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Realization of mechanical systems from second-order models
Wenyuan Chena� and Pierre E. Dupontb�

Department of Aerospace and Mechanical Engineering, College of Engineering, Boston University, Boston,
Massachusetts 02215
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Congruent coordinate transformations are used to convert second-order models to a form in which
the mass, damping, and stiffness matrices can be interpreted as a passive mechanical system. For
those systems which can be constructed from interconnected mass, stiffness, and damping elements,
it is shown that the input–output preserving transformations can be parametrized by an orthogonal
matrix whose dimension corresponds to the number of internal masses—those masses at which an
input is not applied nor an output measured. Only a subset of these transformations results
in mechanically realizable models. For models with a small number of internal masses,
complete discrete mapping of the transformation space is possible, permitting enumeration of all
mechanically realizable models sharing the original model’s input–output behavior. When the
number of internal masses is large, a nonlinear search of transformation space can be employed
to identify mechanically realizable models. Applications include scale model vibration testing
of complicated structures and the design of electromechanical filters. © 2005 Acoustical Society of
America. �DOI: 10.1121/1.1953227�

PACS number�s�: 43.40.At, 43.40.Sk �JGM� Pages: 762–773

I. INTRODUCTION

The mechanical realization problem is the conversion of
a passive input–output dynamic model to a form that is
recognizable as an interconnected system of mechanical
components. Applications of mechanical realization
arise in those situations for which it is desirable to
fabricate a mechanical system possessing specified
input–output behavior.

An important example is the scale model testing of com-
plicated structures in naval and aircraft design. While the
major structural elements can be easily scaled and fabricated,
scale models of other components, such as electronic
equipment and machinery, are not easily manufactured.
In these cases, the most efficient solution can be to model
the input–output behavior of the equipment where
it attaches to the major structure and to build a simple
structure which is dynamically equivalent. Similarly, in
the design of electromechanical filters,1 the desired
input–output behavior is specified and its mechanical
realization is sought.

The mechanical realization problem starts with the
specification of a dynamic model describing input–output
behavior. In the case of scale modeling, this model
may be obtained through finite-element analysis or
estimation from experimental data. In filter design, the
model will depend on the purpose of the filter. While
both time-domain and frequency-domain model
descriptions are possible, this paper examines the
realization problem for time-domain models specified in
the second-order form

Mq̈ + Cq̇ + Kq = Fu ,

�1�
y = Hdq + Hvq̇ + Haq̈ .

The n�1 vector q is the set of displacement coordinates, the
m�1 vector u is the input vector, which is often an external
force vector, and the p�1 vector y is the output vector. The
mass matrix is M =MT�0, the damping matrix is C=CT

�0, and the stiffness matrix is K=KT�0. F is the n�m
input influence matrix, which is determined by the location
of the input forces or torques. Hd, Hv, and Ha are the output
influence matrices of displacement, velocity, and accelera-
tion, respectively. In many circumstances, only accelerations
need be considered as outputs and so Hd=Hv=0, while Ha

�0. This is the case considered in this paper.
The mechanical realization problem for undamped or

proportionally damped systems in the form of �1� has been
widely studied. For these systems, the mass matrix can be
reduced to diagonal form, while the damping and stiffness
matrices can be converted to either tridiagonal or border di-
agonal form. The former consists of a realization in which
the masses are connected in series while, in the latter, they
are connected in parallel. For example, a serial model can be
obtained by Falk’s algorithm using a congruent transforma-
tion computed from the given mass and stiffness matrices.2,3

Parallel realizations can be obtained using the normal mode
theory of O’Hara and Cunniff.4 Their results were general-
ized to a mechanical system undergoing three-dimensional
vibration by Pierce.5

The existence of structure-preserving transformations
which result in diagonal mass, damping, and stiffness matri-
ces has been demonstrated for most real second-order
systems.6,7 While this form is amenable to numerical com-
putation of input–output response by superposition, it is not
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appropriate for mechanical realization which requires any su-
perposition of responses to be performed mechanically.

A related body of work addresses inverse eigenvalue and
inverse vibration problems.8–11 The former is concerned with
constructing a matrix with specified eigenvalues, and so ap-
plies to the realization of mass normalized systems. The in-
verse vibration problem involves the reconstruction of mass
and stiffness matrices from prescribed frequency response
data, such as resonance frequencies. This approach can be
extended to include proportional damping.

The question of whether or not an arbitrary
�M ,C ,K ,F ,H� corresponding to a passive system can be
transformed to mechanically realizable form has not been
addressed in the literature. It remains an open question, al-
though one might anticipate that a result similar to the posi-
tive realness requirement of electrical network synthesis12

also holds for mechanical systems. Furthermore, a recipe for
transforming a system to mechanically realizable form is un-
known. As a result, the realizability problem must be solved
numerically using optimization algorithms.

The contribution of this paper is to characterize the set
of transformations by which a class of models with viscous,
but nonproportional damping can be converted to mechani-
cally realizable form. The approach taken is to parametrize
the set of transformations relating all input–output equivalent
models which could result in a mechanically realizable form.
Using this parametrization, mechanical realizations can be
found by mapping or selectively searching the set of trans-
formations. They can also guide future efforts seeking
closed-form solutions. These topics and examples are pre-
sented in the following sections.

II. STRUCTURE OF MECHANICALLY REALIZABLE
SECOND-ORDER MODELS

Motivated by the application of scale modeling equip-
ment and machinery, this paper considers a specific subset of
mechanically realizable systems consisting only of intercon-
nected mass, stiffness, and damping elements. Other types of
elements, such as transmissions, are precluded. It is also as-
sumed that there are no isolated masses in the system and
that the system is statically stable, i.e., each mass is con-
nected to the rest of the realization by at least one spring.
Furthermore, the models are constrained to include a rigid-
body mode, i.e., they cannot employ skyhook connections
comprised of springs and dashpots attached to a fixed
ground.

For the intended applications, model simplicity drives
the choice of mechanical elements, while ease of implemen-
tation precludes the use of skyhook attachments. The results
presented here can be adapted to permit additional model
elements or to eliminate the rigid-body mode. Both of these
cases are less restrictive than the one considered since, for
the former, the solution space is enlarged and, for the latter,
the number of constraints is reduced.

Finally, only realizations corresponding to diagonal
mass matrices are considered here. Block-diagonal mass ma-
trices involving, e.g., coupling between linear and rotational
coordinates, may arise in practical applications, but are be-
yond the scope of this paper.

A. Realizable stiffness and damping matrices

In addition to enforcing diagonality of the mass matrix,
the conditions above also constrain the form of the stiffness
and damping matrices. The simple mechanical system of Fig.
1 is used to illustrate these properties, which are well known.
Since these requirements are the same for both types of ma-
trices, a realizable stiffness matrix is used to demonstrate
them. The mass and stiffness matrices are expressed as fol-
lows:

M = �
m1

m2

m3

m4

� ,

�2�

K = �
k1 + k2 + k4 − k1 − k2 − k4

− k1 k1 + k3 0 − k3

− k2 0 k2 0

− k4 − k3 0 k3 + k4

� .

The stiffness matrix can be decomposed into the follow-
ing form:13

K = CKKDCK
T , �3�

where the connectivity matrix CK and non-negative diagonal
matrix KD are given by

CK = �
1 1 1 0 1

1 − 1 0 1 0

1 0 − 1 0 0

1 0 0 − 1 − 1
� ,

�4�

KD = �
0

k1

k2

k3

k4

� .

The connectivity matrix CK encodes the interconnection
of masses by springs. The first column of CK is chosen arbi-
trarily to represent the rigid-body mode of the system in Fig.
1, corresponding to the zero element of KD. The other col-

FIG. 1. Simple mechanical model.
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umns of CK indicate connections between pairs of masses.
For example, the third column represents the connection be-
tween m1 and m3 by stiffness k2 in KD. The opposite signs on
the nonzero elements of these columns �+1,−1� together
with KD11

=0 ensures that K will have a nullspace vector
�1 1 ¯ 1�T corresponding to a rigid-body mode. For a me-
chanical system with n masses and nk springs, CK is an n
� �nk+1� matrix and KD is an �nk+1�� �nk+1� diagonal ma-
trix.

Similarly, a mechanically realizable damping matrix C
can be decomposed as C=CCCDCC

T , where CC is a connec-
tivity matrix and CD is a diagonal matrix with non-negative
diagonal elements. It should be noted that, while CC is not
necessarily equal to CK, both will share the nullspace vector
�1 1 ¯ 1�T, ensuring the prohibition against skyhook
springs and dashpots.

It can be summarized that the mechanically realizable
mass, damping, and stiffness matrices must satisfy the fol-
lowing realization conditions:

M = diag��m1 m2 ¯ mn��, mi � 0,

C = CT, Cii � 0, Cij � 0, C�1 1 ¯ 1�T = 0, �5�

K = KT, Kii � 0, Kij � 0, K�1 1 ¯ 1�T = 0,

where i , j=1,2 , . . . ,n and i� j.

B. Realizable input and output influence matrices

The input and output influence matrices can be catego-
rized in terms of both the number of inputs and outputs as
well as their relative locations. In the case of single-input,
single-output �SISO� systems, the influence matrices are vec-
tors, while for multi-input, multi-output �MIMO� systems,
they are matrices. If the inputs and outputs are collocated
then the system can be further classified as a driving-point
realization, while those systems with noncollocated inputs
and outputs are termed transfer realizations.

Without loss of generality, it is assumed that the desired
input and output influence vectors or matrices are given by

�1� SISO driving-point accelerance

F = HT = e1. �6�

�2� SISO transfer accelerance.

Ff = e1,

�7�
Hf

T = e2.

�3� MIMO driving-point accelerance

Ff = Hf
T = �e1 e2 ¯ em� . �8�

�4� MIMO transfer accelerance

Ff = �e1 e2 ¯ em� ,

�9�
Hf

T = �em+1 em+2 ¯ em+p� .

�5� MIMO driving-point and transfer accelerance

Ff = �e1 e2 ¯ em� ,

�10�
Hf

T = �e1 e2 ¯ er em+1 em+2 ¯ em+�p−r�� .

Here, ei is an element of the standard basis for Rn,
which has a 1 at the ith component and zeros elsewhere. The
excitation forces are applied at a set of m coordinates and the
accelerations are measured at a set of p coordinates. Both
sets share r common coordinates.

III. TRANSFORMATIONS RELATING REALIZATIONS

Following the form of �1�, an initial second-order model
describing the accelerance of a mechanical system is given
by

M0ẍ + C0ẋ + K0x = F0u ,

�11�
y = H0ẍ .

The goal of this paper is to convert this initial model to one
possessing the same input–output dynamic behavior, but
which also satisfies the mechanical realizability conditions
defined in the previous section. Congruent coordinate trans-
formations can be seen to maintain the input–output behavior
of the model while also preserving the symmetry of the
mass, damping, and stiffness matrices. Consider the coordi-
nate transformation

x = Tq , �12�

where T is a nonsingular matrix. A congruence transforma-
tion converts the initial model �11� to the following form:

Mfq̈ + Cfq̇ + Kfq = Ffu ,

�13�
y = Hfq̈ .

Here, Mf, Cf, Kf, Ff, and Hf are, respectively, the final mass,
damping, and stiffness matrices, and the input and output
influence matrices. They are defined as

Mf = TTM0T ,

Cf = TTC0T ,

Kf = TTK0T , �14�

Ff = TTF0,

Hf = H0T .

Thus, the set of invertible matrices T�Rn�n describes
the family of all second-order models satisfying input–output
equivalence with �11� while preserving mass, damping, and
stiffness matrix symmetry. Only a subset of matrices T may
result in a mechanically realizable model in which the final
mass, damping, and stiffness matrices satisfy �5� and the fi-
nal input and output influence matrices satisfy one of
�6�–�10�.
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While necessary and sufficient conditions for an initial
model to be transformable to mechanically realizable form
are not available, the following is a necessary condition for
an initial model to possess a rigid-body mode:

C0v0 = K0v0 = 0. �15�

This equation states that the initial damping and stiffness
matrices must share the same nullspace vector, v0. This fol-
lows from C�1 1 ¯ 1�T=0 and K�1 1 ¯ 1�T=0 in �5�, and
the fact that congruence transformations preserve the signa-
ture of a matrix.

A. Decomposition of the transformation

The coordinate transformation in �12� can be decom-
posed into a product of three components as follows:

T = M0
−1/2RMf

1/2. �16�

The first component, the inverse square root of the initial
mass matrix, is used to mass normalize the initial second-
order model �11�. The second component R is an orthogonal
matrix, which preserves mass normalization. To obtain me-
chanically realizable form, it must perform two tasks. First, it
should convert the input and output influence matrices to one
of the desired forms �6�–�10�. Second, from �5�, it must en-
sure that all off-diagonal components of the damping and
stiffness matrices are nonpositive. Since the congruent trans-
formation preserves definiteness of a symmetric real matrix,
the diagonal elements of the damping and stiffness matrices
are always non-negative.14

The last component of the transformation is the square
root of the final mass matrix Mf. As will be shown, if an
orthogonal matrix can be found such that the realizability
conditions mentioned above are satisfied, the final mass ma-
trix can be computed explicitly.

Given the decomposition of the transformation in �16�,
obtaining realizable form reduces to solving for an appropri-
ate orthogonal matrix R. Orthogonal matrices are comprised
of rotations, with determinant +1, and reflections, with deter-
minant −1. In addition, permutation matrices constitute a
subset of both rotation and reflection matrices. Used in a
congruence transformation, permutation matrices simply re-
order the coordinates.

A basis for orthogonal matrices can be constructed from
the rotation matrices plus a single arbitrary reflection. Choos-
ing this reflection as a permutation matrix reduces the basis,
without loss of generality, to the rotation matrices. The n
�n rotation matrices constitute the special orthogonal group,
SO�n�. In the remainder of the paper, rotation matrices will
be used as a basis for R.

B. Parametrization of the orthogonal transformation

The component R of the transformation �16� must per-
form two tasks, aligning the input and output influence ma-
trices as well as ensuring that the off-diagonal elements of
the mass-normalized stiffness and damping matrices are non-
positive. These tasks can be performed sequentially by writ-
ing R as the product of two rotation matrices

R = RiRo, �17�

where the component Ri aligns the influence matrices. Ro

ensures nonpositive off-diagonal elements of the stiffness
and damping matrices while preserving the form of the in-
fluence matrices obtained with Ri.

1. Aligning input and output influence matrices

For the first task, denote the coordinate transformation
as

x = M0
−1/2Riz̃ . �18�

Substituting �18� into the initial model �11� and premul-
tiplying by Ri

TM0
−1/2 yields the following model:

z̈̃ + Cz̃ż̃ + Kz̃z̃ = Fz̃u ,

�19�
y = Hz̃z̈̃ ,

in which the matrices are defined by

Cz̃ = Ri
TM0

−1/2C0M0
−1/2Ri,

Kz̃ = Ri
TM0

−1/2K0M0
−1/2Ri,

�20�
Fz̃ = Ri

TFz,

Hz̃ = HzRi,

where Fz=M0
−1/2F0 and Hz=H0M0

−1/2.
Ri can be obtained by QR factorization of the mass-

normalized input and output influence matrices, Fz and Hz. In
this QR factorization, a matrix is decomposed into a product
of an orthogonal matrix and an upper triangular matrix. A
property of this method is that a matrix whose column vec-
tors are perpendicular to each other can be factored as a
product of an orthogonal matrix and a diagonal matrix.

In the most general case, the input and output influence
matrices in the final realizable model �13� must have the
form given by �10�. With consideration of �16�, it can be
proved that the columns of Fz are mutually orthogonal. Thus,
after the rotation Ri, the input and output influence matrices
Fz̃ and Hz̃ in �19� should satisfy the following relationships:

Fz̃ = Ri
TFz = �	fz1

	e1 	fz2
	e2 ¯ 	fzm

	em� ,

�21�

Hz̃ = H0M0
−1/2Ri = �

	fz1
	e1

T

	fz2
	e2

T

]

	fzr
	er

T

	hz�r+1�
	em+1

T

	hz�r+2�
	em+2

T

¯

	hzp
	em+�p−r�

T

� .
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To fulfill these requirements, the component Ri can be
decomposed as a product of two rotations

Ri = RFz
RHz

. �22�

In �22�, the first component RFz
satisfies

RFz

T Fz = �	fz1
	e1 	fz2

	e2 ¯ 	fzm
	em� . �23�

Suppose the QR factorization of Fz is given by

QFz
�	fz1

	e1 	fz2
	e2 ¯ 	fzm

	em� = Fz, �24�

where QFz
is an orthogonal matrix. The first component RFz

then can be chosen as

RFz
= QFz

. �25�

From �23�, the first m column vectors of RFz
�or QFz

� should
be equal to fzi

/ 	fzi
	 �i=1,2 , . . . ,m�, respectively. According

to �10�, HzRFz
should have the following form:

HzRFz
= �

	fz1
	e1

T

	fz2
	e2

T

]

	fzr
	er

T

H̄z

� , �26�

where H̄z= �0�p−r��m H̃z� and H̃z is a �p−r�� �n−m� matrix.
The second component RHz

of the transformation Ri

needs to preserve ej’s �j=1,2 , . . . ,m� and should convert
�26� to the following form:

�HzRFz
�RHz

= �
	fz1

	e1
T

	fz2
	e2

T

]

	fzr
	er

T

	hz�r+1�
	em+1

T

	hz�r+2�
	em+2

T

¯

	hzp
	em+�p−r�

T

� . �27�

Suppose the QR factorization of H̃z
T is given by

QHz
�	hz�r+1�

	ẽ1 	hz�r+2�
	ẽ2 ¯ 	hzp

	ẽ�p−r�� = H̃z
T, �28�

where QHz
is an orthogonal matrix and ẽi is an element of

the standard basis for Rn−m, which has a 1 at its i�th

component and zeros elsewhere. Equation �28� can be re-
written as

�
	hz�r+1�

	ẽ1
T

	hz�r+2�
	ẽ2

T

]

	hzp
	ẽ�p−r�

T
�QHz

T = H̃z, �29�

or equivalently

�
	hz�r+1�

	ẽ1
T

	hz�r+2�
	ẽ2

T

]

	hzp
	ẽ�p−r�

T
� = H̃zQHz

. �30�

Thus, the second component RHz
in �22� is given by

RHz
= 
Im�m 0

0 QHz

� . �31�

In summary, from �22�, �25�, and �31�, the component Ri of
the transformation R in �17� is given by

Ri = RFz
RHz

= QFz
Im�m 0

0 QHz

� . �32�

2. Achieving nonpositive off-diagonal damping and
stiffness elements

After aligning the input and output influence matrices, a
second rotation Ro is needed to convert the damping and
stiffness matrices in �19� to mechanically realizable form in
which all off-diagonal elements are nonpositive. An explicit
solution for Ro is not available; however, its form and the
number of its free parameters can be derived as follows.
Denote the coordinate transformation

z̃ = Row . �33�

Substituting this transformation into �19� and premultiplying
by Ro

T yields the following second-order model:

ẅ + Cwẇ + Kww = Fwu ,

�34�
y = Hwẅ ,

in which

Cw = Ro
TCz̃Ro,

Kw = Ro
TKz̃Ro,

�35�
Fw = Ro

TFz̃,

Hw = Hz̃Ro.
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The input and output influence matrices in �19� are al-
ready in the desired form, given by �21�, only with a lack of
scaling, and the transformation Ro should preserve this form.
To do so, it can be expressed as

Ro = 
Ini�ni
0

0 R̃o

� , �36�

with Ini�ni
as the ni�ni identity matrix and the rotation ma-

trix R̃o�SO�n−ni�. The value ni is the number of masses at
which input forces are applied and/or accelerations are mea-
sured

ni = m + p − r . �37�

It follows that n−ni is the number of internal masses of the
system, i.e., those masses to which an input is not applied
nor at which an output is measured.

The free parameters of Ro are those of R̃o�SO�n−ni�,
which number �n−ni��n−ni−1� /2. Given Ro, an explicit so-
lution exists for the final mass matrix; this is also the number
of free parameters of the transformation space defined by
�16�. This number, quadratic in the number of internal
masses in the model, represents the dimension of the space
which must be mapped or searched for mechanically realiz-
able models.

C. Solving for the final mass matrix

An explicit solution for the final mass matrix, Mf, can be
derived from the realization conditions of �5� requiring the
damping and stiffness matrices in �13� to satisfy

Kf�1 1 ¯ 1�T = 0,

�38�
Cf�1 1 ¯ 1�T = 0.

Since the model �13� is related to the model �34� by the
congruent transformation Mf

1/2, Cf =Mf
1/2CwMf

1/2 and Kf

=Mf
1/2KwMf

1/2. Substituting these expressions into �38� re-
duces to

Cw
�mf = 0,

�39�
Kw

�mf = 0,

where �mf is a vector of the square roots of the final masses,
i.e., �mf = ��mf1

�mf2
¯ �mfn

�T.
The vector �mf is a scaled version of the shared

nullspace vector of Cw and Kw. The final masses are obtained
by scaling the nullspace vector according to the following
theorem, presented for the most general case of input and
output influence matrices �MIMO drivepoint and transfer ac-
celerance� given by �10�.

Theorem 1. The input masses, to which excitation forces
are applied, and the output masses, at which accelerations
are measured, are given by

mfi
=

1

	fzi
	2 , i = 1,2, . . . ,m ,

�40�

mf�m+j�
=

1

	hz�r+j�
	2 , j = 1,2, . . . ,p − r

where fzi
�i=1,2 , . . . ,m� is the ith column vector of M0

−1/2F0

and hzj
�j=1,2 , . . . , p� is the jth row vector of H0M0

−1/2.
Proof. According to �10�, �14�, and �16�

Ff = TTF0 = Mf
1/2RTM0

−1/2F0 = Mf
1/2RTFz. �41�

This is equivalent to

Mf
−1/2�e1 e2 ¯ em� = RT�fz1

fz2
¯ fzm

� , �42�

which simplifies to


 1

�mf1

e1
1

�mf2

e2 ¯

1

�mfm

em� = �RTfz1
RTfz2

¯ RTfzm
�

�43�

Since rotation matrices preserve vector length, equating
the magnitude of columns yields

mfi
=

1

	fzi
	2 , i = 1,2, . . . ,m �44�

The second equation of �40� follows similarly. �

This theorem states that each member of the set of me-
chanically realizable models which are input–output equiva-
lent to the initial model �11� has the same input and output
masses. The following theorem proves the invariance of total
system mass for all mechanical realizations. Physically, this
result follows from input–output equivalence at zero fre-
quency to preserve the rigid-body mode.

Theorem 2. All mechanical realizations which are
input–output equivalent to the original second-order model
(11) possess the same total mass.

Proof. Recall from �15� the necessary condition for re-
alizability that C0 and K0 share the same nullspace vector,
and let this vector v0 be of unit length

C0v0 = K0v0 = 0. �45�

By �5� and �14�, TTK0T�1 1 ¯ 1�T=0 and, since TT is in-
vertible, T�1 1 ¯ 1�T=�v0, where � is a scalar constant.

Substituting T=M0
−1/2RMf

1/2 yields

�mf = �RTM0
1/2v0, �46�

and an expression for total mass is given by

�mf
T�mf = 


i=1

i=n

mfi
= �2v0

TM0v0. �47�
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To compute �, it is known from Theorem 1 that �mf1
=1/ 	fz1

	. Since a system must have at least one input and
output, the first mass can always be used in this expres-
sion, and combining it with �46� yields

� =
1/	fz1

	

�RTM0
1/2v0�1

, �48�

where the subscript 1 in the denominator indicates the first
element of the column vector.

Recall �17�, in which Ri aligns the inputs and outputs
and Ro has the structure of �36�. Since all mechanical real-
izations share the same Ri and, furthermore, since Ro cannot
change the first element of M0

1/2v0, the constant � is indepen-
dent of Ro and thus the same for all mechanical realiza-
tions. �

Taken together, the preceding theorems indicate that
only the internal masses of the system can differ between
realizations and that the total internal mass is constant.

IV. OBTAINING REALIZABLE MODELS

In the preceding section, it has been demonstrated that
congruent coordinate transformations T for converting a
model to mechanically realizable form can be expressed as

T = M0
−1/2RMf

1/2 = M0
−1/2�RiRo�Mf

1/2, �49�

The first component M0
−1/2 is known from the initial

second-order model �11� and the second component Ri can
be obtained via QR factorization of the input and output
influence matrices in �19�. The last component Mf

1/2 can be
obtained from �39� and Theorem 1.

An explicit solution for the remaining component Ro is
only available for SISO systems with no damping or propor-
tional damping. In all other cases, a solution for Ro must be
sought through mapping or selectively searching the special
orthogonal group SO�n−ni�, in which n−ni is the number of
internal masses. SO�n−ni� can be described by np param-
eters, where

np = �n − ni��n − ni − 1�/2, �50�

and each parameter corresponds to a two-dimensional rota-
tion angle.

These parameters must be selected to satisfy the n�n
−1� inequality constraints that the off-diagonal components
of the stiffness and damping matrices be nonpositive. Since
the number of constraints exceeds the number of parameters
in �50�, it is not clear that a solution will exist in the general
case. If the initial model is derived from either experiment or
FEM, however, it is likely that these constraints will be de-
pendent and mechanically realizable solutions will exist.

To search for a solution, Ro in �36� can be written as the
product of np two-dimensional rotation matrices involving
the last n−ni coordinates

Ro = �
i=ni+1

j=ni+2

i=n−1

j=n

Rij , �51�

in which Rij is the two-dimensional rotation matrix in the ith
and jth coordinates. Two-dimensional rotations, also
known as Givens rotations, have been widely used to con-
vert symmetric matrices to tridiagonal matrices in solving
symmetric matrix eigenvalue problems.15

The elements of these rotation matrices correspond to
those of an identity matrix except for the following four:

Rij�i,i� = cos��ij�, Rij�i, j� = − sin��ij� ,

�52�
Rij�j,i� = sin��ij�, Rij�j, j� = cos��ij� .

To obtain a bijection �one-to-one and onto map� between
�ij and SO�n−ni� where n−ni�3, it is not necessary
for all �ij to vary as 0��ij �2�. For example, in SO�3�,
all rotation matrices can be generated from the product
R12��12�R13��13�R23��23�, in which 0��12�2�, 0��13��,
and 0��23�2�. Allowing 0��13�2� would result in a
two-to-one map.

Even when the angle ranges are appropriately restricted
so that the map from �ij to SO�n−ni� is a bijection, the map
from SO�n−ni� to the system model �34� is many-to-one.
This is due to the equivalence class of models corresponding
to permutations of the internal masses.

Recall that a permutation matrix congruence transforma-
tion swaps pairs of rows and columns of the matrix to which
it is applied. This operation results purely in a renumbering
of the internal mass coordinates of the model. There are �n
−ni�! possible permutations of the internal masses. Half of
these correspond to swapping an even number of pairs of
rows and columns and so result from rotation permutation
matrices. As a result, the mapping from �ij to the system
model �34� will be �n−ni�! /2-to-one.

The following sections describe how realizable models
can be found by mapping or selectively searching the space
of transformations. For each example, the initial second-
order model was generated by applying a random congruent
transformation to a realizable second-order model. The first
two examples involve mapping the entire transformation
space, and so the initial models are recovered as members of
the sets of realizable models.

A. Mapping transformation space

When the number of internal masses is small, the num-
ber of free parameters of the transformation space, given by
np in �50�, is also small. In this case, a complete mapping of
transformation space is feasible and the results can be easily
visualized. Two examples with three internal masses are pre-
sented here.
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1. Example 1: Four-mass driving-point accelerance

An initial second-order model satisfying �15� is given by

�
1.5182 3.8080 − 1.0679 1.8792

3.8080 10.4989 − 2.9426 5.2055

− 1.0679 − 2.9426 0.9188 − 1.4534

1.8792 5.2055 − 1.4534 2.7745
�ẍ

+ �
0.1836 0.3089 0.0234 0.0841

0.3089 1.1514 − 0.0858 0.4348

0.0234 − 0.0858 0.0728 0.0187

0.0841 0.4348 0.0187 0.2717
�ẋ

+ �
6818 16814 − 2200 2656

16814 63328 − 11552 14063

− 2200 − 11552 3827 − 910

2656 14063 − 910 6627
�x

= �
− 0.4326

− 1.1465

0.3273

− 0.5883
�u

�53�
y = �− 0.4326 − 1.1465 0.3273 − 0.5883�ẍ .

After mass normalization, the initial model becomes

ẅ + �
0.7316 − 0.1283 0.3312 − 0.1787

− 0.1283 0.4246 0.2858 − 0.1413

0.3312 0.2858 1.0947 0.2789

− 0.1787 − 0.1413 0.2789 0.5134
�ẇ

+ �
17792 − 6182 5980 − 2606

− 6182 27522 6075 − 20547

5980 6075 21560 05432

− 2606 − 20547 5432 28812
�w

= �
− 0.1401

− 0.2679

0.0935

− 0.1728
�u

�54�
y = �− 0.1401 − 0.2679 0.0935 − 0.1728�ẅ .

By QR factorization of the vector �−0.1401
−0.2679 0.0935 −0.1728�T, the orthogonal matrix Ri is ob-
tained as

Ri = �
− 0.3886 − 0.7430 0.2592 − 0.4793

− 0.7430 0.6025 0.1387 − 0.2565

0.2592 0.1387 0.9516 0.0895

− 0.4793 − 0.2565 0.0895 0.8345
� . �55�

After aligning the input and output influence vectors, the
mass-normalized second-order model �54� is

z̈̃ + �
0.0490 − 0.0882 − 0.2034 0.0236

− 0.0882 0.6629 − 0.0759 0.1068

− 0.2034 − 0.0759 1.3181 0.0127

0.0236 0.1068 0.0127 0.7344
� ż̃

+ �
0.1877 − 0.5873 − 0.4114 0.4359

− 0.5873 3.2409 − 0.0973 − 1.3774

− 0.4114 − 0.0973 2.5883 − 0.0377

0.4359 − 1.3774 − 0.0377 3.5517
�z̃

= �
0.3605

0.0000

0.0000

0.0000
�u

�56�
y = �0.3605 0.0000 0.0000 0.0000�z̈̃ .

The number of internal masses is n−ni=3, and so the trans-
formation space can be parametrized by np=3 two-
dimensional rotations. The terms Rij in �51� which preserve
the driving-point input and output influence vectors are given
by

R23 = �
1

cos �23 − sin �23

sin �23 cos �23

1
� ,

R24 = �
1

cos �24 − sin �24

1

sin �24 cos �24

� , �57�

R34 = �
1

1

cos �34 − sin �34

sin �34 cos �34

� .

The matrix Ro is the product

Ro��23,�24,�34� = R23R24R34. �58�

A complete map relating rotation angles to realizable models
is obtained by discretizing the rotation angles as shown in
Fig. 2. The shaded regions correspond to mechanically real-
izable models. Note that the plotted angle ranges are 0
��23�2�, � /2��24�3� /2, 0��34�2� in order to ob-
tain one-to-one coverage of SO�3�. Since there are three
internal masses, there are six possible permutations of
these masses, three of which are obtained through rota-
tions. Consequently, the map from �ij to system models is
three-to-one, resulting in three equivalent regions of me-
chanically realizable models. Removing equivalent real-
izations reduces the set to that shown in Fig. 3.

In the figures, the shading indicates the number of con-
necting elements �springs and dampers� in the realizations.
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The realizations with the fewest connecting elements are lo-
cated on the boundary between realizable and unrealizable
regions where off-diagonal elements of the damping and
stiffness matrices change their signs.

Two realizable models from this set are presented here
which differ in the number of springs and dampers.

Realization 1. Selection of rotation angles �23=2.9496,
�24=2.3387, and �34=1.7104 radians yields the mechanically
realizable model

�
7.6941

0.0164

0.1906

0.2268
�q̈

+ �
0.3770 − 0.0058 − 0.0974 − 0.2738

− 0.0058 0.0136 − 0.0012 − 0.0066

− 0.0974 − 0.0012 0.1124 − 0.0139

− 0.2738 − 0.0066 − 0.0139 0.2943
�q̇

+ �
14444 − 115 − 8796 − 5533

− 115 339 − 124 − 100

− 8796 − 124 9078 − 158

− 5533 − 100 − 158 5792
�q = �

1

0

0

0
�u

�59�
y = �1 0 0 0�q̈ .

Since there are no zero elements in the damping and stiffness
matrices, this realization includes a dashpot and spring be-
tween each pair of masses.

Realization 2. Rotation angles �23=3.2484, �24=2.1776,
and �34=1.5769 radians produce a mechanically realizable
model with the fewest springs �four� and dashpots �three�, as
shown in Fig. 4.

�
7.6941 0 0 0

0 0.0220 0 0

0 0 0.2502 0

0 0 0 0.1616
�ẍ

+ �
0.3770 − 0.0177 − 0.1450 − 0.2143

− 0.0177 0.0178 0 − 0.0001

− 0.1450 0 0.1450 0

− 0.2143 − 0.0001 0 0.2144
�ẋ

+ �
14 444 0 − 10 633 − 3 810

0 474 − 474 0

− 10 633 − 474 11 528 − 421

− 3 810 0 − 421 4 232
�x

= �
1

0

0

0
�u

�60�
y = �1 0 0 0�ẍ

Although the initial model �53� and two realizations �59�
and �60� have different mass, damping, and stiffness matri-
ces, they possess the same driving-point accelerance.

FIG. 3. Single region containing all distinct mechanical realizations for
Example 1. Legend indicates total number of connecting elements �springs
and dampers� in realizations.

FIG. 4. Realization with the fewest springs and dashpots.

FIG. 2. Realizable regions for Example 1. Three regions correspond to
cyclic permutations of the three internal masses. Legend indicates total num-
ber of connecting elements �springs and dampers� in realizations.
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2. Example 2: Five-mass transfer accelerance

Consider the SISO second-order model satisfying �15� and given by

�
36.0632 0.2743 7.0077 37.1531 − 14.0227

0.2743 16.5796 − 6.7431 5.5551 2.1107

7.0077 − 6.7431 17.1533 16.6964 − 13.3775

37.1531 5.5551 16.6964 61.9214 − 25.8255

− 14.0227 2.1107 − 13.3775 − 25.8255 17.8591

� ẍ +�
97.2937 − 57.5426 91.8234 72.4757 − 38.5575

− 57.5426 62.9875 − 56.3684 − 51.0698 29.9845

91.8234 − 56.3684 92.8620 64.1156 − 37.4205

72.4757 − 51.0698 64.1156 60.7210 − 27.3858

− 38.5575 29.9845 − 37.4205 − 27.3858 34.8577

� ẋ

+�
931.9559 − 207.5005 567.4285 768.4827 − 618.2834

− 207.5005 383.5154 − 262.6956 − 186.1123 172.2111

567.4285 − 262.6956 514.7016 383.3350 − 393.4070

768.4827 − 186.1123 383.3350 709.9495 − 487.2931

− 618.2834 172.2111 − 393.4070 − 487.2931 544.2288

�x = �1.9574 − 0.2111 0.5512 0.4620 − 1.2316�Tu

�61�
y = �0.5045 1.1902 − 1.0998 − 0.3210 1.0556�ẍ .

The input and output influence vectors differ, indicating that the system represents a transfer accelerance. Following �7�, a
realizable model is sought in which the force excitation is applied at the first coordinate and the acceleration is measured at the
second. The solution for Ri is not included here for the sake of brevity.

With n=5 masses and ni=2 input and output masses, the transformation space is parametrized by np=3 two-dimensional
rotations. The matrix Ro is given by

Ro��34,�35,�45� = R34R35R45. �62�

Figure 5 depicts the map between rotation angles and system models. As in Example 1, there are three equivalent regions of
mechanically realizable models corresponding to rotational permutations of the three internal masses. The plotted angle ranges
in this figure are 0��34�2�, 0��35��, 0��45�2�.

As an example realization, rotation angles �34=3.0386, �35=3.0048, and �45=1.1158 radians produce the following
mechanically realizable model with a fully populated stiffness matrix and a damping matrix possessing a single zero dashpot:

�
2.0000 0 0 0 0

0 5.0000 0 0 0

0 0 3.4340 0 0

0 0 0 2.3326 0

0 0 0 0 10.2334

�q̈ +�
8.5000 − 1.0000 − 6.8047 − 0.0596 − 0.6357

− 1.0000 13.3000 − 11.0845 − 0.6876 − 0.5280

− 6.8047 − 11.0845 31.9340 − 14.0385 − 0.0063

− 0.0596 − 0.6876 − 14.0385 14.7857 − 0.0000

− 0.6357 − 0.5280 − 0.0063 − 0.0000 1.1700

�q̇

+�
130.0000 − 20.0000 − 49.9987 − 8.2885 − 51.7128

− 20.0000 92.0000 − 47.6153 − 20.9996 − 3.3852

− 49.9987 − 47.6153 139.9326 − 29.8486 − 12.4700

− 8.2885 − 20.9996 − 29.8486 59.6030 − 0.4664

− 51.7128 − 3.3852 − 12.4700 − 0.4664 68.0344

�q = �1 0 0 0 0�Tu

�63�
y = �0 1 0 0 0�q̈ .

B. Searching transformation space

As the number of internal masses n−ni in the model
grows, it becomes impractical to map the entire transforma-
tion space, as was done in the preceding examples. Instead,
the transformation space can be selectively searched using a
nonlinear optimization method.

Recalling that the role of Ro in obtaining a realizable
model is to ensure that the off-diagonal elements of the stiff-

ness and damping matrices are nonpositive, a cost function
for optimization can be chosen as

J��� = w1SK + w2SC, �64�

where � is the vector of rotation angles, SK is the summation
of all positive off-diagonal elements in the stiffness matrix
K, and SC is the summation of all positive off-diagonal ele-
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ments in the damping matrix C. In order to balance the con-
tributions from the stiffness and damping matrices, the
weighting factors w1 and w2 are defined as

w1 = 1,

w2 =
trace�K�
trace�C�

.

Since a congruent orthogonal transformation does not change
the trace of a matrix, the weighting factor w2 is constant.

A wide variety of optimization techniques can be em-
ployed to search for an angle vector � resulting in a realiz-
able model. Since the problem is nonlinear, local minima of
the cost function can exist. If such a minima is detected
during optimization, a perturbation of random direction and
magnitude can be applied to escape its domain of attraction.

1. Example 3: Ten-mass SISO driving-point
accelerance

To illustrate the use of an optimization method in solv-
ing the mechanical realization problem, the Nelder–Mead
method16 was applied to the following ten-mass driving-
point system using the cost function defined in �64�. For
brevity, the model is presented after mass normalization and
alignment of input and output influence vectors. The damp-
ing matrix does not correspond to proportional damping.

Cz̃ = 10−2 � �
2.71 0.59 0.91 0.31 0.28 0.04 − 0.53 0.38 − 0.86 0.10

0.59 2.21 − 0.45 0.18 − 0.56 − 0.00 0.14 0.33 0.74 − 0.21

0.91 − 0.45 3.24 0.10 − 0.72 0.12 0.23 0.54 0.83 0.14

0.31 0.18 0.10 2.48 − 0.02 − 0.54 − 0.12 − 0.87 0.86 − 0.13

0.28 − 0.56 − 0.72 − 0.02 2.51 − 0.53 − 0.00 0.32 − 0.16 − 0.01

0.04 − 0.00 0.12 − 0.54 − 0.53 3.21 − 0.33 0.07 0.01 − 0.07

− 0.53 0.14 0.23 − 0.12 − 0.00 − 0.33 2.91 − 0.31 − 0.23 0.18

0.38 0.33 0.54 − 0.87 0.32 0.07 − 0.31 2.74 0.51 − 0.68

− 0.86 0.74 0.83 0.86 − 0.16 0.01 − 0.23 0.51 2.60 0.59

0.10 − 0.21 0.14 − 0.13 − 0.01 − 0.07 0.18 − 0.68 0.59 3.54

�
Kz̃ = �

16 685 5 279 2 255 964 2 052 1 663 − 3627 432 − 6 797 93

5 279 11 712 − 615 − 742 952 664 − 1 747 − 2 261 3 368 − 2 184

2 255 − 615 13 728 − 1 508 − 3 500 709 2 709 − 669 3 985 1 844

964 − 742 − 1 508 15 194 − 821 − 457 360 − 362 4 447 249

2 052 952 − 3 500 − 821 17 704 − 591 − 855 − 525 2 505 − 2 485

1 663 664 709 − 457 − 591 19 298 − 199 1 753 1 535 34

− 3 627 − 1 747 2 709 360 − 855 − 199 13 734 − 1 139 − 153 2 045

432 − 2 261 − 669 − 362 − 525 1 753 − 1 139 16 008 808 − 1 654

− 6 797 3 368 3 985 4 447 2 505 1 535 − 153 808 15 770 3 236

93 − 2 184 1 844 249 − 2 485 34 2 045 − 1 654 3 236 19 318

� �65�

Fz̃ = Hz̃
T = �1 0 0 0 0 0 0 0 0 0�T.

With nine internal masses, there are 36 two-dimensional rotation parameters describing the space of transformations. The
optimization method was initiated with the rotation angles set to random numbers in the range 0 to 2�. The search terminates
when a realizable model is found. The result of one trial appears below. This trial involved six iterations in which at most 2500
evaluations of the cost function were permitted for each iteration.

FIG. 5. Realizable regions for Example 2. Three regions correspond to
cyclic permutations of the three internal masses.

772 J. Acoust. Soc. Am., Vol. 118, No. 2, August 2005 W. Chen and P. Dupont: Mechanical systems realization



Mf = diag��1.000 0.590 0.221 0.302 0.461 0.310 0.378 0.123 0.378 0.521��

Cf = 10−2 � �
2.71 − 0.49 − 0.05 − 0.18 − 0.60 − 0.24 − 0.29 − 0.07 − 0.45 − 0.36

− 0.49 1.84 − 0.00 − 0.07 − 0.56 − 0.02 − 0.29 − 0.02 − 0.07 − 0.34

− 0.05 − 0.00 0.77 − 0.13 − 0.07 − 0.12 − 0.05 − 0.00 − 0.18 − 0.16

− 0.18 − 0.07 − 0.13 0.88 − 0.06 − 0.16 − 0.06 − 0.00 − 0.12 − 0.09

− 0.60 − 0.56 − 0.07 − 0.06 1.45 − 0.00 − 0.00 − 0.01 − 0.04 − 0.10

− 0.24 − 0.02 − 0.12 − 0.16 − 0.00 0.88 − 0.21 − 0.00 − 0.10 − 0.03

− 0.29 − 0.29 − 0.05 − 0.06 − 0.00 − 0.21 1.27 − 0.00 − 0.22 − 0.15

− 0.07 − 0.02 − 0.00 − 0.00 − 0.01 − 0.00 − 0.00 0.10 − 0.00 − 0.00

− 0.45 − 0.07 − 0.18 − 0.12 − 0.04 − 0.10 − 0.22 − 0.00 1.24 − 0.06

− 0.36 − 0.34 − 0.16 − 0.09 − 0.10 − 0.03 − 0.15 − 0.00 − 0.06 1.29

�
�66�

Kf = �
16 685 − 4 698 − 265 − 1705 − 1809 − 2239 − 1058 − 74 − 1632 − 3205

− 4 698 10 694 − 7 − 809 − 1432 − 702 − 2497 − 315 − 41 − 193

− 265 − 7 3609 − 754 − 129 − 278 − 135 − 422 − 718 − 900

− 1 705 − 809 − 754 4805 − 295 − 759 − 4 − 68 − 407 − 4

− 1 809 − 1 432 − 129 − 295 6300 − 1016 − 522 − 1 − 1088 − 8

− 2 239 − 702 − 278 − 759 − 1016 6269 − 876 − 359 − 8 − 33

− 1 058 − 2 497 − 135 − 4 − 522 − 876 6655 − 96 − 1182 − 285

− 74 − 315 − 422 − 68 − 1 − 359 − 96 1967 − 178 − 453

− 1 632 − 41 − 718 − 407 − 1088 − 8 − 1182 − 178 5453 − 199

− 3 205 − 193 − 900 − 4 − 8 − 33 − 285 − 453 − 199 5280

�
Ff = Hf

T = �1 0 0 0 0 0 0 0 0 0�T.

V. CONCLUSIONS

A congruent coordinate transformation has been devel-
oped to convert second-order models to a form interpretable
as a passive mechanical system. The space of transforma-
tions has been parametrized by a set of two-dimensional ro-
tation matrices. Complete mapping of transformation space
is possible for systems with small numbers of internal
masses; however, an optimization method is needed to search
for realizable models in higher dimensional cases. While not
demonstrated here, optimization methods allow the flexibil-
ity to search for mechanically realizable models that satisfy
additional criteria. For example, the cost function could be
adapted to find models with the fewest dashpots or springs.
These results can be applied to the vibration testing of com-
plicated structures and to the design of electromechanical
filters.
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