2004) -1.7    
Mendelsohn (2004) 68.0    
Mendelsohn (2004) 747.7    
Mendelsohn (2004) 201.6    
Mendelsohn (2004) 38.5    
Mendelsohn (2004) 226.6    
Mendelsohn (2004) 3398.5    
Mendelsohn (2004) 815.6    
Mendelsohn (2004) 169.9    
Mendelsohn (2004) 611.7    
Mendelsohn (2004) 5437.5    
Mendelsohn (2004) 1314.1    
Mendelsohn (2004) 271.9    
Mendelsohn (2004) 815.6    

Downing et al. (2005) 101.8 Downing et al. (2005)   
Hope (2005b) 86.2 Hope (2005b) 72.2 
Hope (2005b) 70.2    
Hope (2005b) 62.2    
Hope (2005b) 92.2    
Hope (2005b) 74.2    
Hope (2005b) 64.2    
Hope (2005a) 42.1 Hope (2005a)   

Tol (2005) 38.7 Tol (2005) 10.1 
Tol (2005) 31.3    
Tol (2005) 7.4    
Tol (2005) 12.8    
Tol (2005) -12.8    
Tol (2005) -1.0    

Guo et al. (2006) 131.4 Guo et al. (2006) 37.4 
Guo et al. (2006) 24.9    
Guo et al. (2006) -5.2    
Guo et al. (2006) 40.8    
Guo et al. (2006) 15.0    
Guo et al. (2006) 199.4    
Guo et al. (2006) 4.8    
Guo et al. (2006) 199.4    
Guo et al. (2006) 4.8    
Guo et al. (2006) 419.1    
Guo et al. (2006) 65.7    
Guo et al. (2006) -2.9    
Guo et al. (2006) 192.6    
Guo et al. (2006) 34.0    
Guo et al. (2006) -4.8    
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Guo et al. (2006) 79.3    
Hope (2006) 38.1 Hope (2006)   

Stern et al. (2006) 629.6 Stern et al. (2006)   
Wahba & Hope (2006) 38.1 Wahba & Hope (2006) 59.2 
Wahba & Hope (2006) 28.1    
Wahba & Hope (2006) 94.2    
Wahba & Hope (2006) 290.7    
Wahba & Hope (2006) 60.2    
Wahba & Hope (2006) 182.5    
Wahba & Hope (2006) 58.1    
Wahba & Hope (2006) 32.4    
Stern & Taylor (2007) 183.8 Stern & Taylor (2007) 202.2 
Stern & Taylor (2007) 220.6    

Hope (2008b) 28.1 Hope (2008b) 26.1 
Hope (2008b) 26.1    
Hope (2008b) 26.1    
Hope (2008b) 26.1    
Hope (2008b) 24.1    
Hope (2008a) 32.1 Hope (2008a) 134.3 
Hope (2008a) 116.3    
Hope (2008a) 156.4    
Hope (2008a) 130.3    
Hope (2008a) 50.1    
Hope (2008a) 138.4    
Hope (2008a) 124.3    
Hope (2008a) 411.1    
Hope (2008a) 405.0    
Hope (2008a) 1634.2    

Nordhaus (2008) 42.6 Nordhaus (2008) 44.7 
Nordhaus (2008) 46.8    
Nordhaus (2008) 343.1    
Nordhaus (2008) 42.4    

Anthoff et al. (2009a) 83.9 Anthoff et al. (2009a) 20.3 
Anthoff et al. (2009a) 14.7    
Anthoff et al. (2009a) -9.8    
Anthoff et al. (2009a) 123.2    
Anthoff et al. (2009a) 43.9    
Anthoff et al. (2009a) 185.9    
Anthoff et al. (2009a) 21.8    
Anthoff et al. (2009a) 116.4    
Anthoff et al. (2009a) 25.0    
Anthoff et al. (2009a) 5.8    
Anthoff et al. (2009a) 36.4    
Anthoff et al. (2009a) -2.7    
Anthoff et al. (2009a) 21.2    
Anthoff et al. (2009a) -4.3    
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Anthoff et al. (2009a) -6.3    
Anthoff et al. (2009a) -4.0    
Anthoff et al. (2009a) -8.8    
Anthoff et al. (2009a) -5.2    
Anthoff et al. (2009a) 122.6    
Anthoff et al. (2009a) 43.7    
Anthoff et al. (2009a) 214.5    
Anthoff et al. (2009a) 20.3    
Anthoff et al. (2009a) 108.2    
Anthoff et al. (2009a) 28.5    
Anthoff et al. (2009a) 5.7    
Anthoff et al. (2009a) 46.0    
Anthoff et al. (2009a) -3.8    
Anthoff et al. (2009a) 21.2    
Anthoff et al. (2009a) -4.8    
Anthoff et al. (2009a) -7.5    
Anthoff et al. (2009a) -3.2    
Anthoff et al. (2009a) -11.0    
Anthoff et al. (2009a) -4.8    
Anthoff et al. (2009b) -3.1 Anthoff et al. (2009b) 7.2 
Anthoff et al. (2009b) -0.6    
Anthoff et al. (2009b) 14.9    
Anthoff et al. (2009b) 74.0    
Anthoff et al. (2009c) -1.2 Anthoff et al. (2009c) 99.6 
Anthoff et al. (2009c) 21.0    
Anthoff et al. (2009c) 350.4    
Anthoff et al. (2009c) 102.7    
Anthoff et al. (2009c) 67.9    
Anthoff et al. (2009c) 97.9    
Anthoff et al. (2009c) 379.9    
Anthoff et al. (2009c) 195.8    
Anthoff et al. (2009c) -0.7    
Anthoff et al. (2009c) 22.0    
Anthoff et al. (2009c) 342.7    
Anthoff et al. (2009c) 101.2    

EPA & NHTSA (2009) 27.0 EPA & NHTSA (2009) 353.5 
EPA & NHTSA (2009) 50.1    
EPA & NHTSA (2009) 353.5    
EPA & NHTSA (2009) 608.0    
EPA & NHTSA (2009) 1018.0    

Narita et al. (2009) 142.3 Narita et al. (2009) 11.8 
Narita et al. (2009) 11.8    
Narita et al. (2009) -3.9    

Anthoff & Tol (2010) 25.9 Anthoff & Tol (2010) 25.9 
Anthoff & Tol (2010) 46.5    
Anthoff & Tol (2010) 169.3    
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Anthoff & Tol (2010) 303.7    
Anthoff & Tol (2010) 1.1    
Anthoff & Tol (2010) 1.9    
Anthoff & Tol (2010) 93.2    
Anthoff & Tol (2010) 119.7    
Anthoff & Tol (2010) 7.8    
Anthoff & Tol (2010) 21.6    
Anthoff & Tol (2010) 2.5    
Anthoff & Tol (2010) 12.1    
Anthoff & Tol (2010) 25.9    
Anthoff & Tol (2010) 32.3    
Anthoff & Tol (2010) 25.9    
Anthoff & Tol (2010) 75.2    

Kemfert & Schill (2010) 70.4 Kemfert & Schill (2010) 102.8 
Kemfert & Schill (2010) 102.8    
Kemfert & Schill (2010) 248.9    

Narita et al. (2010) 187.4 Narita et al. (2010) 28.6 
Narita et al. (2010) 28.6    
Narita et al. (2010) 1.3    

Nordhaus (2010) 42.4 Nordhaus (2010)   
Sohngen (2010) 34.5 Sohngen (2010)   

Tol (2010) 3.3 Tol (2010)   
Anthoff et al. (2011) 1.9 Anthoff et al. (2011) 42.5 
Anthoff et al. (2011) 43.4    
Anthoff et al. (2011) 266.1    
Anthoff et al. (2011) -3.3    
Anthoff et al. (2011) 2.2    
Anthoff et al. (2011) 11.6    
Anthoff et al. (2011) 65.0    
Anthoff et al. (2011) 83.1    
Anthoff et al. (2011) 2689.9    
Anthoff et al. (2011) 1.0    
Anthoff et al. (2011) 4.2    
Anthoff et al. (2011) 16.5    
Anthoff et al. (2011) 92.3    
Anthoff et al. (2011) 75.5    
Anthoff et al. (2011) 2160.5    
Anthoff et al. (2011) 130.9    
Anthoff et al. (2011) 17.3    
Anthoff et al. (2011) 41.6    
Anthoff et al. (2011) 3.4    
Anthoff et al. (2011) 107.3    
Anthoff et al. (2011) 7.4    
Anthoff et al. (2011) 74.4    

Ceronsky et al. (2011) 644.6 Ceronsky et al. (2011) 155.02 
Ceronsky et al. (2011) 624.7    
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Ceronsky et al. (2011) 673.7    
Ceronsky et al. (2011) 828.7    
Ceronsky et al. (2011) 1190.0    
Ceronsky et al. (2011) 968.6    
Ceronsky et al. (2011) 1874.2    
Ceronsky et al. (2011) 2190.1    
Ceronsky et al. (2011) 418.4    
Ceronsky et al. (2011) 397.5    
Ceronsky et al. (2011) 427.8    
Ceronsky et al. (2011) 493.0    
Ceronsky et al. (2011) 679.5    
Ceronsky et al. (2011) 841.5    
Ceronsky et al. (2011) 1662.1    
Ceronsky et al. (2011) 1946.5    
Ceronsky et al. (2011) 125.9    
Ceronsky et al. (2011) 122.4    
Ceronsky et al. (2011) 130.5    
Ceronsky et al. (2011) 157.4    
Ceronsky et al. (2011) 218.0    
Ceronsky et al. (2011) 180.7    
Ceronsky et al. (2011) 300.7    
Ceronsky et al. (2011) 338.0    
Ceronsky et al. (2011) 99.1    
Ceronsky et al. (2011) 94.4    
Ceronsky et al. (2011) 101.4    
Ceronsky et al. (2011) 115.4    
Ceronsky et al. (2011) 152.7    
Ceronsky et al. (2011) 169.0    
Ceronsky et al. (2011) 275.1    
Ceronsky et al. (2011) 308.9    
Ceronsky et al. (2011) 9.3    
Ceronsky et al. (2011) 9.3    
Ceronsky et al. (2011) 9.3    
Ceronsky et al. (2011) 12.8    
Ceronsky et al. (2011) 17.5    
Ceronsky et al. (2011) 14.0    
Ceronsky et al. (2011) 21.0    
Ceronsky et al. (2011) 22.1    
Ceronsky et al. (2011) 5.8    
Ceronsky et al. (2011) 4.7    
Ceronsky et al. (2011) 5.8    
Ceronsky et al. (2011) 7.0    
Ceronsky et al. (2011) 11.7    
Ceronsky et al. (2011) 10.5    
Ceronsky et al. (2011) 16.3    
Ceronsky et al. (2011) 17.5    
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Dietz (2011) 2614.7 Dietz (2011) 2325.2 
Dietz (2011) 2035.8    
Hope (2011) 502.2 Hope (2011) 381.2 
Hope (2011) 260.2    

Nordhaus (2011) 45.2 Nordhaus (2011)   
Pycroft et al. (2011) 241.1 Pycroft et al. (2011) 265.7 
Pycroft et al. (2011) 280.4    
Pycroft et al. (2011) 280.4    
Pycroft et al. (2011) 265.7    
Pycroft et al. (2011) 236.2    
Pycroft et al. (2011) 246.0    
Pycroft et al. (2011) 246.0    
Pycroft et al. (2011) 246.0    
Pycroft et al. (2011) 285.4    
Pycroft et al. (2011) 280.4    
Pycroft et al. (2011) 270.6    

Waldhoff et al. (2011) 42.0 Waldhoff et al. (2011) 41.9 
Waldhoff et al. (2011) 73.4    
Waldhoff et al. (2011) 36.7    
Waldhoff et al. (2011) 15.7    
Waldhoff et al. (2011) 94.4    
Waldhoff et al. (2011) 267.6    
Waldhoff et al. (2011) 1.6    
Waldhoff et al. (2011) 131.2    
Waldhoff et al. (2011) 10.5    
Waldhoff et al. (2011) 15.7    
Waldhoff et al. (2011) 42.0    
Waldhoff et al. (2011) 63.0    
Waldhoff et al. (2011) 42.0    

Ackerman & Munitz (2012) 27.9 Ackerman & Munitz (2012) 77.34 
Ackerman & Munitz (2012) 77.3    
Ackerman & Munitz (2012) 85.8    

Ackerman & Stanton (2012) 530.4 Ackerman & Stanton (2012) 480.9 
Ackerman & Stanton (2012) 125.8    
Ackerman & Stanton (2012) 1083.2    
Ackerman & Stanton (2012) 278.7    
Ackerman & Stanton (2012) 1847.3    
Ackerman & Stanton (2012) 346.1    
Ackerman & Stanton (2012) 2000.1    
Ackerman & Stanton (2012) 431.5    

Botzen & van den Bergh (2012) 46.8 47.1 47.3  
Botzen & van den Bergh (2012) 47.3    

Cai et al. (2012) 35.7 Cai et al. (2012) 40.8 
Cai et al. (2012) 45.8    

Espagne et al. (2012) 87.5 Espagne et al. (2012) 437.4 
Espagne et al. (2012) 787.3    
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Gerlagh & Liski (2012) 46.7 Gerlagh & Liski (2012) 163.3 
Gerlagh & Liski (2012) 163.3    
Gerlagh & Liski (2012) 183.3    
Johnson & Hope (2012) 1195.6 Johnson & Hope (2012) 202.2 
Johnson & Hope (2012) 548.3    
Johnson & Hope (2012) 278.7    
Johnson & Hope (2012) 157.3    
Johnson & Hope (2012) 94.4    
Johnson & Hope (2012) 22.5    
Johnson & Hope (2012) 247.2    
Johnson & Hope (2012) 786.5    
Johnson & Hope (2012) 62.9    
Johnson & Hope (2012) 27.0    
Johnson & Hope (2012) -6.3    
Johnson & Hope (2012) 651.7    
Johnson & Hope (2012) 314.6    
Johnson & Hope (2012) 4.5    

Kopp et al. (2012) 495.4 Kopp et al. (2012) 450.3 
Kopp et al. (2012) 525.4    
Kopp et al. (2012) 480.4    
Kopp et al. (2012) 690.5    
Kopp et al. (2012) 360.3    
Kopp et al. (2012) 705.5    
Kopp et al. (2012) 405.3    
Kopp et al. (2012) 525.4    
Kopp et al. (2012) 495.4    
Kopp et al. (2012) 675.5    
Kopp et al. (2012) 225.2    
Kopp et al. (2012) 165.1    
Kopp et al. (2012) 300.2    
Kopp et al. (2012) 120.1    
Kopp et al. (2012) 120.1    
Kopp et al. (2012) 105.1    
Kopp et al. (2012) 135.1    
Kopp et al. (2012) 90.1    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 615.4    
Kopp et al. (2012) 555.4    
Kopp et al. (2012) 930.7    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 1155.8    
Kopp et al. (2012) 450.3    
Kopp et al. (2012) 615.4    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 855.6    
Kopp et al. (2012) 270.2    
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Kopp et al. (2012) 195.1    
Kopp et al. (2012) 390.3    
Kopp et al. (2012) 210.2    
Kopp et al. (2012) 135.1    
Kopp et al. (2012) 105.1    
Kopp et al. (2012) 150.1    
Kopp et al. (2012) 120.1    
Kopp et al. (2012) 660.5    
Kopp et al. (2012) 690.5    
Kopp et al. (2012) 600.4    
Kopp et al. (2012) 1140.8    
Kopp et al. (2012) 810.6    
Kopp et al. (2012) 1666.2    
Kopp et al. (2012) 480.4    
Kopp et al. (2012) 690.5    
Kopp et al. (2012) 660.5    
Kopp et al. (2012) 1005.7    
Kopp et al. (2012) 300.2    
Kopp et al. (2012) 210.2    
Kopp et al. (2012) 450.3    
Kopp et al. (2012) 285.2    
Kopp et al. (2012) 150.1    
Kopp et al. (2012) 120.1    
Kopp et al. (2012) 150.1    
Kopp et al. (2012) 150.1    
Kopp et al. (2012) 855.6    
Kopp et al. (2012) 915.7    
Kopp et al. (2012) 750.5    
Kopp et al. (2012) 1921.4    
Kopp et al. (2012) 1921.4    
Kopp et al. (2012) 4143.0    
Kopp et al. (2012) 540.4    
Kopp et al. (2012) 900.7    
Kopp et al. (2012) 855.6    
Kopp et al. (2012) 1411.0    
Kopp et al. (2012) 390.3    
Kopp et al. (2012) 240.2    
Kopp et al. (2012) 630.5    
Kopp et al. (2012) 630.5    
Kopp et al. (2012) 195.1    
Kopp et al. (2012) 135.1    
Kopp et al. (2012) 180.1    
Kopp et al. (2012) 225.2    
Kopp et al. (2012) 450.3    
Kopp et al. (2012) 465.3    
Kopp et al. (2012) 420.3    
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Kopp et al. (2012) 690.5    
Kopp et al. (2012) 330.2    
Kopp et al. (2012) 870.6    
Kopp et al. (2012) 360.3    
Kopp et al. (2012) 450.3    
Kopp et al. (2012) 450.3    
Kopp et al. (2012) 510.4    
Kopp et al. (2012) 165.1    
Kopp et al. (2012) 135.1    
Kopp et al. (2012) 225.2    
Kopp et al. (2012) 105.1    
Kopp et al. (2012) 90.1    
Kopp et al. (2012) 75.1    
Kopp et al. (2012) 105.1    
Kopp et al. (2012) 75.1    
Kopp et al. (2012) 525.4    
Kopp et al. (2012) 540.4    
Kopp et al. (2012) 480.4    
Kopp et al. (2012) 915.7    
Kopp et al. (2012) 525.4    
Kopp et al. (2012) 1366.0    
Kopp et al. (2012) 390.3    
Kopp et al. (2012) 525.4    
Kopp et al. (2012) 525.4    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 195.1    
Kopp et al. (2012) 135.1    
Kopp et al. (2012) 270.2    
Kopp et al. (2012) 150.1    
Kopp et al. (2012) 105.1    
Kopp et al. (2012) 90.1    
Kopp et al. (2012) 105.1    
Kopp et al. (2012) 90.1    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 525.4    
Kopp et al. (2012) 1080.8    
Kopp et al. (2012) 720.5    
Kopp et al. (2012) 1831.3    
Kopp et al. (2012) 420.3    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 585.4    
Kopp et al. (2012) 660.5    
Kopp et al. (2012) 210.2    
Kopp et al. (2012) 150.1    
Kopp et al. (2012) 300.2    



	
	

158 

Kopp et al. (2012) 195.1    
Kopp et al. (2012) 120.1    
Kopp et al. (2012) 90.1    
Kopp et al. (2012) 120.1    
Kopp et al. (2012) 120.1    
Kopp et al. (2012) 720.5    
Kopp et al. (2012) 735.5    
Kopp et al. (2012) 630.5    
Kopp et al. (2012) 1621.2    
Kopp et al. (2012) 1621.2    
Kopp et al. (2012) 3422.5    
Kopp et al. (2012) 480.4    
Kopp et al. (2012) 720.5    
Kopp et al. (2012) 720.5    
Kopp et al. (2012) 825.6    
Kopp et al. (2012) 255.2    
Kopp et al. (2012) 165.1    
Kopp et al. (2012) 390.3    
Kopp et al. (2012) 390.3    
Kopp et al. (2012) 150.1    
Kopp et al. (2012) 105.1    
Kopp et al. (2012) 135.1    
Kopp et al. (2012) 180.1    

Marten & Newbold (2012) 42.4 Marten & Newbold (2012) 142.6769813 
Marten & Newbold (2012) 142.7    
Marten & Newbold (2012) 223.7    

Perrissin-Fabert et al. (2012) 51.3     
Tol (2012) 48.4 Tol (2012)   

Anthoff & Tol (2013) 535.2 Anthoff & Tol (2013) 73.54382152 
Anthoff & Tol (2013) 209.7    
Anthoff & Tol (2013) 88.8    
Anthoff & Tol (2013) 147.6    
Anthoff & Tol (2013) 64.6    
Anthoff & Tol (2013) 73.5    
Anthoff & Tol (2013) 470.6    
Anthoff & Tol (2013) 29.0    
Anthoff & Tol (2013) 14.3    
Anthoff & Tol (2013) 5.5    
Anthoff & Tol (2013) 1.0    

van den Bijgaart et al. (2013) 233.6 van den Bijgaart et al. (2013) 28.4 
van den Bijgaart et al. (2013) 38.8    
van den Bijgaart et al. (2013) 18.2    
van den Bijgaart et al. (2013) 10.9    

Cai et al. (2013) 171.9 Cai et al. (2013) 286.5 
Cai et al. (2013) 286.6    
Cai et al. (2013) 552.7    
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Dennig (2013) 126.2 Dennig (2013)   
Foley et al. (2013) 246.3 Foley et al. (2013)   

Greenstone et al. (2013) 48.5 Greenstone et al. (2013) 86.7 
Greenstone et al. (2013) 33.7    
Greenstone et al. (2013) 44.0    
Greenstone et al. (2013) 38.7    
Greenstone et al. (2013) 36.9    
Greenstone et al. (2013) 37.3    
Greenstone et al. (2013) 23.4    
Greenstone et al. (2013) 32.4    
Greenstone et al. (2013) 28.8    
Greenstone et al. (2013) 24.7    
Greenstone et al. (2013) -5.8    
Greenstone et al. (2013) -1.3    
Greenstone et al. (2013) -8.5    
Greenstone et al. (2013) -2.7    
Greenstone et al. (2013) -12.1    
Greenstone et al. (2013) 160.9    
Greenstone et al. (2013) 98.9    
Greenstone et al. (2013) 133.9    
Greenstone et al. (2013) 129.4    
Greenstone et al. (2013) 111.9    
Greenstone et al. (2013) 177.5    
Greenstone et al. (2013) 100.2    
Greenstone et al. (2013) 136.2    
Greenstone et al. (2013) 142.9    
Greenstone et al. (2013) 114.2    
Greenstone et al. (2013) 36.9    
Greenstone et al. (2013) 36.0    
Greenstone et al. (2013) 16.2    
Greenstone et al. (2013) 45.8    
Greenstone et al. (2013) -0.9    
Greenstone et al. (2013) 243.6    
Greenstone et al. (2013) 142.0    
Greenstone et al. (2013) 195.5    
Greenstone et al. (2013) 199.6    
Greenstone et al. (2013) 168.1    
Greenstone et al. (2013) 294.4    
Greenstone et al. (2013) 155.5    
Greenstone et al. (2013) 221.1    
Greenstone et al. (2013) 245.9    
Greenstone et al. (2013) 192.8    
Greenstone et al. (2013) 86.7    
Greenstone et al. (2013) 66.5    
Greenstone et al. (2013) 39.6    
Greenstone et al. (2013) 99.8    
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Greenstone et al. (2013) 22.0    
Greenstone et al. (2013) 91.8    
Greenstone et al. (2013) 148.1    

Hwang et al. (2013) 48.5 Hwang et al. (2013) 71.3 
Hwang et al. (2013) 51.6    
Hwang et al. (2013) 63.7    
Hwang et al. (2013) 81.9    
Hwang et al. (2013) 479.3    
Hwang et al. (2013) 215.4    
Hwang et al. (2013) 122.9    
Hwang et al. (2013) 78.9    
Hwang et al. (2013) 109.2    
Hwang et al. (2013) 48.5    
Hwang et al. (2013) 28.8    
Hwang et al. (2013) 21.2    

Jensen & Traeger (2014b) 46.0 Jensen & Traeger (2014b)   
Lintunen & Vilmi (2013) 116.6 Lintunen & Vilmi (2013)   

Moyer et al. (2013) 71.9 Moyer et al. (2013) 507.9 
Moyer et al. (2013) 943.9    

Newbold et al. (2013) 61.4 Newbold et al. (2013) 61.2 
Newbold et al. (2013) 17.4    
Newbold et al. (2013) 61.2    

Nordhaus & Sztorc (2014) 80.2 Nordhaus & Sztorc (2014)   
Tol (2013) 0.1 Tol (2013) 0.9 
Tol (2013) 0.0    
Tol (2013) 0.7    
Tol (2013) -0.5    
Tol (2013) 0.4    
Tol (2013) -0.2    
Tol (2013) 1.1    
Tol (2013) 21.4    
Tol (2013) 4.8    
Tol (2013) 95.8    
Tol (2013) 1.3    
Tol (2013) 203.0    
Tol (2013) 0.2    
Tol (2013) 250.0    

Weitzman (2013) 4.5 Weitzman (2013) 346.1 
Weitzman (2013) 22.5    
Weitzman (2013) 94.4    
Weitzman (2013) 157.3    
Weitzman (2013) 278.7    
Weitzman (2013) 548.3    
Weitzman (2013) 1195.6    
Weitzman (2013) 1195.6    
Weitzman (2013) 1024.8    
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Weitzman (2013) 822.5    
Weitzman (2013) 629.2    
Weitzman (2013) 413.5    
Weitzman (2013) 202.3    
Weitzman (2013) 4.5    

Golosov et al. (2014) 58.6 Golosov et al. (2014) 227.8 
Golosov et al. (2014) 511.2    
Golosov et al. (2014) 26.1    
Golosov et al. (2014) 504.0    
Golosov et al. (2014) 227.8    
Golosov et al. (2014) 4393.7    
Golosov et al. (2014) 33.0    
Howarth et al. (2014) 47.7 Howarth et al. (2014) 128.8 
Howarth et al. (2014) 210.0    

Jensen & Traeger (2014a) 37.2 Jensen & Traeger (2014a) 53.7 
Jensen & Traeger (2014a) 45.7    
Jensen & Traeger (2014a) 47.8    
Jensen & Traeger (2014a) 90.3    
Jensen & Traeger (2014a) 75.5    
Jensen & Traeger (2014a) 59.5    
Lemoine & Traeger (2014) 40.9 Lemoine & Traeger (2014) 49.1 
Lemoine & Traeger (2014) 49.1    
Lemoine & Traeger (2014) 49.1    
Lemoine & Traeger (2014) 61.4    
Lemoine & Traeger (2014) 57.3    
Newbold & Marten (2014) 49.1 Newbold & Marten (2014)   

Pycroft et al. (2014) 236.2 Pycroft et al. (2014) 292.8 
Pycroft et al. (2014) 285.4    
Pycroft et al. (2014) 280.4    
Pycroft et al. (2014) 270.6    
Pycroft et al. (2014) 300.1    
Pycroft et al. (2014) 339.5    
Pycroft et al. (2014) 334.6    
Pycroft et al. (2014) 324.7    

Rezai & van der Ploeg (2014) 87.4 99.07284383 110.7  
Rezai & van der Ploeg (2014) 110.7    

Note: The data for the following table was taken from the meta-analysis by Havranek et 
al. (2015) The median value from each study was the only value that was used, as I did 
not want to give extra weight to studies that included a greater number of estimates. Each 
median value was multiplied by the Bureau of Labor Statistics’ value of 1.11 to convert 
the 2010 dollars into 2016 dollars.  
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Ancillary Appendix 2 

Alternate Battery Production Data 

 

 Table 53. Cradle to gate emissions data for an electric vehicle’s battery. 

 
Note: The following table was taken from the supporting information for the paper 
“Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A 
Comparative Analysis,” by Kim et al. These tables detail the cradle-to-gate emissions for 
lithium ion batteries. 
 
 

Table 54. Greenhouse gas emissions meta-analysis for an electric vehicle’s battery. 

 
Note: The following table was taken from the supporting information for the paper 
“Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A 
Comparative Analysis,” by Kim et al. These tables detail the cradle-to-gate emissions for 
lithium ion batteries 
 

 

S4 
 

Table S1: Detailed Cradle-to-gate emissions from Focus BEV battery 

Functional unit 1 kWh battery 1 kg battery 

Pollutant GHG (kg 
CO2- eq.)  VOC (g) CO (g) NOx (g) PM (g) SOx (g) GHG (kg 

CO2- eq.)  VOC (g) CO (g) NOx (g) PM (g) SOx (g) 

Cell materials 27 43 102 96 62 845 2.2 3.4 8.2 7.7 4.9 67.6 
Cell 
manufacturing 63 10 17 182 12 185 5.0 0.8 1.3 14.6 1.0 14.8 

Enclosure 25 24 185 57 80 86 2.0 1.9 14.8 4.5 6.4 6.8 
Thermal 
Management 5.9 1.5 39 11 11 22 0.5 0.1 3.2 0.9 0.9 1.7 

Electrical System 0.5 1.2 2.1 5.9 6.0 27 0.04 0.1 0.2 0.5 0.5 2.2 
BMS 13 1.6 5.3 15 5.0 25 1.0 0.1 0.4 1.2 0.4 2.0 
Pack 
manufacturing 1.7 0.2 0.7 3.2 1.5 8.8 0.1 0.02 0.1 0.3 0.1 0.7 

Transportation 4.1 6.5 9.2 34 3.3 18 0.3 0.5 0.7 2.7 0.3 1.5 
Total  141 87 360 404 181 1282 11.3 7.0 28.8 32.3 14.5 97.4 
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Table S2: Comparison of GHG emissions estimates across studies 

Reference Battery 

type 

Mass (kg) Total 

energy 

(kWh) 

Specific energy 

(kWh/kg) 

 

GHG emissions (primary energy) from 

cradle-to-gate of battery 

GHG emissions from cradle-to-gate 

of cell 

kg CO2-eq./kg battery 

(MJp/kg battery) 

kg CO2-eq./kWh 

battery 

kg CO2-eq./kg cell kg CO2-eq./kWh 

cell 

Battery Cell Battery Cell Materials 

/parts 

Cell /pack 

mfg.  

Materials 

/parts 

Cell 

/pack 

mfg. 

Materials 

/parts 

Cell  

mfg. 

Materials 

/parts 

Cell 

mfg. 

Notter et al. 

(2010)
1
 

LMO 300 240 34.2 0.114 0.14 5.8 0.16 (2.4) 51 1.4 5.5 0.13 39 0.88 

Dunn et al. 

(2012)
2
; GREET 

(2015)
3
 

LMO 210 190
a
 28 0.13 0.15 4.9 0.27 (3.9) 37 2.1 4.8 0.3 33 2.0 

EPA (2013)
4
  LMO na 80%

b
 of 

battery  

na 0.08-

0.1 

0.1-

0.125 

6.2 0.18 (2.9) 62 1.8 6.3 0.22 50 1.8 

Majeau-Bettez 

et al. (2011)
5
; 

Hawkins et al. 

(2013)
6
 

NCM 214 171 24 0.112 0.14 16.0 6.0 (80-

105)
c
 

143 54 15.1 7.5 108 54 

EPA (2013)
4
 NCM na 80%

b 
of 

battery 

na 0.08-

0.1 

0.1-

0.125 

8.7 3.4 (62.1) 87 34 9.4 0 76 0 

Ellingsen et al. 

(2014)
7
 

NCM 253 152 26.6 0.11 0.17 6.9 
d
11.3 (180); 

e
18.5 (300);  

f
44.5 (730) 

65 108; 

176; 

425 

5.7 18.7; 

30.6; 

73.9 

33 107; 

175; 

424 

This study LMO 

/NCM 

303 168 24 0.08 0.14 6.1 5.2 (120) 76 65 4.0 9.1 28 64 

a
 estimated based on materials breakdown; 

b
 average value of the range in EPA (2013); 

c
 estimated from the direct energy inputs in Ellingsen et 

al. (2014)
7
, 371-473 MJ/kWh, based on an electric and fossil energy share of 51.7% and 48.3% respectively and a primary energy to electricity 

conversion factor of 0.35 as in Majeau-Bettez et al. (2011)
5
; 

d
 lower bound value; 

e
 asymptotic value; 

f 
average value

7
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Ancillary Appendix 3 

Carbon Emissions and Battery Capacity 

 

 The data in the following figures describe the relationship between an electric 

vehicle’s battery capacity (in kWh) and the total tons of CO2 that can be assigned to the 

vehicle. The blue line describes the CO2 emissions from an electric vehicle with a 

standard life-cycle, while the red line is used to depict the CO2 emissions for an electric 

vehicle that needs one battery replacement. These scenarios are then compared to an ICE 

vehicle with an efficiency of 25.4 miles per gallon (purple dashed line) and 20 miles per 

gallon (green dashed line). In total, there are five figures, each detailing a different RE% 

scenario: 13.3% (2016 grid), 20%, 50%, 80%, and 100% RE. The battery emissions data 

for these figures was taken from Kim et al. and entered into my model. 

 

 
Figure 71. Carbon dioxide emission per kWh for a grid with 13.3% renewable energy. 
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Figure 72. Carbon dioxide emission per kWh for a grid with 20% renewable energy. 
 
 

 
Figure 73. Carbon dioxide emission per kWh for a grid with 50% renewable energy. 
 
 
 
 
 
 



	
	

165 

 
 

 
Figure 74. Carbon dioxide emission per kWh for a grid with 80% renewable energy. 
 
 

 
Figure 75. Carbon dioxide emission per kWh for a grid with 100% renewable energy. 
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Ancillary Appendix 4 

Sample EV Emissions Data 

 

 It is possible to use the per kWh battery emissions data from Kim et al. to model 

the life-cycle CO2 emissions for electric vehicles that are currently on the market. This 

data is displayed in the figure and table below. 

 

Table 54. Carbon emissions data by electric vehicle. 
Car Model kWh per 

100 mi 
Operating 

CO2 
kWh 
Battery 

Production 
CO2 

Total 
CO2 

Total Co2 with 
Replacement 

2016 BMW i3 27 19.29 23 10.23 29.51 32.76 

2017 Chevrolet 
Bolt 

28 20.00 60 15.44 35.45 43.91 

2016 Nissan 
Leaf 

30 21.43 30 11.21 32.64 36.87 

2016 Tesla 
Model S 90D 

32 22.86 90 19.67 42.53 55.22 

 
 

 
Figure 76. Carbon emissions data by electric vehicle. 
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Ancillary Appendix 5 

EIA Power Plant Projections 

 

Table 55. EIA power plant projections. 

 
Note: Data was taken from: http://www.eia.gov/forecasts/aeo/ 
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Table 56. Renewable energy projected percentages. 
Year RE% 

2014 12.91% 
2015 12.49% 
2016 13.59% 
2017 14.62% 
2018 15.58% 
2019 17.06% 
2020 18.56% 
2021 20.53% 
2022 21.46% 
2023 21.70% 
2024 21.70% 
2025 21.68% 
2026 21.61% 
2027 21.67% 
2028 21.83% 
2029 21.94% 
2030 22.14% 
2031 22.47% 
2032 22.95% 
2033 23.27% 
2034 23.50% 
2035 23.96% 
2036 23.97% 
2037 24.55% 
2038 24.65% 
2039 24.75% 
2040 25.11% 

Note: I summed the EIA projection data for each source of renewable energy, which 
facilitated the creation of the per-year renewable energy percentage table above. 
 

 
 
 
 
 

 

 



	
	

169 

 

Ancillary Appendix 6 

EIA Projections for Gasoline Consumption 

 

Table 57. EIA transportation projection data. 
Year Gallons (Millions) 
2016 134092.5984 
2017 134684.5051 
2018 133949.5849 
2019 132504.0272 
2020 130635.8521 
2021 128144.5124 
2022 125547.3498 
2023 122818.8858 
2024 120151.2512 
2025 117419.0312 
2026 114836.8001 
2027 112470.6452 
2028 110418.3875 
2029 108563.8254 
2030 106933.2193 
2031 105460.2056 
2032 104153.8903 
2033 102983.966 
2034 101999.8873 
2035 101192.1189 
2036 100555.8166 
2037 100050.3712 
2038 99650.27352 
2039 99413.0571 
2040 99261.12147 

Note: Data was taken from: http://www.eia.gov/forecasts/aeo/ 
 


