Citation

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33840661

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Reconstructing and Analyzing the Wiring Diagram of the *Drosophila* Larva Olfactory System

A dissertation presented by

Matthew E. Berck
to
The Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in the subject of

Physics

Harvard University
Cambridge, Massachusetts

July 2016
Reconstructing and Analyzing the Wiring Diagram of the

Drosophila Larva Olfactory System

Abstract

The sense of smell enables animals to detect and react to long-distance cues according to internalized valences. Odors evoke responses from olfactory receptor neurons (ORNs), whose activities are integrated and processed in olfactory glomeruli in a brain region called the antennal lobe in insects and the olfactory bulb in vertebrates. These signals are then relayed by projection neurons (PNs) to higher brain centers. A wiring diagram with synaptic resolution of an initial olfactory neuropil would enable the formulation of circuit function hypotheses to explain physiological and behavioral observations. This thesis will discuss the mapping with electron microscopy of the complete wiring diagram of the left and right antennal lobes of Drosophila larva. The analysis of this reconstructed brain region revealed two parallel circuits processing ORN inputs. First, a canonical circuit that consists of uniglomerular PNs that relay normalized ORN inputs to a brain region required for learning and memory (mushroom body) as well as a brain center implicated in innate behaviors (lateral horn). Second, a novel circuit where multiglomerular PNs and hierarchically structured local neurons (LNs) extract complex features from odor space and relay them to diverse brain areas. We found two types of panglomerular inhibitory LNs: one primarily providing presynaptic inhibition (onto ORNs) and another also providing postsynaptic inhibition (onto PNs), indicating that these two functionally different types of inhibition are susceptible to independent modulation. The wiring diagram additionally revealed an LN circuit that putatively implements a bistable gain control mechanism, which either computes odor saliency through panglomerular inhibition, or
allows a subset of glomeruli to respond to faint aversive odors in the presence of strong appetitive odor concentrations. This switch between operational modes is regulated by both neuromodulatory neurons and non-olfactory sensory neurons. Descending neurons from higher brain areas further indicate the context-dependent nature of early olfactory processing. The complete wiring diagram of the first olfactory neuropil of a genetically tractable organism will support detailed experimental and theoretical studies of circuit function towards bridging the gap between circuits and behavior.
Contents

1 Introduction to Olfactory Systems 1
 1.1 Introduction to Olfactory Anatomy 2
 1.2 The *Drosophila* Larva 3

2 Methods for Obtaining the Wiring Diagram 8
 2.1 Electron Microscopy Methods 9
 2.2 Reconstruction Methods 10

3 The Wiring Diagram 23
 3.1 The Uniglomerular System 24
 3.1.1 Uniglomerular Projection Neurons 24
 3.1.2 Circuits for interglomerular inhibition 27
 3.2 The multiglomerular system 33
 3.2.1 Multiglomerular projection neurons 33
 3.2.2 Local neurons of the multiglomerular system 37
 3.3 LN-LN Interactions 45
 3.3.1 Non-ORN sensory neurons and interactions among LNs could alter the operational state of the olfactory system 45
 3.3.2 Some glomeruli are special-purpose 49
 3.4 Feedback from the brain 51
4 Conclusions 53

4.1 Discussion .. 54

4.2 Other Materials and Methods 56

4.2.1 Immunolabeling and light microscopy 56

4.2.2 Clustering of ORNs by PCA of their responses to odors .. 57

Bibliography 59
Chapter 1

Introduction to Olfactory Systems
1.1 Introduction to Olfactory Anatomy

The sense of smell allows an organism to detect chemical cues in its environment to inform a variety of behaviors. If an organism associates an odor with food (either by an innate or learned association), the odorant could cause an appetitive (attractive) response, or if an odor is associated with a predator or a noxious environment, it could signal danger and cause an aversive response. Odorants are detected by an organism via a set of proteins called olfactory receptors (ORs), which bind subsets of odorants based on their chemical structure. While each OR tends to bind chemicals with similar chemical structures, the tuning profiles of the ORs vary (Hallem and Carlson, 2006). An OR can be broadly tuned, where the OR can bind a wide variety of odorants (Su et al., 2009). Additionally, narrowly tuned ORs tend to specifically detect evolutionarily important compounds, such as the pheromone of a mate or predator (Ebrahim et al., 2015). In most cases, odors are coded combinatorially, meaning that odorants activate subsets of receptors. Concentration can also be coded combinatorially since the higher concentrations of an odorant excite more ORs than low concentrations (Su et al., 2009).

In both mammals and insects, the ORs are exhibited on the dendrites of olfactory receptor neurons (ORNs, sometimes called OSNs for olfactory sensory neurons). ORNs usually express a single OR throughout their dendrites, which extend throughout a peripheral area of the olfactory system, in the olfactory epithelium in mammals or the antenna in adult flies and most insects (Su et al., 2009). From these sensory organs, ORNs extend their axons to a primary processing center for the olfactory system, called the antennal lobe in insects or the olfactory bulb in mammals. ORNs that exhibit the same OR cluster their axons together in the same area of the primary processing center (Vosshall et al., 2000; Wang et al., 1998). The area where all like-ORNs organize their axon terminals is called a glomerulus. From this primary processing center, uni- and multi-glomerular
projection neurons (PNs) relay olfactory inputs to higher-order brain areas (Liang et al., 2013; Stocker et al., 1990). In mammals, there are 2 types of uniglomerular PNs called mitral and tufted cells. Common between mammals and insects (Su et al., 2009; Vosshall and Stocker, 2007), PNs target two major brain centers, one associated with learning and memory (such as the mushroom bodies (MB) in insects, compared to the piriform cortex in mammals), and another that mediates some innate behaviors (such as the lateral horn (LH) in insects, compared to the amygdala in mammals) (Fischbach and Heisenberg, 1984; Heisenberg et al., 1985; Sosulski et al., 2011; Stocker et al., 1990; Su et al., 2009). Communication between glomeruli is mediated by local neurons (LNs) that do not project out of the antennal lobe or olfactory bulb. In mammals, there are two main types of these local neurons called periglomerular cells and granule cells (Firestein, 2001). While the connectivity of a few glomerular cells and granule cells has been recently partially reconstructed in the adult fly (Rybak et al., 2016), the complete number and morphology of cell types and the circuit structure with synaptic resolution is not known for any glomerular olfactory system.

1.2 The Drosophila Larva

In the Drosophila larva, we find a similarly organized glomerular olfactory system of minimal numerical complexity. While the larva does not have antennae, they house the dendrites of their ORNs in an organ called the dorsal organ, and the anatomy of the first relay of the olfactory system mimics that of the adult (Figure 1.1). Instead of, like in the adult fly, having thousands of ORNs converging into 43 different antennal lobe glomeruli with about 150 uniglomerular projection neurons, the larva has only 21 unique ORNs and, therefore, 21 glomeruli, each with only 1 uniglomerular projection neuron (Fishilevich et al., 2005; Gerber, 2007; Masuda-Nakagawa et al., 2009) (Figure 1.2). The numerical simplicity of this system makes it the ideal system to reconstruct with synapse precision via serial-section electron microscopy. Additionally, all neurons throughout the nervous
system are expected to be uniquely identifiable and stereotyped (Li et al., 2014; Manning et al., 2012; Ohyama et al., 2015; Vogelstein et al., 2014). Additionally, some of the olfactory LNs and PNs have already been identified (Das et al., 2013; Masuda-Nakagawa et al., 2009; Thum et al., 2011).

This minimal glomerular olfactory system exhibits the general capabilities of the more numerically complex systems. For example, as in other organisms (Friedrich and Korsching, 1997; Nagayama et al., 2004) and in the adult fly (Bhandawat et al., 2007; Kim et al., 2015; Nagel and Wilson, 2011), the output of the uniglomerular PNs tracks the ORN response (Asahina et al., 2009), and is under gain control. In the adult fly (Olsen and Wilson, 2008) and zebrafish (Zhu et al., 2013), gain control permits the olfactory system to operate over a wide range of odorant concentrations (Asahina et al., 2009) and is comprised of two parallel computations: the amplification of low signals and the suppression of high signals. In the adult fly, the amplification of low signals is mostly due to the non-linear ORN to PN transformation intrinsic to each glomerulus. The amplification of low signals is primarily due to the convergence of multiple of the same ORN type onto the same uniglomerular PNs, which allows for a more reliable and faster response of the PN than an ORN to the onset of an odor; additionally, the PN response saturates at low concentrations, causing an amplification (Bhandawat et al., 2007). Excitatory LNs that form gap junctions with PNs also aid in broadening of PN activity when compared to ORN activity (Olsen et al., 2007). The suppression of high signals is implemented in the adult fly by inhibitory (mostly GABA-ergic) LNs that perform divisive normalization (Olsen and Wilson, 2008). These LNs receive inputs from both ORNs as well as PNs via dendro-dendritic synapses and then output onto those same neurons (Rybak et al., 2016). However, the wiring and details of this normalization system are unknown in the adult, and the reconstruction of the larval system would reveal the details of how these computations are performed.

The olfactory behaviors exhibited by the larva have been well studied (mostly in 2nd
Figure 1.1: From [Gerber, 2007]. A diagram of all of the chemosensory organs of the Drosophila larva including the olfactory system. The dorsal organ (DO) contains the dendrites of the ORNs. The ORNs have cell bodies in the dorsal organ ganglion (DOG) and send their axons toward the brain via the antennal nerve (AN). The axon terminals of the ORNs form glomerular structures in the larval antennal lobe (LAL), where local neurons (LNs, label not in a black box), which stay within the antennal lobe itself, process olfactory information before it is sent out of the LAL via projection neurons (PNs). These PNs are uniglomerular, meaning that they are postsynaptic to the ORNs of only one glomerulus, and they send their axons to higher brain regions via the inner antennal cerebral tract (iACT). The PNs target two main higher brain areas: the mushroom body calyx (a brain region required for associative learning) and the lateral horn (a brain region implicated in innate behaviors). The neurons downstream of the PNs in the calyx are the kenyon cells (KCs), which are required for associative learning; they send their axons down a tract called the pedunculus (PD). The other sensory organs implicated in chemical sensing (non-olfactory) are also shown including the terminal organ (TO) and ventral organ (VO), along with their respective ganglia that contain the cell bodies of these sensory neurons (TOG and VOG). The pharyngeal sensory organs are also shown (DPS, VPS, PPS), which mostly contain gustatory sensory neurons. The axons of non-olfactory sensory neurons can enter the brain via the AN, but they can also enter the brain via the labral nerve (LN, label in a black box), the maxillary nerve (MN), and the labial nerve (LBN). Many of the gustatory sensory neurons send their axons to an area of the brain ventral to the antennal lobe called the subesophageal ganglion (SOG).
Figure 1.2: From Gerber (2007), a diagram illustrating the numerical simplicity of the larval Drosophila olfactory system when compared to the adult olfactory system. Also shown are the major brain regions targeted by the ORNs, and PNs that were well characterized before the EM reconstruction presented in this thesis.
and 3rd instar larvae), in particular chemotaxis (Bellmann et al., 2010; Cobb, 1999; Gep-ner et al., 2015; Gershow et al., 2012; Gomez-Marin et al., 2011; Hernandez-Nunez et al., 2015; Schulze et al., 2015) as well as the odor tuning and physiological responses of ORNs (Asahina et al., 2009; Fishilevich et al., 2005; Kreher et al., 2008; Louis et al., 2008; Mathew et al., 2013; Montague et al., 2011). Additionally the larva presents odor associative learning (Gerber, 2007). Obtaining the wiring diagram of all neurons synaptically connected to the ORNs would enable the formulation of system-level hypotheses of olfactory circuit function to explain the observed behavioral and functional properties.

The reduced numerical complexity and dimensions of the larval olfactory system, the similarity of its organization and capabilities to other organisms, and the tractability of the larva as a transparent genetic model organism, make it an ideal model system in which to study the complete circuit architecture of a glomerularly organized olfactory processing center.

Here, we analyze this complete wiring diagram on the basis of the known function of circuit motifs in the adult fly and other organisms and known physiological properties and behavioral roles of identified larval neurons. We found two distinct circuit architectures structured around the two types of PNs: a uniglomerular system where each glomerulus participates in a repeated, canonical circuit, centered on its uPN (Python and Stocker, 2002); and a multiglomerular system where all glomeruli are embedded in structured, heterogeneous circuits read out by mPNs (Das et al., 2013). We also found that the inhibitory LN s structure a circuit that putatively implements a bistable inhibitory system. One state could compute odor saliency through panglomerular lateral inhibition, that is, by suppressing the less active glomeruli in favor of the more active ones. The other may enable select glomeruli, specialized for aversive odors, to respond to faint stimuli in a background of high, appetitive odor stimuli. We discuss the role of these two possible operational states and how neuromodulatory neurons and brain feedback neurons participate in the interglomerular circuits.
Chapter 2

Methods for Obtaining the Wiring Diagram
2.1 Electron Microscopy Methods

The electron microscopy dataset used in this reconstruction was first published in [Ohyama et al., 2015](#). The methods for the acquisition of that dataset have been taken from that publication.

For generating the electron microscopy dataset comprising the entire central nervous system, central nervous systems from 6-h-old [iso] Canton S G1 xw¹¹¹⁸[iso] 5905 female larvae were manually dissected out in PBS. The isolated central nervous systems were immediately transferred to 125 μl of 2% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4 in a 0.5 dram glass vial (Electron Microscopy Sciences, cat. no. 72630-05) to which an equal volume of 2% OsO₄ in 0.1 M sodium cacodylate buffer, pH 7.4 was added and gently mixed. Each CNS was then fixed in an ice bath in a Pelco BioWave PRO microwave oven (Ted Pella, Inc.) at 350-W, 375-W and 400-W pulses for 30 sec each, separated by 60-sec intervals with the microwaves off. Samples were rinsed 3 × 30 sec at 350 W with 0.1 M sodium cacodylate buffer, separated by 60-sec intervals with the microwaves off, and post-fixed with 1% OsO₄ in 0.1 M sodium cacodylate buffer at 350-W, 375-W and 400-W pulses for 30 sec each, separated by 60-sec intervals with the microwaves off. After rinsing with distilled water 3 × 30 sec at 350 W with 60-sec pauses between pulses, the samples were stained en bloc with 1% uranyl acetate in water by microwave at 350 W for 3 × 30 sec with 60-sec pauses between microwave pulses. The samples were then dehydrated in an ethanol series followed by propylene oxide, infiltrated and embedded with EPON resin. Serial 50-nm sections were cut with a Leica UC6 ultramicrotome using a Diatome diamond knife, and picked up with Synaptek slot grids with Pioloform support films with 2 nm of carbon (C). Sections were stained with uranyl acetate followed by Sato’s lead [Sato, 1968](#).

Both data sets were imaged using Leginon [Suloway et al., 2005](#), the 1.5 abdominal
segment on an FEI T20 TEM (Hillsboro) at 4.4 nm × 4.4 nm pixel resolution, the complete first instar larva (L1) brain on an FEI Spirit TEM at 3.8 nm × 3.8 nm pixel resolution. The resulting images were montaged and registered using the nonlinear elastic method described in (Saalfeld et al., 2012).

2.2 Reconstruction Methods

To map the wiring diagram we used the web-based software CATMAID (Collaborative Annotation Toolkit for Massive Amounts of Image Data) (Saalfeld et al., 2009) with neuron skeletonization and analysis tools (Schneider-Mizell et al., 2016). The process of skeletonization involves representing each neuron on each brain slice with a single dot (or node) wherever possible. These nodes are connected from slice to slice as a neuron is traced, and more than one node can be connected from one slice to another if the neuron branches. Synapses are also identified and annotated with a special type of node called a connector node which indicates the identity of the presynaptic cell as well as all cells postsynaptic at that particular synapse. Synapses were characterized using the criteria outlined in (Ohyama et al., 2015): they must persist over multiple adjacent sections; they must have presynaptic vesicles as well as a presynaptic T-bar; and the postsynaptic side of the synapse must present postsynaptic densities (a blurriness of the membrane of the postsynaptic cells).

The initial step in the reconstruction was the identification of the 42 ORNs (21 per side) within the dataset. To do this, we reconstructed the main branches (rich in microtubules) of all sensory neurons that enter the brain via the antennal nerve. We then identified the 21 neurons per side that clustered together in the nerve and whose axon terminals formed glomeruli in a roughly spherical neuropil (the antennal lobe). The ORNs were then entirely reconstructed and identified using the previously published glomerular positions of the axon terminals within the antennal lobe (Masuda-Nakagawa et al., 2009) (Figure
2.1, 2.2b). All synapses either pre- or postsynaptic to the ORNs were annotated, and from these synapses, we then reconstructed all synaptic partners of the ORNs for both the left and right antennal lobes of the larva. Per side, we found 21 uniglomerular PNs (uPNs; one per glomerulus), 14 LNs, 14 multiglomerular PNs (mPNs), 4 neuromodulatory neurons, 6 subesophageal zone (SEZ) interneurons and 1 descending neuron (Figure 2.2a). These identified neurons present stereotyped connectivity when comparing the left and right antennal lobes. The lack of undifferentiated neurons in the 1st instar antennal lobe, and comparisons with light-microscopy images of other instars suggests that the 1st instar antennal lobe contains all the neurons present throughout larval life.
Figure 2.1: A single, identified ORN for each glomerulus in the antennal lobe of the first instar larva. Each panel shows an EM-reconstructed arbor of an ORN (colored) over the background of a Broad LN Duet (grey). ORN synapses are rendered in the same color as the skeleton. To the left, all ORNs of each half of the antennal lobe are rendered together. The orientation (lateral to the left, dorsal up) and relative position of each ORN has been chosen to exactly match the arrangement in the supplementary figure 1 of Masuda-Nakagawa et al. 2009, where each individual ORN was identified and labeled with GFP using genetic driver lines.
Figure 2.2: Overview of the wiring diagram of the glomerular olfactory system of the larval <i>Drosophila</i>. Continued on next page.
Figure 2.2: (Continued) A Schematic of the olfactory system of the larval *Drosophila* with EM-reconstructed skeletons overlaid. The ORN cell bodies are housed in the dorsal organ ganglion, extend dendrites into the dome of the dorsal organ, and emit axons to the brain via the antennal nerve. Like in all insects, neuron cell bodies (circles) reside in the outer layer of the nervous system (grey), and project their arbors into the neuropil (white) where they form synapses. Also shown are the major classes of local neurons (Broad LNs, Picky LNs and Keystone) and the 2 classes of projection neurons (uPNs and mPNs). The arbors of the Broad LNs (black) specifically innervate the AL. LNs and mPN dendrites can extend into the subesophageal zone (SEZ), innervated by sensory neurons of other modalities. uPNs project to specific brain areas (mushroom body calyx and lateral horn; LH), and mPNs mostly project to other nearby brain areas.

B The larva presents 21 unique olfactory glomeruli, each defined by a single ORN expressing a single or a unique pair of olfactory receptors. We reconstructed each ORN with a skeleton and annotated its synapses, here colored like the skeleton to better illustrate each glomerulus. See figure 2.1 for individual renderings that aided in the identification of each unique ORN. C Summary connectivity table for the right antennal lobe with all major neuron classes (4 neuromodulatory neurons and the descending neuron from the brain were omitted), indicating the percent of postsynaptic sites of a column neuron contributed by a row neuron. For most neurons, the vast majority of their inputs originates in other neurons within the antennal lobe. In parentheses, the number of neurons that belong to each cell type. We show only connections with at least two synapses, consistently found among homologous identified neurons in both the left and right antennal lobes. Percentages between 0 and 0.5 are rounded down to 0. D Schematic of the innervation patterns of the main classes of LNs and PNs in the antennal lobe. White ovals represent the glomeruli. Solid circles are cell bodies. Shaded areas with dotted outlines represent the extent of the PN dendritic arbors, with each uPN (green) innervating one glomerulus and each mPN (blue) innervating multiple glomeruli. Their axons (arrows) project to the brain. Broad LNs (black) are axonless and present panglomerular arbors. Picky LN (orange) dendrites span multiple glomeruli and their axons (arrow; not shown) target a different yet overlapping set of glomeruli as well as regions outside the olfactory system. Choosy LNs are similar to the Picky LNs but their axons remain within the antennal lobe. E A simplified wiring diagram of the larval olfactory system with only the main connections. ORNs are excitatory. All shown LNs are inhibitory. Broad LNs reciprocally connect to all glomeruli and each other and thus engage in presynaptic inhibition (on ORNs) and postsynaptic inhibition (on uPNs). Picky LNs form a hierarchical circuit and selectively synapse onto mPNs. Another LN, Keystone, receives inputs from ORNs, one Picky LN and non-ORN sensory neurons, and can potentially alter the operational mode of the entire olfactory system by altering the pattern of inhibition (see text). Continued on next page.
We mapped the wiring diagram of the first olfactory neuropil of the larva by reconstructing the left and right ORNs and all their synaptic partners. We used a complete volume of the central nervous system (CNS) of a first instar larva, imaged with serial section electron microscopy ([Ohyama et al., 2015]; see methods for online image data availability; Figure 2.3). We reconstructed 160 neuronal arbors using the software CAT-MAID (Saalfeld et al., 2009; Schneider-Mizell et al., 2016). All together, the 160 neurons add up to a total of 38,684 postsynaptic sites and 55 millimeters of cable, requiring about 600,000 mouse clicks over 736 hours of reconstruction and 431 hours of proofreading. Only 136 of 14,346 (0.9%) postsynaptic sites of ORNs remained as small arbor fragments (comprising a total of 0.25 millimeters of cable, or 0.5% of the total reconstructed) that could not be assigned to any neuron.

We sorted the 160 reconstructed neurons into 78 pairs of bilaterally homologous neurons and 4 ventral unpaired medial (VUM) neurons (2 are mPNs and 2 are octopaminergic “tdc” neurons; [Selcho et al., 2014]). These 78 pairs we further subdivided into 21 pairs of ORNs, 21 pairs of uPNs, 13 pairs of mPNs (plus 2 additional VUM mPNs), 14 pairs of LNs, 6 pairs of neurons projecting to the SEZ (“SEZ neurons”), 1 pair of descending neurons from the brain, 1 pair of serotonergic neurons (CSD; [Roy et al., 2007]), and 1 pair of octopaminergic non-VUM neurons (“1AL-1”; [Selcho et al., 2014]).
Figure 2.3: **Electron microscopy view of the antennal lobe of *Drosophila* larva.** A Cross-section of the antennal lobe, with dorsal up and lateral to the left. Notice most of the antennal lobe is wrapped by glial cells (darker profiles), but these do not fully enclose it (not shown), opening towards the SEZ (bottom right). Individual glomeruli are not wrapped in glia like in other insects (Oland et al., 2008), but glia do separate the antennal lobe from the neuronal somas and from nearby neuropils. ALT, antennal lobe tract. Corresponds to serial section 648 in the online volume, at bottom left (right antennal lobe from anterior view). B Magnification of the box in A, showing an axon terminal of the 24a ORN synapsing onto the 24a uPN and multiple LNs. The dendrite of the 24a PN contains mitochondria, vesicles and presynaptic sites (magenta arrows), synapsing in this section onto e.g. one of the two Keystone LNs among others. The ORN axon bouton hosts multiple synapses (red arrows) with prominent ribbons or T-bars. The ORN boutons are packed with vesicles, giving them a darker appearance than surrounding PN and LN neurites; also contain numerous mitochondria (not shown in this image). Only some LNs are labeled for clarity; all neurites in this image were reconstructed. Blue arrows point to synapses of labeled LNs.
The 14 pairs of LNs originate in 5 different lineages (Figure 2.4). We assigned the same name to neurons of the same lineage, and numbered each when there is more than one per lineage. LNs connect to other neuron classes stereotypically in the two antennal lobes (Figure 2.5). We selected names reminiscent of either their circuit role or anatomical feature, including “Broad” to refer to panglomerular arbors; “Picky” and “Choosy” for LNs of two different lineages (and different neurotransmitter; see below) with arbors innervating select subsets of glomeruli; “Keystone” for a single pair that mediate interactions between LNs of different circuits; and “Ventral LN” for a single pair of LNs with ventral cell bodies. We also determined the neurotransmitters of LNs that were previously unknown (Figure 2.6). We introduce the properties of each LN type below with the olfactory circuits that they participate in.
Figure 2.4: **EM-reconstructed arbors of all LNs.** Left dorsal and posterior views of all LNs. The bundling of their primary axon tracts suggests that all LNs derive from 5 neuronal lineages (5 on the left and 5 on the right), shown in 5 different colors. Right, renderings of the left antennal lobe, posterior view. These identified neurons present similar morphology and connectivity in the right antennal lobe. Broad LNs are shown for reference. The morphology, cell body position and number of Choosy LNs matches that of the pair of GABAergic LNs described in fig. 2 L-O of Thum et al., 2011. Scale bar: a cell body measures about 4 micrometers in diameter.
Figure 2.5: Percentage of synapses of LNs from/onto specific cell types. Continued on next page.
Figure 2.5: (Continued) The entry for each neuron presents two bars, for the left and right homologs. **Top row**, Broad LNs and Keystone. T: Trio, D: Duet. **Left**, differences between the Trio and Duet subtypes are evident in the fraction of inputs that originates in ORNs, uPNs and Keystone. The Duet subtype presents a far larger fraction of its inputs from ORNs, and barely receives any inputs from Keystone. By its pattern of inputs, Keystone resembles a Broad LN Trio neuron, except for the large fraction of non-ORN inputs and the inputs from Picky LNs (specifically from Picky LN 0). **Right**, note how the Trio subtype devote about 25% of their synapses to each other, whereas the Duet subtype preferentially targets uPNs, providing postsynaptic inhibition to the glomeruli (both lateral and feedforward inhibition). Keystone differs from the Broad LNs in that it targets uPNs much more weakly, preferring instead the Broad LN Trio and a variety of other neurons. **Bottom row**, Picky LNs, Choosy LNs and Ventral LN. **Left**, the fraction of inputs from ORNs stands out as a large difference among Picky LNs, with Picky LN 3 and 4 receiving substantially fewer, similarly to Choosy LNs. The fraction of inputs received from other Picky LNs (green) is among the most distinguishing feature of Picky LN 0, which receives close to none. **Right**, in contrast to the similar patterns of inputs onto all Picky LNs, Picky LN 0 stands out as very different from other Picky LNs in its choice of downstream synaptic partners, spreading approximately evenly between ORNs, uPNs, mPNs, other Picky LNs and Keystone. Choosy LNs strongly prefer uPNs, being therefore strong providers of postsynaptic inhibition to glomeruli. Notice that Picky LNs, Choosy LNs and Ventral LN have a larger fraction of synapses to/from “others”, with their arbors spreading towards adjacent sensory neuropils in the SEZ.
Figure 2.6: Neurotransmitters of Keystone LN and Picky LNs. Continued on next page.
Figure 2.6: (Continued) Genetic driver lines specific for Keystone LN (GAL4 line GMR27F08) and Picky LNs (split-GAL4 lines JRC_SS04499, JRC_SS04500, JRC_SS04260) driving GFP expression specifically in these neurons were labeled with anti-GABA and anti-vGlut (A-U), and also anti-Chat (all negative; not shown). Keystone presents immunoreactivity to anti-GABA (textbf A-C), and at least 4 of the 5 Picky LNs are positive to anti-vGlut and negative to anti-GABA (D-U). These neurons derive from the BAla2 lineage (Das et al., 2013). JRC_SS04260 drives expression specifically and uniquely a Picky LN, likely Picky LN 4, which presents anti-vGLut immunoreactivity (P-R). Left unlettered panels show the homologous identified EM-reconstructed neurons, with Broad LNs in grey for reference. Asterisks mark the location of cell bodies when there is not labeling, such as in panels I, O and U. Broad LNs and Choosy LNs are GABAergic (see Thum et al., 2011 at fig. 2 D-G for Broad LNs and L-O for Choosy LNs). Continued on next page.
Chapter 3

The Wiring Diagram
3.1 The Uniglomerular System

3.1.1 Uniglomerular Projection Neurons

In vertebrates and most arthropods, olfactory glomeruli are defined by a group of same-receptor ORNs converging onto a set of glomerular-specific PNs (mitral and tufted cells in the mouse and zebrafish olfactory bulb) (Distler and Boeckh, 1996; Ressler et al., 1994; Satou, 1992; Stocker et al., 1990; Wang et al., 1998). In Drosophila larva, this system is reduced to a single ORN and a single uPN per glomerulus (Masuda-Nakagawa et al., 2009; Python and Stocker, 2002; Ramaekers et al., 2005). With one exception (35a, which has 2 bilateral uPNs), our EM-reconstructed wiring diagram is in complete agreement with these findings (Figure 2.2b, 3.1a). Most of the larval uPNs project to both the MB and the LH (Figure 3.1a), like in the adult fly (Luo et al., 2010; Stocker et al., 1990).
Figure 3.1: The uniglomerular circuit consists of 21 glomerular-specific projection neurons, which interact primarily with their corresponding ORN and with the 5 panglomerular LNs (Broad LNs), each an identified neuron. Continued on next page.
Figure 3.1: (Continued) A Posterior view of the EM-reconstructed uPNs of the right antennal lobe. The dendrites of each uPN delineate the glomerular boundaries, and the axons project to both the mushroom body (required for learning and memory; (Michels et al., 2011)) and the lateral horn (implicated in innate behaviors; (de Belle and Heisenberg, 1994)). 19 uPNs are likely generated by the same neuroblast lineage BAmv3 (Das et al., 2013) (although the uPNs for 42a, 74a, and 67b are slightly separated from the rest), and the other two (the uPNs for 33a and 35a) clearly derive from two other neuroblasts. Notice that the 35a uPN is bilateral, ascends through a different tract, and receives additional inputs outside of the antennal lobe. The 33a uPN does not synapse within the calyx and the 82a uPN does not continue to the lateral horn. The left antennal lobe (not shown) is a mirror image of the right one. B Dorsal view of the EM-reconstructed, axonless Broad LNs (Duet in orange; Trio in blue) shown together and individually. All neurons are on the same lineage: BAlc (Das et al., 2013). The pre-(red) and post-(cyan) synaptic sites on these panglomerular neurons are fairly uniformly distributed. ORNs in grey for reference. These neurons extend posteriorly out of the olfactory glomeruli to receive synapses from 2 non-ORN sensory neurons that enter the brain via the antennal nerve. C Percentage of the total number of postsynaptic sites on the dendrite of an uPN, Broad LN or Choosy LN (columns) that originate in a given ORN or LN (rows) for the right antennal lobe. Since the 35a uPN is bilateral, we include inputs to it from both antennal lobes. We show only connections with at least two synapses, consistently found among homologous identified neurons in both the left and right antennal lobes. Percentages between 0 and 1 are rounded to 1, but totals are computed from raw numbers. The uniglomerular nature of uPNs (notice the green diagonal) and panglomerular nature of Broad LNs is evident. The Broad LN Duet generally contributes more synapses onto uPNs than the Broad LN Trio does. While the number of synapses that an ORN makes onto its uPN varies widely (24-120 synapses; see Supplementary File 1 and 2), this number is tailored to the size of the target uPN dendrite given that percentage of inputs the ORN contributes to the uPN is much less varied (mostly 45-65%). For an extended version of this table that includes all LNs, see Figure 3.2. D Both Broad LN types (Trio and Duet) mediate presynaptic inhibition (synapses onto ORN axons) similarly, but the Duet shows far stronger postsynaptic inhibition (synapses onto uPN dendrites) while the Trio receives far more dendro-dendritic synapses from uPNs. Connections among Broad LNs are not shown for simplicity. Each arrow is weighted linearly by the number of synapses for an average single Broad LN of each type. E The 5 Broad LNs that govern this circuit synapse reciprocally, with the Trio type synapsing more strongly onto each other. Shown here for the right antennal lobe with arrow thickness weighted by the square root of the number of synapses.
3.1.2 Circuits for interglomerular inhibition

In insects (adult fly, bee, locust) and in vertebrates, the excitation of glomeruli is under control of inhibitory LNs that mediate functions such as gain control, which define an expanded dynamic range of uPN responses to odors (Lei et al., 2002; Olsen et al., 2010; Olsen and Wilson, 2008; Sachse and Galizia, 2002; Zhu et al., 2013). We found that most non-sensory inputs to the larval uPNs (Figure 2.2c) are from a set of 5 panglomerular, axonless, and GABAergic (Thum et al., 2011) neurons that we named Broad LNs (Figure 3.1b, c; Figure 3.2). These 5 Broad LNs also account for most inputs onto the ORN axons (Figure 1c), therefore being prime candidates for mediating both intra- and interglomerular presynaptic inhibition (onto ORNs) as observed in the adult fly with morphologically equivalent cells (Chou et al., 2010; Olsen et al., 2010; Olsen and Wilson, 2008; Wilson and Laurent, 2005), and in the larva (Asahina et al., 2009).
Figure 3.2: Extended version of table in fig. 3.1c, including all other olfactory-related neurons. Tables show percent of postsynaptic sites of a column neuron contributed by a row neuron. We show only connections with at least two synapses, consistently found among homologous identified neurons in both the left and right antennal lobes. Percentages between 0 and 0.5 are removed. For bilateral neurons, inputs from both sides are included.

We divided the 5 Broad LNs into two classes, Trio and Duet, based on the number of neurons of each type (Figure 3.1b). While both types provide panglomerular presynaptic inhibition (onto ORN axons), the Duet makes far more synapses onto the dendrites of the uPNs. This may indicate a far stronger role for the Broad LN Duet in postsynaptic inhibition (onto uPN dendrites; Figure 3.1d). In the adult fly, presynaptic inhibition implements gain control (Olsen and Wilson, 2008), and postsynaptic inhibition plays a role...
in uPNs responding to the change in ORN activity (Kim et al., 2015; Nagel et al., 2015). The two types of glomerular inhibition are provided by two separate cell types, and may therefore be modulated independently. For example, the uPNs emit dendritic outputs that primarily target the Broad LN Trio (Figure 3.1d), indicating that the output of the glomerulus contributes more to presynaptic than to postsynaptic inhibition. Similar excitatory synapses from uPNs to inhibitory LNs have been shown in vertebrates (Rall et al., 1966), and synapses from PNs to LNs and vice versa have been described in the adult fly (Rybak et al., 2016).

Beyond their role in pre- and postsynaptic inhibition of ORNs and uPNs respectively, the Broad LNs synapse onto all neurons of the system, including other LNs and mPNs (Figure 2.2c, Figure 2.5). Therefore Broad LNs may be defining a specific dynamic range for the entire antennal lobe, enabling the system to remain responsive to changes in odorant intensities within a wide range. Importantly, Broad LNs also synapse onto each other (Figure 3.1c, e) like in the adult (Okada et al., 2009; Rybak et al., 2016). Furthermore, the two types of Broad LNs have a different ratio of excitation and inhibition, originating in the preference of Trio to synapse far more often onto each other than onto Duet (Figure 3.1e, Figure 2.5). This suggests that the two types not only have different circuit roles but also have different properties.

Another GABAergic cell type, that we call the Choosy LNs (two neurons; Figure 2.2c, 3.1c, 3.3), contributes exclusively to postsynaptic inhibition for most glomeruli. Unlike the Broad LNs, Choosy LNs have a clear axon innervating most glomeruli, while their dendrites collect inputs from only a small subset of glomeruli (Figure 3.1c; Figure 2.4, Figure 3.2). Therefore some glomeruli can drive postsynaptic inhibition of most glomeruli. Additionally, the inputs from Choosy LNs tend to be more proximal to the axon initial segment of the uPNs (Gouwens and Wilson, 2009) unlike those of Broad LNs which are more uniformly distributed throughout the uPN dendritic arbor (Figure 3.3). In the adult, ORNs tend to synapse at the most distal PN dendritic terminals, allowing for some LN
inhibition to occur via synapses more proximal to the axon initial segment [Rybak et al. (2016)]. This pattern of spatially structured inputs suggests that different inhibitory LN types may exert different effects on uPN dendritic integration.
Figure 3.3: Distribution of postsynaptic sites on the uPN dendrites. Continued on next page.
Figure 3.3: (Continued) We show 5 examples, plotting the distance (along the cable) of individual postsynaptic sites (colored dots) to the axon initial segment of each uPN. The same type of presynaptic neuron presents the same color across all plots. Notice how Choosy LN inputs (red, framed in a red box) onto uPNs are generally more proximal to the axon initial segment than other inhibitory inputs such as from Broad LNs; particularly noticeable for 42a PN (top row) and 94 & 94b PN (bottom row). No noticeable difference exists between Broad LN Duet and Trio. Notice that the left 49a PN presents an arbor with two main dendrites, with one being further than the other from the axon initial segment, explaining the split in the distribution of distances of postsynaptic sites. While 67b PN (third row) does not receive inputs from Choosy LNs, the Picky LN 3 (light green), which specifically targets 67b PN and no other uPN, provides proximal inputs. Presynaptic neurons are ordered with the largest contributor at the bottom of each plot.
3.2 The multiglomerular system

3.2.1 Multiglomerular projection neurons

Parallel to the uniglomerular readout by the 21 uPNs, we found 14 multiglomerular PNs (mPNs; Figure 3.4a). Each mPN receives unique and stereotyped inputs from multiple ORNs (Figure 3.4c) or at least from one ORN and multiple unidentified non-ORN sensory neurons in the SEZ (Figure 3.4a). The mPNs originate in multiple neuronal lineages and project to multiple brain regions; most commonly the lateral horn (LH) but also regions surrounding the MB calyx. Of the 14 mPNs, three project to the calyx itself (mPNs b-upper, b-lower and C2) and another (mPN cobra) to the MB vertical lobe (Figure 3.4a). In addition to the 14 mPNs that project to the brain, we identified an extra 6 oligoglomerular neurons that project to the SEZ (SEZ neurons; Figure 2.2c; 3.5). A class of mPNs has been described in the adult fly (Liang et al., 2013) but their projection pattern does not match any of the larval mPNs. In strong contrast to uPNs, mPNs are very diverse in their lineage of origin, their pattern of inputs, and the brain areas they target. A small subset of mPNs has been identified via light microscopy before (Das et al., 2013; Thum et al., 2011).
Figure 3.4: The multiglomerular circuit consists of 14 mPNs that project to the brain and 5 Picky LNs, each an identified neuron. Continued on next page.
Figure 3.4: (Continued) A Posterior view of EM-reconstructed mPNs that innervate the right antennal lobe (in color; uPNs in grey for reference), each receiving inputs from a subset of olfactory glomeruli but many also from non-ORN sensory neurons in the subesophageal zone (SEZ). Most mPNs (green) project via the same tract as the uPNs (mALT). They can project via other tracts (other colors), but never via the mlALT used by the iPNs of the adult *Drosophila*. The mPNs project to many regions including a pre-calyx area, a post-calyx area, the lateral horn (LH) and the mushroom body vertical lobe (MB vl). mPNs are generated by diverse neuroblast lineages including BALp4, BALa1, and others (Das et al., 2013). B Dorsal view of the EM-reconstructed Picky LNs shown together and individually. When shown individually, the Picky LNs are in 2 colors: blue for the dendrites and soma, and green for the axon. Zoom in to observe that presynaptic sites (red) are predominantly on the axon, whereas postsynaptic sites (cyan) are mostly on dendrites. Collectively, the dendritic arbors of the 5 Picky LNs tile the olfactory glomeruli. The dendrites of the Picky LN 3 and 4 extend significantly into the SEZ. They all originate from the same neuroblast lineage: BALa2 (Das et al., 2013). C Percentage of the total number of postsynaptic sites on the dendrite of a mPN or Picky LN (column neuron) that originate from a given glomerulus or Picky LN (row neurons). Here we define the glomerulus as connections from the ORN or via dendro-dendritic synapses from a given ORN’s uPN. This is most relevant for mPN A1, which can receive more synapses from an ORN’s uPN than the ORN itself (see suppl. Adjacency Matrix). We show the inputs to the mPNs and Picky LNs for the right antennal lobe, but for all bilateral mPNs (bil.-lower, bil.-upper, and VUM) we include inputs from both sides. We show only connections with at least two synapses, consistently found among homologous identified neurons in both the left and right antennal lobes. Percentages between 0 and 1 are rounded to 1, but totals are computed from raw numbers. Connections in this table are stereotyped (when comparing the left and right antennal lobes) and selective. Note that mPNs that receive many inputs from non-ORN sensory neurons in the SEZ have a low total of ORN+uPN input. For an extended version of this table that includes all LNs see Figure 3.6. D The direct upstream connectivity for two mPNs, with ORNs colored by the groups emerging from the PCA analysis of odor tuning. Connections from ORNs and Picky LNs to mPNs create 3 different types of motifs: direct excitatory connections from ORNs, lateral inhibitory connections from ORNs only via Picky LNs, and feedforward loops where an ORN connects both directly to the mPN and laterally through a Picky LN. Note that the activity of Picky LN 0 could alter the integration function for mPN A3 and indirectly for B2, as well as many other mPNs (not shown). Arrow thicknesses are weighted by the square root of the number of synapses between neurons. E The Picky LN hierarchy, dominated by Picky LN 0, here showing connections with 2 or more consistent synapses between bilaterally homologous neurons. Some of these connections are axo-axonic (see Figure 4-figure supplement 4).
Figure 3.5: Six SEZ neurons receive specific inputs from some ORNs and from some antennal lobe LNs. Left, EM-reconstruction of the 6 SEZ neurons (vine, cypress, clamp, spruce and ginkgo 1 and 2), with their axons labeled green and their dendrites blue. Presynaptic sites in red and postsynaptic sites in cyan. Middle, 3 of these SEZ neurons project to the same unidentified region of the SEZ. Spruce projects to a more posterior area. Lateral view, anterior to the left. Right, table of percent of postsynaptic sites of a column neuron contributed by a row neuron, illustrating how some ORNs and LNs specifically target these SEZ neurons. We show only connections with at least two synapses, consistently found among homologous identified neurons in both the left and right antennal lobes. Percentages between 0 and 0.5 are removed. Notice how Picky LNs 2, 3 and 4 synapse strongly onto SEZ neurons.
3.2.2 Local neurons of the multiglomerular system

In addition to inputs from Broad LNs (Figure 3.6), mPNs also receive up to 26% of inputs from 5 stereotypically connected, oligogglomerular LNs that we call Picky LNs (Figure 3.4b, c). While both Choosy LNs and Picky LNs are oligogglomerular and present distinct axons, the Choosy LNs are GABAergic whereas at least 4 of the 5 Picky LNs are instead glutamatergic (Figure 2.6 for Picky LNs and Fig. 2 panels L-O in [Thum et al., 2011] for Choosy LNs; see also Supp. Fig. 2 of [Das et al., 2013]). The difference in neurotransmitter is consistent with Picky LNs deriving from a different lineage than Choosy LNs (Figure 2.4). In addition, the two Choosy LNs present indistinguishable connectivity, whereas each Picky LN has its own preferred synaptic partners. Additionally, unlike the Choosy LNs, Picky LNs rarely target uPNs (Figure 3.2). Glutamate has been shown to act as a postsynaptic inhibitory neurotransmitter in the adult fly antennal lobe for both PNs and LNs (Liu and Wilson, 2013), and therefore in larva, Picky LNs may provide inhibition onto both mPNs and other LNs. Unlike the Broad LNs, which are panglomerular and axonless, the Picky LNs present separated dendrites and axons (Figure 3.4b). Collectively, Picky LN dendrites roughly tile the antennal lobe (Figure 3.4b). While some Picky LN axons target select uPNs, about 40% of Picky LN outputs are dedicated to mPNs or each other (Figure 3.4c; Figure 2.5). Similarly to the mPNs, Picky LNs 2, 3, and 4 receive inputs from unidentified non-ORN sensory neurons in the SEZ (Figure 3.4b, Figure 2.5).
Figure 3.6: Extended version of table in fig. 3.4c, including all other olfactory-related neurons.

Tables show percent of postsynaptic sites of a column neuron contributed by a row neuron. We show only connections with at least two synapses, consistently found among homologous identified neurons in both the left and right antennal lobes. Percentages between 0 and 0.5 are removed. For bilateral neurons, inputs from both sides are included.
Given that ORNs present overlapping odor tuning profiles (Kreher et al., 2008), we applied dimensionality-reduction techniques and discovered that ORNs cluster into 5 groups by odorant preference (Figure 3.7; see the Other Materials and Methods section for more detail at the very end of the thesis). This helped interpret the pattern of ORNs onto Picky LNs and mPNs. We found that some Picky LNs aggregate similarly responding ORNs (Figure 3.4d; Figure 3.8). For example, Picky LN 2 receives inputs preferentially from ORNs that respond to aromatic compounds, and Picky LN 3 and 4 similarly for aliphatic compounds (esters and alcohols; Figure 3.8). On the other hand, Picky LN 0 and 1 aggregate inputs from ORNs from different clusters, suggesting that these Picky LNs may select for ORNs that are similar in a dimension other than odorant binding profile.
Figure 3.7: Principal component analysis of odors leading to a principled clustering of ORNs. **a** Clustering of odors by odorant-descriptor. Results of K-means clustering of odors in the 32-dimensional odor-descriptor space proposed in Haddad et al., 2008. Odors cluster into five groups that are well correlated with odor chemical type (alcohols, aromatics, esters, pyrazines, and others). **b-e** Clustering of odors by ORN response. The variance explained for the odors in ORN response space as a function of the number of principal components (dimensions). The "elbow" of this curve is composed of the principal components used for the clustering analysis of the odors by ORN-response. **c** How the odors span the space of the first 3 principal components of ORN response space. The odors are individual points colored by which of the 5 clusters, calculated via an affinity propagation clustering algorithm, they belong to. **d** How each of the odors fit into the clusters in ORN response space. Each cluster tends to group odors of similar chemical type. **e** The ORNs that represent the centroid of each cluster, calculated using a threshold obtained via Otsu’s method. See materials and methods for further details.
How an ORN Connects:

ORN groups
- Alcohols
- Esters
- Pyrazines
- Aromatics
- Geranyl acetate
- Iridomyrmecin
- Unknown

-0.75
-0.5
-0.25
0.25
0.5
0.75
Evenly to both

Dendrites
Axon

Dendrites
Axon

Figure 3.8: Pattern of ORN inputs onto Picky LNs. Continued on next page.
Figure 3.8: (Continued) **A** The connections of ORNs onto the hierarchy of Picky LNs. ORNs are colored by the groups emerging from the PCA analysis of odor tuning. Inhibitory connections from Picky LNs are shown in black (only connections with 2 or more synapses among bilaterally homologous neuron pairs are shown). Excitatory connections from ORNs are shown in grey (only connections with 4 or more synapses among bilaterally homologous neuron pairs are shown). See Supplementary File 1 and 2 (containing the adjacency matrices) for the complete set of connections. The thickness of the arrows is proportional to the square root of the number of synapses. Some of these connections are axo-axonic (see **C**). **B** ORNs can synapse onto the Picky neurons at either their dendrites or their axons. This table shows values from -1 to 1 based on the written formula. Values between -1 and 0 correspond to the ORN synapsing more to the axon of the Picky LN than the dendrite, and values between 0 and 1 correspond to the ORN synapsing more to the dendrite of the Picky LN than the axon. Only consistent connections between ORNs and Picky dendrites or ORNs and Picky axons with a threshold of at least 2 consistent synapses per side are used to calculate these ratios. For values that are not 1 or -1, the value can differ from side to side. Because the threshold is lowered from that of **A**, more connections appear, but since we only consider connections consistent in how they connect to the Picky LNs (to dendrite or axon), some of the weakest connections also drop out compared to **A**. **C** The Picky LN hierarchy shown with the Picky LNs split into axon and dendrite, showing that not all connections are from the axon of a Picky LN to the dendrites of another. We are only showing connections that are consistent both in their motif (axo-axonic, dendro-dendritic, etc) and with a consistent threshold of 2 synapses on both sides. Because these criteria are more stringent than those used in **A**, some connections drop out (such as Picky LN 4 to Picky LN 3).
The stereotyped and unique convergence of different sets of ORNs onto both mPNs and Picky LNs, and the selective connections from Picky LNs to mPNs, suggest that each mPN responds to specific features in odor space, defined by the combinations of ORN and Picky LN inputs. These features are implemented through direct excitatory connections from ORNs or indirect inhibitory connections via Picky LNs (lateral inhibition; Figure 3.4d). Some ORNs affect the activity of the same mPN through both direct excitatory and lateral inhibitory connections through Picky LNs (incoherent feedforward loop, (Alon, 2007); Figure 3.4d). The combination of these motifs may enable an mPN to respond more narrowly to odor stimuli than the ORNs themselves, many of which are broadly tuned (Kreher et al., 2008), or to respond to a combinatorial function of multiple ORNs that describe an evolutionarily learned feature meaningful for the larva.

For example, one mPN (A1) reads out the total output of the uniglomerular system by integrating inputs across most ORNs and uPNs (Figure 3.4c). Another mPN (B2) could respond to the linear combination of ORNs sensitive to aromatic compounds (direct connections), but its response could change in the presence of alcohols and esters due to feedforward loops (Figure 3.4d). And mPNs A3 and B3 both collect inputs from ORNs (Figure 3.4c, d) known to respond to aversive compounds (22c, 45b, 49a, 59a, and 82a; (Ebrahim et al., 2015; Kreher et al., 2008)) or whose ORN drives negative chemotaxis (45a; (Bellmann et al., 2010; Hernandez-Nunez et al., 2015)). Additionally, mPN B3 receives inputs from 33a, an ORN whose receptor lacks a known binding compound, and therefore is likely narrowly tuned to other ecologically relevant odorants as was shown for 49a and the pheromone of a parasitic wasp (Ebrahim et al., 2015). The connectivity patterns of the 14 types of mPNs are vastly diverse from each other and likely each one extracts different features from odor space, often integrating inputs from non-ORN sensory neurons as well.

In contrast to the all-to-all connectivity of the Broad LNs, the Picky LNs synapse onto each other in a selective, hierarchical fashion (Figure 3.4e). The structure of the Picky LN
hierarchy suggests that Picky LNs 0 and 3 can operate in parallel, while the activity of the other Picky LNs is dependent on Picky LN 0 (Figure 3.4e). These connections among Picky LNs include axo-axonic connections, and some Picky LNs receive stereotypic ORN inputs onto their axons (Figure 3.8). The stereotyped hierarchy among Picky LNs defines yet another layer of computations in the integration function of each mPN.
3.3 LN-LN Interactions

3.3.1 Non-ORN sensory neurons and interactions among LNs could alter the operational state of the olfactory system

Picky LN 0 not only dominates the Picky LN hierarchy, and with it the multiglomerular system, but also may dramatically alter the inhibition of the entire olfactory system. This is because the main synaptic target of Picky LN 0 (Figure 2.5) is a bilateral, axonless, GABAergic LN called Keystone (Figure 3.9a; Figure 2.6), which in turn strongly synapses onto the Broad LN Trio—a major provider of presynaptic inhibition (Figure 3.9b). Interestingly, Keystone is also a major provider of presynaptic inhibition, but selectively avoids some glomeruli (Figure 3.9c; Figure 3.2). Therefore the wiring diagram predicts that these two parallel systems for presynaptic inhibition can directly and strongly inhibit each other (Figure 3.9b): homogeneous across all glomeruli when provided by the Broad LN Trio, and heterogeneous when provided by Keystone (Figure 3.9c). In conclusion, the circuit structure and the known synaptic signs predict that Picky LN 0 can promote a state of homogeneous presynaptic inhibition by disinhibiting the Broad LN Trio (Figure 3.9d).
Figure 3.9: The wiring diagram suggests two operational states: homogeneous or heterogeneous presynaptic inhibition. Continued on next page.
Figure 3.9: (Continued) A Posterior view of the EM-reconstructed neurons innervating the left antennal lobe that could govern the switch (uPNs in grey and right ORNs in dark grey for reference). The Keystone LN (blue) has a symmetric bilateral arbor and additionally innervates the SEZ, receiving inputs from non-ORN sensory neurons (in black). Neuromodulatory neurons that make direct morphological synapses onto LNs are serotonergic (CSD in pink; projects contralaterally after collecting inputs from near the MB calyx) and octopaminergic (lAL-1 and two tdc, in dark and light green), and all arborize well beyond the antennal lobe. Also included is Picky LN 0 (red).

B A wiring diagram outlining the strong LN-LN connections, showing the core reciprocal inhibition between Broad LN Trio and Keystone that could mediate the switch between homogeneous (panglomerular) presynaptic inhibition and heterogenous (selective) presynaptic inhibition. For simplicity, neurons are grouped together if they belong to the same neuron type, with the number of neurons belonging to each group indicated in parentheses. Connections are weighted by the square root of the number of synapses between groups of neurons. The self-arrow for the Broad LN Trio represents the average number of synapses that one of the Trio neurons receives from the other two. Picky LN 0 inhibits Keystone, thereby disinhibiting the Broad LN Trio and promoting homogeneous presynaptic inhibition. The maxillary nerve sensory neurons are the top input providers of Keystone and may drive the system towards heterogeneous presynaptic inhibition (see C). The effect of direct inputs from neuromodulatory neurons is unknown, but at least it has been suggested that octopaminergic neurons may have an excitatory effect on inhibitory LNs (Linnster and Smith, 1997). C Cartoon of glomeruli colored by the percentage of inputs onto ORN axon terminals provided by the Broad LN Trio and from Keystone, indicating the amount of presynaptic inhibition (onto ORNs) in either state. The inhibition provided by Broad LN Trio is much more uniform than the inhibition provided by Keystone. Dotted lines indicate glomeruli that receive Picky LN 0 input on either the ORN or uPN. D The LNs putatively active in each state. E Unlike other Picky LNs, Picky LN 0 makes synapses onto ORN axon terminals and many uPNs. Here connections with 2 or more synapses consistent between bilaterally homologous neuron pairs are shown. Arrow thicknesses are weighted by the square root of the number of synapses between neurons. With the exception of 45a, all shown ORNs and uPNs belong to glomeruli that synapse onto Picky LN 0 as well. Thus Picky LN 0 provides both pre- and postsynaptic inhibition to a small set of glomeruli.
The alternative state of heterogeneous presynaptic inhibition implemented by Keystone could be triggered by select non-ORN sensory neurons that synapse onto Keystone in the SEZ (Figure 3.9a, b). These non-ORN sensory neurons are the top inputs of Keystone and do not synapse onto any other olfactory LN. In contrast, ORNs that synapse onto Keystone also synapse onto the Broad LN Trio (Figure 3.2), suggesting a role for non-ORN sensory inputs in tilting the balance towards Keystone and therefore the heterogeneous state. However, the subset of ORNs that also synapse onto Picky LN 0 (Figure 3.4c) could oppose the effect of the non-ORN sensory neurons by inhibiting Keystone and therefore disinhibiting the Broad LN Trio.

Neuromodulatory neurons could also affect the balance between Keystone and Broad LN Trio. Beyond the possible effect of volume release of serotonin (Dacks et al., 2009) and octopamine (Linster and Smith, 1997; Selcho et al., 2012) within the olfactory system, we found that these neuromodulatory neurons synapse directly and specifically onto Keystone or Broad LN Trio, respectively (Figure 3.9b). Beyond non-ORN inputs, ORNs synapse selectively onto these neuromodulatory neurons. Two ORNs (74a and 82a) synapse onto the serotonergic neuron CSD (Roy et al., 2007), and five ORNs (42b, 74a, 42a, 35a and 1a) onto an octopaminergic neuron (lAL-1; see fig. 4k in Selcho et al., 2014), suggesting that specific ORNs may contribute to tilting the balance between homogeneous and heterogeneous presynaptic inhibition, as well as exert further effects via neuromodulation.

The only other provider of panglomerular presynaptic inhibition is the Broad LN Duet, which is the main provider of panglomerular postsynaptic inhibition. These neurons may operate similarly in both states given that they are inhibited by both Keystone and Broad LN Trio (Figure 2.2c). The higher fraction of inputs from Broad LN Trio onto Duet might be compensated by the fact that the Trio LNs inhibit each other (Figure 3.1e, 3.9b), whereas the two Keystone LNs do not (Figure 3.9b). Therefore, potentially the Broad LN Duet could be similarly active in either state (Figure 3.9d).
3.3.2 Some glomeruli are special-purpose

The possibility of heterogeneous presynaptic inhibition promoted by Keystone suggests that some ORNs can escape divisive normalization of their outputs relative to the rest. Not surprisingly, one such ORN is 49a (Figure 3.9c), which is extremely specific for the sexual pheromone of a parasitic wasp that predates upon larvae (Ebrahim et al., 2015). The other two ORNs that escape fully are 1a and 45b. 1a activation drives negative chemotaxis (Hernandez-Núñez et al., unpublished). 45b senses compounds that elicit negative chemotaxis in larvae (Kreher et al., 2008). These three ORNs, and in particular 49a, are under strong postsynaptic inhibition by both Broad LN Duet and Choosy LNs (Figure 3.1c). In summary, reducing presynaptic inhibition in these 3 ORNs may enable larvae to perceive odors evolutionarily associated with life-threatening situations less dependently of the response intensity of other ORNs (i.e. overall odorant concentration). This is consistent with the finding that responses to aversive odors may rely on specific activity patterns in individual ORNs (Gao et al., 2015). The strong postsynaptic inhibition might be instrumental for their corresponding uPN to respond to the derivative of the ORN activity (with an incoherent feedforward loop; (Alon, 2007)), as shown in the adult fly (Kim et al., 2015), facilitating detection of concentration changes.

A key neuron in tilting the balance between homogeneous and heterogeneous presynaptic inhibition in the Broad-Keystone circuit is Picky LN 0 (Figure 3.9b). Remarkably, one of the two top ORN partners of Picky LN 0 is ORN 42a (Figure 3.4c), the strongest driver of appetitive chemotaxis in larvae (Asahina et al., 2009; Fishilevich et al., 2005; Hernandez-Nunez et al., 2015; Schulze et al., 2015). The connections of Picky LN 0 extend beyond that of other oligoglomerular LNs, and include both pre- and postsynaptic inhibition of a small subset of glomeruli, including 42a (Figure 3.9e). The wiring diagram therefore indicates that Picky LN 0, a likely glutamatergic LN, engages in seemingly contradictory circuit motifs: simultaneously inhibiting specific ORNs and their uPNs, while also disinhibiting them by inhibiting Keystone. The suppression of Keystone disinhibits
the Broad LN Trio and therefore promotes homogeneous inhibition. However this is further nuanced by reciprocal connections between Picky LN 0 and Broad LN Trio (Figure 3.9b). This push-pull effect of glutamatergic LNs on PNs has been described for the olfactory system of the adult fly as conducive to more robust gain control and rapid transitions between network states (Liu and Wilson, 2013). This refined control could endow Picky LN 0-innervated glomeruli like 42a (Figure 3.9e) with the ability to better detect odor gradients, consistent with 42a being a strong and reliable driver of appetitive chemotaxis (Asahina et al., 2009; Fishilevich et al., 2005; Schulze et al., 2015).

Picky LN 0 and its push-pull effect on PNs not only can have an effect on positive chemotaxis but also on negative. A clear example is the 82a glomerulus (known to respond to an aversive odor that drives negative chemotaxis (Kreher et al., 2008)) which lacks a well-developed uPN but engages in strong connections with mPNs such as A3 (Figure 3.4c,d). We found that, like for the appetitive case of 42a, Picky LN 0 engages in both presynaptic inhibition onto 82a ORN and also postsynaptic inhibition onto mPN A3, one of the top PNs of 82a ORN. And like other ORNs mediating aversive responses (e.g 49a), the 82a uPN is also under strong postsynaptic inhibition (Figure 3.1c).

Finally, we found evidence that an individual glomerulus can have a global effect on the olfactory system. All LNs (except Picky LN 3) receive inputs from Ventral LN (Figure 2.2c, Figure 3.2), an interneuron of unknown neurotransmitter, which is primarily driven by the 13a glomerulus. This suggest that 13a, an ORN sensitive to alcohols (Kreher et al., 2008), could potentially alter the overall olfactory processing.
3.4 Feedback from the brain

In the mammalian olfactory bulb, descending inputs from the brain target granule cells (the multiglomerular inhibitory LNs), shaping the level of inhibition [Balu et al., 2007]. In addition to descending neuromodulatory neurons (CSD; Figure 3.9a), in the larva we found a descending neuron (Figure 3.10) that targets specific mPNs and LNs (Figure 3.6). In addition to other mPNs, this descending neuron targets the two mPNs that we postulate are aversive (mPNs A3 and B3). Together with the axo-axonic inputs it receives from 45a ORN (an aversive ORN, [Bellmann et al., 2010; Hernandez-Nunez et al., 2015]), this descending neuron is associated with the processing of aversive stimuli. Additional descending neurons affecting PNs and LNs might exist but were beyond the scope of this study, where we focused on neurons directly synapsing with ORNs.
Figure 3.10: **EM-reconstructed arbor of the descending neuron.** Renderings of the left antennal lobe, posterior view. This identified neuron exists in the left and right antennal lobes, presenting similar morphology and connectivity in the right antennal lobe. Broad LNs and uPNs are shown for reference. Scale bar: a cell body measures about 4 micrometers in diameter.
Chapter 4

Conclusions
4.1 Discussion

The glomerular olfactory system of the larva develops in a similar fashion to the vertebrate olfactory bulb where the afferents (i.e. ORNs) organize the central neurons, unlike in the adult fly (Prieto-Godino et al., 2012). In zebrafish, GABAergic LNs provide depolarizing currents to PNs (mitral cells) via gap junctions at low stimulus intensities, enhancing low signals, and inhibit the same PNs at high stimulus intensity via GABA release, implementing a form of gain control (Zhu et al., 2013). This role is played by a class of panglomerular excitatory LNs in the adult fly that make gap junctions onto PNs and excite inhibitory LNs (Yaksi and Wilson, 2010). In the larva, all panglomerular neurons are GABAergic; if any were to present gap junctions with uPNs, a cell type for gain control in larva would be equivalent to the one in zebrafish. Particularly good candidates are the Broad LN Duet, which provide the bulk of feedforward inhibitory synapses onto uPNs in larva. Interestingly, postsynaptic inhibition might not be mediated by GABA in the adult fly (supp. fig. 5 in Olsen and Wilson, 2008), rendering olfactory circuits in larva more similar to vertebrates. Presynaptic inhibition exists both in the adult fly and, as suggested by the present work, in larva, and is mediated by the same kind of panglomerular GABAergic neurons (the Broad Trio LNs in larva; and see Olsen and Wilson, 2008).

The uniglomerular circuit is the most studied in all species both anatomically and physiologically. We found that each uPN receives an unusually large number of inputs from an individual ORN compared to other sensory systems in the larva (Ohyama et al., 2015). This large number of morphological synapses could be interpreted as a strong connection, which would support faster or more reliable signal transmission. In the adult fly, the convergence of multiple ORNs onto an individual PN enables both a fast and reliable PN response to odors (Bhandawat et al., 2007). The temporal dynamics of crawling are
far slower than that of flying, and therefore we speculate that the integration over time of the output of a single ORN might suffice for reliability, demanding only numerous synapses to avoid saturation.

Positive, appetitive chemotaxis involves odor gradient navigation, leading to a goal area where food is abundant which may overwhelm olfaction. We postulate that navigation and feeding correspond to the homogeneous and heterogeneous states of presynaptic inhibition that we described. During navigation, homogeneous presynaptic inhibition (via Broad LN Trio) could best enhance salient stimuli and therefore chemotaxis, enabling the olfactory system to operate over a wide range of odorant intensities (Asahina et al., 2009). During feeding, strongly stimulated ORNs could scale down the inputs provided by other, less stimulated, ORNs. In other words, if homogeneous presynaptic inhibition persisted during feeding, the larvae would lose the ability to detect important odorants that are likely to be faint, for example the scent of a predator such as a parasitic wasp via 49a (Ebrahim et al., 2015). The larva can selectively release presynaptic inhibition via Keystone, which provides presynaptic inhibition to appetitive glomeruli while also inhibiting the Broad LN Trio—the major providers of panglomerular presynaptic inhibition. So the larva could feed and remain vigilant to evolutionarily important cues at the same time. Not surprisingly, the switch might be triggered by neuromodulatory neurons and non-ORN sensory neurons, potentially gustatory, that synapse onto Keystone.

In addition to the uniglomerular system that is present across multiple vertebrate and invertebrate species (Satou, 1992; Vosshall et al., 2000; Wang et al., 1998), we found, in the Drosophila larva, a multiglomerular system that presumably performs diverse processing tasks already at the first synapse. One such task could be the detection of concentration gradients for some odorant mixtures, suggesting an explanation for the observation that some ORNs can only drive chemotaxis when co-activated with other ORNs (Fishilevich et al., 2005). Similar glomerular-mixing circuits have been described in higher brain areas (lateral horn) of the fly (Fišek and Wilson, 2014; Wong et al., 2002) and of mammals (So-
We hypothesize that in the larva, the morphological adaptations to a life of burrowing might have led to specific adaptations, relevant to an animal that eats with its head, and therefore the dorsal organ housing the ORNs, immersed in food. It is perhaps not surprising that we found multisensory integration across ORNs and non-ORNs (likely gustatory) already at the first synapse. And we hypothesize that the pooling of chemosensors (ORNs and non-ORNs) onto mPNs and Picky LNs may be related to the reduction in the number of ORNs relative to insects with airborne antennae.

With our complete wiring diagram of this tractable, transparent model system and genetic tools for manipulating and monitoring the activity of single identified neurons, we have now the opportunity to bridge the gap between neural circuits and behavior (Carandini, 2012).

4.2 Other Materials and Methods

4.2.1 Immunolabeling and light microscopy

CNS was dissected from 3rd instar larvae. 4% formaldehyde was used as fixative for all antibodies except anti-dVGlut that required bouin fixation (Drobyshova et al., 2008). After fixation, brain samples were stained with rat anti-flag (1:600, Novus Biologics) and chicken anti-HA (1:500, Abcam, ab9111) for labeling individual neurons in the multi-color flip-out system (Nern et al., 2015), while mouse anti-Chat (1:150, Developmental Studies Hybridoma Bank, ChaT4B1) and rabbit anti-GABA (1:500, Sigma A2052, Lot# 103M4793) or anti-dVGlut (Daniels et al., 2004) were used for identifying neurotransmitters. Antibodies were incubated at 4°C for 24 hours. Preparations were then washed 3 times for 30 min. each, with 1% PBT and then incubated with secondary antibodies (including: goat anti-Mouse Alexa Fluor 488, goat anti-rabbit Alexa Fluor 568, donkey anti-rat Alexa Fluor 647, Thermofisher; and goat anti-chicken Alexa Fluor 405, Abcam) at 1/500 dilution for 2 hours at room temperature, followed by further washes. Nervous systems were mounted.
in Vectashield (Vector Labs) and imaged with a laser-scanning confocal microscope (Zeiss LSM 710).

4.2.2 Clustering of ORNs by PCA of their responses to odors

Extensive screens have been conducted to identify which odorants activate each ORN (Kreher et al., 2008; Mathew et al., 2013; Montague et al., 2011). These data can be used as a starting point to determine whether the multiglomerular circuit extracts relevant components of odorant physical descriptor space, that is, the chemical structure of the odorant as sampled by ORNs. Using the data from (Kreher et al., 2008) and (Montague et al., 2011), we conducted a dimensionality reduction via PCA followed by a clustering analysis, and then used the data from (Mathew et al., 2013) to verify our findings. To determine how ORNs encode odors we followed the PCA analysis in ORN space performed in (Haddad et al., 2010) adding the data of pyrazines from (Montague et al., 2011). Then, using the Scree test we selected the first 3 components of the PCA as the relevant ones to use for clustering, and we ran the clustering minimization using the affinity propagation algorithm (which doesn’t require the number of clusters as an input) (Figure 3.7b, c). Four of the obtained clusters correspond very well with odorant type (alcohols, aromatics, esters, and pyrazines; Figure 3.7d). The fifth cluster is mixed and mainly includes odorants with very low or no ORN response. Consistent with that, k-means clustering in the 32-dimensional odorant physical descriptor space described in (Haddad et al., 2008) results in 5 clusters, 4 of them matching the non-mixed clusters obtained in ORN space (Figure 3.7a).

To determine which ORNs encode the regions of each cluster, we projected back the centroid of each cluster onto ORN space using the inverse transformation (Figure 3.7e). Different subsets of ORNs were more likely to encode each cluster. The projections of the cluster centroids in ORN space are not discrete numbers; in order to make these results easier to interpret a threshold can be established to determine which ORNs encode
a cluster centroid and which ones don’t. A suitable approach is to use Otsu’s method, which can be considered a one-dimensional discrete analog of Fisher’s discriminant analysis (Otsu, 1975). We obtained a threshold of 0.4725, which we used to determine the ORNs that encode each cluster (dashed red line in Figure 3.7e).

In (Mathew et al., 2013) a set of odorants that specifically activate single ORNs at low concentrations were identified. These data can easily be used to cross-validate the predicted receptive field of the different ORNs in our analysis. Four of the odorants tested were alcohols and activated Or13a, 35a, 67b and 85c all of which are in our alcohols group. Other three were aromatics and activated Or22c, 24a and 30a, which are all in our aromatics group. One was a pyrazine and activated Or33b which is in our pyrazine group. Finally pentyl acetate (an ester) activated 47a which is in our esters group. The other odorants in (Mathew et al., 2013) were in regions of odor space (mostly ketones and aldehydes) that were not sampled in (Kreher et al., 2008) or (Montague et al., 2011) and therefore their responses cannot be predicted with our analysis. As more datasets are collected, approaches like the one we present here can be used to better establish the receptive field of each ORN.
Bibliography

Ramaekers, A., Magenat, E., Marin, E., Gendre, N., Jefferis, G., Luo, L., and Stocker, R.

67

