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Abstract

This thesis explores scalable nanophotonic devices in integrated, CMOS-compatible

platforms. Our investigation focuses on two main projects: studying the material

properties of integrated titanium dioxide (TiO2), and studying integrated metamate-

rials in silicon-on-insulator (SOI) technologies.

We first describe the nanofabrication process for TiO2 photonic integrated cir-

cuits. We use this procedure to demonstrate polycrystalline anatase TiO2 ring res-

onators with high quality factors. We measure the thermo-optic coefficient of TiO2

and determine that it is negative, a unique property among CMOS-compatible di-

electric photonic platforms. We also derive a transfer function for ring resonators

in the presence of reflections and demonstrate using full-wave simulations that these

reflections produce asymmetries in the resonances.

For the second half of the dissertation, we design and demonstrate an SOI-based

photonic-Dirac-cone metamaterial. Using a prism composed of this metamaterial, we

measure its index of refraction and unambiguously determine that it is zero. Next,

we take a single channel of this metamaterial to form a waveguide. Using interfer-

ometry, we independently confirm that the waveguide in this configuration preserves
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the dispersion profile of the aggregate medium, with a zero phase advance. We also

characterize the waveguide, determining its propagation loss. Finally, we perform

simulations to study nonlinear optical phenomena in zero-index media. We find that

an isotropic refractive index near zero relaxes certain phase-matching constraints, al-

lowing for more flexible configurations of nonlinear devices with dramatically reduced

footprints.

The outcomes of this work enable higher quality fabrication of scalable nanopho-

tonic devices for use in nonlinear applications with passive temperature compensation.

These devices are CMOS-compatible and can be integrated vertically for compact,

device-dense industrial applications. It also provides access to a versatile, scalable and

integrated medium with a refractive index that can be continuously engineered be-

tween n = �0.20 and n = +0.50. This opens the door to applications in high-precision

interferometry, sensing, quantum information technologies and compact nonlinear ap-

plications.
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school in the first place? And weren’t you also worried when you were an undergrad?
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Chapter 1

Introduction

The field of integrated optics began with the promise of replacing electronics. Opti-

cal waveguiding had been shown to be intrinsically lossless due to its lack of Ohmic

heating [1,2]. This fact had already been exploited to great effect for long-haul com-

munications, where optical fibers routed information literally around the world. The

hope had been that the move from integrated circuits to photonic integrated circuits

would decrease the total power consumption of consumer devices, with potential in-

creases to cost effectiveness and operating speeds [3, 4].

To date, replacing electronics in shorter range communications has proven to be

a challenging, and perhaps even misguided pursuit. The consensus has become that

photonics will play a complementary role to electronic circuits instead of evolving

into a complete replacement for our everyday information technology needs [5]. Nev-

ertheless, many interesting and unforeseen fundamental questions and applications

have been explored with the introduction of nanophotonics, such as photonic crys-

tal cavities, on-chip frequency combs and non-volatile optomechanical-memory [6–8].

1
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Like the move from transistors to the integrated circuit, bulky free-space optical phe-

nomena have been dramatically reduced in scale and integrated onto a chip. These

devices can be mass-produced and have the greatest opportunity to make an imme-

diate impact on society.

So far, research and development in integrated photonics have mainly focused on

the silicon-on-insulator (SOI) platform [9–11]. Silicon is cheap, abundant, nontoxic,

and already has established fabrication capabilities bolstered by the semiconductor

industry [12]. It also has many attractive optical properties, such as a large linear

and nonlinear index of refraction [13]. For these reasons, silicon is still the dominant

material platform for photonic demonstrations.

Many efforts have been made towards developing alternative materials for pho-

tonic applications, however. I have chosen to focus part of my dissertation on ti-

tanium dioxide (TiO2). Like silicon, TiO2 is an abundant, non-toxic semiconductor

that has large linear and nonlinear coefficients [14–17]. In addition to these prop-

erties, TiO2 is completely transparent in the visible spectrum down to � = 400 nm

and does not suffer from two-photon absorption or three-photon absorption in the

telecom regime. These properties make it a promising platform for integrated nonlin-

ear devices. Another interesting property of this material is its negative thermo-optic

coefficient [18,19]. Other than TiO2, polymers are the only dielectric materials known

to possess a negative thermo-optic coefficient [20]. This trait enables entirely passive

temperature compensation, a critical property for sensitive interferometric applica-

tions.

Despite the fact that silicon as a material has its limitations, its mature fab-
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rication ecosystem allows for the quick and easy exploration of different research

ideas [21]. Currently, a popular area of research is to create sub-wavelength struc-

tures that can trick light into demonstrating properties that are not present in its

constituent materials. These kinds of structures, called metamaterials, can even be

designed to exhibit material responses that do not appear in nature, such as magnetic

responses at optical frequencies [22,23], extremely small or negative indices of refrac-

tion [24, 25], and tunable optical activity [26, 27]. In the second half of my thesis, I

exploit the ubiquity and fabrication precision of silicon photonics to demonstrate and

explore an integrated metamaterial with a refractive index near zero.

A flexible integrated zero-index metamaterial enables many applications, includ-

ing in quantum optics, interconnects and wavefront engineering [28–33]. Of particular

interest to me are the unique nonlinear phenomena that are made possible by zero-

index media [34,35]. Nonlinear effects are essential to fundamental optical phenomena

and applications, such as frequency conversion and lasing [36, 37]. For any nonlinear

effect to develop efficiently, it must be phase-matched. A photon in a zero-index

medium experiences no phase-advance during propagation, introducing a new degree

of freedom to the standard phase-matching toolkit. In the final chapter of my thesis,

I explore this idea theoretically and numerically.

1.1 Organization of the dissertation

In Chapter 2, we describe the fabrication procedure for TiO2 photonic devices in

detail. We then follow this procedure to fabricate photonic integrated circuits from

a polycrystalline anatase TiO2 thin film in Chapter 3. We use ring resonators to
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evaluate the quality of the fabrication and to extract the thermo-optic coefficient for

this material platform.

In Chapter 4, we derive and verify a generalized transfer function for an inte-

grated ring resonator in the presence of back-reflections. Using full wave simulations,

we compare the performance of this model to the transfer function of an ideal ring

resonator.

In Chapter 5, we present an entirely silicon-based integrated zero-index meta-

material. We discuss how to design this metamaterial and we experimentally demon-

strate this metamaterial. In Chapter 6, we fabricate and characterize a 1-dimensional

waveguide formed of this metamaterial. In Chapter 7, we explore the behaviour of

nonlinear interactions within zero-index structures.

In Chapter 8, we will summarize the results from this dissertation and provide

context and potential research directions for future aspiring young researchers.

Finally, in Appendix A, we present and demonstrate nonlinear scattering theory,

a nonlinear simulation method based on Lorentz reciprocity and the undepleted pump

approximation.



Chapter 2

Nanofabrication of TiO2 waveguides

We present the fabrication procedure for titanium dioxide photonic integrated cir-

cuits. We then provide the details on specific improvements to the lithography, the

selection and deposition parameters of the etch mask, the etching process and the

cleaving procedure. These improvements increase the fabrication yield, while produc-

ing smoother, higher quality features.

2.1 Introduction

Propagation losses in optical waveguides are a major consideration in designing pho-

tonic devices, particularly when discussing nonlinear pulse propagation. The loss in

a waveguide originates from multiple sources, including film impurities and Rayleigh

scattering. Reducing propagation losses is an active area of research when working

with a new photonic platform such as titanium dioxide. Defects that produce losses

in optical waveguides are introduced both during the deposition of the film, or during

5
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the structuring process. Once the film has been deposited, there are many steps in

the fabrication process that can each be optimized to ensure high quality fabrication

and low propagation losses. In this chapter, we will focus on the many improvements

to the waveguide-structuring process that have been developed in order to increase

fabrication quality, produce smoother features, and increase the fabrication yield.

First, we will describe the final completed fabrication process, including im-

provements to Bradley and Choy’s original process described in their pioneering TiO2

photonic papers [15,38]. In the following subsections we will discuss the improvements

to the lithography (Section 2.3), the etch mask (Section 2.4) the etching procedure

(Section 2.5) and the cleaving procedure (Section 2.6).

2.2 Fabrication process

The complete waveguide-fabrication process is illustrated in Fig. 2.1. We begin the

structuring process by depositing a device layer of TiO2 several hundred nm thick

upon a thermally oxidized silicon wafer using radio frequency (RF) magnetron sput-

tering. The deposition parameters have remained unchanged since the original work

of Bradley and Choy [15, 38]. The thickness can be tuned to suit the application

and can yield both an amorphous or a polycrystalline anatase TiO2 film. We cleave

the samples into chips approximately 1.5 cm⇥ 1.5 cm in size, and then solvent clean

them. The cleaning procedure consists of 5 minutes in an acetone sonication bath,

followed by 5 minutes in an isopropyl alcohol (IPA) sonication bath. The samples are

then dried by blowing N2 and are soft-baked on a hot plate at 180� for 10 minutes

to remove any remaining moisture. The final step in the cleaning procedure consists
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SiO2

silicon wafer

begin with silicon wafer 
with thermal oxide film

deposit thin TiO2 film 
using reactive sputtering

spin on e-beam resist 
layer

deposit thin metal film 
using electron beam 
evaporation

immerse resist in 
developer to remove 
exposed regions

write pattern into resist 
using electron beam 
lithography

lift-off metal film by 
dissolving resist

etch through TiO2 film 
using reactive ion etching

remove remaining metal 
leaving TiO2 waveguides

TiO2

Figure 2.1: Fabrication process for TiO2 nanophotonic devices.

of an O2 descum, where we expose the sample to a flow of 40 sccm of oxygen plasma

for 2 minutes at 80 W.

We spin-coat a layer of hexamethyldisilazane (HDMS), followed by ZEP-520a

(Zeon Chemicals), a positive-tone resist. We then soft-bake the sample on a hot

plate at 180� for 3 minutes (spin parameters are listed in Tables 2.1 and 2.2). This

produces a layer of resist that is about 250 nm thick.

For optical waveguides on the order of 300 nm wide, the correct charge area D

is found to be near 480 µC/cm2. To obtain this dose, we select the following exposure

parameters: we employ a current I of 12 nA, a write-window WR of 500 µm, and

N = 50, 000 dots/line. This large current permits us to write 30 waveguides the

length of the chip every 10 minutes. These parameters correspond to a dwell time t
d
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Step Time Speed Acceleration

1 45 s 5000 rpm 2500 rpm/s

Table 2.1: HDMS spin parameters. This should be done immediately when
the sample is removed from the hot plate after the cleaning process. This is
followed by the ordinary resist spin process (Table 2.2).

Step Time Speed Acceleration

1 5 s 500 rpm 500 rpm/s

2 40 s 6000 rpm 1000 rpm/s

Table 2.2: ZEP 520a spin parameters. This is followed by 3 minutes on a
hot plate set to 180°C. This yields a 250-nm-thick film.

of 0.04µs, which is calculated using

t
d

=

D

I

✓
WR

N

◆2

.

To reduce line-edge roughness, we write the pattern twice at half the dwell time, e.g.,

t
d

= 0.02µs ⇥2 (see Sec. 2.3.3).

After exposure, the samples are developed at room temperature in ortho-xylene

(o-xylene) for 30 seconds with a gentle agitation. This is followed by a stop bath in

IPA.

Next, we deposit a 50-nm-thick layer of Chromium (Cr) at a rate of 5 Å/s using

electron-beam evaporation (see Sec. 2.4.2). This layer will act as an etch mask. We

perform lift-off using sonication in Remover PG (Microchem) at room temperature.

Multiple cups of the solvent are used in order to avoid the redeposition of lifted

material. This is followed by a quick rinse in acetone and IPA. This step leaves a Cr

mask with the desired pattern above the TiO2 layer.
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Step Time Speed Acceleration

1 5 s 500 rpm 500 rpm/s

2 40 s 2000 rpm 1000 rpm/s

Table 2.3: CYTOP polymer spin parameters. This is followed by 2 hours in
an oven set to 200°C. Yields a 0.8 µm-thick film.

The pattern is transferred into the device layer using electron cyclotron reso-

nance reactive plasma etching (Nexx Cirrus 150) in a CF4:H2 atmosphere, at a ratio

of 4:1. This step is followed by another O2 descum using the same parameters as

in the cleaning procedure outlined above. The Cr is removed from the sample in

a wet etch step using Cr etchant (Transene 1020, composed of nitric acid and ceric

ammonium nitrate), followed by a rinse in multiple cups of distilled water.

A cladding is now optionally deposited. We deposit up to 4 µm of SiO2 using

plasma-enhanced chemical vapor deposition (Surface Technology Systems) or we spin-

coat 1.5 µm of CYTOP polymer (see Table 2.3). These claddings are both used as

a low-index guiding layer and a protective cladding. Alternatively, we may spin-coat

the sample with a 2.6-µm-thick layer of positive-tone resist (Shipley S1822) to act as

as a protective layer (see Table 2.4).

The final step involves cleaving the facets to obtain access to the waveguides.

If one has been deposited, the protective layer of resist is removed with a final quick

solvent rinse, without sonication.



10 Chapter 2: Nanofabrication of TiO2 waveguides

Step Time Speed Acceleration

1 5 s 500 rpm 500 rpm/s

2 45 s 3000 rpm 1000 rpm/s

Table 2.4: Shipley S1822 spin parameters. This is followed by 1 minute on a
hot plate set to 115°C. Yields a 2.6 µm-thick film, to be used as a protective
layer.

2.3 Optimizations in electron-beam lithography

2.3.1 Resist selection

1 μm

PMMA ZEP

Figure 2.2: Comparison between photoresists. The sidewall that is pro-
duced using ZEP is much smoother than what is produced using PMMA as
a positive-tone resist.

Instead of using ZEP 520a as our resist, we considered using polymethyl methacry-

late (PMMA), which is also used as a positive-tone resist in electron-beam lithogra-

phy processes [39, 40]. This resist is much more cost-effective than ZEP ($700/L vs.
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$25,000/L) and can also employ the same reflow techniques that have been developed

in ZEP in order to achieve smoother sidewalls [41–43]. Additionally, PMMA can

be deposited with methyl methacrylate (MMA) as a bilayer to drastically aid in the

liftoff process [44].

We compare the line edge roughness that is introduced by the different resists

during the lithography step. We spin-coat two samples of amorphous TiO2 with

different configurations (ZEP, PMMA) and perform a dose test for a 350-nm-wide

waveguide. Next, we deposit a Cr layer on all of the samples simultaneously to

ensure identical processing conditions. We perform lift-off and image the residual Cr

etch masks on the samples (Fig. 2.2).

Samples that were processed using ZEP produced considerably better results

than samples that were processed using PMMA. The sidewalls are qualitatively much

smoother when using ZEP. Additionally, the liftoff procedure worked more consis-

tently. For these reasons, we have been using ZEP in all the subsequent fabrication,

despite the additional cost.

2.3.2 Spinning of HDMS to protect from humidity

Often, the humidity in the cleanroom causes the resist to spin unevenly on samples,

especially on the most humid days in the summer time. A solution is to spin an

ultra-thin (⇠ 5 nm) layer of hexamethyldisilazane (HDMS) before spin-coating the

sample with ZEP. Because of the thickness of the HDMS layer, this process does not

drastically affect the doses or lift-off procedures.
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2.3.3 Multi-pass exposure

200 nm

Written once

Room temp
Written twice

Room temp

Figure 2.3: When a pattern is written in the resist twice at half the area dose
(i.e., the same total area dose), the sidewall that is obtained is smoother.

Due to the interaction between the many electron transport methods within the

resist during the electron-beam lithography process, a line edge roughness is inherently

introduced into the resist during exposure. We have found that re-writing the pattern

multiple times mitigates this random roughness, leading to smoother sidewalls. To

study this, we process a chip with the same pattern in two separate locations. In one

location, we write a dose test at the full area dose. In the second location, we write

half of this dose test twice. We develop the chip at room temperature, deposit a Cr

layer and perform a lift-off procedure. By writing both sets of dose tests on the same

chip, we ensure identical processing conditions for both sets of devices. In Fig. 2.3,

we show a comparison between a pair of waveguides written with the same total area

dose (D = 480µC/cm2) with the different exposure schemes. The dimensions remain

consistent for different devices written with the same total area dose, regardless of

the exposure scheme. However, we find that waveguides written with a multi-pass
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exposure scheme have a visibly smoother sidewall throughout the length of the device.

2.3.4 Cold development

Figure 2.4: Example of line edge roughness reduction due to cold develop-
ment. Left is ZEP developed at room temperature, right, is ZEP developed
at −4 °C. Feature sizes are 160 nm space and 40 nm line. Taken from Ocola
et al. [39].

In 2006, Ocola et al. demonstrated that smaller and smoother features can be

produced using resists that are exposed by polymer chain scission if the resists are

developed at lower temperatures (e.g., 0�) after exposure [39]. Additionally, it was

shown that the blur (i.e., the standard deviation between the designed and fabricated

feature size) is drastically reduced as well. For certain nonlinear applications, such as

third-harmonic generation, it is often critically important to fabricate a device within

a tolerance of only a few nanometres in order to satisfy phase-matching constraints

[45,46].

To test this, we process a pair of samples with identical dose tests. As in Sec-

tion 2.3.3, we perform a multi-pass exposure in a second location to take advantage

of the line edge roughness reduction, as well. We develop the first chip in o-xylene

at room temperature and the second in a beaker of o-xylene that has been cooled in

an ice bath. We then deposit a Cr layer and perform a lift-off procedure. We image
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the resulting Cr masks using an SEM. We find that the total area dose required to

achieve the desired feature size is much larger when the resist is developed at colder

temperatures (800 vs. 480 µC/cm2), as expected. In Fig. 2.5, we show SEMs compar-

ing the Cr masks written by both single and multi-pass exposure, both developed at

0�. We add the previous best result, written by multi-pass exposure and developed

at room temperature, as an additional comparison.

We find that resist development at 0� does in fact reduce the line edge rough-

ness. However, it does not seem to improve upon the multi-pass exposure sample

that is developed at room temperature. Additionally, developing a multi-pass expo-

sure sample at 0� does not further improve upon the roughness. For this reason, we

have decided to continue developing the sample at room temperature.

200 nm

Written once

0 °C
Written twice

0 °C

Written twice
Room temp

Figure 2.5: Developing ZEP in an ice bath yields a smoother line edge rough-
ness. When compared with the line edge produced using multi-pass exposure,
this improvement is comparatively less drastic.
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2.4 Optimizations in the etch mask

2.4.1 Etch mask material selection

The etch chemistry used in the dry etching step affects which etch mask material is

ultimately selected. TiO2 itself is inactive to fluorine or chlorine, the halogen gases we

have available in the RIE, primarily due to the oxide component. In order to render

it reactive, we need to add hydrogen gas to reduce TiO2 to pure titanium:

TiO2 + 2H2 ��*)�� Ti+ 2H2O

Following this step, the titanium atoms can react with fluorine to form titanium

tetrafluoride (TiF4):

Ti+ 2TiF2 ��*)�� TiF4

Thus, we need a mask that is resistant to being etched in a fluorine environment.

Two candidate materials are alumina (Al2O3), first used in a fluorine environment by

Henry et al. [47–49] and chromium (Cr), which was originally used by Bradley et al.

in the original recipe [15, 38, 50]. Henry et al. claimed that sputtered Al2O3 would

provide for a more faithful feature transfer than any metal liftoff process.

In order to compare the two masks, we structure 500-nm-wide waveguides on

two samples of TiO2 (Fig. 2.6). For one mask, we deposit a layer of Cr using e-beam

evaporation to act as an etch mask, whereas on the other we deposit Al2O3 using

reactive sputtering. The samples are both successfully lifted off and processed in the

RIE. Figure 2.6 also shows the samples after the dry etch but before the wet etch

that removes the etch masks. The Cr mask outperforms the alumina mask in terms
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500 nm

Al
2
O

3
Cr

200 nm

Al
2
O

3
Cr

Figure 2.6: Comparison between etch masks. (Top) The sidewall is initially
smoother using the Al2O3 mask when compared to the Cr mask. (Bottom)
However, the etch selectivity is much better using the Cr mask.
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of etch resistance to the fluorine. On the alumina mask, we see significant trenching,

which is a signature of an overly physical etch [51, 52]. As both masks are etched

on top of identical TiO2 substrates, we hypothesize that the trenching is caused by

redeposition of Al2O3 or AlFx

etch-product on to the waveguide sidewalls during the

etch process. This trenching could perhaps be avoided with further optimization of

the etch recipe.

2.4.2 Chromium deposition optimization

During the pattern transfer process, any features in the mask pattern are etched

directly into the substrate underneath, and are exaggerated by the etching process.

For this reason, it would be best to achieve as smooth an etch mask as possible.

Unfortunately, a Cr film is formed of finite grains — ideally, we would design the

metal-deposition process so that the grain size is minimized. In the following section,

we deposit Cr at multiple deposition rates to obtain the best quality Cr film possible.

We use electron-beam evaporation to deposit 80 nm of Cr at deposition rates of

20, 10, 5 and 0.5 Å/s onto clean silicon samples. We control for all other conditions.

All films are deposited at room temperature after 3 hours of pumping down the

vacuum chamber. The deposition pressure was 8 ⇥ 10

�7 Torr for all samples. After

deposition, the chamber remained under vacuum for an additional 10 minutes in order

to prevent additional oxidation of the Cr films.

We image the surfaces of the films using scanning electron microscopy (SEM)

(Fig. 2.7). At lower magnification, the samples look very similar. At higher magnifi-

cation, we see that Cr deposited at the higher rates is composed of longer filaments.
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20 Å/s 10 Å/s 5 Å/s 0.5 Å/s 20 Å/s

100 nm 2 µm

Figure 2.7: SEM comparing different deposition rates of Cr. At the highest
rate (20 Å/s), large particles are formed on the surface of the film.

At smaller rates, more pitting appears. At the very highest rate (20 Å/s), very large

particles appear. They do not appear for samples deposited at all the other rates.

20 Å/s 10 Å/s 5 Å/s 0.5 Å/s

200 nm

Figure 2.8: AFM comparing different deposition rates of Cr.

Using atomic force microscopy (AFM), we scan the surfaces of the different

films (Fig. 2.8) and measure their respective surface roughnesses. We note that it

was difficult to scan the 20 Å/s sample because the particles would break the AFM

tips, indicating that they are very large in size. We also measure the sheet resistivity

using a 4-point probe station. The extracted values are summarized in Table 2.5.

In conclusion, we find that at the higher rates, unwanted large particles appear.

At the lower rates, the surface seems to be rougher. Resistivity measurements show

the lowest resistance for 5 Å/s films, indicating the highest quality material. Ulti-

mately, we select the deposition rate of 5 Å/s, which yields a smoother, higher quality

film than what had been used previously while avoiding the large particles.
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Deposition rate (Å/s) RMS surface roughness (nm) Sheet resistivity (⌦/sq)

20 0.72 0.377

10 0.66 0.359

5 0.77 0.293

0.5 1.09 0.329

Table 2.5: Surface roughnesses and sheet resistivities for the deposited Cr
films.

2.4.3 Lift-off recipe

Because the Cr mask is formed of grains, it is challenging to lift the entire mask

simultaneously in a single step. We find that the mask separates into particles and

frequently redeposits onto the surface of the device layer. We have solved this prob-

lem by sonicating the mask during lift-off and by replacing the fluid intermittently.

Though the act of sonication does directly break the mask up into particles, rede-

position is ultimately avoided by replacing the solvent frequently. Through trial and

error, we have developed a lift-off recipe with carefully designed steps that are long

enough to release the pattern, but not too long to allow for any deposition or to

damage the fine features in the mask (Table 2.6).

2.4.4 Treatment prior to metal mask removal

Following the dry etching step, the samples are processed in a wet etch in order to

remove the remaining metal mask. Critically, the samples need to be put through

another O2 descum before this step. Otherwise, the etchant reacts with residual



20 Chapter 2: Nanofabrication of TiO2 waveguides

Step Solvent Time (min:sec)

1 Remover PG 0:30

2 Remover PG 1:30

3 Remover PG 2:30

4 Acetone 0:30

5 IPA 0:30

Table 2.6: Metal lift-off procedure for Cr on TiO2. The use of multiple steps
is to avoid redeposition of the lifted off material. The sample should be
sonicated at room temperature at the most gentle setting.

polymer particles that are created during etch procedure and creates particles that

cannot be removed from the sample (Fig. 2.9). Following the descum, the samples

are dipped in Cr etchant at room temperature with thorough agitation, followed by

multiple rinses in distilled water.

1 μm

Figure 2.9: If a sample is not descummed before being placed in the Cr
etchant, particles are formed that can ruin a sample.
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Parameter Bradley et al. [15] This work

CF4 flow rate (sccm) 16 16

H2 flow rate (sccm) 4 4

Pressure (mT) 5 8.5

µW power (W) 300 230

RF power (W) 150 150

Table 2.7: Etch recipe for pattern transfer from Cr to TiO2.

2.5 Improvements to the etch procedure

2.5.1 Recipe optimization

There are a number of parameters that can be adjusted during an etch process,

including the microwave power (µW ) which ignites and sustains the plasma, the RF

power which accelerates the ions onto the sample, the flow rates of individual gases

and the chamber pressure setting. The recipe used by Bradley et al. is presented in

Table. 2.7 alongside the recipe developed in this work.

Using Bradley’s recipe, it is challenging for the chamber pressure to stabilize —

the mass flow controller on the etcher often fluctuates its settings wildly for up to

a minute before it settles and yields the desired chamber pressure. Once the power

ignites the plasma, it takes an additional minute to settle, as well. This, in turn,

often extinguishes the plasma mid-process, leaving the user to guess at how long to

keep the sample in the etcher. By raising the desired chamber pressure from 5 mT to

8.5 mT, the desired pressure becomes easily achievable with the given flow rate, and
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the pressure stabilizes almost immediately.

Next, we adjusted the input powers. By tuning these two values, we can control

how physically- or chemically-active an etching process is. Ideally, the µW power

should be as large as possible to generate as much plasma as possible and increase

the etch rate. However, if the power is too high, it becomes more challenging to

sustain the plasma, and the etch rate becomes unstable. In order to improve the

stability of the plasma, we dropped the µW power from 300 W to 230 W. This is the

highest power achievable that was found to maintain the plasma for several minutes

without the plasma spontaneously extinguishing.

2.5.2 Etch rate estimation with AFM

Cr mask

h
TiO

2

SiO
2

Si

t/s
m

t

Figure 2.10: When placed in the etcher, the TiO2 film etches faster than the
Cr mask by a ratio of s ⇡ 9. The only height that can be measured using
an AFM or a scanning profilometer is a sum of the remaining mask height
(m� t/s) and the height that is etched t.

With the updated recipe, the plasma is now stable during the entire etch process.

However, the etch rate can still vary between each use because of factors beyond the

user’s control, such as the condition of the chamber. We would like the ability to

consistently etch away a very specific thickness. To do so, we need a way to monitor

the amount of material that has been etched away during the process. The only
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accurate and quantitative measurement we can make at this scale is to use an atomic-

force microscope (AFM) to measure the height of the device features. The height h

that is retrieved consists of both the height of the device and the remaining mask

that has yet to be etched away. The final height is related to the etched thickness t,

the measured mask thickness m, and the selectivity s by

h = t+ (m� t/s). (2.1)

Despite the inconsistency in the etch rate, we have found that the selectivity

between Cr and TiO2 remains around 9 quite reliably. We can measure the height of

a test region on the sample using an AFM before and after an etch and use Eq. 2.1

to obtain the thickness t that was etched. We use this value to estimate what the

etch rate is during any individual step, and estimate the remaining time necessary

to achieve our desired thickness. In order to etch away the entire device layer, (i.e.,

to completely remove the TiO2 slab surrounding the waveguides) we obtain a final

target height from Eq. 2.1 by replacing t with the total film thickness, a value that

is easily obtained using ellipsometry.

2.6 Cleaving the sample

The final step in the fabrication process involves cleaving the edges of the samples in

order to expose an open waveguide through which we can couple in light. This step

needs to be done carefully, and because it is done manually, unfortunately it carries an

element of luck and randomness to it. Through trial and error, we have developed a

method which has a large yield and produces smooth facets that minimize scattering
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and can yield insertion losses as low as several dB/facet [53].
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Figure 2.11: Cleaving a sample. a) Top-down view of the sample, indicating
the location to scratch. b) Side-view of the sample, face-down after being
scratched. The red arrow shows where to press on the chip in order to initiate
the cleave propagation. c) A cross-section SEM of a cladded anatase TiO2

waveguide cleaved using the described method. This facet was not polished
before imaging.

The sample must first be cladded with a protective layer. If the device did not

already necessitate a cladding, a thick layer of resist can be deposited (e.g., 2.6 µm of

Shipley S1822 resist). We locate the end of the waveguides by eye and use a diamond

scribe to mark the cleave location in the edge of the chip (Fig. 2.11). The scratch

must be deep enough to penetrate through the cladding and the device layer in order

to reach the silicon substrate. The device is then placed face-down onto a dry, clean

and powder-free wipe. Next, we apply some gentle pressure on the edge of the chip

above the location of the scratch. This is done with the butt end of a pair of tweezers.

It is important to apply this pressure using a blunt tool with a large area so that the

cleave can begin propagating at the location marked using the diamond scribe in the

previous step. Using a sharp object instead can initiate cleavage propagation along

a different crystal plane. The edge facets are then optionally mechanically polished

to obtain an even smoother face. If a protective layer of resist is deposited on the

sample, this layer can be removed in a quick solvent rinse.
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2.7 Conclusion

1 μm

Figure 2.12: An anatase TiO2 waveguide fabricated using the above param-
eters.

The development of these more sophisticated procedures have produced higher

quality devices (Fig. 2.12). By reducing the number of over-etched samples and

devices lost to failed cleaves, they have greatly increased the fabrication yield from

below 25% to well above 75%. As will be discussed in Chapter 3, these procedures have

succeeded in lowering waveguide propagation losses in anatase TiO2 to the intrinsic

propagation loss of the film, around 4 dB/cm at � = 1550 nm [53].



Chapter 3

Anatase ring resonators with negative

thermo-optic coefficient

We fabricate polycrystalline anatase TiO2 micro-ring resonators with loaded qual-

ity factors as high as 25,000 and average losses of 0.58 dB/mm in the telecom-

munications band. Additionally, we measure a negative thermo-optic coefficient

dn/dT of �4.9± 0.5⇥ 10

�5 K�1. The presented fabrication uses CMOS-compatible

lithographic techniques that take advantage of substrate-independent, non-epitaxial

growth. These properties make polycrystalline anatase a promising candidate for the

implementation of athermal, vertically-integrated, CMOS-compatible nanophotonic

devices for nonlinear applications.

26
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3.1 Introduction

Titanium dioxide (TiO2) is a promising nanophotonic material due to its high trans-

parency in the visible [15, 38, 54–59] and its applications for integrated nonlinear

optics [17, 45, 60, 61]. Its multiple phases (rutile, anatase and brookite) each pos-

sess a large bandgap greater than 3 eV [14], yielding high transparency for wave-

lengths � � 400 nm spanning the visible and telecommunication bands. Unlike other

high-index photonic platforms such as silicon or chalcogenide glasses, TiO2 photonic

circuits can operate with virtually no two-photon absorption for � � 800 nm and

without three-photon absorption over the entire telecom band [17]. TiO2 has a linear

index above n = 2.4 in the optical regime and a nonlinear index approximately 30

times that of silica, making it favorable to transparent materials such as Al2O3, SiO2,

SiN
x

or diamond for nonlinear applications. TiO2 has the potential to achieve larger

effective nonlinearities than these alternative materials [61]. These properties make

TiO2 an interesting platform for nonlinear optics research in the near infrared.

Recently, TiO2 has attracted attention for its use in athermal (i.e., tempera-

ture insensitive) photonic devices, particularly for applications that are wavelength

sensitive [18, 19, 56, 62–65]. Athermal operation can be achieved using the material’s

negative thermo-optic coefficient (TOC, dn/dT , where n is the refractive index and

T is the temperature) when paired with a positive TOC material. For example, ring

resonators fabricated from silicon (i.e., a materials with a positive TOC) have been

clad with amorphous TiO2 in order to obtain an effective TOC near zero for over 30�

at 1.3 and 1.55 µm [19, 56, 64, 66]. Although this effect has also been achieved using

polymers [67], which are widely known to possess negative TOCs [20], anatase TiO2



28 Chapter 3: Anatase ring resonators with negative thermo-optic coefficient

has the benefit of being able to withstand modest temperatures, making it CMOS-

compatible. Anatase TiO2 can therefore be used in vertical integration schemes,

drastically increasing device density on a chip [68].

In this chapter we demonstrate the first anatase TiO2 micro-ring resonators

and use them to evaluate the quality of our fabrication process and to confirm the

expected negative TOC of anatase. While the TOC of other phases of TiO2 have

been reported [18, 19, 65], the TOC of the anatase phase has not been studied in

the telecommunications band. So far, anatase is unique in that it is the only phase

of TiO2 in which nonlinear processes such as spectral broadening [61] and third-

harmonic generation [45] have been reported in a photonic integrated circuit. In

contrast, these observations have remained elusive in rutile and amorphous TiO2 due

to their challenging fabrication and photochromism, respectively [58,69,70]. Finally,

polycrystalline anatase TiO2 can be deposited at low temperatures (e.g., 600 K) on

amorphous substrates, ensuring compatibility with a variety of CMOS processes.

3.2 Theory

3.2.1 Transmission characteristics of a micro-ring resonator

The spectral dependence of the transmission of a ring resonator with an input port

and no add or through port has been thoroughly characterized and can be derived

analytically using the scattering matrix approach [71–73]:

T =

����
t� ↵ei�

1� ↵tei�

����
2

, (3.1)
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where t is the transmission (or self-coupling) coefficient corresponding to the fraction

of the field that does not couple into the ring after a single pass, ↵ is the total relative

field that is not lost in a round trip and � is the round trip phase shift. � varies as a

function of wavelength �, effective index neff, and propagation length L:

� = 2⇡
neff

�
L. (3.2)

The transmission curve has characteristic resonance peaks at the points where

the numerator of Eq. 3.1 goes to zero. Additionally, significantly strong reflections

at the facets create simultaneous counter-propagation within the ring that yields

asymmetric resonances [74,75]. Using the scattering matrix approach [72], we derive

the asymmetric transmission for this type of device to be

T =

����
(1� ↵tei�)(t� ↵ei�)

�ei'(t� ↵ei�)2 � (1� ↵tei�)2

����
2

, (3.3)

where the additional coefficients ' and � determine the shape and magnitude of the

asymmetry. The variables ' and � correspond, respectively, to the phase difference

between the two counter-propagating waves and the losses resulting from both prop-

agation through the waveguide and transmission through the facets at the ends. By

fitting Eq. 3.3 to a particular resonance, we can extract ↵ and use it to compute

a propagation loss ↵z for the waveguide that makes up the ring resonator. For a

critically-coupled resonator (↵ = t), the propagation loss can also be estimated using

the group index ng and the loaded Q to be [68]

↵z =
⇡ng

Q�0
. (3.4)

These equations provide a method for accurately characterizing fabricated ring res-

onators, and extracting propagation losses.
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3.2.2 Effective thermo-optic coefficients

Heating the sample induces a temperature-dependent refractive index change in the

constituent materials, which can be characterized very precisely using a resonator.

In a cavity structure such as a ring resonator, changing the temperature tunes the

resonant wavelength �0 by changing the index of the resonator material and via

thermal expansion of the substrate. We quantify this change using [67,76]

d�0

dT
=

✓
dneff

dT
+ neff↵Si

◆
�0

ng
. (3.5)

Eq. 3.5 includes a term for the thermal expansion coefficient of silicon (↵Si =

2.59⇥ 10

�6 K�1
) [77]. Due to the geometry, the silicon substrate dominates the me-

chanical properties and thermal expansion of the sample. This new term represents

the primary effect of thermal expansion on our device, which is to increase the diam-

eter of the rings and shift the resonances towards longer wavelengths. Because the

change in waveguide cross-section due to thermal expansion is negligible, the group

index does not change significantly to a first approximation.

We use the measured value of d�0/dT to estimate the change in index of the

component materials. A waveguide that consists of a substrate, a core material, and

an over-cladding material has an effective index neff that we approximate by

neff ⇡ �sns + �cnc + �ono, (3.6)

where � represents the power confinement factor within the individual materials and

the subscripts s, c, and o stand for substrate, core, and over-cladding materials,

respectively. This equation yields a very good first approximation for dneff/dT by
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differentiating [63]:
dneff

dT
⇡ �s

dns

dT
+ �c

dnc

dT
+ �o

dno

dT
. (3.7)

For small changes in material index, we assume that the power confinement factors

remain constant. Given measured TOCs of the cladding materials, we use Eq. 3.7

with Eq. 3.5 to estimate the thermo-optic coefficient of the core material.

300 μm

input

2 μm

300 μm500 nm

Cytop

SiO
2

TiO
2

a b

c d

Figure 3.1: a) Cross-section of the TiO2 waveguide, showing the embedded
polycrystalline grains. The device is composed of a TiO2 waveguide on a
thermal oxide substrate and cladded by a CYTOP polymer. The sidewalls are
sloped at 75°. b) Microscope image of a pair of anatase micro-ring resonators
with coupling bus waveguides. c) Scanning electron microscope image of
the coupling region indicated in (b), showing the polycrystalline grains on
the surface and a 250-nm gap. d) A 300-µm diameter anatase micro-ring
operating near � = 1550 nm.
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3.3 Experimental

3.3.1 Fabrication

We fabricate devices using methods described by Bradley et al [15]. We structure

waveguides from a 250-nm thick polycrystalline anatase film that is deposited using

RF magnetron sputtering at 600 K on an oxidized silicon substrate. The waveguides

are defined by electron beam lithography and reactive ion etching, leaving our final

desired structures on the silica substrate. The final fabricated chip is top-cladded with

a low-index (n = 1.33 at � = 1550 nm) transparent polymer (CYTOP) to further

reduce losses and protect the devices (Fig. 3.1a). The ends of the chip are cleaved to

prepare end facets.

The waveguides are designed to support a single mode throughout the wave-

lengths of operation (1525 – 1575 nm). The waveguides are trapezoidal in shape, with

a width of 900 nm on top, 1035 nm at the base, and a sloped sidewall of approxi-

mately 75° due to the etch chemistry and substrate power (Fig. 3.1a). This structure

supports hybrid modes with < 1% polarization mixing; therefore we treat them as

pure modes (Fig. 3.2a). The ring resonators are coupled via a single 6.4-mm-long bus

waveguide and have ring-waveguide coupling-gaps of 250, 300, and 350 nm, and ring

diameters of 200 and 300 µm (Fig. 3.1b-c). These dimensions are designed to ensure a

free spectral range larger than 1.2 nm (150 GHz) and to achieve near critical-coupling

within the wavelengths of operation.
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3.3.2 Measurement setup

We couple in and out of the waveguides using a pair of 0.85-NA objectives on 3-

axis stages. We launch 1525 – 1575 nm light using a tunable laser source with an

input power of 4.1 mW and a resolution of 5 pm (Fig. 3.1d). We select only transverse

magnetic-(TM-)polarized light (i.e., electric field polarized perpendicular to the plane

of the device). We use a pellicle beam splitter before the devices and a pair of

InGaAs photodiode detectors to measure the output power and the input power

simultaneously to normalize the total transmission.

To measure the thermo-optic coefficient, the fabricated chip is placed on a con-

ductive aluminum slab mounted on a heater. The light is coupled in and out of the

waveguides using a tapered lensed fiber with a 2.5-µm spot size on the input and a

microscope objective on the output facet. The objective directs the output light onto

either an IR camera used for alignment or an InGaAs detector used for taking data.

A polarizer located between the objective and the detector allows us to determine the

input and output polarizations of light. We excite the TM-mode and measure the

spectrum of several high-Q resonances at multiple temperatures from 24 – 37�.

3.4 Results

We couple into and out of the TiO2 bus waveguides, yielding total insertion losses off-

resonance as low as 10 dB for the propagation of the TM-polarized mode. Fig. 3.2b

shows a typical transmission spectrum for a ring with a diameter of 300 µm and

coupling gap of 300 nm. It shows distinct, equally spaced resonances that deepen
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for longer wavelengths with extinction ratios ranging from 2.3 to 10.5 dB, achieving

near-critical coupling at the longest wavelengths. Some of the resonances show an

asymmetry. This asymmetry is independent of wavelength sweep direction or input

power. The measured free spectral range (FSR) for the 200- and 300-µm diameter

rings is 236 and 157 GHz, respectively. We compare these values to theoretical values

computed using FSR = c/(ngL) using a simulated group index of ng = 2.03. We

calculate the FSR of the 200- and 300-µm diameter rings to be 235 and 157 GHz,

respectively (Table 3.1).
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Figure 3.2: a) Energy density for TM-polarized guided mode at � = 1550 nm.
b) Transmission spectrum of a 300-µm diameter, 300-nm gap anatase ring
resonator. The resonances get deeper for longer wavelengths, with a loaded
quality factor as high as 2.0⇥10

4 at � = 1571 nm. c) A fit to an asymmetric
resonance at � = 1550 nm indicated in gray in (b). This fit yields a trans-
mission coefficient t of 0.798 and a loss coefficient ↵ of 0.911, corresponding
to a propagation loss of 0.77 dB/mm. d) Extracted transmission coefficients
t and loss coefficients ↵ for each resonance. The linear fits are a guide to the
eye, showing that ↵ remains constant, indicating that the propagation loss
does not change significantly over this wavelength range.
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For the 200-µm diameter rings, we obtain Q-factors of 103 with a maximum

observed loaded Q-factor of 5.5⇥10

3 with a gap of 250 nm. For the 300-µm diameter

rings, we obtainQ-factors of 104 with a maximum observed loadedQ-factor of 2.5⇥10

4

with a gap of 250 nm.

We fit the transmission spectra for asymmetric resonances from � = 1525 to

1575 nm to Eq. 3.3 (Fig. 3.2c) and extract the transmission coefficient t and the loss

coefficient ↵ (Fig. 3.2d). We note that the loss coefficients are smaller for the larger

ring diameter. The transmission coefficient is larger for the larger ring diameter as

well. We calculate the corresponding power propagation losses for the fundamental

TM-polarized mode directly from ↵ using ↵2
= e

�↵z2⇡R. We average the propagation

losses extracted from � = 1545 to 1555 nm and tabulate them in Table 3.1. Taking

the geometric mean of the values in Table 3.1 yields an average propagation loss

of 2.48 dB/mm for the 200-µm rings, with a lower average loss of 0.58 dB/mm for

the 300-µm rings. The lowest propagation loss obtained is 0.40 dB/mm found for a

300-µm ring.
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Figure 3.3: a) Raising the temperature blueshifts the resonance, correspond-
ing to a negative TOC. b) Fitting to the positions of the resonance peaks as
a function of temperature yields a rate of d�0/dT = �19 pm/K, correspond-
ing to a dnTiO2/dT of �4.9± 0.5⇥ 10

�5 K�1. The height of the box symbol
represents the error in the fit to the curves in (a).
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Table 3.1: Free spectral range and propagation losses near � = 1550 nm for
different devices and coupling gaps. The propagation losses are calculated
directly from ↵.

Ring diameter Gap size Theoretical FSR Measured FSR Propagation loss

[µm] [nm] [GHz] [GHz] ↵z [dB/mm]

200 250 235 235 1.90

200 300 235 235 2.58

200 350 235 238 3.10

300 250 157 156 0.40

300 300 157 157 0.69

300 350 157 158 0.72

We vary the temperature and we probe a 300-µm-diameter ring with a gap of

300 nm around � = 1555 nm. We observe that the location, symmetry, and depth of

one of the sharper resonances in the spectrum change as a function of temperature

(Fig. 3.3a). At higher temperatures, the location of the resonance blueshifts at a rate

of d�0/dT = �19 pm/K (Fig. 3.3b), corresponding to a change in effective index of

dneff/dT = �2.86⇥ 10

�5 K�1.

The TOC of the anatase thin film is difficult to measure directly as it is deposited

on a thick oxide substrate. The thickness of the substrate creates many fringes in

the ellipsometric profile, making it difficult to obtain an accurate fit for the optical

constants. To determine the contribution of each layer to the measured dneff/dT of

the device, we simulate the power confinement factors for the three regions using

a commercial finite-element eigenmode solver, setting both the substrate and over-
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cladding thickness to 3 µm (Table 3.2). Changing the cladding index from 1.33 to 1.45

has a minimal effect on the core confinement of the mode. The errors in the power

factors are estimated using the errors in the measurement for the material parameters,

the measurement error for the waveguide geometry (determined using SEM and AFM)

and the finite mesh used in the solver. We measure dn/dT for SiO2 and CYTOP thin

films directly using temperature-controlled ellipsometry (Table 3.2). Inserting these

values into Eq. 3.7 yields a TOC for TiO2 of dnTiO2/dT = �4.9± 0.5⇥ 10

�5 K�1.

Table 3.2: Simulated power confinement factors for a 900 ⇥ 250 nm TiO2

waveguide. The TOC for SiO2 and CYTOP were measured on thin films
using temperature-controlled ellipsometry. The TOC for TiO2 was calculated
using Eq. 3.7.

Region Material
Confinement

factor �

TOC

dn/dT [K�1]

Cladding CYTOP 24.2± 0.4% �9.7± 0.2⇥ 10

�5

Core TiO2 29.4± 1.6% �4.9± 0.5⇥ 10

�5

Substrate SiO2 46.4± 1.4% 2.0± 0.2⇥ 10

�5

3.5 Discussion and conclusion

To quantify the accuracy of our fabrication and measurement process, we compare

our measured FSRs to simulation results. The measured FSRs increase as the ring

circumferences decrease and agree with theoretical values within 0.5%. Additionally,

these results, as well as the lack of additional resonances, confirm that we are exciting

only TM-polarized modes within the resonators. TE-polarized modes yield drastically
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smaller FSRs of 127 and 190 GHz for the 300 and 200-µm diameter rings, respectively,

because their group index is comparatively larger (e.g., ng = 2.51 for TE vs. ng =

2.03 for TM) than for a TM-polarized mode. This agreement affirms the robustness

of our simulations, material parameters, and tight fabrication tolerance.

We can verify the fits to Eq. 3.3 by reviewing the extracted coefficients in

Fig. 3.2d. First, we observe little variation in ↵, as expected from Rayleigh scattering

within this wavelength range. Conversely, t changes with wavelength. A constant

coefficient is observed in all of the measured devices, and it is how we unambiguously

distinguish ↵ from t [73].

These fits also yield coefficients from which we can estimate the propagation loss

within the rings. The mean propagation loss for the larger rings is 0.58 dB/mm at

� = 1550 nm. This value is comparable to the propagation losses that have been pre-

viously cited for polycrystalline anatase (0.4 – 0.8 dB/mm) [15, 61]. Additionally, it

is calculated based on the more accurate resonator-based method than the top-down

imaging-based loss extraction method used previously. A loss of 0.58 dB/mm com-

pares favorably to early results using polycrystalline silicon, another material which

is expected to exhibit similar scattering losses and has reported propagation losses

as low as 0.9 dB/mm for films of a similar thickness [78]. The grains in these poly-

crystalline films, which contribute to the surface roughness and thus the scattering

loss [15,68], are on the order of 50 nm, less than �/30. Prism coupling measurements

for TM-polarized light at � = 1550 nm in the thin films fabricated for this work yield

losses of 0.33 dB/mm. Our lowest device losses (0.40 dB/mm) are similar to these

planar-waveguide measurements, indicating that the film itself is a limiting source of
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loss in our devices.

The propagation losses take into account both bending losses and scattering

losses due to the polycrystalline structure and fabrication imperfections. The mea-

sured propagation loss in the rings increases by a factor of 4 when decreasing the bend

radius from 300 to 200 µm (0.58 vs. 2.48 dB/mm). A larger propagation loss implies

that bending losses have become significant. However, finite element simulations pre-

dict no large bending loss associated with a 100-µm bend radius. Alternatively, since

a guided mode is pushed towards the outer wall in a ring with sharper bends, larger

losses imply that the sidewalls of the waveguide have an increased roughness due to

the fabrication process. Thus, we conclude that fabrication imperfections are the

dominant contribution to the propagation losses in this context. This also explains

why devices performed better under TM excitation when compared to TE excitation:

the TE mode suffers from higher losses due to stronger localization of the fields near

the rough fabrication boundaries. Our fabrication methods can be further optimized

to minimize propagation losses by adopting a more optimal etch chemistry [79] or by

using resist reflow techniques [43].

Minimum total insertion losses of 10 dB with a minimum waveguide propagation

loss of 0.40 dB/mm are realistic values for our devices. Given a 6.4-mm-long waveg-

uide, we calculate a waveguide loss of 2.4 dB giving an insertion loss of 3.7 dB/facet.

Finite element simulations yield a power overlap of 66.0% between the fundamental

TM mode and a focused Gaussian beam spot using a numerical aperture of 0.85. This

accounts for 1.8 dB of the insertion loss per facet, with the remaining 1.9 dB/facet

arising due to scattering created during facet cleavage. The insertion loss could be
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lowered by mechanically polishing the waveguide facets.

Using the extracted losses above and Eq. 3.4, we estimate that the largest intrin-

sic quality factor Q0 for these rings is 89,000, corresponding to a theoretical maximum

loaded Q of 44,500. However, the maximum observed loaded Q of 25,000 does not

reach this limit. We attribute this discrepancy to the fact that the resonators are

operating in the over-coupled regime, which is confirmed by the fact that t is less

than ↵ (Fig. 3.2d), as more light is lost to coupling than to propagation around

the ring. The estimated Q0 still compares favorably to early results using polycrys-

talline silicon of 40,000 [68]. However, it remains an order of magnitude smaller than

the highest reported Q-factors achieved in sol-gel-based amorphous TiO2 whispering

gallery micro-cavities [57] and lifted-off amorphous TiO2 ring resonators [45]. Q-

factors on the order of 104 are large enough to observe some nonlinear processes, such

as low-threshold harmonic generation, but improvements are necessary to demon-

strate on-chip frequency combs or nonlinear interferometers, which typically require

loaded quality factors greater than 10

5 [80, 81].

The blueshifting of the resonance as a function of temperature depicted in

Fig. 3.3 is consistent with a negative TOC, as has been reported previously for TiO2.

This shift cannot be attributed only to the change in the resonator geometry caused

by thermal expansion because that would contribute solely to a redshift, displacing

resonances towards longer wavelengths. We attribute the change in the depth of the

resonances to a changing asymmetric phase term ', corresponding to the round-trip

phase in the bus waveguide. This term also changes as a function of effective in-

dex. Because we normalize the measured intensity to its maximum value, different



Chapter 3: Anatase ring resonators with negative thermo-optic coefficient 41

asymmetries appear to produce different extinction values.

Our measured value of dnTiO2/dT = �4.9± 0.5⇥ 10

�5 K�1 is within an order

of magnitude of prior literature values for the TOC of amorphous TiO2 (�1 to �2⇥

10

�4 K�1) [19,57]. A more extensive study that varies the waveguides geometry and

that probes a larger temperature range would be beneficial to further understand and

optimize athermal anatase devices. This TOC enables athermal device designs that

consist solely of TiO2 waveguides on a substrate, without the need for a negative TOC

cladding. A standard oxide cladding, such as SiO2, can provide the balancing positive

TOC. Using a finite element eigenmode solver and the TOC values reported above,

we predict athermal operation dimensions for a TiO2 ring resonator cladded in SiO2

on a silicon substrate at � = 1550 nm. For TE polarization, the waveguide cross-

sectional dimensions are 390-nm wide ⇥ 250-nm thick, while for TM polarization,

the dimensions are 479-nm wide ⇥ 300-nm thick. These designs can form the basis

for vertically-integrated athermal photonic devices relying on a robust oxide material

platform with high core-cladding index contrast.

In conclusion, we have fabricated and characterized high-Q polycrystalline anatase

TiO2 micro-ring resonators. The material platform and fabrication techniques are

scalable, CMOS compatible, do not require specialized substrates, and support verti-

cally integrated photonic devices. Using these methods, we have obtained intrinsic Q-

factors of up to 89,000, corresponding to losses as low as 0.40 dB/mm at � = 1550 nm.

We report the first measurement of a negative TOC in anatase TiO2 at telecommuni-

cation wavelengths, which can be used in conjunction with CMOS-compatible posi-

tive TOC materials to fabricate vertically-integrated athermal optical devices. Given
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these properties, anatase TiO2 is well-positioned to become an important material

for wavelength-insensitive, device-dense integrated nanophotonics.



Chapter 4

Asymmetric resonances in micro-ring

resonators

Propagation losses in micro-ring resonator waveguides can be determined from the

shape of individual resonances in their transmission spectrum. The losses are typi-

cally extracted by fitting these resonances to an idealized model that is derived using

scattering theory. Reflections caused by waveguide boundaries or stitching errors,

however, cause the resonances to become asymmetric, resulting in poor fits and un-

reliable propagation loss coefficients. In this chapter, we derive a model that takes

reflections into account and, by performing full-wave simulations, we show that this

model accurately describes the asymmetric resonances that result from purely linear

effects, yielding accurate propagation loss coefficients. This work will enable more

accurate fabrication characterization for integrated platforms.

43
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4.1 Introduction

Ring resonators are one of the simplest and most commonly used components in

photonic integrated circuits. Their high quality factors and ease of fabrication in any

photonic platform make them useful for applications in wavelength-selective filters

and multiplexers [82,83], optical delay lines [84], switches and modulators [85,86], and

in other nonlinear applications enabled by the resonantly-enhanced intensity build-

up [7,36,80,87–89]. Additionally, due to their simple analytic transfer function, ring

resonators are also used for fabrication characterization; the individual resonances in

the transmission spectrum of a ring can be measured and fit to extract propagation

losses [53, 73].

This fitting method has been shown to yield accurate propagation losses for

ideal devices [73]. However, fitting experimental resonances to the transfer function

often does not capture all of the physics properly and thus yields poor fits. Doing so

generates unreliable values for propagation losses, making it more difficult to assess

fabrication quality.

Back-reflections, which are common in realistic devices, can cause the resonances

to exhibit asymmetries that are linear in origin [38,53,74,75,90]. These asymmetries

are strictly unrelated to asymmetries caused by nonlinear interactions, such as by

optical bistability [91–93]. For example, fabrication defects in the waveguide leading

to and from the resonator can cause partial reflections that yield asymmetric Fano-

like resonances in the otherwise symmetric spectrum of a ring resonator [38,53,74,86].

These asymmetries are most prevalent in smaller, low-loss systems with high quality

factors, and pose an increasing challenge as fabrication quality further improves.
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In this chapter, we generalize the familiar transfer function for micro-ring res-

onators to develop a model that includes the interference caused by accidental reflec-

tions in waveguides. Using full-wave simulations we demonstrate that these asymme-

tries are caused by reflections and are independent of input power. We also discuss

situations in which reflections become significant. We use this generalized transfer

function to extract the propagation loss of the simulated devices, and demonstrate

that the model remains reliable in the presence of strong reflections, unlike the stan-

dard symmetric model. This generalized transfer function is important in the exper-

imental characterization of micro-ring resonators with inherent reflections.

4.2 Theory

4.2.1 Standard symmetric transfer function
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Figure 4.1: a) The right-traveling field in the waveguide excites a counter-
clockwise-propagating mode b2 and another right-traveling mode a2. These
two modes interfere destructively when operating on resonance. b) Par-
tial reflectors at the input and output of the waveguide enable left-traveling
fields and clockwise-propagating modes. These fields form a secondary res-
onance (i.e., a1 ! a2 ! c1 ! c2 ! a1) that interferes with the whispering
gallery modes in the ring to produce asymmetries in the combined spectrum.
c) The simulated device: a ring resonator of circumference C coupled to a
bus waveguide of length L between a pair of reflectors R1 and R2.
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The transmission of a micro-ring resonator coupled to a single waveguide (i.e.,

an input port and no add or through port) has been well characterized and can be

derived using scattering theory [71–73, 93, 94]. We begin by describing the set of

interactions that yield the standard symmetric transfer function. The complete set

of electric fields is illustrated in Fig. 4.1. The input and output fields are denoted by

a1 and a2, respectively. The input field a1 is incident on a directional coupler which

excites a counter-clockwise-propagating mode b2:

b2 =
p
1� t2a1, (4.1)

where t is the transmission (or self-coupling) coefficient that corresponds to the field

that remains in the waveguide after traversing the coupling region.

While propagating through the circumference C of the ring, the field b2 accu-

mulates a phase � = !C/c = 2⇡neffC/� and experiences a propagation loss ↵z due to

scattering and fabrication imperfections, yielding a field b1:

b1 = e

�↵zC/2
e

i�b2. (4.2)

The total propagation loss in the ring is denoted by ↵:

↵2 ⌘ e

�↵zC , (4.3)

so that ↵ ! 1 in the lossless case and ↵ ! 0 as the propagation loss approaches

infinity.

Part of the field b1 couples back into b2. Adding this contribution to Eq. 4.1,

we obtain

b2 =

p
1� t2a1 + tb1

=

p
1� t2a1 + t↵ei�b2. (4.4)
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The total output field a2 is the sum of the field that is directly transmitted from

a1 through the coupler and the field that couples back from the ring from b1:

a2 = ta1 +
p
1� t2b1

= ta1 +
p
1� t2↵ei�b2. (4.5)

The transmission for the ring resonator TRR(�) is the solution of the coupled

Eqs. 4.4–4.5:

TRR(�) ⌘
����
a2
a1

����
2

=

����
t� ↵ei�

1� ↵tei�

����
2

=

t2 + ↵2 � 2↵t cos�

1 + ↵2t2 � 2↵t cos�
. (4.6)

Both parameters ↵ and t are dimensionless and range from 0 to 1. TRR(�) is a

symmetric function of �, which only appears in the argument of a cosine. The transfer

function also remains symmetric upon interchanging ↵ and t, as is seen more evidently

in the expanded Eq. 4.6. As a consequence, the two coefficients contribute similarly

to the transfer function and thus are difficult to distinguish when fitting [73]. They

can be disentangled by fitting to resonances measured from multiple devices or to a

range of resonances from a single device because the propagation loss should remain

constant as a function of wavelength or other device parameters (e.g., coupling gap,

ring radius) [73].

4.2.2 Asymmetric transfer function

We now add a pair of partial reflectors with reflectivities R1 and R2 to the waveguide

in locations that surround the ring (Fig. 4.1c). Without loss of generality, we assume
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that the ring is centered between the reflectors along a bus waveguide of length L.

The additional fields that are introduced are illustrated in Fig. 4.1b.

The original output a2 now excites an output a3 that is behind a partial reflector

R2. With the reflector in place, this mode now also excites a left-traveling wave c1,

yielding the following relation:

a3 =
q

1�R2
2e

�↵zL/4
e

i'

0
a2 �R2e

�↵zL/4
e

i'

0
c1. (4.7)

Both terms include the loss accumulated from propagating along half of the waveg-

uide, and an additional propagation phase '0.

The left-traveling wave c1 excites a clockwise-propagating wave d2. The field d2

propagates through the circumference of the ring and excites another left-traveling

wave c2. The interaction is described by a pair of equations that are analogous to

Eqs. 4.4–4.5:

d2 =

p
1� t2c1 + t↵ei�d2 (4.8)

c2 = tc1 +
p
1� t2↵ei�d2. (4.9)

The left-traveling wave c2 reflects from the partial reflector R1 and contributes

to input a1, yielding

a1 =
q

1�R2
1e

�↵zL/4
e

i'

0
a0 �R1e

�↵zL/4
e

i'

0
c2. (4.10)

Equations 4.7–4.10, along with Eqs. 4.4–4.5, constitute the complete set of cou-
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pled equations. Solving for the transmission yields our final equation:

T (�) =

����
a3
a0

����
2

= (1�R2
1)(1�R2

2)e
�2↵zL ⇥

����
(1� ↵tei�)(t� ↵ei�)

(↵tei� � 1)

2 � �ei'(↵ei� � t)2

����
2

, (4.11)

with the substitutions:

� ⌘ |R1R2e
�2↵zL| (4.12)

' ⌘ 2⇡(2L)neff/�+ '0. (4.13)

The additional coefficients � and ' correspond to the loss and phase contributed by

the bus waveguide, respectively. This result includes a new term, e�2↵zL, accounting

for the propagation loss through the waveguide between the partial reflectors, and a

new pair of phase terms: 2⇡(2L)neff/�, which accumulates along the length of the

waveguide, and '0, which is introduced by the reflections. As expected, this result

reduces to the ideal case (Eq. 4.6) when the mirrors are removed (R1, R2 ! 0). If we

have no coupling to the ring (t ! 1), we obtain the transmission for a Fabry-Perot

etalon of length L with a pair of boundaries with reflectivity R1 and R2 [94]:

TFabry-Perot(') =

�����

p
1�R2

1

p
1�R2

2e
�↵zL

1�R1R2e
i'

e

�2↵zL

�����

2

. (4.14)

We scale Eq. 4.11 so that the peak value measured at the output is 1. Doing so

normalizes away any variables that are not explicit functions of � or ', and yields

˜T (�) =

����
(1� ↵tei�)(t� ↵ei�)

�ei'(t� ↵ei�)2 � (1� ↵tei�)2

����
2

= TRR(�)

����
1

1� �ei'TRR(�)

����
2

. (4.15)
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Equation 4.15 shows that ˜T (�) is just TRR(�) with a correction term tuned by the

asymmetry parameter �.

We will show that this equation can be used to extract propagation losses, even

in the presence of strong boundary reflections.

4.2.3 Asymmetry threshold

If the reflections R1 or R2 are small and the bus waveguide is very long, the asymmetry

parameter � is correspondingly small. One might expect the asymmetric correction

to TRR(�) to become negligible. However, even small � values can lead to pronounced

asymmetries in some configurations. The term with � in the denominator dominates

when

1 ⌧
����
2�ei'(t� ↵ei�)2

(1� ↵tei�)2

���� . (4.16)

This means that the reflection term � needs to be larger than a threshold value of

�threshold ⌘ (1� ↵t)2

2|t+ ↵|2 . (4.17)

We expect reflections (and thus �) to be very small so as not to observe any

asymmetries. However, Eq. 4.17 shows that it is easy to obtain asymmetric resonances

if both ↵ and t approach 1, as is generally desired. As was mentioned previously, large

values of ↵ correspond to smaller rings or low propagation losses. For example, for

a ring resonator with a diameter of 150 µm and a propagation loss of 0.5 dB/mm,

↵ ⇡ 0.95. In this case, �threshold ⇡ 0.015, and so just 1.5% reflections at the boundaries

cause noticeable asymmetries. Above this threshold, the standard symmetric transfer

function begins to fail. Functionally, this means that asymmetries can be suppressed
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in systems with considerable propagation loss or with large rings. This low threshold

also explains why asymmetries are so common in high-Q systems, and why it is hard

to estimate the propagation loss using rings in low-loss systems.

4.3 Results and Discussion

4.3.1 Device geometry and simulation parameters

We use a commercial 2-dimensional finite difference time domain (2D-FDTD) solver

and the effective index method [95] to simulate a micro-ring resonator in order to verify

these equations. The device we model consists of a lossy silicon (n = 3.5 + 0.0002i)

micro-racetrack resonator composed of 220 nm tall ⇥ 300 nm wide waveguides on

a silica (n = 1.45) substrate. For simplicity, we set the constituent materials to be

dispersionless. The resonator parameters include a coupling length of 10 µm, an

edge-to-edge coupling gap of 90 nm and a total ring circumference of 400 µm. This

device is designed to achieve critical-coupling for TM-polarized light in the center of

the telecom operation range, at � = 1550 nm. The imaginary component of the index

is selected to achieve a propagation loss near 5 dB/mm (Fig. 4.2a). Though this loss

might appear significant, we use a small ring for ↵ to remain large enough (↵ ⇡ 0.75)

so as not to suppress the effects we are studying. Both of these factors contribute to

minimizing the simulation time. The complete set of parameters is summarized in

Table 4.1.

The effective index method yields an effective index of neff = 1.93 for the waveg-

uide and neff = 1 for all other regions. We calculate the propagation loss for TM-
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Material index 3.5 + 2⇥ 10

�4i

Substrate index 1.45

Waveguide width 300 nm

Waveguide height 220 nm

Ring circumference 400 µm

Coupling length 10 µm

Gap size 90 nm

Table 4.1: Device geometry

polarized light at � = 1550 nm by performing a virtual cut-back method [96]; we

monitor the transmitted light at various positions in the waveguide and perform a

linear fit (Fig. 4.2a), yielding a propagation loss of 5.2 dB/mm. For the given ring

circumference and propagation loss we calculate the loss coefficient at � = 1550 nm

to be ↵ = 0.775. The predicted ↵ also includes the minimal scattering loss that

results from the mode mismatch between the straight and bent parts of the race-

track resonator (0.2% per junction). Given the selected parameters, we estimate the

maximum loaded Q-factor to be Q =

⇡ng/(↵z�) = 3.3⇥ 10

3 [68].

4.3.2 Symmetric resonances

Before tackling the asymmetric case with paired partial reflections, we begin by

simulating an ideal ring resonator to demonstrate the propagation loss extraction

method [73]. The transmission for TM-excitation in the geometry described above

is shown in Fig. 4.2b. We observe equally spaced symmetric resonance peaks with
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an average free spectral range of 3.14 nm (390 GHz). They possess extinction ratios

in excess of 10 dB throughout the range of operation, confirming that the resonator

is near-critically-coupled to the waveguide. The largest extinction ratio observed

(33 dB) is located at � = 1546.2nm, at the center of the operation range. This reso-

nance has a loaded Q-factor of 3.0 ⇥ 10

3. The resonances are symmetric and are fit

to the traditional transfer function in Eq. 4.6 (Fig. 4.2c). The fits are consistently

well-behaved, and yield a loss parameter ↵ for each resonance. We calculate the prop-

agation losses ↵z for each resonance using Eq. 4.3 and plot them in Fig. 4.2d. The

loss values extracted using this method consistently agree well with the propagation

loss in Fig. 4.2a, with a geometric mean of 5.2 dB/mm. This result demonstrates

that fitting to Eq. 4.6 is a reliable method for estimating the propagation loss of a

waveguide for symmetric resonances.

4.3.3 Asymmetric resonances

In order for asymmetries to appear in the simulated transmission spectrum, we place

partial reflectors into the waveguide. We insert partial reflectors into the simulation

using artificial stitching errors. These errors routinely appear during the electron-

beam lithography process and are caused by the misalignment of successive write-

windows (Fig. 4.3a). We simulate the reflection coefficient for different gaps and

offsets that might result from a stitching error (Fig. 4.3b). For a perfectly aligned pair

of waveguides (i.e., no stitching error) none of the light is reflected back towards the

input, as expected. As the gap or offset increases, the reflected field grows. Counter-

intuitively, above a certain gap size the reflected field decreases. This decrease is due
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Figure 4.2: a) We obtain a propagation loss of 5.2 dB/mm for the waveguide
used in the resonator by fitting to the transmission of a straight waveguide
and extracting the slope. b) The transmission spectrum for TM-polarized
light in a micro-racetrack resonator with a total circumference of 400 µm.
We observe near-critical coupling throughout the wavelength range, peaking
around � = 1550 nm. c) We fit to the resonance in the shaded region in
b and obtain ↵ = 0.774. d) Extracted propagation loss from each individ-
ual resonance in b (circles). The mean propagation loss is 5.2 dB/mm, in
agreement with the value fit in a.
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to interference effects from the combined field within the gap — the field reflected

from the end of the input waveguide interferes destructively with the field reflected

from the beginning of the second waveguide. Figure 4.3b shows that stitching errors

in our system yield a maximum reflection value of � = 0.2. With ↵ = 0.775, Eq. 4.17

predicts that we need � > �threshold = 0.029 before the transmission spectrum from

the simulated device exhibits significant asymmetries.

asymmetry parameter g

R
 2

0 0.05 0.1 0.15 0.2

th
re

sh
o

ld

1.02

1

0.98

0.96

0.94

0.92

0.9

Symmetric model

Asymmetric model

Symmetric model

Asymmetric model

wavelength (nm)

p
ro

p
a

g
a

tio
n

 lo
ss

 (
d

B
/m

m
)

1500 1525 1550 1575 1600

10

8

6

4

2

0

wavelength (nm)

n
o

rm
a

liz
e

d
 t
ra

n
sm

is
si

o
n

1547 1548 1549 1550 1551 1552

1.0

0.8

0.6

0.4

0.2

0

Simulation

Symmetric
model

Asymmetric
model

wavelength (nm)

tr
a

n
sm

is
si

o
n

 (
d

B
)

1500 1525 1550 1575 1600

10

0

-10

-20

-30

-40

a b

c d

Figure 4.4: a) Transmission over the entire operation range for the device
described in Section 4.3.3. b) Fits to the resonance in the shaded area
in a, using both the standard symmetric model (red) and the asymmetric
model developed in this work (black). The symmetric model fits the cen-
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work. On the other hand, the fit quality for the standard model declines
once � > �threshold.
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We set the partial reflectors in our device to be stitching gaps that are 17 µm

apart, surrounding the ring-coupling region. This length was chosen because it is not

a multiple of the ring circumference (400 µm). We compare the effect of different

asymmetry parameters � by simulating devices with different stitching gap sizes of

300 nm (corresponding to � = 0.1902), 200 nm (� = 0.1339), 150 nm (� = 0.0921),

100 nm (� = 0.0484), 70 nm (� = 0.0259) and 35 nm (� = 0.0053). In Fig. 4.3c, we

plot the transmission for the most extreme case with a gap size of 300 nm and the

median case, with a gap size of 150 nm. We compare them to the ideal case from the

previous section. As expected, the asymmetry increases with increasing �.

The complete transmission spectrum for the device with the largest gap is shown

in Fig. 4.4a. The familiar resonance peaks from Fig. 4.2b are superimposed with a

slower secondary oscillation which adds characteristic asymmetries to the individual

resonances. The resonances now also appear to possess different extinction ratios

than their idealized counterparts. However, this apparent difference is an artifact of

the superposition between the two oscillations.

We fit these resonances using both the standard symmetric transfer function

TRR(�), and the asymmetric transfer function ˜T (�) (Fig. 4.4b). In simulation we

know the length of the bus waveguide between the reflectors; however, if this length

is unknown, its value could easily be determined by taking the Fourier transform of

the measured transmission. The propagation loss extracted using both the symmetric

and asymmetric transfer functions are plotted in Fig. 4.4c. The asymmetric function

consistently predicts an average propagation loss of 5.4 dB/mm with a geometric

standard deviation of 1.05, in agreement with the value extracted from the cut-back
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simulation and the symmetric fits in Fig. 4.2. On the other hand, the standard transfer

function TRR(�) predicts an average loss of 5.0 dB/mm with a geometric standard

deviation of 1.70. This large standard deviation is evident in the drastic oscillations

about the mean, with values ranging from 1.4 to 11.6 dB/mm. The asymmetric

function fits the data significantly better when strong reflections are present. To

demonstrate this quantitatively, we calculated the average R2 for the fits in each

spectrum. As can be seen in Fig. 4.4d, both transfer functions fit the data well

when � < �threshold = 0.029, but above this value the standard symmetric transfer

function deviates significantly from R2
= 1 with a large range of R2 values, whereas

the asymmetric transfer function remains at R2
= 1 for every resonance.

4.4 Conclusion

We demonstrated that asymmetric resonances can result from purely linear effects

in micro-ring resonators, such as partial reflections that are unavoidable in a real-

istic device or experimental setup. We derived and numerically verified a threshold

above which the asymmetries become pronounced. Realistic devices easily exceed

this threshold and therefore exhibit asymmetric resonances. The asymmetries are

most pronounced in low-loss systems, where they appear for boundary reflections on

the order of 1% or less. The reflectors do not need to be as close to each other as

they are in this work — the asymmetries can just as easily originate from waveguide

boundaries when the total waveguide length is comparable to the resonator length.

We derived a new transfer function that takes these asymmetries into account.

The equations in this model reduce to their symmetric counterparts in the special case
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of negligible reflections. This asymmetric transfer function outperforms the standard

symmetric transfer function at modeling resonances from a ring resonator when the

reflections are significantly above the threshold. The standard ring transfer function is

therefore unreliable at extracting propagation losses, and the new asymmetric transfer

function derived in this paper should be used in its place. As material deposition

and fabrication techniques improve, losses will decrease and Q-factors will increase,

exacerbating the prevalence of asymmetries in state-of-the-art devices and thus the

need for a new model that can account for asymmetries.



Chapter 5

CMOS-compatible zero-index

metamaterials

In this chapter, we present a monolithically integrated and CMOS-compatible pho-

tonic Dirac-cone-based metamaterial with an isotropic effective refractive index near

zero. First, we will describe the physics and history of Dirac-cone-based metamateri-

als. Second, we will discuss our particular implementation and design strategies that

are based on silicon-on-insulator technology. Third, we discuss the general properties

of the metamaterial, including its isotropy and tolerances to fabrication imperfections.

Next, we will experimentally demonstrate that this metamaterial possesses an effec-

tive refractive index of zero. Finally, we discuss the future outlook and applications

of this new CMOS-compatible platform.

59
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5.1 Introduction to zero-index metamaterials based

on photonic Dirac cones

Metamaterials, composite materials with subwavelength inclusions, have allowed the

photonics community to demonstrate extreme optical properties that are not typi-

cally found in nature. One exciting research direction is zero-index metamaterials

(ZIMs) [25,34,97–100]. Materials with a refractive index of zero exhibit a number of

striking and unintuitive properties, such as infinite phase velocities, large area single-

mode operation, and angle-selective transmission. A flexible integrated ZIM enables

many applications, such as supercoupling effects [29,30,33,101] as well as fundamental

tests in physics, including unique nonlinear phenomena [34,35,102].
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Figure 5.1: The band structure of a two-dimensional photonic crystal with a
square lattice. a) The band structure for a 2D PC constructed of cylinders
with radius r = 0.2a, relative permittivity ✏ = 12.5 and permeability µ = 1.
Two linear dispersion bands intersect at the Dirac point f = 0.541c/a, with
an additional flat band. b) Three-dimensional dispersion surfaces near the
Dirac point frequency of the band structure shown in a, showing the relation-
ship between the frequency and wave vectors (kx and ky). The linear bands
(purple) form cones that touch at the Dirac point. There is an additional
sheet (green) of quasi-longitudinal modes (from Ref. [97]).

In 2011, Huang et al. [97] used a 2-dimensional square array of infinitely-tall
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dielectric pillars to design a photonic crystal that possessed a Dirac cone at the

�-point, at the center of the Brillouin zone (Fig. 5.1). The cone was formed of a

monopole mode and two dipole modes, one for each of the two propagation directions

in the plane of the array. The two dipole modes combined to form a mode that points

towards any arbitrary direction in the xy-plane. The parameters of the structure,

which comprised the pitch a of the array, the radius r of the pillars, and the dielectric

constant, were tuned so that the modes intersected at the �-point. They showed that

this configuration corresponds to a metamaterial with an effective refractive index of

zero, demonstrating near-zero phase advance at f = 10.3 GHz. This true “double-

zero” material stands in stark contrast to “single-zero” materials, such as epsilon-

near-zero (ENZ) or mu-near-zero (MNZ) materials [29, 30, 35, 103]. ENZ and MNZ

materials possess impedances ⌘ ⌘ p
µ/✏ of 0 or 1 which makes them act as perfect

reflectors. By comparison, a double-zero material has both epsilon and mu gradually

and simultaneously crossing zero. This yields a finite impedance and completely

avoids this problem.

This work was followed by similar demonstrations in the telecom regime, using

silicon pillars in glass [98,99] or silicon pillars in air [100]. The latter demonstrations

featured vertically-oriented pillars structured from a standard silicon-on-insulator

(SOI) substrate. This on-chip configuration allows for flexible device design and

enables integration with silicon photonic waveguides and optical components, such as

resonators and interferometers. Unfortunately, the metamaterial design parameters

required tall pillars — upwards of 500-nm — to obtain the desired resonances and

modal degeneracy. This criterion presents many obstacles towards the adoption of the
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on-chip zero-index platform. For example, single-mode operation becomes challenging

in the telecom regime by necessitating prohibitively tall waveguides with large aspect

ratios. These integrated ZIMs have prohibitively difficult fabrication procedures or

incorporate expensive materials such as gold. These properties will ultimately slow

down industry adoption of these platforms and will limit possible applications.

To address this issue, we have developed a zero-index metamaterial (ZIM)

formed from a thinner base film. This was achieved by inverting the previously

demonstrated structures, i.e., etching circular holes into a silicon matrix. Since the

background of this structure is formed from a high-index slab, the light cone is dras-

tically raised, providing improved vertical confinement [104]. We also move towards

transverse electric-(TE-)polarized operation (i.e., electric field polarized parallel to

the plane of the device), whose modes are better confined in thinner films due to

boundary conditions [94].

5.2 Dirac cones in square arrays of holes in a dielec-

tric matrix

We begin by studying an equivalent two-dimensional structure in order to build in-

tuition about this inverted airhole array. We simulate a bulk silicon (n = 3.48)

matrix and tune the parameters (pitch and radius) of a square array of infinitely-tall

holes (Fig. 5.2a). For an array with a pitch of a = 582.8 nm and a hole radius of

r = 182.0 nm, a Dirac cone forms at the �-point at f = 193.4 THz (i.e., � = 1550 nm).

We call this frequency the zero-index frequency. In Fig. 5.2b, we plot the resulting
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Figure 5.2: a) A two-dimensional square array of holes in a silicon matrix,
with a lattice constant a and a radius r. b) The band structure for this
structure with a = 582.8 nm and r = 182.0 nm. The dashed red line indicates
the operating frequency, f = 193.4 THz. c) The out-of-plane component of
the H-field Hz of the three modes that intersect at the �-point.
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band structure for TE-polarized excitation. The bands that form the cone intersect

linearly. At shorter frequencies, a photonic band gap appears in the �–X direction.

In Fig. 5.2c, we show the field profiles of the three degenerate modes at the �-point.

Here, they are composed of two dipole modes and a quadrupole mode. As in the

TM-polarized rod case, the two dipole modes can be combined to form a mode that

points towards any arbitrary direction in the xy-plane.

5.3 Dirac cones in silicon-on-insulator technologies

In order to adapt the presented design into a fully-fabricable 3-dimensional structure,

we perform the same procedure outlined above for the case of a 220-nm tall Si-on-

SiO2 film (Fig. 5.3a). This film thickness is selected due to its compatibility with the

CMOS fabrication process, and because of the well-established single-mode condition

for TE-polarized light [105]. For a square array airhole structure with a pitch of

a = 728 nm and a radius of r = 222 nm, we obtain the band structure in Fig. 5.3a.

We observe three modes intersecting at the �-point, forming a photonic Dirac cone

at f = 193.4 THz. As in the 2D case, two of the modes are dipoles and the third

is a quadrupole mode. In fact, as displayed in Fig. 5.3c, slices of these modes taken

at the center of the slab are extremely similar to their respective 2D counterparts

in Fig. 5.2c. Unlike in the 2D case, the three bands that form the cone no longer

intersect linearly. Instead, both bands possess a quadratic dispersion. This is caused

by the two modes possessing radically different quality factors, which breaks the

degeneracy for the complex eigenfrequencies [106]. Despite being above the light line,

the quadrupole mode cannot couple to plane waves that propagate in free space due
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Figure 5.3: a) A unit cell of the designed airhole structure in a 220-nm tall
Si-on-SiO2 film. b) The band structure for a two-dimensional square array
of this structure with a pitch of a = 728 nm and a radius of r = 222 nm. The
Q-factor peaks for the modes at the �-point. c) The out-of-plane component
of the H-field Hz of the three modes that intersect at the �-point. The
modes resemble their 2D analogs in Fig. 5.2c. d) The modes in (c) with the
resonator centered in the unit cell.
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to its symmetry, leading to high quality-factors. This is clearly illustrated by the

color bar in Fig. 5.3b, where the Q-factor peaks above 105 for one of the modes at the

�-point. As we will demonstrate in the following section, this change in the dispersion

profile does not significantly impact the device performance. Finally, we note that a

limitation of the proposed design is the band gap that appears for smaller frequencies

in the �–X direction, below f = 189.7 THz.

1
2

3
4

1 2

3 4

a

b

Figure 5.4: a) Average wavelength between the dipole and quadrupole modes
at the �-point as a function of the lattice parameters. b) Size of the bandgap
as a function of the lattice parameters. The line where the average eigen-
frequency matches our design wavelength (� = 1550 nm) is indicated by the
dashed white line in both (a) and (b). On the right hand side, we calculate
the full band structure for the structures indicated in (a). The star in the
center of the simulation region corresponds to the optimal structure, which
is fully described in Fig. 5.3

We study the fabrication tolerance of the design by examining the modal eigen-

frequencies as a function of the lattice constants. We calculate the modes at the center

of the Brillouin zone for pitches and radii that are shifted by up to ± 5% from the op-

timal device parameters, with pitches ranging from about a = 695 nm to a = 765 nm
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and for hole radii of about r = 210 nm to r = 235 nm. We distinguish the quadrupole

modes from the dipole modes by their quality factors. In Fig. 5.4a, we plot the average

eigenfrequency as a function of the lattice parameters. A valley appears where the two

modes are equidistant from the operation wavelength (� = 1550 nm), as indicated

by a white dashed line. We calculate the band structure at multiple points (Fig. 5.4)

along this line. As we go from smaller dimensions to larger ones, the gap between the

higher frequency dipole modes and the lower frequency quadrupole mode decreases

until we reach the optimal structure with modal degeneracy. For even larger sizes, the

gap once again increases; however, as the eigenfrequency of the dipole modes keeps

getting reduced and the eigenfrequency of the quadrupole mode keeps increasing, the

position of the modes with respect to the operating frequency is actually reversed.

We also show the absolute difference between the modal eigenfrequencies for the same

geometries (Fig. 5.4b). We conclude that for a given operating frequency in the range

of our chosen operating wavelength, there exists only a single geometry that provides

perfect modal degeneracy for zero-index operation. If we allow a small bandgap of

1 nm to form between the modes, we can tolerate a fabrication imperfection of ± 0.3%

(⇡ 2 nm) in the pitch and an imperfection of ± 0.8% (⇡ 2 nm) in the hole radii while

still maintaining near-degeneracy at one particular wavelength.

In Fig. 5.5, we plot the complete dispersion surface for the modes that form

the cone, demonstrating the finely-tuned degeneracy between the modes of interest

at the selected frequency. As the operating frequency strays from the zero-index

frequency, the modes supported by this structure form circles in the Brillouin zone. At

larger deviations, the circles gradually relax into supercircles, which obey the relation
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xn

+yn = rn. This is illustrated more clearly by slicing the cone into its equifrequency

contours, as shown in Fig. 5.6a-b. We fit each contour to a supercircle, and plot

the extracted radii r and supercircle orders n in Fig. 5.6c-d. The equifrequency

contours fit to perfect circles when n = 2, indicating that the modes are isotropically

distributed around the �-point. Fig. 5.6d indicates that the structure behaves like an

isotropic metamaterial for the frequencies between f ⇡ 192 – 195 THz, corresponding

to over 20 nm of bandwidth surrounding � = 1550 nm. In Fig. 5.6c, the extracted

supercircle radii first decrease and then increase as a function of frequency, both with

a very linear trend (R2 > 0.99), further strengthening the claim that the structure

behaves like an isotropic metamaterial.
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Figure 5.5: The dispersion surface at the center of the reduced Brillouin
zone for the proposed structure, analogous to Fig. 5.1b. The modes form a
photonic Dirac cone at the �-point. The flat band, which corresponds to the
quasi-longitudinal dipole mode, has been omitted for clarity.
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5.4 Effective refractive index determination

5.4.1 Parameter retrieval

The features that we have described in the band structure so far are consistent with

the claim that our proposed structure has an isotropic effective refractive index near

zero. In order to more rigorously determine the index of the structure, we simulate

the transmission of the fundamental TE-polarized mode of a 2D-slab through a row

of airhole unit cells. We monitor the transmitted and reflected fields and perform

a parameter retrieval on the scattered fields [107]. This procedure yields complex

values for the effective permittivities and permeabilities, or alternatively, the effective

refractive index and impedance. We plot the real and imaginary components of the

effective refractive index in Fig. 5.7a. The real part of the index smoothly and linearly

decreases from positive values towards negative values, with an effective index of 0

near � = 1550 nm. The imaginary component of the refractive index at this wave-

length is =[neff] = 0.054, which is comparable to the imaginary index of =[neff] = 0.046

achieved for the original integrated ZIM implementation which featured gold-clad sil-

icon rods in a polymer (SU-8) matrix [99]. As the wavelength increases from this

point, the imaginary component increases drastically. This is due to the appearance

of a photonic band gap, as illustrated in Fig. 5.3b. Finally, we note that at the

zero-index frequency, the real components of the retrieved effective permittivity ✏eff

and permeability µeff both simultaneously cross zero, as well, corresponding to a true

impedance-matched “double-zero” material.
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5.4.2 Experimental verification

In order to experimentally measure the index of the material, we create a right-angled

prism formed from a 20 ⇥ 20 cell array (Fig. 5.8a). The fabrication procedure follows

a standard silicon photonics fabrication process. We begin with 220 nm-thick SOI

wafer, and pattern a layer of negative-tone resist (XR 6%) in a single step of electron-

beam lithography. We follow this step by inductively-coupled plasma reactive ion

etching (ICP RIE) the sample in a SF6:C4F8 atmosphere at a ratio of 13 : 8 until the

pattern is completely transferred into the silicon device layer.

A TE-polarized input beam is introduced onto one face of the prism using

a silicon waveguide the width of the input face of the prism. At the zero-index

frequency, we expect light to exit the prism at an angle ↵ that is normal to all of its

faces (↵ ! 0

�), regardless of the index of the surrounding medium. This is trivially
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derived using Snell’s law:

sin(↵) =

n1 sin(45
�
)

n2

n1 = 0 =) ↵ = 0.

The output from the prism is collected in a 1.5-µm-tall SU-8 slab waveguide

shaped like a semicircle with a diameter of 1 mm. Under the output face of the slab

waveguide is a silicon ring designed to scatter light into an imaging objective above

the chip. Fig. 5.8b shows the resulting image at � = 1640 nm. This wavelength is

5% larger than the designed operating wavelength, within the expected fabrication

tolerances of e-beam lithography. A beam appears at ↵ = 0

�, corresponding to

refraction through a prism with a refractive index of zero. A secondary beam appears

at ↵ = 45

�; this corresponds to the output for TM-polarized input, in agreement with

simulations. We could eliminate this beam by using a polarizer at the input and by

polishing the input facet to prevent polarization scrambling.

silicon

waveguideSU-8 slab

waveguide

α

a b

Figure 5.8: a) The fabricated chip and the experimental setup. b) An image
of unpolarized light at � = 1640 nm, showing a clear beam at ↵ = 0

�, con-
firming that the prism has an effective refractive index of zero. The fabricated
output slab is artificially overlayed on top of the image.

We repeat the measurement by sweeping the wavelengths from � = 1480 –

1680 nm at an interval of �� = 1 nm. The intensity at the outer scattering ring is

plotted as a function of wavelength in Fig. 5.9b. We see the beam smoothly decreasing
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from positive angles at shorter wavelengths to negative angles at longer wavelengths,

crossing ↵ = 0

� at around � = 1640 nm. We interpret this to mean that the prism

possesses a small positive effective refractive index at shorter wavelengths, an index of

0 around � = 1640 nm, and a small negative index at larger wavelengths. This trend

agrees qualitatively with the retrieved index in Fig. 5.7. Additionally, we show the

matching simulation for the ideal device dimensions in Fig. 5.9a. We observe excellent

qualitative agreement between the simulated and measured far-field patterns.
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Figure 5.9: Simulated (left) and experimental (right) far-field patterns from
a right-angled prism formed of 20 ⇥ 20 unit cells of the proposed airhole
structure. The data is normalized at every wavelength. In both figures,
the refracted beam crosses through ↵ = 0

�, indicating an effective refrac-
tive index of zero. The secondary dominant beam that appears at 45� in
the experimental data corresponds to unfiltered TM-polarized light from the
input.

5.5 Discussion and conclusion

We have designed and characterized a CMOS-compatible Dirac-cone-based metama-

terial with an isotropic effective refractive index near zero. For a given polarization,
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we observe refraction normal to a right-angled triangular prism of this metamaterial,

consistent with an effective refractive index of zero. The presented design also pro-

vides access to small isotropic positive and negative refractive indices. Interferometric

experiments would be required in order to unambiguously characterize the refractive

index of this metamaterial further [108,109].

The presented platform utilizes a structured monolithic slab of silicon with a

carefully tuned square array of cylindrical holes. The design does not depend on any

unique silicon material properties, and in fact could be trivially adapted to other

mature transparent high-index photonic platforms. With some exploration, a recipe

based on the work in this chapter could also possibly be devised for materials with

lower refractive indices.

Though this latest design marks a significant improvement over previously

demonstrated ZIMs in terms of practicality and integration, its modes are still lo-

cated at the �-point above the light line. Thus, this metamaterial still possesses a

considerable intrinsic loss on the order of a few dB/µm. As these losses are purely

radiative and not due to any intrinsic material properties, this can be avoided by

embedding the states within a bound state in continuum [110,111].

Unlike its predecessors, this integrated metamaterial was engineered to be struc-

tured from a relatively thin film, and it does not necessitate any additional polymers

or metals. This advance was achieved by inverting the original silicon pillar design,

i.e., by placing “air cylinders” into a silicon background. The large effective index of

the silicon slab in the background provides some additional confinement. This move

enables practical integration with the wealth of silicon photonic components that have
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been designed using 220-nm-thick SOI.



Chapter 6

Zero-index waveguides

We design and experimentally demonstrate 1-dimensional zero-index waveguides. We

integrate the silicon-based zero-index metamaterial with photonic band gap materials

to reduce the propagation losses from 1.26 dB/µm to 0.89 dB/µm, corresponding to

a 30% improvement. Finally, we propose and experimentally demonstrate a novel

interferometric technique to extract the effective index of low-index waveguide chan-

nels.

6.1 Introduction

The all-dielectric zero-index platform that was presented in the previous chapter opens

up many avenues for both fundamental experiments as well as photonic applications.

With an integrated zero-index channel, we can arbitrarily route light along sharp

bends using the super-coupling effect or study new arrangements in nonlinear phase-

matching [29,30,33,34,101,102]. However, there remain some obstacles that must be

76
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addressed before we can begin to probe these applications.

First, it is unclear how narrow a channel can be employed (i.e., how many unit

cells are necessary) while still preserving the symmetry and degeneracy of the modes,

maintaining an effective index of zero along the direction of propagation. If a device

that is a single unit cell wide can still exhibit the correct zero-index modes, it is also

unknown whether or not a single-mode SOI waveguide can excite them efficiently

within the structure. Second, the nature of an isotropic zero-index material is to

radiate normal to its faces, which unavoidably contributes to the propagation loss

of these waveguides. Many potential applications for integrated photonics rely on

long-range propagation, which would significantly limit the feasibility of zero-index

devices. Finally, experiments that have so far been used to determine the effective

index for these low-index platforms have necessitated that the metamaterial be in the

shape of a prism [99, 100]. This further restricts the arrangement of the platform,

impacting potential applications.

In this chapter, we design and characterize zero-index waveguides that are a

single unit cell wide (⇡ �/2). We exploit the ease of integration with silicon pho-

tonics to partially mitigate the radiative propagation loss caused by the low effective

index. Finally, we propose and experimentally demonstrate a novel interferomet-

ric technique to extract the effective index of low-index waveguide channels. Unlike

previous measurements, this approach can be implemented in-situ to directly observe

the effective index within a device, rather than requiring an additional interferometric

measurement structure.
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6.2 Design and simulation

As light propagates through any zero-index medium, it is partially emitted normal

to its sides, an intrinsic property of a material with a refractive index of zero. If

we were to form a waveguide of this medium, this emission would contribute to the

propagation loss of the waveguide. Radiative losses could be mitigated in part if

the emitted light could be reflected and returned to the waveguide with a 2⇡ phase

shift. Fortunately, at the zero-index wavelength, light couples perfectly to plane waves

pointing normal to every surface. Adding a perfect reflector an appropriate distance

from the waveguides could reverse these waves, completely canceling out this radiation

and reducing the propagation loss of these waveguides, while maintaining an effective

phase advance of zero.

6.2.1 On-chip photonic band gap materials

Since the zero-index platform is compatible with silicon photonics, we have the option

to use photonic band gap materials (PBGs) as on-chip reflectors. Integrating these

materials with a zero-index waveguide is seamless (Fig. 6.1). We employ a triangular

lattice of holes with a lattice constant of aPBG = 450 nm and a hole radius of rPBG =

124 nm. This geometry provides a PBG for all TE-polarized light at f = 194.3THz

(� = 1550 nm) with a large bandwidth of �f = 37THz (Fig. 6.1b).

We place a single row of zero-index unit cells between multiple layers of PBG.

Between the zero-index waveguide and the PBGs, the silicon is entirely etched away

to leave a gap. Without this gap, the zero-index resonators are no longer freestanding

and the modes in the metamaterial are perturbed which impedes the desired operation
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of the device.

We empirically determine the correct spacing L between the PBG and the ZIM

channel by performing full-wave simulations. Using FDTD, we couple light into a

device comprised of 6 unit cells of ZIM using a silicon waveguide and collect the

output using a transmission monitor in another waveguide at the opposite end. We

sweep the spacing L and measure the transmission into the fundamental mode of

the output waveguide. The measured output is reduced by a radiative propagation

loss, coupling loss to and from the device from the interfacing waveguides, and the

minimal absorption losses in the silicon. As L is changed, we expect any changes in

transmission to be due to a reduction in radiative losses only, so long as the modes

of the structure remain unperturbed. The transmission in the fundamental mode

of the output waveguide as a function of L is shown in Fig. 6.1c. As the reflectors

approach from infinity, the waves reflected from the PBG begin to interfere with

the light propagating in the waveguide, first constructively at a spacing of roughly

L = 1000 nm, then destructively at a spacing of L = 720 nm. There is then a large

region of constructive interference, ranging from a spacing of 133 nm to 573 nm, with

a maximum roughly at the center, for a spacing of L = 330 nm. This spacing is

selected as the design spacing for the reflector.

6.2.2 Waveguide propagation

As this new hybrid structure is no longer periodic along the direction of propagation,

we can not calculate a band structure to examine its dispersive properties. Instead, we

measure the average phase advance between unit cells using phase monitors in FDTD,
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Figure 6.1: a) Schematic for a 1-channel-wide zero-index waveguide, cladded
by a photonic crystal that possesses a band gap at the operating frequency.
b) Photonic band structure for the PBG photonic crystal. There are no states
available around the operating frequency (f = 194.3THz), as indicated by
the red-dash line. c) Transmission after propagating through 6 unit cells of
the structure in (a) as a functino of the spacing between the PBG lattice
and the zero-index waveguide, L. An optimum at which the PBG provides
the strongest constructive interference (corresponding to the overall lowest
propagation loss) is found at L = 330 nm.

and extract an effective index which we plot in (Fig. 6.2a). We also plot the retrieved

effective index of the bare zero-index waveguide on the same axes for comparison. We

observe a good qualitative agreement between the two devices. Notably, we maintain

a zero-index crossing at approximately the same wavelength in both devices.

Next, we look at the fields in the horizontal cross-section midway through the

device (Fig. 6.2b-c). The structure of the modes excited within the device is ob-

served to be insensitive to the addition of PBGs. In both structures, the amplitude

of the fields decreases due to propagation loss; however, light excited in the waveg-

uide cladded by PBGs decays more slowly. To estimate this change in propagation

loss more quantitatively, we perform a virtual cut-back measurement by simulating

waveguides with 2 – 9 pitches of ZIM waveguides both with and without the PBG

cladding (Fig. 6.2d). For comparison, we also simulate a periodic zero-index meta-

material that is infinitely-wide, i.e., that does not exhibit a radiation loss out of the
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sides of the waveguide. We fit to the transmitted output and extract a propagation

loss of 2.21 dB/µm for the bare zero-index waveguides, and a propagation loss of

1.47 dB/µm for the PBG-cladded zero-index waveguides, corresponding to an im-

provement of over 30%. The coupling loss of 0.3 dB/interface is identical for both

devices, further confirming that the modes are not perturbed by the presence of the

PBG. The periodic structure exhibits a propagation loss of 1.12 dB/µm, which is

lower than either two waveguides, as expected.

Figure 6.2: a) Retrieved effective index for the zero-index waveguide both
with and without the PBG cladding. Both devices demonstrate a zero-
crossing at approximately � = 1530 nm. b) 3D-FDTD simulation of the
out-of-plane ~H-field component and the magnitude of the field | ~H| for a bare
zero-index waveguide excited by a TE-polarized single-mode waveguide. c)
Simulated out-of-plane ~H-field component and the magnitude of the field
| ~H| for the PBG-cladded zero-index waveguide. d) Simulated transmission
into the fundamental mode for waveguides of different lengths, which yields
propagation losses. Also plotted for comparison is a simulation for a struc-
ture that is surrounded on either side by periodic boundary conditions. This
structure should only have out-of-plane radiative losses.
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These simulations demonstrate that a bare zero-index waveguide that is only a

single unit cell wide has an effective refractive index of zero. The addition of a PBG

cladding maintains this refractive index profile while reducing the propagation loss

of the waveguide by 30%. Both of these waveguides couple well to ordinary silicon

waveguides, with a coupling loss of 0.3 dB/interface. In the next few sections, we

explore these devices experimentally.

6.3 Experimental

6.3.1 Fabrication

To fabricate the structures, we begin with a 220-nm silicon-on-insulator wafer. We

spin on a layer of negative-tone resist (XR 6%) and write the pattern using electron-

beam lithography. The sample is then developed in tetramethylammonium hydroxide

(TMAH) and the pattern is transferred to the silicon substrate using inductively-

coupled plasma reactive ion etching (ICP-RIE) in a SF6:C4F8 atmosphere at a ratio

of 13:8. In Fig. 6.3, we show a pair of finalized structures. Each device tapers on

both sides into single mode 500 nm ⇥ 220 nm waveguides which in turn couple into

large 2.5 µm ⇥ 2 µm polymer (SU-8) coupling pads. The pads are cleaved at both

ends of the chip to prepare input facets.

6.3.2 Index retrieval

The shape of the zero-index waveguides, specifically their 1-dimensional nature, means

that we cannot perform a refraction experiment such as the one that was done in
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3 µm

Figure 6.3: (left) Scanning electron microscope image of a bare zero-index
waveguide. (right) An identical waveguide surrounded on each side by 4
pitches of a triangular-lattice PBGs.

Section 5.4.2 using a prism. In order to unambiguously characterize the effective

index of an integrated waveguide structure, we would typically need to build a bulky

and complicated interferometric setup and perform careful transmission and reflection

measurements. Alternatively, we could design the device with an integrated silicon-

based Mach-Zehnder interferometer and perform this measurement entirely on-chip.

However, this kind of configuration would prevent the use of those waveguides for

most other experiments.

Fortunately, the small effective index of ZIM devices enables an interferometric

measurement that would be otherwise inaccessible. This technique can be used with

low-index devices in any configuration with at least two inputs to determine the

absolute value of their effective index. First, the device is excited from both sides.

This forms a standing wave that can be imaged using an infrared camera. The

combined intensity of the interference pattern formed by a pair of counter-propagating



84 Chapter 6: Zero-index waveguides

CW waves of equal amplitude in a waveguide with an effective index of neff is

| ~E(z)|2 /
���e�i

2⇡neff
� z

+ e

i

2⇡neff
� z+'

���
2

= 4 cos

2

✓
2⇡neff

�
z � '

2

◆
, (6.1)

where ' represents the relative phase between the two waves. Nodes appear in the

intensity pattern when the argument of the cosine is
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for some integer m. This means that the distance between successive nodes is
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In most materials, n � 1 and the distance between the nodes at optical frequen-

cies (e.g., at � = 1550 nm) is on the order of a few hundred nanometers. This distance

is below the minimum resolvable distance as predicted by the Rayleigh criterion, and

so individual peaks and nodes cannot be detected. However, at the limit where the

effective index is small, Eq. 6.3 tells us that this distance grows until the peaks can

be individually resolved by free space objectives. By taking a Fourier transform of

the infrared image of a standing wave in a low-index medium, we can determine the

effective wavelength within the medium, and thus the absolute value of the effective

index of the medium. Finally, this method is limited in that there is a maximum ef-

fective wavelength that can be measured due to the length of the device within which

the standing wave is formed. This determines the minimum effective index that can

be reliably measured.
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Figure 6.4 shows the analysis done to extract the refractive index from an image

of a standing wave. In Fig 6.4a, we have the raw unprocessed infrared image for the

device shown in Fig. 6.3. This device is excited from both ends with TE-polarized

light at � = 1585 nm. A standing wave is clearly visible with two distinct nodes.

We take 50 images of this device with a different relative phase between the counter-

propagating excitations, and aggregate them to obtain a background image (Fig 6.4b).

This background contains no phase information, but will clearly show any defects or

scattering points in the device. It will also help calibrate the image against any

imbalance in the amplitude of the different excitations. We take the original standing

wave image and subtract the background to obtain a unique interference pattern for

each of the 50 images (Fig 6.4c). We crop the image around the waveguide and

take a 1-dimensional fast Fourier transform along the direction of propagation. This

reveals the effective wavelength of the standing wave, and thus the effective refractive

index of the waveguide. In Fig 6.4, the standing wave has an effective wavelength

of 11.1 µm, corresponding to an effective index of neff = 0.14. We fit to the power

spectrum, extracting the effective refractive index, as well as a fit error for the index

(Fig 6.4d). We apply this process to each of the 50 images taken at every wavelength

to obtain a standard error on the measurement.

This measurement and analysis procedure is performed at every wavelength

between 1480 – 1680 nm. Figure 6.5 shows the effective index extracted for a PBG-

cladded zero-index waveguide as a function of wavelength. The error bars correspond

to 95% confidence intervals that are yielded by the fit. The effective index begins

at a positive value and decreases linearly until it reaches the measurement floor,
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Figure 6.4: a) An infrared image of a representative standing wave in a 15-
µm-long device, with 2 nodes approximately 5.5 µm apart. b) By aggregating
multiple images with different relative phases, we obtain a background image.
c) By subtracting the background image from an individual image, we obtain
an interference pattern. d) A Fourier transform of the interference pattern
yields a power spectrum that uncovers the effective index of the device. The
dashed black line indicates the measurement floor.
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indicated by the black dashed line, at � =1618.7 nm. At even longer wavelengths,

the effective index increases linearly again, crossing through the measurement floor at

� =1635.8 nm. We interpret the region to the right of the measurement floor to have

a negative effective index, based on simulations and the retrieved indices, as shown

in Fig. 6.2. This is justified since, as mentioned above, this index extraction method

does not discriminate between positive and negative indices. The error increases

as the effective index approaches the measurement floor. This is to be expected,

as at this point the distance between nodes is larger than the total length of the

device. A linear regression places the zero-index wavelength for this device to be

at � = 1627 nm, within 5% of the design wavelength of � = 1550 nm. This small

discrepancy is well-explained by fabrication imperfections.

Figure 6.5: The absolute value of the effective refractive index of a 1-channel-
wide zero-index waveguide cladded with PBG, achieving an index of zero at
� = 1627 nm. The error bars correspond to 95% confidence intervals yielded
by the fit. The measurement floor is indicated by the black dashed line.
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6.3.3 Propagation loss

In order to assess the performance of the PBG, we would like to measure the prop-

agation loss of the two device designs and compare them. We do this by fabricating

2 sets of devices with 5, 10, 15 and 20 unit cells of ZIM, both with and without a

PBG. We measure the transmission through all of these devices (Fig. 6.6a-b), a mea-

surement that strictly could not be done with a device in the prism configuration of

Section 5.4.2. Similar to what was done in Fig. 6.2d, we fit the transmission as a func-

tion of device length and extract a propagation loss (Fig. 6.6c). The PBG-cladded

zero-index waveguides statistically outperform the bare zero-index waveguides in al-

most the entire operation range. At the zero-index wavelength, � = 1627 nm, the

bare waveguide has a propagation loss of 1.26 dB/µm, whereas the PBG-cladded

waveguide has a propagation loss of 0.89 dB/µm, a 30% improvement.
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Figure 6.6: a) Transmission (normalized) through a bare zero-index waveg-
uide. b) Transmission through a PBG-cladded zero-index waveguide. c) Ex-
tracted propagation loss for bare and PBG-cladded zero-index waveguides.
The error bars correspond to the standard error derived from the fit. The
region below the measurement floor is shaded in grey, and the zero-index
wavelength is indicated by the vertical black line. The PBG reduces the
propagation loss by 0.37 dB/µm at the zero-index wavelength.
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6.4 Conclusion

We have theoretically and experimentally demonstrated that a single-unit-cell wide

channel of Dirac-cone metamaterial retains its refractive index near zero. Further-

more, we have designed a lower-loss variant of single-channel zero-index waveguides

with the integration of photonic-band gap photonic crystals. The addition of PBGs

with the correct spacing reduces propagation losses from 1.26 dB/µm to 0.89 dB/µm,

corresponding to a 30% improvement. Simulations suggest that further optimizations

could eliminate the in-plane radiation completely, reducing the propagation loss by

up to 50% and matching the infinitely periodic structure. The out-of-plane radiation

could be reduced by embedding the low-Q dipole mode in a photonic bound state

within the continuum [110,112].

Furthermore, we have demonstrated a new interferometric technique to deter-

mine the absolute value of the effective refractive index of a low-index waveguide.

This technique does not depend on the shape of the structure, and can be used to

characterize low-index devices intended for other applications. Importantly, this ex-

periment constitutes an additional independent proof that our designed metamaterial

unambiguously possesses an effective refractive index of zero.
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Towards simultaneous phase

matching in zero-index metamaterials

Zero-index metamaterials exhibit unique nonlinear properties. In this chapter, we

investigate these properties using full-wave simulations. First, using nonlinear scat-

tering theory, we simulate nonlinear signal generation in 2-dimensional zero-index

metamaterials based on a photonic Dirac cone at the � point. We observe phase-

matching in multiple simultaneous directions, consistent with a refractive index of

zero. Using nonlinear finite-difference time-domain simulations, we observe simul-

taneous phase-matching in the forward- and backward-propagating directions in a

realistic 3-dimensional zero-index metamaterial structure. These properties enable a

new generation of nonlinear photonic devices with unprecedented flexibility as well

as compact device footprints.

90
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7.1 Introduction

7.1.1 Phase matching in nonlinear optics

Nonlinear optics is extremely important to our everyday lives. Nonlinear effects play

key roles in fundamental optical phenomena such as quantum squeezing, frequency

conversion and entangled photon generation, as well as in optical applications such as

lasers, super-resolution microscopy, spectroscopy, and multiphoton lithography [36,

37,113–124]. In dealing with any nonlinear process, one key obstacle must always be

overcome: phase mismatch. Below, I will discuss how zero-index metamaterials can

be used to address this challenge and the work that I have done so far demonstrating

this.

Phase matching, the wave equivalent to momentum conservation, provides the

guidelines that decide which nonlinear interaction will take place. In a photonic

chip, satisfying this condition represents a continued obstacle and remains an ac-

tive area of research. However, when employing any traditional phase-matching

techniques such as birefringent phase matching, quasi-phase-matching, waveguide-

dispersion engineering or higher-order-mode phase matching, the nonlinear signal is

strictly generated in a predefined direction, typically along the direction of propaga-

tion (Fig. 7.1) [13,45,81,125–129]. Potential applications of nonlinear optics have been

gravely limited by this constraint, especially in photonic integrated circuits where de-

vices are restricted to a plane. There has long been interest in circumventing this

restriction to achieve finer control of the nonlinear output [130,131].

Lately, there has been an increased enthusiasm in expanding the phase-matching
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Figure 7.1: a) In traditional phase-matching schemes, generated photons are
only phase-matched along one propagation direction. Here, pairs of pump
photons of frequency ! (red) combine to form photons of frequency 2! (blue).
Photons that are generated traveling in the forward direction are phase-
matched and interfere constructively. Those traveling in any other direction
interfere destructively and cancel out. b) In an anisotropic zero-index ma-
terial (ZIM), we expect the phase matching to occur in both forward and
backward directions. c) In an isotropic ZIM, nonlinear processes should
be phase-matched in all directions simultaneously. d) An easier nonlinear
process to demonstrate using photonic Dirac-cones with linear dispersion is
four-wave-mixing, where pairs of pump photons combine to form pairs of
signal photons (!p + !p ! !s + !i).
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toolkit with the use of metamaterials [132–137]. For example, negative-index phase

matching, where the generated nonlinear signal propagates in the direction counter to

the pump, was demonstrated in plasmonic waveguides [138]. The ultimate manifes-

tation of this principle is zero-index phase matching, where the pump source excites

a medium at a wavelength where its refractive index nears zero. The total incoming

momentum at this wavelength is zero; thus the total outgoing momentum must nec-

essarily sum up to zero, as well. The physical meaning of this is that no propagation

directions are preferred; thus, the generated nonlinear signal is simultaneously phase-

matched in all directions. Suchowski et al. have demonstrated this simultaneous

phase-matching property using a zero-index metamaterial (ZIM) formed of a fishnet

structure [34]. This demonstration suffers from two severe limitations, however. First,

the length of propagation within the ZIM was only 1600 nm, which is approximately

one operating wavelength (� = 1550 nm). This distance may be shorter than a co-

herence length for a poorly phase-matched process. The fabrication procedure for a

fishnet process makes achieving an interaction length that is much longer than this

impractical. Second, the fishnet metamaterial used in this work is anisotropic and

only exhibits a refractive index of zero along the direction of propagation (Fig. 7.1b).

In this system, the physics of a multi-directional simultaneously phase-matched ma-

terial could not be fully explored, once again handicapping potential applications.

The on-chip configuration of the zero-index platform developed in previous chap-

ters allows for device lengths that are not limited by fabrication constraints — it is

trivial to fabricate wafer-scale devices on the order of inches [99,100]. It also enables

the exploration of novel nonlinear phenomena.
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7.1.2 Simultaneous phase matching in isotropic zero-index me-

dia

Within a ZIM, the crystal momentum of photons is identically zero. For this reason,

as long as a photon is coupled into a ZIM structure, it contributes to the nonlinear

interaction, regardless of its origin. In the ZIM platform we developed, light can be

efficiently coupled into or out of the zero-index mode from any side, including from

out of the plane of the device (Fig. 7.2b-c).

a b c 2 µm2 µm

Figure 7.2: A silicon-based zero-index metamaterial coupled to a standard
silicon-on-insulator waveguide. a) Light incident on the device couples ef-
ficiently to all directions. b) 3D FDTD simulation of the structure at
� = 1550 nm, demonstrating in-plane radiation (top view). c) Simulation
demonstrating radiation normal to the plane of the device (side view).

This effect can be exploited to pumping a device from different directions

(Fig. 7.3), something that has yet to be demonstrated in an integrated device. An-

other characteristic signature of phase matching in a zero-index metamaterial is that

each additional unit cell contributes to the phase-matched signal, meaning that the

generated signal is proportional to the device area instead of just the total propagation

length.

This ZIM platform is uniquely suited to perform tests of these new effects and to

perform the first unambiguous demonstration of simultaneous phase matching in mul-

tiple directions by studying intrapulse spontaneous four-wave mixing [34] (Fig. 7.1d).
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Figure 7.3: Four equivalent phase-matching configurations for four-wave mix-
ing in a zero-index metamaterial. inset) Energy diagram illustrating the
stimulated �(3) process, where two pump fields interact with a weak probe
field and amplify it, also producing an idler field (omitted in figures for
clarity). a) In traditional phase-matching schemes, all interacting fields co-
propagate in the nonlinear medium. b) By using a zero-index medium, we
obtain the additional flexibility to introduce one of the fields from a different
direction while still maintaining phase-matching constraints. c) This exci-
tation can even come from out-of-the-plane of the device layer. d) Since
the generated nonlinear signal is proportional to the device area instead of
the propagation length, the device can be arbitrarily reconfigured in order to
reduce propagation losses or to maximize field overlap.
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By changing the length or area of a device, this flexible platform can be used to study

the nonlinear behaviour of a zero-index medium when reconfigured into arbitrary

shapes for the first time. In this chapter, we will discuss the theory and some pre-

liminary simulation results that probe the question of simultaneous phase matching

in integrated photonic Dirac-cone-based ZIMs.

7.2 Theory

7.2.1 Effects of dispersion on phase matching

For the first experimental studies of nonlinear optics, CMOS-compatible Dirac-cone-

based zero-index metamaterials can be used to demonstrate spectral broadening,

a �(3) process controlled by self-phase modulation (SPM), cross-phase modulation

(XPM) and four-wave mixing (FWM). In these nonlinear processes, all of the spectral

components within a pulse combine to create new spectral components just outside

of the spectral bandwidth:

!
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.

In the simple degenerate case above, two photons at the pump frequency !
p

combine

to form 2 photons at frequencies shifted by ±�!. These new photons are called

the signal s and idler i photons by convention. The changes in frequency need to

be symmetric in order to conserve energy. Conservation of momentum provides the
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following additional constraint:
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where ~k
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are the momenta associated with the photons at the frequencies

above. The amount by which they differ, �k = |2~k
p
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i

| is called the phase

mismatch.

Given these constraints, the amount of spectral broadening provided by the

nonlinearity will be due to the sum of contributions from all of the !±�! frequency

pairs that are also phase-matched. This family of interactions originates from the

following nonlinear polarization:
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In the traditional case, all of the beams are collinear, leading to a linear phase-

matching condition of

�kL = 2k
p

� k
s

� k
i

. (7.3)

For large pump powers or large nonlinearities, an additional amount of nonlinear

phase also contributes to the phase mismatch [88,139]:

�kNL ⇡ 2�P ��kL, (7.4)

where � is some effective nonlinearity for the structure and P is the pump power.

The sign of the linear phase mismatch suddenly becomes critical. If perfect

linear phase-matching cannot be achieved, but �kL > 0, then any linear mismatch

can be compensated by increasing the pump power P . However, if �kL < 0, then a

true �kNL = 0 phase-matching condition is unobtainable for any power.
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At a given frequency, if �kL > 0, then
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Repeating this procedure again yields
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Thus, spectral broadening processes are phase-matched so as long as the structure

supports a region where �2 < 0. This regime is formally known as the anomalous

dispersion regime. For fibers, an equivalent but different definition for the dispersion

parameter, called D, is given as

D
�

= �2⇡c

�2

@2k

@!2
[ps/nm/km]. (7.6)

This definition is attractive for fiber optic and photonic integrated circuit applications

because of its units: a pulse will spread by approximatelyD (in ps) per unit bandwidth

(in nm) per unit distance travelled (in km). Commercial mode solvers (like Lumerical

MODE Solutions) can often directly solve for D.
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7.2.2 Coherence length

If a nonlinear process is not phase-matched within a device, there typically still exists

a given propagation distance below which this process can still produce a signal. This

distance is called the coherence length, and is defined as a function of �k as

Lcoh =

⇡

�k
. (7.7)

For this reason, a nonlinear signal can often be detected for very thin films, even

for a poorly phase-matched process. Calculating or measuring the coherence length

can help establish how severe the phase mismatch is in a process. From Eq. 7.3, we

know that the linear phase mismatch for co-propagating light in a four-wave mixing

interaction in an ordinary material with a refractive index of n is
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To first order, we set the material to be dispersionless, so that n = n
p

⇡ n
i
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,

which yields
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As expected, the fields are phase-matched, corresponding to an infinite coherence

length in the forward-propagation direction. As an aside, the addition of disper-

sion terms typically reduces this length by introducing some correction terms to the
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mismatch:
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These terms explicitly outline the role of dispersion in limiting a nonlinear process

such as self-phase modulation, as is discussed in Section 7.2.1. Fortunately, the dis-

persion profile of a waveguide or other nanophotonic device could however still be

tuned quite trivially to achieve perfect phase-matching [140–144].

We can repeat these calculations for any signal photons that are generated in

the backward-propagating direction by setting k
s

! �k
s

:
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To first order, this means that the coherence length is

LBW
coh =

⇡c

2n!
p

. (7.9)

The coherence length for a backward-propagating signal from a nonlinear process

is thus inversely proportional to the index of the medium! For � = 1550 nm, the

coherence length is Lcoh ⇡ 400 nm/n, starting at 400 nm in a vacuum and only getting

shorter for ordinary materials. In order to achieve a backward-propagating phase-

matched nonlinear signal, a material with an index below 1 is necessary. The typical

dispersion correction methods cited earlier simply cannot overcome this limitation,

which is why it took 10 years for the first official demonstration of backwards phase

matching to materialize [130,131,138].
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7.2.3 Dispersion profile and related coherence length for zero-

index metamaterials

We can use the equations developed in the previous section to estimate the coherence

length for the backward-phase-matching nonlinear process in the CMOS-compatible

ZIM platform. The dispersion parameter D can be directly calculated from a struc-

ture’s effective refractive index using Eq. 7.6. In Chapter 5, complex retrieval is

performed in FDTD to extract the effective refractive index of the ZIM. This result

is reproduced in Fig. 7.4a. In Fig. 7.4b, we show the D parameter that is calculated

using this index profile. Throughout most of the operation range, the amount of

dispersion is very low, with |D| < 25 ps/nm/km. Below � = 1600 nm, D indicates

that a waveguide formed of this material will exhibit either anomalous dispersion,

or no dispersion at all. Thus, this material has the appropriate dispersion profile to

phase-match four-wave mixing processes. In Fig. 7.4c, we plot the coherence length

for a pump set at � = 1550 nm as a function of one of the signal wavelengths. We

see extremely large coherence lengths, confirming this result.
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Figure 7.4: a) The complex retrieved index of CMOS-compatible ZIM, with
linear dispersion and a zero-crossing near � = 1550 nm. b) The D parameter
defined in Eq. 7.6, calculated from the index in (a). D shows anomalous
dispersion or no dispersion at all for over 100 nm of bandwidth surrounding
the zero-index wavelength. c) The coherence length is correspondingly large
for a pump near this wavelength.
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7.3 Simulations

The analytical calculations above all assume propagation in an effective medium.

Though this makes for a good first approximation, a more rigorous calculation should

include the actual structures we are studying. To do this, we will first use nonlin-

ear scattering theory, as described in Appendix A. We will verify this method by

simulating purely bulk (i.e., unstructured) materials and comparing the result of

the simulation to the theoretical results obtained above. Following this, we will use

nonlinear scattering theory to simulate Dirac-cone metamaterials at their zero-index

wavelengths. Following this, we will perform nonlinear finite-difference time-domain

(NL-FDTD) simulations of pulses propagating through zero-index waveguides.

7.3.1 Nonlinear scattering theory in bulk materials

According to nonlinear scattering theory, the intensity of the nonlinear signal gener-

ated within a medium is proportional to the square of an overlap integral between the

nonlinear polarization and a field that originates from the direction of propagation:

INL /
�����

(3)

Z
~E · ~PNL dV

����
2

. (7.10)

The nonlinear polarization is constructed from pump fields, e.g., for FWM processes

we would use Eq. 7.2. We simulate degenerate FWM (! + ! ! ! + !) within bulk

materials with dispersionless refractive indices of n = 2, 1, 0.5, and 0.01 in Fig. 7.5.

As expected, the coherence lengths for these interactions are infinite for light

that is generated in the forward-propagating direction, regardless of the material

index. On the other hand, the coherence length increases in the backward-propagating
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Figure 7.5: Nonlinear signals computed using the nonlinear scattering
method for dispersionless bulk media, exhibiting different backward-phase-
matching behavior as a function of index. Near n = 0, the backward-phase-
matched signal and the forward-phase-matched signal overlap.

direction as the index decreases, in good agreement with the predicted value in Eq. 7.9.

7.3.2 Phase-matching in photonic Dirac-cone-based ZIMs
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Figure 7.6: The band structures for 2D square arrays of rods (left) and air-
holes (right) are designed to exhibit Dirac cones at the center of the Brillouin
zone.

Next, we investigate two platforms: a 2D square array of silicon pillars in air

(pitch = 845 nm, radius = 171 nm) and a 2D square array of airholes in a silicon bulk

(pitch = 583 nm, radius = 182 nm). These metamaterials are designed to exhibit a

Dirac cone at the center of their respective Brillouin zones (Fig. 7.6), indicating an

effective refractive index of zero. Additionally, being 2-dimensional simulations, they

are both free from any radiative losses. Thus, we will use these platforms to build an
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intuition for phase matching in photonic Dirac-cone-based ZIMs.

We calculate the nonlinear signal generated in both the rod-based and airhole-

based ZIMs as a function of propagation length (Fig. 7.7a-b). We normalize the

intensities to the peak intensity along each propagation direction. The generated

intensities all grow quadratically in all propagation directions, indicating perfect

phase-matching. This result qualitatively resembles the n = 0.01 case in Fig. 7.5.

Surprisingly, we also observe phase-matching behaviour when increasing the size of

the ZIM laterally, orthogonally to the direction of the input pump (Fig. 7.7c).
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Figure 7.7: Nonlinear signals computed for (a) rod-based and (b) airhole-
based ZIMs as a function of propagation length. (c) The nonlinear signal
also grows quadratically as the device increases in the orthogonal direction.
The intensities are artificially offset for clarity.

7.3.3 Nonlinear finite-difference time-domain simulations

The previous simulations based on nonlinear scattering theory provided us with a

confirmation that photonic Dirac-cones can exhibit simultaneous multi-directional

phase-matched processes, in agreement with the theoretical predictions. Additionally,

they provided another independent confirmation that these metamaterials have an

effective refractive index of zero, as they agreed qualitatively with simulations of bulk

zero-refractive-index media.
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One unavoidable shortcoming of this method is that it is ultimately based on

a set of time-harmonic simulations. Thus, certain assumptions are made about the

interaction; for example, it assumes that the pump remains undepleted. The nonlinear

scattering method is also only capable of modeling interactions between disparate

wavelengths, and cannot easily predict the output from an excitation source with

a broad spectrum. As we would typically use pulsed sources, and since the ZIM

platform is relatively lossy, this model unfortunately cannot accurately model all of

the aspects of the nonlinear interaction.

A more powerful method is the nonlinear finite-difference time-domain (NL-

FDTD) method, which directly solves the time-dependent nonlinear wave equation

for a �(3) nonlinearity with very few approximations [145]. Like nonlinear scattering

theory, NL-FDTD is capable of including realistic material models and can accurately

estimate radiative propagation losses. It also calculates the vector components for

both fields at every point in space, a necessary component when taking modal overlap

into account in a nonlinear process. Unlike nonlinear scattering theory, NL-FDTD

has the capability to specify nearly arbitrary sources, and can monitor the precise

powers of outputs instead of just relative powers.

This flexibility comes at a price — NL-FDTD is unfortunately extremely com-

putationally cumbersome. Also, even though we can specify the spectrum of the input

source, there exists a limit on the amount of power that can be injected into the sim-

ulation before it diverges. These points make this method relatively challenging to

apply, limiting the number and types of questions that we could potentially ask.

For the final simulation in this chapter, we propagate ultrafast pulses through
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the zero-index waveguides developed in Chapter 6. The observation of a backwards

phase-matched signal in the results of this simulation would be the most convincing

proof that these effects would be observable in a realistic physical system.

We measure the output from a fiber-based 80-fs pulsed laser source centered

at � = 1550 nm. This measurement acts as the input source in the simulation.

Given realistic coupling and propagation losses, the pulse could achieve a peak power

of 7 W at the device; however, in order to avoid numerical divergences, the peak

power is set to 1.75 W in the simulation. The linear material parameters (e.g., the

complex refractive index) are measured using spectroscopic ellipsometry. We use

�(3)
= 2.71 ⇥ 10

�19 m2/V2 as the nonlinear coefficient for silicon [146]. In order to

confirm that the generated nonlinear signal originates in the ZIM and not in the

waveguide that guides light to it, we set the nonlinearity in the waveguides to zero.
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Figure 7.8: Nonlinear finite-difference time-domain simulation of zero-index
waveguide. a) We excite a zero-index waveguide with an 80-fs source. Both
the reflected and transmitted outputs are spectrally broadened. b) Same as
(a) zoomed into a 20 nm bandwidth surrounding the zero-index wavelength.
Photons generated at longer wavelengths preferentially propagate backwards,
indicating backward-phase-matching. c) Same as (b), normalized to the
source.

We excite 5 unit cells of the zero-index waveguide structure from Section 6.2.1

in Chapter 6. We collect both the transmitted and reflected signals for a broad

bandwidth, ranging from � = 1300 nm to 1800 nm. All of the pulses are normalized
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to their peaks values to neglect any linear propagation loss (Fig. 7.8a). We observe

significant broadening of the pulse in both the transmitted and reflected signals when

compared to the input source, corresponding to a nonlinear interaction. Secondly,

we note that the spectrum of the transmission pulse is different from that of the

reflected pulse. This indicates that we have different phase-matching behaviour along

the different propagation directions, and that the reflected signal is not a purely linear

reflection of the forward-propagating phase-matched signal.

A closer look around the zero-index wavelength at � = 1550 nm reveals that

the transmitted intensity is relatively stronger at shorter wavelengths, whereas the re-

flected intensity is larger above the zero-index wavelength (Fig. 7.8b). The crossover

point between these two regimes happens precisely at the structure’s zero-index wave-

length, at � = 1550 nm. Normalizing the two outputs to the source makes this trend

even more obvious (Fig. 7.8c). This agrees with our intuition: a pair of photons at

!0 = 2⇡c/(1550 nm) combine to generate two photons at !0 ± �! for some small

�!. The “positive-index photons” that are generated at shorter wavelengths (higher

frequencies) are phase-matched in the forward-propagating direction. Meanwhile, the

“negative-index photons” at longer wavelengths (lower frequencies) are simultaneously

phase-matched in the backward-propagating direction. This is convincing proof that

simultaneous multi-directional phase-matching can be experimentally achieved on-

chip, in the presence of large realistic losses and dispersion. We expect this effect to

be even more pronounced for larger powers, which are achievable given the sources

available.



108 Chapter 7: Towards simultaneous phase matching in zero-index metamaterials

7.4 Conclusion

We have studied the phase-matching characteristics of dispersionless bulk zero-index

media, lossless photonic Dirac-cone metamaterials and realistic 3D Dirac-cone meta-

materials using multiple analytic and numeric methods. We have derived that a

zero or negative index material is necessary to achieve backward-phase-matching in

four-wave mixing processes. We have found that photonic Dirac-cone-metamaterial

platforms are in fact capable of simultaneously generating phase-matched signals in

all directions. We have also observed the surprising property that the generated non-

linear signal in a zero-index medium is proportional to the device area instead of the

propagation length. Thus, this phase-matched signal generation is independent of

shape, ZIM size, and excitation direction. These properties enable a new generation

of nonlinear photonic devices with unprecedented flexibility as well as compact device

footprints. The ability to tune the phase-matched direction opens opportunities for

remote sensing and for integrated lasing.



Chapter 8

Summary and outlook

In this final chapter, we will outline the major conclusions drawn from the individual

chapters and will present further research directions based on the work developed in

this dissertation.

In Chapter 2, we develop a controlled and reliable procedure for the fabrica-

tion of TiO2 nanophotonic devices. This procedure uses scalable CMOS-compatible

fabrication processes and can be used to structure a multitude of integrated pho-

tonic components such as photonic crystals and resonators. In the case of polycrys-

talline anatase, we have shown that this procedure has allowed us to achieve propa-

gation losses that near the film propagation loss (0.40 dB/mm). This value compares

favourably to early results using polycrystalline silicon [68]. It is low enough to ob-

serve some nonlinear processes, such as low-threshold harmonic generation. However,

improvements are necessary to demonstrate more exciting on-chip applications, such

as frequency combs or nonlinear interferometers [80, 81]. The primary contribution

to propagation losses in our thin films come from the nanocrystal structure of which

109
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the film is composed. Thus emerges a clear research direction — developing smoother

TiO2 substrates with intrinsically lower losses. Single-crystal rutile TiO2, which is

lattice matched to MgF2, has recently been epitaxially grown with high optical qual-

ity [147]. There has also been promising work reported by the researchers at the

University of Eastern Finland on low-loss TiO2 thin films deposited using atomic

layer deposition [54, 148, 149]. Beyond the exploration of different substrates, the

etch recipe could be further optimized to obtain smoother etch profiles and vertical

sidewalls, as has been demonstrated in other material platforms [79,150,151].

In Chapter 3, we use the fabrication process outlined in Chapter 2 to demon-

strate ring resonators in polycrystalline anatase with large loaded quality factors up

to Q ⇡ 2.5 ⇥ 10

4 and propagation losses as low as 0.40 dB/mm. The deposition of

polycrystalline anatase is substrate-independent by nature, allowing for easy verti-

cal integration. We used these resonators to extract the thermo-optic coefficient for

anatase and found it to be negative, in general agreement with literature values for

TiO2 [19, 57]. By combining TiO2 with a SiO2 cladding, this effect could be used to

design temperature-insensitive photonic devices. To the best of our knowledge, this

is the first and only material platform with a demonstrated large nonlinearity to pos-

sess this unique combination of properties, enabling compact, device-dense athermal

nonlinear devices.

During our study of anatase rings, we observed characteristic asymmetries in

the resonances. In Chapter 4, we treat these asymmetries more quantitatively and

recreate them using full-wave simulations. We concluded that these asymmetries were

linear in origin and were due to coherently scattered reflections within the waveguide
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caused by fabrication imperfections. We derived a new asymmetric transfer function

for ring resonators in the presence of reflections. This transfer function can be used

reliably to extract propagation losses for a thorough fabrication characterization. We

show that this model outperforms the typical symmetric transfer function at extract-

ing parameters from realistic fabricated devices. It also predicts a threshold value

for reflections above which asymmetries appear more pronounced. In a theoretical

sense, the theory of coupled cavities is already well known. However, this particular

implementation points to a common origin for these effects that could be surprising

to experimentalists.

The second half of the thesis, starting with Chapter 5, is based on a new CMOS-

compatible platform for obtaining an effective refractive index near zero on an inte-

grated photonic chip. This platform consists of a square array of air columns in a

220-nm thick silicon thin film and is based on photonic-Dirac cones at the center of

the Brillouin zone formed from the degeneracy of a quadrupole mode and two dipole

modes. We experimentally measure the refractive index of a prism composed of this

metamaterial and unambiguously demonstrate that it has a refractive index near

zero. This marks the first demonstration of an all-dielectric, monolithic zero-index

platform with a low profile of only 220 nm. As a consequence, it features intrinsic

compatibility with all the devices that have been demonstrated using the SOI platform

and can be trivially fabricated simultaneously with established components such as

single-mode waveguides, resonators, photonic crystal waveguides, etc. This evolution-

ary step finally enables the widespread industrial adoption of integrated zero-index

metamaterials. The teachings provided in this chapter can also be used to develop
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zero-index metamaterials based on other platforms with desirable material properties,

such as using TiO2 for its transparency window, nonlinear properties and negative

thermo-optic coefficient [15,53,61], LiNbO3 for its large �(2) nonlinearity [126,152] or

diamond for its mechanical properties [153,154] and wealth of color centers [155–157].

Chapter 6 focuses on a particular embodiment of this metamaterial, arranging

it along a single propagating dimension and forming a waveguide. Devices with this

geometry are better-suited towards applications that require high coupling efficien-

cies and high peak intensities. We measured the effective index of the waveguide

using a new on-chip interferometry technique that does not necessitate the use of

additional interferometry structures or equipment. This method allows us to im-

age a standing wave with an effective wavelength twice the length of the structure

(�eff > 30 µm). By integrating this waveguide with silicon-based photonic band gap

materials, we experimentally demonstrate a reduction in the propagation loss by up to

30%. The photonic band gap restricts lossy radiation in-plane; however, total propa-

gation losses remain prohibitively high (⇡ 1 dB/µm) due to poor confinement in the

out-of-plane direction. These losses could be mitigated in whole at the zero-index

frequency by embedding the low-Q dipole mode in a photonic bound state within

the continuum [110]. Current theoretical work shows promising results with respect

to achieving reasonable propagation losses (⇡ 10 dB/cm) in Dirac cone metamateri-

als [112]; unfortunately, so far, these proposed designs also suffer from considerable

sensitivity to fabrication parameters. Designing a fabrication-imperfection-tolerant

lossless zero-index metamaterial would represent the final significant step forward in

making zero-index materials valuable to the broader photonics community.
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Finally, we discuss the application of zero-index metamaterials in fundamental

nonlinear optical phenomena in Chapter 7. We provide a brief theoretical background

on backward phase-matching in bulk media and numerically explore this effect using

full wave simulations. We find that an isotropic refractive index near zero enables

some surprising results with regards to phase matching. First, nonlinear signals can

be generated in multiple directions simultaneously. Second, the pump beam can

be equivalently used to excite the medium from multiple directions. Finally, the

magnitude of the generated signal becomes proportional to the area of the nonlinear

medium instead of just the propagation length. We propose to verify these points

experimentally using the zero-index waveguides developed in previous chapters. Using

nonlinear full wave simulations, we demonstrate that these effects are observable

in this type of device, despite the presence of realistic losses and dispersion. This

result helps to decouple the structure of an integrated device from its phase-matching

properties. Using a zero-index medium, a nonlinear devices can be reorganized as

befits the application, e.g., to reduce the device’s footprint, to reduce propagation

loss or to increase the overlap between different modes. Integrated nonlinear devices

formed of a zero-index medium can even be pumped from out-of-plane, avoiding

problematic effects such as waveguide dispersion or coupling inefficiencies. Together,

these benefits have the potential to dramatically simplify nonlinear devices, making

them more flexible and drastically reducing their footprint.



Appendix A

Nonlinear scattering theory

A.1 Introduction

Nonlinear scattering theory is a powerful theoretical tool that can be used to predict

the nonlinear emission of an arbitrary nanostructure. It is capable of making predic-

tions in times when analytic solutions are challenging or elusive to obtain. This the-

ory does not depend on the slowly varying envelope approximation, does not employ

perturbation theory and does not generate pulse propagation equations or coupled

equations of any kind (like the derivation in Agrawal’s Nonlinear Fiber Optics [158]).

It is an alternative way of solving the nonlinear wave equation under the undepleted

pump approximation (i.e., the nonlinear polarization is much smaller than the linear

polarization at all times) that is based on Lorentz reciprocity. For this reason it works

under all of the conditions that Lorentz reciprocity does: ✏ and µ may be complex

and anisotropic, but must be symmetric (i.e., no magneto-optic materials).

The following chapter closely follows the derivations originally performed by

114
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O’Brien et. al from Zhang’s group at Berkeley [44]. I have added some intermediate

steps where they were skipped, so this document is even more comprehensive. First,

we will derive Lorentz reciprocity, and we will use it to describe nonlinear scattering

theory. We will apply Lorentz reciprocity to a pair of simple test cases (e.g., a

dipole source and a plane wave). Finally, most instructively, we will use nonlinear

scattering theory to derive the second harmonic signal generated by a powerful pump

propagating along 1 dimension and we will compare this result to other analytic and

numerical solutions. The point is to gain an understanding of both how and why the

theory works, and to learn how to apply it to our own structures.

A.2 Solution to the inhomogeneous wave equation

with a source current

We begin with the electromagnetic inhomogeneous wave equation:

~r2 ~E � 1

c2
@2 ~E

@t2
= µ0

@ ~J

@t
. (A.1)

This equation describes the waves ~E that are driven by a changing source current ~J .

The simplest case of a source is an oscillating dipole (e.g., a Hertzian dipole of length

�l and current I0 yields a source of ~J = I0�le�i!t

ˆj).

Alternatively, we can write Eq. A.1 in terms of a magnetic vector potential ~A

using the Lorenz gauge (chosen to satisfy ~r · ~A+

1
c

2
@

2
�

@t

2 = 0, yielding ~E = �~r�� @

~

A

@t

)

to eliminate the time derivative in the source term:

~r2 ~A� 1

c2
@2 ~A

@t2
= µ0

~J.
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This formulation is preferred because there exists an analytic equation for ~A for any

given current density ~J . As long as the potential goes to zero as we approach infinity,

the vector potential driven by ~J within a volume V 0 is obtained using Green’s theorem:

~A(~r, t) =
µ0

4⇡

Z

V

~J(~r0, t0)eik|~r�
~

r

0|

|~r � ~r0| dV 0,

where t0 is the retarded time t0 = t � |~r�~r

0|/c. ~E is then obtained by applying a time

derivative to ~A.

A.3 Lorentz reciprocity theorem

Equation A.1 can be written in time-harmonic form (where @/@t ! �iw) as

~r2 ~E +

!2

c2
~E = �iµ0! ~J.

In this form, we can define a new Hermitian operator ˆO that we use to relate ~E to ~J :

ˆO ⌘ i

µ0!

✓
~r2

+

!2

c2

◆
,

such that

ˆO ~E =

~J.

For a pair of commutable vector fields ~F and ~G, we can define an inner product
⇣
~F , ~G

⌘
to be

⇣
~F , ~G

⌘
⌘

Z
~F · ~GdV

=

Z
~G · ~F dV =

⇣
~G, ~F

⌘
.
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Because the operator ˆO is Hermitian,
⇣
ˆO ~F , ~G

⌘
=

⇣
~F , ˆO ~G

⌘
under the inner product

in Eq. A.2 since

⇣
ˆO ~F , ~G

⌘
⌘

Z
(

ˆO ~F ) · ~GdV

=

Z
~G · ( ˆO ~F ) dV

=

Z
(

~G ˆO) · ~F dV

=

Z
~F ·

⇣
ˆO ~G

⌘
dV

=

⇣
~F , ˆO ~G

⌘
. (A.2)

You can quickly convince yourself that this proof is valid — it obviously works for

the linear part of the operator that is proportional to !2, and the second half of the

operator is analogous to the momentum operator in quantum mechanics.

Because of this property, we obtain a striking result. First, we need a pair of

sources ~J1 and ~J2 that create a pair of corresponding fields ˆO ~E1 =
~J1 and ˆO ~E2 =

~J2.

We take the inner product of one field with the other current, which yields

⇣
~E1, ~J2

⌘
=

⇣
~E1, ˆO ~E2

⌘

=

⇣
ˆO ~E1, ~E2

⌘

=

⇣
~J1, ~E2

⌘
.

This is called Lorentz’s reciprocity theorem:

⇣
~E1, ~J2

⌘
=

⇣
~E2, ~J1

⌘

=)
Z

~E1 · ~J2 dV =

Z
~E2 · ~J1 dV. (A.3)

It is a little difficult to directly interpret what the result in Eq. A.3 means. In

order to make use of it, one needs to know the composition of some source ~J1(~r1) at
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a location ~r1 and its field distribution ~E1(~r2) at a different location ~r2. Given this

knowledge, the theorem can be used to determine the field ~E2 at ~r1 (the location of

the original source) that is generated by any arbitrary source ~J2(~r2) located at ~r2. We

will evaluate this theorem more closely in the following sections by studying a pair of

simple examples.

A.4 Example 1: A Hertzian dipole source

For our first concrete example, the current source ~J2 comprises a Hertzian dipole at

~r2 with a current I0 and a length �l, oscillating at a frequency !:

~J2(~r,!) = I0�l�3 (~r � ~r2) e
�i!t

ˆj. (A.4)

Without loss of generality, we align the dipole along the direction ˆj. The field that it

emits ~E2 is calculated using Eq. A.2 to be:

~E2(~r,!) = � i!µI0�l

4⇡|~r � ~r2|e
�i(!t�k|~r�~r2|)

ˆj. (A.5)

Now, both ~J2 and ~E2, which originate at ~r2, are known at every point ~r.

Suppose we have an arbitrary scatterer (e.g., a nonlinear scatterer) at some

different location ~r1. When excited, this scatterer creates a current ~J1 which generates

some unknown nonlinear fields. This current source is created by a changing nonlinear

polarization ~PNL:

~J1(~r,!) =

@ ~PNL
(~r,!)

@t

= �i! ~PNL

(~r,!). (A.6)
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~PNL depends on the nonlinear process of interest. For example, ~PNL could represent

second harmonic generation (SHG), where 2 fields of frequency ! combine to excite

a polarization of frequency 2!:

~PNL
x

(2!) = ✏0�
(2)
xjk

E
j

(!)E
k

(!)ˆi

= ✏0�
(2)

⇣
E0e

�i(!t�~

k(!)·~r)
+ E0e

i(~k(!)·~r�!t)
⌘⇣

E0e
�i(!t�~

k(!)·~r)
+ E0e

i(!t�~

k(!)·~r)
⌘
ˆi

= ✏0�
(2)E2

0e
�i((2!)t�2~k(!)·~r)

+ c.c. (A.7)

We neglect the complex conjugate terms at the end, and choose to just take the ‘real’

part of the solution at the final step.

At this point, ~J1, ~J2 and ~E2 are all known at every point in space. We use Eq.

A.3 to obtain ~E1:
Z

~E1 · ~J2dV =

Z
~E2 · ~J1dV

Z
~E1 ·

⇣
I0�l�3 (~r � ~r2) e

�i!t

ˆj
⌘
dV = �

Z
~E2 · i! ~PNLdV

(I0�le�i!t

)

~E1(~r2,!) · ˆj = �i!

Z
~E2 · ~PNLdV

=) ~E1(~r2,!) · ˆj = � i!ei!t

I0�l

Z
~E2 · ~PNLdV. (A.8)

The relevant part of Eq. A.8 states that

~Enonlinear(~rdipole location) · ˆj /
Z

~Edipole · ~PNL dV,

that is, at an arbitrary point ~r, the detectable field ~E that is generated by a nonlinear

polarization ~PNL is proportional to the overlap of ~PNL with the field that is created

by an imaginary dipole placed at ~r. As we will show in the following section, this

result from Eq. A.8 can be expanded to any arbitrary source ~E at any location ~r, and

not just a dipole source.
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A.5 Example 2: A plane wave source

In a practical experiment, structures will be excited by plane waves. From a distance,

this is what a dipole source will look like, anyway. We begin by inserting the fields

created by a dipole (Eq. A.5) into Eq. A.8:

~E1(~r2) · ˆj = � i!ei!t

I0�l

Z
~E2 · ~PNL

(~r)dV

= �!2µ

4⇡

Z
e

ik|~r�~r2|

|~r � ~r2|
⇣
~PNL

(~r) · ˆj
⌘
dV.

This is true for any direction ˆj, so

~E1(~r2) = �!2µ

4⇡

Z
e

ik|~r�~r2|

|~r � ~r2|
~PNL

(~r)dV. (A.9)

We define r ⌘ |~r � ~r2| ⇡ |~r2|, the distance between the location of interest

(e.g., the location of the detector) and the nanostructure. We would typically excite

a nanostructure using a plane wave that originates very far away, which justifies this

approximation. We also define a field ~E ⌘ |E0|e�i(!t�kr), which comprises a plane

wave of magnitude E0. Together, these definitions simplify Eq. A.9 to

~ENL(~r) = �!2µei!t

4⇡r

Z
~PNL ·

~E

|E0| dV. (A.10)

Equation A.10 is actually the only equation that is printed in the main text of Ref. [44].

It is the only equation that needs to be applied when using the nonlinear scattering

theory method.

Below is the prescription with which this method can be used to numerically

estimate the nonlinearities of an arbitrary structure:

1. The structure is excited with a plane wave at the pump frequencies !
p

that

form the nonlinear polarization. This leads to a time-harmonic field distribution
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~E(!
p

) within the nanostructure. Those distributions are used to create ~PNL
(!

s

)

using, for example, Eq. A.7.

2. In a separate simulation, the structure is excited with a plane wave that origi-

nates ‘from the detector’ at the generated signal frequency !
s

. This leads to a

second time-harmonic field distribution ~E2(!s

) within the nanostructure.

3. The generated nonlinear field is proportional to the integral over the nonlinear

medium of the overlap of these two fields, as described in Eq. A.10.

The recipe above somewhat elucidates what is contained within Eq. A.10. First,

the pump fields excite the structure and combine within it to form a nonlinear polar-

ization. Next, this oscillating nonlinear polarization radiates a nonlinear signal. The

part of the nonlinear signal that can be detected is the part that most resembles a

mode originating from the detector. This third line is encompassed in the overlap

integral in Eq. A.10 and is perhaps the most nuanced part of the theorem. Intuitively,

a propagating mode that perfectly excites the detector would overlap perfectly with

a mode that originates from the detector — akin to reversing the arrow of time.

A.6 Second Harmonic Generation in a 1D nonlinear

medium

Still following O’Brien’s manuscript, we study second harmonic generation propagat-

ing along the ~z-axis in a 1-dimensional nonlinear medium with the ~PNL
x

(2!) derived
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in Eq. A.7:

~PNL
x

(z, 2!) = ✏0�
(2)E2

0e
i(2k(!)z�(2!)t)

ˆi. (A.11)

This nonlinear polarization acts as a source ~J1:

~J1(z, 2!) = i!✏0�
(2)E2

0e
i(2k(!)z�(2!)t)

ˆi. (A.12)

We place a detector at ~r2 = z2. In order to estimate the generated fields at this

location, we place a Hertzian dipole source ~J2(2!) from Eq. A.4 at this location and

make use of the derivations in section A.4:

~J2(z, 2!) = I0�l� (z � z2) e
�i2!t

ˆi

=) ~E2(z, 2!) =

2!µI0�l

2k(2!)
e

�i(2!t�k(2!)|z�z2|)
ˆi.

Without loss of generality, we assume the detector dipole source is on the right hand

side at z2 = L > z and so |z� z2| ! (L� z). Thus, the detector fields are moving to

the left:

~E2(z, 2!) =
2!µI0�leik(2!)L

2k(2!)
e

�i(2!t+k(2!)z)
ˆi.

This means that the 1D equivalent to Eq. A.10 is

~E1(~r2, 2!) ·ˆi =

i2!ei2!t

I0�l

Z
~E2 · ~PNLdz.

Inserting ~E2 and ~PNL yields

~E1(~r2,!) ·ˆi =

i2!ei2!t

I0�l

Z
2!µI0�leik(2!)L

2k(2!)
e

�i(2!t+k(2!)z) · ✏0�(2)E2
0e

i(2k(!)z�(2!)t)dz

=

i2!2µ✏0�(2)E2
0

k(2!)
e

ik(2!)L
e

�i2!t

Z
L

0

e

i(k(2!)z�2k(!)z)dz.

The left-hand term is the overall magnitude of the generated nonlinear field and the

integral defines the usual phase-matching term that is obtained when solving the
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nonlinear wave equation, with the usual phase-mismatch �k ⌘ k(2!) � 2k(!). Im-

portantly, this derivation demonstrates that phase-matching is built into this method!

O’Brien et. al compare this solution to the solution of the wave equation and

find excellent agreement:

Figure A.1: a) Second harmonic intensity as a function of material loss,
calculated from nonlinear scattering theory (blue) and a direct solution of
the nonlinear wave equation (black dashed). b) Second harmonic intensity
as a function of phase mismatch, calculated from nonlinear scattering theory
(blue) and a direct solution of the nonlinear wave equation (black dashed).
The nonlinear scattering theory calculations are in agreement with the direct
solution of the nonlinear wave equation (from Ref. [44]).
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