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Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs
quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot
MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing com-
plementary metal oxide-semiconductor technology. By combining the high-quality whispering
gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we
achieved lasing operation from 10 K up to room temperature under continuous optical pumping.
Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode line-
width are examined. An excellent characteristic temperature To of 105 K has been extracted.
Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4955456]

Whispering gallery mode (WGM) micro-resonators
incorporating quantum dot (QD) active regions have aroused
great interest recently for on chip light sources, due to their
low threshold, high temperature stability of operation, and
small form factor.1–4 While suspended disks with air-clad
waveguides provide the best optical confinement, the larger
thermal resistance compared to ring resonators may be a
drawback.3 Room temperature continuous-wave (CW) opera-
tion of InAs quantum dot micro-disk lasers (MDLs) has been
demonstrated, but only limited research has been carried out
on their temperature characteristics.2,4,5 Under CW excita-
tion, Ide et al.4 reported MDL on a GaAs substrate with To of
64 and 36 K in the temperature range of 130–230 K and
above 230 K, respectively. Under pulsed excitation, Yang
et al.5 demonstrated To of 31 K above room temperature in
MDL on a GaAs substrate. A systematic characterization of
lasing behavior as a function of temperature for MDLs inte-
grated on a silicon substrate is yet to be investigated.

Recently, we demonstrated InAs quantum dot micro-
disk lasers grown on a V-groove patterned (001) Si sub-
strate.6 In this work, we systematically characterize the
lasing behavior of the MDLs, including threshold, lasing
wavelength, slope efficiency, and mode linewidth, as a
function of temperature. We have obtained an excellent
characteristic temperature To of 105 K for the epitaxially
grown MDLs on Si, which outperform previously reported
InAs quantum dot micro-disk lasers on GaAs substrates.4,5,7

These temperature insensitive microdisk lasers with com-
pact size and low thresholds directly grown on (001) silicon
can be attractive on-chip light sources to meet the low-
power consumption and athermal performance demands of
silicon photonic devices.

We first grew GaAs/Si templates consisting of 1 lm
GaAs thin film on a V-groove patterned Si substrate by
metal-organic chemical vapor deposition (MOCVD), using
the method detailed in Refs. 8 and 9. On the GaAs-on-Si
template, microdisk laser structure was deposited in a mo-
lecular beam epitaxy (MBE) system. The MBE epi-layers
consist of, from bottom to top, a 1 lm GaAs buffer, a
600 nm Al0.7Ga0.3As post region, and a 500 nm disk region
where five-stacked InAs/InGaAs dots-in-a-well (DWELL)
structure is sandwiched by 50 nm Al0.4Ga0.6As cladding
layers.10 Fig. 1(a) shows the photoluminescence (PL) emis-
sion spectra of the as-grown epitaxial structure, with pump
power density varied from 20 to 4000 W/cm2. Ground state
emission (1.29 lm) is located within the O-band of fiber-
optic communications (1.26–1.36 lm). The micro-disk
lasers were defined using colloidal lithography, followed by
BCl3/Ar inductively coupled plasma (ICP) etching, as
shown in Fig. 1(b). A dilute suspension of SiO2 spheres in
isopropyl alcohol (IPA) was dispersed onto the sample sur-
face using a pipette and then rapidly dried on a hot plate at
110 !C. The commercial SiO2 spheres are 4 lm in diameter
with 65% variation. Using the isolated sphere-masks, ICP
etching was performed to reach a depth of "1.1 lm into the
epi-structure, stopping at the GaAs buffer layer. The disk
membrane was suspended upon the virtual GaAs-on-Si sub-
strate by partially etching the underlying Al0.7Ga0.3As sacri-
ficial layer using dilute hydrofluoric (HF) acid. The lateral
undercut was designed to be "1.6 lm to guarantee efficient
light confinement within the disk perimeter while maintain-
ing good heat sinking through the underlying pedestals.
Schematic illustration of the final device structure is pre-
sented in Fig. 1(c). Noteworthy is the unique defect trapping
effect provided by growing GaAs on V-groove nano-pat-
terned Si substrates, as indicated by the cross-sectional TEM
image near the hetero-interface in Fig. 1(d). It allows us to
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achieve high quality III–V/Si epitaxy on exact (001) silicon
substrates without incorporating intermediate Ge or other
buffer layers.11 Better compatibility with the prevailing
complementary metal oxide-semiconductor (CMOS) manu-
facturing processes and silicon-on-insulator (SOI) technolo-
gies differentiates this epitaxial growth platform with other
quantum dot lasers grown on Ge-on-Si or offcut Si
substrates.12–17

The fabricated devices were optically pumped at normal
incidence with a CW diode laser operating at 532 nm. The
excitation beam was focused to approximately 4 lm in diam-
eter. The laser emission was collected through the same
objective and analyzed by a monochromator with an InGaAs
charge-coupled device array. For temperature dependent
measurements, the sample was mounted in a helium gas flow
cryostat, with device temperature controlled from 10 K to
room temperature. Fig. 2(a) compares the normalized lasing
spectra at three times threshold pump power from 10 to

300 K. A scanning electron micrograph (SEM) image of an
optically isolated, undercut MDL is shown in the inset of
Fig. 2(a). The spectra show narrow lines corresponding to
high-quality whispering-gallery modes. At 10 K, multimode
lasing occurs. The mode at longer wavelengths wins in the
mode competition and dominates the spectrum above 80 K.
We observe red-shifting of the lasing peak with increasing
temperature. Abrupt changes towards longer wavelength
cavity modes were also observed due to the effect of the
mode overlapping with the gain spectrum. Fig. 2(b) presents
the integrated output-power intensity versus the pump power
(L–L curve) of the lasing peak from 10 to 300 K. The distinct
kinks signify the onset of laser operation over the entire tem-
perature range.

Fig. 3(a) highlights the optical transition positions in the
gain medium pumped by the lowest and highest excitation at
10 K. The emission below threshold (8.25 lW) was magni-
fied 100# and plotted together with that well above the

FIG. 1. (a) Room temperature photolu-
minescence spectra of the as-grown
structure at progressively higher excita-
tions; (b) schematic illustrations of
the fabrication procedure; (c) schematic
illustrations of the fabricated device;
and (d) cross-sectional TEM image of
the V-grooved structure, showing defect
trapping and localization.

FIG. 2. (a) Normalized lasing spectra
at three times the threshold at various
temperatures from 10 to 300 K. Inset:
90! tilted SEM image of the fabricated
micro-disk and (b) L–L curves of the
lasing peak from 10 to 300 K; the solid
lines represent linear fits to the experi-
mental data.
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threshold (495 lW). Four lasing peaks at 1162 nm, 1188 nm,
1191 nm, and 1220 nm were observed, evidenced by the pro-
nounced kinks in the L–L curves in Fig. 3(b). The sub-peak
(1188 nm) close to the main peak (1191 nm) arises from out-
of-plane polarization.7 The other three well-separated modes
correspond to WGM with different azimuthal orders, and the
mode spacing is extracted to be around 29 nm. Using the
equation of free spectral range (FSR) Dk $ k2

2pRnef f
,18 where R

is the radius of the disk and k is the emission wavelength,
the effective group index is found to be 3.95. The relative
slope efficiencies of the four modes are summarized in Fig.
3(c). The modes at longer wavelengths have larger slope effi-
ciency compared to the ones at shorter wavelengths. This
was accompanied by a moderate emission droop for the
modes at shorter wavelengths (1188 nm and 1162 nm) with
higher injection power, as shown by the L–L curves in
Fig. 3(b). The higher slope efficiency of the longest wave-
length performance suggests a higher capture efficiency in
the QDs, as well as a slightly better confinement of the
electron-hole pairs, leading to higher probability of radiative
recombination.

At 300 K, overlay of the emission spectra at the two
extreme pump powers (8.25 lW and 495 lW) in Fig. 4(a)
shows that the mode on the low-energy side wins in the
mode competition and dominates the spectrum. The winning
of the low-energy modes in the mode competition is related
to the larger QD size, corresponding to the lower energy
emission, and the superior capture efficiency. Mode spacing
at this temperature slightly increases to 35 nm compared to
the value of 29 nm at 10 K, corresponding to a lower effec-
tive group index of 3.84 at 300 K.

A rate equation analysis was carried out to fit the experi-
mental L–L curve to extract the spontaneous emission factor b.

We adopted a coupled rate equation model19,20 for the carrier
density N and the photon density P

dN

dt
¼ g

Pin

!hxV
& VggP& BN2 & CN3; (1)

dP

dt
¼ VggPþ bBN2 & P

sp
; (2)

where Pin is the pump power, !hx is the emitted photon
energy, Vg is the group velocity (7.8# 109 cm/s), B is the
bimolecular recombination coefficient (2# 10&10 cm3/s), and
C is the Auger coefficient (8# 10&29 cm6/s). The photon
lifetime sp (4.1 ps) is evaluated using the cold cavity quality
factor (2950) obtained from sub-threshold measurements.
Steady state solutions were found, assuming a gain function
of g ¼ g0 ( N&Nt

1þe(P, where g0 is the differential gain (3# 10&16

cm2), e is the gain compression factor (1# 10&17 cm3), and
Nt is the transparency carrier density (1.23# 1018 cm&3).
Fig. 4(b) presents the experimental data and rate equation an-
alytical fits using different values of b. The best fit to the
experimental data reveals a high spontaneous emission cou-
pling efficiency of 10%. The nonlinear kink in the log-log
L-L curve also occurs at the same pump power values as the
kink in the linear scale L–L version (inset in Fig. 4(b)).

Figs. 5(a) and 5(b) present the temperature dependence
of the lasing wavelength and spectral linewidth at twice the
threshold pump power, respectively. The spectral positions
of the mode redshift slightly at a rate of "0.04 nm/K from
10 K to 80 K, and from 220 K to 280 K, which is ascribed
to the temperature dependence of the cavity effective refrac-
tive index. The lasing line is at the same time governed by
the temperature shrinkage of the active region bandgap,
causing mode hopping towards longer wavelengths at 80 K

FIG. 3. (a) Laser emission spectra meas-
ured below (yellow, 8.25lW) and above
(light blue, 495lW) threshold in 10 K.
Spectrum taken at 8.25lW was ampli-
fied 100 times to be visible; (b) L–L
curves of the lasing peak at 1162 nm,
1188 nm, 1191 nm, and 1220 nm in
10 K, and the dashed lines represent lin-
ear fits to the experimental data; and (c)
threshold power as well as relative slope
efficiency of the four modes at 1162 nm,
1188 nm, 1191 nm, and 1220 nm in
10 K.
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and 280 K. The overall trend of the temperature dependent
lasing line is governed by the confinement of the QDs, and the
dependence of that confinement as a function of temperature,
as well as the theoretical InAs band-gap shrinkage, as shown
in Fig. 5(a). The theoretical InAs band-gap shrinkage is

estimated via Varshni’s formula, DE ¼ A ( T2

TþB, assuming

A¼ 0.00042 eV/K2 and B¼ 199 K.21 In Fig. 5(b), the line-
width slightly broadens to 0.4 nm. We assume this to be
related to the thermal redshift during the accumulation time of
the spectrum measurement, which is a more prominent factor
at higher temperatures.4 There is a certain fluctuation of line-
width with temperature, starting broad then reducing and then
again increasing in irregular steps. This is probably due to var-
ied amount of the spatial overlap of the QD gain spectral peak
with the position of the cavity mode at different temperatures.

The threshold pump power as a function of tempera-
ture in Fig. 5(c) shows that the threshold increases by a
factor of "2 as the temperature increases from 10 K to
300 K. This can be fit with an exponential function using
Ptha expðT=T0Þ,19 and the characteristic temperature T0 was
extracted to be around 105 K. A slight decrease in the thresh-
old from 10 K to 80 K is due to the suppressed multimode
lasing at 80 K. Otherwise, the experimental data follow the
exponential fit, which increases at higher temperatures due
to restrained carrier confinement in the QDs and enhanced

non-radiative recombination. The relative slope efficiency
decreases accordingly with increasing temperature, shown in
Fig. 5(d). This is ascribed to the combined effects of free car-
rier absorption, intervalence band absorption, and suppressed
constrains of defects.7

Figs. 6(a) and 6(b) plot the histograms of the threshold
over a number of devices at 10 K and 300 K, respectively.
The average threshold is calculated to be 160 lW at 10 K
and 250 lW at 300 K, as illustrated in Fig. 6(c). The overall
device thresholds only increase by a factor of "1.56 when
the temperature ramps from liquid helium temperature
(10 K) up to room temperature (300 K), suggesting good
thermal stability.

In conclusion, we performed systematic characterization
of lasing behavior of the monolithically integrated micro-
disk lasers on a standard (001) silicon substrate. A high char-
acteristic temperature To of 105 K was extracted through the
exponential fit of threshold power as a function of tempera-
ture from 10 K to 300 K. At 300 K, a high spontaneous emis-
sion coupling efficiency up to 10% is evidenced through rate
equation analysis. The decent thermal stability and lasing
characteristics suggest feasibility of manufacturing silicon
chips with integrated micro-size lasers, promising to realize
high-performance on chip optical links for telecommunica-
tion networks.

FIG. 4. (a) Laser emission spectra
measured below (yellow, 8.25 lW)
and above (light blue, 495 lW) thresh-
old in 300 K. Spectrum taken at
8.25 lW was amplified 100 times to be
visible; (b) L–L curve in the log-log
scale in 300 K. Rate equation model
solutions for various values of b are
also presented. The best fit to the ex-
perimental data gives a spontaneous
emission factor b of 0.1. Inset: L–L
curve in the linear scale, the dashed
line represents a linear fit to the experi-
mental data.

FIG. 5. (a)Temperature dependence of
lasing wavelength at twice the thresh-
old and theoretical InAs band-gap
shrinkage; (b) temperature dependence
of spectral linewidth at twice the
threshold (c) temperature dependence
of the threshold power, and the dashed
line represents the exponential fit to
the experimental data; and (d) temper-
ature dependence of the relative slope
efficiency.
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