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Abstract

Our purpose was to develop temperature sensitive MR sequences and image-processing techniques to asses their potential
of monitoring interstitial laser therapy (ILT) in brain tumors (n = 3) and liver tumors (n = 7). ILT lasted 2 to 26 minutes,
while images from T1-weighted Fast-Spin-Echo (FSE)- or Spoiled Gradient-Recalled (SPGR) sequences were acquired
within 5 - 13 seconds.

Pixel subtraction and visualization of T1-weighted images or optical flow computation was done within less than 110
msec. Alternating, phase-mapping of real- and imaginary components of SPGR sequences was performed within 220
msec.

Pixel subtraction of T1-weighted images identified thermal changes in liver and brain tumors but could not evaluate the
temperature values as chemical-shift based imaging, which was however, more affected by susceptibility effects and
motion. Optical flow computation displayed the predicted course of thermal changes and revealed that the rate of heat
deposition can be anisotropic, which may be related to heterogeneous tumor structure and/or vascularization.

Key words: Magnetic resonance imaging, interstitial laser therapy, optical flow, temperature sensitive imaging,
minimally invasive therapy, brain tumor, liver tumor
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Introduction
MR-guided interstitial laser therapy (ILT) is a potentially useful minimally invasive technique. To treat soft tissue tumors
without damaging the surrounding structure and in the case of the brain functionally critical tissue, it is important to
optimize dose and the position of the optical fiber. The entire tumor volume should be treated with temperatures above
60°C, the threshold for protein denaturation, but should not exceed 100°C since vaporization and charring can cause
remote and unpredictable damage. In order to minimize potentially harmful effects and to maximize tissue destruction,
low power density and continuous, relatively long duration of deposition of laser energy are preferred. Models, simulating
the procedure are not fully applicable because many independent variables which affect heat deposition (vascularity,
tissue homogeneity, optical or thermal properties) of normal and tumor tissue cannot be predicted or measured precisely.
Multiple invasive probes (thermocouples or temperature-sensitive fiber-optic devices) can be used for direct measurement
of local tissue temperature but their spatial resolution is limited. It has been demonstrated that the following MR
parameters are temperature dependent: proton density, T1, diffusion, and water proton chemical shift [1-7]. Based on this
temperature sensitivity MRI techniques were suggested and tested for the monitoring of hyperthermia and thermal
ablations. Recently, temperature-sensitive MR imaging sequences have been developed that acquire images on time scales
appropriate for the real-time volumetric monitoring, documenting thermal changes in vitro, in animals or in humans [8
-21].

The motivating hypothesis of monitoring ILT with temperature-sensitive sequences (T1-weighted FSE or SPGR) and
postprocessing techniques described in this study, was to map temperature-related effects dynamically and sufficiently
close to real-time, even in an open MR-System. Achieving this goal, the tissue damage throughout the affected tissue
volume could be estimated intraoperatively and the ILT then be adjusted.

Materials and Methods
Approved by the institutional research committee, data were derived from two ongoing clinical trials in our Department,
evaluating MRI-guided ILT of malignant liver and brain tumors.

These clinical trials were performed in an 0.5 T open configuration MR imaging system (SIGNA, SP, GE Medical
System, Milwaukee, Wis), in which biopsy, laser fiber placement, laser treatment, and image-based monitoring and
control of the various laser therapies were all conducted during the same procedure [22]. All patients in this study
provided witnessed informed consent prior to participation.

We assessed MRI monitoring of thermal ablations using preliminary data from 4 patients undergoing liver tumor therapy
(n = 7), and 3 patients undergoing brain tumor therapy (n = 3).

All but one patient with liver tumor were treated under general anesthesia so as to minimize respiratory motion and to
obtain long breathhold acquisitions of up to two minutes. All patients with brain tumors were treated under general
anesthesia, and the patient�s head motions were restricted by a modified Mayfield clamp (Ohio Medical Instruments,
Cincinnati, OH).

Laser treatments were performed using a continuous wave 1064 nm (Nd:YAG) laser (Sharplase 60, Sharplan Laser,
Allendale, NJ), and 0.6 mm bare tip fibers.

In vivo, the calculated penetration depth of an Nd:YAG laser in native human tissue can be expected to be at least 6 mm
[23]. This corresponds to an ellipsoid lesion of about 12 mm in diameter around the exposed tip of the optical fiber.
Therefore, we used a single fiber for small tumors; if the diameter of the tumor was larger than 12 mm, the tip of the
single fiber was either placed at multiple positions and a second or third treatment was applied through the same fiber or
multiple fibers were advanced to ablate the entire lesion (Figure 1a)
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Brain lesions were treated with up to 6 irradiations (3-4.5 W), each lasting for 1 minute with a single fiber in place,

withdrawn between the irradiations. Liver lesions were treated with up to five irradiations (2 W), first 8 minutes with a

single fiber in place, then 2 x 8 minutes with 2 fibers in place.

Imaging During ILT

Imaging and image-processing involved a conventional SIGNA-SP MR console and the MR workstation (Sparc Station

20, Sun Microsystems, Mountain View, CA). In addition, a research computer workstation (Sparc 20 TZX, Sun

Microsystems) was used and we also utilized the local computer network for further computation (Figure 1b).

Each single irradiation was monitored either by a FSE-, or a SPGR sequence. To optimize our MR protocol and the image

postprocessing techniques we applied FSE-, or SPGR sequences in some patients only. Occasionally fast SPGR (FSPGR)

sequences were applied, but they were not included in this evaluation (Table 1).

Imaging was initiated 30 seconds before ILT to obtain 2-4 baseline images. Then we continued imaging until the end of

ILT and took another set of 2-4 images during the cooling down period. In liver treatment the anesthetist suspended

respiration during each image acquisition.

a) Pixel Subtraction of T1-weighted Pre-, Intra- and Postoperative Images

T1-weighted FSE images (TR/TE 400/18 ms, echo-train length 4, slice thickness 5 mm, field of view ((FOV), 220 x 220

mm, matrix 256 x 128, 1 acquisition), were taken every 13 seconds at the tip either perpendicular or in the same plane as

the laser fiber.

The sequentially acquired images were then transferred from the image buffer of the MR console via the Ethernet network

to the research computer workstation, placed beside the MR console.

For rapid computation, this research workstation was equipped with two fast graphic cards and a fast network

communication . For computation and visualization management during ILT, an interactive graphical user interface was

created by our group, using Tk/Tcl, a program written in combination with C/C++ programming languages [24]. To

highlight the decrease in SI on T1-weighted images during ILT, a pixel subtraction was performed, which consisted of

sequential processes, described in Table 2. The final color-encoded result images were displayed during laser therapy on

both the monitor of the workstation and on a liquid-crystal display (LCD, Model LQ6NC01,Sharp Electronics,

Rahwah,NJ,USA) inside the magnet within seconds delay (Figure 2).

b) Pixel Subtraction of T1-weighted Pre-, Intra- and Postoperative Images with a Real-Time Image Processor

A prototype software package was developed and provided by GE Medical Systems for the interventional MR

workstation connected to the conventional SIGNA MR console. This MR workstation performed algorithmic

combinations of T1-weighted FSE images (similar to the method described above) immediately as they were transferred

from the MR console. The images resulting from such calculations were then displayed in color over a grayscaled

anatomical image. Following the processing we masked and averaged the signal intensity (SI) changes in time series

within regions of interests (ROIs) at different distances from the tip of the optical fiber (Figure 3a,b)

With each new image acquisition, the averaged SI changes (subtracted from the baseline) were color-encoded and their

amount plotted as data points on graph bars.

c) Calculation of water proton chemical shift change and phase-mapping during ILT

The MR scanner was programmed to reconstruct real, and imaginary images from the SPGR pulse sequence (TR/TE

55/14 ms, 20° flip angle, slice thickness 4 mm, 1.5 mm gap, FOV 320 x 240 mm, matrix 256 x 128, 1 acquisition). To

cover the whole tumor volume, images in one to four different scan planes parallel to the laser fiber were obtained. Those

images were transferred to the research workstation for temperature image processing. In [25], Kuroda et al proposed the

calculation of the water proton chemical shift change , using the following relationship:
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whereas is the angular frequency of the 0.5 T MR-scanner , is the phase

distribution difference between the objective-temperature (T) image and the baseline-temperature (TB) image, S is the

complex MR signal, and Re [] and Im []w is the angular frequency of the 0.5 T MR-scanner 

, is the phase distribution difference between the objective-temperature (T)

image and the baseline-temperature (TB) image, is the complex MR signal, and Re [] and Im [] denote the real and

imaginary parts, respectively. To avoid phase wrapping, a direct (phase)subtraction, as used for the pixel subtraction in

step 3 of Table 2 was replaced by the complex subtraction of real and imaginary components of the MR signal (described

in equation 1 and 2). To maximize the signal to noise ratio for a given TR and T1, the optimal flip angle was

determined by the Ernst relation as follows:

The temperature elevations were calculated as described in (4) with Matlab 4.2a (MathWorks, Natick, MA), whereas a is

the temperature coefficient of -0.01 ppm/
o
C.

Given that the temperature coefficient of tissue in vivo would be around -0.01 ppm/°C the relative temperature elevation

during ILT could be measured. By adding the relative temperature elevation to the body temperature, which can be

assumed to be 37 ° C absolute temperature values were obtained. For visualization of the phase differences an interactive

display was developed (Figure 4).

d) Optical Flow Computation and Display

Optical Flow (OF) is the motion field perceived by the human visual system when exposed to a set of time-varying image

frames (i.e. an image sequence). OF can also described as an instantaneous velocity vector field of moving isointense

image regions, computed from a time series of images.

Sequentially acquired T1-weighted FSE images were transferred via the network to the Surgical Planning Laboratory

(SPL), where the optical flow computation was performed. Uras et al. proposed an efficient method to calculate the OF

field and by using a parallel computer (Connection Machine 2, Thinking Machine Corp., Cambridge MA) this allowed

fast calculation of the optical flow in two dimensions [26-29].
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As the ILT proceeded, the continuously dilating marginal zone of heated tissue (seen as isointense region) was tracked at
each time step. This zone was determined by a sequential pixel subtraction from the baseline image. Immediately
following an actual image, a new prediction of heat distribution was computed. Assuming constant velocities of the heat
distribution between image-acquisitions, therefore the predicted amount (OF magnitude) and the direction (OF velocity
vectors) of heat deposition was obtained and superimposed in color on the gray scale image (Figure 5). The resulting
dynamic images were then transferred back to the research workstation in the interventional MR suite for direct
visualization.

Following ILT, patients underwent clinical follow-up imaging at a 1.5 T scanner. T1-weighted SE, T2-weighted FSE, T1-
weighted SE post Gd-DTPA, fast multiplanar SPGR with breathhold in liver cases were obtained the next day, and in
some cases in 3, and 6 months (Figure 6). The size and the structure of the treated lesions was compared with that before
treatment by direct visualization.

As an clinical example we measured the SI-distribution within a brain lesion before, during and after treatment.

Results
Within the open configuration MR system and by means of interactive image guidance [22], the laser fibers were placed
easily through a MR-compatible biopsy needle into the tumor. The total energy applied in all brain tumors was in the
range of 720 - 1440 J, and for all liver tumors in the range of 960 - 4800 J.

Imaging and Image Processing

Pixel subtraction of T1-weighted images

With the currently used sequence (TR 400 ms, 128 phase encoding steps, echo train length 4) for both techniques
(described in the method section as a and b) the image acquisition time was about 13 sec. This included the image data
transfer and the computation time for steps 2-7 in Table 2, which took in particular about 27 ms). Pixel subtraction of T1-
weighted images was easily performed with current available hardware and our self-developed software, providing a
(screen-based) easy-to-use interactive user interface.

The prototype software (provided by GE Medical System) was more flexible for user-defined changes in calculation and
visualization. Especially, we could plot the amount of SI-values, whereas the values of each single image acquisition were
represented by a white marker on a graph bar. However, many variables had to be defined and, therefore, more interaction
was needed to handle the interface. With both image processing techniques, we localized temperature-related changes
within brain and liver tumor. A gradually increasing elliptical zone of decreasing signal intensities, expanding from the tip
of the laser fiber was highlighted as color-encoded pixels for each series of ILT. The color encoded pixels were seen first
13 seconds after starting ILT and increased to a maximum diameter of 6-8 mm at the end of ILT (Figure 2,3).

The quality of temperature-sensitive imaging with T1-weighted FSE sequences (seen as a significant reduction in signal
intensity values within treated tissue) was higher in the brain than in the liver. This can be explained by the larger field
inhomogeneity in liver imaging and by the presence of unavoidable motion during liver treatment, even if the respiration
was suspended.

Intermittent pausing of respiration under general anesthesia during laser delivery significantly improved image quality but
not completely eliminated fully organ shifts and motions.

When the result images were still too noisy for visual evaluation, we masked and averaged regions of interest in time
series with the prototype software (provided by GE Medical System) and compared the graphs of temperature-related
signal intensity changes at different distances from the tip of the optical fiber (Figure 3a,b).

 

Water proton chemical shift imaging and phase mapping

The real and imaginary images were retrieved from the MR console within 5 -7 seconds for each slice, and the
computation time for one resultant image took an additional 220 ms. Temperature related changes correlated with the time
course of ILT and were first seen 10 seconds after starting ILT. The phase shift differences (respectively the temperature
elevation) increased to a maximum value at the end of ILT. The calculated maximum temperature elevation within the



5/23/2017 Monitoring and Visualization Techniques for MR-Guided Laser Ablations in Open MR-System

https://www.spl.harvard.edu/archive/spl-pre2007/pages/papers/joachim/jmri/jmri10.html 6/20

brain tumor during ILT with 3 Watt for 1 minute (i.e. 180 J) was about 15 - 20 degree Celsius (Figure4) above body
temperature. The calculated maximum temperature elevation within the liver tumor during a single fiber treatment (2 Watt
for 8 minutes i.e. 960 J) was about 45 degree Celsius above body temperature. However, in liver treatment motion and
artifacts partially covered the region were the laser fiber has been placed.

Optical Flow Computation and Display

OF computations were performed within an execution time of 110 msec for 256 x 256 pixel images, with the capability of
updating the display of optical flow results every 900 msec as soon as the T1-weighted FSE images were retrieved from
the MR scanner. Therefore OF information was much earlier available than with any other postprocessing method. The
OF computation revealed how laser energy changed with time, directing radially from the laser fiber and that the heat
deposition within the tumor was not at the same rate at each location which may be related to inhomogenous tumor
structure and/or vascularization. (Figure 5). This unique information was not seen from the signal intensity display alone.

On this study, all OF computations were performed after the procedure following the complete image series acquisition
because the Connection Machine in the SPL was not fully integrated for computation during the ILT procedure.

 

The days following ILT, in all imaging studies we found a low signal intensity zone on dynamic T1-weighted sequences,
hyperintense on T2-weighted images, that (as previous experiments and studies have shown in 13,17,21,30,36)
corresponded to tissue necrosis within the tumor (Figure 6).

The overall size of the necrosis on images following ILT was slightly larger than on the color-encoded area of pixel
subtraction during ILT (Figure 7). However, postprocessing of fast MRI during ILT visualized larger thermally affected
areas than MRI within few minutes after the procedure.

Compared with the thermally affected area on chemical shift-based imaging, the size of the necrosis following ILT was
almost the same. Based on T1-weighted contrast, OF computation slightly underestimated the size of necrosis. However,
with this method thermal changes during ILT could be predicted to prohibit damage of critical structures, which otherwise
would not be recognized in time. A liver specimen was obtained from one patient who recently underwent partial
hepatectomy. Histology confirmed a fully necrotic tissue around the formerly placed laser fibers. A 3-4 mm thick fibrotic
rim could be seen between the necrosis and surrounding liver tissue. and surprisingly, a small area of central charring has
been found within the treated area. (Figure 8)

Discussion
Our objective was to develop and compare temperature sensitive MR sequences and image-processing techniques for
clinically monitoring ILT, even in an open MR configuration.

It has been demonstrated by us and others that temperature-related effects could be mapped dynamically sufficiently close
to real time, throughout the affected tissue volume [4-7, 9-21, 30]. The results show that temperature sensitive MRI can
monitor transient thermal effects (including heat loss in blood vessels) and irreversible tissue changes during ILT with the
postprocessing techniques described. In addition it has been shown, that fast MRI visualized significantly larger thermal
affected lesions and irregular heat distribution than MRI within few minutes after ILT, which may change treatment
strategies, and potentially provide intraoperative control methods [30]. Further, an accurate measure of laser treatment
volumes during ILT is essential for MRI-guided therapy.

Nevertheless, physiologic and metabolic responses of treated tissues to increased temperature could modify the
temperature-sensitivity of MRI parameters. There may be other factors such as tissue type, pigmentation, vascularity that
could produce changes in image signal intensity, whereas nature, magnitude, and interplay of these factors is not well
known.

One example of this is the change from hemoglobin to methhemoglobin at approximately 60°C and the associated
shortening of T1 relaxation time. Furthermore, there are also temperature induced changes in tissue perfusion and several
complex metabolic, structural and physiological changes with increasing temperature (Table 3).

Comparison of image sequences and techniques
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Diffusion sequences [4-6, 13] have a relatively high sensitivity ad therefore may be used for temperature mapping. But the

enhanced temperature sensitivity in diffusion imaging comes at the expense of a low signal-to-noise ratio in the images an

requires fast or ultrafast imaging methods to avoid the effect of macroscopic motion. We therefore did not use diffusion

sequences in this study.

Studies in our group [9-11, 13-21] and clinical trials [44-46] have shown that relatively fast T1-weighted protocols and

SPGR sequences are useful for monitoring thermal changes in tissue. The combination of higher signal levels and faster

scans compensates for the lesser temperature contrast, which can be enhanced with the image processing techniques

described in this publication.

� Pixel subtraction of T1-weighted images

Pixel subtraction of T1-weighted images can be performed easily with currently available computer hard- and software.

To visualize the margins of laser-induced lesions during ILT, this method revealed temperature-related SI-changes,

especially in isointense lesions (liver) which are not clearly visible otherwise.

Matsumoto et al [9, 13] has shown that within the range of 37 - 50°C, the relaxation time T1 varies approximately linearly

with temperature at a rate of 1%/°C. Thus, MRI can distinguish the normal margins surrounding thermal lesions.

However, when heated above 50°C the T1-dependence on temperature varies in different tissue types and deviates from

the linear behavior due to physiological, structural, and metabolic changes in the tissue during thermal therapy exposure.

Those factors and some residual motion may have beeen the reason why we underestimated charring in one liver case.

Pixel subtraction is not as sensitive to temperature related changes as chemical-shift based-imaging, but is sensitive to any

movement of tissue within the field-of-view.

 

� Water proton chemical-shift imaging and phase mapping

Chemical-shift based imaging is reported to be more temperature-sensitive when combined with phase mapping than T1

weighted imaging with FSE sequences [31,32]. This technique of noninvasive MRI thermometry has been recommended

for several reasons:

1. The water proton chemical shift is a frequency-based parameter and can be measured independently from other

amplitude-based parameters such as thermal equilibrium magnetization, relaxation time and diffusion coefficient

2. The water proton signal is much stronger than that of any other components and is measurable in most tissues

3. The temperature sensitivity of pure water has been measured to be -0.01 ppm/°C, which is of the same order as

animal tissues in vitro [1,2].

The temperature sensitivities of human tissues i n vivo, however are not well known yet. Although the temperature

elevation estimated from the phase map seemed to be close to the actual value (15 degree Celsius within a brain tumor, 45

degree Celsius within liver tumor) no evidence was made in the present series of irradiations. However, based on previous

experiments [20,21,32] the possible uncertainty of estimated temperature will be around 20 %. The lower elevation of

temperature in brain treatment may not only be due to the low laser power applied, but also due to the fact that the

Nd:YAG wavelength is best absorbed and scattered in red-pigmented tissue, such as liver. 

A major drawback is that water proton chemical-shift imaging is more sensitive to motion. In liver treatment this was

expressed by a high amount of noise on the temperature-graphs and (false positive) color-encoded signal intensities. They

were present within the field-of-view even without treatment, enhanced by tissue motion, field inhomogeneities, or other

susceptibility related artifacts.

Further optimization of SPGR will be necessary in future treatments to improve SNR which can be reduced by flow

related artifacts in the sinusoids of liver, and the release of paramagnetic substances from liver cells during ILT.

The echo time TE may be optimized to increase the phase contrast-to-noise ratio. While the phase shift increases with TE,

the magnitude signal decreases with increasing TE because T2* effects reduce the magnitude signal. Described by Cline

[18] and by Chung et al [19] the maximum temperature sensitivity can be achieved when TE is around the T2* value of

treated tissue, which we recently measured to be around 34 ms for liver tissue. Next it would be optimal to use the longest

TR possible; however, to reduce the imaging acquisition time to 5 - 7 seconds and to minimize motion artifacts during

acquisition a TR of 50 ms was used.
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To minimize further motion artifacts during imaging of ILT in liver, breathhold acquisition is mandatory. However, even
under general anesthesia and breathhold acquisitions lasting from 15 seconds up to 2 minutes there was always some
slight deviation of the liver's position during ILT compared with baseline images. Therefore, some type of respiratory
gating, navigator pulse sequences [33], or interactive in-plane imaging using motion tracking coils [34] could be useful
for imaging of moving tissues .

� Optical-Flow computation

Analysis of OF provides new and important information about heat deposition very close to real-time and a spatio-
temporal description of the thermal changes even when the treated anatomy contained heterogeneous tissue (e.g., cerebral
and tumorous tissue) and vessels. Moreover, analysis of two-dimensional (2D) OF predicts deposition and velocity of
thermal ablation to adjacent tissues, which can be very inhomogeneous. This important information is not provided by
other methods.

A distinct advantage of this approach is its applicability to three-dimensional (3D) monitoring which was not applied on
this study. 3D OF and treatment zone forecasts can be radially computed using 3D dynamic MRI data, and can be used for
automated feedback control of heat deposition, that ensures the safety and effectiveness of thermal ablations. However,
when the intensity of the difference image is lower than the noise and when tissue deforms due to thermal effect, OF is not
practical. Although OF used a parallel multiprocessor workstation for fast image processing, on a regular workstation a
2D OF computation would be available, within 10- 15 seconds.

The size of the necrosis on images taken the day following ILT was slightly larger than on the color-encoded thermal
changes seen during monitoring ILT with pixel subtraction. This can be explained by a cumulative effect of ILT [35,36],
because ILT was performed for up to 5 time series, each serie within the range of 1-8 minutes. Furthermore, in single fiber
treatment, the fiber was withdrawn or multiple fibers were placed within the tumor to enlarge the treated area.

In addition, the fact that thermal ablation in vivo is affected by thermal conductivity and convection by blood flow must be
considered, which is neither significantly dependent on the species nor on the specific organ. Although the given in vivo

values depend on the rate of perfusion and can be up to three times higher [37]. In the future this will require software
similar to the laser simulator [38], that takes the accumulative factor of heating into account, which has not been
integrated into our system.

Since we modified our treatment-protocol and the post-processing techniques, a true comparison of ILT with this
preliminary results is not obtainable. Although, our initial clinical results demonstrate the feasibility of MR-guided ILT
and the advantages and disadvantages in temperature-sensitive monitoring. In particular , due to the lack of movement,
thermal monitoring in brain is much easier to perform than in liver.

Role of "Contrast enhancement"

It should be taken into account, that Gadolinium-DTPA, applied to enhance tumor visualization, provides a positive
susceptibility component. Therefore, the calculated temperature values in chemical shift-based imaging during ILT will be
smaller.

Paramagnetic thermometric complexes (Tm-DOTP5-) significantly improve the temperature sensitivity in chemical-shift
based imaging. But due to their toxicity for tissue they will not contribute to clinical monitoring thermal ablations in the
near future [39].

To reduce the risk of charring or vaporization and to increase the treated lesion size heat-resistant laser-applicators,
recently described by Vogl et al [40], or cylindrical diffusing laser fibers [41] should be used. They can lead to coagulative
necrosis with a nearly spherical shape of up to 2 cm radius without central charring. Therefore, tumors with a diameter of
3-4 cm can be treated over their entire diameter in one session.

 

Spectroscopic imaging, combined with fast (echoplanar) imaging techniques might be advantageous to overcome
susceptibility artifacts during ILT. Using the fat resonance as an internal reference this method does not require
subtraction techniques. Based on preliminary experiments the 2D distribution of the proton spectrum can be taken in 10
sec with Echo-Planar Spectroscopic-Imaging (EPSI) in 24 sec [42].
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Conclusions
MR-guided ILT can provide an effective delivery of thermal energy to tissue with minimal damage to adjacent structures
and thus became a potential method of treating different types of localized tumors in liver [43,44], head and neck [45],
brain [8,46] and breast [47]. Particularly for deep malignant cerebral lesions, usually inaccessible with surgery, or in
lesions not otherwise visualized MRI-guided ILT offers a successful treatment option. Although access to the patient and
fiber placement was performed more easily in the open magnet than it would have been in a closed MRI system,
monitoring of ILT with the described techniques could be implemented in almost every MRI system. All of the applied
image processing methods enhanced visualization of temperature-related effects and displayed them near real-time.
Although with all the methods described, real-time processing thus has not yet been achieved, they are adequate and
valuable for clinical ILT with a duration of up to 26 minutes.

Optimum monitoring sequences and post-processing techniques

Appropriate interpretation of intraoperative images is critical to the development of a control system for thermal surgeries
(Table 4).

1. Pixel subtraction of T1-weighted MRI has limitations as an exact "tissue thermometer" and therefore it is ineffective
for characterizing the extent of cell damage. The MRI signal intensity may reveal the presence of tissue phase
transition and monitor the leading edge of a temperature gradient moving toward nearby structures. This effect is
especially useful in the OF computation

2. Chemical shift-based imaging with phase mapping promises a higher temperature sensitivity and semiquantitative
temperature measurements within a laser-induced lesion. However, due to many artifacts monitoring of liver
treatment needs more improvements.

3. 2D-Optical Flow computation and visualization is easily attainable, successfully forming the basis of a
computerized automatic control software during ILT. A distinct advantage of this approach is its applicability to 3D
monitoring. Again, OF computation cannot measure temperature and is not practical when tissue movement or
deformation occurs.

 

There will be a need for a more reliable thermometry in vivo, prediction of tissue necrosis in all three dimensions as well
as considerable improvements in monitoring, particularly in moving tissues. At that time, MR-guided ILT may have a
major impact on minimally invasive treatment.
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Tables:
Table 1: Laser parameters and imaging sequences

Patient

 

Localization Laser

Output 

         

Duration Number of 

fibers in place

Total Energy

applied (J)

Imaging

Sequence 

A.J. brain 4 W

4 W

4 W

4 W

4W

4W

1 min

1 min

1 min

1 min

1 min

1 min

1* 1440 FSE

FSPGR

FSE

SPGR

FSE

FSE
P.L. liver 2 W

2 W

2 W

8 min

8 min

8 min

1

2

2*

4800 FSE

SPGR

SPGR

* laser fiber was withdrawn and/or advanced after the second irradiation

 

Table 2: Sequential processes during pixel subtraction

Step Procedure

1 Sequential imaging and data transfer to the computer workstation

2 Definition of a ROI within the FOV of the MR image

3 Pixel subtraction of images during ILT from the baseline image

4 3 x 3 Low-pass Gaussian filtering for noise reduction

5 Interactive tresholding to remove noise and selectively enhance the heated region

6 Color coding of the subtracted images, enhancing the thermal effect by assigning color, based on the signal
intensity (SI) level of the subtraction image (red-high SI, green -middle SI, blue-low SI)

7 Blending of the subtraction image and the (gray-scaled) baseline image if required.
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Table 3: Laser effects on tissue

Terminology Temperature Histopathology

Hyperthermia 42 - 45°C Reversible damage to cellular enzymes, may become irreversible after

long exposure time (> 25 min)

Coagulation and

vaporization of tissue

water

60 - 100°C Protein denaturation, hyalinization of collagen and cell shrinkage

(macroscopically tissue blanching)

Carbonization and ablation above 100°C Charring with increased light absorption and smoke generation

 

Table 4: Advantages and disadvantages of imaging and postprocessing techniques

Imaging Methods and

Postprocessing

Techniques

Advantages Disadvantages

Pixel subtraction of T1-

weighted images

Linear relation of T1 with temperature

within 37° -50° C

 

Improves visualization of thermal changes

even in tissues with low SI

 

Not sensitive to susceptibility artifacts

 

Fast and easy postprocessing with current

available hard- and software

Deviation of T1 from linear behavior above

50° C

 

Temperature dependency of T1 is strongly

tissue specific

 

Sensitive to motion

 

Not as sensitive to temperature as

chemical shift-based imaging

Phase mapping of water

proton chemical shift

imaging

Very sensitive to thermal changes

 

Proton chemical shift is measured

independently from other parameters

 

Provides quantitative temperature

measurement

 

Short acquisition time (seconds) with fast

gradient-recalled echo sequences and phase

mapping

Affected by tissue motion and susceptibility

effects (metabolic changes, blood flow)

 

Tissue-specific temperature coefficients in
vivo are not well known yet

 

Ineffective in measuring thermal changes in

low water content tissues (fat, bone

marrow)
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2D-Optical-Flow

computation of T1-

weighted images

Spatio-temporal visualization and

prediction of thermal changes

 

Applicability for 3D-monitoring

 

Provides basis for automated control of

thermal deposition

Computational effort (especially for 3D-

OF)

 

Not practical if S/N-ratio is low or if

tissue deformation occurs

 

Temperature dependency of T1 is strongly

tissue specific

 

Figures:
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Figure 1: Performance in the Open-MR System

The open-magnet design permits direct clinical access to the patient (a) and simultaneous interactive control

of the MR imaging process. Light-emitting diodes (LEDs) on a handhold probe (arrow) with the biopsy

needle or laser fiber attached were registered by CCD cameras (b) providing positional information for

interactive imaging and targeting tumor tissue.

Figure 2: Interstitial laser treatment of a brain tumor (recurrent glioma); A user-defined ROI, drawn on the

axial contrast-enhanced T1-weighted baseline image defined the region of image processing accomplished

with our in-house-developed software. The resultant images, obtained every 13 seconds during and after ILT

(single fiber, 4 Watt, 1 minute) were magnified and superimposed on the grayscaled image. The SI-changes

are color-coded in red.
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Figure 3a: Interstitial laser treatment of a brain tumor (recurrent glioma); image-processing done with the

Real Time Processor. User-defined ROIs were drawn on axial T1-weighted images around the tip of the laser

fiber (ROI 1) and within the white matter of the brain (ROI 2, ROI 3). During ILT (single fiber, 4 Watt, 1

minute), the amount of SI changes in the first ROI increased until the fourth calculation (approx. at the end

of ILT) then decreased until imaging was completed. Within the other two ROIs, only random variations of

SI changes were observed.

Figure 3b: Interstitial laser treatment of a liver tumor (metastatic leiomyosarcoma); image-processing done

with the Real Time Processor. The red signal within the yellow ROI represented the color-coded SI changes

between the baseline image and the image taken during therapy (single fiber, 2 Watt, 8 minutes). The graph

bar on the right depicted the averaged SI changes over time within the tumor ROI (upper curve) and within a

reference ROI (lower curve). The variation of SI values on the lower curve were due to slight motion

artifacts, even during breathhold acquisition.

 

Figure 4: Chemical shift-based imaging with phase mapping of a left parietal brain tumor (recurrent

glioma). On the resultant image thermal changes are highlighted within the tumor (left window) during ILT

(single fiber, 3 Watt, 1 minute). Temperature gradients were calculated along the horizontal red line,
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demonstrating a temperature elevation of more than 15 degrees Celsius above body temperature (right
window).

 

Figure 5: Monitor display of the OF computation during ILT of a brain tumor. (a) A user-chosen ROI boundary was

drawn on the T1-weighted baseline image in the upper left window. The upper right window (b) displayed a magnified

view of the ROI and the result of the color-coded pixel subtraction overlaid on the grayscale image at 30 seconds during

laser irradiation. On the lower left window (c) the predicted OF velocity vectors were superimposed on the grayscale

images, and on the lower right window (d) the predicted magnitude of OF was displayed, with color tables representing

the amount of thermal change.

Figure 6: T1-weighted and contrast-enhanced MRI (left) before treatment demonstrated a left parietal brain tumor

(diffuse astrocytoma) with a diameter of 1.2 x 1.0 x 0.7 cm. With a single fiber treatment (4 W, 6 x 1 minutes), 5 mm

withdrawn between two lasersets , a total energy of 1440 J was applied and a large necrotic zone was seen 48 hours later.
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a: 

b: 

Figure 7: Line plot of SI values across a brain tumor during pixel subtraction (a) or during phase mapping (b): (a) the
white line demonstrates the increased SI on the contrast-enhanced pre-operative T1-weighted image. The red line
indicates the increase of the SI on the pixel-subtraction during irradiation. The blue line indicates the signal loss within a 2
cm large necrotic area on the follow-up image. (b) The SI of the phase difference image at the end of a laser irradiation
matches with the necrotic area.
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Figure 8: Specimen retrieved from partial hepatectomy. A liver metastasis (colon carcinoma) was treated with three 8-
minute irradiations (2 W); the first 8 minutes with a single fiber in place, then 2 x 8 minutes with 2 fibers in place. A total
energy of 4880 J was applied. Six months later, a necrotic tumor region (1.2 x 1.0 cm ) was visible with a white fibrotic
rim (arrow) and a small area of carbonization.


