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Abstract

In the search for materials with new properties, there have been significant ad-

vances in recent years aimed at the construction of architected materials whose be-

havior is governed by structure, rather than composition. Through careful design of

the material’s architecture, new mechanical properties have been demonstrated, in-

cluding negative Poisson’s ratio, high stiffness to weight ratio and mechanical cloak-

ing. However, most of the proposed architected materials (also known as mechanical

metamaterials) have a unique structure that cannot be reconfigured after fabrication,

making them suitable only for a specific task.

This dissertation focuses on the design of architected materials that take advantage

of the applied large deformation to enhance their functionality. Mechanical instabil-

ities, which have been traditionally viewed as a failure mode with research focusing

on how to avoid them, are exploited to achieve novel and tunable functionalities. In

particular I demonstrate the design of mechanical metamaterials with tunable nega-

tive Poisson ratio, adaptive phononic band gaps, acoustic switches, and reconfigurable

origami-inspired waveguides.

Remarkably, due to large deformation capability and full reversibility of soft ma-

terials, the responses of the proposed designs are reversible, repeatable, and scale-

independent. The results presented here pave the way for the design of a new class

of soft, active, adaptive, programmable and tunable structures and systems with un-

precedented performance and improved functionalities.
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Somewhere, something incredible is waiting to be known.
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Architected mateirals (also referred to as mmetamaterials) are rationally designed

structures which gain their properties from structure rather than composition. Since

it was first shown that microstructures built from non-magnetic conducting sheets can

exhibit effective magnetic permeability104, the metamaterial concept has been quickly

extended to photonic136, acoustic79 and mechanical69 systems, leading to the design

of a variety of materials with properties not previously thought possible. These struc-

tures, often made of periodic microstructure, can be found in different scales ranging

from nanometer to kilometer (see Figure 1.1), and offer broad range of application in

light weight structures, protective systems, energy/shock absorbent and impact re-

sistant materials, energy harvesting devices, ultra-stiff or ultra-tough materials, soft

actuators and sensors, noise canceling devices, tunable membrane filters, wave guiding

and cloaking devices, vibration isolators, negative refraction systems and ultrasonic

super lenses, switches and rectification devices, and acoustic/thermal diodes.

The recent interest in soft structures may lead to the next paradigm in the devel-

opment of adaptive and actuating systems and devices64,42. The use of the large de-

formation capability of soft materials as building components for soft structures, ex-

pands the ability of existing structures to reversibly deform and reconfigure, opening

avenues for the design of adaptive and tunable systems such as soft and reconfigurable

actuators and sensors56,88,31,107,87,101,156, and switchable and programmable metama-

terials126,109,148,130,124,155.

Mechanical instabilities have been traditionally viewed as an inconvenience, with

research focusing on how to avoid them. For almost two centuries researchers were

always focusing on the maximum load carrying capacity of a structure and emphasis

has been placed on the conditions of the onset of bifurcation. We change this prospec-

tive and exploit instabilities to design a new class of 3D materials that sense the sur-
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Figure 1.1: Architected structures ranging from nanometer o kilometer scale. (a) Heat manage-
ment by thermocrystal82 (b) ultralight metallic microlattice 121 (c) 3D broadband omnidirectional
acoustic cloak165 (d) locally resonant sonic materials 77 (e) sound attenuation by sculpture 89, and
(f) Buitenschot noise-canceling landscape art park 1.

roundings and tune their shape and properties in response to external stimuli. More

recently, the construction of mechanical metamaterials by harnessing elastic instabil-

ities has attracted much attention for applications such as trapping elastic energy 125,

soft actuators101, programming mechanical response40,109, transforming wave propa-

gation114, and controlling mechanical response of origami-inspired structures 153,154.

The ability to pattern materials in three dimensions is crucial for structural, opti-

cal, electronic, and energy applications. Using three-dimensional printing allows one

to design and rapidly fabricate materials in complex shapes without the need for ex-

pensive tooling or fabrication techniques110,135,94,122,115. For instance, recent advances

in fabrication at micro- and macro-scales have enabled the design of metamaterials

with electromagnetic properties that are not only distinct from their constituents, but
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also previously not possible136,70,162.

This thesis focuses on the design of soft and tunable architected materials to ex-

plore the opportunities on the connection between material’s architecture and me-

chanics of the soft structures. Guided by theoretical, experimental and numerical

analysis, I exploit large deformation capability of soft materials, mechanical instabili-

ties, and geometric non-linearities to design novel systems and structures with tunable

exceptional properties. This class of materials has found its way into the design of

materials and systems, and received significant interest in recent years, not only be-

cause of their rich physics, but also for their broad range of applications. Examples

include adaptive noise-canceling devices12, reconfigurable origami-inspired waveg-

uides8, auxetic metmaterials10,95, protective fiber networks9, energy absorbent and

shock resistant cellular structures96,7, and acoustic switches11. Remarkably, due to

large deformation capability and full reversibility of soft constituent materials, the

responses of the proposed designs are reversible, repeatable, and scale-independent,

opening avenues for the design of a new class of soft, active, adaptive, programmable

and tunable structures and systems.

This thesis is structured into four chapters:

In chapter 2, we report a new class of 3D mechanical metamaterial with negative

Poisson’s ratio. In particular, we exploit buckling to design three dimensional meta-

materials that contract in the transverse direction under compressive loading regimes.

These proposed metamaterials consist of an array of patterned elastomeric spherical

shells, which due to a mechanical instability, undergo a significant isotropic volume

reduction when deformed. The large geometric non-linearities introduced in the sys-

tem by buckling are exploited to achieve a negative Poisson’s ratio and retain this

unusual property over a wide range of applied deformations. Here, we identify a li-
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brary of auxetic building blocks and define procedures to guide their selection and

assembly. The auxetic properties of these materials are demonstrated both through

experimental and finite element simulation approaches and exhibit excellent qualita-

tive and quantitative agreement. As a result of this unusual behavior, these proposed

metamaterials could be useful for the design of protective and energy absorbing mate-

rials, efficient membrane filters with variable permeability, and acoustic dampeners 10.

In chapter 3, we focus on elastic wave propagation through the Phononic crystals.

In particular, we report a new class of three-dimensional adaptive phononic crystals

whose dynamic response is controlled by mechanical deformation. Using finite ele-

ment analysis, we demonstrate that the bandgaps of the proposed 3D structure can

be fully tuned by the externally applied deformation. In fact, our numerical results

indicate that the system acts as a reversible phononic switch: a moderate level of ap-

plied strain (i.e. -0.16) is sufficient to completely suppress the bandgap, and upon

the release of applied strain, the deformed structure recovers its original shape, which

can operate with a sizable bandgap under dynamic loading. In addition, we investi-

gate how material damping significantly affects the propagation of elastic waves in

the proposed 3D soft phononic crystal. We believe that our results pave the way for

the design of a new class of soft, adaptive and re-configurable 3D phononic crystals,

whose bandgaps can be easily tuned and switched on/off by controlling the applied

deformation12.

In chapter 4 and 5, we investigate the propagation of sound (acoustic waves) through

the architected structures. In particular, in chapter 4, by combining numerical anal-

yses and experiments we design a new class of architected materials to control the

propagation of sound (also called acoustic metamaterials). The proposed system

comprises an array of elastomeric helices in background air and is characterized by
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frequency ranges of strong wave attenuation (bandgaps) in the undeformed config-

uration. Importantly, our results indicate that by axially stretching the helices such

bandgaps can be suppressed, enabling the propagation of sound over all frequencies.

The proposed concept expands the ability of existing acoustic metamaterials and

paves the way for the design of a new class of materials and devices that enable better

control and manipulation of sound11.

In chapter 5, we combine numerical simulations and experiments to design a new

class of reconfigurable waveguides based on 3D origami-inspired metamaterials. Our

strategy builds on the fact that the rigid plates and hinges forming these structures

define networks of tubes that can be easily reconfigured. As such, they provide an

ideal platform to actively control and redirect the propagation of sound. Interest-

ingly, we design reconfigurable systems that, depending of the externally applied

deformation, can act as networks of waveguides oriented along either one or two or

three preferential directions. Moreover, we demonstrate that the capability of the

structure to guide and radiate acoustic energy along well predefined directions can

be easily switched on and off, as the networks of tubes are reversibly formed and dis-

rupted. The proposed designs expand the ability of existing acoustic metamaterials

and exploit complex waveguiding to enhance the control of propagation and radiation

of acoustic energy, opening avenues for the design of a new class of tunable acoustic

functional systems8.

All in all, our proposed designs and investigations presented here shed new light on

the rich static and dynamic responses of mechanical metamaterials, phononic crys-

tals and acoustic metamaterials, pave the way for the design of a new class of soft,

adaptive, programmable and tunable structures and systems with unprecedented per-

formance and improved functionalities.
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This chapter has already been published in:

S. Babaee, J. Shim, J. C. Weaver, N. Patel, and K. Bertoldi, 3D Soft Metamaterials with Nega-

tive Poissons Ratio, Advanced Materials 2013, 25 (36):5044-5049.

2
Three-dimensional Soft Metamaterials

with Negative Poisson’s Ratio
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2.1 Overview

When materials are uniaxially compressed, they typically expand in directions or-

thogonal to the applied load. Here, we exploit buckling to design a new class of three

dimensional metamaterials with negative Poisson’s ratio that contract in the trans-

verse direction under compressive loading regimes. These proposed metamaterials

consist of an array of patterned elastomeric spherical shells, which due to a mechani-

cal instability, undergo a significant isotropic volume reduction when deformed. The

large geometric non-linearities introduced in the system by buckling are exploited to

achieve a negative Poisson’s ratio and retain this unusual property over a wide range

of applied deformations. Here, we identify a library of auxetic building blocks and de-

fine procedures to guide their selection and assembly. The auxetic properties of these

materials are demonstrated both through experimental and finite element simulation

approaches and exhibit excellent qualitative and quantitative agreement. As a result

of this unusual behavior, these proposed metamaterials could be useful for the design

of protective and energy absorbing materials, efficient membrane filters with variable

permeability, and acoustic dampeners.

2.2 Introduction

Metamaterials are rationally designed artificial materials which gain their properties

from structure rather than composition. Since it was first shown that microstructures

built from non-magnetic conducting sheets can exhibit effective magnetic permeabil-

ity104, the metamaterial concept has been quickly extended to photonic 136, acoustic79

and mechanical69 systems, leading to the design of a variety of materials with proper-

ties not previously thought possible.
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The Poisson’s ratio defines the ratio between the transverse and axial strain 47. Ma-

terials that are uniaxially compressed typically expand in the directions orthogonal to

the applied load. Counter-intuitively, materials with a negative Poisson’s ratio (aux-

etic materials) contract in the transverse direction 66,36. The first reported example

of an artificial auxetic material was a foam with re-entrant cells that unfolded when

stretched65. Since then, several periodic 2-D geometries and mechanisms have been

suggested to achieve a negative Poisson’s ratio75. While auxetic responses have been

demonstrated in many crystals14, very few designs of synthetic 3-D auxetic materials

have been proposed69. Analytical studies have identified 3-D auxetic systems consist-

ing of networks of beams51, multipods105 and rigid units6 and only very recently, a

metallic 3-D architecture based on a bow-tie functional element has been fabricated 25.

In all of these systems, however, the auxetic behavior is exhibited only in the limit

of small strains, and the design of 3-D auxetic systems capable of retaining these un-

usual properties at large strains still remains a challenge 69.

The design of metamaterials capable of responding reversibly to changes in their

environment is of fundamental importance for the development of the next generation

of actuators and sensors, tunable optics and smart responsive surfaces 131,18. Further-

more, a remarkable feature of responsive metamaterials is that any of their properties

can be switched or fine-tuned just by applying a stimulus to alter their initial archi-

tecture.

In order to successfully design a new class of 3-D auxetic materials capable of re-

taining this unusual response over a wide range of applied strains, we exploited the

large geometric non-linearities introduced in the system by instabilities. Through a

combination of desktop-scale experiments and finite element (FE) simulations, we in-

vestigated the auxetic responses of these structures, finding excellent qualitative and
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quantitative agreement. Since the 3-D auxetic behavior is induced by elastic buckling,

we have named these new materials ”Bucklicrystals”. We believe that these Buck-

licrystals open new design avenues for the construction of 3-D auxetic materials over a

wide range of length scales.

2.3 Results and Discussion

We began by recognizing that a structural unit capable of isotropic volume reduction

represents the ideal building block to construct 3-D auxetic metamaterials whose re-

sponse can be controlled by the application of a stimulus. Such responses have been

recently demonstrated for patterned spherical shells129, where a significant change in

volume has been observed as a result of an elastic instability. The hole arrangement

on the spherical shell has also been explored, showing that only five patterns compris-

ing of 6, 12, 24, 30 and 60 holes are possible for such building blocks129. Note that

these five spherical structures can be classified into two symmetry groups: the shells

with 6, 12 and 24 holes have octahedral symmetry, while those with 30 and 60 holes

have icosahedral symmetry.

Having identified the building blocks, we then defined procedures to guide their

assembly. Here, we focused on cubic crystal systems (i.e., simple cubic (sc), body-

centered cubic (bcc), and face-centered cubic (fcc)) because of their simplicity and

highest symmetry order out of the seven lattice systems. Since it was necessary that

both the building blocks and the metamaterial have octahedral symmetry, only spher-

ical shells with 6, 12 and 24 holes were considered in this study (Figure 2.1a and

Figure A.1). Furthermore, for the sake of simplicity and ease of scalability, we con-

structed each metamaterial from a single type of building block.
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Figure 2.1: Gallery of Bucklicrystals. a) Building blocks with 6, 12 and 24 holes. For the sake of
simplicity, we always color the building blocks with 6, 12 and 24 holes with red, green and blue,
respectively. Moreover, we also identify the junctions where the building blocks are attached to
the surrounding units using yellow circles, black triangles, and magenta squares for bcc, fcc, and
sc packing configurations, respectively. b) Representative volume elements (RVE) for the Buck-
licrystal in the undeformed configuration. c) Buckled configurations for the RVEs under uniaxial
compression.
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Since each building block has a limited number of sites where adjacent building

blocks can be attached to each other (see markers in Figure 2.1a) and metamaterials

with octahedral symmetry can be built only via connecting identical junctions (i.e.,

junctions identified by the same type of markers in Figure 2.1a), only six different

Bucklicrystals can be built (Figure 2.1b and Figure A.2): bcc crystals using build-

ing blocks with 6, 12 and 24 holes, sc crystals using building blocks with 12 and 24

holes, and fcc crystal using building blocks with 24 holes. Having identified all possi-

ble configurations for the Bucklicrystals, we next investigated their response through

a combination of experiments and numerical simulations.

We first fabricated and mechanically tested a Bucklicrystal consisting of a bcc ar-

ray of building blocks with 6 holes. Using additive manufacturing for the fabrication

of individual molds for each unit cell, we fabricated the building blocks from a soft

silicone-based rubber (Vinyl Polysiloxane with Young’s modulus, E = 784KPa).

The geometry of the building block comprises a spherical shell (inner diameter di =

19.8mm and wall thickness t = 7.1mm) that is patterned with a regular array of 6

circular voids that are slightly tapered (22mm and 13mm maximum and minimum

diameter, respectively) (Figure 2.1 and Figure A.1). Ninety one identical building

blocks were fabricated and subsequently joined to form a bcc crystal using the same

polymer as an adhesive agent.

The Bucklicrystal was then tested under uniaxial compression and the evolution of

the microstructure was monitored taking tomographic images at five different levels

of the applied nominal strain (calculated as change of height of the sample divided

by the original height), εapplied22 = −0.03,−0.08,−0.15,−0.20,−0.30, with a micro-

CT X-ray scanner (HMXST225, X-Tek). Figure 2.2 shows isometric and mid-cross

sectional views of the structure in the undeformed (εapplied22 = 0 - Figure 2.2a) and
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deformed (εapplied22 = −0.20 - Figure 2.2b) configurations. Furthermore, a sequence of

progressively deformed shapes of the inner-most building block at different levels of

strain is shown in Figure 2.2c. These snapshots clearly demonstrate that structural

transformations induced by instabilities occur when the Bucklicrystal is compressed.

All the building blocks are found to shrink significantly in all directions and their ini-

tially circular holes on the spherical shell transform into elongated, almost closed el-

lipses. Moreover, Figure 2.2a,b clearly show that all of the lateral boundaries of the

deformed Bucklicrystal bend inwards, a clear indication of a 3-D negative Poisson’s

ratio.
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Figure 2.2: Experimental (micro-CT) and numerical images of the 6-hole Bucklicrystal. a) Iso-
metric and cross-sectional views of the undeformed crystal from micro-CT X-ray imaging machine.
b) Isometric and cross-sectional views of the uniaxially compressed crystal (εapplied22 = −0.20) from
micro-CT volumetric data sets. In the cross sectional views, the inner-most RVE is highlighted by
a red box. ∆xi(0) and ∆xi, i = 1, 2, 3, are the edge length of the red box in the i direction for
undeformed and buckled crystals, respectively. c) Magnified views of the inner-most RVE taken
from micro-CT X-ray scanning at different levels of strains. d) Corresponding pictures taken from
simulation. (Green scale bars: 20mm)
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Recognizing that the response of the specimens is necessarily influenced by bound-

ary conditions at both the loaded and the traction-free faces, we focused on the inner-

most building block (which can be considered as the representative volume element

(RVE) for the corresponding infinitely periodic structure) and quantitatively esti-

mated its deformation using image post-processing. First, each tomographic image

was size-calibrated using the known shell thickness (t = 7.1mm), which was only

marginally affected by deformation. We then tracked the centroids of the four voids

surrounding the RVE in both the 1-2 and the 2-3 planes (see vertices of the red rect-

angle in Figure 2.2a,b) and used them to calculate centroid-to-centroid distances

along the three directions, denoted by ∆x1, ∆x2, and ∆x3. Prior to compression, the

value for all of these quantities was ∆xi(0) ' 38mm, i = 1, 2, 3. Local normal strains

were then obtained as εii = 〈∆xi〉/∆xi(0), where the angular bracket 〈·〉 denotes

ensemble average over all distances under consideration. It is worth noting that the

measured local longitudinal strains, denoted by ε22, were higher than those applied,

denoted by εapplied22 . This was expected since the building blocks in close proximity of

the two plates used to compress the structure were highly constrained by friction and

were unable to fully deform.

In Figure 2.3a, we present the dependence of the transverse strains ε11 and ε33 on

the longitudinal strain ε22. The error bars on the experimental points were obtained

from the standard deviation of the two values of ∆xi used in each averaging. Re-

markably, the data clearly show that upon increasing the compressive strain ε22, both

transverse strains decrease, indicating that the structure contracts in both lateral di-

rections. To quantify these lateral contractions, the Poisson’s ratios were calculated

from the engineering strain as νij = −εii/εjj . The estimates of νij were plotted as a

function of ε22 in Figure 2.3b. The evolution of ν21 and ν23 was characterized by two
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subsequent regimes: a decreasing regime followed by a plateau. Initially both Pois-

son’s ratios monotonically decrease. They became negative at ε22 ' −0.03, and even-

tually reached the value ν ' −0.4 and plateau at ε22 ' −0.20, demonstrating that the

response of the Bucklicrystal was auxetic over a wide range of deformations. Finally

we note that, since the specimens are made of an elastomeric material, the process

was fully reversible and repeatable. Upon release of the applied vertical displacement,

the deformed structures recovered their original configurations.

Figure 2.3: Evolution of transverse strains and Poisson’s ratios for the 6-hole Bucklicrystal. a)
Evolution of the transverse engineering strain ε11 and ε33 as a function of the applied longitudinal
strain ε22. b) Evolution of the Poisson’s ratios (ν21 and ν23) of the 6-hole Bucklicrystal as a func-
tion of compressive strain ε22. The finite element results (solid lines) are in good agreement with
the experimental data (square markers).

Next, we performed finite element (FE) simulations of the 6-hole Bucklicrystal.

To verify that the auxetic behavior measured in the experiments was not affected by

the boundary conditions, we considered the structure to be infinite and investigate

the response of a representative volume element (RVE) under uniaxial compression

using periodic boundary conditions. All analyses were performed on the cubic RVE
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comprising a central building block connected to one-eighth of the building block at

each junction (the junctions and the RVE are shown in Figure 2.1a).

We first investigated the stability of the Bucklicrystal through Bloch wave analy-

sis16,43 and the analysis detects a mechanical instability at ε22 = −0.03. The post-

buckling response of the Bucklicrystal was then simulated by introducing a small

imperfection in the initial geometry. In Figure 2.2d we present a sequence of the

progressive collapse of the Bucklicrystal obtained from FE simulations, which is in

remarkable qualitative agreement with the experiments for the same geometric and

material parameters (Figure 2.2c). The snapshots clearly revealed that in this Buck-

licrystal, mechanical instabilities act as a functional mode of actuation, inducing the

spherical collapse of every building block while keeping the structure periodic. To bet-

ter characterize the response of the structure, in Figure 2.3 we report the evolution of

the lateral strains (ε11, ε33) and Poisson’s ratios (ν21, ν23) as a function of ε22, show-

ing an excellent quantitative agreement with our experimental results. It is worth

noting that since after buckling, the initial cubic RVE changes into a rectangular par-

allelepiped, for large values of longitudinal strain ε33 6= ε11 and ν21 6= ν23. This can be

clearly seen in Figure 2.2d for εapplied22 = −0.30, where all of the ligaments in the 1-2

plane are touching, while in the 2-3 plane, they are still separated from each other.

Given the excellent qualitative and quantitative agreement found between our ex-

periments and simulations, we proceeded by focusing primarily on the FE simulation

results to further explore the buckling-induced auxetic behavior of all the Bucklicrys-

tals identified in Figure 2.1. Each building block is fully characterized by two adimen-

sional parameters: porosity, denoted by ψ, (defined as the ratio of the void volume to

the intact spherical shell volume) and thickness over inner radius ratio, denoted by

t/ri
129. All crystals were constructed using building blocks characterized by the same
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parameters used for the 6-hole crystal investigated above, ψ = 0.733 and t/ri = 5/7.

All analyses were performed on cubic RVEs (Figure 2.1b and Figure A.2): (i) for

bcc configurations (12- and 24-hole), they were constructed as described for the 6-

hole bcc case; (ii) for the sc configurations (12- and 24-hole), a single building block

was used as RVEs; (iii) for the fcc configuration (24-hole), RVEs were built such that

they comprise of 6 half-building blocks located in the middle of the cube faces, attach-

ing to 8 one-eighth of the building blocks at the corners. It is worth noting that the

use of building blocks characterized by the same parameters ψ and t/ri resulted in

Bucklicrystals with different initial global porosities, denoted by ψ̄ (i.e., ψ̄sc = 0.888,

ψ̄bcc = 0.854 and ψ̄fcc = 0.842). In all Bucklicrystals, instabilities of short wavelength

were found to be critical, leading to spherical collapse of all the building blocks. The

values of critical strain obtained from Bloch wave analysis were εcr22 = −0.030, −0.030,

−0.041, −0.020, −0.026, and −0.023 for 6-hole bcc, 12-hole bcc and sc, and 24-hole

bcc, sc and fcc, respectively. Moreover, the deformed mode shape of the RVEs are

reported in Figure 2.1c. Note that for the sc configurations, when the critical insta-

bility occurs, the periodicity of the crystal was altered and a new RVE comprised of

8 building blocks was found (RVE size = 2 × 2 × 2 in 1, 2, and 3 directions). Fur-

thermore, in the building blocks with 12 or 24 holes, the identical junctions (i.e., the

sites where adjacent building blocks can be attached to each other) rotate all in the

same direction during folding (Figure A.6). As a result, in Bucklicrystals comprising

arrays of building blocks with 12 or 24 holes, the folded units have two potentially

different orientations (Figure A.7). In contrast, in the 6-hole building block, half of

the junctions rotate clockwise and half counterclockwise (Figure A.6). As a result, in

the deformed configuration of the 6-hole bcc Bucklicrystal, all of the folded building

blocks are oriented in exactly the same way (Figure A.8).
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Figure 2.4: Mechanical response of Bucklicrystals. a) Nominal stress-strain curves from uniaxial
compression in 2-direction for all of the Bucklicrystals. The stress is normalized with respect to the
elastic modulus of the bulk elastomeric material. b) Evolution of the Poisson’s ratios vs. nominal
strain in 2- direction for all the Bucklicrystals. c) Cross sectional views of undeformed (ε22 = 0)
and deformed (ε22 = −0.15) configurations of 12- and 24-hole Bucklicrystals.

A more quantitative comparison between the responses of all of the Bucklicrystals

can be made by inspecting the evolution of stresses and Poisson’s ratios. Figure 2.4

shows the evolution of the normalized nominal stress S22/E as a function of the longi-

tudinal strain ε22. The response of all configurations is characterized by a linear elas-

tic regime followed by a stress plateau. The departure from linearity is the result of
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buckling and corresponds to a sudden transformation in the periodic pattern as shown

in Figure 2.4c, where snapshots of undeformed and deformed (ε22 = −0.15) configura-

tions are presented. Note that all of the crystals are uniaxially compressed up to the

limit when the ligaments surrounding the holes begin to contact one another. This

results in a maximum longitudinal strain ε22 ' −0.30 for all the crystals, except the

bcc crystal comprising of an array of 24-hole building blocks in which the ligaments

come into contact with each other at ε22 ' −0.15. Finally, it is worth noting that all

the structures exhibit a typical behavior for cellular solids characterized by an initial

linear elastic regime and a stress plateau following thereafter. The final steep portion

of the curve (i.e., densification) is not observed since the applied strain is not large

enough to completely collapse the holes.

The evolution of the Poisson’s ratios as a function of ε22 is also presented in Fig-

ure 2.4b. All of the Bucklicrystals are characterized by initial positive values of ν,

a steeply decreasing regime initiated at the onset of instability, and a final negative

plateau by further compression. Therefore, in all the Bucklycrystals, an evolution

of the Poisson’s ratio from positive to negative is observed; this transition occurs

first in the 24-hole fcc Bucklicrystal (at ε22 ' −0.04) and last in the 12-hole sc (at

ε22 ' −0.12). Remarkably, once the crystals become auxetic, they retain this unusual

property even at large strains. At ε22 = −0.30, all configurations are characterized by

negative Poisson’s ratio, ranging from −0.2 for the 12-hole bcc crystal to −0.5 for the

24-hole fcc. Finally, we note that all the crystals, except the 6-hole case, retain the

transversely symmetric behavior (i.e., ν21 = ν23) even at large strains.

20



2.4 Conclusions

Our finding of buckling-induced auxetic behavior provides a fundamentally new way

for generating 3-D materials with a negative Poisson’s ratio. Our results offer a unique

mechanism with a range of advantages: (i) the proposed design rules can be applied

to various length-scales; (ii) the reconfiguration can occur upon application of differ-

ent stimuli depending on the types of materials; (iii) the transformation can be made

fully reversible; and (iv) the auxetic behavior is retained over a wide range of applied

strain. While the fabrication process described here is not tractable for the large scale

production of these materials, it provides an effective proof of concept method to con-

struct various models and evaluate their mechanical performance. Based on these ini-

tial observations, we are currently developing large-scale 3D-printed sacrificial molds

from soluble materials which would allow the bucklicrystals to be cast in a single step

process. This new approach reduces the production time of these materials by more

than 90% and permits the exploration of more complex geometries. From a prac-

tical perspective, the full control over the desired outcome in combination with the

wealth of different length scales, materials, stimuli, and geometrical designs provides

reversibly auxetic architectures with a broad field of applications ranging from energy

absorbing materials to tunable membrane filters. Finally, although mechanical insta-

bilities have been traditionally viewed as a failure mode with research focusing on

how to avoid them, here we change this perspective and exploit instabilities to design

a new class of 3-D auxetic materials.
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2.5 Materials and Methods

2.5.1 Materials

A silicone-based rubber (commercial name: Elite Double 32, Zhermack) was used to

cast the experimental specimen. The material properties were measured through ten-

sile testing, up to the true strain of ε = 0.60. No hysteresis was found during loading

and unloading. The constitute behavior was accurately captured by a Yeoh hypere-

lastic model161, whose strain energy is U =
∑3

i=1Ci0
(
Ī1 − 3

)i
+ (J − 1)2i /Di where

C10 = 131 KPa,C20 = 0 KPa,C30 = 3.5 KPa,D1 = D2 = D3 = 154 GPa−1. Here,

Ī1 = tr
[
dev

(
FTF

)]
, J = detF, and F is the deformation gradient. Two of the Yeoh

model parameters are related to the conventional shear modulus, denoted by G0, and

bulk modulus, denoted by K0, at zero strain: C10 = G0/2, D1 = 2/K0.

2.5.2 Fabrication of the building blocks

A mold was fabricated using a 3-D printer (Objet Connex500) to cast one half of a

spherical shell. After de-molding, two halves were joined using the same polymer

as adhesive agent. The specimen fabricated for this study has the thickness of t =

7.1 mm, the inner diameter of di = 19.8 mm, and the outer diameter of do = 34.0 mm.

2.5.3 Testing of the Bucklicrystal

After preparing 91 spherical shells, all the shells were joined using the same polymer

as adhesive agent. The dimension of the Bucklicrystal was Height ×Width×Depth =

144.0 × 141.0 × 141.0 mm. In order to observe the evolution of the Poisson’s ratio of

the Bucklicrystal, we applied five different levels of vertical deformation, i.e., engineer-
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ing strains of ε22 = −0.03, −0.08, −0.15, −0.20, and −0.30 with respect to the height

of the Bucklicrystal. At the strain level of interest, we immobilized the specimen us-

ing a fixture made of acrylic plates, nylon bolts/nuts and inch-thick closed-cell foam

plates placed between the specimen and the fixture (Figure A.3). The foam plates

were used as a low electron density spacer that would be nearly invisible in the ac-

quired x-ray transmission images and thus not interfere with volume rendering of the

higher electron density silicone elastomer Bucklicrystal. The specimen with the fixture

was put into a micro-CT X-ray scanner (HMXST225, X-Tek) for image data collec-

tion. Once the 3-D volumes of the inside of the the specimen were reconstructed, the

cross-sectional views of interest were extracted.

2.5.4 Numerical Simulations

The simulations were carried out using the commercial Finite Element package Abaqus

(SIMULIA, Providence, RI). The Abaqus/Standard solver was employed for all the

simulations, i.e., for both microscopic and macroscopic instability analyses and post-

buckling analysis. Models were built using quadratic solid elements (ABAQUS ele-

ment type C3D10M with a mesh sweeping seed size of 1 mm and the analyses were

performed under uniaxial compression. We used first four eigenvalues from instability

analysis as imperfection on non-linear post Buckling analysis. More details on the FE

simulations are provided in Appendix A.
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3.1 Overview

We report a new class of three-dimensional adaptive phononic crystals whose dynamic

response is controlled by mechanical deformation. Using finite element analysis, we

demonstrate that the bandgaps of the proposed 3D structure can be fully tuned by

the externally applied deformation. In fact, our numerical results indicate that the

system acts as a reversible phononic switch: a moderate level of applied strain (i.e.

-0.16) is sufficient to completely suppress the bandgap, and upon the release of ap-

plied strain, the deformed structure recovers its original shape, which can operate

with a sizable bandgap under dynamic loading. In addition, we investigate how ma-

terial damping significantly affects the propagation of elastic waves in the proposed

3D soft phononic crystal. We believe that our results pave the way for the design of a

new class of soft, adaptive and re-configurable 3D phononic crystals, whose bandgaps

can be easily tuned and switched on/off by controlling the applied deformation.

3.2 Introduction

Three-dimensional (3D) periodic structures are attracting significant interest not only

for their remarkable static properties44,120,164,7, but also for their ability to control the

propagation of elastic waves through bandgaps, i.e. frequency ranges of strong wave

attenuation85,34. Such bandgaps can be formed either by Bragg scattering132,61,55 or

by exploiting local resonance within the medium77,137,108,22. Bragg-type bandgaps are

intrinsic to order and typically occur at wavelengths of the order of the unit cell size,

whereas locally resonant bandgaps arise in the vicinity of the natural frequency of the

resonating units and are modestly affected by the spatial periodicity of the system.

While most of the proposed 3D phononic crystals operate in fixed ranges of fre-
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quencies that are impractical to tune and control after the assembly 59,58,163,103,157,116,

it has been shown that the dynamic responses of structures could be altered by me-

chanically deforming them32,147,57. However, a large amount of loading is typically

required to significantly affect the position and width of the bandgaps.

Figure 3.1: Tunable 3D phononic crystal composed of a periodic array of structured shells ar-
ranged to form a body centered cubic (bcc) lattice. When compressed, this structure undergoes
an instability, which results in folding of all the building blocks. Each structured shell is fully char-
acterized by two design parameters: the angle α that defines the narrowest width of the ligament,
and the ratio τ = wi/t between the inner narrowest width of the ligaments and the radial shell
thickness.

It has been recently demonstrated that the tunability of 2D phononic crystals can

be significantly enhanced by triggering mechanical instabilities along the loading

path16,149,114,127. In fact, the instabilities may induce dramatic homogeneous and

reversible changes of the geometry, that can be exploited not only to alter, but also
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to turn on and off the bandgaps even under moderate levels of applied deformation.

However, although recent studies have shown that buckling can be an effective way to

achieve better tunability of 2D phononic devices127,96,148, no similar studies have been

reported for 3D systems.

In this study, we focus on a 3D soft crystal consisting an array of elastomeric pat-

terned spherical shells (see Figure 3.1). This structure has been recently shown to

undergo an instability under uniaxial compression which results in folding of all the

building blocks and macroscopic auxetic behavior10. Here, we investigate numeri-

cally the effect of the applied compression on the propagation of small-amplitude

elastic waves, aiming to the design of a 3D reconfigurable phononic crystal with en-

hanced tunability. To this end, first we identify the geometric parameters leading to

the widest bandgap in the undeformed configuration and then investigate the effect

of the applied compression on the propagation of elastic waves. Finally, since elas-

tomeric materials are dissipative, we study how material damping affects the dynamic

response of the system.

3.3 3D Phononic Crystal

The 3D structure investigated in this study is composed of a periodic array of struc-

tured shells arranged to form a body centered cubic (bcc) crystal. Each spherical shell

is patterned with a regular array of six circular voids and is fully characterized by two

design parameters10,129: the angle α that defines the narrowest width of the ligament,

and the ratio τ = wi/t between the inner narrowest width of the ligaments and the

radial shell thickness (see Figure 3.1).

The response of our 3D structure is conveniently captured using the unit cell shown
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in Figure 3.1. Such unit cell is a cube with edges a = 4ro/
√

3 (ro is the outer radius

of the spherical shell) and comprises two structured shells - one full shell at the center

with eight one-eighths attached to it.

Finally, the porosity of the 3D structure can be calculated as

ψ̄ = 1− 2 Vshell
Vunit

, (3.1)

where Vunit = a3 is the volume of the cubic unit cell, Vshell is the volume fraction of

the structured shell and the pre-factor 2 is the number of structured shells in each

unit cell. Note that Vshell is simply obtained by subtracting the volume of the six

voids from the volume of the intact shell,

Vshell = Vintact shell − 6 Vvoid, (3.2)

where

Vintact shell =
4

3
π(r3o − r3i ), (3.3)

and

Vvoid =
2

3
π(r3o − r3i ) [1− cos(π/4− α/2)] , (3.4)

ri denoting the inner radius of the spherical shell129. Combining Eqs. (3.1) - (3.4),

the porosity of the 3D crystal can be obtained as

ψ̄ = 1− 8π(r3o − r3i ) [−2 + 3 cos(π/4− α/2)]

3(4r0/
√

3)3
. (3.5)
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3.4 General Formulation

Here, we present the governing equations and material model, which are employed in

the numerical calculations.

3.4.1 Governing Equations

The deformation of the 3D phononic crystal is described by the deformation gradient

F =
∂x

∂x0
, (3.6)

mapping a point in the material from the reference position x0 to its current loca-

tion x. The material is assumed to be hyperelastic, characterized by a strain energy

function W = W (F), which is defined in the reference configuration. The first Piola-

Kirchhoff stress S is thus related to the deformation gradient F by

S =
∂W

∂F
. (3.7)

In the absence of body forces, the equation of motions in the reference configuration

can be written as

Div S = ρ0
D2x

Dt2
, (3.8)

where Div represents the divergence operator in the undeformed/reference configura-

tion, D/Dt is the material time derivative and ρ0 denotes the reference mass density.

To investigate the effect of the applied deformation on the propagation of small-

amplitude elastic waves, incremental deformations superimposed upon a given state

of finite deformation are considered. Denoting with Ṡ the increment of the first Piola-
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Kirchhoff stress, the incremental forms of the governing equations is given by

Div Ṡ = ρ0
D2ẋ

Dt2
, (3.9)

where ẋ denotes the incremental displacements. Furthermore, linearization of the con-

stitutive equation (3.7) yields

Ṡ = L : Ḟ, with Lijkl =
∂2W

∂Fij∂Fkl
, (3.10)

where Ḟ denotes the the incremental deformation gradient.

The incremental boundary value problem is often formulated in an updated La-

grangian formulation, where the deformed state is used as the reference configuration

for the calculation of the incremental quantities98. Push-forward transformations al-

low the introduction of the incremental updated stress quantity Σ given by

Σ =
1

J
ṠFT . (3.11)

For a non-linear elastic material, the incremental constitutive equation takes the lin-

ear form

Σ = C : grad u, (3.12)

to the first order, where grad denotes the gradient operator in the deformed/current

configuration, u
.
= ẋ and

Cijkl = J−1FjnFlq
∂2W

∂Fin∂Fkq
. (3.13)
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Finally, the incremental equations of motions take the form

divΣ = ρ
d2u

dt2
, (3.14)

where div represents the divergence operator in the deformed/current configuration, ρ

denotes the current material density and d/dt is the spatial time derivative.

Here, we focus on the propagation of small-amplitude elastic waves defined by

u(x, t) = ũ(x) exp(−iωt) , (3.15)

where ω is the angular frequency of the propagating wave, and ũ denotes the magni-

tude of the incremental displacement. It follows from (3.12) that

Σ(x, t) = Σ̃(x) exp(−iωt) , (3.16)

so that equations (3.14) become

divΣ̃ = ρω2ũ , (3.17)

which represent the frequency-domain wave equations.

3.4.2 Material Model

The 3D phononic crystal is assumed to be made of silicon rubber. The response of

such material is captured using a nearly incompressible Neo-Hookean model 143, whose
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strain energy density is given by

W (I1, J) =
G

2
(I1 − 3)−G log(J) +

K

2
(J − 1)2 , (3.18)

where I1 = trace
(
FTF

)
, J = det(F), and F is the deformation gradient. Moreover, G

and K are the initial shear and bulk moduli of the material, respectively.

Substituting (3.18) into (3.7) and (3.10), the nominal stress S and the incremental

modulus L are obtained as

S = GF + [KJ(J − 1)−G] F−T , (3.19)

and

L = GI +KJ(2J − 1)F−T ⊗ F−T

+ [KJ(J − 1)−G] IT ,
(3.20)

where

Iijkl =
∂Fkl
∂Fij

= δikδjl. (3.21)

In this study, we assume that the 3D phononic crystal is made of silicon-based rub-

ber (Elite Double 32:Zhermack), which is characterized by G = 0.27 MPa, K = 13.41

MPa , and density ρ = 965 Kg m−3 10.

3.5 Numerical Procedure and Implementation

In this Section, we first present the analysis performed to study the dynamic response

of 3D phononic crystals of infinite size, accounting for the effect of the applied pre-
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deformation. Then, we describe how we study the effect of material damping on the

propagation of elastic waves.

All numerical simulations are performed using the commercial finite element pack-

age Abaqus/Standard (SIMULIA, Providence, RI). The 3D models are constructed

using quadratic brick elements (element type C3D10) and the accuracy of the mesh is

insured by a mesh refinement study.

3.5.1 Wave Propagation Analysis in 3D Adaptive Phononic Crystals

The analysis conducted to investigate the propagation of elastic waves in 3D deformable

phononic crystals of infinite size consist of three steps: (i) first, the stability of the

structure is investigated through a linear perturbation analysis 43,17; (ii) then, the

non-linear post-buckling response of the system is simulated by using periodic bound-

ary conditions and introducing a small imperfection on the initial geometry in the

form of the critical mode17; (iii) finally, the propagation of small-amplitude elastic

waves at a given level of deformation is investigated by solving the frequency-domain

wave equation.

Focusing on step (iii), we discretize the frequency-domain wave equations (3.17)

using the Galerkin finite element method and obtain an algebraic eigenvalue problem

in matrix form, [
K(n×n) − ω2M(n×n)

]
U(n×1) = 0, (3.22)

where K and M are the global mass and stiffness matrices, U is the nodal displace-

ment vector, and n is the total number of degrees of freedom (i.e number of nodes

multiply by degrees of freedom per node).

By virtue of Bloch’s theorem19, the following relationship between the displace-
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ments of two nodes, A and B, periodically located on the outer faces of the unit cell is

obtained

uA = uB exp(ik · rAB), (3.23)

where uA and uB denote the displacement of nodes A and B respectively, and rAB is

the distance between the nodes A and B in the deformed configuration. Moreover, k

is the wave vector that can be expressed in terms of the reciprocal lattice vectors bi

b1 = 2π
a2 × a3

‖ z ‖2
,

b2 = 2π
a3 × a1

‖ z ‖2
,

b3 = 2π
a1 × a2

‖ z ‖2
,

(3.24)

where a1, a2 and a3 are the lattice vectors spanning the unit cell (see Figure 3.2) and

z = a1 · (a2 × a3). Note that when the Bloch-type boundary conditions (3.23) are

incorporated into Eq. (3.22), the stiffness matrix becomes a function of k (i.e. K =

K(k)). Therefore, to obtain the dispersion relations ω = ω(k) the eigenvalue problem

specified by Eq. (3.22) needs to be solved for a number of wave vectors k.

Since the reciprocal lattice is also periodic, we can restrict the wave vectors k to a

certain region of the reciprocal space called the first Brillioun zone (dark grey cube

in Figure 3.2(b))23. In addition, we may further reduce the domain taking advantage

of its reflectional and rotational symmetries. The reduced domain is referred to the

irreducible Brillioun zone (IBZ) (red pyramid GXMR in Figure 3.2(b))84.
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Figure 3.2: Schematic of point lattice (green dots in (a)), reciprocal lattice (black dots in (b)),
first Brillioun zone (grey cube in (b)) and irreducible Brillioun zone (red pyramid GXMR in (b)).
Three different views of the reciprocal lattice are shown at the bottom.

Next, we show that Eq. (3.22) can be solved using either the full direct method or

the Reduced Bloch Mode Expansion (RBME) method52 to significantly reduce the

computational cost.

Full (direct) method

Here, we solve Eq. (3.22) for a large number of k vectors on the perimeter of IBZ (i.e.

G-X-M-G-R-M-X-R path in Figure 3.3) to obtain the dispersion relations ω = ω(k).

In particular, we use ten uniformly spaced k-points on each edge of the IBZ shown

in Figure 3.3. Given the large sizes of the mass and stiffness matrices involved in the

calculations (i.e. n ' 200000 for our unit cells), this method is computationally very
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expensive.

Figure 3.3: First Brillioun zone (cube of side 2π/a) and irreducible Brillioun zone (IBZ) with the
seven high-symmetry points used in this study: corner points (G, X, M, R) and points on mid-
diagonal lines (GR, XR, MG).

Reduced Bloch mode expansion (RBME) method

To reduce the size of the problem and consequently the computational cost, we em-

ploy a reduced basis composed of a selected set of Bloch eigenvectors 52. To this end,

we use a linear transformation given by

U(n×1) = φ(n×m) V(m×1), (3.25)

where U(n×1) is the nodal Bloch displacement vector, V(m×1) is the reduced Bloch

displacement vector, φ(n×m) is the transformation matrix, n is the total number of de-

grees of freedom, and m (m � n) is the total number of Bloch modes in the reduced

basis. Combining (3.25) and (3.22), and pre-multiplying by the complex conjugate

transpose φ?(m×n), yields the eigenvalue problem in the reduced basis
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[
φ?(m×n) K(k)(n×n) φ(n×m) − ω2 φ?(m×n) M(n×n) φ(n×m)

]
V(m×1) = 0, (3.26)

which can be re-express as

[
K̄(k)(m×m) − ω2M̄(m×m)

]
V(m×1) = 0, m� n (3.27)

where K̄ and M̄ are the reduced stiffness and mass matrices,

K̄ = φ?(m×n) K(k)(n×n) φ(n×m),

M̄ = φ?(m×n) M(n×n) φ(n×m).

(3.28)

The reduced basis used in this study is composed of Bloch eigenvectors evaluated

at seven high-symmetry points: points G, X, M, and R (corners of the IBZ) and GR,

XR, and MG shown in Figure 3.3. The choice of these points is motivated by both

the crystal structure and group theory52. To construct the transformation matrix

φ(n×m), we solve (3.22) only at the selected seven high-symmetry points and assemble

the corresponding eigenvectors in column-wise form as

φ(n×m) = [φG φX φM φR φMG φGR φXR] . (3.29)

Furthermore, since in this study we are interested in computing the first 160 dis-

persion branches, we find that 800 eigenmodes calculated at each of the seven high-

symmetry points are sufficient for the band structure calculations to be accurate up

to range of interest. The accuracy of the band structure calculated by employing the

RBME method with seven high-symmetry points were assured by reproducing the
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same band diagrams calculated via the full (direct) method, as shown in Figure 3.4

for a 3D phononic crystal characterized by (α, τ) = (0.03, 0.2). Note that, when using

the RBME method, the size of the mass and stiffness matrices is reduced from n '

200000 to m = 5600, significantly reducing the computational cost.

Figure 3.4: Band diagrams for a 3D phononic crystal characterized by (α, τ) = (0.03, 0.2)
calculated using full (direct) method (left) and the RBME method (right).

3.5.2 Wave propagation analysis in 3D damped phononic crystals

To study the effect of material dissipation on the propagation of elastic waves, we

employ Rayleigh (proportional) damping model27,111 and define a damping matrix C

linearly proportional to the mass and stiffness matrices M and K(k),

C(k) = pM + qK(k), (3.30)

where p and q are the mass and stiffness proportional damping coefficients (p, q ≥

0). The discretized finite element frequency-domain wave equations of the damped
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phononic crystal are then given by

[
K(k) + i ωC(k)− ω2M

]
U = 0, (3.31)

and the wave-vector-dependent damping ratio ξi(k) for the i-th branch of the damped

band structure is obtained as142

ξi(k) =
p+ qω2

i (k)

2ωi(k)
, (3.32)

where ωi(k) denotes the i-th frequency obtained in the absence of damping. Since for

underdamped conditions (i.e. ξi < 1), the effect of the damping parameter p in Eq.

(3.30) is negligible54,53, we consider a stiffness-proportional Raleigh damping matrix

(i.e. p = 0 and q 6= 0) in all the calculations and report all results in terms of the

dimensionless damping coefficient q̄ = q cT /a. We also note that for elastomers ξi =

qωi/2 = πq̄f̄ ∼ 0.0560,4,37, so that if we focus on the upper limit of the bandgap (i.e.

f̄upper ∼ 0.75) we obtain q̄ ∼ 0.02 for elastomeric materials.

To investigate the propagation of elastic waves in a dissipative medium, we con-

struct 3D models of finite size comprising different numbers of unit cells and calcu-

late their steady-state dynamic linearized response to harmonic excitations for dif-

ferent levels of material damping. In this set of analyses we account for energy dissi-

pation by directly introducing Raleigh damping in the simulations (i.e. the *DAMP-

ING keyword is used to specify Raleigh damping parameters as material properties

in Abaqus/Standard2). Moreover, we excite the structure by applying an harmonic

displacement (Ain cos(ω t)) to the central node of one of its faces at one end and cal-

culate the displacement of the corresponding node on the opposite face at the other
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end (Aout cos(ω t)) over the frequency ranges of interest. The transmission spectrum

(dB) is then computed as 10 log (Aout(ω)/Ain(ω))2.

3.6 Results

3.6.1 Elastic Waves Propagation In the Undeformed Phononic Crys-

tal

Figure 3.5: Effect of design parameters α and τ on the band structures. In the dispersion re-
lation plots, the non-dimensional frequency f̄ = ωa/2πcT is plotted versus the wave vectors
k. Three different configurations are considered characterized by (α, τ) = (0.14, 0.2) (center),
(0.14, 1.0) (left) and (0.03, 0.2) (right). The shaded red region in the right plot highlights the
bandgap - i.e. ranges of frequencies for which the elastic waves are not allowed to propagate along
any direction.
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We start by investigating the propagation of elastic waves in undeformed phononic

crystals of infinite size. In Figure 3.5 we report the band diagram for crystals char-

acterized by (α, τ) = (0.14, 0.2), (0.14, 1.0) and (0.03, 0.2). In all these diagrams

the non-dimensional frequency f̄ = ωa/(2π cT ) is plotted versus a set of wave vec-

tors k spanning the perimeter of the IBZ shown in Figure 3.3. Here, cT =
√
G/ρ is

the speed of transverse elastic waves propagating within the homogeneous bulk ma-

terial and a is the characteristic size of the unit cell in the undeformed configuration

(see Figure 3.1). As expected, we find that the microstructural design parameters α

and τ strongly affect the existence and width of the bandgap. In fact, while the 3D

phononic crystals with (α, τ) = (0.14, 0.2) and (0.14, 1.0) have no frequency ranges

of strong wave attenuation, the structure with (α, τ) = (0.03, 0.2) has a bandgap

for f̄ = 0.52 − 0.72. It is important to note that this is a Bragg-type bandgap, since

it is very sensitive to the periodicity and geometry of the crystal. To demonstrate

this, in Figure 3.6 we report the band structure for a phononic crystal characterized

exactly by the same design parameters (i.e. (α, τ) = (0.03, 0.2)), but with the struc-

tured shells arranged differently and attached to each other through the thin liga-

ments rather than through the corners (see Figure 3.6). For this periodic structure no

bandgap is found.
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Figure 3.6: Bands diagram for a phononic crystal composed of a bcc array of structured shells
attached to the neighbors through the ligaments. The structured shells are characterized by
(α, τ) = (0.03, 0.2). Note that these are the same design parameters that we used to construct
the phononic crystal shown in Figure 3.5-right. ã = 4ro/

√
2 is the characteristic length of the unit

cell.

Next, we systematically study the effect of the design parameters α and τ on the

propagation of elastic waves. Since the phononic bandgaps are strongly influenced

by the smallest geometric features in the system76, a bandgap opens when α is de-

creased below a critical threshold. The effect of τ on the bandgap is instead more un-

predictable, since a smaller values of τ results in a structure characterized by thinner

ligaments width wi, but larger thickness t. Therefore, to identify the 3D crystal with

the widest phononic bad gap in the undeformed configuration, we choose α = 0.03

and conduct a parametric study to explore the influence of τ . In Figure 3.7(a) we

show the evolution of the bandgap as a function of τ . The results clearly indicate that

the the width of the bandgap does not monotonically increase as a function of τ and

the largest bandgap is achieved for τ = 0.4 (see Figure 3.7(b,c)).
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Figure 3.7: Design of an optimal 3D phononic crystal in the undeformed configuration. (a) Evo-
lution of the bandgap as a function of τ for a 3D crystal with α = 0.03. The structure exhibits
the widest phononic bandgap for τ = 0.4 and is demonstrated in (b). (c) Bands diagram for the
optimal crystal characterized by (α, τ) = (0.03, 0.4). The 3D structure exhibits a wide bandgap at
f̄ = 0.43− 0.72.

3.6.2 Effect of Deformation On Wave Propagation

Having identified the optimal configuration in the undeformed configuration, we now

proceed to explore the propagation of small-amplitude elastic waves in such 3D crys-

tal at different levels of applied deformation. Here, to preserve the symmetry of the

structure and facilitate the calculation of the band diagram, we compress the 3D crys-

tal triaxially. First, we perform a linear stability analysis and find that for τ = 0.4

buckling induces the spherical collapse of every building block while keeping the struc-

ture periodic (see Figure 3.1). Then, we simulate the post-buckling response of the

structure by introducing a small imperfection in the initial geometry and monitor

the propagation of small amplitude elastic waves as a function of the applied defor-

mation. In Figure 3.8 we report the evolution of bandgap as a function of the ap-

plied compressive strain, ε. The results clearly indicate that the applied compres-

sion significantly alters the bandgaps, by progressively reducing its width. In fact,
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while in the undeformed configuration the structure is characterized by a bandgap for

f̄ = 0.43 − 0.72, for ε = −0.10 its width is reduced to f̄ = 0.41 − 0.46. Finally, for

ε = −0.16, the bandgap completely disappears, so that elastic waves of all frequencies

are able to propagate within the structure. Therefore, our results clearly demonstrate

that the proposed 3D structure acts as a reversible phononic switch, since a moderate

level of strain (i.e. ε = −0.16) can be used to switch off the bandgap.

Figure 3.8: Evolution of bandgap as a function of the applied compressive strain for a 3D crystal
characterized by (α, τ) = (0.03, 0.4) . Note that buckling occurs at ε = −0.007.

3.6.3 Damped Phononic Crystal

Our results indicate that mechanical instabilities and large deformation can be effec-

tively utilized to reversibly tune and control the phononic bandgaps of 3D periodic

structures. However, in order for the structure to sustain the large deformation in-

duced by buckling while remaining in the fully elastic regime, elastomeric materials

such as silicon rubber are typically used for fabrication. These materials are known

44



to be dissipative and so we now investigate the effect of material damping on the dy-

namic response of 3D crystals.

To investigate the effect of material damping on the propagation of small-amplitude

elastic waves, we start by constructing phononic crystals with 4, 10, 20 and 40 unit

cells along the x-direction (indicated in Figure 3.1) and periodic boundary condi-

tions on the lateral faces. In Figure 3.9, we report the transmission spectra for such

structures characterized by (α, τ) = (0.03, 0.4) and consider three different stiffness-

proportional damping coefficients (q̄ = 0, 0.005, 0.02).

Focusing on the undamped crystals (q̄ = 0 - red lines), we find a good agreement

between the drop in transmission observed in the four models (dashed horizontal red

line) and the bandgap-size predicted by the Bloch wave analysis for the corresponding

infinite structure (solid horizontal red line). Moreover, as expected, we find that the

agreement is improved and the amount of drop in transmission is more pronounced

for larger structures (i.e. ∼ -15 dB for the model with 4 unit cells in Figure 3.9(a)

and ∼ -25 dB for the model with 40 unit cells in Figure 3.9(d)).
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Figure 3.9: Effect of damping on the transmission spectra for models consist of (a) 4, (b) 10,
(c) 20, and (d) 40 unit cells along the x-direction and periodic boundary conditions on the lat-
eral faces. The solid horizontal red lines represent the bandgap predictions for the corresponding
undamped infinite periodic structures. The horizontal dashed red lines highlight regions with a
relative -15 dB drop in transmission. Note that for q̄ = 0.005 and 0.02, the transmission decays
above a cut-off frequency.

Furthermore, our results reveal that material damping has a significant effect on

the transmission spectrum and that all waves with frequencies above a cutoff value
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are damped. To quantify this effect, the cutoff frequency, denoted by f̄cutoff , is de-

fined as the critical frequency above which all waves are attenuated by at least 10 dB.

Such cutoff frequencies are indicated by the green and blue horizontal dashed lines in

Figure 3.9. The transmission response continues to decay for frequencies higher than

f̄cutoff . Interestingly, we see that by increasing the size of the structure, the cutoff

frequencies are progressively lowered. In fact, in a larger structure the wave travels

through a longer medium, so that the effect of dissipative medium on transmission

spectrum is more pronounced for the same level of damping. However, we note that

the cutoff frequencies are the same for the model with 20 and 40 unit cells along the

x-direction (f̄cutoff ∼ 0.33 for q̄ = 0.005 and f̄cutoff ∼ 0.19 for q̄ = 0.02), indicating

that these structures are large enough so that the dynamic response is not anymore

affected by the size of the system.

Finally, in Figure 3.10 we report results for a finite size structure with 4×4×4 unit

cells. We find that the bandgap for the undamped case (i.e. q̄ = 0 - red curve) is

relatively smaller than that of the corresponding infinite crystal, indicating that the

finite size of the structure significantly affect its dynamic response. Moreover, we

note that as we increase q̄, material dissipation has still a significant effect, but not

as pronounced as for the systems investigated in Figure 3.9. In fact, we find that for

q̄ = 0.005 the structure is still characterized by a bandgap, highlighted by the drop in

transmission at f̄ = 0.51−0.63. However, for q̄ = 0.02 the response is characterized by

cutoff frequency and the propagation of waves with f̄ > 0.5 is prevented by the dis-

sipative medium. Therefore, these results highlight the important role played by the

size of the system in the case of a damped phononic crystal.
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Figure 3.10: Effect of damping on the propagation of elastic waves in a finite size structure con-
sists of 4×4×4 structured shells. The solid horizontal lines indicate the bandgaps prediction based
on calculations for the infinite undamped structure, while the dashed horizontal lines highlight re-
gions in which a relative -15 dB drop is observed in the transmission.

3.7 Conclusions

In conclusion, our study outlines a general strategy in which a judicious choice of

building blocks provides a foundation for the design of 3D phononic crystals whose

response can be effectively tuned by the applied deformation, opening the door to

the design of 3D phononic switches. In particular, we show that the tunability of

bandgaps can be significantly increased by exploiting the geometric nonlinearity trig-

gered by instabilities. Moreover, we investigate the effects of energy dissipation in-

duced by elastomeric materials on the dynamic response of 3D phononic crystals. Our

results indicate that the propagation of waves in structures made of dissipative me-

dia is affected by both the amount of damping and the size of the system, providing a

complete set of guidelines for the design of 3D adaptive phononic crystals.
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Finally, since the buckling phenomenon is scale-independent and the elastic defor-

mation process is fully reversible, we expect our results will serve as a blueprint for

the design of a new class of tunable phononic devices in a wide range of applications.
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4
Harnessing Deformation to Switch On

and Off the Propagation of Sound
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4.1 Overview

By combining numerical analyses and experiments we design a new class of archi-

tected materials to control the propagation of sound (also called acoustic metamateri-

als). The proposed system comprises an array of elastomeric helices in background air

and is characterized by frequency ranges of strong wave attenuation (bandgaps) in the

undeformed configuration. Importantly, our results indicate that by axially stretching

the helices such bandgaps can be suppressed, enabling the propagation of sound over

all frequencies. The proposed concept expands the ability of existing acoustic meta-

materials and paves the way for the design of a new class of materials and devices

that enable better control and manipulation of sound.

4.2 Introduction

Architected materials engineered to manipulate and control the propagation of sound

have recently enabled the design of a range of novel acoustic devices 165,72,83,38,80,128,30,29,119.

In particular, the design of noise cancelling systems that take advantage of bandgaps

induced by both Bragg scattering79,140,117 and local resonance81,91,73,13,158 has been

aggressively pursued. However, almost all of the proposed designs operate in fixed

ranges of frequencies and their response cannot be tuned after their fabrication 90. In

an effort to design the next generation of acoustic tunable devices, it has been shown

that the frequency range of the bandgap can be modulated through applied mechan-

ical deformation50, thermal radiation146, and rotation of the scatters45,113,152,71,74.

However, differently from the case of metamaterials designed to control the propaga-

tion of elastic5,15,41,20,114,150,12,148 and electromagnetic68,86,78 waves for which several

strategies have been used to switch on and off the bandgaps, the ability to turn on
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and off the propagation of sound over a specific ranges of frequencies has not been

extensively explored, and it has only been demonstrated through the rotation of the

scatters45,152.

Here, we report a new class of acoustic metamaterials in which the applied defor-

mation is exploited to switch on and off the propagation of sound over specific ranges

of frequencies. The proposed structure comprises an array of elastomeric helices that

can be easily stretched in axial direction (see Figure 4.1). In the undeformed config-

uration the helices are in a compact state (see Figure 4.1a) and the system is equiva-

lent to a square array of solid cylinders in air, which is known to be characterized by

a complete bandgap induced by Bragg scattering118. However, as the metamaterial is

deformed, the pitch of the helices increases (see Figure 4.1b) and the air originally in-

side their internal cavity connects to the surrounding fluid, significantly reducing the

solid volume fraction of the system. Importantly, we demonstrate that this change in

volume fraction induced by the applied deformation is sufficient to suppress the initial

bandgap, giving us the opportunity to design a new class of acoustic switches.

4.3 Results and Discussion

We start by investigating the deformation of a single elastomeric helix. The helix is

fabricated out of a silicone-based rubber10 (Vinyl Polysiloxane with initial Young’s

modulus E0 = 784 kPa, Poisson’ratio ν0 = 0.499, and density ρ = 965 kg/m3) via a

molding approach (see Supporting Information for details). In the undeformed con-

figuration it has diameter D0 = 28.6mm, pitch P0 = 13mm, and a rectangular

cross-section of 13mm × 6.5mm. In Figure 4.2a we report experimental snapshots

of a single helix at different levels of applied engineering strain, ε = (H − H0)/H0 =
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Figure 4.1: Acoustic switch. The fabricated acoustic switch comprises a 6×6 square array of
stretchable helices. In the undeformed configuration (i.e. ε = 0.0), the helices are in a compact
state and can be regarded as solid cylinders of height H0 = 40 mm. As a result, the metama-
terial is characterized by a frequency range of strong wave attenuation (bandgap). As the helices
are stretched, the solid volume fraction of the metamaterial drops significantly and the bandgap is
suppressed.

0, 0.40, 0.65, and 0.90, where H0 and H denote the undeformed and deformed height

of the helix, respectively. The experimental images are compared to the numerical

snapshots obtained from non-linear Finite Element (FE) simulations (see Supporting

Information for details) and clearly show that the pitch of the helix monotonically in-

creases with the applied strain (note that the pitch varies along the the length of the

helix because of gravity), while its diameter remains almost unchanged. This can be

explained by inspecting the parametric equations that describe the deformed helix,

r(θ) =

(
D

2
cos θ,

D

2
sin θ,

P

2π
θ

)
, (4.1)
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where the deformed pitch, P , and diameter, D, are given by (see Supporting Informa-

tion for more details)

P = P0(1 + ε), D =

√
D2

0 −
P 2
0

π2
ε(2 + ε). (4.2)

In Figures 4.2b and 4.2c we report the evolution of P and D as a function of the

applied strain ε, as predicted by Eq. (4.2) (red dashed lines). The analytical results

indicate that, while the change in diameter is limited to 3% for ε = 0.9, the pitch

length almost doubles (i.e., P/P0 = 1.9 at ε = 0.9). Finally, we note that in Fig-

ures 4.2b and 4.2c the analytical predictions are also compared to the experimental

(green markers) and FE (blue markers) results, showing an excellent agreement and

therefore validating our simple geometric model.

Focusing on a metamaterial comprising a square array of helices with center-to-

center distance A0 = 32.5 mm, it is easy to see that the large change in pitch in-

duced by the applied strain, significantly alters the solid volume fraction of the sys-

tem. In fact, since here we focus on acoustic waves propagating in the air surround-

ing the helices, in the undeformed configuration each helix can be considered as a

solid cylinder and the solid volume fraction of the metamaterial can be calculated

as ψ0 = πD2
0/(4A

2
0) = 0.61. However, as the metamaterial is stretched, the cylinders

transform into helices and the air originally inside their internal cavity connects to the

surrounding fluid, reducing the solid volume fraction. In particular, for ε > 0 the solid

volume fraction can be simply obtained as (see Supporting Information for details)

ψ =
π(D2

0 −D2
0,in)

4A2
0 (ε+ 1)

, (4.3)

where D0,in = 15.6mm denotes the inner diameter of the helices and we have made
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use of the fact that the volume of the elastomeric helices is preserved during defor-

mation. In Figure 4.2d we report the evolution of ψ as a function of ε. The results

indicate that at first, as the helices are slightly stretched, ψ immediately reduces from

0.61 to 0.41 and then gradually decreases to reach 0.22 as ε rises to 0.9. Importantly,

we expect this change in ψ to have a profound impact on the propagation of sound,

as it is well know that the size of the acoustic bandgap for an acoustic metamaterial

significantly depends on the solid volume fraction85.
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Figure 4.2: Deformation of the helices. (a) Experimental (green samples) and numerical (blue
models) images of a single helix at different levels of applied strain, ε = 0, 0.40, 0.65, and 0.90.
P0 and D0 are the pitch length and outer diameter of the helix at ε = 0. (b-d) Evolution of (b)
pitch length, P , (c) outer diameter, D, and (d) solid volume fraction, ψ, as a function of the ap-
plied strain. Analytical predictions (red dashed line) are compared to both experimental (green
markers) and numerical (blue markers) results.

Next, we investigate numerically the propagation of sound waves through the acous-

tic metamaterial at different levels of applied deformation. For this set of simula-

tions we assume the metamaterial to be infinite and use a prismatic unit cell of size

A0 × A0 × P0 in the undeformed configuration. The analysis consists of two steps:
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(i) we first build a 3D model of the helix (comprising only one loop), mesh it using

solid element (Abaqus element type C3D10M with seed size of 1 mm), apply periodic

boundary conditions along the axial direction and deform it by applying a strain ε;

(ii) we then change the elements of the deformed helix into acoustic elements (Abaqus

element type AC3D10M), mesh also the surrounding air in the unit cell using the

same type of elements (for the air we assume density ρair = 1.2 kg/m3 and speed of

sound cair = 343m/s) and finally calculate the dispersion relation by using frequency

domain analyses (see Supporting Information for more details). Note that, since in

this study we only focus on waves propagating in the plane perpendicular to the axis

of the helices, the dispersion diagrams are constructed considering wave vectors lying

in that plane.

In Figures 4.3a and 3b we show the dispersion relations calculated for the unde-

formed (ε = 0, Figure 4.3a) and highly deformed (ε = 0.9, Figure 4.3b) metamaterial.

At ε = 0, a wide complete bandgap is found at f = 4.64−7.28 kHz (highlighted by the

blue area in Figure 4.3a), so that we expect sound waves within this frequency range

not to propagate through the system. However, as the deformation is progressively in-

creased, this band gap is found to monotonically reduce its width (see Figures ?? and

??), and at ε = 0.9 it is fully closed (Figure 4.3b).

To confirm the numerical predictions, we experimentally test the dynamic response

in GX direction of an acoustic metamaterial consisting of 36 stretchable helices ar-

ranged in a 6 × 6 square lattice with center-to-center distance A0 = 32.5mm. In

order to stretch all the helices simultaneously and to immobilize them at the strain

level of interest, we use a fixture made of acrylic plates and nylon bolts/nuts (see Fig-

ure 4.1). Moreover, a 2 inch-thick closed-cell foams is placed all around the sample to

acoustically insulate from the spurious reflections and create homogeneous boundaries
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all around the sample (see Figure B.2). Acoustic waves through air are then excited

by an array of five identical loudspeakers (Vifa OT19NC00-04, 3/4 inch diameter)

placed along one of the faces of the sample and the amplitude of the scattered pres-

sure waves is recorded by a PCB microphone and pre-amplifier (model 378B02, PCB)

mounted on the opposite face. Note that the propagation of sound in air through the

acrylic plates surrounded by foams without the helices is also recorded and that, to

reduce the effect of boundaries, the normalized transmission spectrum is computed

as 20 log10 ‖φ̂(f)/φ̂air(f)‖, where φ̂(f) and φ̂air(f) are the Fourier transforms of the

transmission through the sample and air, respectively (see Supporting Information for

details). Finally, it is important to point out that, in order to minimize the effect of

sound waves propagating along the axial direction of the helices and to better approx-

imate the conditions considered in our numerical simulations (where we only take into

account waves propagating in the plane perpendicular to the axis of the helices), the

initial height of the metamaterial (H0 = 40mm) is chosen to be approximately equal

to the minimum wavelength of excitation during the experiment (38mm at 9 kHz).

The transmission spectra of sound waves through the sample, measured at ε = 0

and 0.9 are reported as green lines in Figures 4.3c and 4.3d, respectively. In the un-

deformed configuration, we find that the transmission is characterized by a drop of

∼ 30 dB for f = 2.75 − 7.40 kHz (Figure 4.3c), in close agreement with the numerical

results for the corresponding infinite structure. In fact, the dispersion relation for the

undeformed system reported in Figure 4.3a not only indicate the presence of a com-

plete (i.e. for all directions) bandgap for f = 4.64 − 7.28 kHz, but also show that

in GX direction the frequency range of strong wave attenuation is significantly wider

(f = 2.90 − 7.28 kHz). Differently, for ε = 0.9 the acoustic waves with frequency in

the range f = 2.75 − 7.40 kHz are found to propagate through the material (i.e. the
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transmission fluctuate around 0 for this range of frequency - see Figure 4.3d), con-

firming that the proposed metamaterial can be utilized as an acoustic switch whose

response is controlled by the applied deformation. Finally, we also note that in the

highly stretched structure (ε = 0.9) a drop of ∼ 20 dB in transmission is found at

f = 8 − 9 KHz (Figure 4.3d), in correspondence of the bandgap in GX direction at

f = 7.55 − 9.00 kHz observed in the corresponding dispersion relation (see Figure

4.3b).
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Figure 4.3: Propagation of sound through the metamaterial at different levels of applied defor-
mation. (a,b) Dispersion relations, and (c,d) experimentally measured transmission spectra for
acoustic waves propagating along the GX direction. Results are shown for (a,c) the undeformed
configuration (ε = 0), and (b,d) the stretched configuration (ε = 0.9).

Having demonstrated that the applied deformation can be exploited to design acous-

tic switches, we now show that the response of the system is robust. To this end, we

investigate numerically the effect of both arrangement of the helices and their geome-

try on propagation of sound. In Figure 4.4a we report the evolution of the bandgaps

frequencies as a function of the applied strain for a triangular arrangement of the
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helices with the same geometry as those shown in Figure 4.1 (i.e., D0 = 28.6mm,

P0 = 13mm and rectangular cross-section of 13mm × 6.5mm). For a triangular ar-

ray with center-to-center distance A0 = 32.5mm, we find a complete band gap at

f = 9.0 − 10.5 kHz in the undeformed configuration (ε = 0.0). Importantly, this gap

can be completely suppressed by stretching the system by ε = 1.3 (see Figure B.5

for details). We also note that the discontinuity of the bandgap frequency found at

small values of applied strain (i.e. ε → 0) is due to the sudden drop in solid vol-

ume fraction (from 0.70 to 0.49) that takes place when the metamaterial is slightly

stretched. Furthermore, in Figure 4.4b we report the evolution of the bandgap as a

function of the applied strain for a metamaterial comprising helices arranged on a

square lattice (with lattice spacing A0 = 50mm), but characterized by a different set

of geometric parameters (D0 = 48mm, P0 = 24mm and a rectangular cross-section

of 24mm × 2mm). In this case, multiple gaps are found in the undeformed configu-

ration and all of them are sequentially suppressed by stretching the structure up to

ε = 0.45, 1.1, and 1.5 (see Figure B.6 for details). Therefore, these results demonstrate

that we have identified an efficient and robust strategy to switch on and off the propa-

gation of sound.
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Figure 4.4: Effect of arrangement of the helices and their geometry. (a) Evolution of the bandgap
frequency, f , as a function of the applied strain, ε, for a triangular array (with lattice spacing
A0 = 32.5 mm) of the helices with initial outer diameter D0 = 28.6 mm, pitch P0 = 13 mm,
and rectangular cross-section of 13 × 6.5 mm. (b) Evolution of the bandgap frequency, f , as a
function of the applied strain, ε, for a square array (with lattice spacing A0 = 50 mm) of the he-
lices with initial outer diameter D0 = 48 mm, pitch P0 = 24 mm, and rectangular cross-section of
24 × 2 mm. The insets show the evolution of the solid volume fraction as function of the applied
strain.
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4.4 Summary

In summary, we demonstrated both numerically and experimentally that deforma-

tion in periodic arrays of helices can be intentionally exploited to switch on and off

the propagation of the sound. Our results indicate that externally applied tension

provides a simple mechanism to alter significantly the solid volume fraction of the

system and consequently, achieve a wide range of tunability for the bandgap. Impor-

tantly, the transformation of the bandgaps is fully reversible and the range of frequen-

cies affected by the applied deformation can be tuned by varying the geometry of the

helices. Moreover, although in this study we only demonstrated the concept at the

centimeter-scale, the proposed design can be applied to various length-scales, enabling

the design of materials and devices to control the propagation of ultrasound (in the

case of microscale systems) and intrasound (in the case of macroscale systems). From

a practical perspective, the full active control over the propagation of sound in com-

bination with the wealth of different length scales and geometrical designs provides

a new class of architected materials with a broad field of applications ranging from

switchable wave guides to tunable imaging devices.
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Reconfigurable Origami-inspired Acoustic

Waveguides
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5.1 Overview

We combine numerical simulations and experiments to design a new class of reconfig-

urable waveguides based on 3D origami-inspired metamaterials. Our strategy builds

on the fact that the rigid plates and hinges forming these structures define networks

of tubes that can be easily reconfigured. As such, they provide an ideal platform to

actively control and redirect the propagation of sound. Interestingly, we design recon-

figurable systems that, depending of the externally applied deformation, can act as

networks of waveguides oriented along either one or two or three preferential direc-

tions. Moreover, we demonstrate that the capability of the structure to guide and

radiate acoustic energy along well predefined directions can be easily switched on

and off, as the networks of tubes are reversibly formed and disrupted. The proposed

designs expand the ability of existing acoustic metamaterials and exploit complex

waveguiding to enhance the control of propagation and radiation of acoustic energy,

opening avenues for the design of a new class of tunable acoustic functional systems.

5.2 Introduction

Acoustic waveguides designed to direct sound are ubiquitous and can be found in

cars, buildings, jet engines, medical devices and musical instruments, just to name

a few. While most of the proposed acoustic waveguides consist of a single duct, it is

well known that tubes carefully connected together can result in significant trans-

mitted noise reduction123,106. Moreover, it has also been shown that the propagation

of acoustic waves in tubes arranged to form a square lattice can be successfully de-

scribed with tools from solid state physics and provides opportunities for control of

sound through dispersion and band gaps33. Finally, three-dimensional networks of
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waveguides have been used to study sound propagation in regular urban areas 92. Al-

though these examples illustrate the potential of acoustic waveguides with more com-

plex geometry, they only cover a small region of the available design space and a nat-

ural question to ask is how the geometry of the three-dimensional networks of tubes

affects the propagation of sound.

Origami67 - the ancient art of paper folding - not only results in intricate and aes-

thetically pleasant designs, but also provides an ideal platform for the design of trans-

formable mechanical metamaterials. In particular, two-dimensional sheets folded

along pre-defined creases have enabled the design of multistable structures 134,159,49,145,

materials with negative Poisson’s ratio35,151,160 and tunable stiffness133 and topologi-

cal metamaterials28. While most of the proposed origami-like metamaterials are based

on two-dimensional folding patterns, snapology46,138 - a modular origami technique

- has recently inspired the design of highly reconfigurable three-dimensional meta-

materials assembled from extruded polyhedra99,100. Importantly, these designs also

result in interconnected and reconfigurable networks of tubes defined by the assembly

of rigid plates and elastic hinges. In this article we combine experiments and simula-

tions to demonstrate that such three-dimensional networks of tubes can be exploited

to design reconfigurable acoustic waveguides capable of efficiently controlling and redi-

recting the propagation of sound.

5.3 Results

5.3.1 Reconfigurable acoustic waveguides based on extruded cubes

We start by considering a three-dimensional mechanical metamaterial consisting of a

cubic array of connected extruded cubes (see Figure 5.1). If we assume that all the
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faces are rigid and the structure can only fold along the edges, this periodic structure

will have three degrees of freedom identified by the angles α1, α2, and α3
99. Impor-

tantly, changing these three angles not only deforms the assembly of plates into nu-

merous specific shapes, but also significantly alters the network of channels defined

by them (see Figure 5.1), providing an ideal platform for the design of reconfigurable

acoustic waveguides.

More specifically, for (α1, α2, α3) = (π/2, π/2, π/2) the system is fully expanded

and comprises a three-dimensional network of interconnected channels oriented in

three perpendicular directions (Figure 5.1A). As for this configuration the tubes are

acoustically coupled, we expect the radiation by the structure to take place in all

three directions, covering the entire surrounding space without a specific directivity.

Differently, for (α1, α2, α3) = (π/2, π/2, 0) and (π/3, 2π/3, π/3) the channels are all

parallel to each other (Figure 5.1, B and C), so that sound waves can only propa-

gate in one direction. However, for (α1, α2, α3) = (π/2, π/2, 0) the channels are dis-

jointed, while for (α1, α2, α3) = (π/3, 2π/3, π/3) they are all connected. Therefore, for

(α1, α2, α3) = (π/2, π/2, 0) we expect the system to behave as a classical single-tube

waveguide, while for (α1, α2, α3) = (π/3, 2π/3, π/3) we expect the additional wave

interferences in the structure to result in a more complex frequency response and a

variety of radiation patterns.
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Figure 5.1: Reconfigurable origami-inspired acoustic waveguides. Experimental and numerical im-
ages of the the building block (the extruded cube) and the corresponding reconfigurable acoustic
metamaterial deformed into three different configurations: (A) (α1, α2, α3) = (π/2, π/2, π/2); (B)
(α1, α2, α3) = (π/2, π/2, 0); (C) (α1, α2, α3) = (π/3, 2π/3, π/3). The red arrows and shaded ar-
eas indicate the excited waves, while the green arrows and shaded areas highlight the points from
which the structure radiates.

To demonstrate our ideas, we investigated both numerically and experimentally the

propagation of sound waves through the proposed reconfigurable metamaterial. In the

simulations we constructed three-dimensional models of the metamaterial comprising

a 4 × 4 × 4 cubic array of extruded cubes and deformed them into the three different

configurations shown in Figure 5.1. The plates forming the structure were considered

as reflective rigid boundaries and the air inside and around the resulting tubes was

meshed using acoustic elements (Abaqus element type AC3D10M). Moreover, non-

reflecting boundary conditions were imposed on the outer boundaries of the acoustic

medium to avoid the reflection of energy back into it. Finally, acoustic waves were ex-

cited by applying a harmonically varying pressure to one of the openings (highlighted

in red in Figure 5.1) and the steady-state dynamic linearized response of the system
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was calculated for a wide range of frequencies using the commercial Finite Element

package Abaqus.

Furthermore, we fabricated a centimeter-scale prototype of the metamaterial from

polymeric sheets (PET) and double-sided tape, using a stepwise layering and laser-

cutting technique39,99 (see Methods for more details). To measure the transmission

response of the three-dimensional waveguide, acoustic waves were excited through air

inside the tubes using a loudspeaker placed at one end of one of the tubes (labeled as

S in red in Figure 5.2). Then the amplitude of the both excited and scattered pres-

sure waves were recorded using two microphones (model 378B02, PCB Piezotron-

ics) mounted near the input loudspeaker (point S) and outlets (point A). Finally, the

transmittance was computed in dB as the ratio between the output and input ampli-

tude signals (i.e., 20 log10 ‖ AA(f)/AS(f) ‖). Note that during the tests the sample

was surrounded by sound absorbing foams to lower the influence of spurious reflec-

tions outside of the structure and mimic free field conditions. These foam layers were

removed before taking the pictures shown in Figure 5.2 for the purpose of better visu-

alization.
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Figure 5.2: Experimental setup. Experimental setup without the sound absorbing foams surround-
ing the sample.

In Figure 5.3 we focus on the configuration defined by (α1, α2, α3) = (π/2, π/2, 0)

and present our combined numerical and experimental results for the propagation

and radiation of acoustic waves generated by a source located at one of the openings

(highlighted in red in Figure 5.3A). Since in this configuration the tubes are all paral-

lel and disconnected from each other, the system behaves as a single-tube waveguide.

As such, the acoustic energy remains mostly confined in the excited tube with weak

radiation out of the structure (Figures 5.3B and C.1) and its frequency response is

characterized by regularly spaced resonances (corresponding to the peaks of the trans-

mittance curve reported in Figure 5.3C)93. It is well known that such resonance fre-

quencies can be predicted analytically by solving the Helmholtz equation for the pres-

sure field63. In particular, for an individual channel of length L with a square cross

section of edge a, rigid side-walls and zero-pressure condition at the two ends, the res-

onance frequencies are given by

flmn =
c0
2π

√(
lπ

a

)2

+
(mπ
a

)2
+
(nπ
L

)2
, (5.1)
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where c0 = 343.2m/s is the speed of sound in air and l, m and n are three integers

characterizing the waveguide modes. Since in our system L = 14 a, its lowest modes

are characterized by l = m = 0 and correspond to standing plane waves along the

tube. In fact, for a = 3 cm as in our prototype, non-planar mode across the waveg-

uide section can propagate only for f > f100 = f010 = c0/(2a) = 5.7 kHz. We also

note that, while Eq. (5.1) provides a good qualitative estimation of the resonances

of the tube, it is insufficient for quantitative comparison with experiments 24. In fact,

the wave radiation at the tube open-ends results in a deviation from the zero pressure

condition considered in deriving Eq. (5.1). Classically, this effect can be accounted

for by adding a correction length 2δ to the physical length L of the tube, which de-

pends on the details of the tube geometry. Here, by comparing analytical and numer-

ical results, we find a good agreement for δ = 0.3 a, so that the resonance frequencies

of the planar modes are given by f00n = nc0/[2(L + 0.6a)]. Finally, we note a very

good agreement between our analytical, numerical and experimental results (see Fig-

ure 5.3C), with only a few dB level discrepancy between simulated and experimental

curves.
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Figure 5.3: Propagation of sound waves for (α1, α2, α3) = (π/2, π/2, 0). (A) Numerical image of
the metamaterial. (B) Top cross-sectional view of the pressure field distribution at f = 3.5kHz.
The cutting plate is shown in (A) and the color indicates the pressure amplitude normalized by the
input signal amplitude (p0) (C) Frequency-dependent transmittance for the sample. Both experi-
mental (red lines), numerical (blue line) and analytical (dashed black lines) results are shown.

Next, in Figure 5.4 we present results for the configuration defined by (α1, α2, α3) =

(π/3, 2π/3, π/3). Although in this case the channels are also all oriented along the

same direction, they have a rhombic cross section and are interconnected inside the

structure. Consequently, when deformed into this state the metamaterial is charac-

terized by a totally different acoustic response. This is clearly demonstrated in Fig-

ure 5.4, A and B, where we show the transmittance calculated using two different de-

tection points (denoted as A and B in Figure 5.4C). Both curves exhibit a strong and

complex frequency dependence, originating from the interferences that occur inside

the system as the waves can follow a myriad of different paths when traveling from

the source to the receiver due to the multiple interconnections. We also find that the

connectivity of the tubes reduces the average level of the transmittance over the stud-

ied frequency range to around -20 dB, significantly lower than that measured for the
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configuration of Figure 5.3. Moreover, it should be noted that for this case quantita-

tive agreement between simulated and experimental transmittances is not reached.

This is because here geometric imperfections play a much bigger role than in the case

of a single tube waveguide, as they significantly alter the path followed by the travel-

ing waves and, consequently, the wave interferences. Finally, we find that not only the

transmittance, but also the radiation patterns are strongly frequency dependent. For

example, at 2 kHz the wave radiation by the structure gives rise to frontward quasi-

plane waves, while at 4.8 kHz the wave fronts are more curved and show complex spa-

tial patterns (Figure 5.4C). Interestingly, we find that at 4.8 kHz the modes propa-

gating in the tubes are also non-planar, although f < 5.7 kHz. This is due to the

interconnections between air channels that increase the effective width of the waveg-

uide structure. Consequently, we expect a multi-modal propagation in the structure

to start at lower frequencies (typically ∼ 2 kHz) than those calculated in the case of

the independent single tubes (i.e., for (α1, α2, α3) = (π/2, π/2, 0)).
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Figure 5.4: Propagation of sound waves for (α1, α2, α3) = (π/3, 2π/3, π/3). (A) and (B)
Frequency-dependent transmittances for the sample calculated considering two different detec-
tion points. Both experimental (red lines) and numerical (blue line) results are shown. (A) Nu-
merical image of the metamaterial. (B) Top cross-sectional view of the pressure field distribution
at f = 2kHz and f = 4.8kHz. The cutting plate is shown in (A) and the color indicates the
pressure amplitude normalized by the input signal amplitude (p0)

Finally, in Figure 5.5 we focus on the expanded state of the system defined by

(α1, α2, α3) = (π/2, π/2, π/2), for which the waveguides are interconnected and ori-

ented in three orthogonal directions. Similar to the case of Figure 5.4, A and B, the

transmittance curves reported in Figure 5.5, A and B have an average value of ∼ −20
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dB and show a complex frequency dependence. Due to the waveguide interconnec-

tions, numerous interferences from the possible paths come into play even in the case

of detection at point A which is aligned with the source. Moreover, as the waveguides

are oriented in three different directions, the wave radiation by the structure covers

the entire surrounding space (Figure 5.4, C and D) and we observe a much smaller ra-

diated amplitude behind the structure (oppositely to the source) than for the previous

configurations of aligned waveguides.

Figure 5.5: Propagation of sound waves for (α1, α2, α3) = (π/2, π/2, π/2). (A) and (B)
Frequency-dependent transmittances for the sample calculated considering two different detec-
tion points. Both experimental (red lines) and numerical (blue line) results are shown. (A) Nu-
merical image of the metamaterial. (B) Top cross-sectional view of the pressure field distribution
at f = 2kHz and f = 4.8kHz. The cutting plate is shown in (A) and the color indicates the
pressure amplitude normalized by the input signal amplitude (p0)
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5.3.2 Reconfigurable acoustic waveguides based on different extruded

polyhedra

.

While so far we have focused on a metamaterial comprising a cubic array of ex-

truded cubes, the proposed strategy to design reconfigurable acoustic waveguides is

not restricted to this specific geometry. In fact, a wealth of three-dimensional recon-

figurable networks of tubes capable of qualitatively different deformation can be real-

ized by taking space-filling tessellations of convex polyhedra as templates, and extrud-

ing arbitrary combinations of their polygonal faces100.

As an example, in Figure 5.6, A, B and C we consider a metamaterial based on a

tessellation of truncated octahedra. While the resulting structure is rigid if all the

faces of the truncated octahedra are extruded100, here we construct a metamaterial

with a single degree of freedom (denoted by θ in Figure 5.6A) by extruding the 8

green hexagonal faces (highlighted in green in Figure 5.6A), removing 4 of the square

faces (highlighted in yellow in Figure 5.6A) and making the two remaining ones rigid

(highlighted in blue in Figure 5.6A). As for the case of the metamaterial based on

the extruded cubes, by changing θ between 0 and π/2 the architecture of the sys-

tem can be transformed (see Figure 5.6, A, B and C, and Figure D.3). However, in

this case for 0 < θ < π/2 the metamaterial does not act as an acoustic waveguide,

since it does not comprise a network of interconnected tubes (Figure 5.6A). Only

for θ = 0 and θ = π/2 the plates defining the structures form interconnected chan-

nels that can be used to guide acoustic waves. More specifically, for θ = 0 all tubes

are parallel and disconnected (Figure 5.6B), so that that the system behaves as a

single-tube waveguide and has identical response as the extruded cube waveguide for
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(α1, α2, α3) = (π/2, π/2, 0) (see Figure 5.3). Differently, for θ = π/2 the folded struc-

ture functions as a two-dimensional waveguide (see the red arrows in Figure 5.6C).

Importantly, this example highlights another interesting feature of our design plat-

form: the ability of switching on and off the guiding of acoustic energy, as for certain

configurations the networks of tubes can be reversibly formed and disrupted.

Figure 5.6: Reconfigurable acoustic waveguide based on a tessellation of truncated octahedra.
Experimental and numerical images of the the building block (the extruded cube) and the corre-
sponding reconfigurable acoustic metamaterial deformed into three different configurations: (A)
θ = π/4; (B) θ = 0; (C) θ = π/2 .

Finally, we use extruded hexagonal prisms to construct a system that can act ei-

ther as a one-dimensional or a two-dimensional or a three-dimensional waveguide

(Figure 5.7, A, B, C and D). More specifically, the building block of this structure is
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an hexagonal prism with all its faces extruded except for two square faces that are

kept rigid (highlighted in blue in Figure 5.7A). The metamaterial formed by con-

necting these extruded unit cells is highly deformable and characterized by two de-

grees of freedom, denoted by α and γ in Figure 5.7A. Differently from the structures

considered in Figure 5.6, here for any admissible combination of (α, γ) the assembly

of plates and hinges forms a network of tubes that can be exploited as an acoustic

waveguide. In the expanded configuration defined by (α, γ) = (0, 0) the structure

acts as a three-dimensional waveguide as the excited waves (red arrow in Figure 5.7A)

can propagate along three different directions (green arrow in Figure 5.7A). How-

ever, by applying an external force we can transform the metamaterial into either a

two-dimensional (for (α, γ) = (−π/4,−π/4) - Figure 5.7C) or a one-dimensional (for

(α, γ) = (π/4π/4) - Figure 5.7D) or a three-dimensional with mutually perpendicular

channels (for (α, γ) = (π/4,−π/4) - Figure 5.7B) waveguide (see Figure D.5).
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Figure 5.7: Reconfigurable acoustic waveguide based on a tessellation of hexagonal prisms. Ex-
perimental and numerical images of the the building block (the extruded cube) and the corre-
sponding reconfigurable acoustic metamaterial deformed into four different configurations: (A)
(α, γ) = (0, 0); (B) (α, γ) = (π/4,−π/4); (C) (α, γ) = (−π/4,−π/4); (D) (α, γ) = (π/4, π/4).

5.4 Discussion

In summary, we propose a new type of reconfigurable acoustic waveguides based on

origami principles. Our results indicate that the reconfigurability of the networks of

waveguides defined by the origami structures can be exploited to achieve very differ-
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ent acoustic responses and wave radiation patterns. Remarkably, the involved acoustic

mechanisms are broadband, show a rich behavior in frequency and can be easily re-

produced at different scales, from millimeter to meter large structures.

It should be noted that our strategy to control wave propagation and radiation is

based on networks of tubes supporting acoustic waves. Interestingly, these simple sys-

tems have not been widely studied yet in this context, as in recent years the control

of sound wave propagation has been mostly achieved by structuring waveguides with

periodic scatterers21,62,97 or resonators139,112,48. While in the most of the reported

metamaterials the functionality is locked into place once they are fabricated, tun-

ability has also been demonstrated by rotation of the scatterers 45,113,152,74, thermal

radiation146, adjustable resonating components26,141 and applied mechanical deforma-

tion11. However, in all these systems the tunability is limited to a relatively narrow

frequency range. In contrast, the dramatic reconfiguration of the waveguides proposed

here for audible acoustics is broadband and represents a new way of tuning and even

switching the propagation of sound. All together, the large number of origami waveg-

uide structures that can be designed, the richness of their deformation modes, as well

as the possibility of use both single unit cells and complex ensembles leave many op-

portunities to guide and control the propagation of waves, with possible applications

going well beyond the first demonstration of wave guiding and radiation reported

here.
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5.5 Methods

5.5.1 Fabrication

The metamaterial comprising an array of extruded cubes is fabricated from thin poly-

meric sheets using an efficient stepwise layering and laser-cutting technique. To fabri-

cate each of the six extruded rhombi that together form a building block (an extruded

cube), we use a nearly inextensible polyethylene terephthalate sheet with thickness

of t = 0.25mm, covered with a double-sided tape layer (3M VHB Adhesive Transfer

Tapes F9460PC) with a thickness of t = 0.05mm and bonded to a second, thinner

polyethylene terephthalate layer (t = 0.05mm ). Cutting slits are introduced into us-

ing a CO2 laser system (VLS 2.3, Universal Laser Systems) and the extruded rhombi

could then be formed by removing the parts from the layered sheet, and bonding their

ends together.
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A.1 Building Blocks

The building blocks for all the proposed metamaterials are patterned spherical shells 129,

in which a significant change in volume is observed as a result of elastic instabilities.

Since here we focus on cubic crystal systems and require both the building blocks and

the metamaterial to have octahedral symmetry, only patterned spherical shells with 6,

12 and 24 holes are considered. Different views of the three building blocks discussed

in this study are shown in Figure A.1.

A.2 Representative Volume Elements

Since each building block has a limited number of sites where adjacent building blocks

can be attached to each other and metamaterials with octahedral symmetry can only

be built through connecting identical junctions, only six different Bucklicrystals can

be built: bcc crystals using building blocks with 6, 12 or 24 holes, sc crystals us-

ing building blocks with 12 or 24 holes and fcc crystal using building blocks with 24

holes. Different views of the representative volume elements (RVEs) for each metama-

terial in the undeformed configuration are shown in Figure A.2.

A.3 Experiments

To monitor the evolution of the Poisson’s ratio of the fabricated Bucklicrystal, we

tested the structure under uniaxial compression. At the strain level of interest, we

immobilized the specimen using a fixture made of acrylic plates, nylon bolts/nuts and

inch-thick closed-cell foam plates placed between the specimen and the fixture (see

Figure A.3). The foam plates were used as a low electron density spacer that would
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Figure A.1: Different views of the building blocks with 6, 12, and 24 holes.

be nearly invisible in the acquired x-ray transmission images and thus not interfere

with volume rendering of the higher electron density silicone elastomer Bucklicrystal.
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Figure A.2: Different views of the undeformed RVEs for all the proposed Bucklicrystals.

A.4 Numerical Simulations of Stability Analysis for 3D Periodic Struc-

tures

We investigated the buckling of 3D periodic porous structures using non-linear finite

element (FE) analyses. The FE calculations were conducted within the nonlinear code

ABAQUS, version 6.8-2. In the numerical analyses, we investigated the stability of

infinitely periodic structures comprising of an array of perfectly connected building

blocks. For the sake of computational efficiency, the analyses were conducted on rep-

resentative volume elements (RVEs) (see Figure A.2).

For infinite periodic structures, it is useful to make the distinction between micro-
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Figure A.3: Testing of the Bucklicrystal. a,b) Undeformed configuration. c,d) Deformed configu-

ration at εapplied22 = −0.3. (scale bar: 60mm)

scopic instabilities (i.e. instabilities with wavelengths that are of the order of the size

of the microstructure) and macroscopic instabilities (i.e. instabilities with much larger

wavelengths in comparison to the size of the unit cell)43,144,16,102.

Microscopic instabilities. Although microscopic (local) buckling modes may

alter the initial periodicity of the solid, they can still be detected by studying the

response of a single unit cell and investigating the propagation of small-amplitude

waves with an arbitrary wave vector superimposed on the current state of deforma-

tion43,144,16. While a real angular frequency ω corresponds to a propagating wave, a
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complex ω identifies a perturbation exponentially growing with time. Therefore, the

transition between stable and unstable configurations is detected when the frequency

vanishes (i.e. ω = 0) and the new periodicity of the solid introduced by instability can

be easily obtained by the corresponding wave vector. Here, the finite-element method

was used to perform the Bloch wave analysis16.

Macroscopic instabilities. Following Geymonat et al.43, we examined macro-

scopic instabilities by detecting the loss of strong ellipticity of the overall response

of the periodic structure. Specifically, for the metamaterials considered in this study

macroscopic instabilities may occur whenever the condition

LHijklNjNlmimk > 0 for m⊗N 6= 0, (A.1)

is first violated along the loading path, LH being the macroscopic (homogenized) tan-

gent modulus and N and m denoting unit vectors. Note that LH is evaluated numer-

ically by subjecting the RVE to nine independent linear perturbations of the macro-

scopic deformation gradient16.

A.5 Stability Analysis for 6-Hole Bucklicrystal

We started by investigating the stability of the 6-hole Bucklicrystal. For the consid-

ered periodic structure, the onsets of both microscopic and macroscopic instabilities

were detected by studying the response of the RVE depicted in Figure A.4-left. A

microscopic instability was detected at ε22 = −0.03, while the onset of macroscopic

instability occurs at ε22 = −0.06. Therefore, microscopic instabilities were always crit-

ical in compression, leading to a critical mode where all building blocks underwent the
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same rotation (see Figs. A.4-right), without altering the structure’s periodicity.

Figure A.4: Left: RVE for the undeformed 6-hole bcc. Right: Critical mode detected by the
Bloch wave analysis. Note that the deformation of the RVE is slightly different in 1 and 3 direc-
tions.
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A.6 Stability Analysis for All Bucklicrystals

The onsets of both microscopic and macroscopic instabilities for each Bucklicrystal

was detected by studying the response of the RVEs depicted in Figure A.2. In all

Bucklicrystals, instabilities of short wavelength were found to be critical, leading to

spherical collapse of all the building blocks. The values of critical strain obtained

from the stability analysis are summarized in Table A.1 and the corresponding crit-

ical modes are shown in Figure A.5. Note that for sc configurations, buckling leads to

an enlarged RVE comprising of 8 building blocks (RVE size = 2 × 2 × 2 in 1, 2, and 3

directions). Moreover, it is worth noting that the non-linear deformation of the Buck-

licrystals is dictated by the folding mechanism of the corresponding building blocks.

Interestingly, in the Buckliball with 12 or 24 holes, all the junctions (i.e. the sites

where adjacent building blocks can be attached to each other) rotate all in the same

direction during folding (Figure A.6). As a result, in Bucklicrystals comprising arrays

of building blocks with 12 or 24 holes, the folded units have two potentially different

orientations (Figure A.7). In contrast, in the 6-hole Buckliball, half of the junctions

rotate clockwise and half counterclockwise (Figure A.6). As a result, in the deformed

configuration of the 6-hole bcc Bucklicrystal, all of the folded building blocks are ori-

ented exactly in the same way (Figure A.8).
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εmicro22 εmacro22

6H-bcc -0.030 -0.060
12H - bcc -0.030 -0.140
12H- sc -0.041 -0.265
24H-bcc -0.020 -0.062
24H-sc -0.026 -0.096
24H-fcc -0.023 -0.050

Table A.1: Values of critical strain for microscopic (εmicro
22 ) and macroscopic (εmacro

22 ) instabili-
ties.

Figure A.5: Critical modes for all the Bucklicrystals under uniaxial compression. Upon applying
a load in the 2- direction, all the ligaments undergo the first buckling mode and all the circular
holes close uniformly. Note that for sc configurations, buckling leads to an enlarged RVE, which is
comprised of 8 building blocks (RVE size = 2× 2× 2 in 1, 2, and 3 directions).
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Figure A.6: Sequence of progressively deformed configurations of the building blocks. The cir-
cular markers are used to highlight the rotation of the junctions used to build bcc Bucklicrystals.
Yellow markers indicate a counterclockwise rotation, while black markers correspond to a clockwise
rotation. In the 6-hole building block, half of the junctions rotate clockwise and half counterclock-
wise, as indicated by the yellow and black markers. In contrast, for the building block with 12 or
24 holes, all identical junctions rotate in the same direction.
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Figure A.7: Left: Enlarged RVE for the undeformed 12-hole bcc comprising of 35 building blocks.
Right: Reconstruction of the critical mode detected for the enlarged RVE. Note that the folded
building blocks have two different orientations, as indicated by the two colors (blue and green). As
a result, each unit is oriented differently with respect to the surrounding connected units.

Figure A.8: Left: Enlarged RVE for the undeformed 6-hole bcc comprising of 35 building blocks.
Right: Reconstruction of the critical mode detected for the enlarged RVE. Note that all folded
building blocks have exactly the same orientation.
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A.7 Porosity of Bucklicrystals

Each building block is fully characterized by two adimensional parameters: porosity,

denoted by ψ, and thickness over inner radius ratio, denoted by t/ri
129. The porosity

of a single building block is defined as a ratio of volume of the voids to volume of the

intact shell129

ψ =
Vvoids

Vintact shell
, (A.2)

where

Vintact shell =
4

3
π(r3o − r3i ), (A.3)

ri and ro denoting the inner and outer radius of the spherical shell, respectively. The

volume fraction of the structured shell is then simply defined as

Vshell = (1− ψ)
4

3
π(r3o − r3i ). (A.4)

In this study all crystals are constructed using building blocks characterized by

ψ = 0.733 and (ro − ri)/ri = 5/7. It is important to note that the use of building

blocks characterized by the same parameters ψ and t/ri results in Bucklicrystals with

different initial global porosities ψ̄.

The global porosity for each packing configurations (sc, bcc,and fcc) is defined as

ψ̄ = 1−
Nbuilding blockVshell

VRV E
, (A.5)

where Nbuilding block is the number of building blocks in the RVE and VRV E = L3

is the volume of the cubic RVE of length L. Note that each packing configuration is

characterized by a unique pair 〈Nbuilding block, L〉. More specifically, 〈Nbuilding block, L〉 =
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〈1, 2r0〉 ,
〈

2, 4r0√
3

〉
, and

〈
4, 4r0√

2

〉
for sc, bcc,and fcc packing configurations, respectively.

Combining Eqs. (A.4) and (A.5), the global void volume fraction for Bucklicrystals

characterized by ψ = 0.733 and (ro − ri)/ri = 5/7 can be calculated as: ψ̄sc = 0.888,

ψ̄bcc = 0.854 and ψ̄fcc = 0.842.
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B.1 Fabrication

A silicone-based rubber (commercial name: Elite Double 32, Zhermack) with mate-

rial density ρ = 965 kg/m3 is used to cast the experimental specimen. The material

properties are measured through tensile testing up to a true strain of 0.60 and no hys-

teresis is found during loading and unloading. The constitute behavior is accurately

captured by a nearly-incompressible (i.e., Poisson ratio ν0 = 0.4999) Yeoh hyperelastic

model161, whose strain energy is given by

W =
3∑
i=1

Ci0
(
Ī1 − 3

)i
+

(J − 1)2i

Di
, (B.1)

where C10 = 131 kPa,C20 = 0 kPa,C30 = 3.5 kPa,D1 = D2 = D3 = 1.54GPa−1.

Moreover, Ī1 = tr
[
dev

(
FTF

)]
and J = detF, where F is the deformation gradient.

Note that the initial shear modulus(G0) and bulk modulus(K0) at zero strain are re-

lated to two of the Yeoh model parameters as G0 = 2C10 = 0.26MPa,K0 = 2/D1 =

1.3GPa, so that the speed of propagating longitudinal waves through the undeformed

homogeneous rubber is cL = 1160m/s.

To manufacture the helices a molding approach is used. First, a mold is fabricated

from Rigid Opaque Vero blue plastic material (product number RGD840, Objet) using

a 3-D printer (Connex500, Objet) to cast a helix (see Figure B.1(a)). Before replica-

tion, a releasing agent (SMOOTH-ON universal mold release) is sprayed on to the

mold to easily de-mold and separate the cured rubber helix from the plastic mold.

The casted mixture is first placed in vacuum for degassing and is allowed to set at

room temperature for curing. The single helices fabricated to study their static re-

sponse (i.e., deformation) are comprised of 9.2 loops (both ends are cut flat - see
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Figure B.1(b)) with rectangular cross-section of 13mm × 6.5mm, inner diameter

D0,in = 15.6mm, outer diameter D0 = 28.6mm, and pitch P0 = 16.25mm.

To fabricate the acoustic metamaterial shown in Figure 1 of the main text, we

manufacture 36 elastomeric helices and arrange them to form a 6 × 6 two-dimensional

square lattice with center-to-center distance A0 = 32.5mm. Note that all helices are

cut to comprise only 3 loops (so that their height in the undeformed configuration is

H0 = 40 mm) before building the specimen. The helices are then attached to two

acrylic plates on the top and bottom using Cyberbond Apollo 2240 adhesive. We use

four nylon bolts/nuts placed at the corners of the plates to immobilize the specimen

at strain level of interest (Figure B.2(a)). The dimension of the specimen at ε = 0

(i.e., undeformed configuration) is Height ×Width×Depth = 40× 195× 195 mm.

Figure B.1: Fabrication. (a) 3-D printed plastic mold, and (b) elastomeric helix manufactured
using the mold and casting approach.

B.2 Testing

We measure the propagation of sound waves through the metamaterial at two lev-

els of applied deformation, ε = 0 and ε = 0.9. At the strain level of interest, we

immobilize the specimen using the acrylic fixture and measure the transmission in
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GX direction. In all the tests we also place a 2 inch-thick closed-cell foams all around

the sample to properly close it regardless of its height (Figure B.2(c)). To excite the

wave propagation through the air, we use an array of five identical loudspeakers (Vifa

OT19NC00-04, 3/4 inch diameter)(Figure B.2(b)) placed along one of the faces of the

sample. The loudspeakers provide a frequency sweep input signal (duration 1 second),

whose frequency content is controlled with a MATLAB script (spanning from 500

Hz to 12 kHz). On the opposite face of the sample we then record the amplitude of

the scattered pressure waves, φ(t), with a PCB microphone and pre-amplifier (model

378B02, PCB). Note that the transmission in air, φair(t), through the acrylic plates

surrounded by foams without the helices, is also recorded. Finally, the normalized

transmission spectra reported in Figure 3 in the main text are calculated as

T (f) = 20 log10

(∥∥∥∥∥ φ̂(f)

φ̂air(f)

∥∥∥∥∥
)

where φ̂(f) and φ̂air(f) are the Fourier transforms of the transmission through the

sample and the transmission through air, respectively. Note that each curve shown in

Figure 3 is based on the average of 20 measurements.

Figure B.2: Testing. (a) Front-view image of the fabricated metamaterial at ε = 0. (b) Position
of loudspeakers in the experimental set-up. (c) Experimental set-up without the metamaterial used
to measure the transmission through air.
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B.3 Analytical Model for Deformation of a Helix

In this Section we present a simple analytical model to predict the effect of the ap-

plied strain, ε, on the morphology of a helix. In particular, we first investigate how ε

affects its pitch P and outer diameter D, and then determine the effect of such defor-

mation on the solid volume fraction ψ of the metamaterial.

We start by noting that the deformed configuration of the helix is described by the

vector function

r(θ) = (x(θ), y(θ), z(θ)) =

(
D

2
cos θ,

D

2
sin θ,

P

2π
θ

)
. (B.2)

Assuming P0 the pitch of an helix composed of N loops in the undeformed config-

uration (i.e., at ε = 0), it is easy to see that at ε = 0 the height of the helix is given

by

H0 = N P0, (B.3)

while under an applied strain ε we have

H(ε) = N P = (1 + ε) H0. (B.4)

Note that for the sake of simplicity, we have assumed that the pitch remains constant

along the helix, a condition that is violated in the presence of gravity. Substitution of

Eq. (B.3) into Eq. (B.4) yields the evolution of the pitch as a function of the applied

strain

P = (1 + ε)P0. (B.5)

To obtain the diameter of the helix in the deformed configuration (D), we first cal-
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culate the length of one loop of the helix both in the deformed configuration

L =

∫ 2π

0

√(
dx

dθ

)2

+

(
dy

dθ

)2

+

(
dz

dθ

)2

dθ =
√
π2D2 + P 2, (B.6)

and in the undeformed configuration

L0 =
√
π2D2

0 + P 2
0 . (B.7)

Next, we assume that the helix is inextensible (i.e., L = L0), so that

√
π2D2

0 + P 2
0 =

√
π2D2 + P 2, (B.8)

from which D is obtained as

D = D0

√
1−

(
P0

πD0

)2

ε (ε+ 2). (B.9)

In particular, for the helix manufactured for this study (characterized by P0 = 13 mm

and D0 = 28.6 mm) we have

D = 28.6
√

1− 0.021 ε (ε+ 2)mm. (B.10)

Finally, we focus on the metamaterial and consider a square array of helices with

center-to-center distance A0 = 32.5 mm. It is easy to see that the change in pitch

induced by the applied strain significantly alters the solid volume fraction of the sys-

tem. Since in this study we focus on pressure waves propagating in the air surround-

ing the helices, in the undeformed configuration each helix can be considered as a
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solid cylinder and the solid volume fraction of the metamaterial can be obtained as

ψ0 =
Vcylinder
Vunit cell

=
πD2

0

4A2
0

. (B.11)

However, as the applied deformation is increased, the cylinders transform into helices

and the air originally inside their internal cavity connects to the surrounding fluid,

reducing the solid volume fraction of the metamaterial. Therefore, for ε > 0 the solid

volume fraction can be calculated as

ψ =
Vhelix
Vunit cell

=
Vhelix

A2
0H0(1 + ε)

. (B.12)

Since the helices are made of an incompressible material (rubber), their volume is

preserved during deformation and can be easily calculated as

Vhelix =
π

4
(D2

0 −D2
0,in) H0, (B.13)

where D0,in is the inner diameter of the helix in the undeformed configuration (i.e., at

ε = 0). Thus, the solid volume fraction of the metamaterial under an applied strain ε

is simply given by

ψ =
π(D2

0 −D2
0,in)

4A2
0 (1 + ε)

. (B.14)

B.4 Numerical Simulations

All the numerical simulations are carried out using the commercial Finite Element

package Abaqus/Standard (SIMULIA, Providence, RI). In particular we conduct two

different types of simulations: (i) static analysis to investigate the effect of the ap-
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plied deformation on the shape of the helix; (ii) Bloch wave analysis to investigate

the propagation of small-amplitude acoustic waves in the metamaterial under different

levels of deformation.

B.4.1 Static analysis

Static analyses are performed to capture the deformed configuration of the helices un-

der an applied strain ε, accounting for the effect of gravity. The FE model of a single

helix with the same geometric and material properties as the fabricated one is con-

structed using quadratic solid elements (Abaqus element type C3D10M with a mesh

seed size of 1 mm). Moreover, the response of the material is captured using the Yeoh

hyperelastic model described in Section C.1. In the simulations we apply a vertical

displacement u = εH0 to the top face of the helix, while constraining the motion of

the bottom face. We then monitor the effect of the applied deformation on the pitch

and outer diameter. Snapshots of the meshed undeformed and deformed (at ε = 0.9)

helix are shown in Figure B.3.
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Figure B.3: Numerical images of a single helix. Front and isometric views of (a) the undeformed
and (b) highly deformed (i.e., ε = 0.9) configuration as obtained from the static analysis.

B.4.2 Bloch wave analysis

The propagation of sound waves within the acoustic metamaterial is first investigated

numerically by considering a square array of helices of infinite extent, characterized

by a prismatic unit cell (i.e., minimum unit identified in the periodic structure which

includes both the helix and the surrounding air) spanned by the lattice vectors a1 =

[A0, 0, 0], a2 = [0, A0, 0], and a3 = [0, 0, P ], as shown in Figure B.4(b). Thus, any

spatial function field, φ(x), in the infinite periodic structure satisfies the condition:

φ(x + T) = φ(x), (B.15)

where

T = t1a1 + t2a2 + t3a3, (B.16)

t1, t2, and t3 being arbitrary integers.
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The analysis to obtain the dispersion relation of the propagating waves in the pe-

riodic structure at different levels of applied deformation consists of two steps: (Step

1) we apply statically the desired level of deformation to the unit cell; (Step 2) we

calculate the dispersion relation of the propagating waves for the deformed unit cell.

Step 1. We mesh the unit cell (comprising only one loop of the helix) using quadratic

solid element (Abaqus element type C3D10M) and applied statically the desired level

of deformation. To this end, we apply periodic boundary conditions along the axial

direction, so that the displacements of each pair of nodes periodically located on the

top and bottom faces of the unit cell are related as

utx − ubx = 0, uty − uby = 0, utz − ubz = ε(Zt − Zb), (B.17)

where the superscripts t and b refer to quantities associated to nodes on the top and

bottom surfaces and Z denotes the position in z-direction of a node in the unde-

formed configuration. Then, a non-linear static step is performed to deform the unit

cell by applying the desired value of strain ε.

Step 2. We investigate the dynamic response of the metamaterial and conduct fre-

quency domain wave propagation analysis on the deformed the unit cell at different

levels of applied deformation, focusing on the propagation of waves in the xy-plane.

In particular, we change the elements of the deformed unit cell obtained through Step

1 into acoustic elements (Abaqus element type AC3D10M), and mesh also the sur-

rounding air in the unit cell using the same type of elements (for the air we assume

density ρair = 1.2 kg/m3 and speed of sound cL,air = 343m/s).
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Figure B.4: Bloch wave analysis. (a) Undeformed configuration (ε = 0): oblique and top views of
the unit cell as obtained from Step 1 (static analysis) and of that used for Step 2 (Bloch analysis);
(b) Deformed configuration (ε = 0.9): oblique and top views of the unit cell as obtained from Step
1 (static analysis) and of that used for Step 2 (Bloch analysis); (c) corresponding point lattice
in reciprocal space showing the first Brillioun zone (the area inside the yellow square) and the
irreducible Brillioun zone (red GXM triangle) for square arrangement of helices. b1 and b2 are the
reciprocal lattice vectors.

Next, we apply to the faces of the deformed unit cell Bloch-type boundary condi-

tions of the form

p(x + r) = p(x) exp(ik · r), (B.18)

where p is the acoustic pressure, x is the position of a node in the deformed configu-

ration and r denotes the distance in the current configuration between a pair of nodes

periodically located on the boundary. Moreover, k is the Bloch-wave vector lying in

the reciprocal space. Since most commercial finite element packages do not support

the complex-valued pressure introduced by (B.18), following Aberg and Gudmund-

son3 we split any complex-valued spatial function φ(x) into a real and an imaginary

part

φ(x) = φ(x)re + iφ(x)im. (B.19)
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The problem is then solved using two identical finite element meshes for the unit cell,

one for the real part and the other for the imaginary part, coupled by

pre(x + r) = pre(x) cos(k · r)− pim(x) sin(k · r), (B.20)

pim(x + r) = pre(x) sin(k · r) + pim(x) cos(k · r).

Operationally, in our numerical simulations we use a user defined multiple point con-

straint (MPC) subroutine to implement Eqs. (B.20).

Finally, focusing on the propagation of small-amplitude waves, we solve the frequency-

domain acoustic wave equation85

∇ � (
1

ρ
∇p) = − 1

ρc2L
(ω(k))2p, (B.21)

using a perturbation method to obtain the dispersion relations ω = ω(k). Note that,

since the reciprocal lattice is also periodic, we can restrict the wave vectors k to a cer-

tain region of the reciprocal space called the first Brillioun zone 23(indicated by the

yellow square in Figure B.4(c)). In addition, we may further reduce the domain to

the irreducible Brillioun zone (IBZ) (red triangle GXM in Figure B.4(c)) by taking

advantage of reflectional and rotational symmetries85. Operationally, the band gaps

are identified by checking all the eigen-frequencies ω(k) for k vectors on the perime-

ter of the IBZ. The band gaps, defined as frequencies range in which the propagation

of the waves is forbidden, are obtained by the frequency ranges within no ω(k) exist.

Numerically, a discrete set of k vectors on the perimeter of the IBZ needs to be cho-

sen for the band gap calculations. For the simulations presented in this paper, twenty

uniformly-spaced points on each edge of the IBZ are considered.
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Finally, we note that, given the large contrast in material properties between rub-

ber and air, dispersion relations identical to those shown in the paper are obtained

also for simplified models in which the elastomeric helix is modeled as a cavity and

perfectly-reflecting boundary conditions are assumed at the interface (see Figure B.5

).
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B.5 Additional Results

Figure B.5: Effect of the applied deformation on the dispersion relations for the fabricated struc-
ture. Dispersion relations calculated at different levels of applied deformation. At each level of
deformation the dispersion plots on the left (in blue) are obtained from models that comprise
both the elastomeric helix and the surrounding air, while the dispersion plots on the right (in
grey) are obtained from simplified models in which the elastomeric helix is modeled as a cavity
and perfectly-reflecting boundary conditions are assumed at the interface. The results are reported
at different levels of strains (a) ε = 0,(b) ε = 0.05, (c) ε = 0.28, (d) ε = 0.40, (e) ε = 0.80,
and (f) ε = 0.92 under uniaxial tension. The insets show the configuration of helices at the corre-
sponding levels of applied strains. The metamaterial comprises a square array of helices with initial
outer diameter D0 = 28.6 mm, pitch P0 = 13 mm, rectangular cross-section of 13× 6.5 mm, and
lattice spacing A0 = 32.5 mm.
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Figure B.6: Evolution of band gap frequency as a function of the applied deformation for the fab-
ricated structure. The metamaterial comprises a square array of helices with initial outer diameter
D0 = 28.6 mm, pitch P0 = 13 mm, rectangular cross-section of 13× 6.5 mm, and lattice spacing
A0 = 32.5 mm.
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Figure B.7: Effect of the applied deformation on the dispersion relations of a triangular array of
helices. Dispersion relations calculated at different levels of applied deformation. The results are
reported at different levels of strains (a) ε = 0, (b) ε = 0.05, (c) ε = 0.28, (d) ε = 0.53, (e)
ε = 0.80, and (f) ε = 1.30 under uniaxial tension. The insets show the configuration of helices
at the corresponding levels of applied strains. The metamaterial comprises a triangular array of
helices with initial outer diameter D0 = 28.6 mm, pitch P0 = 13 mm, rectangular cross-section of
13× 6.5 mm, and lattice spacing A0 = 32.5 mm.
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Figure B.8: Effect of the applied deformation on the dispersion relations of a square array of he-
lices. Dispersion relations calculated at different levels of applied deformation. The results are
reported at different levels of strains (a) ε = 0, (b) ε = 0.05, (c) ε = 0.25, (d) ε = 0.45, (e)
ε = 1.1, and (f) ε = 1.5 under uniaxial tension. The insets show the configuration of helices at the
corresponding levels of applied strains. The metamaterial comprises a square array of helices with
initial outer diameter D0 = 48 mm, pitch P0 = 24 mm, rectangular cross-section of 24 × 2 mm,
and lattice spacing A0 = 50 mm.
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C.1 Reconfigurable Metamaterial Based on Extruded Cubes

Figure C.1: Propagation of sound waves for (α1, α2, α3) = (π/2, π/2, 0). Top cross-sectional
view of the pressure field distribution at f = 3.5 kHz. The cutting plate is shown on the right and
the color indicates the pressure amplitude normalized by the input signal amplitude (p0). Differ-
ently from Figure 6.3B in the main text, the color bar is chosen to be −1 < p/p0 < 1 so that the
plane modes (i.e., high and low pressure zones) are more evident. Note that the weak radiation
outside of the structure is not clearly visible for this choice of color bar.
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C.2 Reconfigurable Metamaterial Based on Extruded Truncated

Octahedra

To demonstrate that the proposed strategy to design reconfigurable acoustic waveg-

uides is not restricted to the origami-inspired structure consisting of a cubic array

of extruded cube, here we consider a reconfigurable metamaterial based on extruded

truncated octahedra. The building block of this metamaterial is an extruded trun-

cated octahedron with a single degree of freedom, denoted by θ in Figure C.2. This

building block is constructed by extruding the 8 green hexagonal faces (highlighted in

green in Figure C.2) of the truncated octahedra, removing 4 of its square faces (high-

lighted in yellow in Figure C.2) and making the two remaining ones rigid (highlighted

in blue in Figure C.2). This results in a 3D geometry composed of 50 identical rigid

faces that can be folded along the 132 edges of length a (see Figure C.2-left). To form

the metamaterial, we then connect the building blocks through the extruded edges.

As for the case of the metamaterial based on the extruded cubes, by changing θ be-

tween 0 and π/2 the architecture of the system can be transformed to different config-

urations as shown in Figure C.3.
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Figure C.2: Building block and central unit of the metamaterial based on extruded truncated
octahedra.

To describe all the possible folding shapes of the structure, we need to describe the

position of all the faces and edges of the central unit as function of θ. We start by

noting that the unit normal vector in outward direction to the 8 hexagonal faces are

given by

w±x±y±z =
〈± sin θ, ± sin θ, ± cos θ〉√

2 sin2 θ + cos2 θ
, (C.1)

while the normals to the six square faces are

u±z = 〈0, 0, ±1〉 (sin θ + sin θ),

u±x = 〈±1, 0, 0〉 (cos θ + sin
π

4
),

u±y = 〈0, ±1, 0〉 (cos θ + sin
π

4
).

(C.2)
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We also define the 36 edge tangents

v±y±z = 〈0, ± cos θ, ± sin θ〉,

v±z±x = 〈± cos θ, 0, ± sin θ〉,

v±x±y = 〈± sinπ/4, ± sinπ/4, 0〉,

(C.3)

where v±s±t are the edge tangent vectors connecting the faces with normal vector u±s

to u±t (with s = x, y, z and t = x, y, z). The unit normal vectors w+x+y+z, u+x, u+y,

u+z, and edge vectors vz−x, vx−z, vx−y, vy−x, vy−z, vz−y are shown in Figure C.2-

right.

Having known all those vectors, one can fully describe the shape of the structure

for given θ. Interstingly, we find that 0 < θ < π/2 the metamaterial does not act as

an acoustic waveguide, since it does not comprise a network of interconnected tubes.

Only for θ = 0 and θ = π/2 the plates defining the structures form interconnected

channels that can be used to guide acoustic waves in one and two directions, respec-

tively.
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Figure C.3: Reconfigurable metamaterial based on a tessellation of truncated octahedra. Nu-
merical images of the the building block and the corresponding 4 × 4 × 4 reconfigurable acoustic
metamaterial deformed into three different configurations: (A) θ = π/4; (B) θ = 0; (C) θ = π/2.
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C.3 Reconfigurable Metamaterial Based on Extruded Hexagonal

Prisms

As part of this study we also investigated the reconfigurability of a metamaterial

based on extruded hexagonal prisms. Figure C.4 shows the central unit and corre-

sponding building block of this metamaterial. The building block of this structure is

an hexagonal prism with all its faces extruded except for two square faces that are

kept rigid (highlighted in blue in Figure C.4). The resulting extruded unit consists

of 30 rigid faces that can fold along 74 edges, and can be connected through the ex-

truded edges to form a highly deformable structure characterized by three degrees of

freedom, denoted by α, β and γ in Figure C.4. As for the other geometries considered

in this study, the structure can be transformed into different shapes by changing α, β

and γ. However, it is important to note that only for β = 0 the plates form a network

of tubes. As such, here we consider β = 0, so that all the possible configurations of

the metamaterial are defined by the 4 vectors

A = 〈−
√

(1− sin 2α)/4,
√

(1 + sin 2α)/2,
√

(1− sin 2α)/4〉,

B = 〈1/
√

2, 0, 1/
√

2〉,

C = 〈
√

(1− sin 2γ)/4,
√

(1 + sin 2γ)/2, −
√

(1− sin 2γ)/4〉,

D = 〈0, −1, 0〉.

(C.4)
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Figure C.4: Building block and central unit of the extruded truncated octahedron metamaterial.
The angels α and γ used to describe the shape of the geometry are demonstrated on the right
which defined as angular deviation from vectors A, C (β is always assumed to be zero). In the
buiding block on the left, the red arrows and shaded areas indicate the excited waves, while the
green arrows and shaded areas highlight the points from which the structure radiates.

As shown in Figure C.5 A-D, the network of tubes defined by this metamaterial

can be transformed into multiple highly distinct shapes by varying α, and γ. For

(α, γ) = (0, 0) (Figure C.5A) the structure acts as a three-dimensional waveguide as

the excited wave can propagate along three different directions. However, through the

application of external deformation, the structure can be reconfigured either into an-

other 3D waveguide with mutually perpendicular channels ( for (α, γ) = (π/4,−π/4) -

see Figure C.5B), or a 2D waveguide (for (α, γ) = (−π/4,−π/4) - see Figure C.5C) or

a 1D waveguide (for (α, γ) = (π/4, π/4) - Figure C.5D).
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Figure C.5: Reconfigurable metamaterial based on hexagonal prisms. Numerical images of the
the building block and the corresponding 4 × 4 × 4 reconfigurable acoustic metamaterial deformed
into three different configurations: (A) (α, γ) = (0, 0); (B) (α, γ) = (π/4,−π/4); (C) (α, γ) =
(−π/4,−π/4); (D) (α, γ) = (π/4, π/4).
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