
Computational Complexity

Citation
Vadhan, Salil P. 2011. Computational complexity. In Encyclopedia of Cryptography and Security,
second edition, ed. Henk C.A. van Tilborg and Sushil Jajodia. New York: Springer.

Published Version
http://refworks.springer.com/mrw/index.php?id=2703

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33907951

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33907951
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Computational%20Complexity&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=d28d73f959e703cf11ee3bc464495f24&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Computational Complexity

Salil Vadhan
School of Engineering & Applied Sciences
Harvard University

Synonyms

Complexity theory

Related concepts and keywords

Exponential time; O-notation; One-way function; Polynomial time; Security
(Computational, Unconditional); Sub-exponential time;

Definition

Computational complexity theory is the study of the minimal resources needed
to solve computational problems. In particular, it aims to distinguish be-
tween those problems that possess efficient algorithms (the “easy” problems)
and those that are inherently intractable (the “hard” problems). Thus com-
putational complexity provides a foundation for most of modern cryptogra-
phy, where the aim is to design cryptosystems that are “easy to use” but
“hard to break”. (See security (computational, unconditional).)

Theory

Running Time. The most basic resource studied in computational com-
plexity is running time — the number of basic “steps” taken by an algorithm.
(Other resources, such as space (i.e., memory usage), are also studied, but
they will not be discussed them here.) To make this precise, one needs to fix
a model of computation (such as the Turing machine), but here it suffices to
informally think of it as the number of “bit operations” when the input is
given as a string of 0’s and 1’s. Typically, the running time is measured as a
function of the input length. For numerical problems, it is assumed the input
is represented in binary, so the length of an integer N is roughly log2N .
For example, the elementary-school method for adding two n-bit numbers

1

has running time proportional to n. (For each bit of the output, we add
the corresponding input bits plus the carry.) More succinctly, it is said that
addition can be solved in time “order n”, denoted O(n) (see O-notation).
The elementary-school multiplication algorithm, on the other hand, can be
seen to have running time O(n2). In these examples (and in much of com-
plexity theory), the running time is measured in the worst case. That is, one
measures the maximum running time over all inputs of length n.

Polynomial Time. Both the addition and multiplication algorithms are
considered to be efficient, because their running time grows only mildly with
the input length. More generally, polynomial time (running time O(nc) for a
constant c), is typically adopted as the criterion of efficiency in computational
complexity. The class of all computational problems possessing polynomial-
time algorithms is denoted P. (Typically, P is defined as a class of decision
problems (i.e. problems with a yes/no answer), but here no such restriction is
made.) Thus Addition and Multiplication are in P, and more generally
one thinks of P as identifying the “easy” computational problems. Even
though not all polynomial-time algorithms are fast in practice, this criterion
has the advantage of robustness: the class P seems to be independent of
changes in computing technology. P is an example of a complexity class — a
class of computational problems defined via some algorithmic constraint, in
this case “polynomial time”.

In contrast, algorithms that do not run in polynomial time are con-
sidered infeasible. For example, consider the trial division algorithms for
integer factoring or primality testing (see primality test). For an n-bit num-

ber, trial division can take time up to 2n/2, which is exponential time rather
than polynomial time in n. Thus, even for moderate values of n (e.g. n =
200) trial division of n-bit numbers is completely infeasible for present-day
computers, whereas addition and multiplication can be done in a fraction of
a second. Computational complexity, however, is not concerned with the effi-
ciency of a particular algorithm (such as trial division), but rather whether a
problem has any efficient algorithm at all. Indeed, for primality testing, there
are polynomial-time algorithms known (see prime number), so Primality
is in P. For integer factoring, on the other hand, the fastest known algorithm
has running time greater than 2n

1/3
, which is far from polynomial. Indeed,

it is believed that Factoring is not in P; the RSA and Rabin cryptosystems
(see RSA public-key encryption, RSA digital signature scheme, Rabin cryptosystem,

2

Rabin digital signature scheme) rely on this conjecture. One of the ultimate
goals of computational complexity is to rigorously prove such lower bounds,
i.e. establish theorems stating that there is no polynomial-time algorithm for
a given problem. (Unfortunately, to date, such theorems have been elusive,
so cryptography continues to rest on conjectures, albeit widely believed ones.
More on this below.)

Polynomial Security. Given the above association of “polynomial time”
with feasible computation, the general goal of cryptography becomes to con-
struct cryptographic protocols that have polynomial efficiency (i.e., can be
executed in polynomial time) but super-polynomial security (i.e., cannot be
broken in polynomial time). This guarantees that, for a sufficiently large
setting of the security parameter (which roughly corresponds to the input
length in complexity theory), “breaking” the protocol takes much more time
than using the protocol. This is referred to as asymptotic security.

While polynomial time and asymptotic security are very useful for the
theoretical development of the subject, more refined measures are needed
to evaluate real-life implementations. Specifically, one needs to consider the
complexity of using and breaking the system for fixed values of the input
length, e.g. n = 1000, in terms of the actual time (e.g. in seconds) taken
on current technology (as opposed to the “basic steps” taken on an abstract
model of computation). Efforts in this direction are referred to as concrete
security. Almost all results in computational complexity and cryptography,
while usually stated asymptotically, can be interpreted in concrete terms.
However, they are often not optimized for concrete security (where even
constant factors hidden in O-notation are important).

Even with asymptotic security, it is sometimes preferable to demand
that the gap between the efficiency and security of cryptographic proto-
cols grows even more than polynomially fast. For example, instead of ask-
ing simply for super-polynomial security, one may ask for subexponential
security (i.e. cannot be broken in time 2n

ε
for some constant ε > 0; see

subexponential time). Based on the current best known algorithms (see the
number field sieve for factoring), it seems that Factoring may have subex-
ponential hardness and hence the cryptographic protocols based on its hard-
ness may have subexponential security. Even better would be exponential
security, meaning that the protocol cannot be broken in time 2εn for some
constant ε > 0; see exponential time. (This refers to terminology in the

3

cryptography literature. In the computational complexity literature, 2n
ε

is
typically referred to as exponential and 2εn as strongly exponential.)

Complexity-Based Cryptography. As described above, a major aim of
complexity theory is to identify problems that cannot be solved in polynomial
time and a major aim of cryptography is to construct protocols that cannot
be broken in polynomial time. These two goals are clearly well-matched.
However, since proving lower bounds (at least for the kinds of problems
arising in cryptography) seems beyond the reach of current techniques in
complexity theory, an alternative approach is needed.

Present-day complexity-based cryptography therefore takes a reductionist
approach: it attempts to relate the wide variety of complicated and subtle
computational problems arising in cryptography (forging a signature, com-
puting partial information about an encrypted message, etc.) to a few, simply
stated assumptions about the complexity of various computational problems.
For example, under the assumption that there is no polynomial-time algo-
rithm for Factoring (that succeeds on a significant fraction of composites
of the form n = pq), it has been demonstrated (through a large body of re-
search) that it is possible to construct algorithms for almost all cryptographic
tasks of interest (e.g., asymmetric cryptosystems, digital signature schemes,
secure multi-party computation, etc.). However, since the assumption that
Factoring is not in P is only a conjecture and could very well turn out to
be false, it is not desirable to have all of modern cryptography to rest on this
single assumption. Thus another major goal of complexity-based cryptogra-
phy is to abstract the properties of computational problems that enable us
to build cryptographic protocols from them. This way, even if one problem
turns out to be in P, any other problem satisfying those properties can be
used without changing any of the theory. In other words, the aim is to base
cryptography on assumptions that are as weak and general as possible.

Modern cryptography has had tremendous success with this reductionist
approach. Indeed, it is now known how to base almost all basic cryptographic
tasks on a few simple and general complexity assumptions (that do not rely
on the intractability of a single computational problem, but may be realized
by any of several candidate problems). Among other things, the text below
discusses the notion of a reduction from complexity theory that is central to
this reductionist approach, and the types of general assumptions, such as the
existence of one-way functions, on which cryptography can be based.

4

Reductions. One of the most important notions in computational com-
plexity, which has been inherited by cryptography, is that of a reduction
between computational problems. A problem Π is said to reduce to problem
Γ if Π can be solved in polynomial time given access to an “oracle” that
solves Γ (i.e. a hypothetical black box that will solve Γ on instances of our
choosing in a single time step). Intuitively, this captures the idea that prob-
lem Π is no harder than problem Γ. For a simple example, let us see that
Primality reduces to Factoring (without using the fact that Primality
is in P, which makes the reduction trivial). Suppose you have an oracle that,
when fed any integer, returns its prime factorization in one time step. Then
you could solve Primality in polynomial time as follows: on input N , feed
the oracle with N , output “prime” if the only factor returned by the oracle
is N itself, and output “composite” otherwise.

It is easy to see that if problem Π reduces to problem Γ, and Γ ∈ P,
then Π ∈ P: if the oracle queries are substituted with the actual polynomial-
algorithm for Γ, the result is a polynomial-time algorithm for Π. Turning
this around, Π /∈ P implies that Γ /∈ P. Thus, reductions give a way to use
an assumption that one problem is intractable to deduce that other prob-
lems are intractable. Much work in cryptography is based on this paradigm:
for example, one may take a complexity assumption such as “there is no
polynomial-time algorithm for Factoring” and use reductions to deduce
statements such as “there is no polynomial-time algorithm for breaking en-
cryption scheme X”. (As discussed later, for cryptography, the formaliza-
tions of such statements and the notions of reduction in cryptography are
more involved than suggested here.)

NP. Another important complexity class is NP. Roughly speaking, this
is the class of all computational problems for which solutions can be verified
in polynomial time. (NP stands for nondeterministic polynomial time. Like
P, NP is typically defined as a class of decision problems, but again that
constraint is not essential for our informal discussion.) For example, given
that Primality is in P, one can easily see that Factoring is in NP: to
verify that a supposed prime factorization of a number N is correct, simply
test each of the factors for primality and check that their product equals N .
NP can be thought of as the class of “well-posed” search problems: it is not
reasonable to search for something unless you can recognize when you have
found it. Given this natural definition, it is not surprising that the class NP

5

has taken on a fundamental position in computer science.
It is evident that P ⊆ NP, but whether or not P = NP is considered

to be one of the most important open problems in mathematics and com-
puter science. It is widely believed that P 6= NP, indeed, Factoring is one
candidate for a problem in NP \ P. In addition to Factoring, NP con-
tains many other computational problems of great importance, from many
disciplines, for which no polynomial-time algorithms are known.

The significance of NP as a complexity class is due in part to the NP-
complete problems. A computational problem Π is said to be NP-complete
if Π ∈ NP and every problem in NP reduces to Π. Thus the NP-complete
problems are the “hardest” problems in NP, and are the most likely to be
intractable. (Indeed, if even a single problem in NP is not in P, then all
the NP-complete problems are not in P.) Remarkably, thousands of nat-
ural computational problems have been shown to be NP-complete. (See
[2].) Thus, it is an appealing possibility to build cryptosystems out of NP-
complete problems, but unfortunately, NP-completeness does not seem suf-
ficient for cryptographic purposes (as discussed later).

Randomized Algorithms. Throughout cryptography, it is assumed that
parties have the ability to make random choices; indeed this is how one
models the notion of a secret key. Thus, it is natural to allow not just
algorithms whose computation proceeds deterministically (as in the defi-
nition of P), but also consider randomized algorithms — ones that may
make random choices in their computation. (Thus, such algorithms are
designed to be implemented with a physical source of randomness. See
random bit generation (hardware).)

Such a randomized (or probabilistic) algorithm A is said to solve a given
computational problem if on every input x, the algorithm outputs the correct
answer with high probability (over its random choices). The error probabil-
ity of such a randomized algorithm can be made arbitrarily small by run-
ning the algorithm many times. For examples of randomized algorithms, see
the probabilistic primality tests in the entry on prime number. The class
of computational problems having polynomial-time randomized algorithms
is denoted BPP (which stands for “bounded-error probabilistic polynomial
time”). A widely believed strengthening of the P 6= NP conjecture is that
NP 6⊆ BPP.

6

P vs. NP and Cryptography. The assumption P 6= NP (and even
NP 6⊆ BPP) is necessary for most of modern cryptography. For example,
take any efficient encryption scheme and consider the following computa-
tional problem: given a ciphertext C, find the corresponding message M
along with the key K and any randomization R used in the encryption pro-
cess. This is an NP problem: the solution (M,K,R) can be verified by
re-encrypting the message M using the key K and the randomization R and
checking whether the result equals C. Thus, if P = NP, this problem can
be solved in polynomial time, i.e. there is an efficient algorithm for breaking
the encryption scheme. (Technically, to conclude that the cryptosystem is
broken requires that the message M is uniquely determined by ciphertext C.
This will be the case for most messages if the message length is greater than
the key length. If the message length is less than or equal to the key length,
then there exist encryption schemes that achieve information-theoretic secu-
rity for a single encryption, e.g. the one-time pad, regardless of whether or
not P = NP. See Shannon’s model.)

However, the assumption P 6= NP (or even NP 6⊆ BPP) does not appear
sufficient for cryptography. The main reason for this is that P 6= NP refers
to worst-case complexity. That is, the fact that a computational problem Π
is not in P only means that for every polynomial-time algorithm A, there
exist inputs on which A fails to solve Π. However, these “hard inputs” could
conceivably be very rare and very hard to find. Intuitively, to make use of
intractability (for the security of cryptosystems), one needs to be able to
efficiently generate hard instances of an intractable computational problem.

One-way functions. The notion of a one-way function captures the kind
of computational intractability needed in cryptography. Informally, a one-
way function is a function f that is “easy to evaluate” but “hard to invert”.
That is, it is required that the function f can be computed in polynomial
time, but given y = f(x), it is intractable to recover x. The difficulty of
inversion is required to hold even when the input x is chosen at random.
Thus, one can efficiently generate hard instances of the problem ”find a
preimage of y”, by selecting x at random and setting y = f(x). (Note that
this process actually generates a hard instance together with a solution; this is
another way in which one-way functions are stronger than what follows from
P 6= NP.) To formalize the definition, one needs the concept of a negligible
function. A function ε : N→ [0, 1] is negligible if for every constant c, there

7

is an n0 such that ε(n) ≤ 1/nc for all n ≥ n0. That is, ε vanishes faster than
the reciprocal of any polynomial. Then the definition is as follows:

Definition 1 (one-way function) A one-to-one function f is one-way if
it satisfies the following conditions.

1. (Easy to evaluate) f can be evaluated in polynomial time.

2. (Hard to invert) For every probabilistic polynomial-time algorithm A,
there is a negligible function ε such that

Pr[A(f(X)) = X] ≤ ε(n),

where the probability is taken over selecting a input X of length n uni-
formly at random and the random choices of the algorithm A.

For simplicity, the definition above is restricted to one-to-one one-way
functions. Without the one-to-one constraint, the definition should refer to
the problem of finding some preimage of f(X), i.e. require the probability
that A(f(X)) ∈ f−1(f(X)) is negligible. (For technical reasons, it is also
required that f does not shrink its input too much, e.g. that the length of
|f(x)| and length of |x| are polynomially related (in both directions.)

The length n of the input can be thought of as corresponding to the
security parameter (or key length) in a cryptographic protocol using f . If f
is one-way, it is guaranteed that by making n sufficiently large, inverting f
takes much more time than evaluating f . However to know how large to set
n in an implementation requires a concrete security analogue of the above
definition, where the maximum success probability ε is specified for A with
a particular running time on a particular input length n, and a particular
model of computation.

The “inversion problem” is an NP problem (to verify that X is a preim-
age of Y , simply evaluate f(X) and compare with Y). Thus, if NP ⊆ BPP
then one-way functions do not exist. However, the converse is an open prob-
lem, and proving it would be a major breakthrough in complexity theory.
Fortunately, even though the existence of one-way functions does not appear
to follow from NP 6⊆ BPP, there are a number of natural candidates for
one-way functions.

8

Some Candidate One-Way Functions. These examples are described
informally, and may not all match up perfectly with the simplified definition
above. In particular, some are actually collections of one-way functions F =
{fi : Di → Ri}, in the functions fi are parameterized by an index i that
is generated by some randomized algorithm. (Actually, one can convert a
collection of one-way functions into a single one-way function, and conversely.
See [4].)

1. (Multiplication) f(p, q) = p · q, where p and q are primes of equal
length. Inverting f is the Factoring problem (see integer factoring,
which indeed seems intractable even on random inputs of the form p·q).

2. (Subset Sum) f(x1, . . . , xn, S) = (x1, . . . , xn,
∑

i∈S xi). Here each xi is
an n-bit integer and S ⊆ [n]. Inverting f is the Subset Sum problem
(see knapsack cryptographic schemes). This problem is known to be
NP-complete, but for the reasons discussed above, this does not pro-
vide convincing evidence that f is one way (nevertheless it seems to be
so).

3. (The Discrete Log Collection) fG,g(x) = gx, where G is a cyclic group
(e.g. G = Z∗p for prime p), g is a generator ofG, and x ∈ {1, . . . , |G|−1}.
Inverting fG,g is the Discrete Logproblem (see discrete logarithm problem),
which seems intractable. This (like the next two examples) is actually
a collection of one-way functions, parametrized by the group G and
generator g.

4. (The RSA Collection) fn,e(x) = xe mod n, where n is the product of
two equal-length primes, e satisfies gcd(e, φ(n)) = 1, and x ∈ Z∗n, .
Inverting fn,e is the RSA problem.

5. (Rabin’s Collection (see Rabin cryptosystem, Rabin digital signature scheme)
fn(x) = x2 mod n, where n is a composite and x ∈ Z∗n. Inverting fn is
known to be as hard as factoring n.

6. (Hash functions & block ciphers) Most cryptographic hash functions
seem to be finite analogues of one-way functions with respect to con-
crete security. Similarly, one can obtain candidate one-way functions
from block ciphers, say by defining f(K) to be the block cipher applied
to some fixed message using key K.

9

In a long sequence of works by many researchers, it has been shown that
one-way functions are indeed the “right assumption” for complexity-based
cryptography. On one hand, almost all tasks in cryptography imply the
existence of one-way functions. Conversely (and more remarkably), many
useful cryptographic tasks can be accomplished given any one-way function.

Theorem 1 The existence of one-way functions is necessary and sufficient
for each of the following:

• The existence of commitment schemes.

• The existence of pseudo-random number generators.

• The existence of pseudorandom functions.

• The existence of symmetric cryptosystems.

• The existence of digital signature schemes.

These results are proven via the notion of reducibility mentioned above,
albeit in much more sophisticated forms. For example, to show that the
existence of one-way functions implies the existence of pseudorandom gener-
ators, one describes a general construction of a pseudorandom generator G
from any one-way function f . To prove the correctness of this construction,
one shows how to “reduce” the task of inverting the one-way function f to
that of “distinguishing” the output of the pseudorandom generator G from a
truly random sequence. That is, any polynomial-time algorithm that distin-
guishes the pseudorandom generator can be converted into a polynomial-time
algorithm that inverts the one-way function. But if f is one-way, it cannot be
inverted, implying that the pseudorandom generator is secure. These reduc-
tions are much more delicate than those arising in, say, the NP-completeness,
because they involve non-traditional computational tasks (e.g., inversion, dis-
tinguishing) that must be analyzed in the average case (i.e. with respect to
nonnegligible success probability).

The general constructions asserted in Theorem 1 are very involved and
not efficient enough to be used in practice (though still polynomial time), so
it should be interpreted only as a “plausibility result”. However, from special
cases of one-way functions, such as one-way permutations (see one-way function)
or some of the specific candidate one-way functions mentioned earlier, much
more efficient constructions are known.

10

Trapdoor Functions. For some tasks in cryptography, most notably public-
key encryption (see public-key cryptography), one-way functions do not seem
to suffice, and additional properties are used. One such property is the trap-
door property, which requires that the function can be easily inverted given
certain “trapdoor information”. What follows is not the full definition, but
just a list of the main properties. (See also trapdoor one-way function.)

Definition 2 (trapdoor functions, informal) A collection of one-to-one
functions F = {fi : Di → Ri} is a collection of trapdoor functions if

1. (Efficient generation) There is a probabilistic polynomial-time algo-
rithm that, on input a security parameter n, generates a pair (i, ti),
where i is the index to a (random) function in the family and ti is the
associated “trapdoor information”.

2. (Easy to evaluate) Given i and x ∈ Di, one can compute fi(x) in
polynomial time.

3. (Hard to invert) There is no probabilistic polynomial-time algorithm
that on input (i, fi(x)) outputs x with nonnegligible probability. (Here,
the probability is taken over i, x ∈ Di, and the coin tosses of the in-
verter.)

4. (Easy to invert with trapdoor) Given ti and fi(x), one can compute x
in polynomial time.

Thus, trapdoor functions are collections of one-way functions with an
additional trapdoor property (Item 4). The RSA and Rabin collections de-
scribed earlier have the trapdoor property. Specifically, they can be inverted
in polynomial time given the factorization of the modulus n.

One of the main applications of trapdoor functions is for the construction
of public-key encryption schemes.

Theorem 2 If trapdoor functions exist, then public-key encryption schemes
exist.

There are a number of other useful strengthenings of the notion of a one-
way function, discussed elsewhere in this volume: claw-free permutations,
collision-resistant hash functions (see collision resistance), and universal one-way hash functions.

11

Other Interactions with Cryptography. The interaction between com-
putational complexity and cryptography has has been very fertile. The text
above describes the role that computational complexity plays in cryptogra-
phy. Conversely, several important concepts that originated in cryptography
research have had a tremendous impact on computational complexity. Two
notable examples are the notions of pseudo-random number generators and
interactive proof systems.

Open Problems

Computational complexity has a vast collection of open problems. The dis-
cussion above touched upon three that are particularly relevant to cryptog-
raphy:

• Does P = NP?

• Is Factoring in BPP?

• Does NP 6⊆ BPP imply the existence of one-way functions?

Acknowledgments.

I thank Mihir Bellare, Ran Canetti, Oded Goldreich, Burt Kaliski, and an
anonymous reviewer for helpful comments on this entry.

References

[1] Sanjeev Arora and Boaz Barak. Computational complexity. Cambridge
University Press, Cambridge, 2009. A modern approach.

[2] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and Company,
1979.

[3] Oded Goldreich. Computational complexity: a conceptual perspective.
Cambridge University Press, Cambridge, 2008.

[4] Oded Goldreich. Foundations of cryptography. Cambridge University
Press, Cambridge, 2001. Basic tools.

12

[5] Oded Goldreich. Foundations of cryptography. II. Cambridge University
Press, Cambridge, 2004. Basic Applications.

[6] Michael Sipser. Introduction to the Theory of Computation. PWS Pub-
lishing, 1997.

13

