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Abstract

This project analyzes the relative benefits of electric vehicles (EV) as compared to
their internal combustion engine (ICE) counterparts. Specifically, I contrast the air
pollutant related social costs that can be quantified and assigned to each type of vehicle.
These costs are based on the externalities (per metric ton) associated with carbon dioxide,
sulfur dioxide, nitrous oxide, particulate matter, and volatile organic compounds. The
difference in social costs is defined as the appropriate EV Subsidy, where a positive EV
Subsidy indicates that the social costs for an electric vehicle are less than the social costs
for an internal combustion engine vehicle. My research was centered around answering
the question: What impact does the percentage of renewable energy have on the
appropriate subsidy for an electric vehicle and how does the percentage of renewable
energy impact the GHG mitigation potential for electric vehicles? I hypothesized that the
negative environmental impact for a 100% renewable energy powered electric vehicle
would be lower than the impact from an internal combustion engine vehicle with an
efficiency of 80 miles per gallon, that the appropriate federal subsidy for a 100%
renewable energy powered electric vehicle would be over $3,000 (when compared to an
internal combustion engine vehicle with an efficiency of 25.4 miles per gallon), and that a
100% renewable energy powered electric vehicle would produce 50% fewer greenhouse
gas emissions than an internal combustion engine vehicle with an efficiency of 80 miles

per gallon.



I employed Argonne National Laboratory’s GREET Model, the AP2 Model, and a
variety of meta-analyses to determine these social costs. Each cost is a function of a
variety of factors. Social costs for the internal combustion engine vehicle strongly
correlate with the vehicle’s miles per gallon, while the social costs for an electric vehicle
strongly correlate with the percentage of renewable energy. Many studies look at a static
grid, but I analyzed the impact that renewable energy has on the disparity in social costs
between electric vehicles and gasoline-powered vehicles. Additionally, my model
disaggregates grid-based and non-grid-based production costs, which allows production-
based social costs to accurately reflect that percentage of renewable energy that is entered
into the model. I conclude that the environmental benefits of electric vehicles are directly
related to the level of renewable energy in the grid. The EV Subsidy for the 2016 grid
(13.3% renewable energy) and an average internal combustion engine vehicle (25.4 miles
per gallon) was $2,376, while the EV Subsidy for a 100% renewable energy grid reached
$3,988. A 100% renewable energy grid also produced an electric vehicle with
significantly lower social costs than a gasoline-powered vehicle with an efficiency of 80

miles per gallon (EV Subsidy = $1,071).
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Chapter I

Introduction

The use of electric vehicles (EVs) has expanded significantly in the past five
years: in 2012 there were 12,000 electric vehicles sold, while in 2015 it is estimated that
430,000 were purchased (Shahan, 2015). The electric vehicle has been touted as a
potential solution to anthropogenic climate change; although some have argued that
electric vehicles running off the current grid are no cleaner than standard automobiles
(Lomborg, 2013). This point is hotly debated (Holland, Mansur, Muller, & Yates, 2015),
but there is no argument over the fact that the current grid produces a non-trivial amount
of carbon emissions per kWh. This situation can be remedied by combining electric
vehicles and low carbon renewable energy. A nationwide fleet of electric vehicles would
cause a significant increase in the demand for electricity, but this demand could be
assuaged by a nationwide adoption of renewable energy programs (rooftop photovoltaics,
grid-scale solar, wind power, hydropower). Subsequently, the carbon emissions related to
the new renewable energy would be dramatically less than combusting gasoline, in
addition to the emissions of other pollutants (including sulfur dioxide, nitrous oxide,
particulate matter, and volatile organic compounds). Thus, a combination of electric
vehicles and renewable energy has the potential to be a potent climate change mitigation
strategy.

There is undeniably merit to this proposition, yet society cannot ignore the fact

that electric vehicles are only as “clean” as the grid they are tied to. A wholesale adoption



of electric vehicles would lead to a large increase in electrical demand, and subsequently,
would be responsible for the greenhouse gas emissions associated with this increase.
Thus, the climate change mitigation potential of an electric vehicle is directly linked to
the grid from which it draws its energy: a low carbon grid will lead to low carbon vehicle.
However, multiple studies, including a recent working paper by the National Bureau of
Economic Research (NBER), analyzes the efficacy of electric vehicles based solely on
our current grid. This is a severe research gap, as we cannot fully understand the potential

for electric vehicles unless we pair them with a grid that unlocks their capability.

Research Significance and Objectives
Therefore, my research objectives are to:

e Demonstrate how a combination of electric vehicles and renewable energy can be
used to dramatically decrease transportation-related carbon emissions, and
consequently, mitigate climate change

e Establish the correlation between the appropriate subsidy for electric vehicles and the
percentage of renewable energy

This study analyzed data from the National Renewable Laboratory (NREL), the

U.S Environmental Protection Agency (EPA), and other government sources to

determine the environmental impact related to driving electric vehicles. This impact is

greatly influenced by the mixture of electricity generation that powers the grid, and thus,

I researched the environmental impact related to five different electricity generation

scenarios: our current grid (in 2016), a grid with 20% renewable energy, a grid with 50%

renewable energy, a grid with 80% renewable energy, and a grid that is comprised of



100% renewable energy. Argonne National Laboratory’s GREET model was used to
calculate the pollutants per kWh that would be associated with each scenario (Argonne
National Laboratory, 2015). There are undeniable social costs related to pollutants such
as carbon dioxide (CO2), sulfur dioxide (SO2), nitrous oxide (NOX), volatile organic
compounds (VOCs), and particulate matter (PM). The costs for these pollutants may lie
outside the standard market, but they are still quantifiable. A popular model called the
AP2 Model was used to determine the social costs per kWh for each pollutant. These
costs were summed to determine the social cost (externality) per kWh that is associated
with each of the above-mentioned energy scenarios. A similar process was followed to
determine the social cost per gallon of gasoline burned in a standard internal combustion
engine vehicle. These unit-based social costs were distributed over 150,000 miles to
estimate the social cost for an electric vehicle (for each electricity generation scenario)
and an internal combustion engine vehicle (kWh/100 miles and miles per gallon
efficiencies will also be taken into account). The difference between these social costs
represents the social benefit that could be derived from a specific driving scenario and a
comparison of these scenarios elucidates the true benefits of electric vehicles as we move
toward a low-carbon grid.

This study will provide value to policymakers of all levels, as it addresses the
feasibility of a transition to a low-carbon transportation model. The current grid does not
allow electric vehicles to reach their full climate change mitigation potential, but the
results of this study may encourage policymakers to implement the changes that would
facilitate a low-carbon future. The true significance of this study does not relate to where

we are now, but to where we are headed.



Background

The COP21 Conference in Paris reasserted the world’s drive to reduce greenhouse
gas emissions. Many of the goals that emerged from the conference are not binding and
are not attached to specific mechanisms for reducing greenhouse gas emissions (United
Nations Conference on Climate Change, 2015). Thus, there is still a significant amount of
debate surrounding the most effective means for reducing emissions.

Countless proposals exist for how the United States of America should reduce
emissions, but many of the ideas relate to two key areas: power plants and transportation.
The Obama Administration’s recent “Clean Power Plan” is one example of the prior
Administration’s efforts to reduce the emissions related to America’s power plants. This
is no small feat, as power plants account for 2,215 million metric tons of yearly
emissions, which is 31% of America’s total greenhouse gas emissions. A large portion of
this electricity powers the nation’s commercial and residential buildings, which account
for 34% of America’s greenhouse gas emissions. Yet, transportation comes in at a close
second, accounting for 27% of greenhouse gas emissions (Environmental Protection
Agency, 2013). Transportation’s large share of total greenhouse gas emissions makes the
industry a prime target for anyone who is looking for a means to reduce overall

emissions.

Electric Vehicles
An “electrification” of the American automobile fleet is one of the key ideas for
reducing transportation related emissions. The Obama Administration had a goal of

putting 1 million electric vehicles on the road (Institute for Energy Research, 2011) and



the state of California instituted multiple programs that incentivize electric vehicle
adoption (DriveClean, 2015). Additionally, the federal government currently gives a
$7,500 tax credit to anyone who purchases a new electric vehicle, and there are multiple
states that offer monetary incentives in addition to the federal subsidy (IRS, 2015). These
subsidies exist to promote the sale of electric vehicles and the zero “tail-pipe” emissions
that they embody.

The public has responded to the government’s push for electric vehicles and sales
of electric vehicles have increased dramatically over the past five years. This growth is
not exclusive to the United States: the worldwide census of electric vehicles reached the
one million mark in September of 2015 (Shahan, 2015). One of the key drivers of growth
has been the proliferation of electric vehicle options. There were initially few choices for
individuals who wanted to purchase an electric vehicle, but this is no longer the case.
Multiple manufacturers now offer electric vehicles and exciting new options from Tesla,
Chevrolet, BMW, and Ford have hit the market. Chevrolet recently announced at the
Consumer Electronics Show in Las Vegas that they would be producing the first $30,000
electric vehicle with a 200-mile range and the first “Chevrolet Bolts” were able to hit the
market in late 2016. This is a key price point and experts suspect that it will go a long

way toward bringing electric vehicles to the masses (Davies, 2016).

Electricity Generation and Emissions
The news surrounding electric vehicles is not all positive and they do have their
detractors. Some experts have bemoaned the high prices and limited range, but the new

electric vehicle options from manufacturers have begun to silence these critics. Each year



the electric vehicle options become cheaper and offer significantly greater range. Hence,
a far more credible concern relates to the emissions that can be attached to each electric
vehicle. While electric vehicles do not produce any direct greenhouse gas emissions, they
are powered by stored electricity that comes from the local grid.

This has allowed individuals such as Bjorn Lomborg to make the case that electric
vehicles are actually dirtier than standard internal combustion engine vehicles (Lomborg,
2013). His argument is centered on a 2012 life-cycle analysis (LCA) comparing electric
and conventional vehicles (Hawkins, Majeau-Bettez, & Stromman, 2013). This LCA
estimated that the production phase for electric vehicles was responsible for over double
(30,000 compared to 14,000 Ibs) the carbon dioxide emissions of conventional vehicles.
Lomborg believes that it will take an individual 80,000 miles to recoup the difference in
production-related carbon dioxide emissions, as electric vehicles are only responsible for
6 fewer ounces of carbon dioxide emissions per mile (Lomborg, 2013). Lomburg’s
opinions have drawn strong rebuttals from other experts. Max Baumhefner of the
National Resource Defense Council took issue with this conclusion and referred to
another LCA by the Argonne National Laboratory that estimated production-related
carbon dioxide emissions (for EVs) to be nearly three times less than the number cited by
Lomborg (Baumhefner, 2013). Additionally, Don Anair of the Union of Concerned
Scientists criticized Lomborg’s assumption that the vast majority of electricity would
come from coal power (Anair, 2015). While Lomborg’s critique may be imperfect, there
is no denying the fact that power plant emissions must be accounted for when measuring

the environmental impact of an electric vehicle.



The environmental impact of an electric vehicle also varies from region to region.
An analysis of American energy generation shows that greenhouse gas emissions per
kWh vary widely from state to state (U.S. Energy Information Administration, 2015).
Thus, a car driving in Washington (where most electricity comes from hydropower) will
account for far fewer greenhouse gas emissions per mile than a car driving in Ohio
(where most electricity comes from coal power). A National Bureau of Economic
Research (NBER) working paper quantified the wide range of environmental benefits
from driving an electric vehicle. For example, the benefit was as high as $3,025 in

California and as low as -$4,773 in North Dakota (Figure 1).

Figure 1. Marginal damage for gas and electric cars by county. Left image is for gas-
powered cars and the right image is for electric vehicles. Red signifies more damage and
green signifies less damage. Data source: Holland et al., 2015.

This analysis looked at the externalities from air pollution that can be tied to
driving a vehicle. The paper quantified the damage done by emissions of carbon dioxide,
particulate matter, and other pollutants and used this information to determine the level of
externalities per kWh (for electric vehicles) and per gallon (for internal combustion

automobiles). Some may consider these results to reflect negatively on electric vehicles,



but in truth, the NBER results demonstrate the potential of an electric vehicle when it is
tied to a low-carbon grid (Holland et al., 2015). Hence, the true beauty of electric vehicle
technology is not its current state, but what it can become when tied to renewable energy
resources. The modern electric vehicle should by no means be looked at as a finished

product, but as a facilitator of positive change.

The Coupling of Renewable Energy and Electric Vehicles

An electric vehicle’s potential for positive environmental impact is truly unlocked
when the vehicle is tied to clean energy. There is no theoretical means for an internal
combustion engine to run off of renewable energy; even a hybrid car with an efficiency
of 100mpg is still burning gasoline and emitting carbon dioxide. This does not have to be
the case for an electric vehicle. A car that is running on solar, wind or hydropower will
have marginal greenhouse gas emissions that approach zero (Moomaw, Burgherr,
Lenzen, Nyboer, & Verbruggen, 2011). This clearly illustrates the importance of
coupling electric vehicles with an adoption of renewable energy.

Multiple low-carbon sources of energy generation exist that could be used to
charge an electric vehicle. Wind, solar, and hydropower all have many positive
characteristics. For example, rooftop photovoltaics can produce a tremendous amount of
energy and it is estimated that the United States could produce 8§18 TWh (Lopez,
Heimiller, Blair, & Porro, 2012). Thus, it is theoretically possible that a residential
adoption of photovoltaics could happen simultaneously with the adoption of electric
vehicles. In some cases, this is already happening: a 2014 survey of electric vehicle

owners in California showed that 32% of respondents already had photovoltaic systems



on their home and 15% were planning to install systems in the near future (California Air
Resources Board, 2014). One can imagine a future where every house has a photovoltaic
panel on the roof and an electric vehicle in the garage.

The low-carbon renewable energy sector extends far beyond photovoltaics.
Concentrated solar power (CSP) is another form of solar energy that uses solar energy to
produce steam that turns a turbine. (NREL, 2016). NREL (2015) and the EIA (2015)
both predict that there will be large increases in the capacity of CSP as the United States
moves toward a higher percentage of renewable energy. Wind power is another energy
source that possesses the ability to generate electricity while emitting minimal levels of

pollution.
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Figure 2. Land-based wind power over time. The cost of wind power (blue bar graphs)
has decreased exponentially, while wind capacity (orange line) has increased
exponentially. Data source: U.S. Department of Energy (2016).

The per kWh cost of wind power has dropped precipitously since 1980, while
overall wind capacity has increased year after year (Figure 2). In 2015, wind power added
more electricity generating capacity than any other type of power plant (EIA, 2015).
Furthermore, the United States’ first off-shore wind power plant went online in 2016 and

the sector represents an untapped resource that could see significant growth in the coming



decades (Mai et al., 2012). On the other hand, hydropower is not expected to grow as
quickly as wind or solar power. This does not imply that hydroelectric power plants
should be ignored, as hydropower was the leader in generating capacity among all
renewables in 2015 (EIA, 2016). Both NREL and the EIA predict that wind and solar
power will eventually overtake hydropower, but hydropower plants will remain a key
part of the American grid for the foreseeable future. A common thread among all
renewables is the ability to produce energy with marginal emissions (carbon dioxide and
other criteria pollutants) that approach zero. This is true for wind power, photovoltaics,
hydropower, geothermal, and concentrated solar power (CSP). It is important to note that
this does not indicate that renewable energy is completely pollutant free, as it is necessary
to look at renewable energy from a life-cycle assessment standpoint to truly determine
the pollutants per kWh. This is due to the fact that upstream emissions still exist (from

production, transportation, and sectors) even when marginal emissions approach zero.

Renewable Energy and the Modern Grid

Electric vehicles and renewable energy technologies have a mutually beneficial
relationship, but unfortunately, the supply and demand curves for electric vehicles and
most forms of renewable energy do not align. Most electric vehicles charge at night
(when owners are back from work), while wind power can fluctuate throughout the day
and photovoltaic panels produce electricity only during daylight hours (Fattori, Anglani,
& Muliere, 2014). A sample kWh demand curve for a single household is displayed in
Figure 3. The graph displays a natural increase in demand during the later afternoon and a

decrease in demand during the night. This is a common demand curve that reflects an
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increase in electricity demand during the hours that occupants are home, while decreasing

during nighttime hours.

Sample Supply and Demand Curves (No EV; No PV)
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Figure 3. Sample supply and demand curves (No EV or PV). This displays a sample
demand curve, with no electric vehicle charging and no photovoltaic generation.

The demand curve is dramatically altered when an electric vehicle is added to the
picture. The impact of an electric vehicle charging can be seen in Figure 4 (sample
assumes a complete charge of a 20kWh battery, providing upwards of 80 miles of range).
The charging of the electric vehicle raises the non-photovoltaic (non-PV) energy demand

during the night, which leads to a slight smoothing of the curve.

Sample Supply and Demand Curves (100% EV; No PV)
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Figure 4. Sample supply and demand curves (EV but no PV). This displays a sample
demand curve, with nighttime electric vehicle charging, but no photovoltaic generation.
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While an electric vehicle can lead to a smoothing of the demand curve,
photovoltaic panels only exacerbate the variability of the supply curve. Furthermore,
photovoltaic panels can significantly lower the non-PV demand during the day, moving
this demand a significant distance from its mean output (Figure 5).

The current level of technology in the American grid can only support a limited
amount of renewable energy due to its inherent volatility (Fattori, Anglani, & Muliere,
2014). However, this is not a death knell for the potentially symbiotic relationship

between electric vehicles and renewable energy.

Sample Supply and Demand Curves (100% EV; 100% PV)
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Figure 5. Sample supply and demand curves (EV and PV). This displays a sample
demand curve, with nighttime electric vehicle charging and daytime rooftop photovoltaic
generation.

Technology is rapidly changing, and what seems improbable today, may seem
commonplace in the near future. A recent study suggests that by the year 2050 the grid
will be capable of utilizing 80% renewable energy. This will be accomplished through the

implementation of “smart grid” technologies that facilitate a more effective distribution
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of energy and through an increase in grid-scale battery facilities (Mai et al., 2012). This
study (NREL, 2009, pg. 2) specifically states that:

Within the limits of the tools used and scenarios assessed, hourly simulation

analysis indicates that estimated U.S. electricity demand in 2050 could be met

with 80% of generation from renewable electricity technologies with varying
degrees of dispatch-ability, together with a mix of flexible conventional
generation and grid storage, additions of transmission, more responsive loads, and
changes in power system operations.

This scenario is very different than humankind’s quest to produce a fusion power
plant or to warp space-time. While both of those goals are theoretically possible, the
technology to achieve them does not currently exist. On the other hand, the technology
exists to facilitate a renewable energy future: photovoltaics, battery storage, off shore

wind. Thus, this “future reality” needs to factor in to any analysis of technologies that

rely on electricity (i.e. electric vehicles).

The Grid of the Future

While the grid of today may do a poor job taking advantage of technologies such
as photovoltaics, CSP, wind power, and electric vehicles, the grid of tomorrow may be
built around such technologies. This so-called “smart grid” could use the batteries within
electric vehicles to send electricity back to the grid when demand is high and charge
when demand is low (Habib, Kamran, & Rashid, 2015). Additional home-based battery
systems will allow households to store excess energy from photovoltaics during the day
and use the additional energy at night (Ritte, Mischinger, Strunz, & Eckstein, 2012).
These systems would facilitate a smoothing of the demand curve and allow renewables to

charge electric vehicles in a time-delayed manner. Thus, one can make an argument that
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an improved grid could expedite the transition toward a nationwide fleet of renewable

energy charged electric vehicles.

Externalities and the Social Cost of Carbon

Renewable energy is commonly regarded as more expensive than other non-
renewable forms of energy (Figure 6); however, this assumption does not take into
account many of the true costs related to electricity generation.

There is the standard market transaction that takes place when a consumer
purchases electricity: the utility sells electricity to the consumer for a specified price and
the consumer purchases the electricity for said price. This transaction is easy to

understand, as the costs are clearly laid out for the consumer.
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Figure 6. Levelized cost of electricity. Energy costs are calculated using NREL
methodology, a 3-10% discount rate, and a 30-year lifetime. (copied from Klein &
Whalley, 2015).
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Unfortunately, there are numerous costs that do not show up on the electricity bill.
These costs are “external” to the market transaction and are referred to as “externalities.”
These externalities include the negative impacts to tourism (as a result of fossil fuel
extraction), deaths from coal-train accidents, climate change-related costs, and impacts to
human health, all of which are undeniably true costs. Hence, it is important to quantify

the true costs related to each source of electricity generation.

The Relationship Between Renewable Energy and Externalities

Holland et al. (2015) calculate the appropriate electric vehicle subsidy by
analyzing the externalities associated with our current grid. The study takes an
impressively detailed look at electricity generation throughout the country, but it gives
little attention to the dynamic nature of this generation: i.e. the grid of today is different
than the grid of tomorrow. While the study does an exhaustive analysis of the differences
in externalities from one county to another, it pushes the potential of our future grid to
one line in the sensitivity analysis. Furthermore, the sensitivity analysis for a “future
grid” only makes the assumption that all coal power plants will be replaced with natural
gas (Holland et al., 2015). This is a great starting point, but it begs to be explored further.
What happens if we approach 50% renewable energy? What if we approach NREL’s
prediction of 80% renewable energy? What happens if the grid becomes carbon neutral?
These scenarios may be far from reality, but the knowledge of these potentialities should
guide our policies in the way that a map guides us to where we are going, not to where

we currently reside.
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Broad cultural realizations can, at times, lead humankind toward a flurry of
innovation. Americans first had to realize that they were capable of going to the moon
before they could be pushed to develop the multitude of technologies that would facilitate
the journey. This same ideology holds true for renewable energy and electric vehicles.
Transportation accounts for 1,806 million metric tons of American greenhouse gas
emissions (27% of total) and renewable energy-powered electric vehicles could
drastically reduce this number (EPA, 2013). Thus, it is important to understand the
relationship between “clean energy” and the environmental impact of electric vehicles.
This knowledge could be a catalyst for developing the technologies that would turn our

capability, into reality.

Research Questions, Hypotheses, and Specific Aims
Therefore, my primary research question is: What impact does the percentage of
renewable energy have on the appropriate subsidy for an electric vehicle and how does
the percentage of renewable energy impact the GHG mitigation potential for electric
vehicles? I will explore this question by testing the following hypotheses:

1. The negative environmental impact for a 100% renewable energy powered
electric vehicle will be lower than the impact from an internal combustion engine
vehicle getting 80 miles per gallon.

2. The appropriate federal subsidy for a 100% renewable energy powered electric
vehicle will be over $3,000 when compared to an internal combustion engine

vehicle with an efficiency of 25.4 miles per gallon (July 2016 average), and over
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$1,000 when compared to an internal combustion engine vehicle with an

efficiency as high as 80 miles per gallon.

3. A 100% renewable energy powered electric vehicle will produce 50% fewer GHG
emissions than an internal combustion engine vehicle with an efficiency of 80
miles per gallon.

Specific Aims
The above-mentioned hypotheses necessitated the following specific research
aims:

1. Creating a model to quantify the per kWh negative externality for air pollution on
an electric vehicle.

2. Quantifying the per gallon negative externality for air pollution on an internal
combustion engine vehicle.

3. Determining the appropriate federal subsidy for an electric vehicle, as a function

of specific criteria: percentage of renewable energy used to charge the battery,
cost of carbon, average miles per gallon for standard automobiles, and average

kWh per 100 miles for an electric vehicle.
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Chapter 11

Methods

The primary focus of this study is to quantify the impact that the percentage of
renewable energy has on the externalities associated with driving an electric vehicle. The
environmental impact of an electric vehicle can then be compared to the impact of an
internal combustion engine vehicle, elucidating the difference in social costs between
these two types of vehicles (represented as the EV Subsidy). This analysis of the social
costs for electric vehicles and internal combustion engine vehicles necessitated the
creation of the following models: a model predicting the relationship between the
percentage of renewable energy and the composition of the United States grid, a pollutant
cost model, an emissions model for electric vehicles, an emissions model of internal

combustion engine vehicles, and the EV Subsidy Model.

Renewable Energy and the United States Grid
It was necessary to create a model where a continuous input variable for
renewable energy percentage (RE) could be entered into the model and it would output an
accurate percentage breakdown for the corresponding grid. For example, an input of 50%
renewable energy would output the percentages for wind, photovoltaic, concentrated
solar power (CSP), biomass, geothermal, hydroelectric, oil, natural gas, coal, and nuclear
power that would appropriately fit a grid with 50% renewable energy. I created three

possible models and chose the model with the most accurate predictive qualities.
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Proportional Model
The Proportional Model is based off of the EIA’s 2016 percentages for wind,
photovoltaic, concentrated solar power (CSP), biomass, geothermal, hydroelectric, oil,

natural gas, coal, and nuclear power (EIA, 2016).

Table 1. Percentage of electricity generation by generation type for 2016.

Electricity Generation Type Percentage
Wind 4.70%
Photovoltaic 0.30%
Concentrated Solar (CSP) 0.30%
Hydropower 6.00%
Geothermal 0.40%
Biomass 1.60%
Total Renewable: 13.30%
Oil 1.00%
Natural Gas 33.00%
Coal 33.00%
Nuclear 20.00%
Total Non-Renewable: 87.00%

In this model, hydroelectric power is held constant, as it is unrealistic to assume
that hydroelectric power would increase proportionally with the rest of the renewable
energy technologies. The EIA predicts that hydropower will remain nearly constant
between 2016 and 2040 due to limited resources and the economic cost of building new
dams (EIA, 2015). However, in this model, all other electricity generation types increase
proportionally to one another. This was accomplished by determining the percentage of
each energy generation source respective to the percentage of renewable energy or
percentage of non-renewable energy (Table 1). It should be noted that the EIA data does

not add up to exactly 100%. Fortunately, this was not a problem, as it was only necessary
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to determine their percentages relative to one another and the Proportional Model outputs

values that add up to 100%.

Table 2. Percentage of renewable energy electricity generation for 2016.

Electricity Generation Type Percentage
Wind 35.34%
Photovoltaic 2.26%
Concentrated Solar (CSP) 2.26%
Hydropower 45.11%
Geothermal 3.01%
Biomass 12.03%

Hydroelectric power was removed from the computation (Table 3) due to the fact
that the percentage of hydropower will stay constant throughout the model. The other
types of renewable energy generation (wind, photovoltaic, CSP, geothermal, and
biomass) were then divided by the total percentage for non-hydroelectric renewable

energy to determine their relative percentages (Table 3).

Table 3. Percentage of non-hydro renewable energy electricity generation for 2016.

Electricity Generation Type Relative Percentage

Wind 64.38%
Photovoltaic 4.11%
Concentrated Solar (CSP) 4.11%
Geothermal 5.48%
Biomass 21.92%

The percentages in Table 3 were used to predict the breakdown for each possible
renewable energy scenario. This was accomplished by subtracting the percentage of

hydropower (HYD) from the percentage of renewable energy (RE) and multiplying the
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remaining value by the relative percentages (variable IGrid,; g representing the index for
all individual electricity generation types) in Table 3.
Renewable Percentage = (RE — HYD) X IGrid,
A similar process was followed for non-renewable energy, as the percentage for
each non-renewable energy source (oil, natural gas, coal, and nuclear) was divided by the

total percentage of non-renewable energy to quantify their relative percentages (Table 4).

Table 4. Percentage of non-hydro renewable energy electricity generation for 2016

Electricity Generation Type Relative Percentage
Oil 1.15%
Natural Gas 37.93%
Coal 37.93%
Nuclear 22.99%

The relative percentage for each non-renewable energy source was then multiplied by the
overall value entered for non-renewable energy.
NonRenewable Percentage = (1 — RE) X IGrid,

This model generates an output value for each electricity generation source that
remains proportional to the 2016 values. For example, the percentage of wind power will
always be close to an order of magnitude greater than the percentage of photovoltaics.
The exception to this rule is hydropower, which is deliberately fixed to the 2016 value.
This model exhibits one serious flaw: it is highly unlikely that the percentages of each
renewable energy generation source will increase proportionally to their 2016 baseline.
For example, the EIA predicts that solar power capacity (photovoltaic and CSP) will

increase at a significantly greater rate than wind power capacity (EIA, 2016). It is also
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possible that a specific source could increase initially, but level off after the renewable
energy percentage reaches a certain level. None of these scenarios factor into the

Proportional Model.

National Renewable Energy Laboratory (NREL) Regression Model

The National Renewable Energy Laboratory (NREL) Regression Model is based
on their 2015 Renewable Electricity Futures Study. The study explores high-penetration
renewable energy scenarios and how these scenarios could be implemented. A potential
breakdown for the percentage of each major energy generation type was included in the
study and it detailed how each of these individual percentages would relate to multiple

high-penetration renewable energy percentage scenarios (Table 5).

Table 5. NREL high penetration renewable energy projections.

%RE  Nuclear Coal Natural Gas Biomass Geo Hydro CSp PV Wind

30.00% 10.67% 49.22% 9.65% 447%  3.99% 849%  0.03% 2.43% 11.03%

40.00% 10.61% 42.90% 5.87% 6.13%  4.20% 9.48%  0.05% 3.10% 17.66%

50.00% 10.54% 34.39% 4.19% 7.12%  4.21% 991%  0.59% 4.59% 24.47%

60.00% 10.08% 25.68% 3.36% 10.48% 4.19% 10.14% 2.11% 5.00% 28.96%

70.00% 9.80% 16.55% 2.79% 13.83% 4.15% 10.93% 3.05% 5.40% 33.50%

80.00% 8.02%  8.68% 2.57% 15.20% 4.11% 11.36% 6.60% 6.44% 37.01%

90.00% 4.74%  2.93% 1.86% 14.81% 4.01% 12.48% 11.58% 7.07% 40.53%

The NREL Regression Model takes these values (Table 5) and uses the program
XLSTAT to model the relationship between the independent variable (RE) and the
dependent variable (the percentage for each energy generation type). All NREL values

were entered into Excel, in addition to the 2016 EIA percentages (Table 1). The program
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XLSTAT was used to determine the best-fit non-linear regression equation for each of
the electricity generation types.

Multiple non-linear regressions were run in XLSTAT for each generation type
(see Appendix 1) and the equation with the highest r* value was chosen for use in the
model. All coefficients of determination were 0.97 or greater and the equations followed
the NREL predictions with limited residuals. Then each of the regression-based formulas
were used to output the appropriate percentages for each electricity generation type,
based on the input percentage of total renewable energy. The only exception was oil, as
NREL does not give data for oil power plants. Consequently, I fixed oil at 1/33 of coal

power to reflect the oil-to-coal ratio that we see in 2016 (EIA, 2016).

Table 6. Formulas for electricity generation projections.

Electricity Generation = Function Formula R’
Type
Wind Logit 0.4264 0.997
1 + 2.7808—5.9686+RE
i i —0.3078
Photovoltaic Logit 0.2933 + gl 0.990
0.8859
1+ (75905
P Logit —4.6571 0.996
s o8l 4.6571 + —
4.9226
1+ (75977)
Geothermal Logit 0.0414 0.998
1 + 6:5594—32.6158+RE
Biomass Logit 0.1725 0.979
1 + 3.0073-5.8495+RE
i —0.4634
Hydropower Logit 0.4497 + - 0.979
0.3919
1+ @237
i —0.7392
Natural Gas Logit 0.0127 + o 0.999
2.1842
1+ Q1167
Coal Cubic 3.9423RE® — 7.1886RE? + 3.3008RE 0.992
+ 0.0162
Nuclear Quintic =~ —8.0419RE® + 23.2378RE* — 26.6279RE® 0.999
+ 14.9043RE? — 4.0460RE
+ 0.5301
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This model produces little deviation from the expected values, but in most cases
the combined values for all renewable energy percentages will be slightly different than
the input renewable energy percentage (Table 7). For example, when 13.3% is entered
into the model, the sum of the values for all renewable energy sources equals 13.87%.
This problem is solved by indexing the output values (OutputRE) for each energy source

(g) to the input percentage of renewable energy (RE).

OutputRE|
2g(OutputRE,)

Indexed RE% =

Table 7. Renewable energy generation percentages for 2016, based on regression
formulas.

Electricity Generation Type Percentage
Wind 5.14%
Photovoltaic 0.55%
Concentrated Solar (CSP) 0.002%
Geothermal 0.41%
Biomass 1.68%
Hydro 6.09%
Total 13.87%

Each percentage of renewable energy is divided by the regression-based total for
renewable energy and then this value was multiplied by RE. This computation ensures
that all output values will sum to the input value for renewable energy percentage (RE).
The same process is then followed for non-renewable energy.

This model also has one very significant flaw: NREL includes values for coal
power that are substantially higher than the current percentage of coal power and are far
higher than the EIA’s predictions. While the EIA’s model does not look at high

penetration renewable energy scenarios, it does predict the energy distribution through
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2040, and these values contrast starkly to NREL’s coal power predictions (EIA, 2016).
NREL’s percentage for coal is related to the fact that much of NREL’s study was done
prior to 2015, when coal production accounted for a far greater percentage of the overall
grid (NREL, 2015).

The percentage of coal power has fallen tremendously in recent years and the EIA
predicts that this trend will continue. Thus, it is unlikely that an increase in renewable
energy will also coincide with a resurgence in the coal industry. The increase in coal
power has a dramatic impact on the overall model for externalities associated with
electric vehicles (demonstrated in the Results section), this results in a distortion of the
central goal of this study: to determine the impact that renewable energy has on the
environmental impact of electric vehicles. If this increase coincides with an increase in
coal power, the potential benefit related to an increase in renewable energy will be

confounded.

Combined Model

The Combined Model is based on the two prior models, as it uses the NREL-
based regressions to predict the percentages for renewable energy, while it uses the
Proportional Model to predict the percentages for non-renewable energy. This is done to
eliminate the confounding impact of disproportionally high coal power on the overall
NREL Regression based model. The Combined Model allows for the individual
renewable energy generation methods to increase at the rate that NREL has deemed
appropriate for each of the high penetration renewable energy scenarios. However, the

benefits of renewable energy are not obscured by a dramatic increase relative to 2016
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coal power output. An even more accurate model might include a decrease in coal power
relative to natural gas, but within the scope of this study. The goal of this study is to
isolate the variable for “renewable energy” and understand its impact on the
environmental benefits of electric vehicles, ceteris paribus. Everything considered, the

Combined Model is the best option for achieving this goal.

Social Cost: Electric Vehicle

This study is focused on the following pollutants: carbon dioxide (CO2), sulfur
dioxide (SO2), nitrous oxide (NOX), particulate matter (PM 2.5), and volatile organic
compounds (VOCs). These pollutants are at the forefront of environmental policy
discussions and are responsible for the majority of air pollution-related damages (Holland
et al., 2015). The study hinged on assigning a monetary value to the emissions of the
above pollutants. I used the Environmental Protection Agency’s (EPA) social cost of
carbon (SCC), which was determined by the United States Government’s Interagency
Working Group on the Social Cost of Carbon (EPA, 2015). The EPA offers multiple
costs of carbon based on different base years and discount rates, but all costs are given in
2007 dollars. I have chosen the year 2016 and a discount rate of 2.5% to get the value of
$57 per metric ton of carbon dioxide (EPA, 2015). This value was converted to 2016
dollars to arrive at a final value of $66.26 per metric ton of carbon dioxide (Bureau of
Labor Statistics, 2016).

The Air Pollution Emission Experiments and Policy(APEEP) Model was used to
determine the per unit damages associated with SO2, NOX, PM 2.5, and VOCs. This

“integrated assessment model” lists the damages for each pollutant in each county in the
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United States (Muller, Mendelsohn, & Nordhaus, 2011, p. 1659). The model utilizes EPA
data and peer-reviewed dose response algorithms to monetize the social costs related to
the above-mentioned pollutants. This is accomplished for each county in the United
States by assessing the marginal impact (mortality and morbidity) related to an additional
ton of pollutant at each location (Muller et al., 2011). Essentially, the APEEP model puts
a price tag on the social costs of one ton of pollution in every county in the United States
and lists these values in an Excel file (Muller, 2016). In this study, these values were
converted from year 2000 dollars to 2016 dollars and the median value was used to

represent the social cost of each pollutant.

Table 8. Social cost of pollutants.

Pollutant Source Social Cost per ton (2016 $)
Carbon Dioxide EPA $66.26
Sulfur Dioxide APEEP $2,459.92
Nitrous Oxide APEEP $572.11
Particulate Matter 2.5 APEEP $3,742.75

Volatile Organic Compounds APEEP  $368.63

The monetary pollutant damages vary widely from county to county, but the
median values (Table 8) make it possible to model the environmental impact of electric
vehicles on a national scale. Furthermore, multiple sensitivity analyses and a Monte Carlo
Simulation were performed to understand the impact related to costs of different
pollutants. Particular attention was given to the impact that the social cost of carbon has
on the overall environmental impact of electric vehicles and hence the appropriate

subsidy for electric vehicles.
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Power Plant Emissions

Power plant emissions were evaluated from a life cycle assessment perspective.
This was especially important for renewable energy, as the marginal emissions from
photovoltaics, CSP, and hydropower approach zero. Argonne National Laboratory’s
highly regarded life cycle assessment program “GREET 2015” was used to determine the
emissions per kWh for coal (Figure 7), natural gas, oil, nuclear, and biomass power

plants.

Non Distributed - Coal-Fired Power Generation
Main Output: Electricity
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Figure 7. GREET output data for non-distributed coal-fired power plants. This figure is
taken from GREET 2015 and displays emissions data per kWh for the pollutants detailed
in this study.

GREET 2015 does not include LCA emissions data for the other renewable
energy power plants. Therefore, a meta-analysis from Klein & Whalley (2015) was used

to collect emissions data for photovoltaic, concentrated solar power, geothermal, and
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hydroelectric power plants. Klein & Whalley’s paper provides meta-analysis data for
C0O2, SO2, NOX, and particulate matter for each type of renewable energy electricity
generation and in each case the median/nominal value was recorded (Table 9). The meta-
analysis does not include data related to VOCs and it was necessary to retrieve this
information from a National Energy Technology life cycle comparison (Skone, Littefield,
Cooney, & Marriott, 2013) and a NEEDS Project report (Frankl, Menichetti, Raugei,

Lombardelli, & Prennushi, 2005).

Table 9. Power plant emissions.

Electricity Generation CO2 (g) SO2 (g) NOX (g PM25(g) VOCs(g)
Type
Wind 11 0.046 0.043 0.008 0.00881
Photovoltaic 48 0.307 0.178 0.308 0.088
Concentrated Solar 35 0.042 0.107 0.017 0.0376
(CSP)
Hydropower 7 0.035 0.008 0.013  0.000016
Geothermal 58 0.08 0.025 0.026  0.000442
Biomass 30.78354 0.65794 1.06312 0.61202 0.14984
Oil 942.03924 3.08252 4.30114 0.13367 0.07418
Natural Gas 444.40070 0.09501 0.41317 0.01361 0.07294
Coal 962.93024 3.12123 1.23544 0.21081 0.08682
Nuclear 10.48254 0.02019 0.02530 0.00190 0.00374
Total: 2549.63627 7.48690 7.39917 1.34401 0.52239
Social Cost per kWh

The establishment of a cost per ton of pollutant and the quantity of pollutants per
kWh facilitated the quantification of the social cost per kWh for each type of power
generation. The pollutant data was collected in grams and milligrams, which necessitated
a conversion to tons (see Appendix 2 for information on pollutant data per 150,000

miles). Once the pollutants per kWh were converted to tons, I was able to multiply each
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quantity (in tons) by the cost per ton of pollutant to arrive at a social cost per kWh for
each pollutant and type of energy generation. For example, wind power produces 11
grams of CO2 per kWh, which was divided by 1000000 to convert the value to tons. This
was then multiplied by $66.26 (the social cost of carbon, per ton) to arrive at a value of
$0.00072886. This indicates that each kWh of wind power produces $0.00072886 worth
of damages that can be associated with carbon dioxide emissions. The costs of each
pollutant were summed to determine the overall damages associated with one kWh of

each electricity generation type (Figure 8).

Electricity Generation Cost = z(PC X Emissions)
K

The formula for the “Electricity Generation Cost” uses the variable PC to
represent the cost per ton of pollutant, the variable Emissions to represent the quantity of
emissions per kWh, and k is used to designate the pollutant index (CO2, SO2, NOX, PM

2.5, and VOCs).
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Figure 8. Social cost per kWh for different electricity generation sources.
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The formula for Electricity Generation Cost (EGC) outputs the total social cost
for the five specified pollutants (Table 10). This cost varies greatly from among power
sources, as the EGC for coal power is $0.07301, while the EGC for hydro power is

$0.00060.

Table 10. Social cost per pollutant for each electricity generation type.

Type CO2 SO2 NOX PM2.5 VOCs Total
Wind $0.000729  $0.000113  $0.000025  $0.000030  $0.000003 $0.00090
Photovoltaic $0.003180  $0.000755  $0.000102  $0.001153  $0.000032 $0.00522
CSp $0.002319  $0.000103  $0.000061  $0.000064  $0.000014 $0.00256
Hydropower $0.000464  $0.000086  $0.000005  $0.000049  $0.000000 $0.00060
Geothermal $0.003843  $0.000197  $0.000014  $0.000097  $0.000000 $0.00415
Biomass $0.002040  $0.001618  $0.000608  $0.002291  $0.000055 $0.00661
Oil $0.062420  $0.007583  $0.002461  $0.000500  $0.000027 $0.07299
Natural Gas $0.029446  $0.000234  $0.000236  $0.000051  $0.000027 $0.02999
Coal $0.063804  $0.007678  $0.000707  $0.000789  $0.000032 $0.07301
Nuclear $0.000695  $0.000050  $0.000014  $0.000007  $0.000001 $0.00077

These costs were multiplied by the distribution of the national grid to determine
the average national cost per kWh. For example, if wind power accounts for 4% of the

national grid, then 4% would be multiplied by $0.00090 (Table 10).

Social Cost per kWh = z(EGng Percentage )
g

The percentages were drawn from the Combined Model discussed earlier and vary based
upon the input value for renewable energy percentage (RE). The summed value for all

electricity generation types is equal to the Social Cost per kWh.
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Social Cost for an Electric Vehicle

The social cost for an electric vehicle comes into focus once the social cost per
kWh has been determined. The next step was to calculate how many kWh would be
needed over the lifetime of an electric vehicle. This number is a function of two values:
efficiency and total miles. This study used 150,000 miles, because it was the value used
in NBER’s 2015 white paper on the “Environmental benefits of electric vehicles”
(Holland et al., 2015). The efficiency value of 32 kWh per 100 miles was used, as it is the
weighted value for all 2016 model year electric vehicles that were also sold in 2015 (U.S.

Department of Energy, 2016)).

150000 x Efficiency)

Social Cost for an EV = z (EGng Percentage X 100

g

The total mileage (150,000) times the efficiency (32 kWh per 100 miles) divided by 100

is equal to the number of kWh that will be needed to power the vehicle over its lifetime.

Social Cost: Internal Combustion Engine (ICE) Vehicle

The gasoline emissions values were taken directly from the GREET 2015
software program, which breaks down emissions by well-to-pump (WTP) and well-to-
wheels (WTW) emissions. I ran the simulation for the vehicle “Car: STICEV — E10
(Type 1 Conventional Material” and the year 2016. This designation refers to GREET’s
dataset for a standard internal combustion engine car using E10 gasoline (Figure 9). The
WTW emissions were recorded, which take into account both WTP emissions and
emissions from operation. This calculation was again based on 2016 technology and a

lifetime range of 150,000 miles.

32



Car: S| ICEV - E10 (Type 1 Conventional Material)

Fuel Blend: E10 Target Year for Simulation 2016
Target Year for Vehicle 2016
Technology

Functional unit: Om O /100km @ /mi O Aonmi O Aonnekm () /passengermi () /pass
Name wip P«"é’;’&;r E10) licabn 8ﬁ§mﬁon bl
Total Energy 1159.824331799... |4117.233163146... 4117.233163146... |5277.057494946...
Fossil Fuel 4921.967996974... |0J/mi 0 J/mi 4921.967996974...
Coal Fuel 81.44724685718... | 0 J/mi 0 J/mi 81.44724685718...
Natural Gas Fuel | 670.1457861502... |0J/mi 0J/mi 670.1457861502...
Petroleum Fuel 4170.374963967... |0J/mi 0 J/mi 4170.374963967...
Water_Reservoir ... |48.00042440221... 48.00042440221...
Water_Imigation 258.6714663447... 298.6714663447 ...
Water_Cooling 31.38223688617... 31.38223688617...
Water_Mining 335.6140039953... 335.6140039953...
Water_Process 156.3757406001... 156.3757406001...
VOC 0.116680823928... | 0.117236668852... 0.117236668852... | 0.233917492780...
Cco 79.91018876921... | 2.567891914222... 2.567891914222... | 2.647802102991...
NOx 0.169825507242... | 0.110502020261... 0.110502020261... | 0.280327527504...

» PM10 15.22573456848... |5.290285494144. . 5.250285494144... | 20.51602006262...
PM25 9.966497012114... | 4.679885298060... 4.679885298060... | 14.64638231017...
SOx 0.141959144225... | 0 g/mi 0g/mi 0.141959144225...
CH4 0.338562030975... | 7.903817804145... 7.903817804145... | 0.346465848779...
C02 75.19113464540... | 294.9354427684... 294.9354427684... | 370.1265774138...
N20 11.52611280629... |4.893924520634... 4.893924520634... |16.42003732692...

<

Figure 9. GREET emissions data for a standard internal combustion engine automobile.

The per gallon emissions were then converted to lifetime emissions (Table 11).
This was accomplished by determining the number of gallons that would be needed to
power an ICE vehicle for 150,000 miles. This value was calculated by dividing 150,000

by the average miles per gallon.
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Table 11. Emissions per gallon of gasoline.
Pollutant WTW per Gal (g WTW per Gal (tons) Emissions per 150,000mi (tons)

CO2 10641.14 1.06E-02 62.841
SO2 4.08 4.08E-06 0.024
NOX 8.06 8.06E-06 0.048
PM 2.5 0.42 4.21E-07 0.002
VOCs 6.73 6.73E-06 0.040

The University of Michigan (para. 3, 2016) tracks the “average sales-weighted
fuel-economy rating of purchased new vehicles” based on data supplied by the EPA. This
value has been steadily increasing and reached 25.3 miles per gallon in July 2016 (the
most recent data at the time of writing). This value (25.3) was used in Table 11, but the
variable for miles per gallon can be manipulated to determine the relationship between
miles per gallon and the marginal benefits of an electric vehicle. This relationship is

explored in the results section.

150000
MPG

Lifetime Emissions per Pollutant = Emissions X

Social Cost for an ICE Vehicle
The social cost for an ICE vehicle was calculated by multiplying the social cost
per pollutant (PC) by the lifetime emissions per pollutant (Emissions) and summing the

products for all pollutants (k).

150000)

Social Cost ICE=Z<PC><E" X
ocial Cost for an kX Emissions,X — -

k

The same social costs per pollutant (Table 12) are used for both EV and ICE vehicles.
These costs are based on median values derived from the APEEP model and refer to

ground level emissions.
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Table 12. Emissions and social cost per gallon of gasoline.

Pollutant Emissions per Gallon (tons) Social Cost per Gallon ($)
CcO2 0.010641139 0.705081877
SO2 4.08133E-06 0.010039723
NOX 8.05942E-06 0.004610884
PM 2.5 4.21083E-07 0.001576012
VOCs 6.72513E-06 0.00247906

Non-Operating Costs

A non-trivial percentage of emissions for both electric vehicles and ICE vehicles
occur outside the automobile’s operating phase. These additional emissions can be
attributed to the vehicle’s components and the energy used during assembly, disposal,
and recycling (ADR). This data was collected from GREET 2015, as the software breaks
emissions down into multiple categories, including: components, ADR, and batteries.
Once again, these emissions are based on 2016 technology and the 2016 grid. The vehicle
“Car: SIICEV — E10 (Type 1 Conventional Material)” was used to represent ICE
vehicles and “Car: EV - Electricity (Type 1 Li-lon/LMO Conventional Material)” was
used to represent electric vehicles.

The central objective of this research is to determine the impact that renewable
energy penetration will have on the environmental benefits of electric vehicles. Thus, it is
important that non-operating emissions do not remain static and rather are based upon
any treatments made to the independent variable (renewable energy percentage). It was
necessary to break the non-operating emissions down into grid-dependent and grid-
independent factions. I accomplished this by recording the initial emissions data and then
altering the underlying assumptions within GREET 2015 so that the new grid produced

ZEero emissions.
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Table 13. Grid-based and non-grid based production emissions for an electric vehicle.

EV Components 2016 Grid No Carbon Grid WTP % from
Emissions WTP WTP Grid
CO2 40028.68995 26654.39259 33%
SO2 224.763812 195.2109832 13%
NOX 52.64059036 36.37567004 31%
PM 10.84568612 8.560861129 21%
VOCs 34.55493882 33.04337142 4%

The decrease in emissions for each pollutant represents the percentage of
emissions that could be attributed to the grid. For example, if 40mg of NOX was
attributed to the “Components” in an ICE vehicle and this value decreased to 30mg in the
zero carbon grid, it could then be assumed that 25% of emissions were derived from the
grid (a sample of these values is shown in Table 13 and all values are included in
Appendix 3).

A percentage was calculated for each pollutant originating from the following
categories: Components, ADR, and Batteries. These percentages (EV% and ICE%)
facilitated a breakdown of the emissions into grid-dependent and grid-independent
emissions. The non-operating emissions for a specific category (Components, ADR, and
Batteries) were computed by multiplying the grid-dependent emissions by an emissions
factor derived from the input level of renewable energy and adding this value to the grid-

independent emissions.

Gridk
EV Cost = Z PCx [((1 - EV%;) X ProdEV) + (ProdEV,x EV%;) X —]
k

BaseGridy,
ICE Cost = Z

GTidk
PCx [((1 - ICE%;) X ProdICE}) + (ProdICE;x ICE%) X —]
k

BaseGridy,
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Gri

. d . .
The emissions factor (m) adjusts based on the emissions per kWh for a
k

given pollutant at the input renewable energy percentage (Grid;) compared to the
emissions per kWh for a given pollutant from the baseline 2016 grid (BaseGrid,). Thus,
a 50% reduction in emissions per kWh for a given pollutant will result in a 50% reduction
in grid-dependent emissions for said pollutant. The per-pollutant emissions were then
multiplied by the social cost of each pollutant (PC) and these values were summed within
each category. The social cost related to Components, ADR, and Batteries were added
together to determine the overall non-operating costs associated with each type of
vehicle. The non-operating costs were added to the operating costs and the outcome was
the overall social cost of the vehicle. The disaggregation of production costs allows my
model to produce a production-based externality that responds to increases in renewable.
This is my key contribution to the literature, as other studies use models with static

production-based externalities.

Subsidy and Variables
The recommended EV subsidy was simply calculated by subtracting the social
cost of an EV from the social cost of an ICE vehicle.
EV Subsidy = Social Cost for an ICE — Social Cost for an EV
A variety of treatments were then applied to the above methodology to understand the
impact that specific independent variables have on the environmental impact of electric
vehicles (as quantified by the EV Subsidy). The entire model was built into Excel and the

“data table” feature was used to manipulate different independent variables. These
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variables included: percentage of renewable energy (RE%), miles per gallon, kWh per

100 miles, and the cost of carbon.

Monte Carlo Simulation

Furthermore, a Monte Carlo simulation was run using the Excel-based SimVoi
software. This simulation modeled the effect of pollutant pricing on the overall EV
subsidy. The Monte Carlo simulation consisted of 10,000 iterations that randomly
selected data for SO2, NOX, PM 2.5, and VOCs from the APEEP model (social pollutant
cost data for each county in the United States). Due to the uncertainty related to the social
cost of carbon, the Monte Carlo simulation also randomly pulled data from a list of peer-
reviewed “social costs of carbon.” This data was taken from the widely-cited meta-
analysis compiled by Havranek, Irsova, Janda, and Zilberman (2015). The meta-analysis
included 809 estimates of the social cost of carbon from 101 different studies, although I
only included the median value from each study. This was done to make sure that each
study had the same probability of being selected during the Monte Carlo simulation (as
opposed to favoring the studies with a large number of estimates). The individual social
costs of carbon were then converted from 2010 dollars into 2016 dollars using the
appropriate multiplier (1.11) taken from the Bureau of Labor Statistics (BLS, 2016).

These specific values and the computations are listed in Ancillary Appendix 1.
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Chapter 111

Results

Electric vehicles are touted as an environmentally beneficial technology and this
study aims to quantify these benefits. An electric vehicle’s emissions are directly linked
to the power grid from which it attains its electricity, and thus, this analysis looks at these
benefits as a function of renewable energy. Furthermore, this study quantifies the carbon
dioxide emissions associated with both electric vehicles and internal combustion engine

vehicles.

Carbon Dioxide Emissions

I analyzed the carbon dioxide emitted during 150,000 miles of driving (operating
phase), in addition to the emissions generated from production (production/non-operating
phase). The GREET 2015 life-cycle assessment software indicated that an electric vehicle
powered by the simulated 2016 power grid (13.3% renewable energy) would be
responsible for 22.86 metric tons of carbon dioxide over its lifetime (Table 14). This
number decreases significantly as the grid moves toward more renewable energy. An
electric vehicle powered by 100% renewable energy (RE) would account for only 6.30
tons of carbon dioxide (Table 14), which represents a 79.5% decrease in total carbon
emissions. It is important to note that the production emissions also decrease as the
percentage of renewable energy increases. This is due to the fact that the model

disaggregates production emissions into “grid-based” and “non-grid-based emissions.”
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The grid-based emissions are then linked to the percentage of renewable energy, which
results in fewer production-based emissions as overall emissions per-kWh decrease (see

Chapter II for greater detail).

Table 14. Carbon emissions as a function of renewable energy.

RE% Usage Emissions Production Emissions  Total Emissions
13% 22.86 7.968 30.83
20% 21.19 7.756 28.95
50% 13.63 6.793 20.42
80% 6.07 5.832 11.90

100% 1.10 5.200 6.30

Note: Carbon dioxide emissions are in metric tons over the lifetime of the vehicle.

The total carbon dioxide emissions exceed 165 metric tons (Table 15) for cars
with an efficiency of 10 miles per gallon. This decreases to 68.38 metric tons for vehicles
getting 25.4 miles per gallon (the July 2016 average) and eventually reaches 25.5 metric

tons for vehicles with an efficiency of 80 miles per gallon (Table 15).

Table 15. Carbon emissions as a function of miles per gallon.

MPG Usage Emissions Production Emissions  Total Emissions
10 159.62 5.543 165.160
20 79.81 5.543 85.351
25 62.84 5.543 68.384
40 39.90 5.543 45.447
60 26.60 5.543 32.146
80 19.95 5.543 25.495

Note: Carbon dioxide emissions are in metric tons over the lifetime of the vehicle.
Production emissions are not impacted by the efficiency of the vehicle (miles per gallon).
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The Electric Vehicle (EV) Subsidy

The EV Subsidy is defined as the difference between the externalities associated
with driving an internal combustion engine vehicle and the externalities associated with
driving an electric vehicle. These externalities are based on the negative impacts of the
following pollutants: carbon dioxide, sulfur dioxide, nitrous oxide, particulate matter, and
volatile organic compounds. A positive value for the EV Subsidy would indicate that the
pollution-related externalities from driving 150,000 miles in an electric vehicle are less
than the pollution-related externalities from driving the same distance in an internal

combustion engine vehicle.

Social Cost (SC) of Operating an Internal Combustion Engine Vehicle
The externalities associated with the operating phase of an internal combustion
vehicle is calculated by summing the social costs related to the five pollutants specified in

this study.

Table 16. Emissions data for internal combustion engine vehicles.

Pollutant ~ Emissions per Emissions per Social Cost  Social Cost per Cost per
Gallon (grams) Gallon (tons) per Ton Gallon 150,000mi
(6{0)] 10641.1391 0.01064 $66.26 $0.705081 $4,163.87
SO2 4.0813 4.08133E-06 $2459.91 $0.010039 $59.29
NOX 8.0594 8.05942E-06 $572.11 $0.004610 $27.23
PM 2.5 0.4210 4.21083E-07 $3742.75 $0.001576 $9.31
VOCs 6.7251 6.72513E-06 $368.63 $0.002479 $14.64
Total SC: $0.723787 $4,274.34
SC Per $0.0285 $0.03
Mile:
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A car operating at 25.40 miles per gallon (the July 2016 average) would produce
$4,274.34 worth (Table 16) of air pollution-related costs (University of Michigan, 2016).
The vast majority of these costs ($4,163.87) are attributed to the emissions of carbon

dioxide, while only $9.31 of the costs are a result of damages from particulate matter.
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Figure 10. Social cost (usage phase) as a function of miles per gallon.

The social cost related to driving a gasoline-powered automobile for 150,000 miles
decreases significantly as the vehicle become more efficient (Figure 10). A car operating
at 10 miles per gallon will cause $10,856.81 of damage during its usage phase, while a

car operating at 40 miles per gallon will only cause $2,714.20 of damage.

Social Cost of Operating an Electric Vehicle

The social cost of an electric vehicle is a function of the power grid from which a

vehicle derives its electricity. The pollutants per kWh vary greatly from power plant to
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power plant (Figures 11 and 12), and thus, the air pollution-related externalities are

dependent on the source of electricity generation.
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Figure 11. Carbon dioxide emissions per kWh.
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Figure 12. Pollutants per kWh.

The social cost per 150,000 miles is based on a mix that mirrors the current 2016

national grid. The Combined Model adjusted this mix based on the percentage of

renewable energy that was entered into the model; this adjustment takes into account the
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current proportions and high penetration renewable energy predictions from the National

Renewable Energy Laboratory (NREL, 2015).

Table 17. Power grid mix and social cost.

Electricity % Social Cost per kWH  Percentage Cost per

Generation Type (EGC) Cost 150,000 mi
Wind 4.93% $0.0008998  $0.0000444 $2.13
Photovoltaic 0.53% $0.0052227  $0.0000275 $1.32
CSpP 0.00% $0.0025611  $0.0000000 $0.00
Hydropower 5.84% $0.0006032  $0.0000352 $1.69
Geothermal 0.39% $0.0041517  $0.0000161 $0.78
Biomass 1.61% $0.0066123  $0.0001063 $5.10
Oil 1.00% $0.0729906  $0.0007274 $34.91
Natural Gas 33% $0.0299939  §0.0098639 $473.47
Coal 33% $0.0730096  $0.0240101 $1,152.48
Nuclear 20% $0.0007672  $0.0001529 $7.34
Total SC for an EV:  $0.0349838 $1,679.22
SC Per $0.01119

Mile:

Note: The “cost per 150,000 miles” column is a function of the “social cost per kWh” and
the “percentage.” For example, Oil and Coal have nearly the same “social cost per kWh,”
but the “cost per 150,000 miles” for Coal is far greater because Coal powers 33% of the
grid while Oil powers only 1%. The “total social cost” represents the social cost for a
vehicle that derives power from a grid that perfectly models the 2016 national grid.

The model assumes an electric vehicle operating at 32 kWh per 100 miles, which

is the weighted value of all 2016 model year electric vehicles (U.S Department of

Energy, 2016). The outputs of this model are displayed in Table 17, which demonstrates

that this electric vehicle would produce $1,670.22 of air pollution-related costs over its

lifetime.
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Table 18. Social cost as a function of the percentage of renewable energy.

Percentage of RE Social Cost
13% $1,679.22
20% $1,550.31
30% $1,357.90
40% $1,165.49
50% $973.08
60% $780.66
70% $588.25
80% $395.84
90% $203.43

100% $11.02

This number changes significantly if the percentage of renewable energy
increases (Table 18). The social cost moves under $1000 when the percentage of RE
reaches 50% and goes under $300 once the renewable energy (RE) percentage
approaches 85%. Furthermore, a car running on 100% RE would account for only $11.02

of air-pollution related damages.
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Figure 13. Social cost as a function of renewable energy.
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For each 1% increase in RE%, the social cost decreases by $19.24. This inverse
relationship demonstrates the impact that the RE% has on the social cost of an electric
vehicle (Figure 13). An increase in renewable energy clearly leads to a decrease in air

pollutants, and subsequently, a decrease in social costs.

Non-Operating Costs

Electric vehicles have greater production-based emissions (Table 19) due to the
manufacturing of the battery pack. These packs require sophisticated components and
their construction can be energy intensive; the cell components, cell manufacturing, and
thermal management aspects of the battery all produce non-trivial levels of emissions

(Kim et al., 2016).

Table 19. Production emissions for electric and internal combustion engine vehicles.

Total Emissions EV Emissions ICE Emissions
CcO2 53120.48861 36951.90469
SO2 292.6073589 151.7208905
NOX 72.50415397 47.63524604
PM 15.10872758 9.708309352
VOCs 48.41777038 39.68165126

These emissions were converted into social costs, which resulted in $653.31 in
social costs attributed to the production of an electric vehicle and $434.98 in social costs

for a gasoline-powered vehicle (Table 20).
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Table 20. Production social costs for electric and internal combustion engine vehicles.

Emissions EV Costs ICE Costs
Cost of CO2 $527.96 $367.26
Cost of SO2 $107.97 $55.98
Cost of NOX $6.22 $4.09
Cost of PM $8.48 $5.45
Cost of VOCs $2.68 $2.19
Total Non-Operating $653.31 $434.98

A significant portion of non-operating emissions are derived from the power grid,

and thus, an increase in renewable energy will also decrease the non-operating costs

(Figure 14).
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Figure 14. Non-operating costs as a function of renewable energy.

The Electric Vehicle Subsidy (Operation and Production Phase)

The EV Subsidy is computed by subtracting the social cost of an electric vehicle

from the social cost of an internal combustion engine vehicle. The operating and non-
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operating (production) costs are added together to determine the total social costs for

each type of vehicle.

Table 21. Social costs and the EV subsidy as a function of renewable energy.

RE% ICE SC EV SC EV Subsidy
13% $4,709.24  $2,332.43 $2,376.81
20% $4,698.32  §$2,197.30 $2,501.02
30% $4,682.03  §$1,995.64 $2,686.38
40% $4,665.61  §1,792.57 $2,873.04
50% $4,649.21  §1,589.77 $3,059.44
60% $4,632.85  §1,387.40 $3.,245.45
70% $4,616.51  §1,185.32 $3,431.20
80% $4,600.19 $983.33 $3,616.86
90% $4,583.87 $781.29 $3,802.57
100% $4,567.54 $579.13 $3,988.41

The subsidy changes dramatically once the RE% is manipulated (Table 21). This
is due to the fact that the social cost of an EV decreases at a far greater rate than the

social cost of an ICE vehicle, as the percentage of renewable energy increases.
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Figure 15. Social costs as a function of renewable energy
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The social costs for an internal combustion vehicle do decrease as the RE%
increases (Table 21), which is a result of the decreasing social costs of production. A
percentage of production emissions are derived from the power grid, and thus, a cleaner
grid will lead to a nominal decrease (Figure 15) in overall emissions. Unfortunately, the
vast majority of ICE emissions, and subsequently, the social costs associated with an
ICE, are a result of operating the vehicle. These social costs are not directly impacted by
the cleaner grid. This stands in stark contrast with the electric vehicle. The non-operating
social costs for an EV decrease nominally as RE% increases, but the social costs related
to the operation phase of the vehicle decrease significantly (Table 21). The operation of
an electric vehicle is powered by the grid, and thus, the externalities associated with

driving an electric vehicle mirror the externalities associated with the grid itself.
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Figure 16. EV subsidy as a function of renewable energy.

The operating emissions for an EV approach 0, as the RE% approaches 100%.

This results in an EV subsidy that is directly correlated to the percentage of renewable
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energy and we see an EV subsidy that nears $4,000 as the RE% reaches 100% (Figure

16).

Subsidy for an Electric Vehicle Powered by Photovoltaics

A national grid powered by 80% or 100% renewable energy is still a nascent idea
and it may be many years before such a scenario becomes reality. Fortunately, this does
not prevent an individual from charging an electric vehicle with 100% renewable energy
in the year 2016. Photovoltaic panels can be installed today on a homeowner’s roof
which will provide the kWh necessary to power an electric vehicle.

The emissions for a 100% renewable energy national grid will differ slightly from
the emissions assigned to a vehicle powered solely from rooftop photovoltaics. This is
due to the fact that a 100% renewable energy grid will include a mixture of renewable
energy technologies and there is some emissions variation amongst renewables. For
example, photovoltaic power produces 48 grams of carbon dioxide per kWh, while wind
power produces 11 grams of carbon dioxide per kWh (Klein & Whalley, 2015). These
differences may be minimal, but it is important to incorporate them into an accurate

assessment of the benefits of photovoltaic-powered electric vehicles.

Table 22. Photovoltaic emissions per-kWh.

Electricity Generation CO2 SO2 NOX PM2.5 VOCs
Type (2) (mg) (mg) (mg) (mg)
Photovoltaic 48 0.307 0.178 0.308 0.088
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The life cycle assessment (LCA) based emissions for photovoltaics are incredibly
low (Table 22), as all emissions are derived from the production of the panels. There a

zero marginal emissions, but the LCA emissions cannot be ignored.

Table 23. Emissions data for photovoltaic powered electric vehicles
Pollutant Emissions per kWh (tons)  SC per Ton SC per kWh  Cost per 150,000mi

Cco2 0.000048 $66.26  0.00318048 $152.66
S02 3.07E-10  $2,459.92  0.00000076 $0.04
NOX 1.78E-10 $572.11  0.00000010 $0.005
PM 2.5 3.08E-10  $3,742.75 0.00000115 $0.06
VOCs 8.8E-11 $368.63  0.00000003 $0.00
Total: 0.00318252 $152.76

Per Mile:  0.00000002 $0.0010

These low emissions lead to a lifetime social cost of only $152.76 that can be
assigned to the operation phase of the vehicle (Table 23). This stands in stark contrast to
the externalities associated with operating an internal combustion engine vehicle:
$4,273.34. The social costs for the internal combustion engine vehicle are nearly 28 times
greater than the social costs for an electric vehicle powered by photovoltaics. The proper
EV Subsidy was then determined by subtracting the social cost for a photovoltaic-
powered EV ($152.76) from the social cost of an internal combustion engine vehicle
($4,273.34). Based on this analysis, an EV subsidy of $3,903.24 was deemed appropriate

for a photovoltaic-powered electric vehicle.
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Monte Carlo Simulation

There is undoubtedly some variation and uncertainty related to the specific costs
assigned to different pollutants. The APEEP Model used in this study assigns costs for
sulfur dioxide, nitrous oxide, particulate matter and volatile organic compounds based on
geographic location, but these costs differ significantly from county to county (Muller,
2016). Furthermore, a meta-analysis of studies that analyzed the social cost of carbon
demonstrates the uncertainty of this cost (Havranek, 2015). A Monte Carlo simulation
considers this uncertainty in a probabilistic model. I used the SIMVOI software to create
a simulation that consisted of 10,000 iterations, with each iteration randomly pulling data
from the APEEP Model (Muller, 2016) and a meta-analysis on the social cost of carbon
(Havranek, 2015). This data was entered into the EV Subsidy Combined Model and
produced 10,000 different EV Subsidies; each of these subsidies was a function of the

different costs that were randomly entered into it.
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Figure 17. Monte Carlo simulation for 2016 grid (13.3% RE).
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The majority of outputs appear in the $2,000 to $6,000 range (Figure 17), with a
median value of $3,384.9. This median value can be compared to the determined EV
Subsidy from the Combined Model (including production) of $2,376.81 and the closeness
of these values substantiates the accuracy of the EV Subsidy discussed earlier in this

chapter.

Table 24. EV subsidy percentile for Monte Carlo simulation.

Percentile Appropriate EV Subsidy
(Combined):

0.0% -$1,229.89
0.5% -$251.29
1.0% -$170.93
2.5% -$47.63
5.0% $145.02
10.0% $485.26
20.0% $1,029.30
30.0% $1,771.57
40.0% $2,301.19
50.0% $3,384.49
60.0% $4,586.21
70.0% $7,346.21
80.0% $11,691.69
90.0% $20,776.32
95.0% $32,354.12
97.5% $53,034.88
99.0% $88,231.39
99.5% $96,891.25
100.0% $108,978.97

The Monte Carlo simulation is an effective tool for corroborating the output that
emerges from a multivariate model, but its value is not specific to this singular purpose.

The Monte Carlo simulation also illustrates the potential variation that lies within the
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system and the dangers that this presents. For example, 10% of the outputs (EV Subsidy)
fell between -$1,229.89 and $485.26 (Table 24). This indicates that in 10% of the
simulations the EV Subsidy was extremely low or negative. Alternatively, there were
another 10% of the simulations where the EV Subsidy fell between $20,776.32 and
$108,978.97 (Table 24). Thus, while it is possible that the EV Subsidy of $2,376.81 is
slightly overestimating the benefits of an electric vehicle, it is also possible that this value
is severely underestimating the benefits of an electric vehicle.

Variance of 10" Percentile to Median: $485.26 - $2,376.81 = -$1,891.55
Variance of 90" Percentile to Median: $20,776.32 - $2,376.81 = $18,399.51

Therefore, the simulation produced 1000 values (IOth percentile) that were at least
$1,891.55 below the median value, while the simulation also produced 1000 values (90"
percentile) that were at least $18,399.51 greater than the median value. Once again, this
underscores the potential advantages of electric vehicles and the non-trivial possibility

that the EV Subsidy is severely underestimating these advantages.

Table 25. Measures of central tendency for Monte Carlo simulations

RE% Minimum Maximum Median Mean
13.30% -$1,229.89 $108,978.97 $3,384.49 $8,729.21
20% -$905.77 $114,024.63 $3,501.01 $9,281.62
50% -$1,957.70 $136,792.74 $4,220.21 $11,457.82
80% -$667.31 $159,562.10 $4,988.34 $13,518.93
100% -$374.37 $174,473.88 $5,474.66 $14,425.89

Note: This table breaks down the measures of central tendency for each Monte Carlo
Simulation. A separate simulation was run for each renewable energy scenario.

54



The Monte Carlo simulation was also run for a variety of different renewable
energy penetration scenarios (Table 25). The median and mean values for these
simulations increased as the percentage of renewable energy increased. This increase was
expected and followed a similar pattern to what was demonstrated earlier in this chapter

(when the percentage of renewable energy was manipulated).
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Figure 18. Monte Carlo comparison of different RE% scenarios

The majority of values are clustered around the medians (Table 25), but a non-
trivial percentage of the simulations extend into the tens of thousands of dollars (Figure
18). This variability presents the possibility that electric vehicles running on renewable

energy are far more beneficial to society than initial reports may indicate.

Monte Carlo Simulation for 100% Photovoltaic-powered EV
The renewable energy percentage scenarios are future scenarios and data from

this study can be used to guide society towards these percentages. On the other hand, it is
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possible for an electric vehicle to be powered at home by electricity generated from 100%
photovoltaics. Therefore, the Monte Carlo simulation for a 100% photovoltaic-powered

EV can model a scenario that is applicable in 2016.

Table 26. EV subsidy percentile for PV-powered EV Monte Carlo simulation.

Percentage EV Subsidy Including Production
(100%PV):

0.0% -$618.94
0.5% -$496.53
1.0% -$311.64
2.5% -$192.10
5.0% $133.00
10.0% $601.33
20.0% $1,487.69
30.0% $2,692.10
40.0% $3,593.77
50.0% $5,333.62
60.0% $7,314.68
70.0% $11,714.81
80.0% $18,985.18
90.0% $33,454.14
95.0% $51,814.67
97.5% $86,687.95
99.0% $142,105.66
99.5% $175,376.11
100.0% $175,625.05

The photovoltaic median value of $5,333.62 (Table 26) was nearly identical to the
median value for the 100% renewable energy scenario ($5,474.66). Furthermore, 10% of
the values were greater than $33,454.14 and 20% of the values were greater than
$18,985.18. This affirms the possibility that solar-powered electric vehicles are more

beneficial than we may realize.
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Figure 19. Monte Carlo simulation for 100% photovoltaic scenario

Carbon Dioxide Emissions

The carbon dioxide emissions associated with an electric vehicle running on the
2016 grid (13.3% renewable energy) were 55% less than an internal combustion engine
with an efficiency of 25.4 miles per gallon (Table 27). This advantage disappeared when
the electric vehicle was compared to an internal combustion engine automobile operating
at 80 miles per gallon. In this scenario, the internal combustion engine vehicle was
actually responsible for 21% fewer carbon emissions than the electric vehicle (Table 27).
There are currently no cars on the market with efficiencies close to 80 miles per gallon,
but it is important to compare the electric vehicle to an idealized version of the internal
combustion engine vehicle. A 100% renewable energy grid is also an idealized scenario,
but a comparison between these “utopian examples” can inform policy that will guide us

down the path to an ideal transportation model.
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Table 27. Carbon emissions comparison data for 2016 grid (13.3% RE).

25.4mpg 80mpg
ICE Total LCA CO2: 68.38 25.49
EV Total LCA CO2: 30.82 30.83
CO2 Difference: 37.56 -5.34
CO2 Percentage Difference: 55% -21%

An electric vehicle running off of 100% renewable energy produces far fewer
greenhouse gas emissions than a vehicle based on the current grid: 6.30 tons of carbon
dioxide compared to 30.82 tons of carbon dioxide. This is also substantially less than an
internal combustion engine vehicle operating at 25.4 miles per gallon (68.38 tons of
carbon dioxide) or a vehicle getting 80 miles per gallon (25.49 tons of carbon dioxide).
The electric vehicle running on 100% renewable energy impressively produces 73%
fewer carbon dioxide emissions than an internal combustion engine automobile with an
efficiency of 80 miles per gallon (Table 28). This is greater than the 50% reduction that

was hypothesized.

Table 28. Carbon emissions comparison data for 100% RE grid.

25.4mpg 80mpg
ICE Total LCA CO2 (Tons): 66.40 23.51
EV Total LCA CO2 (Tons): 6.30 6.30
CO2 Difference: 60.10 17.21
CO2 Percentage Difference: 91% 73%

While the 100% renewable energy scenario is purely academic, it is feasible for
an electric vehicle in 2016 to be 100% powered by rooftop photovoltaics. An electric

vehicle powered from 100% photovoltaics will be responsible for 10.27 tons of carbon
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dioxide over its lifetime, which is 85% less than an internal combustion engine vehicle
operating at 25.4 miles per gallon and 56% less than an internal combustion engine

vehicle operating at 80 miles per gallon (Table 29).

Table 29. Carbon emissions comparison data for the 100% PV-powered EV.

25.4 MPG 80 MPG
ICE Total LCA CO2: 68.38 23.51
EV Total LCA CO2: 10.27 10.27
CO2 Difference: 58.11 13.24
CO2 Percentage Difference: 85% 56%

Note: This scenario is based off of photovoltaic panels operating in the year 2016, and
thus, the production emissions are from the 13.3% RE grid. This causes the carbon
dioxide emissions to be higher than the 100% RE scenario in Table 28.

Environmental Impact of Electric Vehicles

The EV Subsidy is computed by subtracting the negative environmental impact of
an electric vehicle from that of an internal combustion engine vehicle. A positive value
would indicate that the electric vehicle had a lesser impact on the environment, while a
negative value would indicate that the internal combustion engine vehicle had a lesser

impact.

Table 30. Electric vehicle compared to ICE vehicle getting 25.4 mpg.

RE% EV Subsidy MONTE CARLO
Median Subsidy
13.30% $2,376.78 $3,384.49
20% $2,500.99 $3,501.01
50% $3,059.42 $4,220.21
80% $3,616.83 $4,988.34
100% $3,988.39 $5,474.66
100% PV $3,907.52 $5,333.62
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Table 31. Electric Vehicle compared to ICE vehicle getting 80 mpg.

RE% EV Subsidy MONTE CARLO
Median SUBSIDY

13% -$540.46 -$657.36

20% -$416.24 -$485.41

50% $142.18 $287.58

80% $699.60 $1,026.51

100% $1,071.15 $1,533.01

100% PV $986.01 $1,286.45

Table 30 reveals that an electric vehicle in all RE% scenarios will have a lesser
environmental impact than an internal combustion engine automobile with an efficiency
of 25.4 miles per gallon. On the other hand, an internal combustion engine vehicle
operating at 80 miles per gallon has a smaller environmental impact than an electric
vehicle charged from a grid with 13.3% or 20% renewable energy (Table 31). This did
not hold true for other RE% scenarios, as all RE% scenarios with 50% renewable energy
or greater showed a positive EV subsidy. As hypothesized in Hypothesis #2, an electric
vehicle charged with 100% renewable energy will have a lesser environmental impact
than an automobile operating at 80 miles per gallon (Table 31). The appropriate 2016 EV

Subsidy for a 100% renewable-powered EV came in at $3,988.39, which was also greater

than the $3,000 that was hypothesized (Table 30).
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Chapter IV

Discussion

There are a variety of factors that impact the EV Subsidy, including: emissions
data, the cost per pollutant, miles per gallon, and the kWh per 100 miles. It is essential to
understand which factors impart the greatest impact on the subsidy and to analyze the
uncertainty within these variables. The SIMVOI software package produces coefficients
of determination for each of the input variables within the Monte Carlo simulations
(Table 32). This data helps to illuminate the relationships between the input variables

(costs per pollutant) and the output variable (EV Subsidy).

Table 32. Monte Carlo simulation coefficients of determination. 13.3% RE scenario.
Cost of Cost of Cost of Cost of Cost of
Carbon SO2 NOX PM YOCs
Appropriate EV 1.0000 0.0005 0.0001 0.0003 0.0000
Subsidy

The Monte Carlo simulation in Chapter III produced coefficients of determination
that highlighted the strong relationship between the social cost of carbon (SCC) and the
EV Subsidy (Table 32). The impact of the cost of carbon was the primary determinant of
the EV Subsidy and far exceeded the impacts of the other pollutants. This analysis did not
take into account other input variables, such as “miles per gallon” and “kWh per 100
miles,” but I was able to build upon the initial simulation to create a new Monte Carlo

simulation that included these variables. This new Monte Carlo simulation pulled
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pollutant cost data from the APEEP Model (Muller, 2016) and a meta-analysis for the
social cost of carbon (Havranek et al., 2015), but it also randomly input data for “miles
per gallon” and “kWh per 100 miles.” The data was selected using SIMVOI’s
“RANDTRIANGULAR?” function, which allows data to be selected from a triangular
probability density function: the low, high. and “most likely” values were entered into the
simulation. For “miles per gallon” a low value of 10, a high value of 80, and a most likely
value of 25.4 were entered into the simulation. The “mostly likely” value of 25.4 was
chosen because it represents that average miles per gallon (July 2016 value), while the
low of 10 and high of 80 were chosen so that a wide range of values would be entered
into the simulation. For “kWh per 100 miles” a low value of 20, a high value of 40, and a
most likely value of 32 (weighted value of all 2016 model year electric vehicles) were

input into the Monte Carlo simulation.

Table 33. Monte Carlo simulation coefficients of determination. 13.3% RE scenario.
Including efficiency inputs.

Costof Cost Cost Cost Costof Mile EV
Carbon of of of VOCs per Efficienc
SO2 NOX PM Gallon y
Appropriate  0.2806  0.000 0.0002 0.000 0.0001 0.1313  0.0026
EV Subsidy 1 2

Note: The above values represent the coefficients of determination related to each of the

independent variables (columns) as they relate to the dependent variable (Appropriate EV
Subsidy).

Table 33 reveals that the cost of carbon still accounts for most of the variation in
the EV Subsidy, but that “miles per gallon” is also significant. Hence, it is important to

explore these two key inputs further.
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Cost of Carbon
The social cost of carbon (SCC) is the most significant determinant for the EV
Subsidy. However, it is also an input that is mired in uncertainty. The strong correlation
between the social cost of carbon and the EV Subsidy (difference between the social cost

of an ICE and an EV) was illustrated in the Monte Carol simulation (Figure 20).

SimVoi Bivariate Chart For 1000 Trials
(r=0.5298, r-squared = 0.2806, n = 10000)
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Figure 20. Scatterplot for Monte Carlo simulation (13.3% RE scenario). This graph
demonstrates the relationship between the appropriate EV Subsidy and the cost of carbon.

The social cost of carbon has a greater impact on the EV Subsidy than any of the
other pollutant costs, miles per gallon, or electric vehicle efficiency. While there is a
relationship between the social cost of any of the pollutants and the EV Subsidy, the

impact of carbon dioxide far exceeds that of the other pollutants. For example, a $10
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increase in the social cost of carbon will increase the EV Subsidy by nearly $400, while a
$1,000 increase in the social cost of sulfur dioxide will decrease the EV Subsidy by less
than $30. Carbon dioxide is undoubtedly the main driver of the EV Subsidy and this is
due to the fact that both EVs and ICE vehicles emit far more carbon dioxide than other
pollutants (see Appendix 2). An electric vehicle running on the 2016 American grid
would produce 22.96 metric tons of carbon dioxide over its lifetime (during the operation
phase), while it would only produce 5.32 x 10 metric tons of sulfur dioxide over the
same span of time. This indicates that an EV will be responsible for 429,311 times more
carbon dioxide than sulfur dioxide over its lifetime (150,000 miles).

The relationship between the social cost of carbon and the EV Subsidy is
perfectly linear: for every $1 increase in the social cost of carbon, the EV Subsidy

increases by $37.56 (Figure 21).
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Figure 21. The EV subsidy as a function of the social cost of carbon.
As illustrated in Figure 21, the EV Subsidy could rise to over $10,000 if the social

cost of carbon exceeds $280. This value is not unprecedented, as other studies have

produced social costs of carbon that exceed $300 (Havranek et al., 2015).
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Figure 22. EV subsidy as a function of renewable energy and the social cost of carbon.

These values continue to grow if the percentage of renewable energy increases
beyond 2016 numbers. In a 100% renewable energy scenario, the EV Subsidy will
increase by $60 for every one-dollar increase in the social cost of carbon (Figure 22). If
the cost of carbon reaches $280 (see Ancillary Appendix 1 for all values), it will lead to
an EV Subsidy of nearly $17,000. It is undeniable that both the social cost of carbon, and
the percentage of renewable energy, have a pronounced impact on the EV Subsidy.

A social cost of carbon exceeding $200 may be significantly higher than the
current social cost of carbon used by many government institutions, but it is not outside
the mainstream of the academic literature. The meta-analysis by Havranek et al. (2015)
includes values that exceed $1,000 per ton and my Monte Carol simulation clearly
demonstrated that these high values cannot be ignored. The high SCC values from

Havranek et al. significantly impacted the Monte Carlo Simulation, as they caused the
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mean EV Subsidy value to greatly exceed the median EV Subsidy value. Botzen and van
den Bergh (2014) make a strong case in “Nature Climate Change” that many SCC
estimates are undervaluing the SCC by failing to account for the full external costs of
carbon dioxide. Some of the costs that are unaccounted for include: biodiversity losses,
impacts on long-term economic growth, political instability, extreme weather, and the
possibility of low-probability/high impact climate change risks. Botzen and van den
Bergh (2014) demonstrated that the inclusion of these costs would result in a social cost
of carbon floor of at least $125, yet the true cost may exceed this value. Hence, I have
incorporated the SCC value of $125 throughout my analysis. If the true cost of carbon is
significantly greater than $125 per ton, it would mean that the current EV Subsidy is far
too low. Furthermore, the risks of underpricing the social cost of carbon may be
significantly less than the risks associated with overpricing it. This risk was demonstrated
in the Monte Carlo Simulation, as low estimates for the SCC resulted in EV Subsidies
(2016 grid) as low as -$1,229.89, while high estimates for the SCC led to EV Subsidies

as high as $108,978.97 (see Table 25 in Chapter III).

Miles per Gallon
The social cost of carbon may have yet to enter the public lexicon, but “miles per
gallon” is ubiquitous. The lesser known variable “SCC” had the most profound impact on
the EV Subsidy, while “miles per gallon” had the second highest coefficient of
determination among all the possible input variables entered into the Monte Carlo

simulation.
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Figure 23. Scatterplot for Monte Carlo simulation of the relationship between the EV
subsidy and miles per gallon (13.3% RE scenario).

The inverse relationship (r = -0.36) between miles per gallon and the EV Subsidy
can be visualized in Figure 23. This relationship also occurred in my EV Subsidy model:
I was able to manipulate the variable for miles per gallon to determine the outputs (EV

Subsidy) for a range of ICE efficiencies (Figure 24).
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Figure 24. The EV subsidy as a function of miles per gallon.
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The relationship between the EV Subsidy and the ICE efficiency is exponential:
the impact on the EV Subsidy diminishes as the number of miles per gallon increases.
Improving the efficiency from 10 mpg to 15 mpg reduces the EV Subsidy by $3,619,
while increasing the efficiency from 40 to 45 mpg reduces the EV Subsidy by only $302.
The environmental benefits of increased ICE efficiency are unequivocal, however this
does not change one incredibly important fact: no matter how efficient an ICE vehicle
becomes, it will still be combusting gasoline. A renewable energy powered EV can
approach zero marginal emissions, while this is an unattainable goal for even the most

efficient of ICE vehicles.
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Figure 25. The EV subsidy as a function of RE% and mpg.
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A combination of low RE% and high ICE efficiency will produce an EV Subsidy
that dips into negative territory (Figure 25). This indicates that ICE vehicles would be
environmentally advantageous in these specific scenarios. These possibilities cannot be
ignored, but it is important to remember that the vast majority of scenarios produce a
positive EV Subsidy. Furthermore, the ideal ICE scenarios (high MPG, low RE%)
produce slightly negative EV Subsidies, while the ideal EV scenarios (low MPG, high

RE%) produce large positive EV Subsidies.

Electric Vehicle Efficiency
The metric for electric vehicle efficiency (kWh per 100 miles) may initially seem
counterintuitive, as a lower number indicates greater efficiency. This is due to the fact
that a lower number is stating that it takes fewer kilowatt hours to travel the exact same

distance (100 miles).
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Figure 26. EV efficiency and the EV subsidy
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Thus, there is an inverse relationship (Figure 26) between “kWh per 100 miles”
and the EV Subsidy: as the number of kWh per 100 miles’ increases, the appropriate EV
Subsidy decreases. This relationship is not as significant as the relationship between the
social cost of carbon and the EV Subsidy, or “miles per gallon” and the EV Subsidy, but
it is not insignificant.

An ideal EV Subsidy would take the efficiency of the automobile into account,

however this may be difficult to implement.

Table 34. Vehicle specific EV subsidy.

Electric Vehicle kWhper  EV Subsidy ($66.26 EV Subsidy ($125

100 Miles SCCO) SCC)
2016 BMW i3 27 $2639.15 $5055.08
2017 Chevrolet Bolt 28 $2586.68 $4960.64
2016 Nissan Leaf 30 $2481.72 $4771.77
2016 Tesla Model S 33 $2324.30 $4488.47
90D

Table 34 clearly shows the differences between vehicles that are currently
available to purchase. If the social cost of carbon is set at $66.26, this will amount to a
$300 difference between a 2016 BMW i3 (the most efficient 2016 automobile) and a
Tesla Model S 90D, but this increases to over $500 if the social cost of carbon is set at
$125 (U.S. Department of Energy, 2016). Interestingly, the efficiency of an electric
vehicle has a diminishing effect on the EV Subsidy as the percentage of renewable

energy increases (Figure 27).

70



$4,500.00

$4,000.00
S $3,500.00
wv
o)
=]
wv
> $3,000.00

$2,500.00

$2,000.00

10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%
RE%
36 kWh/100 miles 32 kWh/100 miles

28 kWh/100 miles ==@=24 kWh/100 miles

Figure 27. The EV subsidy as a function of RE% and EV efficiency

Electric vehicles in high penetration renewable energy scenarios (50%+ RE)
produce very little emissions from the operation of the vehicle. Thus, in these scenarios,
the efficiency of the electric vehicles is not nearly as important. This underscores the
importance of renewable energy and the impact that it can have on the environmental

benefits of an electric vehicle.

Environmental Impact of Batteries
It is common for critics of electric vehicles to focus on the environmental impact
of the battery pack. This is a component that is starkly different than its internal
combustion engine equivalent. For example, the production of an electric vehicle’s
components account for 6 tons of carbon dioxide pollution, while the production of an

international combustion engine vehicle’s components account for 4.5 tons. The electric
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vehicle is responsible for more emissions, but the difference is not substantial. This is not
the case when we look at batteries: an electric vehicle’s battery is responsible for
approximately 1 ton of carbon dioxide, while a gasoline-powered automobile’s battery

accounts for just under 0.04 tons of carbon pollution (GREET, 2015).
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Figure 28. Social cost breakdown: 2016 grid and miles per gallon. This analysis is based
on a grid with 13.3% renewable energy and an internal combustion engine vehicle with
an efficiency of 25.4 miles per gallon.

The carbon emissions and social costs related to an electric vehicle’s battery may
be orders of magnitude greater than its gasoline-powered counterpart, however results in
Chapter III demonstrated that this disparity does not compensate for the drastic difference
in operating emissions. Figure 28 clearly shows how the social costs associated with

battery production are minimal compared to usage emissions. This holds true for other
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battery scenarios where the battery needs to be replaced and where the battery is double
the size and needs to be replaced. In Figure 28 we can see that the “Double kWh and One
Replacement” scenario is responsible for $2,422 in social costs, while the ICE vehicle is
responsible for $4,709 in social costs.

There is no denying that large battery packs and battery replacements are a
legitimate environmental concern. It would be ideal to know exactly how long batteries
would last and how many batteries will need to be replaced, as this could help to facilitate
a more accurate EV Subsidy. However, most modern electric vehicles are less than five
years old and there is not enough data to accurately assess the longevity of the batteries.
Plug In America conducted one of the only studies on EV battery life; the study looked at
Tesla Roadsters as they were the first long range electric vehicles on the road. A sample
of 126 cars were analyzed and the conclusion was positive: it is expected that the battery
pack will retain 80-85% of its capacity after 100,000 miles (Montavalli, 2013). This
indicates that it is entirely possible that an electric vehicle could reach 150,000 miles
without needing a replacement battery.

Battery longevity is a function of multiple factors. Overcharging, temperatures,
and deep discharges all impact the lifespan of an electric vehicle’s battery. Fortunately,
these are all variables that can be controlled by smart hardware and software. Modern
electric vehicles can use onboard cooling mechanisms to keep the batteries at an
acceptable temperature and use software to prevent the batteries from reaching 100%
capacity. For example, the Tesla Model S will only charge to 100% if the owner

manually asks it to and cars such as the Chevrolet Volt never use full capacity.
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Furthermore, a battery’s lifespan is strongly correlated to the number of times that is fully
discharged. Jim Montavalli (2013) writes:

After 300 to 500 cycles at 100 percent depth of discharge, a lithium-ion cell’s

capacity will drop to 70 percent. But partial discharge “reduces stress and

prolongs battery life.” Drain the batteries consistently to only 50 percent, as is
often the case with electric cars that get plugged in frequently, and life expectancy
of a healthy battery zooms up to 1,200 to 1,500 cycles. That, of course, translates
to 366,000 miles, but don’t expect numbers like that on your odometer. Other

wild cards such as frequency of fast recharge can also affect battery life. (para. 9)
This furthers the notion that many electric cars will never need a battery replacement, yet
it does not change the fact that it is still important to measure the environmental impact of
replacement batteries.

There are countless combinations of battery size and battery replacements,
however I focused on three specific scenarios (Table 35): the standard battery in the
GREET model with no replacements, double the kWh of the GREET model with no
replacements, and double the kWh with one replacement (the double kWh scenario is

essentially the same as a scenario with the standard kWh and one replacement, due to the

fact that the battery emissions data is simply doubled).

Table 35. Battery scenarios and the EV subsidy
Battery Total SCEV Total SC ICE Subsidy

Standard GREET Battery $89.52 $2,332.54 $4,709.32  $2,376.78
With One Replacement $179.05 $2,422.06 $4,709.32  $2,287.25
Double kWh and One Replacement $358.10 $2,601.11 $4,709.32  $2,108.20

The social cost of an electric vehicle clearly increases (Table 35) if the battery
size increases and/or the battery is replaced, and subsequently, leads to a decrease in the

EV Subsidy. This decrease is minimal when compared to the overall EV Subsidy, as the
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detrimental aspects of battery production do not compensate for the externalities related
to burning gasoline. In the “double kWh and one battery replacement” scenario, the EV

Subsidy continues to grow as the percentage of renewable energy increases (Figure 29).
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Figure 29. The EV subsidy as a function of RE% (double kWh and battery replacement).

This relationship is consistent with the correlation between RE% and the EV
Subsidy I have established throughout this study. The relationship between the social
costs of a gasoline-powered vehicle and the EV Subsidy has also been well established.

Therefore, it is important to look at the EV Subsidy as a function of both variables.

75



$12,000.00

$10,000.00
$8,000.00 ‘
$6,000.00

$4,000.00

EV Subsidy

100%
$2,000.00 80%

$0.00 50%

0,
-$2,000.00 12 20 -~ 20%

25.4 =
40 °
\GN 13.30%

80

RE%

MPG

-$2,000.00-50.00 $0.00-$2,000.00 $2,000.00-54,000.00 $4,000.00-$6,000.00

i 56,000.00-58,000.00 $8,000.00-$10,000.00 & $10,000.00-$12,000.00

Figure 30. The impact of mpg and RE% on the EV subsidy (double kWh and one
replacement).

Figure 30 demonstrates that there are circumstances under which an internal
combustion engine vehicle would be environmentally advantageous (the blue portion in
the bottom right-hand corner of Figure 30), yet it requires a very limited arrangement of
variables to make this happen. A negative EV Subsidy necessitates a combination of high
ICE efficiency and a low percentage of renewable energy. It is interesting to note than
even in this scenario (double kWh and one battery replacement), the high RE% electric
vehicles are still favorable to an 80mpg gasoline vehicle.

The results indicate that electric vehicles can still be extremely beneficial even
with larger batteries and battery replacements. Analyzing specific scenarios that penalize
the EV (battery replacements, low RE%, large batteries) will refute much of the criticism

directed at electric vehicles. Hence, it is also important to analyze battery emissions data
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that is less favorable for electric vehicles, as there is some variation among the studies
that have looked at life-cycle emissions of lithium-ion batteries (Kim et al., 2016). The
GREET model was used throughout this study, but its battery-related emissions data is
lower than some of the other models. Research by Kim et al. (2016) indicates that the
emissions per kWh of battery capacity may be significantly higher than what the GREET
model outputs (see Ancillary Appendix 2). I took this data and entered it into the model

to determine what the EV Subsidy would look like if battery emissions were significantly

increased.
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Figure 31. Social cost breakdown: 2016 grid and mpg, and Kim et al. emissions data.

The social costs (Figure 31) for electric vehicles are still lower than the costs

associated with internal combustion engine vehicles, but the disparity has diminished.
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The emissions data from Kim et al. (2016) increases the total social cost of the “Double
kWh and One Replacement” EV scenario to $3,962, yet it is still lower than the ICE
vehicle’s social cost of $4,709. These figures are based on the 2016 grid (13.3%
renewable energy) and they do not factor in the benefits of greater renewable energy

penetration.
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Figure 32. The EV Subsidy as a function of RE% (double kWh and battery replacement,
and Kim et al. emissions data).

Again, the EV Subsidy (the difference between the social costs of an EV and ICE)
increases in response to an increase in RE% (Figure 32). The benefits of renewable
energy are not counteracted by this exceedingly disadvantageous battery scenario (double

kWh, one battery replacement, and Kim et al. emissions data). Yet, the environmental
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advantage of electric vehicles does diminish if the electric vehicle is compared to an

extremely efficient internal combustion engine vehicle.
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Figure 33. The impact of mpg and RE% on the EV subsidy (double kWh and one
replacement).

The combination of high miles per gallon and a disadvantageous battery scenario
will move the EV Subsidy into negative territory (indicating that the ICE vehicle would
be environmentally advantageous). The orange and blue regions of Figure 33 show the
combinations that would result in a negative EV Subsidy, while all other regions would
result in a positive EV Subsidy. The data demonstrates that it is possible for an internal
combustion engine to have less of an environmental impact than its electric counterpart,

but that the majority of scenarios still favor an electric vehicle.
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Climate change is the paramount environmental issue of our time, and thus, it is
vital to step beyond the EV Subsidy and take a granular look at the greenhouse gas
emissions that each battery is responsible for. The Kim et al. data is based on emissions
per kWh of battery capacity, which facilitates an analysis of carbon dioxide emissions

based on battery pack size.
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Figure 34. Carbon dioxide emissions per kWh of battery capacity (13.3% RE).

Based on the 2016 grid (13.3% RE) and data from Kim et al. (2016), the carbon
emissions for an EV (blue line) would remain less than ICE vehicles with efficiencies of
25.4 miles-per-gallon (orange dashed line) and 40 miles-per gallon (grey dashed line).
This changes if the battery needs to be replaced (orange line): the EV would be

responsible for fewer carbon emissions than an ICE vehicle with an efficiency of 25.4
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mpg, but the carbon emissions for an EV with a battery larger than 55 kWh would exceed

those of an ICE with an efficiency of 40 miles-per-gallon.
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Figure 35. Carbon dioxide emissions per kWh or battery capacity (100% RE).

Once again, the percentage of renewable energy plays a key role in the pollution

assigned to an electric vehicle. Based on a 100% renewable energy scenario, the carbon

dioxide emissions for an EV with a battery ranging from 20-100 kWh are significantly

lower than the carbon emission from an ICE vehicle with an efficiency of 25.4 miles per

gallon (grey dashed line in Figure 35) or 40 miles per gallon (orange dashed line). An EV

needs to contain a battery pack of at least 85 kWh, and it needs to be replaced at least

once, for it to produce more carbon emissions than an ICE with an efficiency of 80 miles

per gallon. This clearly demonstrates the extreme efficiency of an EV paired with 100%
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renewable energy and highlights the symbiotic ways in which these technologies can be

used to mitigate climate change. A detailed analysis of each RE% scenario can be found

in Ancillary Appendix 3. Furthermore, an analysis of the carbon impact for currently

available individual electric vehicles can be found in Ancillary Appendix 4.

Table 36. Battery carbon emissions and social cost.

RE% GREET CO2 (tons) GREET Cost Kim et al. CO2 (tons) Kim et al. Cost
13% 0.983 $89.52 4.512 $429.98
20% 0.963 $88.12 4.422 $423.50
50% 0.874 $81.78 4.012 $394.55
80% 0.785 $75.45 3.603 $365.67

100% 0.727 $71.24 3.334 $346.22

Note: This table compares battery-related carbon emissions and the battery social costs

from two datasets;: GREET 2015 and Kim et al.

The output variables in my study (carbon emissions, social costs, EV Subsidy) are

all impacted by the data sets that are entered into the model and the input variables. This

results in a range of possible outcomes, but in all scenarios there is one constant that

remains true: increased RE% leads to lower battery-based emissions, battery-related

social costs, and EV Subsidies. This relationship is displayed in Table 36, as the RE% has

a profound impact on the carbon emissions and costs associated with both battery

scenarios. My model allows the grid-based emissions from battery production to float

with the percentage of renewable energy. An increase in RE% leads to a decrease in

battery-related carbon emissions and socials costs, but the model does not reduce non-

grid emissions (see Appendix 3). Non-grid emissions will most likely decrease as well,

however this is outside the scope of this study. It is noted that the impact that RE% has

on production emissions is likely far greater than what is reported in Table 36.
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Batteries and their environmental impact will likely remain the most controversial
aspect of electric vehicles. The results of this study clearly indicate that the vast majority
of RE% and MPG scenarios will result in positive EV Subsidies and lower carbon
emissions for the EV. Only a combination of high emissions data (such as Kim et al.),
large battery packs, battery replacements, and high ICE efficiency will result in negative

EV Subsidies.

Type of Model

There are multiple variables within the EV Subsidy model that deserved extra
scrutiny, but the model itself should not be ignored. My research focused on the impacts
that renewable energy penetration would have on the social costs of electric vehicles, and
thus, it was necessary to accurately predict the distribution of power plants in high
penetration renewable energy scenarios. I created three possible models that
accomplished this and the “Combined Model” has the most merit (see Chapter II for a
detailed explanation of each model). The Combined Model has the best predicative
attributes, but an analysis of all models demonstrates that the differences between the
models is relatively minor (Figure 36).

The differences between the Proportional Model and the Combined model are so
minuscule that they cannot even be picked up by looking at Figure 36. The NREL Model
deviates from the other models when the RE% grows from 15% to 70%. This is due to
the NREL model’s inclusion of higher levels of coal power in its future scenarios. The
problems with the NREL model are outlined in Chapter II. Most importantly, all models

show the distinct positive relationship between RE% and the EV Subsidy.
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Figure 36. EV subsidy as a function of renewable energy. This graph looks at the EV
Subsidy based on three different models for grid prediction.

Policy

The results of my research clearly demonstrate that the benefits of electric
vehicles will continue to grow as the percentage of renewable energy increases. The
majority of academic research and policy has centered on the current benefits of electric
vehicles, but we cannot ignore the true benefits that lie in the future. An EV Subsidy will
help to fix the market failure that results from the externalities within our transportation
sector. Furthermore, the EV Subsidy can help to spur demand for electric vehicles and
promote future growth. A proper EV Subsidy should account for the differences in social
costs between supplementary goods (EV and ICE), and ideally, this will lead to an
eventual takeover by the environmentally advantageous technology. Unfortunately, the
transportation sector is complex and there are other barriers in place, such as: charging
infrastructure, EV range, availability of models, and length of ownership. It is unlikely

that a subsidy of any amount would initiate an immediate nationwide switch to electric

84



vehicles. Thus, there is an extra benefit to electric vehicles that are bought today: they
increase demand for the infrastructure that will facilitate the sales of the progressively
cleaner electric vehicles of tomorrow.

The current federal subsidy stands at $7,500 for any electric vehicle with a battery
larger than 16 kWh (Berman, 2016). This value is greater than the value I determined for
the appropriate EV Subsidy, however it is not recommended that the federal government
decrease the current subsidy. Once again, the larger subsidy will help to encourage sales
of electric vehicles that will, in turn, break down the barriers to entry for the EV market
and facilitate the adoption of future electric vehicles. Furthermore, the Monte Carlo
simulation demonstrated that there is significant variability within the system and that the
possibility for underestimating the EV Subsidy is far greater than overestimating it. The
mean values in the Monte Carlo simulation were significantly greater than the median
values, indicating the greater danger for underestimation.

The current federal subsidy diminishes once a car manufacturer sells 200,000
electric vehicles, as it is reduced to 50%, and then 25%, over the year following the
milestone being reached (Internal Revenue Service, 2016)). This policy should be
changed, as the efficacy of electric vehicles does not change once a certain sales
threshold has been met. The opposite effect should actually take place: the subsidy should
grow as the percentage of renewable energy grows. An ideal EV Subsidy would be linked
to the percentage of renewable energy and would grow over time. It should only be
abandoned once the percentage of electric vehicles has reached a critical mass and a

nationwide EV infrastructure is put into place.
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Increased Subsidy for PV and EV Combination

The EV Subsidy should be a centered around the disparity in externalities
between electric vehicles and internal combustion engine vehicles. This is exactly why
the EV Subsidy should be tied to the percentage of renewable energy and it is why the
subsidy should not be capped at 200,000 vehicles per automaker. It is important to look
to the future, but we should not ignore the fact that individuals can currently charge their
vehicles with 100% renewable energy if their home has rooftop photovoltaic panels

(assuming the car is charged during daylight hours or the home is fitted with batteries).

Table 37. Comparison of EV subsidies.

Scenario Subsidy
EV Subsidy (13.3%RE, 2016 Grid): $2,376.81
EV Subsidy (100%PV): $3,903.24
Difference $1,526.43

An EV powered by photovoltaics is responsible for a social cost that is $1,526.43
(Figure 37) less than an EV powered by the standard 2016 13.3% RE grid. Thus, the
federal EV Subsidy should be increased by $1,500 for individuals that can verify that
they will be charging their car with photovoltaics. These technologies have a symbiotic
relationship and can be cornerstones of a move toward a carbon neutral world. This
additional subsidy would help to encourage the simultaneous adoption of both
technologies. A study by the California Air Resources Board revealed that 32% of
electric vehicle owners had photovoltaic panels on their roof and 16% were planning to
buy panels in the near future (2014). This additional subsidy is empirically justified (see

Chapter III) and would reward individuals for adopting both technologies.
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Tax on Gasoline

The National Bureau of Economic Research white paper by Holland et al.
clarifies that an EV subsidy is actually the second-best policy and that the first-best
policy is a Pigovian tax. A Pigovian tax is “a per-unit tax set equal to the external damage
caused by an activity, such as a tax per ton of pollution emitted equal to the external
damage of a ton of pollution” which, in this context, can be exacted upon the externalities
associated with both electric vehicles and internal combustion engine vehicles (Harris &
Roach, 2013, p. 1652). Holland et al. support a differentiated tax on mileage for both
types of vehicles (2013), but a gasoline tax would be much easier to implement. The
appropriate EV Subsidy from this study represents the difference in externalities between
electric vehicles and gasoline-powered vehicles. Instead of subsidizing electric vehicles,
the value of the EV Subsidy could be used to tax internal combustion engine vehicles.
The value could be broken down per gallon, which would allow the tax to be executed as
a “gasoline tax.” This would serve two key advantages: it would be easy to implement
and it would precisely target automobiles that pollute more (i.e. vehicles with poor
efficiency).

The EV Subsidy was calculated based on an ICE vehicle with an efficiency of
25.4 miles per gallon (the July 2016 average) and a lifespan of 150,000 miles (University
of Michigan, 2016). The total number of gallons is therefore 5905.51 (150,000 miles /

25.4 mpg).

This quantity of gallons can then be divided into the appropriate EV Subsidy
(which represents the disparity in externalities) to determine the “EV Subsidy per

gallon,” which could be implemented as a tax per gallon on ICE vehicles. It is important
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to point out that this value could be impacted by multiple factors, including the social

cost of carbon and the percentage of renewable energy.
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Figure 37. Gasoline tax. This graph illustrates the relationship between RE% and the
proposed gasoline tax. The blue bars represent the appropriate tax if carbon is priced at
$66.26 per ton, while the orange bars represent the appropriate tax if carbon is priced at
$125 per ton.

Fortunately, my model can account for the possible variation in these input
variables (RE% and SCC), as illustrated in Figure 37. The gasoline tax is clearly a
function of both RE% and the social cost of carbon. Once again, this underscores the
importance of accurately defining the social cost of carbon, while it also introduces the
possibility that a gasoline tax should be tied to the current level of renewable energy. For
example, each year a new gasoline tax could be calculated based on the previous year’s
percentage of renewable energy. This would allow the gasoline tax to more accurately
represent the current difference in externalities.

A gasoline tax has many advantages, but it is not a perfect solution. The tax

burden would fall disproportionally on those that use a large quantity of gasoline, which
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is how the tax is intended to work. But, in many cases, the ratio of gasoline expense to
vehicle price would be much higher for lower-priced cars. An individual that purchases a
$20,000 car might purchase the same number of gallons of gasoline as someone who
purchases an $80,000 car. Both owners would pay the same amount in taxes because both
cars would be responsible for a similar quantity of gasoline-related externalities, but it is
likely that the tax would be far more burdensome for the individual who bought the
$20,000 automobile. The tax would be environmentally fair, but regressive: the gasoline
tax will account for a larger percentage of income for individuals in the lower income
brackets. Furthermore, the impact of the tax will not be uniform throughout all income
groups. A study by Tingting Wang and Cynthia Chen (2013) discovered that price
elasticities of demand for gasoline vary based on income levels. This is due to the fact
that households with greater income account for higher percentages of “discretionary
driving,” which can be decreased easily if the price of gasoline increases. This is not the
case for the lower income brackets, as a much larger percentage of their travel is non-
discretionary and cannot be easily reduced. More research needs to be done on the
negatives that a gasoline tax could have on lower income groups and the possibility of
subsidies to rectify this.

The gasoline tax would initially impact a far greater number of cars than an EV
Subsidy. Electric vehicles currently make up a small portion of overall market share and
the EV Subsidy is only applied to this small segment of the population. However, the
gasoline tax would be applied to all gasoline-powered vehicles. The methodology for the
EV Subsidy and the gasoline tax was based on a one-to-one comparison: the social cost

of one internal combustion engine vehicle compared to one electric vehicle.
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Unfortunately, the market is not split evenly between electric vehicles and internal
combustion vehicles. While the gasoline tax and EV Subsidy would be equitable in
vehicle-to-vehicle analyses, the total revenue from the gasoline tax would be vastly
greater than the total cost of the EV Subsidy. The solution to this problem would be to tax
both vehicles based on their social cost. In this scenario we would see a tax on electric
vehicles, but an even greater tax on internal combustion vehicles. Thus, there would be

no monetary advantage for ICE owners to choose this option.

Gas Tax Revenue

In 2015, Americans used 370 million gallons of gasoline per day for
transportation, which amounts to over 138 billion gallons of gasoline (138,335,000,000) a
year (U.S. Energy Information Administration, 2016). A gasoline tax of $0.40 to $1.27
can then be multiplied by this quantity of gasoline to determine the yearly revenues from
such a tax (Table 38).

Even considering the 2016 renewable energy mix and a social cost of carbon of
$66.26, the gasoline tax would generate billions of dollars of revenue. Unsurprisingly,
this number increases substantially as the RE% and social cost of carbon increases. But, it
is important to note that while the RE% should increase over time, the total revenue from
a gasoline tax may not increase simultaneously. A properly implemented gasoline tax
should decrease demand for gasoline and gasoline-powered vehicles. This is in addition
to the assumption that the market penetration of electric vehicles is expected to increase
significantly over the next 25 years. Bloomberg New Energy Finance predicts that

electric vehicles will account for 35% of new car sales in 2040 (MacDonald, 2016). The
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increase in EV sales, in addition to the projected increases in ICE efficiency (U.S. Energy
Information Administration, 2016), should lead to a decrease in overall gasoline

consumption.

Table 38. Gasoline tax revenue as a function of RE% and SCC.

Social Cost of Carbon: $66.26 Social Cost of Carbon: $125
RE% Tax Rate Revenue Tax Rate Revenue
per Gallon per Gallon

13.30% $0.40 $55,675,374,719.34 $0.78 $107,353,344,408.12
20% $0.42 $58,585,040,973.33 $0.81 $112,640,499,527.55
30% $0.45 $62,927,108,366.97 $0.87 $120,543,144,422.07
40% $0.49 $67,299,630,717.22 $0.93 $128,525,208,286.72
50% $0.52 $71,665,980,091.45 $0.99 $136,504,067,890.09
60% $0.55 $76,023,230,050.88 $1.04 $144,466,393,351.56
70% $0.58 $80,374,245,254.63 $1.10 $152,409,207,678.25
80% $0.61 $84,723,307,661.53 $1.16 $160,331,818,611.02
90% $0.64 $89,073,662,365.66 $1.22 $168,232,860,171.64
100% $0.68 $93,426,915,009.48 $1.27 $176,110,734,772.26

The U.S Energy Information Administration (EIA) produces projections for
yearly power plant distribution (see Ancillary Appendix 5) and transportation-related
gasoline consumption (see Ancillary Appendix 6). These projections do not factor in a
large-scale adoption of election vehicles, but they do account for increases in renewable
energy and improved efficiency in internal combustion engine automobiles. I was able to

use this data to calculate a gasoline tax, and tax revenue, based on the yearly projections.
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Figure 38. EIA projection-based RE% and tax rates (EIA, 2016).

The EIA projects that the percentage of renewable energy will increase steadily
between 2016 and 2040 (Figure 38); this increase causes the per-gallon gasoline tax to
increase as well. Yet, this increase in RE% does not supersede the projected decrease in
gasoline consumption, and thus, the EIA-based tax revenue projection actually decreases
between 2019 and 2040 (Figure 39).

The projected gasoline tax revenue will undoubtedly decrease over time and this
will be further exacerbated by any increase in electric vehicle adoption. Furthermore, a
gasoline tax would inherently decrease the demand for gasoline, which would lead to an
additional reduction in tax revenue (this reduction is not reflected in Figure 38 or Figure
39). This does not take away from the fact that the tax would generate a significant
amount of revenue that could be used to promote electric vehicle adoption and reduce

carbon emissions.
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Figure 39. EIA projection-based revenue from gasoline tax.

Renewable Energy Development

The revenue generated from an additional gasoline tax could be used to develop
and build new solar and wind farms around the country. This expansion would have a
compounding benefit, as the increase in renewable energy would also increase the
environmental benefits of electric vehicles. In 2015, the United States invested $56
billion in clean energy, with most of the investment going towards new solar and wind
plants (Mills & McCrone, 2015).

The total yearly investment in clean energy (Figure 40) can be compared to the
estimated yearly revenue from a new gasoline tax (Figure 39). A gasoline tax based on
$66.26 SCC would produce revenue in line with the current total investment, while a
gasoline tax based on $125 SCC would generate revenue that is nearly double the current

level of investment in clean energy. These revenues could result in a clean energy
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revolution if the vast majority of the proceeds were directed toward the construction of

new renewable energy power plants.
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Figure 40. United States investment in clean energy. Data acquired from Bloomberg New
Energy Finance.

The capital necessary to install new renewable energy capacity varies based on
technology and size (Table 39), but it can be assumed that the tax revenue would be used
for large-scale IMW+ power plants. The capital cost per megawatt-hour can then be
divided into the tax revenue to quantify the number megawatts of power that could be
installed if all of the revenue was directed toward building that type of renewable energy.
In Table 40, this number was multiplied by the “capacity factor” and the number of hours

per year to determine the megawatt hours that this new capacity would generate.
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Table 39. Installed cost per kWh for renewables.

Technology Mean Installed Cost (kWh) Cost per MW

PV <10 kW $3,897 $3,897,000
PV 10-100 kW $3,463 $3,463,000
PV 100-1,000 kW $2,493 $2,493,000
PV 1-10 MW $2,025 $2,025,000
Wind <10 kW $7,645 $7,645,000
Wind 10-100 kW $6,118 $6,118,000
Wind 100-1000 kW $3,751 $3,751,000
Wind 1-10 MW $2,346 $2,346,000

Note: Data from the National Renewable Energy Laboratory (2016):
http://www.nrel.gov/analysis/tech lcoe re cost est.html

Table 40. Possible megawatt hours from tax revenue for photovoltaics and wind.
Cost Cost per MW from Capacity MWH per

per KW MW Tax Revenue Factor Year
PV 1-10 MW $2,025  $2,025,000 27494.01 25.8% 62138667.11
Wind 1-10 $2,346  $2,346,000 23732.04 32.2% 66941450.54

MW

A common concern related to electric vehicles is that the increased electricity
demand would strain the national power grid. This concern has been debunked
(Montavalli, 2011), but a concerted expansion of renewable energy could help to alleviate
any lingering fears. In 2016, there were 159,139 electric vehicles sold in the United
States (Inside EVs, 2017). Based on the average yearly mileage of 13,476 and an
efficiency of 32 kWh per 100 miles, electric vehicles sales increased national electricity

demand by 686,258 megawatt hours (Table 41).

Table 41. Electricity necessary to power new EV sales (2016).

Cars Average Average kWh per MWH MULTIPLE
Sold Miles 100 miles Necessary
2016 EV 159139 13476 32 686258.29 97.55
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This electricity demand is a small fraction of the increased renewable energy
capacity that a gasoline tax could provide. If 100% of the revenue from a gasoline tax
was directed to large-scale wind farms, the expansion in capacity would generate 97.55
times as much power as would be necessary to power every new electric vehicle sold in

2016.

Table 42. Number of cars powered by an expansion in wind power.

kWh per kWh per MWH per Cars Powered by Tax
100 Year Year
2016 BMW i3 27 3638.52 3.63 18,397,988.89
2017 Chevrolet Bolt 28 3773.28 3.77 17,740,917.86
2016 Nissan Leaf 30 4042.8 4.04 16,558,190.00
2016 Tesla Model S 90D 33 4447.08 4.44 15,052,900.00

Note: This table details the number of cars that could be powered by an expansion of
wind power funded by a gasoline tax. The number varies based on the efficiency of the
electric vehicle.

A gasoline tax (at $66.36 per ton of carbon) would be able to fund enough new
wind power to compensate for the additional electricity demand from over 15 million
new electric vehicles (Table 41). This number exceeds 18 million if the new electric
vehicles are as efficient as BMW’s i3 (Table 42). This is a purely hypothetical scenario,
as the electricity demand from the new electric vehicles would not perfectly match the
supply curve for wind power. But, Table 41 does demonstrate the potential of a gasoline
tax and how those kilowatt-hours could be used to power a new fleet of electric vehicles.

If electric vehicles continue to be sold at a rate of 159,139 per year, the increase in
power would far exceed the demand from new electric vehicles. Thus, if we focus on the
marginal changes to the U.S. fleet of automobiles (159,139 new electric vehicles) and the

US power grid (66941450 MWH increase in renewable energy), one can make a case that
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each marginal electric vehicle will be powered by 100% renewable energy. Based on
these assumptions, gasoline should be taxed at the 100% RE rate of $0.68 per gallon (at
$66.26 SCC) instead of the 13.3% rate of $0.40 per gallon. This is just one perspective
and one can also argue that the we should look at the aggregate as opposed to marginal

changes.

Expanded Nationwide Charging Network

The tax revenue would not need to be focused solely on the deployment of
renewable energy and a portion of the proceeds could be used to create a nationwide
charging network similar to Tesla Motor’s supercharging network. The vast majority of
driving takes place within cities. An MIT study determined that the current fleet of low-
range electric vehicles could meet the demand of 87% of vehicle-days (Needell et al.,
2015). Another study by two Colombia doctoral students calculated that 98% of single-
trip drives were under 50 miles (Van Haaren, 2012). Thus, the new crop of long-range
affordable electric vehicles (Chevrolet Volt, Tesla Model 3) include ranges that go far
beyond what is necessary for city driving. The advantage of these vehicles is that their
200+ mile ranges make interstate travel feasible, but this advantage can only be unlocked
if the car is paired with an interstate fast-charging network. Tesla has already begun to
create such a network, yet a nationwide public network of chargers could help to

accelerate the adoption of electric vehicles.
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stations in North America and was taken from: https://www.tesla.com/supercharger

Tesla’s Supercharger network allows cars to gain 170 miles of range per half hour
of charging (Tesla, 2016). The chargers are strategically placed around the country to
facilitate driving between cities and states (Figure 41) and the current (2016) network
features 769 stations and 4,876 chargers.

There is some debate about the exact cost to build a Tesla Supercharger, but a
2016 article by the research group Ark Invest indicates that the price hovers around
$270,000 per station. Thus, for every billion dollars of tax revenue allotted to charging
infrastructure, over 3,700 Supercharger-style charging stations could be built. A small
portion of the revenue generated from a gasoline tax could create a charging network that
would dwarf the network that Tesla currently has in place. This charging network could
grow each year to accommodate the influx of new electric vehicles and would allow
electric vehicles to travel around the country without worrying about range anxiety.

The applications for the gasoline tax revenue do not have to end with renewable
energy and EV charging infrastructure. Part of the revenue could also be used to establish

a “smart” grid and to build grid-scale battery facilities. Each of these technologies will be
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essential to a carbon neutral grid, as they will help to facilitate the adoption of variable
output renewable energy such as wind and solar. The National Renewable Energy
Laboratory (NREL) predicts that 100 — 152 GW of battery deployment will be needed for
an 80% renewable energy future and this number will need to be even higher if we are to
achieve a 100% RE grid (NREL, 2016).

The ideal use for gasoline tax revenue would undoubtedly be a combination of the
above-mentioned infrastructure: wind power, solar power, charging stations, grid-scale
batteries, and a smart grid. The technologies would be built out incrementally as the
revenue comes into the system. This revenue would decrease over time, due to the
increased efficiency of ICE vehicles and the greater penetration of electric vehicles. This
would not be a cause for concern, as a high RE% smart-grid and EV infrastructure could
be in place before the tax dropped to nominal levels. The exact plan for this
implementation is outside the scope of my study, but it should be researched extensively

before any gasoline tax is put into place.

Conclusion
A variety of factors play a role in defining the disparity in the environmental
impacts between electric vehicles and their internal combustion engine counterparts (as
quantified by the EV Subsidy). Each of these variables can be manipulated to determine
their own role in the EV Subsidy, but one characteristic remains true for all scenarios: an
increase in the percentage of renewable energy significantly decreases the social costs

assigned to electric vehicles and causes the EV Subsidy to rise.
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Table 43. Sensitivity analysis.

13.30% 20% 50% 80% 100%
Cost of $20.00 SCC $639.37 $683.65 $879.56 $1,074.88 $1,208.56
Carbon
$66.26 SCC  $2,376.78  $2,500.99  $3,059.42 $3,616.83 $3,988.39
$125.00 SCC  $4,582.91 $4,808.62  $5,827.35 $6,844.55 $7,518.16
$200.00 SCC  $7,399.72  $7,755.02  $9,361.48
$10,965.75 $12,025.01
Miles per 10 MPG  $8,959.26  $9,083.47 $9,641.89
Gallon $10,199.31  $10,570.87
254 MPG  $2,376.78  $2,500.99  $3,059.42 $3,616.83 $3,988.39
40 MPG $816.65 $940.86  $1,499.28 $2,056.70 $2,428.26
60 MPG -$88.09 $36.12 $594.55 $1,151.97 $1,523.52
EV 36 kWh/100  $2,166.87  $2,306.08 $2,931.90 $3,556.59 $3,972.99
Efficiency
32 kWh/100  $2,376.78  $2,500.99  $3,059.42 $3,616.83 $3,988.39
28 kWh/100  $2,586.68  $2,695.90 $3,186.93 $3,677.07 $4,003.79
24 kWh/100  $2,796.58  $2,890.81 $3,314.45 $3,737.32 $4,019.18
Battery One $2,287.25  $2,399.08 $2,901.81 $3,403.63 $3,738.15

Scenarios Replacement

Double kWh $2,108.20 $2,222.85 $2,738.25 $3,252.72 $3,595.68
+ Replace

Kim et al. $2,036.32  $2,165.60 $2,746.64  $3,326.61 $3,713.41

Kim etal. + $1,606.34  §1,742.10 $2,352.09  $2,960.94  $3,367.19

Kimetal. ++ $746.38 $895.10 $1,562.98  $2,229.59  $2,674.76

Different Proportional $2,376.79  $2,503.79 $3,067.22 $3,630.47 $4,008.23
Models

NREL $2,364.80  $2,150.69 $2,704.76  $3,665.20  $3,988.39

Combined $2,376.78  $2,500.99 $3,059.42  $3,616.83  $3,988.39

Notes: Kim et al. battery data is taken from the paper “Cradle-to-Gate Emissions from a
Commercial Electric Vehicle Li-lon Battery: A Comparative Analysis (2016).” Kim et al.
+ includes a 64 kWh battery and Kim et al. ++ includes a 64 kWh battery and one
replacement.

The sensitivity analysis in Table 43 looks at a variety of scenarios (cost of carbon,

mile-per-gallon, EV efficiency, different battery scenarios, and type of model) and how
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the percentage of renewable energy impacts said scenarios. In each scenario there is a
strong correlation between RE% and the EV Subsidy. The efficacy of electric vehicles is
undoubtedly linked to the make-up of the grid and the percentage of renewable energy.
Thus, it is important to look at electric vehicles not for what they are today, but for what
they can become.

Much of the literature has focused on the impact that renewable energy will have
on the operating phase of an electric vehicle, but the impact on the production phase
should not be ignored. My model is unique in that it disaggregates the “grid-based
production emissions” from the “non-grid-based production emissions” and allows the

“grid-based emissions” to float with the percentage of renewable energy.
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Figure 42. Production-based socials costs for an EV.
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Many articles focus on the negative aspects of an electric vehicle’s production and
center on the faulty assumption that these negatives are fixed in place. The reality is that
these production emissions will decrease as the grid becomes cleaner (Figure 42). The
full benefits of this reduction are not captured by my model, as it is likely that the non-
grid-based production emission’s will also decrease over time due to improved
efficiencies.

The transportation sector needs to be radically altered if society wants to truly
combat the risks of climate change. Renewable energy-powered electric vehicles can be a
key component of this revolution: an electric vehicle running on 100% renewable energy
would be responsible for 6.30 tons of carbon dioxide over its lifetime, while an internal
combustion engine with an efficiency of 25.4 miles-per-gallon would be responsible for
66.40 tons of carbon dioxide (see Table 28 in Chapter III or Appendix 2). This is the
direction that our society needs to move in and we have a moral obligation to encourage
the technologies that will facilitate this positive change. An appropriate EV Subsidy

and/or gasoline tax is but part of the solution.

Recommendations and Summary
The outcomes of my research support the premise that electric vehicles have a
positive impact on the environment (relative to internal combustion engine vehicles) and
can play an important role in climate change mitigation. The benefits of electric vehicles
do not diminish once a specific sales threshold is met and the current cap on electric
vehicle subsidies is a perverse incentive that will promote additional market failure. The

purpose of the EV Subsidy is to compensate for the externalities that exist within our
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transportation economy. The number of sales per manufacturer has no bearing on the
overall disparity between EV and ICE externalities, and subsequently, it should have no
bearing on the number of cars that can take advantage of the EV Subsidy. The cap should
be eliminated and the efficacy of the subsidy should be re-evaluated every 5 years. The
subsidy should not be eliminated until the number of electric vehicles has reached a
critical mass.

My model indicates that the difference in externalities between an electric vehicle
and an internal combustion engine vehicle currently resides at $2,376.78 (2016 grid and
July 2016 average mile per gallon). This number falls short of the current $7,500 federal
tax subsidy, yet I recommend that the current $7,500 subsidy remain in place. My Monte
Carlo simulations demonstrated that the variation in pollutant pricing leads to potential
variation in outcomes (EV Subsidy). This variation is heavily weighted against the
internal combustion engine vehicle: while the bottom 10% of the outputs (EV Subsidy)
from the Monte Carlo Simulation fell between -$1,229.89 and $485.26 (2016 grid), the
top 10% of the simulations fell between $20,776.32 and $108,978.97. This was a clear
indicator that the possibility for underestimating the EV Subsidy is more severe than
overestimating it and it is a strong reason for leaving the EV Subsidy at $7,500.

The underlying theme of my research has been the correlation between renewable
energy and the EV Subsidy. My model demonstrated the positive relationship between
the percentage of renewable energy and the EV Subsidy (Figure 43): an increase in the
percentage of renewable energy results in an increase in the EV Subsidy. This correlation
is the reason that I also recommend that we link the current EV Subsidy to the percentage

of renewable energy. The EV Subsidy should be recalculated at the end of each year and

103



$4,500.00
$4,000.00
$3,500.00

@ $3,000.00
$2,500.00
$2,000.00
$1,500.00
$1,000.00
$500.00
$0.00

EV Subsidy

13% 20% 30% 40% 50% 60% 70% 80% 90% 100%
RE%

e F\/ Subsidy

Figure 43. EV subsidy as a function of renewable energy.
should be a function of the national renewable energy percentage and average miles per

gallon. This would produce an EV Subsidy that would properly reflect the changing

externalities related to electric vehicles and internal combustion engine automobiles.
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Appendix 1

Power Generation Regressions

[ Relationship between Percentage of Wind (Output) and RE % (Input)

Logistic Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:30:22 PM / End time: 7/24/16 at 1:30:49 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xIsx / Sheet = General Inputs / Range = 'General Inputs'I$K$39:5K$47 / 8 rows and 1 column
X/ Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations __Dbs. with missing datawithout missing Minimum Maximum Mean Std. deviation
Wind 8 0 8 0.047 0.405 0.247 0.127
Percentage RE 8 [ 8 0133 0500 0542 0259

Nonlinear regression of variable Wind:

Goodness of fit statistics:

Observations 8.000
DF 5.000
R? 0.997
SSE 0.000
MSE 0.000
RMSE 0.008
Iterations 7.000

Model parameters:

Parameter Value Standard error
prl -2.781 0.145
pr2 5.969 0.418
pr3 0.426 0.013

Equation of the model:

Wind = 0.426458973061796/(1+Exp(+2.78089267684665-5.96863862855643* Percentage RE))

Predictions and residuals:

Observations Percentage RE Wind Pred(Wind) Residuals
Obs1 0.133 0.047 0.051 -0.004
0Obs2 0.300 0.110 0.116 -0.005
0Obs3 0.400 0.177 0.172 0.005
Obs4 0.500 0.245 0.235 0.010
Obs5 0.600 0.290 0.294 -0.005
0Obs6 0.700 0.335 0.342 -0.007
Obs? 0.800 0.370 0.375 -0.005
Obs8 0.900 0.405 0.397 0.009
Nonlinear regression (Wind) Pred(Wind) / Wind Residuals

Wind

03 P & o7 8 A 1

Percentage RE

Pred(Wind) . Observations

Figure 44. Wind power regression. XLSTAT was used for non-linear regressions for each
power generation type. This was done to create an equation that would model the
relationship between the percentage of each power generation type and the percentage of
renewable energy.
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| Relationship between Percentage of Solar (Output) and RE % (Input)

Logistic Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:35:01 PM / End time: 7/24/16 at 1:35:27 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$)$39:51547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58%47 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1€-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations  Dbs. with missing i missing Minimum Mean Std. deviation
PV 8 0 8 0.005 0.071 0.043 0.022
Percentage RE 8 0 8 0.133 0.900 0.542 0.259

Nonlinear regression of variable PV:

Goodness of fit statistics:

Observations 8.000
DF 5.000
R? 0977
SSE 0.000
MSE 0.000
RMSE 0.004
Iterations 8.000

Model parameters:

Parameter Value Standard error
pri -2.549 0.385
pr2 5.686 1168
pr3 0.073 0.007

Equation of the model:

PV = 0.0729756822422279/(1+Exp(+2.54903419599158-5.68599511070601 *Percentage RE))

Predictions and residuals:

Observations Percentage RE PV Pred(PV) Residuals
Obs1 0.133 0.005 0.010 -0.005
0Obs2 0.300 0.024 0.022 0.002
Obs3 0.400 0.031 0.032 -0.001
Obs4 0.500 0.046 0.042 0.004
0Obs5 0.600 0.050 0.051 -0.001
Obs6é 0.700 0.054 0.059 -0.005
Obs7 0.800 0.064 0.064 0.000
0Obs8 0.900 0.071 0.068 0.003
Nonlinear regression (PV) Pred(pV) / PV Residuals

08 08 0003

0004

v
v

Residual

@1 02 03 o4 05 06 07 08 03 1

Percentage RE 0

0 001 002 003 004 005 006 007 08

_ Pred(PV) Observations

Figure 45. Photovoltaic regression data part 1.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:37:37 PM / End time: 7/24/16 at 1:38:04 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'|$1$39:5)547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58%47 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1€-05

Function: Y = pri+(prd-pr1)/(1+Exp(pr2*(Ln(X1)-pr3)))

Run again:
Summary statistics:
Variable Observations  Dbs. with missing i missing Minimum Maxi: Mean Std. deviation
PV 8 0 8 0.005 0.071 0.043 0.022
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable PV:
Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0.987
SSE 0.000
MSE 0.000
RMSE 0.005
Iterations 200.000
Model parameters:
Parameter Value Standard error
pri 1.551 233.111
pr2 0.451 5.811
pr3 5.891 406.233
prd -0.035 0.44%
Equation of the model:
PV = 1.55051182397255+(-0.0347190120283889-1.55051182397255)/(1+Exp(0.451412698237846* (Ln(Percentage RE)-5.89148138873412)))
Predictions and residuals:
Observations Percentage RE PV Pred(PV) Residuals
Obs1 0.133 0.005 0.009 -0.003
Obs2 0.300 0.024 0.027 -0.003
0Obs3 0.400 0.031 0.035 -0.004
Obs4 0.500 0.046 0.042 0.003
0Obs5 0.600 0.050 0.048 0.001
0Obsé 0.700 0.054 0.054 0.000
Obs7 0.800 0.064 0.060 0.005
0Obs8 0.900 0.071 0.064 0.006
Nonlinear regression (PV) Pred(PV) / PV Residuals
08 008 00

v

01 02 ©3 04 05 06 07 D08 08 1

Percentage RE 0+

0 001 002 003 004 05 006 00 0,08

Pred(PV)

Residual

0002

o008

q Otk ObsS

Observations

Figure 46. Photovoltaic regression data part 2.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:40:16 PM / End time: 7/24/16 at 1:40:43 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$1$39:51547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:5B$47 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05

Function: Y = pri+(prd-pr1)/(1+(X1/pr3)*pr2)

Run again:

Summary statistics:

Variable Observations  Jbs. with missing d. ithout missing Minimum Maximum Mean Std. deviation
[ 8 0 8 0.005 0.071 0.043 0,022
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable PV:
Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0.930
SSE 0.000
MSE 0.000
RMSE 0.003
Iterations 200.000
Model parameters:
Parameter Value Standard error
prl 0.293 1.251
pr2 0.886 1394
pr3 2691 20.187
prd -0.015 0.040
Equation of the model:
PV = 0.293310648675685+(-0.0145702049849519-0.293310648675685)/(1+(Percentage RE/2.69056224476429)10.885927335514817)
Predictions and residuals:
Observations Percentage RE PV Pred(PV) Residuals
Obs1 0133 0.005 0.005 0.000
0Obs2 0.300 0.024 0.024 0.000
0Obs3 0.400 0.031 0.033 -0.002
Obs4 0.500 0.046 0.042 0.004
0Obs5 0.600 0.050 0.050 0.000
Obsé 0.700 0.054 0.057 -0.003
Obs7 0.800 0.064 0.064 0.001
0Obs8 0.900 0.071 0.070 0.001
Nonlinear regression (PV) Pred(pv) / PV Residuals
8 8 000
- acos
- 06 0003
p 05 0002
2 00 3 o
g H 3
, - =
sl Obs2 ot Ob
001 , 000
0 o 200
01 02 03 o4 05 06 07 08 03 1
Percentage RE ‘ 0003
! 01 002 003 004 005 006 007 008
Pred(PV) oo Observations

Figure 47. Photovoltaic regression data part 3.
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| laf hi n n! P (Output) and RE % (I

Logistic Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at :47 PM / End time: 7/24/16 at 1:48:14 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$1539:51547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations  Dbs. with missing i missing Minimum i Mean Std. deviation
Csp 8 0 8 0.116 0.030 0.041
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable CSP:
Goodness of fit statistics:
Observations 8.000
DF 5.000
R? 0.996
SSE 0.000
MSE 0.000
RMSE 0.003
Iterations 11.000
Model parameters:
Parameter Value Standard error
pri -1.720 0.391
pr2 7999 1.186
pr3 0.311 0.158
Equation of the model:
CSP = 0.310717664841852/(1+Exp(+7.71976873499381-7.99864249750182 * Percentage RE))
Predictions and residuals:
Observations Percentage RE CSP Pred(CSP) Residuals
Obs1 0.133 0.001 0.000 0.000
0Obs2 0.300 0.000 0.002 -0.001
0Obs3 0.400 0.000 0.003 -0.003
Obs4 0.500 0.006 0.007 -0.001
0bs5 0.600 0.021 0.016 0.005
0Obsé 0.700 0.031 0.033 -0.003
Obs? 0.800 0.066 0.065 0.001
0Obs8 0.900 0.116 0.116. 0.000
Nonlinear regression (CSP) Pred(CsP) / CSP Residuals

Residual

o1 02 03 04 0s 06 07 08 (1] 1 B

Percentage RE I oo
0 0 00t 106 )08 1 012

o001
Pred(cse) Observations

Figure 48. Concentrated solar power regression data part 1.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:49:54 PM / End time: 7/24/16 at 1:50:20 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$1$39:51547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$8$39:58%47 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05

Function: Y = pr1+{prd-pr1)/(1+Exp(pr2*(Ln(X1)-pr3))
Run again:
Summary statistics:
Variable Observations  Dbs. with missing ithout missing Minimum i Mean Std. deviation
Csp 8 0 8 0.000 0.116 0.030 0.041
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable CSP:
Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0.745
SSE 0.003
MSE 0.001
RMSE 0.028
Iterations 200.000
Model parameters:
Parameter Value Standard error
pri 3.465 890.815.
pr2 1116 7.826
pr3 2953 241.246
prd -0.036 0.143
Equation of the model:
CSP = 3.4646561624522+(-0.0359545471383158-3.4646561624522)/(1+Exp(1.11568625014526* (Ln(Percentage RE)-2.95346185834061)))
Predictions and residuals:
Observations Percentage RE CSP Pred|(CSP) Residuals
Obs1 0.133 0.001 -0.022 0.023
0Obs2 0.300 0.000 -0.002 0.003
0Obs3 0.400 0.000 0.010 -0.010
Obs4 0.500 0.006' 0.023 -0.017
0Obs5 0.600 0.021 0.036 -0.015
Obs6é 0.700 0.031 0.049 -0.019
Obs? 0.800 0.066 0.062 0.004
0Obs8 0.900 0.116 0.076 0.040
Nonlinear regression (CSP) Pred(CsP) / csp Residuals

csp

Residual

01 02 03 04 05 06 07 0B 03 1

Percentage RE

a0t

Observations

Figure 49. Concentrated solar power regression data part 2.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:51:14 PM / End time: 7/24/16 at 1:51:43 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$1$39:51547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$8$39:58%47 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05

Function: Y = pri+(prd-pr1)/(1+(X1/pr3)*pr2)
Run again:
Summary statistics:
Variable Observations  Dbs. with missing ithout missing Minimum i Mean Std. deviation
Csp 8 0 8 0.000 0.116 0.030 0.041
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable CSP:
Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0.996
SSE 0.000
MSE 0.000
RMSE 0.003
Iterations 200.000
Model parameters:
Parameter Value Standard error
pri 4.657 73.719
pr2 4923 1279
pr3 1.897 6.603
prd 0.000 0.002
Equation of the model:
CSP = 4.65719598408802+(6.2001475354576E-06-4.65719598408802)/(1+(Percentage RE/1.89712277430826)"4.92268088517982)
Predictions and residuals:
Observations Percentage RE CSP Pred|(CSP) Residuals
Obs1 0.133 0.001 0.000 0.000
0Obs2 0.300 0.000 0.001 0.000
0Obs3 0.400 0.000 0.002 -0.002
Obs4 0.500 0.006' 0.007 -0.001
0Obs5 0.600 0.021 0.016 0.005
Obs6é 0.700 0.031 0.034 -0.004
Obs? 0.800 0.066 0.065 0.001
0Obs8 0.900 0.116 0.116 0.000
Nonlinear regression (CSP) Pred(CsP) / csp Residuals
1 012
s
01 000t
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008
& 00 000
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Figure 50. Concentrated solar power regression data part 3.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:55:08 PM / End time: 7/24/16 at 1:55:34 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$1$39:51547 / 8 rows and 1 column
X/ Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05

Function: Y = pr1*Exp(pr2*X1)

Run again:

Summary statistics:

Variable Observations  bs. with missing ithout missing Minimum Mean Std. deviation
csp 8 0 8 0.000 0.116 0.030 0.041
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable CSP:
Goodness of fit statistics:
Observations 8.000
DF 6.000
R? 0.995
SSE 0.000
MSE 0.000
RMSE 0.003
Iterations 41.000
Model parameters:
Parameter Value Standard error
pri 0.000 0.000
pr2 6.346 0.342
Equation of the model:
CSP = 0.000387496078062449° Exp(6.3462902768297 Percentage RE)
Predictions and residuals:
Observations Percentage RE csp Pred(CSP) Residuals
Obs1 0133 0.001 0.001 0.000
0Obs2 0.300 0.000 0.003 -0.002
Obs3 0.400 0.000 0.005 -0.004
Obs4 0.500 0.006 0.009 -0.003
0Obs5 0.600 0.021 0.017 0.004
0Obsé 0.700 0.031 0.033 -0.002
Obs7 0.800 0.066 0.062 0.004
0Obs8 0.900 0.116 0.117 -0.001
Nonlinear regression (CSP) Pred(CSP) / CSP Residuals
12 012 v 0005

csp

Residual

o003
01 02 03 o4 05 06 07 08 03 1
Percentage RE g A oot
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Figure 51. Concentrated solar power regression data part 4.
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| Relationship between Percentage of Geothermal (Output) and RE % (Input)

Logistic Regression

XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 1:58:48 PM / End time: 7/24/16 at 1:59:14 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xisx / Sheet = General Inputs / Range = 'General Inputs'!$G$39:5G547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:58547 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations  Dbs. with missing datzawithout missing Minimum I\ Mean Std. deviation
Geothermal 8 0 8 0.004 0.042 0.037 0.013
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Geothermal:

Goodness of fit statistics:
Observations 8.000
DF 5.000
R? 0998
SSE 0.000
MSE 0.000
RMSE 0.001
Iterations 7.000
Model parameters:
Parameter Value Standard error
prl -6.559 0.560
pr2 32616 3413
pr3 0.041 0.000
Equation of the model:
Geothermal = 0.0414528945045054/(1+Exp(+6.55949143261789-32.6158734247074* Percentage RE))
Predictions and residuals:
Observations Percentage RE red|Geothel Residuals
Obs1 0133 0.004 0.004 0.000
0Obs2 0.300 0.040 0.040 0.000
0Obs3 0.400 0.042 0.041 0.001
Obs4 0.500 0.042 0.041 0.001
0Obs5 0.600 0.042 0.041 0.000
0Obs6é 0.700 0.042 0.041 0.000
0Obs? 0.800 0.041 0.041 0.000
0Obs8 0.900 0.040 0.041 -0.001
Nonlinear regression (Geothermal) Pred(Geothermal) / Geothermal Residuals
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0035 o
- 003
g 003
8 oo H 3 sl O b3 Okl ObS 06
L § 0 3
oo1s H :
0 &
00 20005
0005 .
LD) 02 03 0.4 0s 06 a7 (1] [-L] 1 s o
Percentage RE [R=
0 005 001 0015 005 003 0035 004 0045
200
Pred(Geothermal) Observations

Figure 52. Geothermal regression data part 1.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:02:21 PM / End time: 7/24/16 at 2:02:47 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$G$39:5G$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1€-05

Function: Y = pri+(prd-pr1)/(1+Exp(pr2*(Ln(X1)-pr3)))

Run again:

Summary statistics:

Variable Observations _Dbs. with missing ithout missing Minimum Maxi Mean Std. deviation
Geothermal 8 0 8 0.004 0.042 0.037 0.013
Percentage RE 8 0 8 0.133 0.900 0.542 0.259

Nonlinear regression of variable Geothermal:

Goodness of fit statistics:

Observations 8.000
DF 4.000
R? 0.546
SSE 0.001
MSE 0.000
RMSE 0.012
Iterations 200.000

Model parameters:

Parameter Value Standard error
prl 0.078 1718
pr2 0.501 20127
pr3 0.119 51451
prd 0.016 0.233

Equation of the model:

Geothermal = 0.0780444155900042+(0.0159916010862455-0.0780444155900042)/(1+Exp(0.900951415890331* (Ln(Percentage RE)-0.119357200025283)))

Predictions and residuals:

Observations Percentage RE Geothermal Residuals
Obs1 0133 0.004 0.024 -0.020
0Obs2 0.300 0.040 0.030 0.009
0Obs3 0.400 0.042 0.034 0.009
Obs4 0.500° 0.042 0.036 0.006
0bsS 0.600 0.042 0.038 0.003
Obsé 0.700 0.042 0.040 0.001
Obs7 0.800 0.041 0.042 -0.001
0Obs8 0.9500 0.040 0.044 -0.004
Nonlinear regression (Geothermal) Pred(Geothermal) / Geothermal Residuals
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Figure 53. Geothermal regression data part 2.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:03:37 PM / End time: 7/24/16 at 2:04:04 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$G$39:5G$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:58347 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pri+pr2*X1+pr3*X1/2+pr4*X13
Run again:

Summary statistics:

Variable Observations  Dbs. with missing missing Minimum Maxi Mean Std. deviation
Geothermal 8 0 8 0.004 0.042 0.037 0.013
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Geothermal:

Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0573
SSE 0.000
MSE 0.000
RMSE 0.003
Model parameters:
Parameter Value Standard error
prl -0.043 0.008
pr2 0.456 0.064
pr3 -0.759 0.138
prd 0.397 0.089
Equation of the model:
Geothermal = -0.0430184898916421+0.455624299306463* Percentage RE-0.758813785819626* Percentage REA2+0.396684113215176* Percentage REA3
Predictions and residuals:
Observations Percentage RE Residuals
Obs1 0.133 0.004 0.005 -0.001
0Obs2 0.300 0.040 0.036 0.004
Obs3 0.400 0.042 0.043 -0.001
Obs4 0.500 0.042 0.045 -0.003
0bss 0.600 0.042 0.043 -0.001
Obsé 0.700 0.042 0.040 0.001
Obs7 0.800 0.041 0.039 0.002
0Obs8 0.500 0.040 0.042 -0.001
Nonlinear regression (Geothermal) Pred(Geothermal) / Geothermal Residuals
0085 0045 0008
o 004 0004
0035 0035
- 003 0003
] 00
H H 3
9 o s 00 2 oo
© &
00 oo N
oo N obs2 s Obs
. ocor
01 02 03 04 0s 06 a7 08 [L] 1 oo
Percentage RE A0
0 05 001 0015 00 005 003 0035 004 0045 )
. Pred(Geothermal) o Observations

Figure 54. Geothermal regression data part 3.
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| Relationship between Percentage of Biomass (Output) and RE % (Input)

Logistic Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:08:12 PM / End time: 7/24/16 at 2:08:40 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$F$39:5F$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xisx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations  Dbs. with missing ithout missing Minimum 1 Mean Std. deviation
Biomass 8 0 8 0.016 0.152 0.092 0.051
Percentage RE 8 0 8 0.133 0.900 0.542 0.259

Nonlinear regression of variable Biomass:

Goodness of fit statistics:

Observations 8.000
DF 5.000
R? 0.979
SSE 0.000
MSE 0.000
RMSE 0.009
|terations 7.000

Model parameters:

Parameter Value Standard error
prl -3.007 0.404
pr2 5.850 1.130
pr3 0.173 0.017

Equation of the model:

Biomass = 0.172590151367785/(1+Exp(+3.00734951525838-5.8495508256491* Percentage RE))

Predictions and residuals:

Observations P RE Biomass Pred( Residuals
0Obs1 0.133 0.016. 0.017 -0.001
0Obs2 0.300 0.045 0.038 0.006
0bs3 0.400 0.061 0.059 0.003
Obs4 0.500 0.071 0.083 -0.012
0Obs5 0.600 0.105 0.108 -0.003
0Obs6 0.700 0.138 0.129 0.009
Obs? 0.800 0.152 0.145 0.007
0Obs8 0.500 0.148 0.156 -0.008
Nonlinear regression (Blomass) Pred(Blomass) / Blomass Residuals
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Figure 55. Biomass regression data part 1.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:10:29 PM / End time: 7/24/16 at 2:10:56 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'ISF$39:5F$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58347 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pri+(prd-pr1)/(1+Exp(pr2*(Ln(X1)-pr3)))
Run again:

Summary statistics:

Variable Observations  Jbs. with missing ithout missing Minimum M: Mean Std. deviation
Biomass 8 0 8 0.016 0.152 0.092 0.051
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Biomass:
Goodness of fit statistics:
Observations 8.000
DF 4,000
R? 0,936
SSE 0.001
MSE 0.000
RMSE 0.019
Iterations 200.000
Model parameters:
Parameter Value Standard error
pri 4,048 958.806
pr2 0.485 8.228
pr3 5.805 582.666
prd -0.079 1.270
Equation of the model:
Biomass = 4.04759440017249+(-0.0793296759903499-4.04759440017249)/(1+Exp{0.485032877060616* (Ln(Percentage RE)-5.80461854615858)))
Predictions and residuals:
Observations Percentage RE Biomass Pr Residuals
Obs1 0133 0.016 0.012 0.004
0Obs2 0.300 0.045 0.054 -0.009
0Obs3 0.400 0.061 0.073 -0.012
Obs4 0.500 0.071 0.090 -0.019
0Obs5 0.600 0.105 0.105 0.000
0Obsé 0.700 0.138 0.119 0.020
Obs? 0.800 0.152 0.131 0.021
0Obs8 0.900 0.148 0.143 0.005
Nonlinear regression (Blomass) Pred(Blomass) / Blomass Residuals
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Figure 56. Biomass regression data part 2.

117




XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:11:39 PM / End time: 7/24/16 at 2:12:06 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$F$39:5F$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xisx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05

Function: Y = pri+(prd-pr1)/(1+(X1/pr3)*pr2)

Run again:
Summary statistics:
Variable Observations  Dbs. with missing i missing Minimum { Mean Std. deviation
Biomass 8 0 8 0.016 0.152 0.092 0.051
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Biomass:
Goodness of fit statistics:
Observations 8.000
DF 4,000
R? 0.975
SSE 0.000
MSE 0.000
RMSE 0.011
Iterations 8.000
Model parameters:
Parameter Value Standard error
prl 0.193 0.053
pr2 3.161 1393
pr3 0.590 0.124
prd 0.019 0.012
Equation of the model:
Biomass = 0.192804090438518+(0.0186894000647961-0.192804090438518)/(1+(Percentage RE/0.590332047216836)"3.16136909622036)
Predictions and residuals:
Observations Percentage RE Biomass i Residuals
Obs1 0.133 0.016 0.020 -0.004
0Obs2 0.300: 0.045 0.037 0.008.
0Obs3 0.400 0.061 0.058 0.003
Obs4 0.500° 0.071 0.083 -0.012
0bsS 0.600 0.105 0.108 -0.003
Obs6 0.700 0.138 0.129 0.010
Obs? 0.800° 0.152 0.145 0.007
0Obs8 0.900 0.148 0.156 -0.008
Nonlinear regression (Blomass) Pred(Blomass) / Blomass Residuals
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Figure 57. Biomass regression data part 3.

118




| Relationship between Percentage of Hydro (Output) and RE % (Input)

Logistic Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:17:41 PM / End time: 7/24/16 at 2:18:07 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'ISH$39:5HS547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xisx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations  Dbs. with missing ithout missing Minimum 1 Mean Std. deviation
Hydropower 8 0 8 0.060 0.125 0.099 0.020
Percentage RE 8 0 8 0.133 0.900 0.542 0.259

Nonlinear regression of variable Hydropower:

Goodness of fit statistics:

Observations 8.000
DF 5.000
R? 0.961
SSE 0.000
MSE 0.000
RMSE 0.005
|terations 3.000

Model parameters:

Parameter Value Standard error
prl -0.481 0.158
pr2 3.405 0.932
pr3 0.128 0.010

Equation of the model:

Hydropower = 0.128481478956708/(1+Exp(+0.480817461917613-3.40465147841978* Percentage RE))

Predictions and residuals:

Observations Percentage RE Hydropower  red(Hydropowe Residuals
0Obs1 0.133 0.060 0.063 -0.003
0Obs2 0.300 0.085 0.081 0.004
0bs3 0.400 0.095 0.091 0.004
Obs4 0.500 0.099 0.099 0.000
0Obs5 0.600 0.101 0.106 -0.005
0Obs6 0.700 0.109 0.112 -0.002
Obs? 0.800 0.114 0.116 -0.003
0Obs8 0.500 0.125 0.119 0.005
Nonlinear regression (Hydropower) Pred(Hydropower) / Hydropower Residuals
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Figure 58. Hydropower regression data part 1.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:18:56 PM / End time: 7/24/16 at 2:19:23 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$H$39:5H$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58347 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05

Function: Y = pri+(prd-pr1)/(1+Exp(pr2*(Ln(X1)-pr3)))

Run again:

Summary statistics:

Variable Observations  Dbs. with missing datawithout missing Minimum Maxi: Mean Std. deviation
Hydropower 8 0 8 0.060 0.125 0.099 0.020
Percentage RE 8 0 8 0.133 0.500 0.542 0.259
Nonlinear regression of variable Hydropower:

Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0,978
SSE 0.000
MSE 0.000
RMSE 0.006
Iterations 200.000
Model parameters:
Parameter Value Standard error
pri 0.719 59.624
pr2 0.403 7.696
pr3 4.340 304.681
prd 0.016. 0.765
Equation of the model:
Hydropower = 0.718682420028777+(0.0164153011314916-0.718682420028777)/(1+Exp(0.402750787046858" (Ln(Percentage RE)-4.34002241537331)))
Predictions and residuals:
Observations Percentage RE Hydropower  red(Hydropowe Residuals
Obs1 0133 0.060 0.067 -0.007
0Obs2 0.300 0.085 0.084 0.000
0Obs3 0.400 0.095 0.092 0.003
Obs4 0.500 0.099 0.098 0.001
0bs5 0.600 0.101 0.104 -0.002
Obsé 0.700 0.109 0.108 0.001
0Obs? 0.800 0.114 0.113 0.001
0Obs8 0.900 0.125 0.117 0.008
Nonlinear regression (Hydropower) Pred(Hydropower) / Hydropower Residuals
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Figure 59. Hydropower regression data part 2.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:20:16 PM / End time: 7/24/16 at 2:20:43 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'|SH$39:5H547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$8$39:58347 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1€-05
Function: Y = pri+(prd-pr1)/(1+(X1/pr3)*pr2)
Run again:

Summary statistics:

Variable Observations  Dbs. with missing i missing Minimum M. Mean Std. deviation
Hydropower 8 0 8 0.060 0.125 0.099 0.020
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Hydropower:

Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 079
SSE 0.000
MSE 0.000
RMSE 0.004
Iterations 200.000
Model parameters:
Parameter Value Standard error
prl 0450 9.594
pr2 0392 4.710
pr3 8.943 778.377
prd -0.014 0.779
Equation of the model:
Hydropower = 0.449702631274086+(-0.0137785730944266-0.449702631274086)/(1+(Percentage RE/8.94266764011213)10.391943939092265)
Predictions and residuals:
Observations Percentage RE Hydropower _red(Hydropowe Residuals
Obs1 0.133 0.060 0.061 -0.001
Obs2 0.300 0.085 0.083 0.002
0bs3 0.400 0.095 0.092 0.003
Obs4 0.500 0.099 0.099 0.000
0Obs5 0.600 0.101 0.106 -0.004
Obsé 0.700 0.109 0.111 -0.002
Obs? 0.800 0.114 0.116 -0.002
Obs8 0.900 0.125 0.120 0.005
Nonlinear regression (Hydropower) Pred(Hydropower) / Hydropower Residuals
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Figure 60. Hydropower regression data part 3.
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| Relationship between Percentage of Coal (Output) and RE % (Input)

Logistic Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:44:40 PM / End time: 7/24/16 at 2:45:08 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$D$39:5D547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xisx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations  Dbs. with missing ithout missing Minimum 1 Mean Std. deviation
Coal 8 0 8 0.029 0.492 0.267 0.163
Percentage RE 8 0 8 0.133 0.900 0.542 0.259

Nonlinear regression of variable Coal:

Goodness of fit statistics:

Observations 8.000
DF 5.000
R? 0914
SSE 0.016
MSE 0.003
RMSE 0.057
|terations 18.000

Model parameters:

Parameter Value Standard error
prl 7.242 2944
pr2 -11.006 4.187
pr3 0.420 0.041

Equation of the model:

Coal = 0.42029340924073/(1+Exp(-7.2416257766666+11.0056016767724* Percentage RE))

Predictions and residuals:

Observations Percentage RE Coal Pred(Coal) Residuals
0Obs1 0.133 0.330 0419 -0.089
0Obs2 0.300 0.492 0412 0.080
0bs3 0.400 0.429 0397 0.032
Obs4 0.500 0.344 0.357 -0.014
0Obs5 0.600 0.257 0.275 -0.018
0Obs6 0.700 0.165 0.162 0.003
Obs? 0.800 0.087 0.073 0.014
0Obs8 0.500 0.029 0.027 0.002
Nonlinear regression (Coal) Pred(Coal) / Coal Residuals

Residual
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Figure 61. Coal power regression data part 1.
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Cubic Regression

XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:45:56 PM / End time: 7/24/16 at 2:46:23 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$D$39:9D$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58347 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pri+pr2*X1+pr3*X1°2+prd*X13
Run again:

Summary statistics:

Variable Observations  Dbs. with missing ithout missing Minimum M: Mean Std. deviation
Coal 8 0 8 0.029 0.492 0.267 0.163
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Coal:
Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0.992
SSE 0.001
MSE 0.000
RMSE 0.019
Model parameters:
Parameter Value Standard error
prl 0.016 0.056
pr2 3.301 0.426
pr3 -7.189 0.926
prd 3.942 0.595
Equation of the model:
Coal = 0.0161878604380196+3.3008113096785* Percentage RE-7.18863871418589* Percentage REA2+3.94230473265586* Percentage REM3
Predictions and residuals:
Observations Percentage RE Coal Pred(Coal) Residuals
Obs1 0133 0.330 0337 -0.007
0Obs2 0.300 0.492 0.466 0.026
0Obs3 0.400 0.429 0439 -0.010
Obs4 0.500 0.344 0.362 -0.018
0Obs5 0.600 0.257 0.260 -0.003
0Obsé 0.700 0.165 0.157 0.009
Obs7? 0.800 0.087 0.075 0.012
0Obs8 0.900 0.029 0.038 -0.009
Nonlinear regression (Coal) Pred(Coal) / Coal Residuals
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Figure 62. Coal power regression data part 2.
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Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:49:43 PM / End time: 7/24/16 at 2:50:10 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$D$39:5D547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'ISB$39:58547 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1€-05
Function: Y = pri+(prd-pr1)/(1+(X1/pr3)*pr2)
Run again:

Summary statistics:

Variable Observations  Dbs. with missing i missing Minimum Maxi: Mean Std. deviation
Coal 8 0 8 0.029 0.492 0.267 0.163
Percentage RE 8 0 8 0.133 0.500 0.542 0.259

Nonlinear regression of variable Coal:

Goodness of fit statistics:

Observations 8.000
DF 4.000
R? 0.921
SSE 0.015
MSE 0.004
RMSE 0.061
Iterations 13.000

Model parameters:

Parameter Value Standard error
prl -0.011 0.155
pr2 6.555 4811
pr3 0655 0,097
prd 0419 0,042
Equation of the model:

Coal = -0.0108314685905944+(0.418641039327069+0.0108314685905944)/(1+(Percentage RE/0.655354229966797)46.55496950478492)

Predictions and residuals:

Observations Percentage RE Coal Pred|Coal) Residuals
0Obs1 0.133 0.330 0419 -0.089
0Obs2 0.300 0.492 0416 0.076
0Obs3 0.400 0.429 0.402 0.027
Obs4 0.500 0.344 0.356 -0.012
0Obs5 0.600 0.257 0.264 -0.008
0Obs6 0.700 0.165 0.158 0.007
Obs? 0.800 0.087 0.081 0.006
0Obs8 0.500 0.029 0.037 -0.008
Nonlinear regression (Coal) Pred(Coal) / Coal Residuals
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Figure 63. Coal power regression data part 3.
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| Relationship between Percen

Logistic Regression

XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:56:00 PM / End time: 7/24/16 at 2:56:26 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'ISE$39:5E547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xisx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:58547 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

of Natural Gas (Output) and RE % (In|

Variable Observations  Dbs. with missing ithout missing Minimum Mean Std. deviation
Natural Gas 8 0 8 0.019 0.330 0.079 0.104
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Natural Gas:
Goodness of fit statistics:
Observations 8.000
DF 5.000
R? 0.986
SSE 0.002
MSE 0.000
RMSE 0.019
|terations 200.000
Model parameters:
Parameter Value Standard error
prl -4.077 117.331
pr2 -6.201 2738
pr3 44,040 5114.057
Equation of the model:
Natural Gas = 44.0402884259064/(1+Exp(+4.07704328469205+6.20072613333372* Percentage RE))
Predictions and residuals:
Observations Percentage RE Natural Gas 'red(Natural Ga¢ Residuals
Obs1 0.133 0.330 0.325 0.005
0Obs2 0.300 0.097 0.116 -0.019
0bs3 0.400 0.059 0.062 -0.004
Obs4 0.500 0.042 0.034 0.008
0Obs5 0.600 0.034 0.018 0.015
0Obs6 0.700 0.028 0.010 0.018
Obs? 0.800 0.026 0.005 0.020
0Obs8 0.500 0.019 0.003 0.016
Nonlinear regression (Natural Gas) Pred(Natural Gas) / Natural Gas Residuals
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Figure 64. Natural gas regression data part 1.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:57:14 PM / End time: 7/24/16 at 2:57:42 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'ISE$39:SE$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58347 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pri+(prd-pr1)/(1+(X1/pr3)*pr2)
Run again:

Summary statistics:

Variable Observations  Jbs. with missing missing Minimum M: Mean Std. deviation
Natural Gas 8 0 8 0.019 0330 0.079 0.104
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Natural Gas:
Goodness of fit statistics:
Observations 8.000
DF 4,000
R? 1.000
SSE 0.000
MSE 0.000
RMSE 0.002
Iterations 34.000
Model parameters:
Parameter Value Standard error
prl 0.013 0.004
pr2 2184 0.287
pr3 0117 0.034
prd 0.752 0.257
Equation of the model:
Natural Gas = 0.0127145491628474+(0.751880208187016-0.0127145491628474)/(1+(Percentage RE/0.116681098327899)2.18415321168018)
Predictions and residuals:
Observations Percentage RE Natural Gas 'red(Natural Ga¢ Residuals
Obs1 0133 0.330 0.330 0.000
0Obs2 0.300 0.097 0.096 0.000
0Obs3 0.400 0.059 0.060 -0.001
Obs4 0.500 0.042 0.042 0.000
0Obs5 0.600 0.034 0.033 0.001
0Obsé 0.700 0.028 0.027 0.001
Obs? 0.800 0.026 0.024 0.002
0Obs8 0.900 0.019 0.021 -0.003
Nonlinear regression (Natural Gas) Pred(Natural Gas) / Natural Gas Residuals
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Figure 65. Natural gas regression data part 2.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 2:59:55 PM / End time: 7/24/16 at 3:00:22 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'|SE$39:SE$47 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58547 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1€-05
Function: Y = pr1*Exp(pr2*X1)

Run again:
Summary statistics:
Variable Observations  Dbs. with missing missing Minimum M: Mean Std. deviation
Natural Gas 8 0 8 0.019 0.330 0.079 0.104
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Natural Gas:
Goodness of fit statistics:
Observations 8.000
DF 6.000
R? 0.986
SSE 0.002
MSE 0.000
RMSE 0.017
Iterations 5.000
Model parameters:
Parameter Value Standard error
prl 0.738 0.080
pr2 -6.164 0.595
Equation of the model:
Natural Gas = 0.737629921633168* Exp(-6.1637881008089* Percentage RE)
Predictions and residuals:
Observations Percentage RE Natural Gas ‘red(Natural Ga¢ Residuals
Obs1 0.133 0330 0.325 0.005
0Obs2 0.300 0.097 0.116 -0.020
0Obs3 0.400 0.059 0.063 -0.004
Obs4 0.500 0.042 0.034 0.008
0Obs5 0.600 0.034 0.018 0.015
0Obsé 0.700 0.028 0.010 0.018
0Obs? 0.800 0.026 0.005 0.020
0Obs8 0.900 0.019 0.003 0.016
Nonlinear regression (Natural Gas) Pred(Natural Gas) / Natural Gas Residuals
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Figure 66. Natural gas regression data part 3.
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| Relationship between Percentage of Nuclear (Output) and RE % (Input)

Logistic Regression
XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 3:02:42 PM / End time: 7/24/16 at 3:03:12 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$C$39:5C547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'I$B$39:5B$47 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pr3/(1+Exp(-pr1-pr2*X1))
Run again:

Summary statistics:

Variable Observations  Dbs. with missing i missing Minimum i Mean Std. deviation
Nuclear 8 0 8 0.047 0.200 0.106 0.043
Percentage RE 8 0 8 0.133 0.9500 0.542 0.259
Nonlinear regression of variable Nuclear:
Goodness of fit statistics:
Observations 8.000
DF 5.000
R? 0.803
SSE 0.003
MSE 0.001
RMSE 0.023
Iterations 200.000
Model parameters:
Parameter Value Standard error
prl -4.011 147.026
pr2 -1.442 2079
pr3 12.049 1742.917
Equation of the model:
Nuclear = 12.0487766514759/(1+Exp(+4.01137549791467+1.44200159269809* Percentage RE))
Predictions and residuals:
Observations Percentage RE Nuclear Pred(Nuclear) Residuals
Obs1 0133 0.200 0177 0.023
0Obs2 0.300 0.107 0.140 -0.033
0Obs3 0.400 0.106 0.121 -0.015
Obs4 0.500 0.105 0.105 0.000
0Obs5 0.600 0.101 0.091 0.010
Obsé 0.700 0.098 0.079 0.019
0Obs? 0.800 0.080 0.068 0.012
0Obs8 0.900 0.047 0.059 -0.012
Nonlinear regression (Nuclear) Pred(Nuclear) / Nuclear Residuals
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Figure 67. Nuclear power regression data part 1.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 3:06:53 PM / End time: 7/24/16 at 3:07:19 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$€5$39:5C547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58347 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pri+(prd-pr1)/(1+(X1/pr3)*pr2)
Run again:

Summary statistics:

Variable Observations  Dbs. with missing datawithout missing Minimum M: Mean Std. deviation
Nuclear 8 0 8 0.047 0.200 0.106 0.043
Percentage RE 8 0 8 0.133 0.500 0.542 0.259
Nonlinear regression of variable Nuclear:
Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0.882
SSE 0.002
MSE 0.000
RMSE 0.020
Iterations 200.000
Model parameters:
Parameter Value Standard error
prl 0.036. 0.437
pr2 0.806 8717
pr3 0.011 1410
prd 1.409 125.108
Equation of the model:
Nuclear = 0.0356485350538057+(1.40850101230925-0.0356485350538057)/(1+(Percentage RE/0.0108972033138383)40.806137691710666)
Predictions and residuals:
Observations Percentage RE Nuclear Pred(Nuclear) Residuals
Obs1 0133 0.200 0.197 0.003
0Obs2 0.300 0.107 0.124 -0.018
0Obs3 0.400 0.106 0.107 -0.001
Obs4 0.500 0.105 0.096 0.010
0bs5 0.600 0.101 0.088 0.013
Obsé 0.700 0.098 0.082 0.016
0Obs? 0.800 0.080 0.077 0.003
0Obs8 0.900 0.047 0.074 -0.026
Nonlinear regression (Nuclear) Pred(Nuclear) / Nuclear Residuals

Nuclear

Nuclear

Pred(Nuclear)

Residual
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Figure 68. Nuclear power regression data part 2.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 3:07:51 PM / End time: 7/24/16 at 3:08:20 PM
Y / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'1$€$39:5C547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58%47 / 8 rows and 1 column

Stop conditions: Iterations = 200 / Convergence = 1E-05
Function: Y = pri+pr2*X1+pr3*X1°2+pr4*X143
Run again:

Summary statistics:

Variable Observations  Dbs. with missing datawithout missing Minimum M. Mean Std. deviation
Nuclear 8 0 8 0.047 0.200 0.106 0.043
Percentage RE 8 0 8 0.133 0.900 0.542 0.259
Nonlinear regression of variable Nuclear:
Goodness of fit statistics:
Observations 8.000
DF 4.000
R? 0.986
SSE 0.000
MSE 0.000
RMSE 0.007
Model parameters:
Parameter Value Standard error
prl 0.336 0.020
pr2 -1.347 0.151
pr3 2512 0.329
prd -1.527 0.211
Equation of the model:
Nuclear = 0.335852686746938-1.34730290984766* Percentage RE+2.51159664050057*Percentage REA2-1.52656246330803* Percentage REA3
Predictions and residuals:
Observations Percentage RE Nuclear Pred(Nuclear) Residuals
Obs1 0133 0.200 0.197 0.003
0Obs2 0.300 0.107 0.116 -0.010
0Obs3 0.400 0.106 0.101 0.005
Obs4 0.500 0.105 0.099 0.006
0bsS 0.600 0.101 0.102 -0.001
0Obs6é 0.700 0.098 0.100 -0.002
Obs? 0.800 0.080 0.084 -0.004
0Obs8 0.900 0.047 0.045 0.003
Nonlinear regression (Nuclear) Pred(Nuclear) / Nuclear Residuals
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Figure 69. Nuclear power regression data part 3.
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XLSTAT 2016.04.32523 - Nonlinear regression - Start time: 7/24/16 at 3:09:15 PM / End time: 7/24/16 at 3:09:42 PM

Y / Quantitative: Workbook = Emissions Calculator V3.xisx / Sheet = General Inputs / Range = 'General Inputs'!$€5$39:5C547 / 8 rows and 1 column
X / Quantitative: Workbook = Emissions Calculator V3.xlsx / Sheet = General Inputs / Range = 'General Inputs'!$B$39:58347 / 8 rows and 1 column
Stop conditions: Iterations = 200 / Convergence = 1€-05

Function: Y = pri+pr2*X1+pr3*X172+pr4*X143+pr5*X114+pr6* X145

Run again:
Summary statistics:

Variable Observations  Dbs. with missing datawithout missing Minimum i Mean Std. deviation
Nuclear 8 0 8 0.047 0.200 0.106 0.043
Percentage RE 8 0 8 0.133 0.900 0.542 0.259

Nonlinear regression of variable Nuclear:

Goodness of fit statistics:

Observations 8.000
DF 2.000
R? 0.999
SSE 0.000
MSE 0.000
RMSE 0.003

Model parameters:

Parameter Value Standard error
prl 0.530° 0.054
pr2 -4.046 0.781
pr3 14.904 3.821
prd -26.628 8.361
prs 23.238 8422
pré -8.042 3.181

Equation of the model:

Nuclear = 0.530126673055436-4.04606950338409*Percentage RE+14.904390431296* Percentage REA2-26.6279138799482* Percentage REA3+23.2378226040966*Percentage REA4-8.04199095822162* Percentage REAS

Predictions and residuals:

Observations Percentage RE Nuclear Pred(Nuclear) Residuals
Obs1 0133 0.200 0.200 0.000
0Obs2 0.300 0.107 0.107 -0.001
0Obs3 0.400 0.106 0.105 0.001
Obsd 0.500 0.105 0.106 0.000
0bs5 0.600 0.101 0.103 -0.002
0Obsé 0.700 0.098 0.095 0.003
Obs? 0.800 0.080 0.082 -0.001
0bs8 0.9500 0.047 0.047 0.000
Nonlinear regression (Nuclear) Pred(Nuclear) / Nuclear Reslduals
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Figure 70. Nuclear power regression data part 4.
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Appendix 2

Power Plant Emissions Data by Pollutant

Table 44. Power plant emissions data for carbon dioxide.

Carbon Dioxide Emissions

Electricity Generation Type | Percentage €02 (g) CO2 per kWh CO2 per 150,000
Wind 4.9% 11 0.54 26039.15
Photovoltaic 0.5% 48 0.25 12110.53
Concentrated Solar (CSP) 0.0% 35 0.00 25.60
Hydropower 5.8% 7 0.41 19636.18
Geothermal 0.4% 58 0.23 10828.71
Biomass 1.6% 30.78 0.50 23761.81
Oil 1.0% 942.04 9.39 450619.60
Natural Gas 32.9% 444.40 146.15 7015033.69
Coal 32.9% 962.93 316.67 15200219.10
Nuclear 19.9% 10.48 2.09 100285.36

Total: 2549.64 476.22 22858559.74

Total tonnes: I

22.86]

Note: The data in the following tables is based on the current 2016 American grid and an
electric vehicle with an efficiency of 32 kWh per 100 miles. Pollutant data was collected
from GREET 2015, Klein & Whalley (2015), the National Energy Technology
Laboratory’s “Power Generation Technology Comparison from a Life Cycle Perspective”
(Skone, Littefield, Cooney, & Marriott, 2013) and the NEEDS Project’s “Final report on
technical data, costs and life cycle inventories of PV applications” (Frankl, Menichetti,
Raugei, Lombardelli, & Prennushi, 2005).

Table 45. Power plant emissions data for sulfur dioxide.

Sulfur Dioxide Emissions

Table 46. Power plant emissions data for nitrous oxide.
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Electricity Generation Type Percentage S02 (mg) SO2 per kWh SO2 per 150,000
Wind 4.5% 0.046 0.00 108.89
Photovoltaic 0.5% 0.307 0.00 77.46
Concentrated Solar (CSP) 0.0% 0.042 0.00 0.03
Hydropower 5.8% 0.035 0.00 98.18
Geothermal 0.4% 0.08 0.00 14.94
Biomass 1.6% 0.658 0.01 507.86
Oil 1.0% 3.083 0.03 1474.51
Natural Gas 32.9% 0.095 0.03 1499.84
Coal 32.9% 3.121 1.03 49269.84
Nuclear 19.9% 0.020 0.00 193.19

Total 7.49 1011 53244.74
[ Total tonnes: | 5.32E-05




NOX Emissions

Electricity Generation Type | Percentage | NOX(mg) | NOX per kWh | NOX per 150,000
Wind 4.9% 0.043 0.00 101.79
Photovoltaic 0.5% 0.178 0.00 44.91
Concentrated Solar (CSP) 0.0% 0.107 0.00 0.08
Hydropower 5.8% 0.008 0.00 22.44
Geothermal 0.4% 0.025 0.00 4.67
Biomass 1.6% 1.063 0.02 820.62
oil 1.0% 4.301 0.04 2057.43
Natural Gas 32.5% 0.413 0.14 6522.01
Coal 32.9% 1.235 0.41 19501.83
Nuclear 19.9% 0.025 0.01 242.05

Total: 7.40 0.61 29317.83

| Total tonnes: | 2.93E-05

PM2.5 Emissions

Table 47. Power plant emissions data for particulate matter 2.5.

Electricity Generation Type | Percentage PM2.5 (mg) PM2.5 per kWh | PM2.5 per 150,000
Wind 4.5% 0.008 0.00 18.94
Photovoltaic 0.5% 0.308 0.00 77.71
Concentrated Solar (CSP) 0.0% 0.017 0.00 0.01
Hydropower 5.8% 0.013 0.00 36.47
Geothermal 0.4% 0.026 0.00 4.85
Biomass 1.6% 0.612 0.01 472.42
0Oil 1.0% 0.134 0.00 63.94
Natural Gas 32.9% 0.014 0.00 214.76
Coal 32.9% 0.211 0.07 3327.73
Nuclear 19.9% 0.002 0.00 18.19

Total: 1.34 0.09 4235.02

Total tonnes: | 4.24E-06

Table 48. Power plant emissions data for volatile organic compounds.
VOC Emissions

Electricity Generation Type | Percentage | VOCs (mg) | VOCs per kWh | VOCs per 150,000
Wind 4.5% 0.00881 0.00 20.85
Photovoltaic 0.5% 0.08800 0.00 22.20
Concentrated Solar (CSP) 0.0% 0.03760 0.00 0.03
Hydropower 5.8% 0.00002 0.00 0.04
Geothermal 0.4% 0.00044 0.00 0.08
Biomass 1.6% 0.14584 0.00 115.66
Oil 1.0% 0.07418 0.00 35.49
Natural Gas 32.9% 0.07294 0.02 1151.39
Coal 32.9% 0.08682 0.03 1370.43
Nuclear 19.9% 0.00374 0.00 35.75
Total: 0.52239 0.05733 2751.93

| Total tonnes: | 2.75E-06
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Appendix 3

Vehicle Production-based Emissions

Table 49. Production based emissions for electric vehicles.

EV Components Emissions 2016 Grid WTP No Carbon Grid WTP  WTP % from Grid
Co2 40028.68995 26654.39259 33%
S02 224.763812 195.2109832 13%
NOX 52.64059036 36.37567004 31%
PM 10.84568612 8.560861129 21%
VOCs 34.55493882 33.04337142 4%
EV ADR Emissions 2016 Grid WTP No Carbon Grid WTP  WTP % from Grid
€02 6537.845746 2317.85766 65%
S02 9.729011354 0.404216036 96%
NOX 8.006783053 2.874717517 64%
PM 1.059578648 0.338648497 68%
VOCs 11.5966005 11.11965607 4%
EV Battery Emissions 2016 Grid WTP No Carbon Grid WTP  WTP % from Grid
Co2 6553.95291 4756.561506 27%
S02 58.11453549 54.14288752 7%
NOX 11.85678056 9.670914141 18%
PM 3.203462814 2.856401836 10%
VOCs 2.266231051 2.063089314 9%

Note: This table displays the total emissions (from a vehicle built using the 2016 grid)
and the emissions from a vehicle built using a zero-emissions grid (values were taken
from GREET 2015). A comparison of these values was used to determine the percentage
of emissions that are actually derived from the grid. Emissions for components, ADR
(assembly, disposal, and recycling) and batteries were all looked at.
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Table 50. Production based emissions data for internal combustion engine vehicles.

ICE Components Emissions 2016 Grid WTP No Carbon Grid WTP WTP % from Grid
€02 30164.17626 20548.64916 32%
S02 137.9043955 116.6572212 15%
NOX 39.22650924 27.53315233 30%
PM 8.468783324 6.826095411 19%
VOCs 27.92582149 26.83907152 4%

ICE ADR Emissions 2016 Grid WTP No Carbon Grid WTP WTP % from Grid
€02 6537.845746 2317.85766 65%
S02 9.729011354 0.404216036 96%
NOX 8.006783053 2.874717517 64%
PM 1.059578648 0.338648497 68%
VOCs 11.5966005 11.11965607 4%

ICE Battery Emissions 2016 Grid WTP No Carbon Grid WTP WTP % from Grid
€02 249.8826829 155.3394028 38%
S02 4.087483605 3.878573836 5%
NOX 0.401553751 0.286576575 29%
PM 0.17994738 0.163795889 9%
VOCs 0.159229269 0.148543957 7%

Note: This table displays the total emissions (from a vehicle built using the 2016 grid)
and the emissions from a vehicle built using a zero-emissions grid (values were taken
from GREET 2015). A comparison of these values was used to determine the percentage
of emissions that are actually derived from the grid. Emissions for components, ADR
(assembly, disposal, and recycling) and batteries were all looked at.

Table 51. Production based emissions comparison data.

Total Emissions EV Emissions ICE Emissions
Cco2 53120.48861 36951.90469
S02 292.6073589 151.7208905
NOX 72.50415397 47.63524604
PM 15.10872758 9.708309352
VOCs 48.41777038 39.68165126
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Social Cost of Carbon Meta-Analysis

Ancillary Appendix 1

Table 52. Social cost of carbon meta-analysis data.

Name SCC $/ton Median
Value
Nordhaus (1982) 1985.0 Nordhaus (1982) 1134.3
Nordhaus (1982) 283.6
Ayres & Walter (1991) 450.8 Ayres & Walter (1991)
Nordhaus (1991) 914.6 Nordhaus (1991) 101.7
Nordhaus (1991) 457.3
Nordhaus (1991) 114.3
Nordhaus (1991) 203.2
Nordhaus (1991) 101.7
Nordhaus (1991) 25.4
Nordhaus (1991) 33.8
Nordhaus (1991) 16.9
Nordhaus (1991) 43
Cline (1992) 245.5 Cline (1992)
Haraden (1992) 72.6 Haraden (1992)
Hohmeyer & Gaertner (1992) 6383.0
Penner et al. (1992) 65.0 Penner et al. (1992)
Haraden (1993) 7.2 Haraden (1993) 11.6
Haraden (1993) 11.6
Haraden (1993) 34.2
Nordhaus (1993) 18.9 Nordhaus (1993)
Parry (1993) 0.0 Parry (1993) 1.5
Parry (1993) 0.2
Parry (1993) 0.0
Parry (1993) 0.2
Parry (1993) 0.1
Parry (1993) 0.5
Parry (1993) 0.1
Parry (1993) 0.8
Parry (1993) 0.3
Parry (1993) 2.0
Parry (1993) 0.1
Parry (1993) 0.3
Parry (1993) 0.1
Parry (1993) 0.5
Parry (1993) 0.1
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Parry (1993) 0.8
Parry (1993) 0.3
Parry (1993) 1.6
Parry (1993) 0.7
Parry (1993) 4.2
Parry (1993) 0.1
Parry (1993) 0.4
Parry (1993) 0.1
Parry (1993) 0.5
Parry (1993) 0.2
Parry (1993) 1.1
Parry (1993) 0.3
Parry (1993) 2.0
Parry (1993) 0.9
Parry (1993) 52
Parry (1993) 0.3
Parry (1993) 1.6
Parry (1993) 0.4
Parry (1993) 23
Parry (1993) 0.8
Parry (1993) 4.7
Parry (1993) 1.5
Parry (1993) 8.9
Parry (1993) 3.9
Parry (1993) 234
Parry (1993) 1.2
Parry (1993) 7.0
Parry (1993) 1.8
Parry (1993) 10.6
Parry (1993) 3.5
Parry (1993) 20.9
Parry (1993) 7.1
Parry (1993) 39.9
Parry (1993) 17.3
Parry (1993) 104.0
Parry (1993) 115.9
Parry (1993) 695.8
Parry (1993) 174.3
Parry (1993) 1045.4
Parry (1993) 348.3
Parry (1993) 2089.3
Parry (1993) 664.1
Parry (1993) 3984.3
Parry (1993) 1732.8
Parry (1993) 10396.7
Peck & Teisberg (1993) 11.1 Peck & Teisberg (1993) 24.5
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Peck & Teisberg (1993)
Peck & Teisberg (1993)
Peck & Teisberg (1993)
Peck & Teisberg (1993)
Peck & Teisberg (1993)
Peck & Teisberg (1993)
Reilly & Richards (1993)
Reilly & Richards (1993)
Reilly & Richards (1993)
Reilly & Richards (1993)
Reilly & Richards (1993)
Reilly & Richards (1993)
Reilly & Richards (1993)
Reilly & Richards (1993)
Azar (1994)

Azar (1994)

Azar (1994)

Fankhauser (1994)
Nordhaus (1994)
Maddison (1995)
Schauer (1995)

Schauer (1995)

Azar & Sterner (1996)
Azar & Sterner (1996)
Azar & Sterner (1996)
Azar & Sterner (1996)

242
24.5
254
242
245
3.8
6.1
133
11.9
21.2
21.3
19.3
253
242
248
24.8
24.9
64.0
44.0
36.1
57.6
27.5
27.9
314
14.0
49.9
51.3
76.3
184.2
157.9
29.0
50.0
67.1
80.3
179.4
717.8
1794.5
46.6
17.2
43.0
6.3
192.1
305.1
717.8
269.2
502.5

Reilly & Richards (1993) 71.7
Azar (1994) 717.8
Fankhauser (1994)

Nordhaus (1994)

Maddison (1995)

Schauer (1995) 99.2

Azar & Sterner (1996) 323.01
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Azar & Sterner (1996)
Azar & Sterner (1996)
Azar & Sterner (1996)
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Azar & Sterner (1996)
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Azar & Sterner (1996)
Azar & Sterner (1996)
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Hohmeyer (1996)

Hope & Maul (1996)
Hope & Maul (1996)
Hope & Maul (1996)
Hope & Maul (1996)
Hope & Maul (1996)
Hope & Maul (1996)
Nordhaus & Yang (1996)
Plambeck & Hope (1996)
Plambeck & Hope (1996)
Plambeck & Hope (1996)
Plambeck & Hope (1996)
Plambeck & Hope (1996)
Plambeck & Hope (1996)
Plambeck & Hope (1996)
Plambeck & Hope (1996)
Cline (1997)

Nordhaus & Popp (1997)
Nordhaus & Popp (1997)
Eyre et al. (1999)

Eyre et al. (1999)

Eyre et al. (1999)

Eyre et al. (1999)

Roughgarden & Schneider (1999)

Tol (1999)
Tol (1999)
Tol (1999)
Tol (1999)
Tol (1999)
Tol (1999)
Tol (1999)
Tol (1999)

114.8
118.4
46.7
46.7
933.1
2117.5
825.5
1471.5
341.0
351.7
140.0
140.0
164.6
56.3
2463.3
25.1
86.1
323
68.2
17.9
104.1
15.0
10.8
17.9
28.7
28.7
75.4
165.1
1579.2
114.8
231.7
30.8
13.0
448.9
184.9
422.5
195.4
70.4
158.6
140.5
52.1
149.5
147.3
126.9
917.6
550.5

Downing et al. (1996)

Hohmeyer (1996)
Hope & Maul (1996)

Nordhaus & Yang (1996)
Plambeck & Hope (1996)

Cline (1997)
Nordhaus & Popp (1997)

Eyre et al. (1999)

Tol (1999)
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50.2

52.04

21.9

308.9
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Tol (1999) 321.7
Tol (1999) 815.6
Tol (1999) 788.4
Tol (1999) 652.5
Tol (1999) 475.8
Tol (1999) 389.7
Tol (1999) 165.4
Tol (1999) 435.0
Tol (1999) 423.7
Tol (1999) 353.4
Tol (1999) 65.7
Tol (1999) 58.9
Tol (1999) 20.4
Tol (1999) 63.4
Tol (1999) 63.4
Tol (1999) 56.6
Tol (1999) 13.6
Tol (1999) 13.6
Tol (1999) 4.5
Tol (1999) 13.6
Tol (1999) 13.6
Tol (1999) 13.6
Nordhaus & Boyer (2000) 21.2  Nordhaus & Boyer (2000)
Tol & Downing (2001) 68.9 Tol & Downing (2001) 39.7
Tol & Downing (2001) 9.2
Tol & Downing (2001) 120.9
Tol & Downing (2001) 10.6
Clarkson & Deyes (2002) 203.5 Clarkson & Deyes (2002)
Newell & Pizer (2003) 16.0 Newell & Pizer (2003) 18.2
Newell & Pizer (2003) 29.1
Newell & Pizer (2003) 18.2
Newell & Pizer (2003) 60.5
Newell & Pizer (2003) 94.2
Newell & Pizer (2003) 64.9
Newell & Pizer (2003) 4.1
Newell & Pizer (2003) 8.0
Newell & Pizer (2003) 5.0
Pearce (2003) 51.8 Pearce (2003)
Uzawa (2003) 322.2 Uzawa (2003)
Cline (2004) 394.1 Cline (2004) 110.5
Cline (2004) 1019.9
Cline (2004) 72.5
Cline (2004) 110.5
Cline (2004) 553
Cline (2004) 31.9
Cline (2004) 416.3

147



Cline (2004)

Cline (2004)
Hohmeyer (2004)
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Link & Tol (2004)
Link & Tol (2004)
Link & Tol (2004)
Link & Tol (2004)
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Link & Tol (2004)
Link & Tol (2004)
Link & Tol (2004)
Link & Tol (2004)
Link & Tol (2004)
Manne (2004)
Manne (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)
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Mendelsohn (2004)
Mendelsohn (2004)
Mendelsohn (2004)

170.7
88.4
114.8
2117.5
179.0
385.2
57.1
213.2
11.6
102.2
171.3
380.2
553
212.1
11.3
102.0
601.5
24.1
4.0
131.4
24.9
-5.2
40.8
122.3
24.9
-5.7
38.5
122.3
29.5
-0.2
453
122.3
22.7
-5.7
38.5
124.6
24.9
-5.7
40.8
131.4
27.2
-5.2
40.8
165.4
36.3
-3.6

Hohmeyer (2004)

Link & Tol (2004)

Manne (2004)

Mendelsohn (2004)
Mendelsohn (2004)
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136.7
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Mendelsohn (2004) 54.4
Mendelsohn (2004) 213.0
Mendelsohn (2004) 47.6
Mendelsohn (2004) -1.7
Mendelsohn (2004) 68.0
Mendelsohn (2004) 747.7
Mendelsohn (2004) 201.6
Mendelsohn (2004) 38.5
Mendelsohn (2004) 226.6
Mendelsohn (2004) 3398.5
Mendelsohn (2004) 815.6
Mendelsohn (2004) 169.9
Mendelsohn (2004) 611.7
Mendelsohn (2004) 5437.5
Mendelsohn (2004) 1314.1
Mendelsohn (2004) 271.9
Mendelsohn (2004) 815.6
Downing et al. (2005) 101.8 Downing et al. (2005)

Hope (2005b) 86.2 Hope (2005b) 72.2
Hope (2005b) 70.2
Hope (2005b) 62.2
Hope (2005b) 92.2
Hope (2005b) 74.2
Hope (2005b) 64.2

Hope (2005a) 42.1 Hope (2005a)

Tol (2005) 38.7 Tol (2005) 10.1
Tol (2005) 31.3
Tol (2005) 7.4
Tol (2005) 12.8
Tol (2005) -12.8
Tol (2005) -1.0

Guo et al. (2006) 131.4  Guo et al. (2006) 37.4
Guo et al. (2006) 24.9
Guo et al. (2006) -5.2
Guo et al. (2006) 40.8
Guo et al. (2006) 15.0
Guo et al. (2006) 199.4
Guo et al. (2006) 4.8
Guo et al. (2006) 199.4
Guo et al. (2006) 4.8
Guo et al. (2006) 419.1
Guo et al. (2006) 65.7
Guo et al. (2006) -2.9
Guo et al. (2006) 192.6
Guo et al. (2006) 34.0
Guo et al. (2006) -4.8
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182.5
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324
183.8
220.6
28.1
26.1
26.1
26.1
24.1
32.1
116.3
156.4
130.3
50.1
138.4
124.3
411.1
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1634.2
42.6
46.8
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42.4
83.9
14.7
-9.8
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43.9
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21.8
116.4
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5.8
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Ackerman & Stanton (2012)
Ackerman & Stanton (2012)
Ackerman & Stanton (2012)
Ackerman & Stanton (2012)
Ackerman & Stanton (2012)
Botzen & van den Bergh (2012)
Botzen & van den Bergh (2012)
Caietal (2012)

Caietal (2012)

Espagne et al. (2012)
Espagne et al. (2012)

2614.7
2035.8
502.2
260.2
45.2
241.1
280.4
280.4
265.7
236.2
246.0
246.0
246.0
285.4
280.4
270.6
42.0
73.4
36.7
15.7
94.4
267.6
1.6
131.2
10.5
15.7
42.0
63.0
42.0
27.9
77.3
85.8
530.4
125.8
1083.2
278.7
1847.3
346.1
2000.1
431.5
46.8
47.3
35.7
45.8
87.5
787.3
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Waldhoff et al. (2011)

Ackerman & Munitz (2012)

Ackerman & Stanton (2012)
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786.5
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-6.3
651.7
314.6

4.5
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525.4
480.4
690.5
360.3
705.5
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300.2
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195.1
390.3
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135.1
105.1
150.1
120.1
660.5
690.5
600.4
1140.8
810.6
1666.2
480.4
690.5
660.5
1005.7
300.2
210.2
450.3
285.2
150.1
120.1
150.1
150.1
855.6
915.7
750.5
1921.4
1921.4
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855.6
1411.0
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180.1
225.2
450.3
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Kopp et al. (2012)
Kopp et al. (2012)
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690.5
330.2
870.6
360.3
450.3
450.3
510.4
165.1
135.1
225.2
105.1
90.1
75.1
105.1
75.1
525.4
540.4
480.4
915.7
525.4
1366.0
390.3
525.4
525.4
585.4
195.1
135.1
270.2
150.1
105.1
90.1
105.1
90.1
585.4
585.4
525.4
1080.8
720.5
1831.3
420.3
585.4
585.4
660.5
210.2
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Kopp etal. (2012) 195.1
Kopp etal. (2012) 120.1
Kopp etal. (2012) 90.1
Kopp etal. (2012) 120.1
Kopp et al. (2012) 120.1
Kopp etal. (2012) 720.5
Kopp etal. (2012) 735.5
Kopp etal. (2012) 630.5
Kopp etal. (2012) 1621.2
Kopp etal. (2012) 1621.2
Kopp etal. (2012) 34225
Kopp etal. (2012) 480.4
Kopp etal. (2012) 720.5
Kopp etal. (2012) 720.5
Kopp etal. (2012) 825.6
Kopp etal. (2012) 255.2
Kopp etal. (2012) 165.1
Kopp etal. (2012) 390.3
Kopp etal. (2012) 390.3
Kopp et al. (2012) 150.1
Kopp etal. (2012) 105.1
Kopp etal. (2012) 135.1
Kopp et al. (2012) 180.1
Marten & Newbold (2012) 424 Marten & Newbold (2012) 142.6769813
Marten & Newbold (2012) 142.7
Marten & Newbold (2012) 223.7
Perrissin-Fabert et al. (2012) 51.3
Tol (2012) 48.4 Tol (2012)
Anthoff & Tol (2013) 535.2  Anthoff & Tol (2013) 73.54382152
Anthoff & Tol (2013) 209.7
Anthoff & Tol (2013) 88.8
Anthoff & Tol (2013) 147.6
Anthoff & Tol (2013) 64.6
Anthoff & Tol (2013) 73.5
Anthoff & Tol (2013) 470.6
Anthoff & Tol (2013) 29.0
Anthoff & Tol (2013) 143
Anthoff & Tol (2013) 5.5
Anthoff & Tol (2013) 1.0
van den Bijgaart et al. (2013) 233.6 van den Bijgaart et al. (2013) 28.4
van den Bijgaart et al. (2013) 38.8
van den Bijgaart et al. (2013) 18.2
van den Bijgaart et al. (2013) 10.9
Caietal. (2013) 171.9 Caietal. (2013) 286.5
Caietal. (2013) 286.6
Caietal. (2013) 552.7
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Dennig (2013)

Foley et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)
Greenstone et al. (2013)

126.2 Dennig (2013)
246.3 Foley et al. (2013)
48.5 Greenstone et al. (2013)
33.7
44.0
38.7
36.9
37.3
23.4
324
28.8
24.7
-5.8
-1.3
-8.5
-2.7
-12.1
160.9
98.9
133.9
129.4
111.9
177.5
100.2
136.2
142.9
114.2
36.9
36.0
16.2
45.8
-0.9
243.6
142.0
195.5
199.6
168.1
294.4
155.5
221.1
2459
192.8
86.7
66.5
39.6
99.8
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Greenstone et al. (2013) 22.0
Greenstone et al. (2013) 91.8
Greenstone et al. (2013) 148.1
Hwang et al. (2013) 48.5 Hwang et al. (2013) 71.3
Hwang et al. (2013) 51.6
Hwang et al. (2013) 63.7
Hwang et al. (2013) 81.9
Hwang et al. (2013) 479.3
Hwang et al. (2013) 2154
Hwang et al. (2013) 122.9
Hwang et al. (2013) 78.9
Hwang et al. (2013) 109.2
Hwang et al. (2013) 48.5
Hwang et al. (2013) 28.8
Hwang et al. (2013) 21.2
Jensen & Traeger (2014b) 46.0 Jensen & Traeger (2014b)
Lintunen & Vilmi (2013) 116.6 Lintunen & Vilmi (2013)
Moyer et al. (2013) 71.9 Moyer et al. (2013) 507.9
Moyer et al. (2013) 943.9
Newbold et al. (2013) 61.4 Newbold et al. (2013) 61.2
Newbold et al. (2013) 17.4
Newbold et al. (2013) 61.2
Nordhaus & Sztorc (2014) 80.2 Nordhaus & Sztorc (2014)
Tol (2013) 0.1 Tol (2013) 0.9
Tol (2013) 0.0
Tol (2013) 0.7
Tol (2013) -0.5
Tol (2013) 0.4
Tol (2013) -0.2
Tol (2013) 1.1
Tol (2013) 21.4
Tol (2013) 4.8
Tol (2013) 95.8
Tol (2013) 1.3
Tol (2013) 203.0
Tol (2013) 0.2
Tol (2013) 250.0
Weitzman (2013) 4.5 Weitzman (2013) 346.1
Weitzman (2013) 22,5
Weitzman (2013) 94.4
Weitzman (2013) 157.3
Weitzman (2013) 278.7
Weitzman (2013) 548.3
Weitzman (2013) 1195.6
Weitzman (2013) 1195.6
Weitzman (2013) 1024.8
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Weitzman (2013) 822.5
Weitzman (2013) 629.2
Weitzman (2013) 413.5
Weitzman (2013) 202.3
Weitzman (2013) 4.5

Golosov et al. (2014) 58.6  Golosov et al. (2014) 227.8
Golosov et al. (2014) 511.2
Golosov et al. (2014) 26.1
Golosov et al. (2014) 504.0
Golosov et al. (2014) 227.8
Golosov et al. (2014) 4393.7
Golosov et al. (2014) 33.0

Howarth et al. (2014) 47.7 Howarth et al. (2014) 128.8
Howarth et al. (2014) 210.0

Jensen & Traeger (2014a) 37.2 Jensen & Traeger (2014a) 53.7
Jensen & Traeger (2014a) 45.7
Jensen & Traeger (2014a) 47.8
Jensen & Traeger (2014a) 90.3
Jensen & Traeger (2014a) 75.5
Jensen & Traeger (2014a) 59.5

Lemoine & Traeger (2014) 40.9 Lemoine & Traeger (2014) 49.1
Lemoine & Traeger (2014) 49.1
Lemoine & Traeger (2014) 49.1
Lemoine & Traeger (2014) 61.4
Lemoine & Traeger (2014) 57.3

Newbold & Marten (2014) 49.1 Newbold & Marten (2014)

Pycroft et al. (2014) 236.2 Pycroft et al. (2014) 292.8
Pycroft et al. (2014) 285.4
Pycroft et al. (2014) 280.4
Pycroft et al. (2014) 270.6
Pycroft et al. (2014) 300.1
Pycroft et al. (2014) 339.5
Pycroft et al. (2014) 334.6
Pycroft et al. (2014) 324.7

Rezai & van der Ploeg (2014) 87.4 99.07284383 110.7

Rezai & van der Ploeg (2014) 110.7

Note: The data for the following table was taken from the meta-analysis by Havranek et
al. (2015) The median value from each study was the only value that was used, as I did
not want to give extra weight to studies that included a greater number of estimates. Each
median value was multiplied by the Bureau of Labor Statistics’ value of 1.11 to convert
the 2010 dollars into 2016 dollars.
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Ancillary Appendix 2

Alternate Battery Production Data

Table 53. Cradle to gate emissions data for an electric vehicle’s battery.

Table S1: Detailed Cradle-to-gate emissions from Focus BEV battery

Functional unit 1 kWh battery 1 kg battery

GHG (kg GHG (kg
Pollutant €Oy eq.) VOC(g) | CO(g) | NO«(g) |PM(g) |SO(g) O eq) VOC (g) | CO(g) | NOx(g) | PM(g) | SO (g)
Cell materials 27 43 102 96 62 845 2.2 3.4 8.2 7.7 4.9 67.6
cell . 63 10 17 182 12 185 5.0 0.8 13 14.6 1.0 14.8
manufacturing
Enclosure 25 24 185 57 80 86 2.0 1.9 14.8 4.5 6.4 6.8
Thermal 59 15 39 1 1 2 05 01 3.2 0.9 09 |17
Management
Electrical System | 0.5 1.2 2.1 5.9 6.0 27 0.04 0.1 0.2 0.5 0.5 2.2
BMS 13 1.6 5.3 15 5.0 25 1.0 0.1 0.4 1.2 0.4 2.0
Pack " 1.7 0.2 0.7 3.2 15 8.8 0.1 0.02 0.1 0.3 0.1 0.7
manufacturing
Transportation 4.1 6.5 9.2 34 33 18 0.3 0.5 0.7 2.7 0.3 1.5
Total 141 87 360 404 181 1282 11.3 7.0 28.8 323 14.5 97.4

Note: The following table was taken from the supporting information for the paper
“Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-lon Battery: A

Comparative Analysis,” by Kim et al. These tables detail the cradle-to-gate emissions for
lithium ion batteries.

Table 54. Greenhouse gas emissions meta-analysis for an electric vehicle’s battery.

Table S2: Comparison of GHG emissions estimates across studies

Reference Battery |Mass (kg) Total |Specific energy |GHG emissions (primary energy) from |GHG emissions from cradle-to-gate
type energy |(kWh/kg) cradle-to-gate of battery of cell
(kwh) kg CO,-eq./kg battery |kg CO,-eq./kWh |kg CO.-eq./kg cell |kg CO-eq./kWh
(MJ,/kg battery) battery cell
Battery |Cell Battery |Cell  |Materials|Cell /pack |Materials|Cell Materials|Cell Materials|Cell
Vparts  |mfg. /parts  |/pack |/parts |mfg. /parts  [mfg.
mfg.
Notter et al. LMO 300 240 342 |0.114 |0.14 |58 0.16 (2.4) | 51 1.4 55 0.13 39 0.88
(2010)*
Dunn et al. LMo 210 190° 28 0.13 015 |49 0.27 (3.9) |37 21 a8 03 33 2.0
(2012)%*; GREET
(2015)°
EPA (2013)" LMO na 80%" of | na 0.08- |0.1- 6.2 0.18(2.9) | 62 18 63 0.22 50 18
battery 0.1 0.125
Majeau-Bettez | NCM | 214 171 24 0.112 | 0.14 | 16.0 6.0 (80- 143 54 15.1 75 108 54
et al. (2011)°; 105)°
Hawkins et al.
(2013)°
EPA (2013)* NCM [ na [80%" of | na 0.08- [0.1- 8.7 3.4(62.1) |87 34 9.4 o 76 o
battery 0.1 0.125
Ellingsen etal. | NCM | 253 152 26.6 |0.11 017 |6.9 911.3 (180); | 65 108; | 5.7 18.7; |33 107;
(2014)” ©18.5 (300); 176; 30.6; 175;
‘44.5 (730) 425 73.9 424
This study LMo 303 168 24 0.08 014 [6.1 5.2(120) |76 65 4.0 9.1 28 64
/NCM

* estimated based on materials breakdown; ” average value of the range in EPA (2013); © estimated from the direct energy inputs in Ellingsen et
al. (2014)7, 371-473 MJ/kWh, based on an electric and fossil energy share of 51.7% and 48.3% respectively and a primary energy to electricity
conversion factor of 0.35 as in Majeau-Bettez et al. (2011)°%; ¢ lower bound value; © asymptotic value; "average value’

Note: The following table was taken from the supporting information for the paper
“Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-lon Battery: A

Comparative Analysis,” by Kim et al. These tables detail the cradle-to-gate emissions for
lithium ion batteries
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Ancillary Appendix 3

Carbon Emissions and Battery Capacity

The data in the following figures describe the relationship between an electric
vehicle’s battery capacity (in kWh) and the total tons of CO2 that can be assigned to the
vehicle. The blue line describes the CO2 emissions from an electric vehicle with a
standard life-cycle, while the red line is used to depict the CO2 emissions for an electric
vehicle that needs one battery replacement. These scenarios are then compared to an ICE
vehicle with an efficiency of 25.4 miles per gallon (purple dashed line) and 20 miles per
gallon (green dashed line). In total, there are five figures, each detailing a different RE%
scenario: 13.3% (2016 grid), 20%, 50%, 80%, and 100% RE. The battery emissions data

for these figures was taken from Kim et al. and entered into my model.

Carbon Dioxide Emissions per kWh of Battery Capacity (13.3% RE)

———No Replacement === (OneBattery Replacement CE Vehicleat 254 mpg = * =ICE Vehicle at 40.0 mpg

Figure 71. Carbon dioxide emission per kWh for a grid with 13.3% renewable energy.
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Carbon Dioxide Emissions per kWh of Battery Capacity (20% RE)
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Figure 72. Carbon dioxide emission per kWh for a grid with 20% renewable energy.

Carbon Dioxide Emissions per kWh of Battery Capacity (50% RE)
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Figure 73. Carbon dioxide emission per kWh for a grid with 50% renewable energy.
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Carbon Dioxide Emissions per kWh of Battery Capacity (80% RE)
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———No Replacerment ======(neBattery Replacement = = ICE Vehicleat 254 mpg = * =ICE Vehicle at 40.0 mpg

Figure 74. Carbon dioxide emission per kWh for a grid with 80% renewable energy.

Carbon Dioxide Emissions per kWh of Battery Capacity (100% RE)
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Figure 75. Carbon dioxide emission per kWh for a grid with 100% renewable energy.
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Ancillary Appendix 4

Sample EV Emissions Data
It is possible to use the per kWh battery emissions data from Kim et al. to model
the life-cycle CO2 emissions for electric vehicles that are currently on the market. This

data is displayed in the figure and table below.

Table 54. Carbon emissions data by electric vehicle.

Car Model kWh per  Operating kWh Production Total Total Co2 with
100 mi CO2 Battery CO2 co2 Replacement

2016 BMW i3 27 19.29 23 10.23 29.51 32.76

2017 Chevrolet 28 20.00 60 15.44 35.45 43.91
Bolt

2016 Nissan 30 21.43 30 11.21 32.64 36.87
Leaf

2016 Tesla 32 22.86 90 19.67 42.53 55.22
Model S 90D

Vehicle Specific Life-Cycle Carbon Dioxide Emisisons

35
30
25
15
10

5

PO
<

CO2 Emissions {Tonnes)
~N
o

2016 BMW i3 2017 Chewrolet Bolt 2016 Nissan Leaf 2016 Tesha Maode S
90D
Vehicle
M cage Emissions M Production Emissions

Figure 76. Carbon emissions data by electric vehicle.
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Ancillary Appendix 5

EIA Power Plant Projections

Table 55. EIA power plant projections.

O | WodGs | 0 | huoGV | hdoow | Gewnd |  boms | Ouend [ oW ] W | T | pocotushewmate]
2014 1581.546509 1128,669922, 30069641 197067993 262254181 15877 41734681, 252398 14992 180885008 406162333 0129078531,
015 1354901123 1348.267334 26836992 797.686523 548114 16675781 31730382 585_ 1881949 187539871, 4030248048 0.12434419
2016)  1356.836426 ms.zms_ 2428495 181334595, 254966125 17.164848 2.04133) w.§§_ 8081173 13301514 041870244 (135863265
017 Hgm.zas_ mz,%ms_ 2897411 186.220331) 211444641 17.248056, 3049152 gsg_ 4420918 231140839 4094489558 (.146179069
18]  1386.101318 ms,mzms_ 21240395 T11425903 28064794 16967447 3713007 A4434896] 47.578037 251332031 4107.292516 (155752289
Nse_ 1387.015137 sa.mgﬁ_ 15100471 71034552 22913572 188842689 39173759 A457641) 47791279 303931396 4145.23299) 0.170608488
2020]  1388.029053 ss.»saw_ 14876619 111491516 WL1317) 21482309 39730753 4487856 47.806011) 364458893 4152284793 (185608064
021 1346.798218 :S,sx_w_ 14560392 787106323 292741528 23868671 393193 4503494 64461746 “s_sgz_ 4167.668489 0.205289875
0N :3.528_ 1195.445068 #2011 789090454 292764903 62191 4042681, 4516656] 88071999 5.333_ s&.mﬂw_ (214572456
003 1272.746704 PLLYENIER 13968439 789090454 292785095 28620718 4350971 453066] 102323143 449760498 ss.Eg__ 0217047362,
0] 12229114 1326.68103) 13628058 789.090454) 293459045 30774544 45095215 4.540166] 105.242027) 449859985, 4280662698 0207015707
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2028]  1049,640015 1597873535 11933494 789.091431 29390097 38899796 4898263 4592618) 125,040329] 451618341 411573165 (218297341
~§_ 1004.679504 1661.86377) :.awgm_ 789090454 2420790 40742054 4964468 gmﬁ_ 132658829 452564117 4416985 (219380241
2030 3.%8_ 1702086548 :_wmmg_ 789090454 294236572 42.69356 50442016 %:R_ 143463638]  453.10318 4463.166408 021395443
2031 em.sgs_ 1703.99646, :.8@5_ 789090454 294391022 44209431, 4860225 ;swa_ 162731125 453.558563) 5325_ 024721031
203 3285_ 1704794067 s.sss_ 789.090454) 294410767 410378402 48529019 “.asgw_ 188673219 4541777134 4520,674041) 0.229498748
033) 97055604 172684951 10728304 789090454 294514801 48296776 50578746 4677608] 207.92226) 454651611 4558841751 0232655974
2034)  965.124817) 1753.181885 10573342 789.090454) §.m§$_ 50512138 s,§sm_ 4689234 226932312 455149536, 459849617 0234913103
035 962430373 176843335 1043624 789090454 2947948, 51375534 3&28_ 4,708985] 256.249695 E_ggﬁ_ 4642726517 .3958639%
2036) 951586792 1812.692749 10.243569 789.090454) 2951295 52.35133] $.E§_ 4717085 26594751 §.§§_ 4687.218648 .239716806
037) 49224548 1823958008 s.§§_ 789.090454) 295735413 53.133995 51417056 A738864] 296.229828 §_~s§_ “E.zsw_ 0.245521243
2038 9379198 1868339355 pasE_ 789.090454 29593159 54188412 52951507 4.76489] 308647034 5.383_ zz.mswg_ (246531837
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//lwww.eia.gov/forecasts/aeo/

http:

Data was taken from:

Note
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Table 56. Renewable energy projected percentages.

Year RE %
2014 12.91%
2015 12.49%
2016 13.59%
2017 14.62%
2018 15.58%
2019 17.06%
2020 18.56%
2021 20.53%
2022 21.46%
2023 21.70%
2024 21.70%
2025 21.68%
2026 21.61%
2027 21.67%
2028 21.83%
2029 21.94%
2030 22.14%
2031 22.47%
2032 22.95%
2033 23.27%
2034 23.50%
2035 23.96%
2036 23.97%
2037 24.55%
2038 24.65%
2039 24.75%

2040 25.11%
Note: I summed the EIA projection data for each source of renewable energy, which
facilitated the creation of the per-year renewable energy percentage table above.
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Ancillary Appendix 6

EIA Projections for Gasoline Consumption

Table 57. EIA transportation projection data.
Year Gallons (Millions)

2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040

134092.5984
134684.5051
133949.5849
132504.0272
130635.8521
128144.5124
125547.3498
122818.8858
120151.2512
117419.0312
114836.8001
112470.6452
110418.3875
108563.8254
106933.2193
105460.2056
104153.8903

102983.966
101999.8873
101192.1189
100555.8166
100050.3712
99650.27352

99413.0571
99261.12147

Note: Data was taken from: http://www.eia.gov/forecasts/aeo/
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