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Summary
Enterococci are Gram-positive bacteria that normally colonize gastrointestinal tracts of humans and
animals. They are of growing concern because of their ability to cause antibiotic resistant hospital
infections. Antibiotic resistance has been acquired, and has disseminated throughout enterococci, via
horizontal transfer of mobile genetic elements. This transmission has been mediated mainly by
conjugative plasmids of the pheromone-responsive and broad host range incompatibility group 18
type. Genome sequencing is revealing the extent of diversity of these and other mobile elements in
enterococci, as well as the extent of recombination and rearrangement resulting in new phenotypes.
Pheromone-responsive plasmids were recently shown to promote genome plasticity in antibiotic
resistant Enterococcus faecalis, and their involvement has been implicated in E. faecium as well.
Further, incompatibility group 18 plasmids have recently played an important role in mediating
transfer of vancomycin resistance from enterococci to methicillin resistant strains of S. aureus.

Introduction
Enterococci, once considered harmless commensals of the gastrointestinal tract of humans and
animals, have emerged over the last 30 years as important hospital pathogens. Enterococcus
faecalis and E. faecium are the species most associated with hospital-acquired infections, and
strains possessing acquired resistance to the last-line antibiotic vancomycin are common [1].
The ability of E. faecalis, E. faecium, and likely other enterococci to acquire mobile genetic
elements encoding traits such as antibiotic resistance has contributed to their emergence as
leading hospital pathogens, and antibiotic resistance and virulence traits have accumulated in
lineages associated with hospital infection outbreaks, such as the E. faecium clonal complex
(CC) 17 and E. faecalis CC2 [2,3]. E. faecalis V583, a CC2 strain, possesses ~620 kilobases
(kb) of novel coding potential as compared to the smaller genome of the non-clinical isolate
E. faecalis OG1RF, with most of the difference being accounted for by mobile genetic elements
[4,5]. Plasmids are abundant in the enterococci, as illustrated by the finding of 1–7 plasmids
in 88 out of 93 E. faecium isolates [6]. They comprise a substantial fraction of the auxiliary
genome, and are responsible for much of the horizontal gene transfer that has allowed antibiotic
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and virulence traits to converge in hospital adapted lineages. Remarkably different plasmid
types occur in E. faecalis and E. faecium despite their close phylogenetic relationship [6,7].
Since both species can be found in the human gastrointestinal tract, this may be evidence of
niche isolation, perhaps at the microscale.

We recently deposited draft sequence of 28 enterococcal genomes into GenBank, including 16
E. faecalis, 8 E. faecium, 1 E. gallinarum, and 3 E. casseliflavus strains [8]. These strains
represent clinical, environmental and animal isolates collected over the past century. The
structure and diversity of the mobile elements that confer antibiotic resistance in these strains
are being catalogued in ongoing studies. The role of transposons in conferring antibiotic
resistance in enterococci, and mechanisms of enterococcal antibiotic resistance, were recently
reviewed [9]. This review focuses on the vectors of horizontal transmission of most of the
antibiotic resistance that has emerged in genomic studies of the enterococci, much of which
has been mediated by transmissible or conjugative plasmids, and on their role in enterococcal
genome plasticity. Not only have mobile genetic elements been important in the acquisition
and dissemination of antibiotic resistance in the enterococci, in an even more alarming
development, broad host range plasmids have conveyed vancomycin resistance to strains of
methicillin-resistant Staphylococcus aureus (MRSA), and it appears that this transmission is
occurring repeatedly in epidemiologically independent events.

Pheromone-responsive plasmids are highly adapted for efficient horizontal
gene transfer

Pheromone-responsive plasmids mainly have been described in E. faecalis. These are rapid
disseminators of antibiotic resistance and other traits throughout the species faecalis, but appear
to be less common outside of that range. Because of the wide variety of gastrointestinal tracts
colonized by enterococci, ranging from insects to man [10,11], it is tempting to speculate that
this facile gene exchange mechanism evolved to shuttle niche specialization traits as E.
faecalis strains from prey comingled with E. faecalis strains from predators, allowing E.
faecalis as a species to readily adapt to the dietary habits and other peculiarities of particular
hosts. The efficient transfer of pheromone-responsive plasmids within the species faecalis
stems from their novel exploitation of E. faecalis cellular processes (for excellent and thorough
reviews of model pheromone-responsive plasmids pCF10 and pAD1, see [12,13]). Two such
plasmids were identified in the genome sequence of the prototype multidrug resistant CC2 E.
faecalis strain, V583, and named pTEF1 and pTEF2 [5]. Similar plasmids are common in draft
genomes recently released [8].

The pheromones that induce efficient plasmid transfer are chromosomally encoded within
genes for lipoprotein signal peptides. These hydrophobic segments are proteolytically cleaved
from lipoprotein precursors and released as linear septa- or octapeptides into the medium or
environment. The post-translational processing of signal peptides to generate pheromones is
catalyzed by chromosomally encoded proteins including the membrane metalloprotease, Eep
[12,14]. Structures of five pheromones have been determined (cCF10, cAD1, cAM373, cPD1,
cOB1) [15]. Based on the inferred lipoproteins encoded within the V583 genome, 76 additional
pheromones are predicted [5].

Pheromone-responsive plasmids encode specific receptors for the cognate pheromone. For
example, pCF10 senses cCF10 (of amino acid sequence LVTLVFV) [13]. A key response to
the pheromone is effective donor-recipient pair formation, which is mediated by a plasmid-
encoded, donor cell-specific adhesin termed aggregation substance (e.g., PrgB) [12,13]. To
prevent competing, non-effective donor-donor aggregation, pCF10 and other pheromone-
responsive plasmids encode a cognate quenching peptide (for example, the cCF10 structural
analog iCF10, of amino acid sequence AITLIFI), that competitively interacts with a
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pheromone-responsive transcriptional repressor (e.g., PrgX), preventing induction of
aggregation substance [12–14]. To further suppress autoaggregation, a plasmid-encoded
membrane protein is also produced by the donor cell (e.g., PrgY) that sequesters autoexpressed
cCF10 after Eep processing [12–14]. The combined activities of PrgY and iCF10 suppress
sensing of endogenously produced pCF10 to the point that increases in the cCF10 pheromone
in the environment, stemming from production by a candidate recipient, can be detected. Thus,
pheromone-responsive plasmids are dependent upon peptide signal sensing, with conjugative
functions induced by pheromone-producing recipient cells in proximity.

Pheromone-responsive plasmids confer a number of auxiliary traits on E. faecalis. They
provide accessory genes encoding bacteriocin and cytolysin production, ultraviolet resistance,
and antibiotic resistance, among others (Table 1). Vancomycin resistance is conveyed less
commonly by pheromone-responsive plasmids. A vanB-encoding pheromone-responsive
plasmid was recently isolated from a Japanese outbreak of E. faecalis infection, and its
sequence reported (pMG2200; [16]). Pheromone-responsive plasmids have recently been
reported to promote chromosomal diversification in E. faecalis, generating transconjugants
possessing donor-recipient hybrid genomes, and mobilizing all chromosomally encoded traits
queried, including vancomycin and tetracycline resistances [17], as discussed further below.

Pheromone-responsive plasmids have rarely been described in other enterococcal species. A
few have been reported in E. faecium that either encode vancomycin resistance (pBRG1;
[18]; pHKK100; [19]), or facilitate co-transfer of a non-conjugative vancomycin resistance
plasmid into recipients (pHKK703; [20]), indicating that pheromone-responsive plasmids
promote vancomycin resistance dissemination in E. faecium. To our knowledge, transfer of
these plasmids has been evaluated for E. faecalis, but not E. faecium recipients, thus the efficacy
of these plasmids in disseminating antibiotic resistances among E. faecium populations is less
clear. These experiments and sequencing of pBRG1, pHKK100, pHKK703 for comparison to
E. faecalis pheromone-responsive plasmids will yield information on their role in E. faecium
ecology.

E. faecalis harboring pheromone-responsive plasmids can detect and respond to pheromone
signals produced by other bacterial genera as well, promoting the interspecies spread of
antibiotic resistance genes [21]. Production of E. faecalis aggregation substance-inducing
signals was observed for S. aureus, Streptococcus gordonii and E. hirae [22]. The S. aureus
chromosome encodes a lipoprotein (CamE) with little sequence identity to E. faecalis
lipoproteins that is processed and exhibits cAM373 pheromone activity [23]. The
staphylococcal plasmid pSK41 also has been found to encode a lipoprotein (TraH) that, when
processed, has cAD1 activity [24].

Pheromone-responsive plasmids do not appear to replicate or become established efficiently
in non-enterococcal hosts. However, a cAM373-like pheromone produced by S. gordonii
Challis facilitated the pAM373 mobilization of a co-resident, non-conjugative erythromycin
resistance plasmid from E. faecalis donors into S. gordonii Challis recipients, and this occurred
at a 1000-fold greater efficiency from E. faecalis donors exposed to gordonii-cAM373 (Figure
1, [21]). Production of S. gordonii-cAM373 was dependent upon an Eep homologue in that
host [21], suggestive of a role for Eep in pheromone processing in non-enterococcal species.

Non-pheromone dependent conjugative plasmids as transmitters of
antibiotic resistance across genus boundaries

Broad host range conjugative plasmids also occur in enterococci. Of these, the most thoroughly
characterized are those of the incompatibility group 18 (Inc18). The Inc18 classification is
based on specific plasmid maintenance functions, including replication and post-segregational
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killing systems [25]. Because of the observed modularity and high rate of recombination
between enterococcal plasmids, it has been suggested that these should be re-classified based
on their replication initiation genes [7]. Inc18-type plasmids are particularly abundant in E.
faecium [6]. The most common plasmid maintenance system on these plasmids is a toxin-
antitoxin post-segregational killing system, which insures the persistence of plasmid containing
cells in a population even in the absence of direct antibiotic selection [26]. The toxin-antitoxin
systems are termed ω-ε-ζ and axe-txe [9].

Two of the most well-characterized Inc18-type plasmids are pAMβ1, which was originally
identified in E. faecalis [27], and pIP501, which was originally identified in Streptococcus
agalactiae [28]. Replication of these plasmids occurs by a theta mechanism which requires
two plasmid-encoded elements: a rate-limiting replication protein [29], and a short origin
located down stream of the rep gene [30]. They are maintained at less than 10 copies per cell
[30]. pAMβ1 encodes resistance to macrolides (such as erythromycin), lincosamides and
streptogramin B (the MLS antibiotics) [27,31], and pIP501 encodes additionally resistance to
chloramphenicol [28]. Both of these plasmids can disseminate antibiotic resistance to other
Gram-positive bacteria, including Streptomyces lividans, Leuconostoc spp., Listeria spp., and
Lactococcus sp. [32–35]. pIP501 has also been shown to be transferable to the Gram-negative
bacterium, Escherichia coli [32]. The ability of these plasmids to transfer from cell to cell
involves a number of plasmid-encoded transfer (tra) genes [36]. The transfer components and
how they interact within the cell have been studied [37], but the function of most proteins
implicated in transfer remain to be elucidated. Plasmid transfer machinery may be co-opted by
co-resident plasmids which are mobilizable, but lack the genes for the type IV secretion
apparatus.

Sequence analysis of plasmids, such as E. faecalis plasmid pRE25, has shown that they are not
static structures, but rather recombine to form derivatives with hybrid replication and
maintenance functions (Table 1), conveying multiple antibiotic resistances. The 50 kb plasmid
pRE25 carries genes that confer resistance to 12 different antibiotics. Within pRE25, 30.5 kb
of sequence appears to be derived from pIP501, and other regions appear to originate from a
staphylococcal plasmid [38]. In a recent large study of E. faecium plasmid diversity, pRE25
was found to be widespread. Plasmids more closely related to pIP501 and pAMβ1 were present
to a lesser extent [6]. pRE25 can transfer by conjugation into Listeria innocua and Lactococcus
lactis, indicating it is capable of broad host range transmission of resistance and other genes
[38]. A plasmid sharing about 12 kb of pRE25 sequence, including antibiotic resistance genes,
pKL0018, has been identified in the fish pathogen Lactococcus garvieae [39]. This raises the
possibility that composite plasmids carrying resistance to multiple antibiotics can rapidly
spread among multispecies communities.

Another plasmid type found to be common among E. faecium strains is typified by pRUM
[6]. This plasmid encodes resistance to erythromycin, chloramphenicol, streptomycin and
streptothricin, with resistances to the latter two being encoded by genes that are highly
conserved with those found on Tn5405 and identified in staphylococci and Campylobacter
[40]. The conservation of the arrangement of these genes among different elements present in
both Gram-positive and Gram-negative bacteria suggests facile, broad host range horizontal
transmission.

Dissemination of vancomycin resistance among enterococci and beyond
Key mediators of vancomycin resistance in E. faecalis and E. faecium are pheromone-
independent plasmids, such as pHTβ (and its derivatives pHTα and pHTγ), and pMG1 [41–
43]. These plasmids are large (>63 kb) and efficiently transfer among E. faecalis strains [44].
Understanding transfer mechanisms of these plasmids is of interest as the pHT plasmids are
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known to carry the Tn1546 transposon [41–44], a non-conjugative class II transposable element
of the Tn3 family of transposons that conveys the vanA operon [9]. The host range of these
plasmids is unknown.

Tn1546 has also been found to reside on broad host range plasmids of the Inc18 class. The first
known plasmid identified as carrying the Tn1546 vanA transposon, pIP816, was isolated from
an E. faecium strain in France in 1986 and recently sequenced [45]. The nucleotide sequence
revealed identities between the pIP816 replication region and that of pAMβ1. Since 2002, ten
transfers of vancomycin resistance from enterococci to methicillin resistant strains of S.
aureus have been documented in the US [46]. An Inc18-type plasmid has been associated with
most of the transfers of Tn1546 to MRSA. The prototype of these plasmids, pAM830, shares
extensive sequence identity with plasmids pIP501 and pAMβ1 by Southern hybridization
[47]. This type of plasmid appears to have been responsible for mediating an outbreak of such
transfers in the Detroit area, likely accounting for 7/10 VRSA strains [48]. This development
is of special concern as vancomycin is a last-line antibiotic for the treatment of MRSA
infections, which are increasingly common in both the hospital and the community.

The factors that promote transfer of Inc18 plasmids and the resistances they convey are not
well understood (Figure 2). Attempts to recreate these transfers in the lab have met with limited
success [47,49,50]. Research is beginning to explore the basis for how and why vancomycin-
resistant enterococci and MRSA co-colonize wounds and other sites providing an opportunity
for transfer to occur. Factors such as diabetes and prior antibiotic treatment appear to play a
role [51].

Enterococcal plasmids as mediators of genome plasticity
A mechanism for chromosome-to-chromosome gene transfer in E. faecalis was recently
elucidated [17]. Chromosome-to-chromosome transfer of antibiotic resistance and virulence
markers had been inferred and observed in several enterococcal species (for a discussion of
this, see [17]). Using E. faecalis strain V583 as a donor, and placing a selectable tetracycline
resistance marker at various points within its pathogenicity island (PAI), it was initially noted
that the PAI transferred from the V583 donor to recipient strain OG1RF at a rate of about
10−10. Importantly, this transfer only occurred when either of the 2 pheromone responsive type
plasmids, pTEF1 or pTEF2, were present in the donor strain. It was observed that the inferred
PAI excisionase and integrase genes were not involved in the transfer, so transfer of other
regions of the chromosome was examined. It was found that a selectable marker placed
anywhere around the circumference of the chromosome could be transferred if pTEF1 or
pTEF2 were present in the cell. Moreover, transfer did not occur if plasmid transfer functions
were specifically deleted, including the cis-acting origins of transfer, oriT. From the V583
genome sequence, 10 highly conserved copies of IS256 were identified, 6 on the chromosome,
2 on pTEF1, 1 on pTEF2, and 1 on pTEF3. Using a PCR strategy, it was shown that in a 10
ml culture, all possible recombinations across the IS256 copies could be identified – that is,
the plasmids integrated into the chromosome at every IS256 site, which presumably served as
the point of initiation of conjugal transfer of chromosomal genes. The extent of donor
chromosome transferred was observed to vary, but the largest transfer observed was 857 kb,
or over 25% of the V583 genome [17]. Traits that were mobilized into the OG1RF recipient
included a capsule locus, a vancomycin resistance transposon, the PAI, and even MLST
markers creating a double locus variant of the parental strain in a single event [17]. These
results demonstrate that pheromone-responsive plasmids are a significant driver of E.
faecalis genome plasticity. Conjugative transfer of chromosomal determinants has also been
reported among E. faecium [52], and from E. faecium donors to E. faecalis recipients [53]. It
remains to be determined if a similar mechanism contributes to E. faecium genome diversity,
and what role these transfers have in interspecies interactions.
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Clustered, regularly interspaced short palindromic repeats (CRISPR) defense against the entry
of foreign DNA has been the subject of considerable interest lately, and was recently reviewed
[54,55]. The genome sequence of E. faecalis OG1RF revealed that this strain possesses two
CRISPR loci, one with CRISPR-associated genes (cas) genes (CRISPR1-cas), and the other
an orphan locus lacking cas genes (CRISPR2) [4]. CRISPR loci have been shown in other
bacteria to confer resistance to plasmid and phage entry in a manner analogous to acquired
immunity [56,57]. This immunity depends on the presence of specific target-derived spacer
sequences, the intervening repeat palindromes, and nuclease activity encoded by the cas genes
[54,55]. E. faecalis V583 shares only the orphan CRISPR2 locus with OG1RF, and lacks
CRISPR1-cas [4,58]. The absence of CRISPR-cas in V583 may have reduced the barrier to
entry of foreign elements, resulting in the convergence and accumulation of 6 plasmids or
plasmid remnants, 7 phage or phage remnants, and over 40 IS elements [3,5], while OG1RF
natively lacks plasmids [4]. The interrelationships of enterococcal CRISPR defense, plasmids,
and genome plasticity are the subject of ongoing investigation.

Conclusion
Elucidation of a large number of enterococcal genome sequences reveals that many of the traits
that have resulted in the development of multidrug resistant, hospital adapted strains are either
plasmid encoded, or are transferred by plasmid mobilization of chromosomal sequences [17].
Plasmids are widespread in E. faecalis and E. faecium [6,7], and mediate the efficient transfer
of resistance, virulence and other adaptive traits throughout the genus and beyond. Not only
have they played an important role in the development of highly hospital adapted strains, they
are now moving resistances to last line drugs, such as vancomycin, into the staphylococci. A
recent study found evidence for a reservoir of novel antibiotic resistance determinants encoded
by the human gut microbial community [59]. As erstwhile commensals, enterococci are
uniquely positioned to tap into that reservoir and serve as a pivot point for the future
dissemination of antibiotic resistance as well.
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Figure 1.
Model for mobilization of antibiotic resistance from E. faecalis (donors) to S. gordonii Challis
(recipients) in response to gordonii-cAM373 pheromone [21,62]. (a) S. gordonii Challis cells
produce a signal, gordonii-cAM373, that is detected by E. faecalis cells carrying pAM373 via
the plasmid-encoded membrane protein, TraC. (b) Conjugative functions are induced on
pAM373 by the presence of gordonii-cAM373, leading to mating pore formation and
mobilization of a non-conjugative erythromycin resistance plasmid. The result of this
interaction is erythromycin-resistant S. gordonii Challis. In the absence of pAM373, no transfer
of erythromycin resistance from E. faecalis to S. gordonii Challis occurs (not shown; [21]).
Note that a simplified model for pheromone excretion and uptake is shown.
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Figure 2.
Possible scenarios which allowed for dissemination of vancomycin resistance to MRSA from
VRE. Co-colonization of patients with VRE and MRSA allowed for the transfer of pAM830
which carried the transposon (Tn1546) encoding genes associated with high level glycopeptide
resistance. Several outcomes appeared to have occurred based upon the analysis of the resultant
VRSA strains. It would appear that: (a) only Tn1546 may have been transferred during the
conjugation process instigated by pAM830 and recombined on the chromosome of the S.
aureus recipient or the complete plasmid was transferred to the S. aureus recipient and was
stably maintained; (b) the plasmid carrying Tn1546 was not completely transferred to the
recipient cell or incompatibility issues were encountered between pAM830 and existing
plasmids in the MRSA strain and the transposon was found in the recipient strain on a native
plasmid.
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