
Building Interpretable Models: From Bayesian
Networks to Neural Networks

Citation
Krakovna, Viktoriya. 2016. Building Interpretable Models: From Bayesian Networks to Neural
Networks. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33840728

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33840728
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Building%20Interpretable%20Models:%20From%20Bayesian%20Networks%20to%20Neural%20Networks&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=3c72e77f139b75317f6393d52ef8efa8&departmentStatistics
https://dash.harvard.edu/pages/accessibility

Building Interpretable Models:

From Bayesian Networks to Neural Networks

A dissertation presented

by

Viktoriya Krakovna

to

The Department of Statistics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Statistics

Harvard University

Cambridge, Massachusetts

September 2016

c©2016 - Viktoriya Krakovna

All rights reserved.

Thesis advisors: Prof. Jun Liu, Prof. Finale Doshi-Velez Viktoriya Krakovna

B U I L D I N G I N T E R P R E TA B L E M O D E L S :

FROM BAYESIAN NETWORKS TO NEURAL NETWORKS

A B S T R A C T

This dissertation explores the design of interpretable models based on Bayesian net-

works, sum-product networks and neural networks.

As briefly discussed in Chapter 1, it is becoming increasingly important for machine

learning methods to make predictions that are interpretable as well as accurate. In

many practical applications, it is of interest which features and feature interactions are

relevant to the prediction task. In Chapter 2, we develop a novel method, Selective

Bayesian Forest Classifier (SBFC), that strikes a balance between predictive power and

interpretability by simultaneously performing classification, feature selection, feature

interaction detection and visualization. It builds parsimonious yet flexible models using

tree-structured Bayesian networks, and samples an ensemble of such models using

Markov chain Monte Carlo. We build in feature selection by dividing the trees into two

groups according to their relevance to the outcome of interest. In Chapter 3, we show

that SBFC performs competitively on classification and feature selection benchmarks in

low and high dimensions, and includes a visualization tool that provides insight into

relevant features and interactions. This is joint work with Prof. Jun Liu.

Sum-Product Networks (SPNs) are a class of expressive and interpretable hierar-

chical graphical models. In Chapter 4, we improve on LearnSPN, a standard structure

learning algorithm for SPNs that uses hierarchical co-clustering to simultaneously iden-

tifying similar entities and similar features. The original LearnSPN algorithm assumes

iii

that all the variables are discrete and there is no missing data. We introduce a practical,

simplified version of LearnSPN, MiniSPN, that runs faster and can handle missing

data and heterogeneous features common in real applications. We demonstrate the

performance of MiniSPN on standard benchmark datasets and on two datasets from

Google’s Knowledge Graph exhibiting high missingness rates and a mix of discrete

and continuous features. This is joint work with Moshe Looks (Google).

In Chapter 5, we turn our efforts from building interpretable models from the

ground up to making neural networks more interpretable. As deep neural networks

continue to revolutionize various application domains, there is increasing interest in

making these powerful models more understandable, and narrowing down the causes

of good and bad predictions. We focus on recurrent neural networks (RNNs), state

of the art models in speech recognition and translation. Our approach to increasing

interpretability is to combine an RNN with a hidden Markov model (HMM), a simpler

and more transparent model. We explore different combinations of RNNs and HMMs:

an HMM trained on LSTM states, and a hybrid model where an HMM is trained first,

then a small LSTM is given HMM state distributions and trained to fill in gaps in

the HMM’s performance. We find that the LSTM and HMM learn complementary

information about the features in the text, and we also apply the hybrid models to

medical time series. This is joint work with Prof. Finale Doshi-Velez.

iv

C O N T E N T S

1 I N T E R P R E TA B I L I T Y - W H Y A N D H O W ? 1

2 S E L E C T I V E B AY E S I A N F O R E S T C L A S S I FI E R : S I M U LTA N E O U S F E AT U R E

S E L E C T I O N , I N T E R A C T I O N D E T E C T I O N , A N D C L A S S I FI C AT I O N 3

2.1 Introduction 3

2.2 Related work 5

2.2.1 Naı̈ve Bayes 5

2.2.2 Bayesian Network model 6

2.2.3 Tree-structured Bayesian methods 6

2.2.4 Adding feature selection 8

2.3 Selective Bayesian Forest Classifier (SBFC) 9

2.3.1 Model 9

2.3.2 MCMC Updates 12

2.3.3 Detailed balance for MCMC updates 14

2.3.4 Classification Using Bayesian Model Averaging 16

3 I N T E R P R E TA B L E S E L E C T I O N A N D V I S U A L I Z AT I O N O F F E AT U R E S A N D

I N T E R A C T I O N S U S I N G B AY E S I A N F O R E S T S : S B F C I N P R A C T I C E 18

3.1 Experiments on real data 18

3.2 Experiments on simulated data 29

3.2.1 Cluster dependence structure 29

3.2.2 Logistic regression model 32

3.2.3 MCMC diagnostics 36

v

3.3 R package 37

3.3.1 Graph visualizations 37

3.3.2 Example: heart disease data 38

3.4 Conclusion 39

4 M I N I S P N : A M I N I M A L I S T I C A P P R O A C H T O S U M - P R O D U C T N E T W O R K

S T R U C T U R E L E A R N I N G F O R R E A L A P P L I C AT I O N S 40

4.1 Introduction 40

4.2 SPN learning algorithms 42

4.2.1 LearnSPN algorithm 42

4.2.2 MiniSPN: a variation on LearnSPN 43

4.2.3 Pareto optimization algorithm 45

4.3 Experiments 45

4.3.1 Experiments on Knowledge Graph data sets 45

4.3.2 Experiments on benchmark data sets 47

4.4 Conclusion 49

5 I N C R E A S I N G T H E I N T E R P R E TA B I L I T Y O F R E C U R R E N T N E U R A L N E T-

W O R K S U S I N G H I D D E N M A R K O V M O D E L S 50

5.1 Introduction 50

5.2 Methods 52

5.2.1 Long Short-Term Memory models 53

5.2.2 Hidden Markov models 54

5.2.3 Hybrid models 55

5.3 Experiments 56

5.3.1 Text data 56

5.3.2 Multivariate time series data 65

5.4 Conclusion 73

vi

A C K N O W L E D G E M E N T S

During my meandering graduate school journey, I was fortunate to work with several

brilliant researchers. I would like to thank Prof. Jun Liu for his feedback and insight,

Prof. Finale Doshi-Velez for her insight, support, and inspiration, and Dr. Moshe Looks

for guidance and encouragement during my internship at Google.

I am grateful to my comrades at the statistics and computer science departments for

their good humor and curiosity, and the many interesting conversations that taught me

a great deal. I would especially like to thank David Duvenaud, Ryan Adams, Finale

and others at the machine learning lab for welcoming me to the computer science

department in my last year; and Yang Chen for her perpetual encouragement on our

shared path through graduate school.

I am very thankful to my housemates at Citadel House for their moral support,

listening to my research-related rants, and helping to debug my code. I am also grateful

to my co-founders and teammates at the Future of Life Institute for their encourage-

ment and advice, as well as making my graduate school years more interesting and

rewarding.

I am grateful to my parents and sisters for their faith in me, and the scientists in

my family who have inspired me as role models. Lastly, I am deeply thankful to my

husband, János Kramár, for proofreading all my work, and for being a great source of

understanding, validation and patience for the past 11 years.

vii

1

I N T E R P R E TA B I L I T Y - W H Y A N D H O W ?

My graduate work has taken place in the intersection of statistics and machine learning,

and I have sought to bring together ideas and values from both disciplines. While statis-

ticians emphasize the insight and elegance of models, machine learning researchers

tend to focus on predictive power. Model interpretability has received a lot of thought

in the statistics community, while the machine learning community has only recently

started taking it seriously. In both fields, it is commonly believed that there is a tradeoff

between interpretability and predictive power. While this tradeoff is real, it is often pos-

sible to make a model more interpretable without significantly impairing performance.

In this dissertation, I strive to build models that are both powerful and interpretable.

Why is interpretability important? We want the models we build to be useful and

reliable in a variety of applications. As machine learning is increasingly applied outside

low-risk domains like games (Mnih et al., 2013) and image labeling (Vinyals et al.,

2015), it becomes more and more important for the methods to be understandable so

that they can be trusted. For example, recent European Union regulations underscore

the importance of interpretability of automated decision-making, mandating a “right

to explanation” where a user can ask for an explanation of an automatic decision

(Goodman and Flaxman, 2016). In high-stakes applications, such as medicine, the

users care about the robustness and transparency of a method as much, if not more,

than about its accuracy. Machine learning methods can be error-prone and difficult to

debug (Sculley et al., 2014), and make very different errors than humans do (Papernot

et al., 2016). As they become more autonomous and powerful, avoiding accidents and

1

unintended consequences will be a crucial and difficult challenge (Amodei et al., 2016).

This makes it all the more important to understand the weaknesses of our models and

be able to track down the causes of poor predictions.

As interpretability is based on human understanding, it is an intrinsically subjective

and multifaceted quality, rather than a single axis. A model or algorithm can be

considered intelligible to humans in multiple ways, falling under the broad categories

of transparency and post-hoc interpretability (Lipton, 2016). While works such as

(Ribeiro et al., 2016) and (Turner, 2016) develop post-hoc explanations for black-box

models, I focus on transparency, specifically model parsimony and the ability to trace

back from a prediction or model component to particularly influential features in the

data, similarly to Kim et al. (2015).

In this work, I explore several fundamentally different approaches to building

interpretable models. I start by building a novel Bayesian method with interpretability

in mind from the ground up. SBFC produces good predictions while identifying and

visualizing the features and interactions that most strongly drive these predictions.

While building an interpretable model from scratch is the most reliable way to ensure

interpretability (Rüping, 2006), the resulting method will not necessarily be adopted by

practitioners over more popular opaque methods.

I thus proceed to improve upon two existing well-known methods, in the domains

of sum-product networks and neural networks. The SPN model is already interpretable,

and my contribution is to simplify a classical learning algorithm and make it more

broadly applicable. On the other hand, deep neural networks are famously opaque

and widely used. While there has been some work on interpreting and visualizing

convolutional networks (Yosinski et al., 2015), little has been done to increase the

interpretability of recurrent networks. I attempt to bridge this gap by combining

recurrent networks with more transparent models, and visualizing how these models

complement each other in terms of features they learn.

2

2

S E L E C T I V E B AY E S I A N F O R E S T C L A S S I F I E R : S I M U LTA N E O U S

F E AT U R E S E L E C T I O N , I N T E R A C T I O N D E T E C T I O N , A N D

C L A S S I F I C AT I O N

2.1 I N T R O D U C T I O N

Feature selection and classification are key objectives in machine learning. Many ap-

proaches have been developed for these two problems, usually tackling them separately.

However, performing classification on its own tends to produce black box solutions

that are difficult to interpret, while performing feature selection alone can be difficult

to justify without being validated by prediction. In addition to screening for relevant

features, it is also useful to detect interactions between them, and this problem becomes

especially difficult in high dimensions. In many decision support systems, e.g. in medi-

cal diagnostics, the users care about which features and feature interactions contributed

to a particular decision.

Many methods focus either on feature selection or on identifying feature interac-

tions, or deal with these tasks in two independent steps. However, feature selection and

feature interaction detection are often closely related. Without identifying feature inter-

actions, feature selection can easily omit features that have weak marginal influence on

the class label individually but have a large influence on it jointly. Conversely, without

feature selection, identification of feature interactions tends to be computationally

infeasible. Therefore, it is a good idea to accomplish these two tasks simultaneously.

Selective Bayesian Forest Classifier (SBFC) combines predictive power and interpretabil-

3

Figure 1: Example of a SBFC graph

ity, by performing classification, feature selection, and feature interaction detection at

the same time. Our method also provides a visual representation of the features and

feature interactions that are relevant to the outcome of interest.

The main idea of SBFC is to construct an ensemble of Bayesian networks (Pearl,

1988), each constrained to a forest of trees divided into signal and noise groups based

on their relationship with the class label Y (see Figure 1 for an example). The nodes

and edges in Group 1 represent relevant features and interactions. SBFC is inspired by

Naı̈ve Bayes, an exceedingly simple yet surprisingly effective classifier, that assumes

independence between the features conditional on the class label. Starting from the

Naı̈ve Bayes framework, we build dependence structures on the features. The features

are partitioned into two groups based on their relationships with the class label, and the

groups are further divided into independent subgroups, with each subgroup modeled

by a tree structure. Such models are easy to sample using Markov chain Monte Carlo

(MCMC). We combine their predictions using Bayesian model averaging, and aggregate

their feature and interaction selection.

We show that SBFC performs competitively with state-of-the-art methods on 25 low-

dimensional and 6 high-dimensional benchmark data sets. By adding noise features to a

synthetic data set, we compare feature selection and interaction detection performance

as the signal to noise ratio decreases (Figure 4). We use a high-dimensional data set from

4

the NIPS 2003 feature selection challenge to demonstrate SBFC’s superior performance

on a difficult feature selection task (Figure 6), and illustrate the visualization tool on a

heart disease data set with meaningful features (Figure 5). SBFC is a good choice of

algorithm for applications where interpretability matters along with predictive power.

2.2 R E L AT E D W O R K

2.2.1 Naı̈ve Bayes

The Naı̈ve Bayes classifier (NB) (Duda and Hart, 1973) learns from training data the

conditional probability of each feature in X = (X1, . . . , Xd), given class label Y. It then

classifies a new instance into the most probable class, assuming that the features are

conditionally independent given the class:

P(Y = y|X1 = x1, . . . , Xd = xd)

∝P(Y = y)
d

∏
j=1

P(Xj = xj | Y = y),

where the distribution P(Xj = xj | Y = y) is estimated from the data. The assumption

of conditional independence among all the features is far from realistic, but the perfor-

mance of the NB classifier has been surprisingly good, competitive with state-of-art

classifiers in many real applications (Zhang, 2004). A possible explanation for NB’s

good performance is that it avoids overfitting by modeling the distribution of X con-

ditional on Y, instead of directly focusing on a predictive model of Y on X. Although

the conditional independence distribution ∏d
i=1 P(Xj | Y) might differ significantly

from the true probability distribution P(X | Y), their overlap is often good enough for

classification, which is based on a 0-1 loss function (Domingos and Pazzani, 1997).

5

2.2.2 Bayesian Network model

The restrictive conditional independence assumption of NB often harms its perfor-

mance when features are correlated. At the opposite extreme, we have the unrestricted

Bayesian network model (Pearl, 1988). A Bayesian network (BN) is a directed acyclic

graph that encodes a joint probability distribution over X. It contains two compo-

nents: G and Θ, where G represents the directed acyclic graph, and Θ stands for the

parameters needed to describe the joint probability distribution. Each node represents a

feature, and a directed edge corresponds to a “parent→ child” dependence relationship

between the features, so that each feature Xj is independent of its non-descendants

given its parents Λj.

The probability distribution over X can be written as

P(X) =
d

∏
j=1

P(Xj|Λj).

Bayesian network models present a tremendous computational challenge. Structure

learning is NP-hard in the general case (Heckerman et al., 1995), as is exact inference

(Cooper, 1990). The flexibility of the BN model is also its curse when the number of

features is large, and the network structure can be difficult to intepret.

2.2.3 Tree-structured Bayesian methods

Tree structures are frequently used in computer science and statistics, because they

provide adequate flexibility to model complex structures, yet are constrained enough

to facilitate computation. SBFC was inspired by tree-based methods such as Tree-

Augmented Naı̈ve Bayes (TAN) (Friedman et al., 1997), Averaged One-Dependence

Estimators (AODE) (Webb et al., 2005), and Hidden Naı̈ve Bayes (HNB) (Zhang et al.,

6

2005), which relax the conditional independence assumption of NB to allow tree struc-

tures on the features.

TAN finds the optimal tree on all the features using the minimum spanning tree

algorithm, with the class label Y as a second parent for all the features. The class label

Y is the first parent of all the features, and each feature has another feature as its second

parent, except for the root vertex in G, which has only one parent Y. While the search for

the best unrestricted Bayesian network is usually an intractable task (Heckerman et al.,

1995), the computational complexity of TAN is only O(d2n), where d is the number of

features and n is the sample size (Chow and Liu, 1968).

AODE constrains the model structure to a tree where all the features are children of

the root feature, with Y as a second parent, and uses model averaging over model with

all possible root features.

P(Y, X) = P(Y, Xk)∏
j 6=k

P(Xj | Y, Xk).

HNB, an extension of AODE, designates a hidden parent Xpj for each feature Xj,

and assumes that the impact of this hidden parent on Xj is a weighted average of the

impact of all the other features on Xj:

P(Xj | Xpj , Y) = ∑
k 6=j

wjkP(Xj|Xk, Y), ∑
k 6=j

wjk = 1.

These methods put all the features into a single tree, which can be difficult to

interpret, especially for high-dimensional data sets. We extend these methods by

building forests instead of single-tree graphs, and introducing selection of relevant

features and interactions.

7

2.2.4 Adding feature selection

While the above approaches focus on building a dependence structure, the following

methods augment Naı̈ve Bayes with feature selection. Selective Bayesian Classifier

(SBC) (Langley and Sage, 1994) applies a forward greedy search method to select a

subset of features to construct a Naı̈ve Bayes model, while Evolutional Naı̈ve Bayes

(ENB) (Jiang et al., 2005) uses a genetic algorithm with the classification accuracy as its

fitness function.

More generally, one can use feature selection as a preprocessing step for any clas-

sification algorithm. Wrapper methods (Kohavi and John, 1997) select a subset of

features tailored for a specific classifier, treating it as a black box. feature Selection for

Clustering and Classification (VSCC) (Andrews and McNicholas, 2014) searches for a

feature subset that simultaneously minimizes the within-class variance and maximizes

the between-class variance, and remains efficient in high dimensions. Categorical

Adaptive Tube Covariate Hunting (CATCH) (Tang et al., 2014) selects features based on

a nonparametric measure of the relational strength between the feature and the class

label.

Our approach, however, is to integrate feature selection into the classification al-

gorithm itself, allowing it to influence the models built for classification. A classical

example is Lasso (Tibshirani, 1996), which performs feature selection using L1 reg-

ularization. Some decision tree classifiers, like Random Forest (Breiman, 2001) and

BART (Chipman et al., 2010), provide importance measures for features and the option

to drop the least significant features. In many applications, it is also key to identify

relevant feature interactions, such as epistatic effects in genetics. Interaction detection

methods for gene association models include Graphical Gaussian models (Andrei and

Kendziorski, 2009) and Bayesian Epistasis Association Mapping (BEAM) (Zhang and

Liu, 2007). BEAM introduces a latent indicator that partitions the features into several

8

groups based on their relationship with the class label. One of the groups in BEAM is

designed to capture relevant feature interactions, but is only able to tractably model a

small number of them. SBFC extends this framework, using tree structures to represent

an unlimited number of relevant feature interactions.

Our work is similar to the Extended TAN algorithm (ETAN) (de Campos et al., 2014),

an extension of TAN that allows it to have forest structure and features disconnected

from the class label. While ETAN uses a variation on the Edmonds algorithm for finding

the minimum spanning forest, we learn a collection of forest structures using MCMC.

2.3 S E L E C T I V E B AY E S I A N F O R E S T C L A S S I FI E R (S B F C)

SBFC combines feature selection and structure building, partitioning the features based

on their relation to the class label, and building tree structures within the partitions.

Then it uses MCMC to sample from the space of these graph structures, and performs

classification based on multiple sampled graphs via Bayesian model averaging.

2.3.1 Model

Given n observations with class label Y and d discrete features Xj, j = 1, . . . , d, we

divide the features into two groups based on their relation to Y (see Figure 1 for an

example):

G R O U P 0 (NOISE): features that are unrelated to Y

G R O U P 1 (SIGNAL): features that are related to Y

We further partition each group into non-overlapping subgroups mutually inde-

pendent of each other conditional on Y. The number of subgroups in each group is

9

unknown in our model - we sample it using MCMC instead of assigning a fixed num-

ber a priori. For each subgroup, we infer a tree structure describing the dependence

relationships between the features (many subgroups will consist of one node and thus

have a trivial dependence structure). Note that we model the structure in the noise

group as well as the signal group, since an independence assumption for the noise

features could result in correlated noise features being misclassified as signal features.

The overall dependence structure is thus modeled as a forest of trees, representing

conditional dependencies between the features (no causal relationships are inferred).

The class label Y is a parent of every feature in Group 1 (edges to Y are omitted in

subsequent figures). We will refer to the combination of a group partition and a forest

structure as a graph.

The prior consists of a penalty on the number of edges between features in each

group and a penalty on the number of signal nodes (i.e., edges between features and Y)

P(G) ∝ d−λx·(E0(G)+E1(G)/v)−λy·D1(G)/v

where Di(G) is the number of nodes and Ei(G) is the number of edges in Group i of

graph G, while v is a constant equal to the number of classes.

The prior scales with the number of features d to penalize very large, hard-to-

interpret trees in high dimensional cases. The terms corresponding to the signal group

are divided by the number of possible classes v, to avoid penalizing large trees in the

signal group more than in the noise group by default. The penalty coefficients in the

prior, λx = 4 and λy = 1, were determined empirically to provide good classification

and feature selection performance (there is a relatively wide range of coefficients that

produce similar results).

10

Table 1: Parent sets for each feature type

Type of feature Xj Parent set Λj
Group 0 root ∅

Group 0 non-root {Xpj}
Group 1 root {Y}

Group 1 non-root {Y, Xpj}

Given the training data X(n×d) (with columns X j, j = 1, . . . , d) and y(n×1), we break

down the graph likelihood according to the tree structure:

P(X, y|G) = P(y|G)P(X|y, G)

= P(y)
d

∏
j=1

P(X j|Λj)

Here, Λj is the set of parents of Xj in graph G. This set includes the parent Xpj of Xj

unless Xj is a root, and Y if Xj is in Group 1, as shown in Table 1. We assume that the

distributions of the class label Y and the graph structure G are independent a priori.

Let vj and wj be the number of possible values for Xj and Λj respectively. Then our

hierarchical model for Xj is

[Xj|Λj = Λjl, Θjl = θjl] ∼ Mult(θjl), l = 1, . . . , wj

Θjl ∼ Dirichlet

(
α

wjvj
1vj

)

Each conditional Multinomial model has a different parameter vector Θjl. We con-

sider the Dirichlet hyperparameters to represent “pseudo-counts” in each conditional

model (Friedman et al., 1997). Let njkl be the number of observations in the training

data with Xj = xjk and Λj = Λjl, and njl = ∑
vj
k=1 njkl. Then

P(X j|Λj, Θj1, . . . , Θjwj) =

wj

∏
l=1

vj

∏
k=1

θ
njkl
jkl

11

We then integrate out the nuisance parameters Θjl, l = 1, . . . , wj. The resulting

likelihood depends only on the hyperparameter α and the counts of observations for

each combination of values of Xj and Λj.

P(X j|Λj) =

wj

∏
l=1

Γ
(

α
wj

)
Γ
(

α
wj

+ njl

) vj

∏
k=1

Γ
(

α
wjvj

+ njkl

)
Γ
(

α
wjvj

)
This is the Bayesian Dirichlet score, which satisfies likelihood equivalence (Heck-

erman et al., 1995). Namely, reparametrizations of the model that do not affect the

conditional independence relationships between the features, for example by pivoting

a tree to a different root, do not change the likelihood.

2.3.2 MCMC Updates

S W I T C H T R E E S : Randomly choose trees T1, . . . , Tk without replacement, and propose

switching each tree to the opposite group one by one (see Figure 2b). We chose

k = 10 for computational efficiency reasons, as higher values such as k = 20 did

not improve performance or mixing (though it could be useful to scale the value

of k with the number of variables). This is a repeated Metropolis update.

R E A S S I G N S U B T R E E : Randomly choose a node Xj, detach the subtree rooted at this

node and choose a different parent node for this subtree (see Figure 2c). This is a

Gibbs update, so it is always accepted.

We consider the set of nodes Xj′ that are not descendants of Xj as candidate parent

nodes (to avoid creating a cycle), with corresponding graphs Gj′ . We also consider

a “null parent” option for each group, where Xj becomes a root in that group, with

corresponding graph G̃i for group i. Choose a graph G∗ from this set according to

the conditional posterior distribution π(G∗) (conditioning on the parents of all

12

(a) Original graph

(b) Switch Trees: switch tree {X5, X7} to Group 0, switch tree {X8} to Group 1]

(c) Reassign Subtree: reassign node X6 to be a child of node X8

(d) Pivot Trees: nodes X6 and X10 become tree roots

Figure 2: Example MCMC updates applied to the graph in Figure 2a

13

the nodes except Xj, and on the group membership of all the nodes outside the

subtree). The subtree joins the group of its new parent.

As a special case, this results in a tree merge if Xj was a root node, or a tree split if

Xj becomes a root (i.e. the new parent is null). Note that the new parent can be

the original parent, in which case the graph does not change.

P I V O T T R E E S : Pivot all the trees by randomly choosing a new root for each tree (see

Figure 2d). By likelihood equivalence, this update is always accepted.

For computational efficiency, in practice we don’t pivot all the trees at each

iteration. Instead, we just pivot the tree containing the chosen node Xj within

each Reassign Subtree move, since this is the only time the parametrization of a

tree matters. This implementation produces an equivalent sampling mechanism.

2.3.3 Detailed balance for MCMC updates

Let π(G) = P(G|X, y) be the target distribution.

Switch Trees

Let p be the probability that tree T is among the k trees proposed for switching - this

only depends on k and the number of trees in the graph, which is constant during the

Switch update. Let G be the starting graph when proposing to switch T, and G∗ be the

graph obtained from G by switching T. Then,

π(G)P(G → G∗) = π(G)P(G → G∗ proposed)P(G → G∗ accepted|G → G∗ proposed)

= π(G) · p ·min
(

1,
π(G∗)p
π(G)p

)
= p min (π(G), π(G∗))

14

Since this expression is symmetric in G and G∗, we can conclude that the detailed

balance condition holds:

π(G)P(G → G∗) = π(G∗)P(G → G).

Reassign Subtree

Let G be the starting graph. We pick any node X, and choose a non-descendant (or

null) node to be its parent. Suppose X has c descendants - then the number of possible

resulting graphs Gi is d− c (including G itself). The backtracking update from G∗ is

reassigning X again, which results in the same possible graphs Gi.

π(G)P(G → G∗) = π(G)P(G → G∗ proposed)

= π(G)
1
d

π(G∗)

∑d−c
i=1 π(Gi)

= π(G∗)
1
d

π(G)

∑d−c
i=1 π(Gi)

= π(G∗)P(G∗ → G)

Pivot Trees

Let G be the starting graph when pivoting tree T of size |T|. Let G∗ be the graph

obtained by pivoting T. By likelihood equivalence, π(G) = π(G∗), so the proposal is

always accepted.

15

π(G)P(G → G∗) = π(G)P(G → G∗ proposed)

= π(G)
1
|T|

= π(G∗)
1
|T|

= π(G∗)P(G∗ → G)

2.3.4 Classification Using Bayesian Model Averaging

Graphs are sampled from the posterior distribution using the MCMC algorithm. We

apply Bayesian model averaging (Hoeting et al., 1998) rather than using the posterior

mode for classification. For each possible class, we average the probabilities over a

thinned subset of the sampled graph structures, and then choose the class label with

the highest average probability. Given a test data point xtest, we find

P(Y = y|X = xtest, X, y)

∝
S

∑
i=1

P(Y = y|X = xtest, Gi)P(Gi|X, y)

where S is the number of graphs sampled by MCMC (after thinning by a factor of 50).

We use training data counts to compute the posterior probability of the class label given

each sampled graph Gi.

Let R1 be the index set of root nodes in Group 1 in graph G. Let E1 be the index

set of non-root (“edge”) nodes in Group 1 in G. Let pi be the index of the parent of

covariate xi.

We have a new data point xnew, and for classification we need the posterior proba-

bility that y = ynew for every value ynew. Let the training data be X, y, with sample size

16

N. We approximate the probability P(x = xnew|y = ynew, G, X, y) using counts from

training data, where #(A) is the count of training data points satisfying condition A.

Thanks to the tree structure of G, the only features involved in each count are xi, the

parent of xi (if it exists), and y.

P(y = ynew|x = xnew, G, X, y)

∝P(y = ynew|X, y)P(x = xnew|y = ynew, G, X, y)

≈#(y = ynew)

N ∏
i∈R1

P(xi = xnew
i |y = ynew, X, y)

× ∏
i∈E1

P(xi = xnew
i |xpi = xnew

pi
, y = ynew, X, y)

≈#(y = ynew)

N ∏
i∈R1

#(xi = xnew
i , y = ynew)

#(y = ynew)

× ∏
i∈E1

#(xi = xnew
i , xpi = xnew

pi
, y = ynew)

#(xpi = xnew
pi

, y = ynew)

≈#(y = ynew)

N ∏
i∈R1

#(xi = xnew
i , y = ynew) + 1

N #(xi = xnew
i)

#(y = ynew) + 1

× ∏
i∈E1

#(xi = xnew
i , xpi = xnew

pi
, y = ynew) + 1

N #(xi = xnew
i)

#(xpi = xnew
pi

, y = ynew) + 1

Note that instead of using raw counts in the numerator and denominator, we add 1 in

the denominator and 1
N #(xi = xnew

i) in the numerator. This increases the robustness of

this approximation of the probabilities by avoiding zero values, and ensures that the

probabilities still add up to 1 (since 1
N ∑ #(xi = xnew

i) = 1
N N = 1).

Now, we find these classification probabilities for each sampled graph G, and choose

the value ynew that maximizes the weighted average probability

P(y = ynew|x = xnew, X, y) = ∑
G

P(G|X, y)P(y = ynew|x = xnew, G, X, y)

17

3

I N T E R P R E TA B L E S E L E C T I O N A N D V I S U A L I Z AT I O N O F

F E AT U R E S A N D I N T E R A C T I O N S U S I N G B AY E S I A N F O R E S T S :

S B F C I N P R A C T I C E

3.1 E X P E R I M E N T S O N R E A L D ATA

We compare our classification performance with the following methods.

B A RT : Bayesian Additive Regression Trees, R package BayesTree (Chipman et al.,

2010),

C 5 .0 : R package C50 (Quinlan, 1993),

C A RT : Classification and Regression Trees, R package tree (Breiman et al., 1984),

L A S S O : R package glmnet (Friedman et al., 2010),

L R : logistic regression,

N B : Naı̈ve Bayes, R package e1071 (Duda and Hart, 1973)

R F : Random Forest, R package ranger (Breiman, 2001),

S V M : Support Vector Machines, R package e1071 (Evgeniou et al., 2000),

TA N : Tree-Augmented Naı̈ve Bayes, R package bnlearn (Friedman et al., 1997).

We use 25 small benchmark data sets used by Friedman et al. (1997) and 6 high-

dimensional data sets (Guyon et al., 2005), all from the UCI repository (Lichman, 2013),

18

described in Table 3. We split the large data sets into a training set and a test set,

and use 5-fold cross validation for the smaller data sets (we try both approaches for

the high-dimensional arcene data set). We remove the instances with missing values,

and discretize continuous features, using Minimum Description Length Partitioning

(Fayyad and Irani, 1993) for the small data sets and binary binning (Dougherty et al.,

1995) for the large ones. For a data set with d features, we run SBFC for max(10000, 10d)

iterations, which has empirically been sufficient for stabilization. Figure 3 compares

SBFC’s classification performance to the other methods.

We evaluate SBFC’s feature ranking and interaction detection performance on the

data sets heart, corral, and madelon, in Figures 5, 4, and 6 respectively. We also

compare feature selection in Figures 7 and 8. We compare SBFC’s feature selection

performance to Lasso, as well as RF’s importance metric and BART’s varcount metric,

which rank features by their influence on classification, in Figures 5c, 4e, 4f, and 6c.

We illustrate the structures learned by SBFC on these data sets using sampled graphs,

shown in Figures 5a, 4a, 4b, and 6a, and average graphs over all the MCMC samples,

shown in Figures 5b, 4c, 4d, and 6b.

In the average graphs, the nodes are color-coded according to relevance, based

on the proportion of sampled graphs where the corresponding feature appeared in

Group 1 (dark-shaded nodes appear more often). Edge thickness also corresponds

to relevance, based on the proportion of samples where the corresponding feature

interaction appeared. To avoid clutter, only edges that appear in at least 10% of the

sampled graphs are shown, and nodes that appear in Group 0 more than 80% of the

time are omitted for high-dimensional data sets. Average graphs are undirected and do

not necessarily have a tree structure. They provide an interpretable visual summary of

the relevant features and feature interactions.

Runtimes on the high-dimensional data sets are shown in Table 2 (on an AMD

Opteron 6300-series processor). As shown in Table 2, the runtime of SBFC scales

19

Table 2: Average runtime comparison (in seconds) on the high-dimensional data sets.

Data Set BART C5.0 CART Lasso LR NB RF SBFC SVM TAN
ad 370 9 6 133 676 44 31 290 82 140
arcene 31 17 15 4 40 61 16 3600 40 n/a
arcene-cv 272 164 63 48 210 193 87 3900 120 n/a
gisette 834 98 18 740 4600 118 69 8100 1000 n/a
isolet n/a 9 3 n/a n/a 31 37 1400 200 24
madelon 231 4 1 26 13 7 8 60 32 9
microsoft 3380 44 4.7 110 92 52 452 140 290 12

approximately as d · n · 2 · 10−4 seconds, where d is the number of features and n is the

number of instances, and SBFC takes somewhat longer to run than many of the other

methods on high-dimensional data sets. SBFC’s memory usage scales quadratically

with d.

We examine MCMC diagnostics for some of the data sets in Figure 9, which shows

the log posterior trace plot for a single run on each data set for 10000 iterations, with

burn-in for 1/5 (2000) of the iterations (in general the default number of iterations

is min(10000, 10d)). It’s interesting how the trace plot changes as we add features to

the corral data set: the log posterior is reaching an upper limit for the original data

with 6 features, but not for 100 or more features, and the trace plot for 1000 features

shows worse mixing. This effect generally holds when comparing data sets with a low

number of features, like australian or heart (13-14 features), with data sets with a

high number of features, like madelon (500 features). The most problematic-looking

plot is for the chess data, where we observe a large jump in the log posterior at around

7000 iterations, well past the burn-in cutoff of 2000. This suggests that we should run

the algorithm for longer than 10000 iterations.

20

Table 3: Data set properties (Friedman et al., 1997)

Data set Features Classes Instances
Train Test

australian 14 2 690 CV-5
breast 10 2 683 CV-5
chess 36 2 2130 1066
cleve 13 2 296 CV-5
corral 6 2 128 CV-5
crx 15 2 653 CV-5
diabetes 8 2 768 CV-5
flare 10 2 1066 CV-5
german 20 2 1000 CV-5
glass 9 6 214 CV-5
glass2 9 2 163 CV-5
heart 13 2 270 CV-5
hepatitis 19 2 80 CV-5
iris 4 3 150 CV-5
letter 16 26 15000 5000
lymphography 18 4 148 CV-5
mofn-3-7-10 10 2 300 1024
pima 8 2 768 CV-5
satimage 36 6 4435 2000
segment 19 7 1540 770
shuttle-small 9 6 3866 1934
soybean-large 35 19 562 CV-5
vehicle 18 4 846 CV-5
vote 16 2 435 CV-5
waveform-21 21 3 300 4700
ad 1558 2 2276 988
arcene 10000 2 100 100
arcene-cv 10000 2 200 CV-5
gisette 5000 2 6000 1000
isolet 617 26 6238 1559
madelon 500 2 2000 600
microsoft 294 2 32711 5000

21

Figure 3: Classification accuracy on low- and high-dimensional data sets, showing
average accuracy over 5 runs for each method, with the top half of the methods in
bold for each data set. Note that some of the classifiers could not handle multiclass
data sets, and TAN timed out on the highest-dimensional data sets. SBFC performs
competitively with SVM, TAN and some decision tree methods (BART and RF), and
generally outperforms the others.

22

(a) A sampled graph for the orig-
inal corral data set with 6 fea-
tures

(b) A sampled graph for the augmented corral data set
with 100 features

(c) Average graph for the original
corral data set with 6 features

(d) Average graph for the augmented
corral data set with 100 features

(e) Feature ranking comparison for the
original corral data set with 6 fea-
tures

(f) Feature ranking comparison for the aug-
mented corral data set with 100 features

Figure 4: In the synthetic data set corral, the true feature structure is known: the
relevant features are {X1, X2, X3, X4, X6}, and the most relevant edges are {X1, X2},
{X3, X4}, while the other edges between the first 4 features are less relevant, and any
edges with X5 or X6 are not relevant. The sampled graph in Figure 4a and the average
graph in Figure 4c show that SBFC recovers the true correlation structure between the
features, with the most relevant edges appearing the most frequently (as indicated by
thickness). We generate extra noise features for this data set by choosing an existing
feature at random and shuffling the rows, making it uncorrelated with the other features.
The sampled graph in Figure 4b and the average graph in Figure 4d show that SBFC
recovers the relevant features and some relevant interactions when the amount of noise
increases. Figures 4e and 4f show that all the methods consistently rank the 5 relevant
features (colored blue) above the rest (colored red).

23

(a) A sampled graph for heart data set

(b) Average graph for heart data set

(c) Feature ranking comparison for heart data set

Figure 5: The sampled graph in Figure 5a and the average graph in Figure 5b show
feature and interaction selection for the heart data set with features of medical sig-
nificance. The dark-shaded features in the average graph are the most relevant for
predicting heart disease. There are several groups of relevant interacting features: (Sex,
Thalassemia), (Chest Pain, Angina), and (Max Heart Rate, ST Slope, ST Depression).
The features in each group jointly affect the presence of heart disease. Figure 5c com-
pares feature rankings with other methods, showing that all the methods agree on the
top 9 features, but SBFC disagrees with the other methods on the top 3 features.

24

(a) A sampled graph for madelon data set

(b) Average graph for madelon data set

(c) Feature ranking comparison for madelon data set

Figure 6: Feature and edge selection for the synthetic madelon data set, used in the
2003 NIPS feature selection challenge. This data set, with 20 relevant features and
480 noise features, was artificially constructed to illustrate the difficulty of selecting a
feature set when no feature is informative by itself, and all the features are correlated
with each other (Guyon et al., 2005). SBFC reliably selects the correct set of 20 relevant
features (Guyon et al., 2006), as shown in Figure 6c, and appropriately puts them in a
single connected component, shown in dark blue in the average graph in Figure 6b. As
shown in Figure 6c, none of the other methods correctly identify the set of 20 relevant
features (colored blue), though Random Forest comes close with 19 out of 20 correct.
Our classification performance on this data set is not as good as that of BART or RF,
likely because SBFC constrains these highly correlated features to form a tree, while a
decision tree structure allows a feature to appear more than once.

25

(a) SBFC for 6 features (b) SBFC for 100 features (c) SBFC for 1000 features

(d) RF for 6 features (e) RF for 100 features (f) RF for 1000 features

(g) Lasso for 6 features (h) Lasso for 100 features (i) Lasso for 1000 features

(j) BART for 6 features (k) BART for 100 features (l) BART for 1000 features

Figure 7: Feature selection comparison for the original and augmented corral data
sets.

26

(a) SBFC on heart data set (b) SBFC on madelon data set

(c) RF on heart data set (d) RF on madelon data set

(e) Lasso on heart data set (f) Lasso on madelon data set

(g) BART on heart data set (h) BART on madelon data set

Figure 8: Feature selection comparison for the heart and madelon data sets.

27

(a) australian data after 1000 iterations (b) chess data after 1000 iterations

(c) original corral data (d) augmented corral data with 100 features

(e) augmented corral data with 1000 features (f) heart data after 1000 iterations

(g) madelon data after 2000 iterations (h) mofn data

Figure 9: Log posterior diagnostic plots for some data sets. Each run is 10000 iterations,
with burn-in for the first 2000 iterations.

28

3.2 E X P E R I M E N T S O N S I M U L AT E D D ATA

3.2.1 Cluster dependence structure

To test SBFC’s capacity to pick up on relevant interactions in the data, we use a data set

with several clusters of correlated features. The class label Y is binary, and the Xj take

values in categories 1, 2, 3. The signal group has two clusters of features, each associated

with a particular class value, and the noise group has one cluster. The features are

grouped into clusters as shown in Figure 10. There are 500 training cases and 1000 test

cases.

The data generation process is as follows. First, we generate the features in the

different clusters from independent multinomial distributions. In each signal group

cluster, we synchronize the feature values with the associated class by sorting them

in increasing or decreasing order for the instances with that class value. This makes

the features correlated within the associated class, and independent outside the class,

with their marginal distributions unchanged. In the noise group cluster, we randomly

select half the instances, and sort the features over those instances. See Figure 5 for an

example.

Table 6 shows that SBFC vastly outperforms the other methods in terms of classifi-

cation accuracy on this simulation, and its accuracy does not decrease as more noise

features are added to the data set, which happens to some of the other methods. As

shown in Figure 11, SBFC reliably identifies the clusters and puts them in the correct

groups, though as the number of noise features in the data set increases, it puts a few of

those noise features into Group 1.

29

Figure 10: Cluster partition graph for the cluster simulation

Table 4: Cluster properties for the cluster simulation

Group Cluster features Associated class
1 1 X1, X2, X3 1
1 2 X4, X5, X6, X7 2
0 3 X8, X9, X10 none
0 none X11, . . . , Xd none

Table 5: An example illustrating the cluster data generation process: we generate X1
and X2 independently, and then sort their values in class 1, in increasing and decreasing
order respectively.
Before sorting:

Class 1 2
Instance 1 2 3 4 5 6 7 8

X1 2 3 1 1 3 2 1 2
X2 1 2 3 2 3 1 2 1

After sorting:
Class 1 2

Instance 1 2 3 4 5 6 7 8
X1 1 1 2 3 3 2 1 2
X2 3 2 2 1 3 1 2 1

Table 6: Average classification accuracy on the cluster simulation

features BART C5.0 CART NB LR RF SBFC SVM
100 62.8 64.2 67.8 56 52.4 64.8 93 55.9

1000 51.3 51 49 40 42 52 93 51
10000 46 51 44 54 42 58 92.3 55

30

(a) A sampled graph for the clus-
ter simulation with 100 features

(b) Average graph for the cluster simulation with 100
features

(c) A sampled graph for the cluster simula-
tion with 1000 features

(d) Average graph for the cluster simulation
with 1000 features

(e) A sampled graph for the cluster simulation with 10000 features

(f) Average graph for the cluster simulation with 10000 features

Figure 11: SBFC graphs for the cluster simulation

31

Figure 12: Logistic simulation structure

Table 7: Average classification accuracy on the logistic regression simulation

features BART C5.0 CART NB LR RF SBFC SVM
100 73.4 66.9 69.5 70.8 71.3 71.3 76.1 70.9

1000 73.7 67 63.3 63.7 53.2 65.8 76.2 65.6
10000 72.3 66.2 66 63 53.2 65.6 75.1 65.6

3.2.2 Logistic regression model

We use the following logistic regression model with binary features and class label:

logit(P(Y = 1|X)) = X1 − X2 · X3 + X4 · X5 − X5 · X6

Like in the cluster simulation, we generate several sets of correlated features

({X2, X3}, {X4, X5, X6} and {X7, X8}), with features in different sets being independent,

and generate Y based on the above model. The structure is shown in Figure 12. There

are 500 training cases and 1000 test cases.

Table 7 shows that SBFC does better than the other methods except BART. Both

SBFC and BART maintain a high accuracy as the number of noise features increases,

while many of the other methods decrease in accuracy. As shown in Figure 13, SBFC

correctly identifies relevant edges X2 − X3 and X4 − X5, but chooses X4 − X6 instead

of X5 − X6. SBFC identifies the correlated features, but the noise edge X7 − X8 is

32

(a) A sampled graph for the logistic simu-
lation with 100 features

(b) Average graph for the logistic simulation
with 100 features

(c) A sampled graph for the logistic simula-
tion with 1000 features

(d) Average graph for the logistic simulation
with 1000 features

(e) A sampled graph for the logistic simulation with 10000 features

(f) Average graph for the logistic simulation with 10000 features

Figure 13: SBFC graphs for the logistic simulation.

33

(a) Average graph for the noise simulation with
100 features, using default penalty λy = 1

(b) Average graph for the noise simulation with
1000 features, using default penalty λy = 1

(c) Average graph for the noise simulation with
100 features, using λy = 2

(d) Average graph for the noise simulation with
1000 features, using λy = 2

Figure 14: Average graphs on the noise simulation with different values of the y-edge
penalty λy in the SBFC prior. The default penalty value of 1 leads to misclassifying the
noise trees as signal, while setting the value to 2 avoids this issue.

34

(a) Cluster simulation with 100 features after
1000 iterations

(b) Logistic simulation with 100 features after
1000 iterations

(c) Cluster simulation with 1000 features after
2000 iterations

(d) Logistic simulation with 1000 features after
1000 iterations

(e) Cluster simulation with 10000 features after
20000 iterations

(f) Logistic simulation with 10000 features after
10000 iterations

Figure 15: Log posterior diagnostic plots for the simulated data, with the cluster
simulation in the first column and the logistic simulation in the second column. Each
run is 10000 iterations for d < 1000 features and 100000 iterations for 10000 features,
with burn-in for the first 1/5 of the iterations.

35

increasingly misclassified as signal as we add more noise features. This suggests that

the y-edge penalty λy in the prior is too small.

To investigate the issue with the misclassification of noise edges, we construct a

version of this simulation where all the variables are noise, and the class label Y is

simply distributed as Bin(p = 0.5). As shown in Figure 14, all the noise trees get

misclassified as signal for the default value of the y-edge penalty λy = 1, but increasing

it to 2 leads to classifying the noise trees correctly. We should thus consider making

this the default value of λy.

3.2.3 MCMC diagnostics

We examine MCMC diagnostics for the simulated data sets in Figure 15, which shows

the log posterior trace plot for a single run on each data set. The default number of

iterations is min(10000, 10d) where d is the number of features, with burn-in for 1/5 of

the iterations. Thus, for simulations with d < 1000 features, we run for 10000 iterations

with 2000 iterations of burn-in, and for simulations with 10000 features, we run for

100000 iterations with 20000 iterations of burn-in. We observe that the mixing gets

worse as the number of features increases from 100 to 1000, which suggests that it could

make sense to scale the thinning factor with the number of features instead of using a

constant value of 50 (though mixing does not continue to get worse from 1000 to 10000

features). For the cluster simulation, the default burn-in is not quite enough, and we

see a jump right after burn-in both for 1000 and 10000 features.

36

3.3 R PA C K A G E

The R package is available on CRAN and at github.org/vkrakovna/sbfc. The com-

mand for running the algorithm is sbfc(data). It expects a discretized data set as input,

which can be produced using the data_disc() command.

3.3.1 Graph visualizations

The sbfc_graph() command creates visualizations of the relevant features and feature

interactions that were identified by the MCMC algorithm, such as those in Figures

4, 6, 12, etc. The command sbfc_graph(average=FALSE, iter=N) shows the sampled

graph for the N-th MCMC iteration. The Group 1 nodes are dark-shaded, and the

Group 0 nodes are light-shaded.

The command sbfc_graph(average=TRUE) shows an average graph, aggregating

information from all MCMC samples. The nodes are color-coded according to relevance

- the proportion of samples where the corresponding feature appeared in Group 1 (dark-

shaded nodes appear more often). Edge thickness also corresponds to relevance - the

proportion of samples where the corresponding feature interaction appeared. To avoid

clutter, only edges that appear in at least a certain proportion of the sampled graphs

are shown, specified by the edge_cutoff option, which defaults to 0.1. To see more of

the low-relevance edges, lower the edge_cutoff value.

If you have a data set with meaningful variable labels, you can add these to your

graph by setting the labels option to a set of labels of your choice. In the next section,

we show how to do this for the heart data set.

How can we interpret these average graphs? To determine which groups of features

influence the predictions the most, you can visually identify clusters of thicker edges in

the graph. See Figure 5 for an example.

37

github.org/vkrakovna/sbfc

3.3.2 Example: heart disease data

The heart disease data set contains 13 variables related to heart disease, such as age,

heart rate and blood pressure, and 270 observations. We are interested in identifying

which features and feature interactions contribute to the presence of heart disease.

We begin by removing rows with missing values and discretizing the data set using

Minimum Description Length partitioning. We then run SBFC on the discretized data

set. Since the data set is a bit too small to divide into a training and test set, we leave

the n_train argument for the number of training rows unspecified.

heart = data_disc(heart_data, n_train=NULL)

heart_result = sbfc(heart)

By default sbfc() runs 5-fold cross-validation if a test set is not supplied, and

sbfc_graph() uses the MCMC samples from the first cross-validation fold. If you are

not interested in classification and just want to get MCMC samples and graphs, you can

run sbfc(heart, cv=FALSE). Since this data set has variables with meaningful names,

we supply these as node labels for the graph.

heart_labels = c("Age", "Sex", "Chest Pain", "Rest Blood Pressure",

"Cholesterol", "Blood Sugar", "Rest ECG", "Max Heart Rate", "Angina",

"ST Depression", "ST Slope", "Fluoroscopy Colored Vessels",

"Thalassemia")

sbfc_graph(heart_result, labels=heart_labels, width=700)

To see the feature ranking, run signal_var_proportion(heart_result, nvars).

The proportion of MCMC samples where a specific variable appears in the signal group

(Group 1) is called its signal proportion. The command returns the top nvars features in

decreasing order of signal proportion.

38

To perform MCMC diagnostics as shown in Figures 9 and 15, plot the log posterior

using logposterior_plot(heart_result).

3.4 C O N C L U S I O N

Selective Bayesian Forest Classifier is an integrated tool for supervised classification,

feature selection, interaction detection and visualization. It splits the features into

signal and noise groups according to their relationship with the class label, and uses

tree structures to model interactions among both signal and noise features. The forest

dependence structure gives SBFC modeling flexibility and competitive classification

performance, and it maintains good feature and interaction selection performance as

the signal to noise ratio decreases.

39

4

M I N I S P N : A M I N I M A L I S T I C A P P R O A C H T O S U M - P R O D U C T

N E T W O R K S T R U C T U R E L E A R N I N G F O R R E A L A P P L I C AT I O N S

Figure 16: A sum-product network structure in indicator form and normal form1

4.1 I N T R O D U C T I O N

The Sum-Product Network (SPN) (Poon and Domingos, 2011) is a tractable and inter-

pretable deep model for unsupervised learning. An advantage of SPNs over graphical

models such as Bayesian networks is that they allow efficient exact inference in linear

time with network size. An SPN represents a multivariate probability distribution with

a directed acyclic graph consisting of sum nodes (weighted mixtures over instances),

product nodes (partitions over features), and leaf nodes. An SPN can be represented

either with feature indicators at the leaves (as in Poon and Domingos (2011)) or with

univariate distributions over features at the leaves (as in Gens and Domingos (2013)),
1 Figure from Zhao et al. (2015).

40

shown in Figure 16. We will be using the latter representation, also known as the

normal form.

A key inference challenge in graphical models is summing an exponential number

of products to compute the normalizing constant, also called the partition function.

SPNs make this computation more efficient by reusing components via dynamic pro-

gramming, thus removing the need for approximate inference (Poon and Domingos,

2011). The partition function Z is computed recursively from the leaves to the root: the

value of a product node is the product of the values of its children (Zi = ∏j Zij), and the

value of a sum node is the weighted sum of the values of its children (Zi = ∑j wijZij).

To compute the unnormalized probability of evidence in an SPN, we would perform

the same computation with the univariate leaf distributions corresponding to known

feature values replaced with delta functions at those values. When an SPN is converted

to normal form, with the leaf distributions normalized and the sum node weights

summing to 1, the normalizing constant becomes Z = 1 (Gens and Domingos, 2013).

An SPN is thus more tractable than a Bayesian network and remains no less inter-

pretable while enjoying the expressive power of a deep architecture. It is assembled

from interpretable components - products of independent groups of variables, mixtures

of instances, and univariate distributions. Unlike in deep neural networks, the SPN

architecture clearly shows how specific features influence intermediate components

and the final prediction.

The standard algorithms for learning SPN structure assume discrete data with no

missingness, and mostly test on the same set of benchmark data sets that satisfy these

criteria. This is not a reasonable assumption when dealing with messy data sets in

real applications. The Google Knowledge Graph (KG) is a semantic network of facts

about the world, used to generate Knowledge Panels in Google Search. This data is

quite heterogeneous, and a lot of it is missing, since much more is known about some

entities in the graph than others. High missingness rates can also worsen the impact of

41

Figure 17: Recursive partitioning process in the LearnSPN algorithm2

discretizing continuous variables before doing structure learning, since that results in

losing more of the already scarce covariance information.

Applications like the KG are common, and there is a need for an SPN learning

algorithm that can handle this kind of data. In this paper, we present MiniSPN, a

simplification of a state-of-the-art SPN learning algorithm (LearnSPN) that improves

its applicability, performance and speed. We demonstrate the performance of MiniSPN

on KG data and on standard benchmark data sets.

4.2 S P N L E A R N I N G A L G O R I T H M S

4.2.1 LearnSPN algorithm

LearnSPN (Gens and Domingos, 2013) is a greedy algorithm that performs co-clustering

by recursively partitioning variables into approximately independent sets and parti-

2 Figure from Gens and Domingos (2013).

42

tioning the training data into clusters of similar instances. The variable and instance

partitioning steps are applied to data slices (subsets of instances and variables) pro-

duced by previous steps.

The variable partition step uses pairwise independence tests on the variables, and

the approximately independent sets are the connected components in the resulting

dependency graph. The instance clustering step uses a naive Bayes mixture model for

the clusters, where the variables in each cluster are assumed independent. The clusters

are learned using hard EM with restarts, avoiding overfitting using an exponential

prior on the number of clusters.

The splitting process continues until the data slice has too few instances to test for

independence, at which point all the variables in that slice are considered independent.

The end result is a tree-structured SPN. See Figure 17 for an overview of the recursive

partitioning process.

The algorithm assumes that all the variables are discrete and there is no missing

data. Hyperparameter values for the cluster penalty and the independence test critical

value are determined using grid search.

Recent improvements of LearnSPN include the ID-SPN algorithm (Rooshenas and

Lowd, 2014). ID-SPN follows the same recursive splitting procedure as LearnSPN until

the number of instances or variables goes below a certain threshold. The remaining

data slice becomes a multivariate leaf with an arithmetic circuit structure that is learned

using a separate algorithm, aiming to capture indirect variable interactions. ID-SPN

outperforms LearnSPN on benchmark data sets, but is more difficult to train.

4.2.2 MiniSPN: a variation on LearnSPN

The standard LearnSPN algorithm assumes that all the variables are discrete and there

is no missing data. Hyperparameter values for the cluster penalty and the indepen-

43

dence test critical value are determined using grid search. The clustering step seems

unnecessarily complex, involving a penalty prior, EM restarts, and hyperparameter tun-

ing. It is by far the most complicated part of the algorithm in a way that seems difficult

to justify, and likely the most time-consuming due to the restarts and hyperparameter

tuning. We propose a variation on LearnSPN called MiniSPN that handles missing data,

performs lazy discretization of continuous data in variable partition step, simplifies the

model in the instance clustering step, and does not require hyperparameter search.

We simplify the naive Bayes mixture model in the instance clustering step by at-

tempting a split into two clusters at any given point, and eliminating the cluster penalty

prior, which results in a more greedy approach than in LearnSPN that does not require

restarts or hyperparameter tuning. This seems like a natural choice of simplification - an

extension of the greedy approach used at the top level of the LearnSPN algorithm. We

compare a partition into univariate leaves to a mixture of two partitions into univariate

leaves (generated using hard EM), and the split succeeds if the two-cluster version has

higher validation set likelihood. If the split succeeds, we apply it to each of the two

resulting data slices, and only move on to a variable partition step after the clustering

step fails. The greedy approach is similar to the one used in the SPN-B method (Vergari

et al., 2015), which however alternates between variable and instance splits by default,

thus building even deeper SPNs.

In the variable partition step, we use the two-way Chi-square test of independence

for each pair of variables. We perform the Chi-square test using the subset of rows

where both variables are not missing, and the two variables are considered independent

if the number of such rows is below threshold. The default threshold value of 20 is

chosen to be consistent with the chi-square test validity cutoff, which requires the

expected count in each of the 4 cells to be at least 5. The default critical value of 0.0005

is between the two critical values used in the standard algorithm (0.0001 and 0.0015).

We apply binary binning to each continuous variable, using its median in the given

44

data slice as a cutoff (we tried using the mean as well, and got similar results). Note

that the instance clustering step can handle continuous variables and does not require

binning.

We allow multivariate leaves for continuous variables. When both the variable and

instance splits fail, the set of variables is split into univariate Bernoulli and multivariate

Gaussian leaf nodes.

4.2.3 Pareto optimization algorithm

This algorithm, previously used for learning SPN models on the Knowledge Graph,

was inspired by the work of Grosse et al. (2012). It produces a Pareto-optimal set of

models, trading off between degrees of freedom and validation set log likelihood score.

At each iteration, production rules are randomly applied to add partition and mixture

splits to the models in the current model set, and the new models are added to the

model set. If a model in the model set has both lower degrees of freedom and higher

log likelihood score than another model, the inferior model is removed from the set.

The algorithm returns the model from the Pareto model set with the highest validation

set log likelihood score.

4.3 E X P E R I M E N T S

4.3.1 Experiments on Knowledge Graph data sets

We use two data sets from the Knowledge Graph People collection. In the KG Pro-

fessions data set, most of the variables are boolean indicators of whether each person

belongs to a particular profession. There are 83 boolean variables and 4 continuous

45

Table 8: Knowledge Graph data set properties.

Data set # Variables Training set Test set Density Missingness
Professions-10K 87 5000 5000 0.016 0.066
Professions-100K 87 50000 50000 0.015 0.066
Dates-10K 14 5000 5000 1 0.97
Dates-100K 14 50000 50000 1 0.94

Table 9: Average performance comparison on KG data sets using test set log likelihood.

Data set Pareto Hybrid MiniSPN
Professions-10K -10.2 -6.2 -6.09
Professions-100K -6.61 -6.53 -6.44
Dates-10K -8.66 -8.53 -8.68
Dates-100K -17.1 -16.7 -16.5

Table 10: Average runtime comparison on KG data sets, in seconds.

Data set Pareto Hybrid MiniSPN
Professions-10K 5.3 3.7 0.4
Professions-100K 72 131 7.2
Dates-10K 1.7 2.4 0.26
Dates-100K 29 566 5.4

variables. In the KG Dates data set, there are 14 continuous variables representing dates

of life events for each person and their spouse(s), with most of the data missing. See

Table 8 for details on data set properties. We use subsets of 10000 and 100000 instances

from each of these data sets, and randomly split the data sets into a training and test

set.

On the KG data sets, we compare MiniSPN, Pareto and Hybrid algorithms. We

were not able to apply the standard LearnSPN algorithm on these data sets, since they

contain missing data. Table 9 shows log likelihood performance on the test set, and

Table 10 shows runtime performance (best performing methods are shown in bold).

MiniSPN does better than Pareto, both in terms of log likelihood and runtime. Hybrid

performs comparably to MiniSPN, but is usually the slowest of the three.

46

Table 11: Benchmark data set properties.3

Data set Variables Training set Validation set Test set Density
NLTCS 16 16181 2157 3236 0.332
MSNBC 17 291326 38843 58265 0.166
KDDCup 65 180092 19907 34955 0.008
Plants 69 17412 2321 3482 0.18
Audio 100 15000 2000 3000 0.199
Jester 100 9000 1000 4116 0.608
Netflix 100 15000 2000 3000 0.541
Accidents 111 12758 1700 2551 0.291
Retail 135 22041 2938 4408 0.024
Pumsb-star 163 12262 1635 2452 0.27
DNA 180 1600 400 1186 0.253
Kosarak 190 33375 4450 6675 0.02
MSWeb 294 29441 3270 5000 0.01
Book 500 8700 1159 1739 0.016
EachMovie 500 4524 1002 591 0.059
WebKB 839 2803 558 838 0.064
Reuters-52 889 6532 1028 1540 0.036
20 Newsgroup 910 11293 3764 3764 0.049
BBC 1058 1670 225 330 0.078
Ad 1556 2461 327 491 0.008

4.3.2 Experiments on benchmark data sets

We use 20 benchmark data sets from the literature, exactly the same ones used in the

original LearnSPN paper (Gens and Domingos, 2013). See Table 11 for a summary of

data set properties. On these data sets, we are able to compare the performance of

MiniSPN with the standard LearnSPN algorithm. We are particularly interested in

the effect of MiniSPN’s simple two-cluster instance split relative to the more complex

instance split with the exponential prior and EM restarts used in the standard LearnSPN.

Table 12 shows log likelihood performance on the test set, and Table 13 shows run-

time performance. Like on the KG data, we find that MiniSPN uniformly outperforms

Pareto, and performs similarly to Hybrid and LearnSPN but runs much faster (on the

3 Table from Gens and Domingos (2013).

47

Table 12: Performance on benchmark data sets in terms of test set log likelihood.

Data set Pareto Hybrid MiniSPN LearnSPN
NLTCS -6.33 -6.03 -6.12 -6.1
MSNBC -6.54 -6.4 -6.61 -6.11
KDDCup 2000 -2.17 -2.13 -2.14 -2.21
Plants -17.3 -13.1 -13.2 -13
Audio -41.9 -39.9 -40 -40.5
Jester -54.6 -52.9 -53 -53.4
Netflix -59.5 -56.7 -56.8 -57.3
Accidents -40.4 -32.5 -32.6 -30.3
Retail -11.1 -11 -11.1 -11.09
Pumsb-star -40.8 -28.4 -28.3 -25
DNA -98.1 -91.5 -93.9 -89
Kosarek -11.2 -10.8 -10.9 -11
MSWeb -10.7 -9.94 -10.1 -10.26
Book -35.1 -34.7 -34.7 -36.4
EachMovie -55 -52.3 -52.2 -52.5
WebKB -161 -155 -155 -162
Reuters-52 -92 -85.2 -84.7 -86.5
20 Newsgroup -156 -152 -152 -160.5
BBC -258 -250 -249 -250
Ad -52.3 -49.5 -49.2 -22

Table 13: Runtime comparison on benchmark data sets, in seconds.

Data set Pareto Hybrid MiniSPN LearnSPN
NLTCS 4.8 35 1.4 60
MSNBC 61 212 5.6 2400
KDDCup 2000 152 2080 23 400
Plants 28 780 11 160
Audio 28 556 12 955
Jester 13 193 6.7 1190
Netflix 27 766 14 1230
Accidents 31 1140 18 330
Retail 25 63 7.3 100
Pumsb-star 47 1100 22 350
DNA 6.3 45 3 300
Kosarek 90 537 22 200
MSWeb 75 572 34 260
Book 83 181 32 350
EachMovie 62 218 22 220
WebKB 37 169 38 900
Reuters-52 76 656 95 2900
20 Newsgroup 181 1190 139 28000
BBC 33 123 42 900
Ad 58 92 50 300

48

most time-intensive data set, 20 Newsgroup, MiniSPN takes 2 minutes while LearnSPN

takes 8 hours). On the Ad data set, all our algorithms do much worse than the original

LearnSPN. This might be related to the relatively small number of instances in this data

set.

4.4 C O N C L U S I O N

Sum-product networks have been receiving a lot of attention from researchers due to

their expressiveness, efficient inference and interpretability.While other recent develop-

ments have mostly focused on improving performance on benchmark data sets, our

variation on the classical LearnSPN learning algorithm is simple yet has a large impact

on usability, by improving speed and making it possible to apply to messy real data

sets in real applications.

49

5

I N C R E A S I N G T H E I N T E R P R E TA B I L I T Y O F R E C U R R E N T

N E U R A L N E T W O R K S U S I N G H I D D E N M A R K O V M O D E L S

5.1 I N T R O D U C T I O N

Following the recent progress in deep learning, researchers and practitioners of ma-

chine learning are recognizing the importance of understanding and interpreting what

goes on inside these black box models. Recurrent neural networks have recently revo-

lutionized speech recognition and translation, and these powerful models would be

very useful in other applications involving sequential data. However, adoption has

been slow in applications such as health care, where practitioners are reluctant to let an

opaque system make crucial decisions. If we can make the inner workings of RNNs

more interpretable, more applications can benefit from their power.

It is common for neural networks to show human-level performance most of the

time, but also perform very poorly on seemingly easy cases. For instance, convolutional

networks can misclassify adversarial examples with very high confidence (Nguyen

et al., 2015), and made headlines in 2015 when the image tagging algorithm in Google

Photos mislabeled African Americans as gorillas. We might expect recurrent networks

to fail in similar ways as well. It would thus be useful to have more visibility into where

these sorts of errors come from, e.g. which groups of features contribute to such flawed

predictions.

Several promising approaches to interpreting RNNs have been developed recently,

focusing on a state-of-the-art RNN architecture called Long Short-Term Memory

50

(LSTM). Che et al. (2015) use gradient boosting trees to predict LSTM output probabil-

ities and explain which features played a part in the prediction. They do not model

the internal structure of the LSTM, but instead approximate the entire architecture as a

black box. Karpathy et al. (2016) showed that in LSTM language models, around 10%

of the memory state dimensions can be interpreted with the naked eye by color-coding

the text data with the state values; some of them track quotes, brackets and other clearly

identifiable aspects of the text. Building on these results, we take a somewhat more

systematic approach to looking for interpretable hidden states, by using decision trees

to predict individual hidden state dimensions (Figure 24). We visualize the overall

dynamics of the hidden states by coloring the training data with the k-means clusters

on the state vectors (Figures 21b, 22b, 23b).

We explore several methods for building interpretable models by combining LSTMs

and HMMs. The existing body of literature mostly focuses on methods that specifically

train the RNN to predict HMM states (Bourlard and Morgan, 1994) or posteriors

(Maas et al., 2012), referred to as hybrid or tandem methods respectively. We first

investigate an approach that does not require the RNN to be modified in order to

make it understandable, as the interpretation happens after the fact. Here, we model

the big picture of the state changes in the LSTM, by extracting the hidden states and

approximating them with a continuous emission hidden Markov model (HMM). We

then take the reverse approach where the HMM state probabilities are added to the

output layer of the LSTM (see Figure 19). The LSTM model can then make use of the

information from the HMM, and fill in the gaps when the HMM is not performing well,

resulting in an LSTM with a smaller number of hidden states that could be interpreted

individually (Figures 21, 22, 23).

51

(a) LSTM cell structure1, where ct, ht and xt represent the cell and hidden state vectors and the
observations at time t respectively.

(b) Hidden Markov model, where st and xt represent the hidden states and the observations at
time t respectively.

5.2 M E T H O D S

We compare hybrid HMM-LSTM models with an LSTM model, a continuous emission

HMM (trained on the hidden states of a 2-layer LSTM), and a discrete emission HMM

(trained directly on data).

1 Figure by Chris Olah and Dennis Gannon.

52

(a) Sequentially trained hybrid algorithm (b) Jointly trained hybrid algorithm

Figure 19: Hybrid HMM-LSTM algorithms.

5.2.1 Long Short-Term Memory models

Long Short-Term Memory (LSTM) is an RNN variant designed to capture long-range

interactions in the data. The LSTM cell structure is shown in Figure 18a. We use a

character-level LSTM with 1 layer, based on the rnn Torch package from the Element-

Research library. We train the LSTM for 10 epochs, starting with a learning rate of 1,

and the learning rate is halved whenever exp(−lt) > exp(−lt−1) + 1, where lt is the

log likelihood score at epoch t. The L2-norm of the parameter gradient vector is clipped

at a threshold of 5.

53

5.2.2 Hidden Markov models

The Hidden Markov model is a classical model that is commonly considered transparent.

It assumes that future observations and hidden states are independent from past ones

given the current hidden state st. The HMM structure is shown in Figure 18b. Our

HMM training procedure is as follows:

Initialization of HMM hidden states:

(Discrete HMM) Random multinomial draw for each time step (i.i.d. across time steps).

(Continuous HMM) K-means clusters fit on LSTM state vectors, to speed up conver-

gence relative to random initialization. We chose k = 20 based on a PCA analysis of the

LSTM state vectors, as the first 20 components captured almost all the variance.

At each iteration:

1. Sample states using Forward Filtering Backwards Sampling algorithm (FFBS, Rao

and Teh (2013)).

2. Sample transition parameters from a Multinomial-Dirichlet posterior. Let nij be

the number of transitions from state i to state j. Then the posterior distribution of

the i-th column of transition matrix T (corresponding to transitions from state i)

is:

Ti ∼ Mult(nij|Ti)Dir(Ti|α)

where α is the Dirichlet hyperparameter.

3. (Continuous HMM) Sample multivariate normal emission parameters from Normal-

Inverse-Wishart posterior for state i:

µi, Σi ∼ N(y|µi, Σi)N(µi|0, Σi)IW(Σi)

54

(Discrete HMM) Sample the emission parameters from a Multinomial-Dirichlet

posterior.

Evaluation:

We evaluate the methods based on how well they predict each observation in the

validation set given preceding context. For the HMM models, we do a forward pass on

the validation set (no backward pass unlike the full FFBS), and compute the HMM state

distribution vector pt for each time step t. Then we compute the predictive likelihood

for the next observation as follows:

P(xt+1|pt) =
n

∑
st=1

n

∑
st+1=1

ptst · Tst+1st · P(xt+1|st+1)

where n is the number of hidden states in the HMM.

For the continuous emission HMM, we construct a discrete emission matrix based

on the training outputs, which is used to compute the predictive likelihood.

5.2.3 Hybrid models

Our main hybrid model is put together sequentially, as shown in Figure 19a. We first

run the discrete HMM on the data, outputting the hidden state distributions obtained

by the HMM’s forward pass, and then add this information to the architecture in

parallel with a 1-layer LSTM. The linear layer between the LSTM and the prediction

layer is augmented with an extra column for each HMM state. The LSTM component

of this architecture can be smaller than a standalone LSTM in terms of the hidden state

dimension, since it only needs to fill in the gaps in the HMM’s predictions. The HMM

is written in Python, and the rest of the architecture is in Torch.

55

We also build a joint hybrid model, as shown in Figure 19b, where the LSTM

and HMM are simultaneously trained in Torch. We implemented an HMM Torch

module, optimized using stochastic gradient descent rather than FFBS. Similarly to

the sequential hybrid model, we concatenate the LSTM outputs with the HMM state

probabilities.

The hybrid models have two types of hidden states: LSTM hidden states, indicated

by ht in Figure 18a, and HMM hidden states, indicated by st in Figure 18b. These are

different quantities that are not to be confused with each other - the LSTM hidden state

is a continuous multidimensional vector, while the HMM hidden state is a discrete

categorical variable. When we refer to the number of LSTM state dimensions, we mean

the dimension of the state vector, while when we refer to the number of HMM states,

we mean the number of possible discrete states.

5.3 E X P E R I M E N T S

5.3.1 Text data

We test the models on several text data sets on the character level: the Penn Tree Bank

(5M characters), and two data sets used by Karpathy et al. (2016), Tiny Shakespeare

(1M characters) and Linux Kernel (5M characters).

Tables 14, 15 and 16 show the predictive loglikelihood of the next text character for

each method. On all text data sets, the hybrid algorithm performs a bit better than the

standalone LSTM with the same LSTM state dimension. This effect gets smaller as we

increase the LSTM size and the HMM makes less difference to the prediction (though it

can still make a difference in terms of interpretability). The hybrid algorithm with 20

HMM states does better than the one with 10 HMM states. The joint hybrid algorithm

outperforms the sequential hybrid on Shakespeare data, but does worse on PTB and

56

Linux data, which suggests that the joint hybrid is more helpful for smaller data sets.

The joint hybrid is an order of magnitude slower than the sequential hybrid, as the

SGD-based HMM is slower to train than the FFBS-based HMM.

Unsurprisingly, the HMM baselines perform worse than the LSTM and hybrids, and,

somewhat surprisingly, the discrete HMM outperforms the continuous HMM trained

on LSTM state vectors. Figure 20 shows the convergence of the predictive likelihood

for the HMM baselines. For the continuous HMM, the predictive likelihood actually

goes down, so we expect that it’s overfitting to the LSTM state vectors to the detriment

of predicting the next character.

We interpret the HMM and LSTM states in the sequential hybrid algorithm with 10

LSTM state dimensions and 10 HMM states in Figures 21, 22 and 23, showing which

features are identified by the HMM and LSTM components of the hybrid algorithm. In

Figures 21a, 22a and 23a, we color-code the training data with the 10 HMM states. In

Figures 21b, 22b and 23b, we apply k-means clustering to the 10-dimensional LSTM

state vectors, and color-code the training data with the k-means clusters. The HMM

and LSTM states pick up on spaces, indentation, and special characters in the data set

(<unk> in Penn Tree Bank and comment symbols in Linux data). We see some examples

where the HMM and LSTM complement each other, such as learning different things

about spaces and comments on Linux data, or punctuation on the Shakespeare data.

We also use decision trees to interpret individual LSTM state dimensions in the

sequential hybrid algorithm, fit using Classification and Regression Trees (R package

rpart). While many of the LSTM state dimensions are distributed representations

involving several kinds of features at once, such as vowels and numbers, we find some

local representations focusing on specific features (see Figure 24). These tend to be the

same features that come up in the k-means clustering over all the states, such as spaces

in the PTB data and comment symbols in the Linux data. We hoped that the LSTM

state dimensions of the hybrid algorithm would have lower complexity than the LSTM

57

Table 14: Predictive loglikelihood on Linux data (sorted by validation set performance).

Method Parameters LSTM state
dimensions

HMM
states

Validation Training

Discrete HMM 1000 10 -2.76 -2.7
Discrete HMM 2000 20 -2.55 -2.5
LSTM 1215 5 -2.54 -2.48
Hybrid (joint) 2215 5 10 -2.35 -2.26
Hybrid 2215 5 10 -2.33 -2.26
Hybrid 3215 5 20 -2.25 -2.16
Hybrid (joint) 4830 10 10 -2.18 -2.08
LSTM 2830 10 -2.17 -2.07
Hybrid 3830 10 10 -2.14 -2.05
Hybrid 4830 10 20 -2.07 -1.97
LSTM 4845 15 -2.03 -1.9
Hybrid (joint) 5845 15 10 -2.00 -1.88
Hybrid 5845 15 10 -1.96 -1.84
Hybrid 6845 15 20 -1.96 -1.83
Hybrid (joint) 9260 20 10 -1.90 -1.76
LSTM 7260 20 -1.88 -1.73
Hybrid 8260 20 10 -1.87 -1.73
Hybrid 9260 20 20 -1.85 -1.71

Table 15: Predictive loglikelihood on Shakespeare data (sorted by validation set perfor-
mance).

Method Parameters LSTM state
dimensions

HMM
states

Validation Training

Continuous HMM 1300 20 -2.74 -2.75
Discrete HMM 650 10 -2.69 -2.68
Discrete HMM 1300 20 -2.5 -2.49
LSTM 865 5 -2.41 -2.35
Hybrid 1515 5 10 -2.3 -2.26
Hybrid 2165 5 20 -2.26 -2.18
LSTM 2130 10 -2.23 -2.12
Hybrid (joint) 1515 5 10 -2.21 -2.18
Hybrid 2780 10 10 -2.19 -2.08
Hybrid 3430 10 20 -2.16 -2.04
Hybrid 4445 15 10 -2.13 -1.95
Hybrid (joint) 3430 10 10 -2.12 -2.07
LSTM 3795 15 -2.1 -1.95
Hybrid 5095 15 20 -2.07 -1.92
Hybrid 6510 20 10 -2.05 -1.87
Hybrid (joint) 4445 15 10 -2.03 -1.97
LSTM 5860 20 -2.03 -1.83
Hybrid 7160 20 20 -2.02 -1.85
Hybrid (joint) 7160 20 10 -1.97 -1.88

58

Table 16: Predictive loglikelihood on Penn Tree Bank data (sorted by validation set
performance).

Method Parameters LSTM state
dimensions

HMM
states

Validation Training

Continuous HMM 1000 100 20 -2.58 -2.58
Discrete HMM 500 10 -2.43 -2.43
Discrete HMM 1000 20 -2.28 -2.28
LSTM 715 5 -2.22 -2.22
Hybrid 1215 5 10 -2.14 -2.15
Hybrid (joint) 1215 5 10 -2.08 -2.08
Hybrid 1715 5 20 -2.06 -2.07
LSTM 1830 10 -1.99 -1.99
Hybrid 2330 10 10 -1.94 -1.95
Hybrid (joint) 2830 10 10 -1.94 -1.95
Hybrid 2830 10 20 -1.93 -1.94
LSTM 3345 15 -1.82 -1.83
Hybrid 3845 15 10 -1.81 -1.82
Hybrid 4345 15 20 -1.8 -1.81
Hybrid (joint) 6260 20 10 -1.73 -1.74
LSTM 5260 20 -1.72 -1.73
Hybrid 5760 20 10 -1.72 -1.72
Hybrid 6260 20 20 -1.71 -1.71

Table 17: Decision tree size and depth comparison on the text data sets, showing
mean and standard deviation over all LSTM state dimensions (sorted by number of
parameters).

Data Method Parameters LSTM state
dimensions

HMM
states

Tree depth Tree size

Pe
nn

Tr
ee

Ba
nk LSTM 1830 10 5.1± 0.94 20.6± 5.92

Hybrid 2330 10 10 4.6± 0.66 20.8± 5.01
Hybrid 2830 10 20 4.3± 0.46 20.4± 5.06
LSTM 5260 20 4.85± 1.06 20.3± 4.62
Hybrid 5760 20 10 5± 1 21± 5.18
Hybrid 6260 20 20 5.05± 0.86 21.1± 5.11

Sh
ak

. LSTM 2130 10 4.5± 0.5 19.2± 2.75
Hybrid 2780 10 10 4.1± 0.83 17.8± 4.12
LSTM 5860 20 4.7± 0.84 19.7± 3.05
Hybrid 6510 20 10 4.75± 0.94 21.1± 4.62

Li
nu

x
K

er
ne

l LSTM 2830 10 4.3± 0.64 17.2± 3.6
Hybrid 3830 10 10 4.8± 0.98 18.8± 3.74
Hybrid 4830 10 20 4.7± 0.78 19.4± 4.7
LSTM 7260 20 4.85± 0.85 19.2± 4.2
Hybrid 8260 20 10 4.8± 0.92 19.7± 5.15
Hybrid 9260 20 20 4.75± 0.77 21± 4.64

59

(a) Discrete HMM with 10
states on PTB

(b) Discrete HMM with 20
states on PTB

(c) Continuous HMM with
20 states on PTB

(d) Discrete HMM with 10
states on Shakespeare

(e) Discrete HMM with 20
states on Shakespeare

(f) Continuous HMM with
20 states on Shakespeare

(g) Discrete HMM with 10
states on Linux

(h) Discrete HMM with 20
states on Linux

Figure 20: Convergence of the predictive likelihood for the discrete and continuous
HMM baselines (training set in blue, validation set in green).

60

(a) Hybrid HMM component: colors correspond to 10 HMM states. The green cluster (with
yellow font) identifies spaces, and the red cluster (with yellow font) identifies <unk>. The purple
cluster picks up on some vowels and apostrophes.

(b) Hybrid LSTM component: colors correspond to 10 k-means clusters on hidden state vectors.
The purple cluster picks up on spaces and some letters, and the green cluster (with white font)
identifies <unk> and some letters.

Figure 21: Visualizing HMM and LSTM states on PTB data for the hybrid algorithm
with 10 LSTM state dimensions and 10 HMM states. The HMM and LSTM components
learn some complementary features in the text: while the HMM clearly distinguishes
spaces and the unknown character <unk>, the LSTM does not need to learn these
features very well because they were already learned by the HMM.

61

(a) Hybrid HMM component: colors correspond to 10 HMM states. Blue cluster identifies
spaces. Green cluster (with white font) identifies punctuation and ends of words. Purple cluster
picks up on some vowels.

(b) Hybrid LSTM component: colors correspond to 10 k-means clusters on hidden state vectors.
Yellow cluster (with red font) identifies spaces. Grey cluster identifies punctuation (except
commas).

Figure 22: Visualizing HMM and LSTM states on Shakespeare data for the hybrid
algorithm with 10 LSTM state dimensions and 10 HMM states. The HMM and LSTM
components learn some complementary features in the text: while both learn to identify
spaces, the LSTM does not completely identify punctuation or pick up on vowels,
which the HMM has already done.

62

(a) Hybrid HMM component: colors correspond to 10 HMM states. Distinguishes comments
and indentation spaces (green with yellow font) from other spaces (purple). Red cluster (with
yellow font) identifies punctuation and brackets.

(b) Hybrid LSTM component: colors correspond to 10 k-means clusters on hidden state vectors.
Distinguishes comments, spaces at beginnings of lines, and spaces between words (red with
white font) from indentation spaces (green with yellow font). Opening brackets are red (yellow
font) and closing brackets are green (white font).

Figure 23: Visualizing HMM and LSTM states on Linux data for the hybrid algorithm
with 10 LSTM state dimensions and 10 HMM states. The HMM and LSTM components
learn some complementary features in the text related to spaces and comments.

63

(a) Decision tree example on PTB data. The hidden states of the 10-state hybrid mostly track
spaces and numbers.

(b) Decision tree example on Linux data. The hidden states of the 10-state hybrid mostly track
comment characters.

Figure 24: Decision trees predicting individual hidden states of the hybrid algorithm
based on the 10 preceding characters xt, xt−1, . . . , xt−9. Overly large and unintuitive
splits were replaced with

64

state dimensions in the standalone LSTM, as measured by the size and depth of the

approximating decision trees, but this turned out not to be the case. As shown in Table

17, the differences in tree depth and size between the LSTM and the hybrid are not

significant, as the means are within two standard deviations of each other.

While the hybrid algorithm performs somewhat better than an LSTM with the

same LSTM state dimension, it also has more parameters. The number of parameters

for an LSTM with ns states on a text data set with nc characters is ns · (8ns + 3) for

the LSTM component, plus ns · nc for each of the lookup table and linear layers. The

hybrid algorithm with nh HMM states has an additional nc · nh parameters in the linear

layer. The HMM baseline usually has the fewest parameters but also much worse

performance. We have found that a hybrid and an LSTM with the same number of

parameters perform similarly, however you could argue that the extra parameters in

the linear layer of the hybrid architecture are more interpretable than the parameters of

various weight matrices inside the LSTM cell.

5.3.2 Multivariate time series data

While natural language processing is the most common application for RNNs, we

are also interested in applying our interpretable hybrid models to multivariate time

series data, such as medical time series. Here, the observations at each time step are

multivariate and discrete - we make a simplifying assumption that they are binary and

independent of each other. The response variable (output) is also binary and distinct

from the observations, while in the text data the output was the observation at the next

time step. We investigate our performance on synthetic data and ICU time series data.

65

Synthetic data

As a sanity check for the relative strengths and weaknesses of the methods, we generate

several synthetic data sets - one designed to be easy for an HMM, one designed to be

easy for an LSTM, and a combination of the two. In this setup, we have hidden states

st (represented by indicator vectors), multivariate observations xt and outputs ot for

each time step t. The hidden states and observations are related as follows:

st = Mult(n = 1, p = T̃ · st−1)

xt = Bin(n = 1, p = s′t Ẽ),

where the observations in xt are independent Binomial variables given the hidden state.

We have 5 hidden states and 7 observations, with the following transition and emission

matrices:

T̃ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.5 .25 0 0 0

.5 .5 .25 0 0

0 .25 .5 .25 0

0 0 .25 .5 .5

0 0 0 .25 .5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, Ẽ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.5 .5 .5 0 0 0 0

0 .5 .5 .5 0 0 0

0 0 .5 .5 .5 0 0

0 0 0 .5 .5 .5 0

0 0 0 0 .5 .5 .5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The outputs are generated using weight vectors ws and wx applied to the states and

observations respectively, and a bias weight wbias that affects the proportion of 0 and 1

output values:

ot = Bin
(

n = 1, p =
1

1 + exp(−ws · st −wx · xt − wbias)

)

The default weight vector values are ws = [0, 0, a, 0, 0] and wx = [0, 0, b, 0, b, 0, 0],

with a bias term wbias = 2 that skews the ot values towards 0. To create the data set

66

Table 18: Predictive loglikelihood on the synthetic multivariate binary data sets (sorted
by validation set performance).

Data Method Parameters LSTM state
dimensions

HMM
states

Validation Training

Ds

LSTM 265 5 -0.51 -0.51
Hybrid (joint) 275 10 5 -0.5 -0.5
Hybrid 275 5 5 -0.48 -0.47
HMM 60 5 -0.47 -0.47

Dsx

LSTM 265 5 -0.56 -0.56
HMM 60 5 -0.56 -0.56
Hybrid (joint) 275 10 5 -0.54 -0.54
Hybrid 275 5 5 -0.53 -0.53

Dx

HMM 60 5 -0.59 -0.59
LSTM 265 5 -0.53 -0.53
Hybrid (joint) 275 10 5 -0.53 -0.53
Hybrid 275 5 5 -0.53 -0.53

Ds that’s easy for the HMM, we set the observation weight vector wx to 0. To create

the data set Dx that’s easy for the LSTM, we set the state weight vector ws to 0. The

combination data set Dsx uses nonzero values for both weight vectors.

We experimented with different values for the weight parameters a and b, looking

for cases where the resulting synthetic data sets have the HMM and LSTM performing

differently. If a is too small, for example a = 2, then the weak dependence of the

outputs on the state is insufficient to give the HMM an advantage over the LSTM. If

b is too large, for example b = 10, then the strong dependence of the outputs on the

observations makes it easy for the HMM to keep up with the LSTM. The HMM and

LSTM achieve the same likelihood on these cases, and the hybrid algorithm follows

suit. We will focus on a more interesting intermediate case with a = 5 and b = 2, and

investigate how the hybrid algorithm performs there.

In Table 18, we compare the validation set performance on the synthetic data sets.

On the Ds data set designed to favor the HMM, the LSTM does somewhat worse than

the HMM and hybrid. On the Dx data set designed to favor the LSTM, the HMM

does worse than the LSTM and hybrid. In both cases, the hybrid algorithm performs

67

(a) HMM states on Ds data set.

(b) K-means clusters on hybrid LSTM state vectors on Ds data set.

(c) K-means clusters on standalone LSTM state vectors on Ds data set.

Figure 25: Visualizing the learned model states on the first 50 points of the Ds data.

(a) HMM states on Dsx data set.

(b) K-means clusters on hybrid LSTM state vectors on Dsx data set.

(c) K-means clusters on standalone LSTM state vectors on Dsx data set.

Figure 26: Visualizing the learned model states on the first 50 points of the Dsx data.

68

(a) HMM states on Dx data set.

(b) K-means clusters on hybrid LSTM state vectors on Dx data set.

(c) K-means clusters on standalone LSTM state vectors on Dx data set.

Figure 27: Visualizing the learned model states on the first 50 points of the Dx data.

similarly to the better method. On the combination data set Dsx, the HMM and LSTM

perform similarly and hybrid does better. Overall, the hybrid algorithm performs well

in all of these setups, combining the strengths of the HMM and LSTM.

We also tried increasing the LSTM state dimension, which does not seem to affect

the performance of the LSTM or the hybrid. The hybrid algorithm has only 10 more

parameters than the standalone LSTM - unlike in the text application, the matrix in the

linear layer has a small dimension (5x2) due to the binary output.

In Figures 25, 26 and 27, we compare the HMM and LSTM states for the hybrid and

the standalone LSTM on the first 50 points in the synthetic data sets. The black cells

indicate observations equal to 1. The other cells indicate observations equal to 0, with

column colors representing either 5 HMM states or 5 k-means clusters on 5-dimensional

LSTM state vectors.

69

On the Dx data set that favors the HMM, Figure 25 shows that the HMM learns

to distinguish between two states in the (28, 42) interval, while the standalone LSTM

does not, and the hybrid further refines some of these distinctions, such as between

points 34 and 35. On the combination data set Dsx in Figure 26, we notice that the

first 20 points are likely generated by the first two underlying states, while the last 20

are likely generated by the last two. The LSTM puts some observations generated by

different underlying states into the same cluster (e.g. points 5 and 40), while the HMM

avoids this. The hybrid makes this error as well, since it only needs to fill in the gaps in

the HMM, and picks up on some points with at most one observation equal to 1 (the

white cluster). On the LSTM-favoring data set Dx in Figure 27, the LSTM learns that

the intervals (37− 39) and (42− 44) are similar (red cluster) and so does the hybrid

(orange cluster), while the HMM does not. Overall, we can see that the hybrid LSTM

fills in the gaps in the HMM.

Healthcare time series data

We apply our hybrid algorithm and the LSTM and HMM baselines to ICU time series

data from the 2014 Physionet challenge. The objective of the challenge was to use

physiological signal features such as ECG measurements to detect heart beats. There

are 216,000 time points for each patient. When predicting the location of a heart beat,

locations within a 150 ms window of the reference location are considered correct. The

6 features are discretized as binary prior to running the algorithms.

We take several patients from this data set with the most uneven heart beats (Patients

1-3 with patient IDs 1009, 1020 and 1022), as shown in Figure 28. We then predict future

heart beats based on past heart beats for the same patient. We also put together a multi-

patient data set, with 15 patients in the training set and 5 patients in the validation set,

where we predict heart beats for new patients based on the training data.

70

Table 19: Predictive loglikelihood on the Physionet data sets (sorted by validation set
performance).

Data Method Parameters LSTM state
dimensions

HMM
states

Validation Training

Pa
ti

en
t1

HMM 160 10 -0.675 -0.735
Hybrid (joint) 670 10 10 -0.41 -0.36
Hybrid (joint) 245 5 10 -0.4 -0.31
Hybrid 245 5 10 -0.39 -0.335
Hybrid 670 10 10 -0.39 -0.335
LSTM 225 5 -0.37 -0.305
Hybrid 2120 20 10 -0.36 -0.315
LSTM 2100 20 -0.343 -0.293
LSTM 650 10 -0.33 -0.29

Pa
ti

en
t2

HMM 160 10 -0.575 -0.64
Hybrid (joint) 245 5 10 -0.3 -0.32
Hybrid (joint) 670 10 10 -0.3 -0.32
Hybrid 245 5 10 -0.29 -0.315
Hybrid 670 10 10 -0.29 -0.315
Hybrid 2120 20 10 -0.28 -0.31
LSTM 225 5 -0.28 -0.31
LSTM 650 10 -0.27 -0.303
LSTM 2100 20 -0.157 -0.217

Pa
ti

en
t3

HMM 160 10 -0.57 -0.59
Hybrid (joint) 225 5 10 -0.44 -0.43
Hybrid (joint) 670 10 10 -0.44 -0.43
LSTM 225 5 -0.42 -0.42
Hybrid 245 5 10 -0.365 -0.38
Hybrid 670 10 10 -0.36 -0.375
Hybrid 2120 20 10 -0.36 -0.375
LSTM 650 10 -0.337 -0.35
LSTM 2100 20 -0.333 -0.343

M
ul

ti
-p

at
ie

nt

Hybrid 670 10 10 -0.61 -0.41
Hybrid 670 10 10 -0.61 -0.44
HMM 160 10 -0.6 -0.7
Hybrid 245 5 10 -0.6 -0.46
Hybrid 245 5 10 -0.57 -0.5
LSTM 650 10 -0.58 -0.44
LSTM 225 5 -0.56 -0.51

71

(a) Distances between heart
beats for Patient 1.

(b) Distances between heart
beats for Patient 2.

(c) Distances between heart
beats for Patient 3.

Figure 28: Distances between heart beats in the Physionet data sets.

(a) HMM with 10 states for Patient 1. (b) HMM with 10 states for Patient 2.

(c) HMM with 10 states for Patient 3. (d) HMM with 10 states for multi-patient data.

Figure 29: Convergence of the predictive loglikelihood for the discrete HMM with 10
states on the Physionet data sets (training set in blue, validation set in green).

72

Table 19 shows the average performance for the HMM, LSTM and hybrid methods.

The HMM convergence plots have suspicious downward curves, as shown in Figure 29,

and the HMM performs poorly compared to the other methods on the single-patient

data sets, so it’s unsurprising that the hybrid does similarly to (or worse) than the

LSTM. One possible reason for the HMM’s poor performance could be the assumption

of independence for the observation features given the states, which might not hold for

this data set, as vital sign variables could easily be correlated. On the multi-patient data,

however, the HMM performs comparably to the LSTM, but the hybrid methods with

10 LSTM dimensions actually do worse than the HMM. Thus, the HMM performance

alone is not sufficient to account for the performance of the hybrid method.

5.4 C O N C L U S I O N

Hybrid HMM-RNN approaches combine the interpretability of HMMs with the pre-

dictive power of RNNs. We have some promising preliminary results showing that

a small hybrid model can perform somewhat better than a standalone LSTM of the

same size. We use visualizations to show how the LSTM and HMM components of the

hybrid algorithm complement each other in terms of features learned in the data.

73

B I B L I O G R A P H Y

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016).
Concrete Problems in AI Safety. CoRR, abs/1606.06565.

Andrei, A. and Kendziorski, C. (2009). An efficient method for identifying statistical
interactors in gene association networks. Biostatistics, 10(4):706–718.

Andrews, J. L. and McNicholas, P. D. (2014). Variable Selection for Clustering and
Classification. Journal of Classification, 31(2):136–153.

Bourlard, H. and Morgan, N. (1994). Connectionist Speech Recognition: A Hybrid Approach.
Kluwer Academic Publishers.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). CART: Classification and
Regression Trees. Chapman and Hall.

Che, Z., Purushotham, S., and Liu, Y. (2015). Distilling Knowledge from Deep Networks
with Applications to Healthcare Domain. Neural Information Processing Systems
Workshop on Machine Learning for Healthcare (MLHC).

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: Bayesian Additive
Regression Trees. Annals of Applied Statistics, 4(1):266–298.

Chow, C. K. and Liu, C. N. (1968). Approximating Discrete Probability Distributions
with Dependence Trees. IEEE Transactions on Information Theory, 14(11):462–467.

Cooper, G. F. (1990). The Computational Complexity of Probabilistic Inference Using
Bayesian Belief Networks. Artificial Intelligence, 42(2-3):393–405.

de Campos, C. P., Cuccu, M., Corani, G., and Zaffalon, M. (2014). Extended Tree Aug-
mented Naive Classifier, pages 176–189. Springer International Publishing.

Domingos, P. and Pazzani, M. J. (1997). On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss. Machine Learning, 29:103–130.

Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and Unsupervised
Discretization of Continuous Features. In Machine Learning: Proceedings of the Twelfth
International Conference, pages 194–202. Morgan Kaufmann Publishers, San Francisco,

74

CA.

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis. New York:
John Wiley and Sons.

Evgeniou, T., Pontil, M., and Poggio, T. (2000). Regularization Networks and Support
Vector Machines. Advances in Computational Mathematics, 13(1):1–50.

Fayyad, U. M. and Irani, K. B. (1993). Multi-Interval Discretization of Continuous-
Valued Attributes for Classification Learning. In Proceedings of the 13th International
Joint Conference on Artificial Intelligence, pages 1022–1027. Morgan Kaufmann Publish-
ers, San Francisco, CA.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1):1–22.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian Network Classifiers.
Machine Learning, 29:131–163.

Gens, R. and Domingos, P. M. (2013). Learning the Structure of Sum-Product Networks.
In Proceedings of the 30th International Conference on Machine Learning (ICML), Atlanta,
GA, USA, 16-21 June 2013, pages 873–880.

Goodman, B. and Flaxman, S. (2016). European Union regulations on algorithmic
decision-making and a right to explanation. 2016 ICML Workshop on Human Inter-
pretability in Machine Learning (WHI), New York, NY.

Grosse, R. B., Salakhutdinov, R., Freeman, W. T., and Tenenbaum, J. B. (2012). Exploiting
compositionality to explore a large space of model structures. In Proceedings of the
28th Conference on Uncertainty in AI (UAI), pages 306–315.

Guyon, I., Gunn, S., Ben-Hur, A., and Dror, G. (2005). Result Analysis of the NIPS 2003
Feature Selection Challenge. In Advances in Neural Information Processing Systems 17,
pages 545–552. MIT Press.

Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. A. (2006). Feature Extraction: Founda-
tions and Applications (Studies in Fuzziness and Soft Computing). Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data. Machine Learning, 20:197–243.

Hoeting, J., Adrian, D. M., and Volinsky, C. T. (1998). Bayesian Model Averaging. In
Proceedings of the AAAI Workshop on Integrating Multiple Learned Models, pages 77–83.

75

AAAI Press.

Jiang, L., Zhang, H., Cai, Z., and Su, J. (2005). Evolutional Naive Bayes. Proceedings of
the 2005 International Symposium on Intelligent Computation and its Applications, ISICA,
pages 344–350.

Karpathy, A., Johnson, J., and Fei-Fei, L. (2016). Visualizing and Understanding Recur-
rent Networks. International Conference for Learning Representations Workshop Track.

Kim, B., Shah, J. A., and Doshi-Velez, F. (2015). Mind the Gap: A Generative Approach
to Interpretable Feature Selection and Extraction. In Cortes, C., Lawrence, N. D., Lee,
D. D., Sugiyama, M., and Garnett, R., editors, Neural Information Processing Systems
(NIPS), pages 2260–2268.

Kohavi, R. and John, G. H. (1997). Wrappers for Feature Subset Selection. Artificial
Intelligence, 97:273–324.

Langley, P. and Sage, S. (1994). Induction of Selective Bayesian Classifiers. In Proceedings
of the Tenth Conference on Uncertainty in Artificial Intelligence, pages 399–406. Morgan
Kaufmann.

Lichman, M. (2013). UCI Machine Learning Repository.

Lipton, Z. C. (2016). The Mythos of Model Interpretability. 2016 ICML Workshop on
Human Interpretability in Machine Learning (WHI), New York, NY.

Maas, A., Le, Q., O’Neil, T., Vinyals, O., Nguyen, P., and Ng, A. (2012). Recurrent Neural
Networks for Noise Reduction in Robust ASR. In Proceedings of INTERSPEECH.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing Atari With Deep Reinforcement Learning. In Deep
Learning Workshop, Neural Information Processing Systems (NIPS).

Nguyen, A. M., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2015, pages 427–436.

Papernot, N., McDaniel, P. D., Goodfellow, I. J., Jha, S., Celik, Z. B., and Swami, A.
(2016). Practical Black-Box Attacks against Deep Learning Systems using Adversarial
Examples. CoRR, abs/1602.02697.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

76

Poon, H. and Domingos, P. M. (2011). Sum-Product Networks: A New Deep Archi-
tecture. In UAI 2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in
Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages 337–346.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

Rao, V. and Teh, Y. W. (2013). Fast MCMC sampling for Markov jump processes and
extensions. Journal of Machine Learning Research, 14:3207–3232. arXiv:1208.4818.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”Why Should I Trust You?”: Explaining
the Predictions of Any Classifier. CoRR, abs/1602.04938.

Rooshenas, A. and Lowd, D. (2014). Learning Sum-Product Networks with Direct and
Indirect Variable Interactions. In Jebara, T. and Xing, E. P., editors, Proceedings of the
31st International Conference on Machine Learning (ICML-14), pages 710–718. JMLR
Workshop and Conference Proceedings.

Rüping, S. (2006). Learning interpretable models. PhD thesis, Dortmund University of
Technology.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V.,
and Young, M. (2014). Machine Learning: The High Interest Credit Card of Technical
Debt. In SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop).

Tang, S., Chen, L., Tsui, K., and Doksum, K. (2014). Nonparametric Variable Selection
and Classification: The CATCH Algorithm. Computational Statistics and Data Analysis,
72:158–175.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society, Series B, 58:267–288.

Turner, R. (2016). A Model Explanation System: Latest Updates and Extensions. 2016
ICML Workshop on Human Interpretability in Machine Learning (WHI), New York, NY.

Vergari, A., Mauro, N. D., and Esposito, F. (2015). Simplifying, Regularizing and
Strengthening Sum-Product Network Structure Learning. In Proceedings (Part II)
of the European Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), Porto, Portugal, September 7-11, 2015, pages 343–358.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural image
caption generator. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 3156–3164.

77

Webb, G. I., Boughton, J., and Wang, Z. (2005). Not So Naive Bayes: Aggregating
One-Dependence Estimators. Machine Learning, 58:5–24.

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H. (2015). Understanding Neu-
ral Networks Through Deep Visualization. In Deep Learning Workshop, International
Conference on Machine Learning (ICML).

Zhang, H. (2004). The Optimality of Naive Bayes. In Proceedings of the Seventeenth
International Florida Artificial Intelligence Research Society Conference, Miami Beach,
Florida, USA, pages 562–567.

Zhang, H., Jiang, L., and Su, J. (2005). Augmenting Naive Bayes for Ranking. In
Proceedings of the 22nd International Conference on Machine Learning, pages 1020–1027.
ACM.

Zhang, Y. and Liu, J. S. (2007). Bayesian Inference of Epistatic Interactions in Case-
Control Studies. Nature Genetics, 39(9):1167–1173.

Zhao, H., Melibari, M., and Poupart, P. (2015). On the Relationship between Sum-
Product Networks and Bayesian Networks. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 116–124.

78

