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COMPACT GENERATION OF THE CATEGORY OF D-MODULES ON

THE STACK OF G-BUNDLES ON A CURVE

V. DRINFELD AND D. GAITSGORY

Abstract. Let G be a reductive group. Let BunG denote the stack of G-bundles on a
smooth complete curve over a field of characteristic 0, and let D-mod(BunG) denote the DG
category of D-modules on BunG. The main goal of the paper is to show that D-mod(BunG) is
compactly generated (this is not automatic because BunG is not quasi-compact). The proof
is based on the following observation: BunG can be written as a union of quasi-compact
open substacks j : U →֒ BunG, which are ”co-truncative”, i.e., the functor j! is defined on
the entire category D-mod(U).
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Introduction

0.1. The main result. Let k be an algebraically closed field of characteristic 0. Let X be a
smooth complete connected curve over k and let BunG denote the moduli stack of principal
G-bundles on X , where G is a connected reductive group.

0.1.1. The object of study of this paper is the DG category D-mod(BunG) of D-modules on
BunG. Our main goal is to prove the following theorem:

Theorem 0.1.2. The DG category D-mod(BunG) is compactly generated.

For the reader’s convenience we will review the theory of DG categories, and the notion of
compact generation in Sect. 1.

Essentially, the property of compact generation is what makes a DG category manageable.

0.1.3. The above theorem is somewhat surprising for the following reason.

It is known that if an algebraic stack Y is quasi-compact and the automorphism group of every
field-valued point of Y is affine, then the DG category D-mod(Y) is compactly generated. This
result is established in [DrGa1, Theorem 0.2.2]. In fact, the compact generation of D-mod(Y) for
most stacks Y that one encounters in practice is much easier than the above-mentioned theorem
of [DrGa1]: it is nearly obvious for stacks of the form Z/H , where Z is a quasi-compact scheme
and H an algebraic group acting on it.

However, if Y is not quasi-compact then D-mod(Y) does not have to be compactly generated.
We will exhibit two such examples in Sect. 12.1; in both of them Y will actually be a smooth
non quasi-compact scheme (non-separated in the first example, and separated in the second
one).
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0.1.4. So the compact generation of D-mod(Y) encodes a certain geometric property of the
stack Y. We do not know how to formulate a necessary and sufficient condition for D-mod(Y)
to be compactly generated.

But we do formulate a sufficient condition, which we call “truncatibility” (see Sect. 0.2.3
or Definition 4.1.1). The idea is that Y is truncatable if it can be represented as a union of
quasi-compact open substacks U so that for each of them direct image functor

j∗ : D-mod(U)→ D-mod(Y)

has a particularly nice property explained below.

0.2. Truncativeness, co-truncativeness and truncatabilty.

0.2.1. Let Y be a quasi-compact algebraic stack with affine automorphism groups of points,

and let Z
i
→֒ Y be a closed embedding. By [DrGa1, Theorem 0.2.2], both categories D-mod(Z)

and D-mod(Y) are compactly generated.

We have a pair of adjoint functors

idR,∗ : D-mod(Z)⇄ D-mod(Y) : i!.

Being a left adjoint, the functor idR,∗ preserves compactness. But there is no reason for i!

to have this property. We will say that Z is truncative in Y if i! does preserve compactness.

Truncativeness is a purely “stacky” phenomenon. In Sect. 3.2.1 we will show that it never
occurs for schemes, unless Z is a union of connected components of Y.

Let U
j
→֒ Y be the embedding of the complementary open substack. We say that U is

co-truncative in Y if Z is truncative. This property can be reformulated as saying that the
functor

j∗ : D-mod(U)→ D-mod(Y)

preserves compactness. We show that the property of co-truncativeness can be also reformulated
as existence of the functor j! : D-mod(U) → D-mod(Y), left adjoint to the restriction functor
j∗. (A priori, j! is only defined on the holonomic subcategory.)

Remark 0.2.2. The property of being compact for an object in D-mod(Y) is somewhat subtle
(e.g., it is not local in the smooth topology). In Sect. 3.5 we reformulate the notion of trunca-
tiveness and co-truncativeness in terms of the more accessible property of coherence instead of
compactness.

0.2.3. Let us now drop the assumption that Y be quasi-compact. We say that a closed substack
Z (resp., open substack U) is truncative (resp., co-truncative), if for every quasi-compact open
◦

Y ⊂ Y, the intersection Z ∩
◦

Y (resp., U ∩
◦

Y) is truncative (resp., co-truncative) in
◦

Y.

We say that Y is truncatable if it equals the union of its quasi-compact co-truncative open
substacks. We will show that a union of two co-truncative open substacks is co-truncative. So
Y is truncatable if and only if every open quasi-compact substack of Y is contained in one which
is co-truncative.

We will show (see Proposition 4.1.6) that if Y is truncatable, then D-mod(Y) is compactly
generated. (This is an easy consequence of [DrGa1, Theorem 0.2.2].)
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0.2.4. Thus Theorem 0.1.2, follows from the next statement, which is the main technical result
of this paper.

Theorem 0.2.5. The stack BunG is truncatable.

Let us explain how to cover BunG by quasi-compact open co-truncative substacks. For every

dominant rational coweight θ let Bun
(≤θ)
G ⊂ BunG denote the open substack parametrizing

G-bundles whose Harder-Narasimhan coweight 1 is ≤
G
θ (the partial ordering ≤

G
on coweights is

defined as usual: λ1 ≤
G
λ2 if λ2−λ1 is a linear combination of simple coroots with non-negative

coefficients). Equivalently, Bun
(≤θ)
G parametrizes those G-bundles PG that have the following

property: for every reduction PB to the Borel, the degree of PB (which is a coweight of G) is
≤
G
θ.

The substacks Bun
(≤θ)
G are quasi-compact and cover BunG . So Theorem 0.2.5 is a conse-

quence of the following fact proved in Sect. 9:

The substack Bun
(≤θ)
G is co-truncative if for every simple root α̌i one has

(0.1) 〈θ , α̌i〉 ≥ 2g − 2,

where g is the genus of X.

E.g., if G = GL(2) this means that the open substack

Bun
(≤m)
GL2

∩BunnGL2
⊂ BunGL2

that paramaterizes rank 2 vector bundles of degree n all of whose line sub-bundles have degree
≤ m, is co-truncative provided that 2m− n ≥ 2g − 2.

Condition (0.1) means that θ is “deep enough” inside the dominant chamber (of course, if
g ≤ 1 then the condition holds for any dominant θ).

0.2.6. Establishing truncativeness. To prove Theorem 0.2.5, we will have to show that certain
explicitly defined locally closed substacks of BunG are truncative.

We will do this by using a “contraction principle”, see Proposition 5.1.2. In its simplest
form, it says that the substack {0}/Gm →֒ An/Gm is truncative (here Gm acts on An by
homotheties).

0.3. Duality.

0.3.1. Recall the notion of dualizability of a DG category in the sense of Lurie (see Sect. 1.5.1).
Any compactly generated DG category is automatically dualizable. In particular, such is
D-mod(Y) when Y is a truncatable algebraic stack.

0.3.2. However, more is true. As we recall in Sect. 2.2.14, if Y is quasi-compact, not only is
the category D-mod(Y) dualizable, but Verdier duality defines an equivalence

D-mod(Y)∨ ≃ D-mod(Y).

It is natural to ask for a description of the dual category D-mod(Y)∨ when Y is no longer
quasi-compact, but just truncatable.

1This rational coweight was defined by Harder-Narasimhan [HN] in the case G = GL(n) and by A. Ra-
manathan [R1] for any G.
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0.3.3. As we will see in Sect. 4.2-4.4, the category D-mod(Y)∨ can be described explicitly, but
it is a priori different from D-mod(Y).

There exists a naturally defined functor

DVerdier
Y,naive : D-mod(Y)∨ → D-mod(Y),

but we show (see Proposition 4.4.5) that this functor is not an equivalence unless the closure
of every quasi-compact open in Y is again quasi-compact.

0.3.4. However, in Sect. 4.4.8 we define a less obvious functor

DVerdier
Y,! : D-mod(Y)∨ → D-mod(Y),

which may differ from DVerdier
Y,naive even for Y quasi-compact.

In general, DVerdier
Y,! is not an equivalence, but there are important and nontrivial examples

of quasi-compact and non-quasi-compact stacks Y for which DVerdier
Y,! is an equivalence.

In particular, in a subsequent publication2 it will be shown that the functor DVerdier
Y,! is an

equivalence if Y = BunG, where G is any reductive group.

Thus, for any reductive G, the DG category D-mod(BunG) identifies with its dual (in a
non-trivial way and for non-trivial reasons).

0.4. Generalizations and open questions. Let us return to the main result of this paper,
namely, Theorem 0.1.2.

0.4.1. In the situation of Quantum Geometric Langlands, one needs to consider the categories
of twisted D-modules on BunG. The corresponding analog of Theorem 0.1.2, with the same
proof, holds in this more general context.

0.4.2. Let x1, . . . , xn ∈ X . Instead of BunG , consider the stack of G-bundles on X with a
reduction to a parabolic Pi at xi, 1 ≤ i ≤ n. Most probably, in this situation an analog of
Theorem 0.1.2 holds and can be proved in a similar way.

0.4.3. Suppose now that instead of reductions to parabolics (as in Sect. 0.4.2), one considers
deeper level structures at x1, . . . , xn (the simplest case being reduction to the unipotent radical
of the Borel).

We do not know whether an analog of Theorem 0.1.2 holds in this case, and we do not know
what to expect. In any case, our strategy of the proof of Theorem 0.1.2 fails in this context.

0.4.4. Here are some more questions:

Question 0.4.5. Does the assertion of Theorem 0.1.2 (and its strengthening, Theorem 0.2.5)

hold for Y being one of the stacks BunB, BunP , BunP and B̃unP , where B is the Borel, and P
a general parabolic?

We are quite confident that the answer is “yes” for BunB, but are less sure in other cases.

Question 0.4.6. Does the assertion of Theorem 0.1.2 hold for an arbitrary connected affine
algebraic group G (i.e., without the assumption that G be reductive)?

0.5. Organization of the paper.

0.5.1. In Sect. 1 we review some basic facts regarding DG categories.

2For a draft see [Ga2].
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0.5.2. In Sect. 2 we review some general facts about the category of D-modules on an algebraic
stack Y. We first consider the case when Y is quasi-compact and make a summary of the relevant
results from [DrGa1]. We then consider the case when Y is not quasi-compact and characterize
the subcategory of D-mod(Y) formed by compact objects.

0.5.3. In Sect. 3, we introduce some of the main definitions for this paper: the notions of
truncativeness (for a locally closed substack) and co-truncativeness (for an open substack). We
study the behavior of these notions under morphisms, base change, refinement of stratification,
etc. We also discuss the “non-standard” functors associated to a truncative closed (or locally
closed) substack (see Sects. 3.3 and Remark 3.4.5), in particular, the very unusual functors i?
and j?.

0.5.4. Sect. 4 is, philosophically, the heart of this article.

In Sect. 4.1 we introduce the notion of truncatable stack. We show that if Y is truncatable
then the category D-mod(Y) is compactly generated. In particular, we obtain that Theo-
rem 0.2.5 implies Theorem 0.1.2.

In Sects. 4.2–4.5 we discuss the behavior of Verdier duality on truncatable stacks and the
relation beween the category D-mod(Y) and its dual.

0.5.5. In Sect. 5 we formulate a contraction principle, see Proposition 5.1.2. It shows that a
closed substack with the property that we call contractiveness is truncative.

In Sect. 5.3 we explicitly describe the non-standard functors i∗ and i? in the setting of
Proposition 5.1.2.

0.5.6. In Sect. 6 we prove Theorem 0.2.5 in the particular case of G = SL2. The proof in the
general case follows the same idea, but is more involved combinatorially.

0.5.7. In Sect. 7 we recall the stratification of BunG according to the Harder-Narasihman
coweight of the G-bundle. We briefly indicate a way to establish the existence of such a strati-
fication using the relative compactification of the map BunP → BunG.

0.5.8. In Sect. 8 we introduce a book-keeping device that allows to produce locally closed
substacks of BunG from locally closed substacks of BunM , where M is a Levi subgroup of G.
Certain locally closed substacks of BunG obtained in this way, will turn out to be contractive,
and hence truncative, and as such will play a crucial role in the proof of Theorem 0.2.5.

0.5.9. In Sect. 9–11 we finally prove Theorem 0.2.5. The proof amounts to combining the
Harder-Narasimhan-Shatz strata of BunG (i.e., the strata corresponding to a fixed value of
the Harder-Narasihman coweight) into certain larger locally closed substacks and applying the
contraction principle. A more detailed explanation of the idea of the proof can be found in
Sect. 9.1.

In Sect. 9 we prove Theorem 0.2.5 modulo a key Proposition 9.2.2. The latter is proved in
Sect. 10–11.

0.5.10. In Sect. 12 we prove the existence of non quasi-compact stacks Y such that the category
D-mod(Y) is not compactly generated.

Namely, we show that if Y = Y is a smooth scheme containing a non quasi-compact divisor,
then the category D-mod(Y) is not generated by compact objects. More precisely, we show that
(locally) coherent D-modules on Y that belong to the full subcategory generated by compact
objects cannot have all of T ∗(Y ) as their singular support. In particular, the D-module DY

does not belong to the subcategory.
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0.5.11. In Appendix A we recall an explicit description of open, closed, and locally closed
subsets of a (pre)-ordered set equipped with its natural topology. We use this description
(combined with the Harder-Narasihman map) to explicitly construct some locally closed sub-
stacks of BunG , see Sect. 7.4.10 and Corollary 7.4.11.

0.5.12. In Appendix B we give a variant of the proof of Theorem 9.1.2, which has some
advantages compared with the one from Sect. 9.3. The method is to define a coarsening of the
Harder-Narasimhan-Shatz stratification such that each stratum is contractive (and therefore
truncative). This is done using the Langlands retraction of the space of rational coweights onto
the dominant cone.

0.5.13. In Appendix C we prove a “stacky” generalization of the contraction principle from
Sect. 5.1 and of the adjunction from Proposition 5.3.2.

0.6. Conventions and notation.

0.6.1. Our conventions on∞-categories follow those of [DrGa1, Sect. 0.6.1]. Whenever we say
“category”, by default we mean an (∞, 1)-category. We denote by ∞ -Cat the (∞, 1)-category
of ∞-categories.

We denote by∞ -Grpd ⊂ ∞ -Cat in the (∞, 1)-subcategory spanned by∞-groupoids, a.k.a.,
spaces. We denote by C 7→ Cgrpd the functor ∞ -Cat → ∞ -Grpd right adjoint to the above
embedding. Explicitly, Cgrpd is obtained from C by discarding non-invertible 1-morphisms.

For C ∈ ∞ -Cat and objects c1, c2 ∈ C we denote by MapsC(c1, c2) ∈ ∞ -Grpd the corre-
sponding space of maps. We let HomC(c1, c2) denote the set π0 (Maps

C
(c1, c2)).

0.6.2. Schemes and stacks. This paper deals with categorical aspects of the category of D-
modules, i.e., we do not need derived algebraic geometry for this paper. Therefore, by a scheme
we shall understand a classical scheme. We let Sch (resp., Schaff) denote the category of schemes

(resp., affine schemes) over k, and Schlft (resp., Sch
aff
ft ) its full subcategory consisting of affine

schemes locally of finite type (resp., affine schemes of finite type).

By a prestack we shall mean an arbitrary functor (Schaff)op →∞ -Grpd.

By a stack we shall mean a prestack that satisfies the fppf descent condition. For the general
notion of Artin stack we refer the reader to [GL:Stacks, Sect. 4.2]. However, neither general
stacks nor Artin stacks are necessary for this paper. What we need is the more restricted (and
standard) notion of algebraic stack. We adopt the following conventions: a stack Y is said to
be an algebraic stack if:

• The diagonal morphism Y→ Y× Y is schematic, quasi-compact and quasi-separated;
• There exists a scheme Z equipped with a morphism f : Z → Y (this morphism is auto-
matically schematic, by the previous condition) such that f is smooth and surjective.

The pair (Z, f) is called a presentation or atlas of Y.

We note that this definition is slightly more restrictive than the one in [GL:Stacks, Sect.
4.2.8].
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0.6.3. Finite type(ness). All schemes, algebraic stacks and prestacks considered in this paper
will be locally of finite type over k.

We recall that a classical prestack, i.e., a functor (Schaff)op →∞ -Grpd, is said to be locally

of finite type if it takes limits in Schaff to colimits in∞ -Grpd. Equivalently, a classical prestack
is locally of finite type if it is the left Kan extension from the full subcategory Schaffft ⊂ Schaff .
The upshot is that when considering prestacks locally of finite type, one can forget about all
affine schemes altogether and restrict one’s attention to Schaffft .

An algebraic stack is said to be locally of finite type if it is such when considered as a prestack.
This is equivalent to requiring that it admit an atlas (Z, f) with Z being locally of finite type.
Or, still equivalently, that for any Z ∈ Sch equipped with a smooth map to Y, the scheme Z is of
finite type. The equivalence of these conditions is established, e.g., in [GL:Stacks, Proposition
4.9.2].

0.6.4. D-modules. We refer the reader to the paper [GR] for the theory of D-modules (a.k.a.
crystals) on prestacks locally of finite type.

For a morphism f : Y1 → Y2 of prestacks we have a tautologically defined functor

f ! : D-mod(Y2)→ D-mod(Y1).

This functor may or may not have a left adjoint, which we denote by f!.

If f is schematic3 and quasi-compact, we also have a functor of direct image

fdR,∗ : D-mod(Y1)→ D-mod(Y2).

However, when f is an open embedding, we will use the notation j∗ instead of jdR,∗, and j
∗

instead of j!, for reasons of tradition. This is not supposed to cause confusion, as the above
functors go to the same-named functors for the underlying O-modules.

0.7. Acknowledgements. The research of V. D. is partially supported by NSF grant DMS-
1001660. The research of D. G. is partially supported by NSF grant DMS-1063470. We thank
R. Bezrukavnikov for drawing our attention to Langlands’ article [La]. We are grateful to
S. Schieder for comments on the previous version of the paper.

1. DG categories

Sects. 1.1-1.6 are devoted to recollections and conventions regarding DG categories. In
Sects. 1.7-1.9 we provide a categorical framework for Sects. 4.2-4.3; this material can definitely
be skipped until it is used.

1.1. The setting.

1.1.1. Throughout this paper we will work with DG categories over the ground field k. We
refer the reader to [GL:DG] for a survey. 4

We let Vect denote the DG category of chain complexes of k-vector spaces.

We let DGCat denote the ∞-category of all DG categories. 5

3Recall that f is said to be schematic if Y1 ×
Y2

S is a scheme for any scheme S equipped with a morphism

S → Y2 .
4Whenever we talk about a DG category C, we will always assume that it is pre-triangulated, which by

definition means that Ho(C) is triangulated.
5We will ignore set-theoretic issues; however, the reader can assume that all DG categories and functors are

accessible in the sense of [Lu1, Sect. 5.4.2].
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1.1.2. Cocomplete DG categories. Our basic object of study is the (∞, 1)-category DGCatcont
whose objects are cocomplete DG categories (i.e., ones that contain arbitrary direct sums, or
equivalently, colimits), and where 1-morphisms are continuous functors (i.e., exact functors that
commute with arbitrary direct sums, or equivalently all colimits).

The construction of DGCatcont as an (∞, 1)-category has not been fully documented. A
pedantic reader can replace DGCatcont by the equivalent (∞, 1)-category of stable∞-categories
tensored over k, whose construction is a consequence of [Lu2, Sects. 4.2 and 6.3].

We have a forgetful functor DGCatcont → DGCat that induces an isomorphism on 2-
morphisms and higher.

1.1.3. Terminological deviation (i). We will sometimes encounter non-cocomplete DG categories
(e.g., the subcategory of compact objects in a given DG category). Every time that this happens,
we will say so explicitly.

1.1.4. The category DGCatcont has a natural symmetric monoidal structure given by Lurie’s
tensor product, denoted by ⊗ (see [Lu2, Sect. 6.3] or [GL:DG, Sect. 1.4] for a brief review).

Its unit object is the category Vect of chain complexes of k-vector spaces.

1.1.5. Functors. For C1,C2 ∈ DGCatcont we will denote by Functcont(C1,C2) their internal
Hom in DGCatcont, which is therefore another DG category.

1.1.6. Terminological deviation (ii). For two DG categories C1 and C2 we will sometimes en-
counter functors C1 → C2 that are not continuous (but still exact). For example, for a non-
compact object c ∈ C, such is the functor Maps

C
(c,−) : C→ Vect (see below for the notation).

Every time when we encounter a non-continuous functor, we will say so explicitly.

All exact functors C1 → C2 also form a DG category, which we denote by Funct(C1,C2).

1.1.7. Mapping spaces. Any DG category C can be thought of as an ∞-category enriched over
Vect with the same set of objects. For two objects c1, c2, we will denote by MapsC(c1, c2) ∈
Vect the corresponding Hom object.

We let Maps
C
(c1, c2) ∈ ∞ -Grpd denote the Hom-space, when we consider C as a plain

∞-category. The object MapsC(c1, c2) equals the image of τ≤0(MapsC(c1, c2)) under the
Dold-Kan functor

Vect≤0 →∞ -Grpd .

We denote by HomC(c1, c2) the object H0 (HomC(c1, c2)) ∈ Vect♥. Its underlying set
identifies with π0(MapsC(c1, c2)).

1.1.8. t-structures. Whenever a DG category C has a t-structure, we let C≤0 (resp., C≥0)
denote the full subcategory of connective (resp., co-connective) objects. We denote by C♥ the
heart of the t-structure.

1.2. Compactness and compact generation.
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1.2.1. Recall that an object c in a (cocomplete) DG categoryC is called compact if the functor

HomC(c,−) : C→ Vect♥

commutes with arbitrary direct sums. This is equivalent to the (a priori non-continuous) functor

Maps
C
(c,−) : C→ Vect

being continuous, or the functor of ∞-categories

MapsC(c,−) : C→∞ -Grpd

commuting with filtered colimits.

For a DG category C, we let Cc denote the full (but not cocomplete) DG subcategory that
consists of compact objects.

1.2.2. Compact generation. Let C be a cocomplete DG category. We say that a set of objects
cα ∈ C generates C if for every c ∈ C the following implication holds:

(1.1) HomC(cα, c) = 0, ∀α ⇒ c = 0.

This is known to be equivalent to the following condition: C does not contain a proper full
cocomplete DG subcategory that contains all the objects cα.

A cocomplete DG category C is called compactly generated if there exists a set of compact
objects cα that generates C in the above sense.

1.2.3. The following observations will be used repeatedly throughout the paper:

Let C1 and C2 be a pair of DG categories, and let G : C2 → C1 be a (not necessarily
continuous) functor. If G admits a left adjoint functor F : C1 → C2 then F is automatically
continuous.

Let F,G be as above and suppose, in addition, that C1 is compactly generated. Then G is
continuous if and only F preserves compactness (i.e., F(Cc

1) ⊂ Cc
2). This implies the “only if”

part of the following well-known proposition.

Proposition 1.2.4. Let C1 be a compactly generated DG category and F : C1 → C2 a contin-
uous DG functor. Then F has a continuous right adjoint if and only if F(Cc

1) ⊂ Cc
2.

Proof of the “if” statement. The existence of the not necessarily continuous right adjoint G

follows from the Adjoint Functor Theorem, see [Lu1, Corollary 5.5.2.9]. To test that G is
continuous, it is enough to show that the functors

MapsC1
(c1,G(−)) : C2 → Vect

are continuous for c1 ∈ Cc
1. The required continuity follows from the assumption on F. �

1.3. Ind-completions.
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1.3.1. Let C0 be an essentially small (but not cocomplete) DG category. We can functorially
assign to it a cocomplete DG category, denoted Ind(C0) (and called the ind-completion of C0),
equipped with a functor C0 → Ind(C0) and characterized by the property that restriction
defines an equivalence

(1.2) Functcont(Ind(C
0),D)→ Funct(C0,D)

for a cocomplete category D (see [Lu1, Sect. 5.3.5] for the corresponding construction for
general ∞-categories).

The category Ind(C0) can be explicitly constructed as Funct((C0)op,Vect).

It is known that the functor C0 → Ind(C0) is fully faithful, and that its essential image
belongs to the subcategory Ind(C0)c. It follows formally from (1.2) that the essential image of
C0 generates Ind(C0).

1.3.2. Thus, the assignment C0
 Ind(C0) is a way to obtain compactly generated categories.

In fact, all cocomplete compactly generated DG categories arise in this way. Namely, we have
the following assertion (see [Lu1, Proposition 5.3.5.11]):

Lemma 1.3.3. Let C be a cocomplete compactly generated DG category. Let F0 : C0 → Cc be
a fully faithful functor, such that its essential image generates C. Then the resulting functor
F : Ind(C0)→ C, obtained from F0 via (1.2), is an equivalence.

As a consequence, we obtain:

Corollary 1.3.4. Let C be a cocomplete compactly generated DG category. Then the tautolog-
ical functor Ind(Cc)→ C is an equivalence.

1.4. Karoubi-completions.

1.4.1. Let C0 be an essentially small (but non-cocomplete) DG category. We say that C0 is
Karoubian if its homotopy category is idempotent-complete.

For example, for a cocomplete compactly generated DG category C, the corresponding sub-
category Cc is Karoubian.

1.4.2. Let C0 → C0
Kar be a functor between essentially small (but non-cocomplete) DG cate-

gories.

We say that the above functor realizes C0
Kar as a Karoubi-completion of C0 if restriction

defines an equivalence

Funct(C0
Kar,

′C0)→ Funct(C0, ′C0)

for any Karoubian ′C0 . Clearly, C
0
Kar , if it exists, is defined up to a canonical equivalence.

The following is a reformulation of the Thomason-Trobaugh-Neeman localization theorem
(see [N, Theorem 2.1] or [BeV, Propostion 1.4.2]):

Lemma 1.4.3.

(a) Let C0 be an essentially small (but not cocomplete) DG category. The canonical functor
C0 → Ind(C0)c realizes Ind(C0)c as a Karoubi-completion of C0.

(b) Every object of Ind(C0)c can be realized as a direct summand of one in C0 ⊂ Ind(C0)c.

Lemma 1.4.3 implies that the functor Ho(C0) → Ho(C0
Kar) identifies Ho(C0

Kar) with the
idempotent completion of Ho(C0).
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1.4.4. We obtain that the assignments

C0
 Ind(C0) and C Cc

define mutually inverse equivalences between the appropriate ∞-categories.

The two ∞-categories are as follows. One is DGCatKar, whose objects are essentially small
Karoubian DG categories and morphisms are exact functors. The other is DGCatcomp.gen.

cont,pr.comp.,
whose objects are cocomplete compactly generated categories and morphisms are continuous
functors preserving compactness.

1.4.5. Let C0 be an essentially small (but not cocomplete) DG category. Let S be a subset of
its objects.

We say that S Karoubi-generates C0 if every object in the homotopy category of C0 can be
obtained from objects in S by a finite iteration of operations of taking the cone of a morphism,
and passing to a direct summand of an object.

By combining Lemmas 1.4.3 with 1.3.3 we obtain:

Corollary 1.4.6. Let C be a cocomplete DG category. Let S ⊂ Cc be a subset of objects that
generates C. Then S Karoubi-generates Cc.

1.5. Symmetric monoidal structure and duality.

1.5.1. The notion of dual of a DG category. A DG categoryC is called dualizable if it is such as
an object of the symmetric monoidal category (DGCatcont,⊗). We refer the reader to [DrGa1,
Sect. 4.1] for a review of some of the properties of this notion. The most important ones are
listed below.

For a dualizable category C we denote by C∨ its dual. One constructs C∨ explicitly as

(1.3) C∨ ≃ Functcont(C,Vect).

In addition, for any D ∈ DGCatcont, the natural functor

C∨ ⊗D→ Functcont(C,D)

is an equivalence.

1.5.2. If F : C1 → C2 is a (continuous) functor between dualizable categories, there exists a
canonically defined dual functor F∨ : C∨2 → C∨1 (the construction follows, e.g., from (1.3)). The
assignment F 7→ F∨ is functorial in F. One has (F∨)∨ = F, (G ◦ F)∨ = F∨ ◦ G∨.

From here we obtain that functors

F : C1 ⇆ C2 : G

are mutually adjoint, then so are the functors

G∨ : C∨2 ⇆ C∨1 : F∨.

1.5.3. If C is compactly generated, then it is dualizable. We have a canonical identification

(C∨)c ≃ (Cc)op.

Vice versa, if C1 and C2 are two compactly generated categories, then an identification

Cc
1 ≃ (Cc

2)
op

gives rise to an identification

C∨1 ≃ C2.
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1.6. Limits of DG categories. The reason that we work with DG categories rather than
with triangulated ones is that the limit (i.e., projective limit) of DG categories is well-defined
as a DG category (while the corresponding fact for triangulated categories is false).

More precisely, the (∞, 1)-categories DGCatcont and DGCat admit limits and the forget-
ful functor DGCatcont → DGCat commutes with limits (this is essentially [Lu1, Proposition
5.5.3.13]) This is important for us because the DG category of D-modules on an algebraic stack
is defined as a limit (see Sect. 2.1.1 below).

1.6.1. Let

i 7→ Ci, (i→ j) 7→ (φi,j ∈ Functcont(Ci,Cj))

be a diagram of DG categories, parameterized by an index category I. The limit

C := lim
←−
i∈I

Ci

is a priori defined by a universal property in DGCatcont: for a DG category D we have a
functorial isomorphism

(Functcont(D,C))
grpd ≃ lim

←−
i∈I

(Functcont(D,Ci))
grpd

where the in the left-hand side the limit is taken in the (∞, 1)-category ∞ -Grpd. We remind
that the superscript “grpd” means that we are taking the maximal ∞-subgroupoid in the
corresponding ∞-category.

1.6.2. Note that [Lu1, Corollary 3.3.3.2 ] provides a more explicit description of C. Namely,
objects of C are Cartesian sections, i.e., assignments

i (ci ∈ Ci), φi,j(ci)
αφi,j

≃ cj ,

equipped with data making αφi,j coherently associative. In fact, this description follows
easily from the above functorial description, by taking D = Vect, and using the fact
Functcont(Vect,C) ≃ C as DG categories.

If c := (ci, αφi,j ) and c̃ := (c̃i, α̃φi,j ) are two such objects, then one can upgrade the assign-
ment

i 7→Maps
Ci

(ci, c̃i)

into a homotopy I-diagram in Vect, and

MapsC(c, c̃) ≃ lim
←−
i∈I

MapsCi
(ci, c̃i)

as objects of Vect.

1.6.3. The following observation will be useful in the sequel. Let C = lim
←−
i∈I

Ci be as above, and

let

(α ∈ A) 7→ (cα ∈ C)

be a collection of objects of C parameterized by some category A. In particular, for every i ∈ I
we obtain a functor

(α ∈ A) 7→ (ci,α ∈ Ci).

We have:



THE CATEGORY OF D-MODULES ON BunG 15

Lemma 1.6.4. For every i, the map from colim
−→
α∈A

ci,α ∈ Ci to the i-th component of the object

colim
−→
α∈A

cα is an isomorphism.

In other words, colimits in a limit of DG categories can be computed component-wise.

Remark 1.6.5. The assertion of Lemma 1.6.4 can be reformulated as saying that the evaluation
functors evi : C → Ci commute with colimits, i.e., are continuous. This is tautological from
the definition of C as a limit in the category DGCatcont.

1.7. Colimits in DGCatcont. The goal of the remaining part of Sect. 1 is to provide a cate-
gorical framework for Sects. 4.2-4.3. This material is not used in other parts of the article.

1.7.1. As was mentioned in Sect. 1.6, limits in DGCatcont are the same as limits in DGCat.
However, colimits are different (for example, the colimit taken in DGCat does not have to be
cocomplete).

It is known to experts that under suitable set-theoretical conditions, colimits in DGCatcont
always exist. We are unable to find a really satisfactory reference for this fact.

On the other hand, in this paper we work only with colimits of those functors

Ψ : I → DGCatcont

that satisfy the following condition: for every arrow i → j in I the corresponding functor
ψi,j : Ψ(i)→ Ψ(j) admits a continuous right adjoint. In this case existence of the colimit of Ψ
is provided by Proposition 1.7.5 below.

1.7.2. The setting. Let I be a small category, and let Ψ : I → DGCatcont be a functor

i Ci, (i→ j) ∈ I  ψi,j ∈ Functcont(Ci,Cj).

Assume that for every arrow i → j in I, the above functor ψi,j admits a continuous right
adjoint, φj,i .

We can then view the assignment

i Ci, (i→ j) ∈ I  φj,i ∈ Functcont(Cj ,Ci).

as a functor Φ : Iop → DGCatcont .

1.7.3. Remark. Some readers may prefer to assume, in addition, that each DG category Ci

is compactly generated. As explained in Sect. 1.9 below, this special case of the situation of
Sect. 1.7.2 is very easy (Propositions 1.7.5 and 1.8.3 formulated below become obvious, and
it is easy to understand “who is who”). Moreover, this case is enough for the applications in
Sects. 4.2-4.3.

1.7.4. The following proposition is a variant of [Lu1, Corollary 5.5.3.4]; a digest of the proof
is given in [GL:DG, Lemma 1.3.3].

Proposition 1.7.5. In the situation of Sect. 1.7.2, the colimit

colim
−→
i∈I

Ci := colim
−→
I

Ψ ∈ DGCatcont

exists and is canonically equivalent to the limit

lim
←−
i∈Iop

Ci := lim
←−
Iop

Φ ∈ DGCatcont ;
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the equivalence is uniquely characterized by the condition that for i0 ∈ I, the evaluation functor

evi0 : lim
←−
i∈Iop

Ci → Ci0

is right adjoint to the tautological functor

insi0 : Ci0 → colim
−→
i∈I

Ci ,

in a way compatible with arrows in I.

The above proposition can be reformulated as follows. Let C denote the limit of the DG
categories Ci . The claim is that each functor evi : C → Ci admits a left adjoint functor
′insi : Ci → C, and that the functors ′insi : Ci → C together with the isomorphisms

′insj ◦ψi,j ≃
′insi , (i→ j) ∈ I,

that one obtains by adjunction, make C into a colimit of the DG categories Ci .

Remark 1.7.6. Let I be filtered. In this case one can show (see [GL:DG, Lemma 1.3.6]) that
if an index i0 ∈ I is such that for every arrow i0 → i the functor ψi0,i : Ci0 → Ci is fully
faithful then the functor insi0 is fully faithful. If C is compactly generated this follows from
Lemma 1.9.5(ii) below.

1.8. Colimits and duals.

1.8.1. Assume now that the categories Ci are dualizable. Then we can produce yet another
functor

Φ∨ : I → DGCatcont

that sends
i C∨i , (i→ j) ∈ I  (φj,i)

∨ ∈ Functcont(C
∨
i ,C

∨
j ).

1.8.2. In this case we have the following result ([GL:DG, Lemma 2.2.2]):

Proposition 1.8.3. The category

lim
←−
i∈Iop

Ci := lim
←−
Iop

Φ

is dualizable, and its dual is given by

colim
−→
i∈I

C∨i := colim
−→
I

Φ∨.

This identification is uniquely characterized by the property that for i0 ∈ I, we have

(1.4) (insi0,Φ∨)∨ ≃ evi0,Φ ,

in a way compatible with arrows in I.

In formula (1.4), the notation insi0,Ψ∨ means the functor

insi0 : C∨i0 → colim
−→
I

Φ∨,

and the notation evi0,Φ means the functor

evi0 : lim
←−
Iop

Φ→ Ci0 .

Remark 1.8.4. By adjunction between ins and ev (see Proposition 1.7.5), one gets from (1.4) a
similar isomorphism (insi0,Ψ)

∨ ≃ evi0,Ψ∨ .
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1.9. Colimits of compactly generated categories. The main goal of this subsection is to
demonstrate that the results of Sects. 1.7-1.8 are very easy under the additional assumption
that each DG category Ci is compactly generated.

1.9.1. Who is who. Suppose that in the situation of Sect. 1.7.2 each of the categories Ci is
compactly generated, so

Ci ≃ Ind(Cc
i )

or equivalently,

(1.5) Ci ≃ Funct((Cc
i )

op,Vect).

By Proposition 1.2.4, the assumption that the functor ψi,j : Ci → Cj has a continuous right
adjoint just means that ψi,j(C

c
i ) ⊂ Cc

j (so ψi,j is the ind-extension of a functor ψci,j : C
c
i → Cc

j).

Moreover, the right adjoint functor φj,i : Cj → Ci is just the restriction functor

Funct((Cc
j)

op,Vect)→ Funct((Cc
i )

op,Vect)

corresponding to ψci,j : C
c
i → Cc

j .

1.9.2. On Propositions 1.7.5 and 1.8.3 in the compactly generated case.

Set C := colim
−→
i∈I

Ci . In our situation the existence of this colimit is clear: in fact,

(1.6) C ≃ Ind( colim
−→
i∈I

Cc
i),

where the colimit in the right hand side is computed in DGCat.

Just as in Sect. 1.9.1, we can rewrite (1.6) as

(1.7) C ≃ Funct( colim
−→
i∈I

(Cc
i )

op,Vect).

Now the canonical equivalence

C ≃ lim
←−
i∈Iop

Ci

from Proposition 1.7.5 becomes obvious: this is just the composition

C ≃ Funct( colim
−→
i∈I

(Cc
i )

op,Vect) ≃ lim
←−
i∈Iop

Funct((Cc
i )

op,Vect) ≃ lim
←−
i∈Iop

Ci ,

where the first equivalence is (1.7) and the third one comes from (1.5).

Proposition 1.8.3 says that C is dualizable and

(1.8) C∨ ≃ colim
−→
i∈I

C∨i .

This is clear because by formula (1.6) and Sect. 1.5.3, both sides of (1.8) canonically identify
with

Ind( colim
−→
i∈I

(Cc
i )

op)

(the colimit in this formula is computed in DGCat).
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1.9.3. As a consequence of (1.6), we obtain the following

Corollary 1.9.4. In the situation of Sect. 1.9.1 the category C is compactly generated. More
precisely, objects of C of the form

(1.9) insi(c), i ∈ I, c ∈ Cc
i

are compact and generate C. �

In addition, one has the following lemma.

Lemma 1.9.5. Suppose that in the situation of Sect. 1.9.1 the category I is filtered. Then

(i) every compact object of C is of the form (1.9);

(ii) for any i, i′ ∈ I, c ∈ Cc
i , and c′ ∈ Cc

i′ the canonical map

colim
j, α:i→j, β:i′→j

MapsCj
(ψi,j(c), ψi′,j(c

′))→MapsC(insi(c), insi′(c
′))

is an isomorphism.

Proof. For statement (ii), see [Roz].

Using (ii) and the assumption that I is filtered, it is easy to see that the class of objects
of the form (1.9) is closed under cones and direct summands. So (i) follows from (ii) and
Corollary 1.4.6. �

2. Preliminaries on the DG category of D-modules on an algebraic stack

In this section we recall some definitions and results from [DrGa1].

2.1. D-modules on prestacks and algebraic stacks.

2.1.1. Let Y be a prestack (always assumed locally of finite type). Recall following [DrGa1,
Sect. 6.1] that the category D-mod(Y) is defined as the limit

(2.1) lim
←−

S∈(Schaff
ft )/Y

D-mod(S),

where the limit is taken in the (∞, 1)-category DGCatcont. Here

S 7→ D-mod(S)

is the functor

(Schaffft )op → DGCatcont

were for f : S′ → S the corresponding map D-mod(S)→ D-mod(S′) is f !.

I.e., as was explained in Sect. 1.6.2, informally, an object F ∈ D-mod(BunG) is an assignment
for every S → Y of an object FS ∈ D-mod(S), and for every f : S′ → S over Y of an isomorphism
f !(FS) ≃ FS′ .

In particular, for F1,F2 ∈ D-mod(BunG), the complex Maps(F1,F2) is calculated as

lim
←−

S∈(Schaff
ft

)/Y

MapsD-mod(S)((F1)S , (F2)S).

This definition has several variants. For example, we can replace the category of affine
schemes by that of quasi-compact schemes, or all schemes.
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2.1.2. Assume now that Y is an Artin stack (see [GL:Stacks, Sect. 4] for our conventions
regarding Artin stacks).

In this case, as in [Ga1, Corollary 11.2.3], in the formation of the limit in (2.1), we can

replace the category (Schaffft )/Y by its non-full subcategory (Schaffft )/Y,smooth, where we restrict
objects to be those pairs (S, g : S → Y) for which the map g is smooth, and 1-morphisms to
smooth maps between affine schemes.

As before, we can replace the word “affine” by “quasi-compact”, or just consider all schemes.

2.2. D-modules on a quasi-compact algebraic stack.

2.2.1. QCA and locally QCA stacks.

QCA is shorthand for “quasi-compact and with affine automorphism groups”.

Definition 2.2.2. We say that an algebraic stack Y is locally QCA if the automorphism groups
of its field-valued points are affine. We say that Y is QCA if it is quasi-compact and locally
QCA.

Convention: in this article all stacks will be assumed to be locally QCA. The reason is clear
from Theorem 2.2.4 below.

2.2.3. A property of QCA stacks. The following result is established in [DrGa1, Theorem 8.1.1].

Theorem 2.2.4. Let Y be a QCA stack. Then the category D-mod(Y) is compactly generated.

Remark 2.2.5. In fact, [DrGa1, Theorem 8.1.1] produces an explicit set of compact generators
of D-mod(Y). These are objects induced from coherent sheaves on Y.

Remark 2.2.6. Before [DrGa1], the above result was known for algebraic stacks that can be
represented as Z/G, where Z is a quasi-compact scheme and G is an affine algebraic group
acting on S. Most quasi-compact Artin stacks that appear in practice (e.g., all quasi-compact
open substacks of BunG) admit such a representation. More generally, it was known for algebraic
stacks that are perfect in the sense of [BFN].

2.2.7. Cartesian products. The following result is established in [DrGa1, Corollary 8.3.4].

Proposition 2.2.8. Let Y and Y′ be QCA stacks. Then the natural functor

D-mod(Y)⊗D-mod(Y′)→ D-mod(Y× Y′)

is an equivalence.

Remark 2.2.9. In fact, as is remarked in the proof of [DrGa1, Corollary 8.3.4], the assertion
of Proposition 2.2.8 is valid for any pair of prestacks Y and Y′ as long as either D-mod(Y) or
D-mod(Y′) is dualizable (see Sect. 1.5.1).

2.2.10. Compactness and coherence. Let Z be a quasi-compact scheme. An object of D-mod(Z)
is said to be coherent if it is a bounded complex whose cohomology sheaves are coherent D-
modules.

It is known that the (non cocomplete) subcategory D-modcoh(Z) that consists of coherent
objects coincides with D-mod(Z)c (see [DrGa1, Sect. 5.1.17]). Recall from Sect. 1.2.1 that for
a DG category C we denote by Cc the full subcategory of compact objects.

For an algebraic stack Y, an object F ∈ D-mod(Y) is said to be coherent if f !(F) (or equiva-
lently, f∗dR(F)) is coherent for any smooth map f : Z → Y, where Z is a quasi-compact scheme.
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So by definition, the property of coherence is local for the smooth topology. The full (but
non-cocomplete) subcategory of coherent objects of D-mod(Y) is denoted by D-modcoh(Y).

Theorem 2.2.11. Let Y be a QCA stack.

(i) We have the inclusion D-mod(Y)c ⊂ D-modcoh(Y).

(ii) The above inclusion is an equality if and only if for every geometric point y of Y, the
quotient of the automorphism group Aut(y) by its unipotent radical is finite.

This theorem is proved in [DrGa1, Lemma 7.3.3 and Corollary 10.2.7].

Remark 2.2.12. One may wonder how far coherence is from compactness. The answer is pro-
vided by the notion of safety, introduced in [DrGa1, Sect. 9.2]. In [DrGa1, Proposition 9.2.3]
it is shown that an object of D-modcoh(Y) is compact if and only if it is safe.

Remark 2.2.13. Note that the notion of coherence of D-modules makes sense for any algebraic
stack Y, i.e., it does not have to be quasi-compact: we test it by smooth maps Z → Y, where
Z is a quasi-compact scheme. The inclusion of point (i) of Theorem 2.2.11 remains valid in
this context. The proof is very easy: for a map f : Z → Y, the functor f∗dR sends compacts to
compacts because it admits a continuous right adjoint, namely fdR,∗.

2.2.14. Verdier duality. Let Y be a QCA stack. Accoding to [DrGa1, Sect. 7.3.4], The (non-
cocomplete) DG category D-modcoh(Y) carries a natural anti-involution

DVerdier
Y : (D-modcoh(Y))

op → D-modcoh(Y),

which we refer to as Verdier duality.

The following key feature of this functor is established in [DrGa1, Corollary 8.4.2]:

Theorem 2.2.15. The functor DVerdier
Y sends the subcategory

(D-mod(Y)c)op ⊂ (D-modcoh(Y))
op

to D-mod(Y)c ⊂ D-modcoh(Y).

2.2.16. By Sect. 1.5.3, we obtain that the resulting functor

DVerdier
Y : (D-mod(Y)c)op → D-mod(Y)c

uniquely extends to an equivalence

(2.2) DVerdier
Y : D-mod(Y)∨ ≃ D-mod(Y).

Alternatively, we can view the Verdier duality functor as follows. By Sect. 1.5.1, the DG
category Functcont(D-mod(Y),D-mod(Y)) identifies tautologically with

D-mod(Y)∨ ⊗D-mod(Y).

The equivalence (2.2) is characterized by the property that the identity functor on D-mod(Y)
corresponds to the object of D-mod(Y)⊗D-mod(Y) that identifies via Proposition 2.2.8 with

(∆Y)dR,∗(ωY) ∈ D-mod(Y× Y).

Here ωY ∈ D-mod(Y) is the dualizing object and ∆Y : Y→ Y× Y is the diagonal.

Let Y1,Y2 be QCA stacks. If F : D-mod(Y1)→ D-mod(Y2) is a continuous functor then the
dual functor F∨ : D-mod(Y2)

∨ → D-mod(Y1)
∨ (see Sect. 1.5.2) will be considered, via (2.2), as

a functor D-mod(Y2)→ D-mod(Y1).

We will use the following fact [DrGa1, Proposition 8.4.8].
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Proposition 2.2.17. For any schematic quasi-compact morphism f : Y1 −→ Y2 , the functors

fdR,∗ : D-mod(Y1)→ D-mod(Y2), f ! : D-mod(Y2)→ D-mod(Y1)

are dual to each other in the sense of Sect. 1.5.2.

2.3. Non quasi-compact algebraic stacks. Let Y be now a stack, which is only assumed
to be locally QCA. Then every quasi-compact open substack U ⊂ Y is QCA, so the category
D-mod(U) is compactly generated by Theorem 2.2.4. However, it is not true, in general, that
the category D-mod(Y) is compactly generated. For a counterexample, see Sect. 12.

In this subsection we give a description of the subcategory of compact objects

D-mod(Y)c ⊂ D-mod(Y),

see Proposition 2.3.7 below.

2.3.1. The category D-mod(Y) as a limit. The following statement immediately follows from
the definition of D-mod(Y), see Sect. 2.1.1.

Lemma 2.3.2. The restriction functor

D-mod(Y)→ lim
←−
U⊂Y

D-mod(U),

is an equivalence, where the limit is taken over the poset of open quasi-compact substacks of Y.

In particular, we obtain that for F1,F2 ∈ D-mod(Y), the natural map

(2.3) MapsD-mod(Y)(F1,F2)→ lim
←−
U⊂Y

MapsD-mod(U)(F1|U ,F2|U )

is an isomorphism.

The following observation will be useful in the sequel:

Corollary 2.3.3. Suppose that a family of objects Fα ∈ D-mod(Y) is locally finite, i.e., for
every quasi-compact open U ⊂ Y the set of α’s such that Fα|U 6= 0 is finite. Then the map

⊕
α
Fα →

α
ΠFα

is an isomorphism.

Proof. Follows immediately from (2.3) and Lemma 1.6.4. �

2.3.4. The functors j∗ and j!. Let U
j
→֒ Y be an open substack. We have a pair of (continuous)

adjoint functors

j∗ : D-mod(Y)⇄ D-mod(U) : j∗.

In particular, the functor j∗ sends D-mod(Y)c to D-mod(U)c.

Now, the functor j∗ has a partially defined left adjoint, denoted j!. It again follows auto-
matically that if for FU ∈ D-mod(U)c, the object j!(FU ) ∈ D-mod(Y) is defined, then it is
compact.

We claim:
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Lemma 2.3.5. Let FU ∈ D-mod(U) be such that j!(FU ) is defined.

(a) The canonical map

(2.4) FU → j∗(j!(FU ))

is an isomorphism.

(b) If j′ : U ′ →֒ Y is another open substack, then

(j′)∗(j!(FU )) ≃ j̃!(FU |U∩U ′),

(where j̃ : U ∩ U ′ →֒ U ′). In particular, j̃!(FU |U∩U ′ ) is defined.

Proof. The functor j∗ ◦ j! is the partially defined left adjoint of j∗ ◦ j∗, and the natural trans-
formation Id → j∗ ◦ j! is obtained by adjunction from the co-unit j∗ ◦ j∗ → Id. However, the
latter is an isomorphism since j∗ is fully faithful.

Statement (b) follows similarly. �

2.3.6. A description of the subcategory D-mod(Y)c ⊂ D-mod(Y).

Proposition 2.3.7. An object F ∈ D-mod(Y) is compact if and only if

(2.5) F = j!(FU )

for some open quasi-compact U
j
→֒ Y and some FU ∈ D-mod(U)c.

Formula (2.5) should be understood as follows: the partially defined functor j! is defined on
FU , and the resulting object is isomorphic to F.

Remark 2.3.8. By Lemma 2.3.5(a), the object FU can be recovered from F as F|U := j∗(F).

2.3.9. Proof of Proposition 2.3.7. First, let us give two more reformulations of condition (2.5):

Lemma 2.3.10. For F ∈ D-mod(Y) the following conditions are equivalent:

(1) F = j!(FU ) for some FU ∈ D-mod(U).

(2) For any F1 ∈ D-mod(Y), supported on Y− U , we have HomD-mod(Y)(F,F1) = 0.

(3) For any U
j̃
→֒ U ′

j′

→֒ Y, where U ′ is another open quasi-compact substack of Y, we have:

F|U ′ ≃ j̃!(FU ),

in particular, the object j̃!(FU ) is defined.

Proof. By adjunction, (1)⇔(2). The implication (1)⇒(3) follows from Lemma 2.3.5(b).

Let us show that (3) implies (2). By formula (2.3), for any F,F1 ∈ D-mod(Y) one has

(2.6) MapsD-mod(Y)(F,F1) ≃ lim
←−
U ′

MapsD-mod(U ′)(F|U ′ ,F1|U ′).

If F1 is supported on Y− U then all the terms in the RHS are zero, so the LHS is zero. �

Let us now prove Proposition 2.3.7.

Proof. As was remarked in Sect. 2.3.4, if (2.5) holds then compactness of F follows by adjunc-
tion.

Conversely, suppose F ∈ D-mod(Y) is compact. Then by Sect. 2.3.4, for every open U ⊂ Y

the object F|U ∈ D-mod(U) is compact. So it remains to show that (2.5) holds for some

quasi-compact open U
j
→֒ Y.
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Assume the contrary. Using the equivalence (1)⇔(3) of Lemma 2.3.10, we obtain that for
every quasi-compact open U ⊂ Y there is a quasi-compact open U ′ ⊂ Y containing U such that
(jU,U ′ )!(F|U ) 6= (F|U ′ ) (here jU,U ′ : U →֒ U ′).

Thus, we obtain an increasing sequence of open quasi-compact substacks Ui ⊂ Y such
that (jUi,Ui+1)!(F|Ui) 6= F|Ui+1 . Therefore, by Lemma 2.3.10, for each i there exists Ei ∈
D-mod(Ui+1) such that Ei|Ui = 0 but Hom(F|Ui+1 ,Ei) 6= 0.

Let V be the union of the Ui’s and let Ẽi ∈ D-mod(V ) be the direct image of Ei under
Ui →֒ V . Then

(2.7) Hom(F|V , Ẽi) = Hom(F|Ui+1 ,Ei) 6= 0.

By Corollary 2.3.3,

(2.8) Hom(F|V ,⊕
i
Ẽi) ≃

∏

i

Hom(F|V , Ẽi).

On the other hand, by Sect. 2.3.4, F|V is compact, so Hom(F|V ,⊕
i
Ẽi) ≃ ⊕

i
Hom(F|V , Ẽi). This

contradicts (2.8) because of (2.7). �

3. Truncativeness and co-truncativeness

Until the last subsection of this section we let Y be a QCA stack.

3.1. The notion of truncative substack.

3.1.1. Let Z
i
→֒ Y be a closed substack, and let Y

j
←֓ U be the complementary open. Consider

the corresponding pairs of adjoint functors

idR,∗ : D-mod(Z)⇄ D-mod(Y) : i!, j∗ : D-mod(Y)⇄ D-mod(U) : j∗ .

Recall that by Theorem 2.2.4, all the categories involved are compactly generated.

Proposition 3.1.2. The following conditions are equivalent:

(i) The functor i! sends D-mod(Y)c to D-mod(Z)c.

(i′) The functor i! admits a continuous right adjoint.

(ii) The functor j∗ sends D-mod(U)c to D-mod(Y)c.

(ii′) The functor j∗ admits a continuous right adjoint.

(iii) The functor j!, left adjoint to j
∗, is defined on all of D-mod(U).

(iii′) The functor j!, left adjoint to j
∗, is defined on D-mod(U)c.

(iv) The functor i∗dR, left adjoint to idR,∗, is defined on all of D-mod(Y).

(iv′) The functor i∗dR, left adjoint to idR,∗, is defined on D-mod(Y)c.

Note that in the situation of (iii) and (iv) if the functors j! and i∗dR are defined they are
automatically continuous by adjunction.

To prove the proposition, we need the following lemma.

Lemma 3.1.3. The essential image of D-mod(Y)c under j∗ : D-mod(Y)→ D-mod(U) Karoubi-
generates D-mod(U)c.

Proof. Since j∗ has a continous right adjoint j∗ , we have j∗(D-mod(Y)c) ⊂ D-mod(U)c. Since
the functor j∗ is conservative j∗(D-mod(Y)c) generates D-mod(U). By Corollary 1.4.6, this
implies that j∗(D-mod(Y)c) Karoubi-generates D-mod(U)c. �
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Proof of Proposition 3.1.2. Since j∗ preserves compactness and idR,∗ is fully faithful and con-
tinuous, the fact that (ii) implies (i) follows from the exact triangle

idR,∗(i
!(F))→ F → j∗ ◦ (j

∗(F)).

The implication (i)⇒(ii) follows from Lemma 3.1.3 and the same exact triangle.

The equivalences (i)⇔(i′) and (ii)⇔(ii′) follow from (the tautological) Proposition 1.2.4.

Let us show that (iii′)⇔(iii)⇔(ii′). The full subcategory of objects of D-mod(U) on which
j! is defined is closed under colimits. Since D-mod(U) is generated by D-mod(U)c we see that
(iii′)⇔(iii). By Proposition 2.2.17, the dual of the functor j∗ = j! : D-mod(Y) → D-mod(U)
identifies, via the self-duality equivalences

DVerdier
U : D-mod(U)∨ ≃ D-mod(U), DVerdier

Y : D-mod(Y)∨ ≃ D-mod(Y),

with j∗ : D-mod(U) → D-mod(Y). By duality (see Sect. 1.5.2), the existence of a continuous
right adjoint to j∗ is equivalent to the existence of (the automatically continuous) left adjoint
of j∨∗ ≃ j

∗. I.e., (iii)⇔(ii′).

Similarly to the above proof of (iii′)⇔(iii)⇔(ii′), one shows that (iv′)⇔(iv)⇔(i′). �

3.1.4. The following definition is crucial for this paper.

Definition 3.1.5. A closed substack Z
i
→֒ Y is called truncative (resp., an open substack U

j
→֒ Y

is called co-truncative) if it satisfies the equivalent conditions of Proposition 3.1.2.

3.1.6. Let us reformulate Definition 3.1.5 in terms of the non-cocomplete DG categories
D-mod(Y)c, D-mod(Z)c, D-mod(U)c.

First, let Z
i
→֒ Y be any closed substack, and let U

j
→֒ Y be the complementary open, then

we have an exact sequence6 of Karoubian (non-cocomplete) DG categories

(3.1) 0→ D-mod(Z)c
(idR,∗)

c

→ D-mod(Y)c
(j∗)c

→ D-mod(U)c → 0.

The exactness of (3.1) follows from the fact that the corresponding sequence of the ind-
completions

0→ D-mod(Z)
idR,∗
→ D-mod(Y)

j∗

→ D-mod(U)→ 0

is exact, see Sect. 1.4.4.

Each of the conditions (i)-(ii) from Proposition 3.1.2 says that the subcategory

D-mod(Z)c ⊂ D-mod(Y)c

is right-admissible 7, which by definition means that the functor

(idR,∗)
c = (i!)

c : D-mod(Z)c → D-mod(Y)c

admits a right adjoint (i!)c : D-mod(Y)c → D-mod(Z)c, or equivalently, the functor

(j∗)c : D-mod(Y)c → D-mod(U)c

has a right adjoint (j∗)
c : D-mod(U)c → D-mod(Y)c .

Similarly, conditions (iii)-(iv) from Proposition 3.1.2 say that the subcategory

D-mod(Z)c ⊂ D-mod(Y)c

6By definition, exactness means that ic
∗
identifies D-mod(Z)c with a full subcategory of D-mod(Y)c, and (j∗)c

identifies the Karoubi-completion of the quotient D-mod(Y)/D-mod(Z)c with D-mod(U)c.
7Synonyms: right-admissible=coreflective, left-admissible=reflective.
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is left-admissible, which by definition means that the functor

(idR,∗)
c : D-mod(Z)c → D-mod(Y)c

admits a left adjoint (i∗dR)
c : D-mod(Y)c → D-mod(Z)c, or, equivalently, the functor

(j∗)c : D-mod(Y)c → D-mod(Z)c

has a left adjoint (j!)
c : D-mod(Z)c → D-mod(Y)c .

In our situation left admissibility is equivalent to right admissibility by Verdier duality.

Thus if i : Z →֒ Y is truncative then in addition to (3.1) one has the exact sequences

(3.2) 0→ D-mod(U)c
(j!)

c

→ D-mod(Y)c
(i∗dR)c

→ D-mod(Z)c → 0,

(3.3) 0→ D-mod(U)c
(j∗)

c

→ D-mod(Y)c
(i!)c

→ D-mod(Z)c → 0.

It is convenient to arrange the functors between D-mod(Z)c and D-mod(Y)c into a sequence

(3.4) (i∗dR)
c , (idR,∗)

c , (i!)c

and the functors between D-mod(U) and D-mod(Y) into a sequence

(3.5) (j!)
c, (j∗)c, (j∗)

c .

In each of the sequences, each neighboring pair forms an adjoint pair of functors.

3.2. Some examples of (co)-truncative substacks.

3.2.1. (Co)-truncativeness is a purely “stacky” phenomenon, i.e., it almost never happens for
schemes.

More precisely, it is easy to see that if j : U →֒ Y is an open embedding of schemes which
is not a closed embedding then U cannot be co-truncative. Indeed, choose M ∈ Coh(U) such
that j∗(M) is not coherent. Then

j∗(indD-mod(U)(M)) ≃ indD-mod(Y)(j∗(M))

is not in D-mod(Y )c. Here indD-mod(−) denotes the induction functor from IndCoh(−) to
D-mod(−), see [DrGa1, Sect. 5.1.3].

3.2.2. Example. The following example of a co-truncative substack is most important for us:

Take Y = An/Gm, where Gm acts on An by dilations. Take U = (An−{0})/Gm ≃ Pn−1. In
Sect. 5 we will see that U →֒ Y is co-truncative.

3.2.3. The most basic case of the above example is when n = 1. In this case, the co-
truncativeness assertion is particularly evident. Namely, let us check that condition (iii′) of
Proposition 3.1.2 holds. Indeed, D-mod(U) ≃ Vect, so it is sufficient to show that j!(k) is
defined, where k is the generator of Vect. This is clear since we are dealing with holonomic
D-modules.

3.2.4. Here is a generalization of the example of Sect. 3.2.3 in a direction different from
Sect. 3.2.2: if Y is any QCA stack that has only finitely many isomorphism classes of k-points
then every open substack U ⊂ Y is co-truncative. Indeed, condition (iii′) of Proposition 3.1.2
is verified because every object of D-mod(U)c is holonomic.

Examples of such Y include N\G/B, or any quasi-compact open of BunG for X of genus 0.
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3.3. The non-standard functors. Let Z
i
→֒ Y be a truncative closed substack and U

j
→֒ Y

the corresponding co-truncative open substack.

Definition 3.3.1. The functors right adjoint to i! and j∗ are denoted by

i? : D-mod(Z)→ D-mod(Y), j? : D-mod(Y)→ D-mod(U).

Remark 3.3.2. The proof of the equivalences (iii)⇔(ii′) and (iv)⇔(i′) from Proposition 3.1.2
shows that i? is the dual to i

∗
dR : D-mod(Y)→ D-mod(Z) and j? is the dual to j! : D-mod(U)→

D-mod(Y) in the sense of Sect. 1.5.2. Recall that these dualities follow from the duality between
i! and idR,∗ , and between j∗ and j

∗.

Remark 3.3.3. Recall that the existence of i? and/or j? as a continuous functor is among the
equivalent definitions of truncativeness, see Definition 3.1.5 and Proposition 3.1.2(i′, ii′).

The existence of i∗dR and/or j! as an everywhere defined (and automatically continuous)
functor is also among the equivalent definitions of truncativeness, see Proposition 3.1.2(iii, iv).

The functors i?, j
?, i∗dR, j! are called the non-standard functors associated to Z ⊂ Y (or to

U ⊂ Y).

The functors i∗ and j! are at least, familiar as partially defined functors (e.g., they are
always defined on the holonomic subcategory), but i? and j

? are quite unfamiliar. On the other
hand, in some situations the non-standard functors identify with certain standard functors, see
Example 3.3.9 and Remark 3.3.10 below.

3.3.4. Inventory. It is convenient to arrange the functors between D-mod(Z) and D-mod(Y)
into a sequence

(3.6) i∗dR, idR,∗, i
!, i?

and the functors between D-mod(U) and D-mod(Y) into a sequence

(3.7) j!, j
∗, j∗, j

?.

In each of the sequences, each neighboring pair forms an adjoint pair of functors. The first
and last functors in (3.6) and in (3.7) are non-standard, the other functors are standard. By
Remark 3.3.2, each of the sequences (3.6)-(3.7) is self-dual in the sense of Sect. 1.5.2.

3.3.5. We know that the functors idR,∗ and j∗ are fully faithful; equivalently, the adjunctions

(3.8) i∗dR ◦ idR,∗ → IdD-mod(Z), IdD-mod(U) → j? ◦ j∗

are isomorphisms (just as are the adjunctions j∗ ◦ j∗ → IdD-mod(U) and IdD-mod(Z) → i! ◦ idR,∗,
which involve only the standard functors).

Proposition 3.3.6.

(i) The functors i? and j! are fully faithful.

(ii) The adjunctions i! ◦ i? → IdD-mod(Z) and IdD-mod(U) → j∗ ◦ j! are isomorphisms.

Although this proposition is extremely simple, we will give two proofs.

Proof 1. Statements (i) and (ii) are clearly equivalent, so it suffices to prove (ii).

Recall that the adjoint pairs (i!, i?) and (j∗, j
?) are dual to the adjoint pairs (i∗dR, idR,∗) and

(j!, j
∗). So statement (ii) follows from the fact that the adjunctions (3.8) are isomorphisms. �
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Proof 2. We will deduce statement (i) from the following general lemma, which is part of the
categorical folklore.8

Lemma 3.3.7. Let F be a functor between ∞-categories that admits a left adjoint FL and a
right adjoint FR. Then FL is fully faithful if and only if FR is.

Let us apply Lemma 3.3.7 to F := j∗. Since (j∗)R = j∗ is fully faithful, we obtain that
(j∗)L = j! is fully faithful.

Let us apply Lemma 3.3.7 to F := i!. Since Since (i!)L = idR,∗ is fully faithful, we obtain
that (i!)R = i? is fully faithful. �

3.3.8. Regardless of whether the substack Z ⊂ Y is truncative, one has canonical exact se-
quences of DG categories

(3.9) 0→ D-mod(Z)
idR,∗
→ D-mod(Y)

j∗

→ D-mod(U)→ 0

and

(3.10) 0→ D-mod(U)
j∗
→ D-mod(Y)

i!

→ D-mod(Z)→ 0,

where the latter is obtained from the former by passing to right adjoints.

If Z is truncative one also has exact sequences

(3.11) 0→ D-mod(Z)
i?→ D-mod(Y)

j?

→ D-mod(U)→ 0

and

(3.12) 0→ D-mod(U)
j!→ D-mod(Y)

i∗dR→ D-mod(Z)→ 0,

where (3.11) is obtained by passing to right adjoints from (3.10), and (3.12) is obtained by
passing to left adjoints from (3.9).

In addition, (3.9) and (3.10) are obtained from one another by passing to the dual categories
and functors. Similarly, (3.12) and (3.11) are obtained from one another by passing to the dual
categories and functors.

3.3.9. Example. Consider the situation of Sect. 3.2.3, i.e., the embedding i : Z →֒ Y, where
Y = A1/Gm, Z = {0}/Gm. Let π : Y→ Z be the morphism induced by the map A1 → {0}. Let
us show that the non-standard functors

i∗dR : D-mod(Y)→ D-mod(Z) and i? : D-mod(Z)→ D-mod(Y)

identify with the following standard functors:

i∗dR ≃ πdR,∗ , i? ≃ π
! ;

in other words, (πdR,∗, idR,∗) and (i!, π!) are adjoint pairs. By Proposition 2.2.17, πdR,∗ is dual
to π! and idR,∗ is dual to i

!, so it suffices to show that (πdR,∗, idR,∗) is an adjoint pair. Let us
prove that for any M ∈ D-mod(Y), N ∈ D-mod(Z) the map

πdR,∗ : Hom(M, idR,∗(N))→ Hom(πdR,∗(M), πdR,∗ ◦ idR,∗(N)) = Hom(πdR,∗(M),N)

is an isomorphism.

8Lemma 3.3.7 for ∞-categories immediately follows from the same statement for usual categories. For proofs

in the setting of usual categories, see [DT, Lemma 1.3], [KeLa, Proposition 2.3], and the article on adjoint triples
from [nLab] (on the other hand, the reader can easily reconstruct the argument because we essentially used it
in the proof of Lemma 2.3.5(a)). Note that in the case of triangulated categories and functors (which is enough
for our purpose) Lemma 3.3.7 is well known.
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This is clear if M ∈ D-mod(Z) ⊂ D-mod(Y). The DG category D-mod(Y) is generated by
D-mod(Z) and j!(k), where j : pt = Y−Z →֒ Y is the open embedding. So it remains to consider
the case M = j!(k). Then Hom(M, idR,∗(N)) = 0 and πdR,∗(M) = 0 (the latter follows from the
fact the de Rham cohomology of A1 equals k).

Remark 3.3.10. Example 3.3.9 is a “baby case” of Proposition 5.3.2.

3.4. Truncativeness of locally closed substacks. Let Z
i
→֒ Y be a locally closed substack.

This means that i becomes a locally closed embedding after any base change Y → Y, where
Y is a scheme (in fact, it suffices to verify this condition for just one smooth or flat covering
Y → Y).

Definition 3.4.1. A locally closed substack Z
i
→֒ Y is said to be truncative if the functor i!

preserves compactness (or equivalently, has a continuous right adjoint functor i?).

For instance, any open substack is truncative.

3.4.2. Definition 3.4.1 immediately implies that truncativeness is transitive:

Lemma 3.4.3. Let Y1 →֒ Y2 →֒ Y3 be locally closed embeddings. If Y1 is truncative in Y2 and
Y2 is truncative in Y3, then Y1 is truncative in Y3. �

As in the case of schemes, every locally closed embedding Z →֒ Y can be factored (and even
canonically so) as

(3.13) Z
i′

→֒ Y′
j
→֒ Y,

where i′ is a closed embedding, and j is an open embedding. Namely, Y′ := Y− (Z̄−Z), where
Z̄ is the closure of Z in Y (so that Z is open in Z̄).

Lemma 3.4.4. A locally closed substack Z
i
→֒ Y is truncative if and only if for some/any

factorization (3.13) with i′ being closed and j open, Z in truncative in Y′.

Proof. The “if” statement follows from Lemma 3.4.3. It remains to show that if the composition

(3.13) is truncative then so is Z
i′

→֒ Y′. This follows from the fact that the essential image of
D-mod(Y)c under j∗ Karoubi-generates D-mod(Y′)c, see Lemma 3.1.3. �

Remark 3.4.5. In the case of locally closed substacks the situation with the non-standard func-

tors is as follows. By duality (in the sense of Sect. 1.5.2), a locally closed substack Z
i
→֒ Y is

truncative if and only if the functor idR,∗ has a left adjoint functor i∗dR (which is automatically
continuous).

Thus for a truncative locally closed substack we have adjoint pairs of continuous functors
(i∗dR, idR,∗) and (i!, i?) dual to each other. Just as in the case of closed embeddings (see
Proposition 3.3.6), the functors idR,∗ and i? are fully faithful; equivalently, the adjunctions
i! ◦ i? → IdD-mod(Z) and IdD-mod(Z) → idR,∗ ◦ i∗dR are isomorphisms. But if the substack Z is

not closed then idR,∗ 6= i! , so the functors idR,∗ and i
! do not form an adjoint pair.

3.5. Truncativeness via coherence.
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3.5.1. As was mentioned in Sect. 2.2.10, the property of compactness of a D-module on a stack
is subtle. For example, it is not local in the smooth topology. We are going to reformulate the
notion of truncativeness via the more accessible property, namely, coherence.

Proposition 3.5.2.

(a) A locally closed substack Z
i
→֒ Y is truncative if and only if the functor i! sends D-modcoh(Y)

to D-modcoh(Z).

(b) An open substack U
j
→֒ Y is co-truncative if and only if j∗ sends D-modcoh(U) to

D-modcoh(Y).

Proof. To prove the “if” implications in both (a) and (b) we will use the notion of safety from
[DrGa1, Sect. 9.2], and the fact that for a morphism f : Y1 → Y2 between QCA stacks, the
functor fdR,∗ always preserves safety, and f ! preserves safety if f itself is safe (in particular,
when f is schematic); see [DrGa1, Lemma 10.4.2].

Thus, the “if” implications follow from the fact that “compactness=coherence+safety”, see
[DrGa1, Proposition 9.2.3].

To prove the “only if” implication in (a), we will use the following result (see [DrGa1, Lem-
ma 9.4.7(a)]):

Lemma 3.5.3. For a QCA stack Y, an object F ∈ D-modcoh(Y) and an integer n, there exists
F′ ∈ D-mod(Y)c and a map F′ → F, such that its cone lies in D-mod(Y)<−n. �

Note that the functor i! is left t-exact, and has a finite cohomological amplitude, say k. For
F ∈ D-modcoh(Y), which lies in D-mod(Y)≥−m, choose F′ as in Lemma 3.5.3 with n > k +m.
Consider the exact triangle

i!(F′)→ i!(F)→ i!(F′′),

where F′′ := Cone(F′ → F). By construction, the maps

(3.14) τ≥−m(i!(F′))→ τ≥−m(i!(F))→ i!(F)

are isomorphisms.

By assumption, i!(F′) ∈ D-mod(Z)c ⊂ D-modcoh(Z). Note also that the truncation functors
preserve the subcategory D-modcoh(−). Hence τ≥−m(i!(F′)) ∈ D-modcoh(Z). Hence, (3.14)
implies that i!(F) ∈ D-modcoh(Z), as desired.

The “only if” implication in (b) is proved similarly. �

3.6. Stability of truncativeness. In this subsection i : Z →֒ Y denotes a locally closed
embedding.

3.6.1. Cartesian products.

Lemma 3.6.2. Suppose that a substack Z
i
→֒ Y is truncative. Then for any QCA stack X, the

substack Z× X →֒ Y× X is also truncative.

Proof. By [DrGa1, Corollary 8.3.4], for a pair of QCA stacks X1 and X2, the natural functor

D-mod(X1)⊗D-mod(X2)→ D-mod(X1 × X2)

is an equivalence. So the functor (i × idX)
! : D-mod(Y × X) → D-mod(Z × X) identifies with

the functor i! ⊗ IdD-mod(X) , which clearly preserves compactness. �
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3.6.3. Descent.

Proposition 3.6.4. Let Z ⊂ Y be a locally closed substack, f : Ỹ→ Y a smooth morphism, and

Z̃ ⊂ Z ×
Y
Ỹ an open substack such that the resulting morphism f ′ : Z̃ → Z is surjective. If the

locally closed embedding ĩ : Z̃ →֒ Ỹ is truncative then so is i : Z →֒ Y.

Proof. By Proposition 3.5.2(a), it suffices to show that i! sends D-modcoh(Y) to D-modcoh(Z).
The morphism f ′ is smooth and surjective, so it suffices to show that the functor f ′!◦i! preserves
coherence. But f ′! ◦ i! ≃ ĩ! ◦ f !, and each of the functors ĩ! and f ! preserves coherence. �

Corollary 3.6.5. Let Z ⊂ Y be a locally closed substack. Suppose that each z ∈ Z has a Zariski
neighborhood U ⊂ Y such that Z ∩ U is truncative in U . Then Z is truncative in Y. �

Remark 3.6.6. The converse to Proposition 3.6.4 is false: truncativeness downstairs does not
imply truncativeness upstairs (e.g., consider the embedding pt /Gm →֒ A1/Gm smoothly cov-
ered by pt →֒ A1). However, the converse to Proposition 3.6.4 does hold for étale schematic
morphisms; this follows from Lemma 3.6.9 below.

Lemma 3.6.7. Suppose that in a Cartesian diagram

Z̃
ĩ

−−−−→ Ỹ

f ′

y
yf

Z
i

−−−−→ Y

f is schematic, proper and surjective, and i a locally closed embedding. If Z̃ is truncative in Ỹ

then Z is truncative in Y.

Proof. First, by [DrGa1, Lemma 5.1.6], the functor f ! is conservative. Hence, the essential

image of fdR,∗ generates D-mod(Y). Hence, by Corollary 1.4.6, the essential image of D-mod(Ỹ)c

under fdR,∗ Karoubi-generates D-mod(Y)c. Therefore, it is sufficient to show that the functor

i! ◦ fdR,∗ preserves compactness. But i! ◦ fdR,∗ ≃ f ′dR,∗ ◦ ĩ
!, the functor ĩ! preserves compactness

by assumption, and f ′dR,∗ preserves compactness by properness (it has a continuous right adjoint

given by (f ′)!). �

3.6.8. Quasi-finite base change.

Lemma 3.6.9. Suppose that f : Ỹ → Y is étale and schematic. If a locally closed embedding

i : Z →֒ Y is truncative then so is ĩ : Z×
Y
Ỹ →֒ Ỹ.

Proof. The functor fdR,∗ : D-mod(Ỹ) → D-mod(Y) is conservative. So by Corollary 1.4.6, the

essential image of D-mod(Y)c under f∗dR ≃ f
! Karoubi-generates D-mod(Ỹ)c. So it is enough to

show that ĩ!◦f ! preserves compactness. However, ĩ!◦f ! ≃ f ′!◦i!. Now, i! preserves compactness
by assumption, and f ′! preserves compactness because it is isomorphic to (f ′)∗dR, which is the
left adjoint of a continuous functor, namely, f ′dR,∗. �

Lemma 3.6.10. If f : Ỹ →֒ Y is a locally closed embedding and a locally closed substack Z →֒ Y

is truncative then so is Z×
Y

Ỹ →֒ Ỹ.

Proof. If f is an open embedding the statement holds by Lemma 3.6.9. If f is a closed embed-

ding use the fact that an object F ∈ D-mod(Ỹ) is compact if and only if fdR,∗(F) ∈ D-mod(Y)
is; this follows from the fact that the functor fdR,∗ is fully faithful and continuous. �
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Lemma 3.6.10 for a closed embedding f admits the following generalization.

Proposition 3.6.11. Let f : Ỹ → Y be a finite schematic morphism. If a locally closed

embedding i : Z →֒ Y is truncative then so is ĩ : Z×
Y
Ỹ →֒ Ỹ.

To prove the proposition, we need the following lemma.

Lemma 3.6.12. Let g : X′ → X be a finite schematic morphism. If F′ ∈ D-mod(X′) is such
that gdR,∗(F

′) ∈ D-mod(X) is coherent then F′ is coherent.

Proof. Follows immediately from the fact that the functor gdR,∗ is t-exact and conservative. �

Proof of Proposition 3.6.11. We have to show that the functor ĩ! preserves coherence. Applying

Lemma 3.6.12 to the morphism f ′ : Z ×
Y

Ỹ → Z, we see that it suffices to prove that the

composition f ′dR,∗ ◦ ĩ
! preserves coherence. But f ′dR,∗ ◦ ĩ

! ≃ i! ◦ fdR,∗ and each of the functors

i! and fdR,∗ preserves coherence. �

Remark 3.6.13. One can combine Lemma 3.6.9 and Proposition 3.6.11 to the following state-
ment: the assertion of Proposition 3.6.11 continues to hold when f is a quasi-finite compactifi-
able morphism.

3.7. Intersections and unions of truncative substacks.

Lemma 3.7.1. If Z1 and Z2 are locally closed truncative substacks of Y, then so is Z1 ∩ Z2.

Proof. By Lemma 3.6.10, Z1 ∩ Z2 is truncative in Z1. Now, the assertion follows from
Lemma 3.4.3. �

Proposition 3.7.2. Suppose that a locally closed substack Z ⊂ Y is equal to the union of
(possibly intersecting) locally closed substacks Zi, i = 1, ..., n. If each Zi is truncative in Y, then
so is Z.

First, let us prove the following particular case of Proposition 3.7.2.

Lemma 3.7.3. Let Z′ →֒ Z →֒ Y be closed embeddings. If Z′ and Z − Z′ are truncative in Y

then so is Z.

Proof. Consider the open substacks Y − Z ⊂ Y − Z′ ⊂ Y. The fact that Z′ is truncative in Y

means, by definition, that Y − Z′ is co-truncative in Y. By Lemma 3.4.4, the fact that Z − Z′

is truncative in Y implies that Z− Z′ is truncative in Y−Z′, i.e., that Y−Z is co-truncative in
Y− Z′. But the relation of co-truncativeness is transitive: this is clear if one uses property (ii)
from Proposition 3.1.2 as a definition of co-truncativeness. So Y− Z is co-truncative in Y, i.e.,
Z is truncative in Y. �

Proof of Proposition 3.7.2. We proceed by induction on n.

By Corollary 3.6.5, it suffices to show that each z ∈ Z has a Zariski neighborhood U ⊂ Y

such that Z ∩ U is truncative in U . Choose i so that z ∈ Zi . After replacing Z by an open
neighborhood of z, one can assume that Zi and Z are closed in Y.

Writing Z−Zi as a union of the substacks Zj − (Zi ∩Zj), j 6= i, and applying the induction
assumption, we see that Z− Zi is truncative in Y− Zi and therefore in Y. It remains to apply
Lemma 3.7.3 to Zi →֒ Z →֒ Y. �

3.8. Truncativeness and co-truncativeness for non quasi-compact stacks. Now sup-
pose that Y is locally QCA (but not necessarily quasi-compact).
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3.8.1. We give the following definitions:

Definition 3.8.2.

(i) A locally closed substack Z →֒ Y is said to be truncative if for every open quasi-compact

substack
◦

Y ⊂ Y the intersection Z ∩
◦

Y is truncative in
◦

Y.

(ii) An open substack U ⊂ Y is said to be co-truncative if for every open quasi-compact substack
◦

Y ⊂ Y the intersection U ∩
◦

Y is co-truncative in
◦

Y.

3.8.3. Clearly, a closed substack Z is truncative if and only if its complementary open is
co-truncative.

In addition:

Lemma 3.8.4. If open substacks U1, U2 ⊂ Y are co-truncative then so is U1 ∪ U2.

Proof. This immediately follows from Lemma 3.7.1. �

3.8.5. As in Lemma 2.3.10, it is easy to see that U is co-truncative if and only if the functor
j!, left adjoint to j

∗, is defined.

This formally implies that if i : Z →֒ Y is truncative, then the functor i∗dR, left adjoint to
idR,∗, is also defined.

3.8.6. Finally, we note:

Lemma 3.8.7. For a co-truncative open quasi-compact substack U
j
→֒ Y the functor

j! : D-mod(U)→ D-mod(Y)

is fully faithful.

Proof. Follows from Lemma 2.3.5(a). �

4. Truncatable stacks

Let Y be an algebraic stack which is locally QCA. In this setting the notions of truncativeness
and co-truncativeness were introduced in Sect. 3.8.

4.1. The notion of truncatibility. We will now formulate a condition on Y called “trun-
catibility”. According to Proposition 4.1.6 below, it implies that the category D-mod(Y) is
compactly generated.

Definition 4.1.1. The stack Y is said to be truncatable if it can be covered by open quasi-
compact substacks that are co-truncative.

4.1.2. By Lemma 3.8.4, we can rephrase Definition 4.1.1 as follows:

Lemma 4.1.3. A stack Y is truncatable if and only if every open quasi-compact substack is
contained in one which is co-truncative. Equivalently, Y is truncatable if and only if the sub-
poset of co-truncative open quasi-compact substacks in Y is cofinal among all open quasi-compact
substacks.



THE CATEGORY OF D-MODULES ON BunG 33

4.1.4. Notation. The poset of co-truncative open quasi-compact substacks U ⊂ Y is denoted by
Ctrnk(Y); we will often consider this poset as a category. Let Ctrnk(Y)op denote the opposite
poset (or category). Lemma 3.8.4 implies that Ctrnk(Y) is filtered.

The next statement immediately follows from Lemma 4.1.3.

Corollary 4.1.5. If Y is truncatable then the natural restriction functor

D-mod(Y)→ lim
←−

U∈Ctrnk(Y)op

D-mod(U)

is an equivalence.

Proposition 4.1.6. If Y is truncatable then the category D-mod(Y) is compactly generated.

Proof. Let U
j
→֒ Y be a co-truncative open quasi-compact substack and FU ∈ D-mod(U)c. By

Proposition 2.3.7, the object j!(FU ) ∈ D-mod(Y) (which is well-defined by the co-truncativeness
assumption) is compact. It suffices to show that such objects generate D-mod(Y). In other
words, we have to show that if F ∈ D-mod(Y) is right-orthogonal to all such objects, then
F = 0.

For a given U , the fact that F is right-orthogonal to all j!(FU ) as above is equivalent,
by adjunction, to the fact that j∗(F) is right-orthogonal to D-mod(U)c. Since D-mod(U) is
compactly generated, this implies that j∗(F) = 0. By Corollary 4.1.5, this implies that F = 0.

�

4.1.7. As was mentioned in the introduction, we use Proposition 4.1.6 to deduce the main
result of this paper (namely, the compact generation of D-mod(BunG)) from the following
result:

Theorem 4.1.8. Let G be a connected reductive group and X a smooth complete connected
curve over k. Let BunG denote the stack of G-bundles on X. Then BunG is truncatable.

The proof for any connected reductive group G will be given in Sect. 9. But its main idea is
the same as in the easy case G = SL2 , which is considered separately in Sect. 6.

4.1.9. In Sects. 4.2-4.5 below we discuss some general properties of the category D-mod(Y)
for a truncatable stack Y.

4.2. Presentation as a colimit. In this subsection we fix Y to be a truncatable locally QCA
stack. We will use the notation Ctrnk(Y) from Sect. 4.1.4.

4.2.1. Note that for a morphism U1

j1,2
→֒ U2 in Ctrnk(Y), the pullback functor

φU2,U1 := j∗1,2 : D-mod(U2)→ D-mod(U1)

admits a left adjoint, ψU1,U2 := (j1,2)! : D-mod(U1)→ D-mod(U2).

Hence, we are in the situation of Sect. 1.7.2 with I = Ctrnk(Y). In fact, we are in the more
restrictive (and possibly more understandable) situation of Sects. 1.7.3 and 1.9.
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4.2.2. Combining the assertion of Corollary 4.1.5 with that of Proposition 1.7.5, we obtain:

Corollary 4.2.3. The category D-mod(Y) is canonically equivalent to

colim
−→

U∈Ctrnk(Y)

D-mod(U),

where the functor Ctrnk(Y)→ DGCatcont is

U 7→ D-mod(U), (U1

j1,2
→֒ U2) 7→ (j1,2)!.

Under this equivalence, for a co-truncative open quasi-compact substack U0
j0
→֒ Y, the functor

insU0 : D-mod(U0)→ colim
−→

U∈Ctrnk(Y)

D-mod(U) ≃ D-mod(Y),

is (j0)!.

Remark 4.2.4. Note that the assertion of Proposition 2.3.7 for a truncative QCA stack Y follows
also from Lemma 1.9.5(i). Note also that the assertion of Lemma 2.3.5 for U (resp., U and U ′)
co-truncative is a particular case of Remark 1.7.6.

4.3. Description of the dual category.

4.3.1. Combining Corollary 4.1.5 with Proposition 1.8.3 we obtain:

Corollary 4.3.2. The category D-mod(Y) is dualizable. Its dual category is canonically equiv-
alent to

(4.1) colim
−→

U∈Ctrnk(Y)

D-mod(U),

where the functor Ctrnk(Y)→ DGCatcont is

(4.2) U 7→ D-mod(U), (U1

j1,2
→֒ U2) 7→ (j1,2)∗.

Under this equivalence, for a co-truncative open quasi-compact substack U0
j0
→֒ Y, the functor

insU0 : D-mod(U0)→ colim
−→

U∈Ctrnk(Y)

D-mod(U)

is the dual of restriction functor j∗0 : D-mod(Y)→ D-mod(U0).

Proof. Follows from Proposition 2.2.17. �

4.3.3. Notation. The category (4.1) that appears in Corollary 4.3.2 will be denoted by

D-mod(Y)co .

The equivalence of Corollary 4.3.2 will be denoted by

(4.3) DVerdier
Y : D-mod(Y)∨ ≃ D-mod(Y)co .

Note that when Y is quasi-compact, this is the same as the equivalence of (2.2).
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4.3.4. Combining Corollary 4.3.2 with Proposition 1.7.5, we can rewrite D-mod(Y)co also as a
limit:

Corollary 4.3.5. The category D-mod(Y)co is canonically equivalent to

lim
←−

U∈Ctrnk(Y)op

D-mod(U),

where the functor Ctrnk(Y)op → DGCatcont is

U 7→ D-mod(U), (U1

j1,2
→֒ U2) 7→ j?1,2.

4.3.6. By construction, for every co-truncative quasi-compact open substack U
j
→֒ Y, we have

a canonically defined functor

D-mod(U)→ D-mod(Y)co.

We denote this functor by jco,∗. By construction, in terms of the identifications

DVerdier
U : D-mod(U)∨ ≃ D-mod(U) and DVerdier

Y : D-mod(Y)∨ ≃ D-mod(Y)co,

we have

(jco,∗)
∨ ≃ j∗.

Similarly, from Corollary 4.3.5, we have a canonically defined functor

j? : D-mod(Y)co → D-mod(U),

which is the dual of j! : D-mod(U)→ D-mod(Y), and the right adjoint of jco,∗ .

4.3.7. We claim:

Lemma 4.3.8. The functor jco,∗ is fully faithful.

Proof. We need to show that the unit of the adjunction IdD-mod(U) → j?◦jco,∗ is an isomorphism.
This is obtained by passing to dual functors (see Sect. 1.5.2) in the map

IdD-mod(U) → j∗ ◦ j!,

which is an isomorphism by Lemma 3.8.7. �

Remark 4.3.9. Note that Lemma 4.3.8 follows more abstractly from Remark 1.7.6. However,
this way to deduce Lemma 4.3.8 is equivalent to the proof given above in view of Remark 4.2.4.

4.3.10. We claim that the category D-mod(Y)co is compactly generated and that its compact
objects are ones of the form jco,∗(FU ) for FU ∈ D-mod(U)c, where U is a co-truncative quasi-
compact open substack of Y.

This follows from Proposition 2.3.7 and Sect. 1.5.3.

Alternatively, this follows from Corollary 1.9.4 and Lemma 1.9.5(i).

4.4. Relation between the category and its dual. In this subsection we continue to assume
that Y is a truncatable locally QCA stack.



36 V. DRINFELD AND D. GAITSGORY

4.4.1. By construction and Sect. 1.5.1, the DG category Functcont(D-mod(Y)co,D-mod(Y))
identifies canonically with

(D-mod(Y)co)
∨ ⊗D-mod(Y) ≃ D-mod(Y)⊗D-mod(Y).

In addition, by Proposition 2.2.8 and Remark 2.2.9, we have

D-mod(Y)⊗D-mod(Y) ≃ D-mod(Y× Y).

Thus, every object Q ∈ D-mod(Y× Y) defines a functor

FQ : D-mod(Y)co → D-mod(Y).

4.4.2. The naive functor. Note that if Y is quasi-compact we have a tautological equivalence

D-mod(Y)co ≃ D-mod(Y).

Recall from Sect. 2.2.14 that the corresponding object in D-mod(Y × Y) is (∆Y)dR,∗(ωY).

For any truncatable Y the functor D-mod(Y)co → D-mod(Y) corresponding to

(∆Y)dR,∗(ωY) ∈ D-mod(Y × Y)

will be denoted by
Ps-IdY,naive : D-mod(Y)co → D-mod(Y)

(here Ps-Id stands for “pseudo-identity”).

Let DVerdier
Y,naive : D-mod(Y)∨ → D-mod(Y) denote the composition

D-mod(Y)∨
D

Verdier
Y

≃ D-mod(Y)co
Ps-IdY,naive
−→ D-mod(Y).

4.4.3. An alternative description. Here is a tautologically equivalent description of the functor
Ps-IdY,naive : D-mod(Y)co → D-mod(Y).

By definition, to specify a continuous functor F from D-mod(Y)co to an arbitrary DG category
C, is equivalent to specifying a compatible collection of functors FU : D-mod(U) → C for co-
truncative quasi-compact open substacks U ⊂ Y. The compatibility condition reads that for

U1

j1,2
→֒ U2, we must be given a (homotopy-coherent) system of isomorphism

FU1 ≃ FU2 ◦ (j1,2)∗.

Taking C = D-mod(Y), the corresponding functors (Ps-IdY,naive)U are

j∗ : D-mod(U)→ D-mod(Y)

for U
j
→֒ Y.

4.4.4. Warning. For a general truncatable stack Y, the functor Ps-IdY,naive is not an equiva-
lence. In particular, it is not an equivalence for Y = BunG unless G is solvable.

In fact, we have the following assertion:

Proposition 4.4.5. If the functor Ps-IdY,naive : D-mod(Y)co → D-mod(Y) is an equivalence
then the closure of any quasi-compact open substack of Y is quasi-compact.

The converse statement is also true (for tautological reasons).

The proof of Proposition 4.4.5 given below is based on the following lemma.

Lemma 4.4.6. Let Z be a quasi-compact scheme, U a QCA stack, and f : Z → U a morphism.
Then for any holonomic D-module F on Z the object fdR,∗(F) ∈ D-mod(U) is compact.

Let us give two proofs:
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Proof 1. This follows from the following general observation:

Lemma 4.4.7. Let F : C1 → C2 be a continuous functor between cocomplete DG categories.
Let c2 ∈ Cc

2 be such that the partially defined left adjoint FL to F is defined on c2. Then
FL(c2) ∈ C1 is compact.

The functor f!, left adjoint to f
! is defined on holonomic objects. Hence, by the above lemma,

f!(D
Verdier
Z (F)) ∈ D-modcoh(U) is compact. By Theorem 2.2.15,

DVerdier
U (f!(D

Verdier
Z (F))) ≃ fdR,∗(F)

is compact, as required.
�

Proof 2. The object fdR,∗(F) is holonomic and therefore coherent. Since Z is a scheme, by
Theorem 2.2.11(ii), F is safe. By [DrGa1, Lemma 9.4.2] we obtain that fdR,∗(F) is also safe.
Thus, fdR,∗(F) is coherent and safe = compact. �

Proof of Proposition 4.4.5. Suppose that Ps-IdY,naive is an equivalence. Since Y is truncatable,
it is enough to show that the closure of every co-truncative open quasi-compact substack is
quasi-compact.

By assumption, the functor Ps-IdY,naive preserves compactness. From Sect. 4.4.3, we obtain
that Ps-IdY,naive sends a compact object jop,∗(FU ) ∈ D-mod(Y)op, FU ∈ D-mod(U)c with

U
j
→֒ Y co-truncative and quasi-compact, to j∗(FU ) ∈ D-mod(Y). Thus, we obtain that j∗(FU )

needs to be compact for any FU ∈ D-mod(U)c whenever U is co-truncative.

Take FU = fdR,∗(kZ), where Z is any quasi-compact scheme equipped with a morphism
f : Z → U and kZ is the “constant sheaf” on Z. By Proposition 2.3.7, there exists a quasi-
compact open substack V ⊂ Y such that the ∗-stalk of jdR,∗(FU ) = (j◦f)dR,∗(kZ) over any point
of Y−V is zero. This means that the closure of the image of j ◦f : Z → Y is contained in V and
therefore quasi-compact. Taking f surjective we see that the closure of U is quasi-compact. �

4.4.8. A better functor. Following [Ga3, Sect. 6], we define

Ps-IdY,! : D-mod(Y)co → D-mod(Y)

to be the functor corresponding in terms of Sect. 4.4.1 to the object

(∆Y)!(kY) ∈ D-mod(Y× Y),

where kY ∈ D-mod(Y) is the “constant sheaf” on Y. (The above object is well-defined because
kY is holonomic.)

Let DVerdier
Y,! : D-mod(Y)∨ → D-mod(Y) denote the composition

D-mod(Y)∨
D

Verdier
Y

≃ D-mod(Y)co
Ps-IdY,!
−→ D-mod(Y).

4.4.9. Suppose for a moment that Y is smooth of dimension n, and that the diagonal map

∆Y : Y→ Y× Y

is separated. In this case we have an isomorphism

kY ≃ ωY[−2n],

and a natural transformation

(∆Y)! → (∆Y)dR,∗ ,



38 V. DRINFELD AND D. GAITSGORY

which together define a natural transformation

(4.4) Ps-IdY,! → Ps-IdY,naive[−2n].

Remark 4.4.10. If Y is separated (i.e., if ∆Y is proper) then (4.4) is an isomorphism. However,
most stacks are not separated.9 Thus Ps-IdY,! is usually different from Ps-IdY,naive (even for Y
smooth and quasi-compact).

4.4.11. Here is a basic feature of the functor Ps-IdY,! : D-mod(Y)co → D-mod(Y).

Lemma 4.4.12. Let U
j
→֒ Y be a co-truncative quasi-compact open substack. Then there exists

a canonical isomorphism of functors D-mod(U)→ D-mod(Y):

Ps-IdY,! ◦jco,∗ ≃ j! ◦ Ps-IdU,! .

Proof. Define ∆U,Y : U → U ×Y by ∆U,Y(u) := (u, j(u)). It is easy to check that both functors
Ps-IdY,! ◦jco,∗ and j! ◦ Ps-IdU,! correspond to the object (∆U,Y)!(kU ) ∈ D-mod(U × Y) via the
equivalence

D-mod(U × Y) ≃ D-mod(U)⊗D-mod(Y)

≃ D-mod(U)∨ ⊗D-mod(Y) ≃ Functcont(D-mod(U),D-mod(Y)).

�

The meaning of this lemma is that the functor Ps-IdY,! sends objects that are ∗-extensions
from a co-truncative quasi-compact open substack in D-mod(Y)op to objects in D-mod(Y) that
are !-extensions (from the same open).

4.4.13. Self-duality. Both functors

DVerdier
Y,naive : D-mod(Y)∨ → D-mod(Y), DVerdier

Y,! : D-mod(Y)∨ → D-mod(Y)

are canonically self-dual because the corresponding objects

(∆Y)dR,∗(ωY), (∆Y)!(kY) ∈ D-mod(Y× Y)

are equivariant with respect to the action of the symmetric group S2 on Y× Y.

4.5. Miraculous stacks.

4.5.1. Now let us give the following definition.

Definition 4.5.2. A truncatable stack Y is called miraculous if the functor

Ps-IdY,! : D-mod(Y)co → D-mod(Y)

is an equivalence.

Clearly this happens if and only if the functor DVerdier
Y,! : D-mod(Y)∨ → D-mod(Y) is an

equivalence.

9A separated locally QCA stack has to be a Deligne-Mumford stack. Indeed, if ∆Y is proper and affine then
it is finite, and in characteristic 0 this means that Y is Deligne-Mumford.
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4.5.3. The following easy lemma shows that not every algebraic stack is miraculous.

Lemma 4.5.4. A separated quasi-compact scheme Z is a miraculous stack if and only if Z has
the following “cohomological smoothness” property: kZ and ωZ are locally isomorphic up to a
shift.

Proof. In our situation Ps-IdZ,! : D-mod(Z) → D-mod(Z) is the functor M 7→ M
!
⊗ kZ .

Applying the functor to skyscrapers, we see that if Ps-IdZ,! is an equivalence then each !-stalk
of kZ is isomorphic to k up to a shift. It is well known that this implies that kZ and ωZ are
locally isomorphic up to a shift. �

It is also easy to produce an example of a smooth quasi-compact algebraic stack Y which is
not miraculous: it suffices to take Y to be the non-separated scheme equal to A1 with a double
point 0. We refer the reader to [Ga3, Sect. 5.3.5], where this example is analyzed (one easily
shows that in this case the functor Ps-IdY,! does not preserve compactness).

4.5.5. A basic example of a miraculous stack is Y := An/Gm; see [Ga3, Corollary 5.3.4].

In addition, the following theorem is proved in [Ga2]:

Theorem 4.5.6. Let G be a reductive group. Then the stack BunG is miraculous.

This theorem is equivalent to each quasi-compact co-truncative substack of BunG being
miraculous. The equivalence follows from the next lemma.

Lemma 4.5.7. A truncatable stack Y is miraculous if and only if every quasi-compact co-
truncative open substack U ⊂ Y is.

Proof. The “if” statement follows from Lemma 4.4.12 and the descriptions of D-mod(Y) and
D-mod(Y)co as colimits (see Corollary 4.2.3 and Sect. 4.3.3).

Let us prove the “only if” statement. Suppose that Y is miraculous and j : U →֒ Y is a
quasi-compact co-truncative open substack. The functor j! has a left inverse (namely, j! = j∗).
The functor jco,∗ : D-mod(U)co → D-mod(Y)co also has a left inverse (see the first proof of
Lemma 4.3.8). So Lemma 4.4.12 implies that Ps-IdU,! has a left inverse.

We obtain that the functor DVerdier
U,! : D-mod(U)∨ → D-mod(U) has a left inverse. By self-

duality of DVerdier
U,! (see Sect. 4.4.13), this implies that it has a right inverse as well. So DVerdier

U,!

is an equivalence. �

5. Contractive substacks

In its simplest form, the contraction principle says that the substack {0}/Gm →֒ An/Gm is
truncative (here Gm acts on An by homotheties). In this section we will prove a generalization
of this fact, see Proposition 5.1.2.

In Sect. 5.3 we explicitly describe the non-standard functors i∗dR and i? in the setting of Propo-
sition 5.1.2.

We say that a substack of a stack is contractive if it locally satisfies the conditions of Propo-
sition 5.1.2; for a precise definition, see Sect. 5.2.1.

The upshot of this section is that “contractiveness” ⇒ “truncativeness.”

5.1. The contraction principle.
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5.1.1. Consider the following set-up. Suppose we have an affine morphism p :W → S between
schemes. Assume that the monoid A1 (with respect to multiplication) acts on W over S (so
that the action of A1 on S is trivial). Assume also that the endomorphism of W corresponding
to 0 ∈ A1 admits a factorization

W
p
→ S

ι
→W,

where ι is a section of p : W → S. (Informally, we can say that the action of Gm ⊂ A1

“contracts” W onto the closed subscheme ι(S).)

Set Y :=W/Gm, Z := S/Gm = S × (pt /Gm).

Proposition 5.1.2. Under the above circumstances, the closed substack Z
i
→֒ Y is truncative.

The rest of this subsection is devoted to the proof of Proposition 5.1.2.

5.1.3. Without loss of generality, we can assume that S is quasi-compact.

We have

W = SpecS(A),

where A =
⊕
n
An is a quasi-coherent sheaf of non-negatively graded OS-algebras with A0 = OS.

The section ι corresponds to the projection A→ A0 = OS .

For n ∈ N, let A(n) ⊂ A be the OS-subalgebra generated by An . Choose n so that A

is finite over A(n) (if A is generated by Am1 , . . . ,Amr then one can take n to be the least
common multiple of m1,. . . , mr). Set W ′ := Spec(A(n)), then the morphism f : W → W ′

is finite. Moreover, the embedding ι(S) →֒ f−1(f(ι(S))) induces an isomorphism between the
corresponding reduced schemes. So by Proposition 3.6.11, it suffices to prove the proposition
for W ′ instead of W .

5.1.4. Thus, we can assume that A is generated by An. Moreover, since the proposition to
be proved is local with respect to S (see Corollary 3.6.5), we can assume that An is a quotient
of a locally free OS-module E. Let V denote the vector bundle over S corresponding to E∗ (in
other words, V is the spectrum of the symmetric algebra of E). Then W = Spec(A) identifies
with a closed conic subscheme in V .

5.1.5. Thus by Lemma 3.6.10 (for closed embeddings) it suffices to consider the case where
W is a vector bundle V over S equipped with an A1-action obtained from the standard one by
composing it with the homomorphism

(5.1) A1 −→ A1, λ 7→ λn.

(here n is some positive integer). In this situation we have to prove that 0/Gm ⊂ V/Gm is
truncative, where 0 ⊂ V is the zero section.

5.1.6. Let Ṽ
f
→ V be the blow-up of V along 0. Set 0̃ := f−1(0). Since f is proper and

surjective, by Lemma 3.6.7, in order to prove the truncativeness of 0/Gm ⊂ V/Gm, it suffices

to show that 0̃/Gm is truncative in Ṽ /Gm.

Note that Ṽ is a line bundle over P(V ∗) and 0̃ is its zero section. So we see that it suffices to
prove the statement from Sect. 5.1.5 for line bundles over arbitrary bases. Moreover, since the
statement is local, it suffices to consider the trivial line bundle over an arbitrary quasi-compact
scheme.
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5.1.7. Thus it remains to prove that for any quasi-compact scheme S the substack

S × ({0}/Gm) ⊂ S × (A1/Gm)

is truncative (here we assume that λ ∈ Gm acts on A1 as multiplication by λn for some n ∈ N).
By Lemma 3.6.2, we can assume that S = Spec(k). In this case the statement follows from the
fact that the number of Gm-orbits in A1 is finite (see Sect. 3.2.4). �

5.2. Contractiveness.

5.2.1. We say that a locally closed substack Z′ of a stack Y′ is contractive if there exists a
commutative diagram

(5.2) Z

��

// Y

��

Z′ // Y′

such that

(i) the upper row of (5.2) is as in Proposition 5.1.2;

(ii) the morphsim Z→ Z′ ×
Y′

Y is an open embedding;

(iii) the vertical arrows of (5.2) are smooth and the left one is surjective.

In other words, a substack is contractive if it locally satisfies the conditions of Proposi-
tion 5.1.2.

5.2.2. We obtain:

Corollary 5.2.3. A contractive substack is truncative.

Proof. With no loss of generality, we can assume that Y is quasi-compact. Now combine Propo-
sition 5.1.2 and 3.6.4. �

Note that the above definition of contractive substack makes sense without the characteris-
tic 0 assumption.

Remark 5.2.4. We are not sure that the notion of contractiveness is really good. But it is
convenient for the purposes of this article.

5.3. An adjointness result.

5.3.1. Let W → S
ι
→W be as in Proposition 5.1.2 (in particular, A1 acts on W ).

Consider the corresponding morphisms i : S/Gm →֒ W/Gm and π : W/Gm → S/Gm . By
Proposition 5.1.2, the functor idR,∗ has a continuous left adjoint (denoted by i∗dR) and i

! has a
continuous right adjoint (denoted by i?).

The next proposition identifies the non-standard functors

i∗dR : D-mod(W/Gm)→ D-mod(S/Gm) and i? : D-mod(S/Gm)→ D-mod(W/Gm)

with certain standard functors. Namely,

i∗dR ≃ πdR,∗, i? = π!.
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Proposition 5.3.2. The functors

πdR,∗ : D-mod(W/Gm)⇄ D-mod(S/Gm) : idR,∗ and i! : D-mod(W/Gm)⇄ D-mod(S/Gm) : π!

form adjoint pairs with the adjunctions

πdR,∗ ◦ idR,∗
∼
−→ IdD-mod(S/Gm) and i

! ◦ π! ∼−→ IdD-mod(S/Gm)

coming from the isomorphism π ◦ i
∼
−→ IdS/Gm

.

Note that a simple particular case of Proposition 5.3.2 was proved in Sect. 3.3.9.

Remark 5.3.3. Proposition 5.3.2 clearly implies Proposition 5.1.2.

Proposition 5.3.2 is well known (at least, in the setting of constructible sheaves instead of D-
modules). It goes back to the works by Verdier [Ve, Lemma 6.1] and Springer [Sp, Proposition 1];
see also [KL, Lemma A.7] and [Br, Lemma 6].

The reader can easily prove Proposition 5.3.2 by slightly modifying the argument from
Sect. 5.1 (which is based on blowing up and properness).

On the other hand, in Appendix C we give a complete proof of a “stacky” generalization of
Proposition 5.3.2 (see Theorem C.5.3 and Corollary C.5.4). The approach from Appendix C is
close to [Sp] (there are no blow-ups, no properness arguments, and we work with the monoid
A1 rather than with the scheme or stack on which A1 acts).

5.4. A general lemma on contractiveness. The reader may prefer to skip this subsection
on the first pass. Its main result (Lemma 5.4.3) will not be used until Proposition 11.3.7(b).

5.4.1. The notion of contractive substack was defined in Sect. 5.2.1. This notion is clearly
local in the following sense:

Let f : Y′ → Y be a smooth surjective morphism of algebraic stacks and Z ⊂ Y a locally
closed substack. If f−1(Z) is contractive in Y′ then Z is contractive in Y.

5.4.2. As before, we consider A1 as a monoid with respect to multiplication. It contains Gm
as a subgroup.

We have:

Lemma 5.4.3. Let π : W → S be an affine schematic morphism of algebraic stacks. Suppose
that the monoid A1 acts on W by S-endomorphisms (i.e., over S, with the action of A1 on S

being trivial). Assume that

(i) The S-endomorphism of W corresponding to 0 ∈ A1 equals i ◦ π for some section i : S→W;

(ii) The action of Gm on W viewed as a stack over pt (rather than over S) is isomorphic to the
trivial action.

Then the substack S
i
→֒W is contractive.

Remark 5.4.4. Condition (i) implies that the action of Gm on W viewed as a stack over S

is nontrivial unless π : W → S is an isomorphism. This does not contradict (ii): we are
dealing with stacks, and the functor from the groupoid of S-endomorphisms of W to that of
k-endomorphisms of W is not fully faithful.

Before proving Lemma 5.4.3, let us consider two examples.
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Example 5.4.5. Let p :W → S be as in Sect. 5.1.1. Set

W :=W/Gm, S := S/Gm = S × (pt /Gm).

Then the conditions of Lemma 5.4.3 hold for the morphism π : W → S. The conclusion of
Lemma 5.4.3 holds tautologically.

Example 5.4.6. Let π : W → S be an affine schematic morphism of algebraic stacks. Suppose
that an action of A1 on W by S-endomorphisms satisfies condition (i) of Lemma 5.4.3. Set
W′ := W/Gm and S′ := S/Gm = S× (pt /Gm). Then the morphism π′ : W′ → S′ satisfies both
conditions of Lemma 5.4.3. The conclusion of Lemma 5.4.3 is clear because after a smooth
surjective base change S → S we get the situation of Example 5.4.5.

5.4.7. To prove Lemma 5.4.3, we need the following assertion:

Lemma 5.4.8. Let ϕ : Y→ Y′ and ψ : Y′ → Y be morphisms between algebraic stacks such that
ψ ◦ ϕ ≃ IdY. Suppose that ϕ is smooth and surjective. Then:

(a) The maps

{locally closed substacks of Y′} → {locally closed substacks of Y}, Z′ 7→ ϕ−1(Z′),

{locally closed substacks of Y} → {locally closed substacks of Y′}, Z 7→ ψ−1(Z)

are mutually inverse bijections;

(b) A locally closed substack Z ⊂ Y is contractive if and only if the corresponding substack
Z′ ⊂ Y′ is.

Remark 5.4.9. Since ϕ and ψ ◦ ϕ are smooth and surjective ψ has the same properties.10

Proof. The maps from statement (a) are clearly injective. Since ψ ◦ ϕ ≃ IdY one has
ϕ−1(ψ−1(Z)) = Z. Statement (a) follows. To prove (b), use statement (a), Remark 5.4.9, and
the locality of strong contractiveness, see Sect. 5.4.1. �

Proof of Lemma 5.4.3. Define π′ : W′ → S′ as in Example 5.4.6, then the corresponding em-
bedding i′ : S′ →֒W′ is contractive. We have a Cartesian square

S
i

−−−−→ W
y ϕ

y

S′
i′

−−−−→ W′

So by Lemma 5.4.8, it remains to show that the morphism ϕ : W → W′ admits a left inverse
ψ : W′ →W. But W′ is the quotient of W by a trivial action of Gm . Choosing a trivialization
of this action we can identify W′ with W× (pt /Gm) and take ψ to be the projection

W× (pt /Gm)→W.

�

6. The case of SL2

In this section we will give a proof of Theorem 4.1.8 in the case G = SL2, which will be the
prototype of the argument in general.

6.1. The substack Bun
(≤n)
G .

10By the way, this implies that Y′ is the classifying space of a group over Y.
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6.1.1. For an integer n ≥ 0, let Bun
(≤n)
G ⊂ BunG be the open substack consisting of vector

bundles that do not admit line sub-bundles of degree > n. It is easy to see that the substacks

Bun
(≤n)
G are quasi-compact and that their union is all of BunG.

Let g be the genus of X . We will show that for n ≥ max(g−1, 0), the open substack Bun
(≤n)
G

is co-truncative.

6.1.2. Let Bun
(n)
G be the locally closed substack

Bun
(n)
G := Bun

(≤n)
G −Bun

(≤n−1)
G ,

endowed, say, with the reduced structure.

By Proposition 3.7.2, it suffices to show that if n > max(g− 1, 0) then Bun
(n)
G is a truncative

substack of Bun
(≤n)
G . We will do this by combining Propositions 3.6.4 and 5.1.2.

6.1.3. Note, however, that if n is small relative to the genus of X , then the stratum Bun
(n)
G is

not truncative. Indeed, one can choose X and n so that Bun
(n)
G has a non-empty intersection

with an open substack BunG that is actually a scheme; then apply Sect. 3.2.1.

6.2. Reducing to a contracting situation.

6.2.1. For an integer n, let BunnB be the stack classifying short exact sequences

(6.1) 0→ L−1 →M→ L→ 0,

where M ∈ BunSL2 , and L is a line bundle of degree −n. Let pn : BunnB → BunG denote the

natural projection. If n > 0 then the image of pn equals Bun
(n)
G .

Lemma 6.2.2. Suppose that n > max(g − 1, 0). Then the morphism p−n : Bun−nB → BunG is

smooth and its image contains Bun
(n)
G .

Proof. A point x ∈ Bun−nB corresponds to an exact sequence (6.1) with degL = n. The cokernel
of the differential of p−n at x equals H1(X,L⊗2), which is zero because degL⊗2 = 2n > 2g− 2.
So p−n is smooth.

A point y ∈ Bun
(n)
G corresponds to an SL2-bundle M that can be represented as an extension

(6.1) with degL = −n. Such an extension splits because 2n > 2g−2. So M is also an extension
of L−1 by L. Hence, y is in the image of p−n. �

6.2.3. By Lemma 6.2.2 and Proposition 3.6.4, it suffices to show that if n > max(g−1, 0) then
the substack

(6.2) Bun
(n)
G ×

BunG

Bun−nB ⊂ Bun−nB

is truncative.

6.3. Applying the contraction principle.

6.3.1. Let BunnGL(1) denote the stack of line bundles on X of degree n. Note that we have a
canonical isomorphism

BunnGL(1) ≃ Bun
(n)
G ×

BunG

Bun−nB

that sends a line bundle L ∈ BunnGL(1) to

0→ L−1 → L−1 ⊕ L→ L→ 0.
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6.3.2. Let Picn denote the coarse moduli scheme corresponding to BunnGL(1). We have a vector

bunlde V on BunnGL(1) whose fiber over L ∈ BunnGL(1) equals Ext(L,L
−1).

Choose a section s : Picn → BunnGL(1) of the morphism Bunn → Picn (e.g., choose x0 ∈ X
and identify Picn with the stack of line bundles of degree n trivialized over x0).

Set V′ = s∗(V). Let 0 ⊂ V′ denote the zero section. Then Bun−nB identifies with the quotient
stack V′/Gm and the substack

Bun
(n)
G ×

BunG

Bun−nB ≃ BunnGL(1) →֒ Bun−nB

identifies with 0/Gm. Hence, the substack (6.2) is truncative by Proposition 5.1.2. �

7. Recollections from reduction theory

The goal of this section is to prepare for the proof of Theorem 4.1.8 by recalling the Harder-
Narasimhan-Shatz stratification of BunG.

With future applications in mind, when defining these open substacks, we will remove the
assumption that our ground field is of characteristic 0, unless we explicitly specify otherwise.
Thus, we let G be a connected reductive group over any algebraically closed field k.

7.1. Notation related to G.

7.1.1. To simplify the discussion, we will work with a fixed choice of a Borel subgroup B ⊂ G.

Conjugacy classes of parabolics are then in bijection with the set of parabolics that contain B,
called the standard parabolics. From now on, by a parabolic we will mean a standard parabolic,
unless explicitly stated otherwise.

For a parabolic P we will denote by U(P ) its unipotent radical.

We denote by ΓG the set of vertices of the Dynkin diagram of G. Parabolics in G are in
bijection with subsets of ΓG. For a parabolic P with Levi quotient M we let ΓM ⊂ ΓG denote
the corresponding subset; it identifies with the set of vertices of the Dynkin diagram of M .

7.1.2. Let ΛG denote the coweight lattice of G and ΛQ
G := Q⊗

Z
ΛG . Let Λ+

G ⊂ ΛG denote the

monoid of dominant coweights and ΛposG ⊂ ΛG the monoid generated by positive simple coroots.

Let Λ+,Q
G ,Λpos,QG ⊂ ΛQ

G be the corresponding rational cones.

Let α̌i, i ∈ ΓG, be the simple roots; we have:

Λ+,Q
G = {λ ∈ ΛQ

G | 〈λ, α̌i〉 ≥ 0 for i ∈ ΓG}.

7.1.3. Let P be a parabolic of G andM its Levi quotient. Let Z0(M) be the neutral connected

component of the center of M , then ΛZ0(M) ⊂ ΛG . Set ΛQ
G,P := ΛQ

Z0(M) ⊂ ΛQ
G . Explicitly,

ΛQ
G,P = {λ ∈ ΛQ

G | 〈λ, α̌i〉 = 0 for i ∈ ΓM}.

Note that

ΛQ
G,G = ΛQ

Z0(G) and ΛQ
G,B = ΛQ

G.



46 V. DRINFELD AND D. GAITSGORY

7.1.4. Set Λ+,Q
G,P := Λ+,Q

G ∩ ΛQ
G,P and

(7.1) Λ++,Q
G,P := {λ ∈ ΛQ

G | 〈λ, α̌i〉 = 0 for i ∈ ΓM and 〈λ, α̌i〉 > 0 for i /∈ ΓM}.

In other words, Λ++,Q
G,P is the set of those elements of Λ+,Q

G,P that are regular (i.,e., lie off the

walls of Λ+,Q
G,P ). Clearly

(7.2) Λ+,Q
G =

⊔

P

Λ++,Q
G,P ,

where the union is taken over the conjugacy classes of parabolics.

7.1.5. Note also that the inclusion ΛQ
G,P →֒ ΛQ

G canonically splits as a direct summand: the

corresponding projector prP : ΛQ
G → ΛQ

G,P is defined so that

ker (prP ) =
⊕

i∈ΓM

Q · αi.

We can also view the map ΛQ
G → ΛQ

G,P as follows: it comes from the map

ΛG ≃ ΛM → ΛM/[M,M ]

and the isomorphism

ΛQ

Z0(M)

∼
−→ ΛQ

M/[M,M ]

induced by the isogeny Z0(M)→M/[M,M ].

7.1.6. We introduce the partial order on ΛQ
G by

λ1 ≤
G
λ2 ⇔ λ2 − λ1 ∈ Λpos,QG .

The following useful observation is due to S. Schieder:

Lemma 7.1.7. For a parabolic P , the projection prP is order-preserving.

For a proof, see [Sch, Proposition 3.1.2(a)].

7.2. The degree of a bundle. Fix a connected smooth complete curve X . For any algebraic
group H let BunH denote the stack of H-bundles on X .

7.2.1. One has a canonical isomorphism deg : π0(BunGm)
∼
−→ Z. Accordingly, for any torus T

one has a canonical isomorphism degT : π0(BunT )
∼
−→ ΛT .

7.2.2. Let G̃ be any connected affine algebraic group and let G̃tor be its maximal quotient
torus. The composition

π0(BunG̃)→ π0(BunG̃tor
)
degG̃tor−→ ΛG̃tor

will be denoted by degG̃.

If G̃ = G is reductive then Gtor = G/[G,G], and the map Z0(G) → Gtor is an isogeny, so

ΛQ
Gtor
≃ ΛQ

Z0(G). Therefore one has a locally constant map degG : BunG → ΛQ

Z0(G) . Its fibers

are not necessarily connected but have finitely many connected components; this follows from
Remark 7.2.4 below.
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7.2.3. Let now P be a parabolic subgroup of a reductive group G, and let M be the Levi
quotient of P .

Then by Sects. 7.1.3 and 7.2.2, one has the locally constant maps degM : BunM → ΛQ
G,P

and therefore degP : BunP → ΛQ
G,P .

The preimage of λ ∈ ΛQ
G,P in BunM (resp. BunP ) is denoted by BunλM (resp. BunλP ).

It is easy to see that BunλM and BunλP are empty unless λ belongs to a certain finitely

generated subgroup AG,P ⊂ ΛQ
G,P such that AG,P ⊗ Q = ΛQ

G,P ; namely, AG,P = prP (ΛG),

where prP : ΛQ
G → ΛQ

G,P is as in Sect. 7.1.5.

7.2.4. Remark. Let G̃ be any connected affine algebraic group and G̃red its maximal reductive

quotient. Define π1(G̃) to be the quotient of ΛG̃red
by the subgroup generated by coroots. It is

well known that there is a unique bijection π0(BunG̃)
∼
−→ π1(G̃) such that the diagram

π0(BunB̃)

��

// ΛT̃ ≃ ΛG̃red

��

π0(BunG̃)
// π1(G̃)

commutes. Here B̃ is a Borel subgroup of G̃ and T̃ is the maximal quotient torus of B̃.

7.3. Semistability.

7.3.1. Let Gad denote the quotient of G by its center and

ΥG : ΛQ
G → ΛQ

Gad
,

the projection.

Let pP : BunP → BunG be the natural morphism. Recall that a G-bundle PG ∈ BunG is
called semi-stable if for every parabolic P such that PG = pP (PP ) with PP ∈ BunµP we have

ΥG(µ) ≤
Gad

0.

In fact, semi-stability can be tested just using reductions to the Borel:

Lemma 7.3.2. A G-bundle PG is semi-stable if and only if for every reduction PB of PG to
the Borel B with PB ∈ BunµB, we have µ ≤

Gad

0.

Proof. This follows from Lemma 7.1.7 and the fact that every M -bundle admits a reduction to
the Borel of M . �

It is known that semi-stable bundles form an open substack BunssG ⊂ BunG , whose intersec-
tion with each connected component of BunG is quasi-compact.

7.3.3. More generally, for θ ∈ Λ+,Q
G and aG-bundle PG, we say that PG hasHarder-Narasimhan

coweight ≤
G
θ if for every parabolic P such that PG = pP (PP ) with PP ∈ BunµP we have

µ ≤
G
θ.

As in Lemma 7.3.2, it suffices to check this condition for P = B.
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7.3.4. One shows that G-bundles having Harder-Narasimhan coweight ≤
G
θ form an open sub-

stack of BunG . The argument repeats the proof of the fact that BunssG is open, given in [Sch,
Proposition 6.1.6].

We denote the above open substack by Bun
(≤θ)
G and sometimes by Bun

(≤
G
θ)

G . It lies in the
(finite) union of connected components of BunG corresponding to the image of θ under

ΛQ
G → ΛQ

G,G ≃ ΛQ

Z0(G).

Furthermore,

θ1 ≤
G
θ2 ⇒ Bun

(≤θ1)
G ⊂ Bun

(≤θ2)
G ,

and ⋃

θ∈Λ+,Q
G

Bun
(≤θ)
G = BunG .

Finally, we have:

Proposition 7.3.5. The open substack Bun
(≤θ)
G is quasi-compact.

We will give two proofs:

Proof 1. With no loss of generality, we can assume that G is of adjoint type. We will use the
relative compactification pB : BunB → BunG of the map pB : BunB → BunG, see Sect. 7.5.5.

For each connected component ′BunG ⊂ BunG choose a coweight λ ∈ −Λ+
G such that the

map pB : BunλB → BunG lands in ′BunG and is smooth (for smoothness, it is enough to take

λ so that 〈λ, α̌i〉 < −(2g − 2) for each simple root α̌i). Then the map pB : Bun
λ

B →
′BunG is

surjective.

It is a basic property of BunB (see [Sch, Sect. 6.1.4]) that

pB(Bun
λ

B) =
⋃

µ∈Λpos
G

pB(Bun
λ+µ
B ).

Therefore
′BunG ∩Bun

(≤θ)
G =

⋃

µ∈Λpos
G , λ+µ≤

G
θ

pB(Bun
λ+µ
B ).

However, the set
{µ ∈ ΛposG |λ+ µ ≤

G
θ}

is finite. Hence, ′BunG ∩Bun
(≤θ)
G is contained in the image of finitely many quasi-compact

stacks Bunλ+µB , and hence is itself quasi-compact.
�

The second proof will be given after Corollary 7.4.5.

7.3.6. By definition, for λ ∈ ΛQ
G,G = ΛQ

Z0(G)

BunssG ∩Bun
λ
G = Bun

(≤λ)
G

and
BunssG =

⋃

λ∈ΛQ

G,G

Bun
(≤λ)
G .
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7.3.7. For each parabolic P ⊂ G with Levi quotient M we have the corresponding open
substack BunssM ⊂ BunM ; let BunssP denote the pre-image of BunssM in BunP .

For λ ∈ ΛQ
G,P we let

Bunλ,ssM := BunssM ∩Bun
λ
M = Bun

(≤
M
λ)

M , Bunλ,ssP := BunssP ∩Bun
λ
P .

7.4. The Harder-Narasimhan-Shatz stratification of BunG. This stratification was de-
fined in [HN, Sh1, Sh2] in the case G = GL(n). For any reductive G it was defined in
[R1, R2, R3] and [Beh, Beh1].

7.4.1. We give the following definition:

Definition 7.4.2. A schematic morphism of algebraic stacks f : X1 → X2 is an almost-
isomorphism if f is finite and each geometric fiber of f has a single point.

The next theorem is a basic result of reduction theory.

Theorem 7.4.3.

(1) Let λ ∈ Λ+,Q
G and let P ⊂ G be the unique parabolic such that λ belongs to the set Λ++,Q

G,P

defined by (7.1). Then pP : BunP → BunG induces an almost-isomorphism between Bunλ,ssP

and a quasi-compact locally closed reduced substack Bun
(λ)
G ⊂ BunG.

(1′) If k has characteristic 0 then the morphism Bunλ,ssP → Bun
(λ)
G is an isomorphism.

(2) The substacks Bun
(λ)
G , λ ∈ Λ+,Q

G , are pairwise non-intersecting, and every geometric point

of BunG belongs to exactly one Bun
(λ)
G .

(3) Let P ′ ⊂ G be a parabolic and let λ′ be any (not necessarily dominant) element of ΛQ
G,P ′ .

If pP ′(Bunλ
′

P ′) ∩ Bun
(λ)
G 6= ∅ then λ′ ≤

G
λ.

Statements (1), (1′), (2), and a slightly weaker version of (3) are due to K. Behrend [Beh,
Beh1]. A complete proof of the theorem was given by S. Schieder, see [Sch, Theorem 2.3.3]. In
Sect. 7.5 we give a sketch of the proof from [Sch].

7.4.4. We apply Theorem 7.4.3 to obtain the following more explicit description of the open

substacks Bun
(≤θ)
G :

Corollary 7.4.5. For θ ∈ Λ+,Q
G we have:

(7.3) Bun
(≤θ)
G =

⋃

λ, λ≤
G
θ

Bun
(λ)
G ,

and the set

(7.4) {λ ∈ Λ+,Q
G |λ ≤

G
θ and Bun

(λ)
G 6= ∅}

is finite.

Proof. The fact that

Bun
(λ)
G ∩Bun

(≤θ)
G 6= ∅ ⇒ λ ≤

G
θ

follows from the definition of Bun
(≤θ)
G .

The inclusion
Bun

(λ)
G ⊂ Bun

(≤θ)
G
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for λ ≤
G
θ follows from Theorem 7.4.3(3).

This proves (7.3) in view of Theorem 7.4.3(2). The finiteness of the set (7.4) follows from
the fact that

Bun
(λ)
G 6= ∅ ⇒ λ ∈

⋃

P

AG,P ,

see the end of Sect. 7.2.3.
�

As a corollary, we obtain a 2nd proof of Proposition 7.3.5:

Proof 2 (of Proposition 7.3.5). Follows from Corollary 7.4.5 and the fact that each Bun
(λ)
G is

quasi-compact. 11
�

As another corollary of Corollary 7.4.5 we obtain:

Corollary 7.4.6. We have:

(7.5) Bun
(θ)
G = Bun

(≤θ)
G −

⋃

θ′,θ 6=θ′≤
G
θ

Bun
(≤θ′)
G .

Remark 7.4.7. We could a priori define the locally closed substacks Bun
(θ)
G by formula (7.5).

However, without the interpretation of Bun
(θ)
G via Theorem 7.4.3, it would not be clear that

these locally closed substacks are pairwise non-intersecting.

7.4.8. The Harder-Narasimhan map. Let |BunG(k)| denote the set of isomorphism classes of
G-bundles on X (or equiavelently, of objects of the groupoid BunG(k)). We equip |BunG(k)|
with the Zariski topology.

By Theorem 7.4.3(2), for every F ∈ BunG(k) there exists a unique λ ∈ Λ+,Q
G such that

F ∈ Bun
(λ)
G (k). This λ is called the Harder-Narasimhan coweight 12 of F and denoted by

HN(F). Thus we have a map

(7.6) HN : |BunG(k)| → Λ+,Q
G .

Lemma 7.4.9. The map (7.6) has the following properties.

(i) It is upper-semicontinuous, i.e., for each λ0 ∈ Λ+,Q
G the preimage of the subset

(7.7) {λ ∈ Λ+,Q
G |λ ≤ λ0}

is open.
(ii) The image of the map (7.6) is discrete in the real vector space ΛR

G := ΛG ⊗ R.
(iii) A subset S ⊂ |BunG(k)| is quasi-compact if and only if HN(S) is bounded in ΛR

G.

Proof. Follows from Corollary 7.4.5 and the fact that the substacks Bun
(≤θ)
G are open and

quasi-compact. �

11The quasi-compactness of Bun
(λ)
G

relied on the fact that the open substack Bunλ,ss
M

is quasi-compact,

which in itself is a particular case of Proposition 7.3.5.
12By Corollary 7.4.6, this agrees with the usage of the words “Harder-Narasimhan coweight” in Sect. 7.3.4.
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7.4.10. Let us equip the set Λ+,Q
G with the order topology, i.e., the one whose base is formed by

subsets of the form (7.7). Then statement (i) of Lemma 7.4.9 can be reformulated as follows:
the map (7.6) is continuous.

Now it is clear that if a subset of Λ+,Q
G is locally closed then so is its preimage in BunG. Note

that for a subset of Λ+,Q
G it is easy to understand whether it is open, closed, or locally closed,

see Lemma A.1.1 from Appendix A. Thus we obtain:

Corollary 7.4.11. Let S ⊂ Λ+,Q
G be a subset. Consider the corresponding subset

Bun
(S)
G :=

⋃

λ∈S

Bun
(λ)
G ⊂ BunG .

(a) If S has the property that λ1 ∈ S, λ1 ≤
G
λ ⇒ λ ∈ S, then Bun

(S)
G is closed in BunG.

(b) If S has the property that λ1 ∈ S, λ ≤
G
λ1 ⇒ λ ∈ S, then Bun

(S)
G is open in BunG.

(c) If S has the property that λ1, λ2 ∈ S, λ1 ≤
G
λ ≤
G
λ2 ⇒ λ ∈ S, then Bun

(S)
G is locally closed

in BunG.

In cases (a) and (c) of the lemma we will regard Bun
(S)
G as a substack of BunG with the

reduced structure.

7.5. On the proof of Theorem 7.4.3. Let us make some remarks regarding the proof of
Theorem 7.4.3. For a full proof along these lines see [Sch].

7.5.1. For a G-bundle PG let λ be a13 maximal element in ΛQ
G, with respect to the ≤

G
order

relation, such that there exists a parabolic P and PP ∈ BunλP such that PG = pP (PP ). One

shows using Lemma 7.1.7 that the maximality assumption on λ implies that λ ∈ Λ+,Q
G and that

PP ∈ Bunλ,ssP . For details see [Sch, Sect. 6.2].

7.5.2. Using Bruhat decomposition, one shows (see [Sch, Theorem 4.5.1]) that if P ′ is another

parabolic and PP ′ ∈ Bunλ
′

P ′ such that PG = pP ′(PP ′), then λ′ ≤
G
λ, and the equality takes place

if and only if P ′ ⊂ P and PP is induced from PP ′ via the above inclusion.

7.5.3. We obtain that the set of maximal elements λ as in Sect. 7.5.1 contains a single element.
Moreover, the set of parabolics as in Sect. 7.5.1 also contains a unique maximal element P ;

namely, one for which λ ∈ Λ++,Q
G,P .

7.5.4. This establishes points (2) and (3) of the theorem, modulo the fact that Bun
(λ)
G is locally

closed, and not just constructible.

13The “a” is italicized because we do not yet know that such a maximal element is unique, although we will
eventually show that it is.
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7.5.5. Let λ and P be as in Sect. 7.5.3. To prove point (1), one uses the relative compactifi-
cation

pP : BunP → BunG

of the map BunP → BunG defined in [BG, Sect. 1.3.2] under the assumption that [G,G] is
simply connected and in [Sch, Sect. 7] for an arbitrary reductive G. Since pP is proper, the

images of Bun
λ

P and Bun
λ

P − Bunλ,ssP in BunG are both closed. Using Sect. 7.5.2, one shows

that the latter does not intersect Bun
(λ)
G . This implies that p defines a finite map from Bunλ,ssP

to a locally closed substack of BunG. It is bijective at the level of k-points by Sect. 7.5.2. See
[Sch, Sect. 6.2.2] for details. 14

7.5.6. Once (1) is proved, statement (1′) is equivalent to the fact that the map Bunλ,ssP → BunG
is a monomorphism (on S-points for any scheme S). This is proved (see [Sch, Prop. 5.2.1])
using the fact that in characteristic 0, a homomorphism of reductive groups G1 → G2 that
sends Z0(G1) to Z0(G2) sends Bun

ss
G1

to BunssG2
, see [Sch, Prop. 5.2.1] for details. (We will use

a similar argument in the proof of Proposition 9.2.2(a) given in Sect. 10).

8. Complements to reduction theory: P -admissible sets

In this section we fix a parabolic P ⊂ G. Let M be the corresponding Levi.

Our goal is to prove Proposition 8.3.3, which allows us to produce locally closed substacks
of BunG from locally closed substacks of BunM .

8.1. Some elementary geometry. Instead of reading the proofs of Lemmas 8.1.2 and 8.1.4
below, the reader may prefer to check the statements in the rank 2 case by drawing the picture,
and believe that the statements are true in general.

8.1.1. Recall that according to the definitions from Sect. 7.1.2, we have ΛQ
G = ΛQ

M and Λ+,Q
G ⊂

Λ+,Q
M .

Lemma 8.1.2. Let λ, λ′ ∈ ΛQ
G = ΛQ

M and λ′ ≤
M
λ. Then

(a) 〈λ′ , α̌i〉 ≥ 〈λ , α̌i〉 for i 6∈ ΓM ;

(b) If λ ∈ Λ+,Q
G and λ′ ∈ Λ+,Q

M then λ′ ∈ Λ+,Q
G .

Proof. Statement (a) follows from the inequality 〈αj , α̌i〉 ≤ 0 for i 6= j.

To prove (b), we have to show that 〈λ′ , α̌i〉 ≥ 0 for all i ∈ ΓG. If i ∈ ΓM this follows

from the assumption that λ′ ∈ Λ+,Q
M . If i 6∈ ΓM this follows from (a) and the assumption that

λ ∈ Λ+,Q
G . �

8.1.3. In Sect. 7.1.3-7.1.5 we defined the subspace ΛQ
G,P ⊂ ΛQ

G and the projector

prP : ΛQ
G → ΛQ

G,P .

Lemma 8.1.4. If λ ∈ Λ+,Q
G then

(8.1) prP (λ) ≤
M
λ,

(8.2) 〈prP (λ) , α̌i〉 ≥ 〈λ , α̌i〉 for i 6∈ ΓM .

14The latter part of the argument will actually be carried out in a slightly more general situation in the proof
of Proposition 8.3.3.
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Proof. On the one hand, for i ∈ ΓM , one has 〈λ − prP (λ) , α̌i〉 = 〈λ , α̌i〉 ≥ 0. On the other
hand, λ−prP (λ) belongs to the subspace generated by the coroots ofM . Thus λ−prP (λ) is in

the dominant cone of the root system of M . The latter is contained in Λpos,QM , so we get (8.1).

The inequality (8.2) follows from (8.1) by Lemma 8.1.2(a). �

8.2. P -admissible subsets of Λ+,Q
G .

8.2.1. Let S be a subset of Λ+,Q
G , and let P be a parabolic.

Definition 8.2.2. We say that S is P -admissible if the following three properties hold:

(8.3) There exists µ ∈ ΛQ
G,P such that S ⊂ pr−1P (µ) ∩ Λ+,Q

G .

(8.4) If λ1 ∈ S and λ2 ∈ Λ+,Q
G , λ2 ≤

M
λ1 then λ2 ∈ S.

(8.5) ∀λ ∈ S, ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > 0.

Remark 8.2.3. If S 6= ∅ is P -admissible and prP (S) = µ ∈ ΛQ
G,P then

µ ∈ Λ++,Q
G,P ⊂ Λ+,Q

G ,

where, as before,

Λ++,Q
G,P := {λ ∈ ΛQ

G | 〈λ, α̌i〉 = 0 for i ∈ ΓM and 〈λ, α̌i〉 > 0 for i /∈ ΓM}.

This follows from (8.2) and (8.5).

8.2.4. Examples.

(i) The whole set pr−1P (µ) ∩ Λ+,Q
G is P -admissible.

(ii) If λ ∈ Λ+,Q
G is such that 〈λ , α̌i〉 > 0 for all i 6∈ ΓM then the set

S = {λ′ ∈ Λ+,Q
M |λ′ ≤

M
λ}

is P -admissible by Lemma 8.1.2.

(iii) If µ ∈ Λ++,Q
G,P then the one-element set {µ} is P -admissible and moreover, it is the smallest

non-empty P -admissible subset of pr−1P (µ) ∩ Λ+,Q
G . This follows from (8.1).

8.2.5. Let S ⊂ Λ+,Q
G be P -admissible subset. Note that we can also regard S as a subset

of Λ+,Q
M .

Lemma 8.2.6. The subset S ⊂ Λ+,Q
M is open.

Proof. Follows from Lemma 8.1.2(b). �

8.3. Reduction theory and P -admissible subsets.



54 V. DRINFELD AND D. GAITSGORY

8.3.1. Let S ⊂ Λ+,Q
G be a P -admissible subset.

By Corollary 7.4.11, the subset

(8.6) Bun
(S)
G :=

⋃

λ∈S

Bun
(λ)
G ⊂ BunG

is locally closed (and thus we can regard it as a substack with the reduced structure).

By Lemma 8.2.6 and Corollary 7.4.11, the subset

Bun
(S)
M :=

⋃

λ∈S

Bun
(λ)
M ⊂ BunM

is open. Set

Bun
(S)
P := BunP ×

BunM

Bun
(S)
M .

8.3.2. The next proposition is a generalization of Theorem 7.4.3(1); the latter corresponds to
the case where the P -admissible subset S has one element, see Example 8.2.4(iii).

Proposition 8.3.3. Let S ⊂ Λ+,Q
G be a P -admissible subset. Then the restriction of pP :

BunP → BunG to Bun
(S)
P defines an almost-isomorphism

(8.7) Bun
(S)
P → Bun

(S)
G .

Remark 8.3.4. Later we will show that if k has characteristic 0 then the map (8.7) is, in fact,
an isomorphism (see Lemma 10.2.1 and Remark 10.2.2 below).

The rest of this section is devoted to the proof of Proposition 8.3.3.

8.3.5. First, let us prove that the map (8.7) maps Bun
(S)
P to Bun

(S)
G and is bijective at the

level of k-points. To this end, it suffices to show that if λ is an element of

S ⊂ Λ+,Q
G ⊂ Λ+,Q

M

then the map pP sends

BunP ×
BunM

Bun
(λ)
M

bijectively to Bun
(λ)
G .

Let M ′ be the Levi of G such that

ΓM ′ = {i ∈ ΓG | 〈λ, α̌i〉 = 0}.

By condition (8.5), we have ΓM ′ ⊂ ΓM . Let P ′ ⊂ P be the corresponding parabolic. Set
P ′ := P ′/U(P ); this is a parabolic in M whose Levi quotient identifies with M ′. We have

λ ∈ Λ++,Q
G,P ′ ⊂ Λ++,Q

M,P ′ .

By the definition of Bun
(λ)
M , we have a bijection

BunP ′ ×
BunM′

Bunλ,ssM ′ → Bun
(λ)
M .

Hence, it is enough to show that the map

BunP ×
BunM

BunP ′ ×
BunM′

Bunλ,ssM ′ → BunG

defines a bijection onto Bun
(λ)
G .
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However,

BunP ×
BunM

BunP ′ ×
BunM′

Bunλ,ssM ′ ≃ BunP ′ ×
BunM′

Bunλ,ssM ′ ,

and the required assertion follows from the definition of Bun
(λ)
G .

8.3.6. To finish the proof of the proposition, we have to show that the map (8.7) is finite. We
already know that it is bijective, so it suffices to show the map (8.7) is proper. This will be
done by generalizing the argument in Sect. 7.5.5 using the stack BunP .

Let µ ∈ ΛQ
G,P be such that S ⊂ pr−1P (µ) ∩ Λ+,Q

G . Consider the map

p̄P : Bun
µ

P → BunG .

This map is proper. So to prove properness of (8.7), it is enough to show that

(8.8) p̄P (Bun
µ

P − Bun
(S)
P ) ∩ Bun

(S)
G = ∅.

We have
Bun

µ

P − Bun
(S)
P = (Bun

µ

P − BunµP ) ∪ (BunµP −Bun
(S)
P ),

so to prove (8.8), it suffices to show that

(8.9) p̄P (Bun
µ

P − BunµP ) ∩ Bun
(λ)
G = ∅ for all λ ∈ S

and

(8.10) pP (Bun
µ
P −Bun

(S)
P ) ∩ Bun

(λ)
G = ∅ for all λ ∈ S.

8.3.7. To prove (8.9), we use the equality

p̄P (Bun
µ

P − BunµP ) =
⋃

µ′∈ΛQ

G,P µ
′−µ∈Λpos

G −0

pP (Bun
µ′

P ),

which follows from [Sch, Sect. 6.1.4]. This equality shows that if (8.9) were false we would have

(8.11) pP (Bun
µ′

P ) ∩ Bun
(λ)
G 6= ∅

for some µ′ ∈ ΛQ
G,P such that

(8.12) µ ≤
G
µ′ 6= µ.

However, (8.11) implies, by Theorem 7.4.3(3), that µ′ ≤
G
λ. So by Lemma 7.1.7,

µ′ ≤
G
prP (λ) = µ,

which contradicts (8.12).

8.3.8. To prove (8.10), we have to show that if λ′ ∈ Λ+,Q
M is such that

(8.13) pP (Bun
µ
P ×

BunM

Bun
(λ′)
M ) ∩ Bun

(λ)
G 6= ∅

then λ′ ∈ S.

If (8.13) holds then λ′ ≤
G
λ by Theorem 7.4.3(3). Since prP (λ) = µ = prP (λ

′) this implies

that λ′ ≤
M
λ.

Since λ′ ∈ Λ+,Q
M and λ′ ≤

M
λ we get λ′ ∈ Λ+,Q

G by Lemma 8.1.2(b). Since λ ∈ S, λ′ ∈ Λ+,Q
G ,

and λ′ ≤
M
λ we get λ′ ∈ S by the admissibility of S. �
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9. Proof of the main theorem

9.1. The main result of this section. We wish to prove Theorem 4.1.8 (=Theorem 0.2.5),
which says that BunG is truncatable.

9.1.1. For each θ ∈ Λ+,Q
G , we have the quasi-compact open substack Bun

(≤θ)
G ⊂ BunG, see

Sect. 7.3.4 and formula (7.3). The substacks Bun
(≤θ)
G cover BunG .

So Theorem 4.1.8 is a consequence of the following fact:

Theorem 9.1.2. The substack Bun
(≤θ)
G is co-truncative if for every simple root α̌i one has

(9.1) 〈θ , α̌i〉 ≥ 2g − 2,

where g is the genus of X.

In this section we will prove Theorem 9.1.2 modulo a key geometric assertion, Proposi-
tion 9.2.2.

Remark 9.1.3. In Theorem 9.1.2 we assume that the ground field k has characteristic 0 (because
the notion of truncativeness is defined in terms of D-modules). However, Proposition 9.2.2 (of
which Theorem 9.1.2 is an easy consequence) is valid over any k. 15

Below follow some remarks on the proof of Theorem 9.1.2.

9.1.4. The main difficulty. In Sect. 6 we already proved Theorem 9.1.2 for G = SL2. The proof
in the general case is more or less similar.

However, one has to keep in mind the following. If G = SL2 we saw that all but finitely many

Harder-Narasimhan-Shatz strata Bun
(λ)
G are truncative. This is false already forG = SL2×SL2.

Indeed, the stratum of the form Bun
(n)
SL2
×Bun

(m)
SL2

, with n small relative to the genus of X ,

is not truncative in BunSL2 ×BunSL2 = BunSL2×SL2 because Bun
(n)
SL2

is not truncative in
BunSL2 , see Sect. 6.1.3.

For any G, it turns out that Bun
(λ)
G is truncative if λ is “deep inside” the interior of some

face of the cone Λ+,Q
G ; the problem arises if λ is close to the boundary of the open face of Λ+,Q

G

containing λ.

9.1.5. Resolving the difficulty. We prove that certain unions of the strata Bun
(µ)
G are truncative

(see Corollary 9.2.7). In particular, we show that if λ ∈ Λ+,Q
G and

(9.2) Sλ := {µ ∈ Λ+,Q
G | λ− µ ∈

∑

i∈ΓG,λ

Q≥0 · αi},

where ΓG,λ := {i ∈ ΓG | 〈λ , α̌i〉 ≤ 2g − 2} then
⋃

µ∈Sλ

Bun
(µ)
G

is a truncative locally closed substack of BunG . To finish the proof of Theorem 9.1.2, we show
that if θ satisfies (9.1) then the set

{λ ∈ Λ+,Q
G |λ 6≤

G
θ}

can be represented as a union of subsets of the form (9.2).

15We have in mind future applications to the ℓ-adic derived category on BunG, and this category makes
sense in any characteristic.
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9.1.6. The rank 2 case is representative enough. All the difficulties of the proof of Theorem 9.1.2
appear already if G is a semi-simple group of rank 2. On the other hand, in this case various
combinatorial-geometric statements (e.g., the above statement at the end of Sect. 9.1.5) become
obvious once you draw a picture.

9.1.7. In Appendix B we give a variant of the proof of Theorem 9.1.2, which has some advan-
tages compared with the one from Sect. 9.3. The relation between the two proofs is explained
in Sects. 9.4 and B.4.

9.2. A key proposition.

9.2.1. We will deduce Theorem 9.1.2 from the following assertion:

Proposition 9.2.2. There exists an assignment

i ∈ ΓG  ci ∈ Q≥0

such that for any parabolic P and any P -admissible subset S ⊂ Λ+,Q
G satisfying the condition

(9.3) ∀λ ∈ S, ∀i ∈ ΓG − ΓM 〈λ , α̌i〉 > ci

(where as usual, M is the Levi quotient of P ) the following properties hold:

(a) The morphism Bun
(S)
P → Bun

(S)
G induced by pP : BunP → BunG is an isomorphism;

(b) The locally closed substack Bun
(S)
G ⊂ BunG is contractive in the sense of Sect. 5.2.1.

When char k = 0 we can take ci = max(0, 2g − 2).

9.2.3. Proposition 9.2.2 will be proved in Sects. 10 and 11. Namely, in Sect. 10 we will produce
the numbers ci and prove property (a) for these numbers (and, in fact, for smaller ones). In
Sect. 11 we will prove property (b).

Remark 9.2.4. It is only property (b) that will be needed for the proof of Theorem 9.1.2.
Property (a) will be used for the proof of property (b).

Remark 9.2.5. Note that the assertion of point (a) of Proposition 9.2.2 differs from that of
Proposition 8.3.3 only slightly: the former asserts “isomorphism”, while the latter “almost-
isomorphism”.

9.2.6. We now specialize to the case of chark = 0, in which case we have the theory of D-
modules and of truncative substacks (see Definition 3.4.1).

We have:

Corollary 9.2.7. Let S ⊂ Λ+,Q
G be a P -admissible subset such that

(9.4) ∀λ ∈ S, ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > 2g − 2.

Then the locally closed substack Bun
(S)
G ⊂ BunG is truncative.

Proof. Since S ⊂ Λ+,Q
G the condition 〈λ , α̌i〉 > 2g − 2 from (9.4) is equivalent to the condition

〈λ , α̌i〉 > max(0, 2g − 2).

Now apply Proposition 9.2.2 with ci = max(0, 2g − 2), and the assertion follows from the
fact that contractiveness implies truncativeness, see Corollary 5.2.3. �

9.3. Proof of Theorem 9.1.2.
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9.3.1. We have to show that if

(9.5) ∀i ∈ ΓG we have 〈θ , α̌i〉 ≥ 2g − 2

and θ′ ≥
G
θ then the substack Bun

(≤θ′)
G −Bun

(≤θ)
G ⊂ BunG is truncative.

If g = 0 then any locally closed substack of BunG is truncative (see Sect. 3.2.4). So we can
and will assume that g ≥ 1.

9.3.2. By Proposition 3.7.2, it suffices to cover Bun
(≤θ′)
G −Bun

(≤θ)
G by finitely many truncative

substacks.

Let λ ∈ Λ+,Q
G be such that λ 6≤

G
θ, i.e.,

(9.6) θ − λ 6∈ Λpos,QG :=
∑

i∈ΓG

Q≥0 · αi .

It suffices to construct for each such λ a subset Sλ ⊂ Λ+,Q
G containing λ such that the substack

Bun
(Sλ)
G ⊂ BunG is truncative and

(9.7) Bun
(≤θ)
G ∩Bun

(Sλ)
G = ∅.

Here is the construction. Let P be the parabolic whose Levi quotient, M , corresponds to
the following subset of ΓG :

(9.8) ΓM = {i ∈ ΓG | 〈λ , α̌i〉 ≤ 2g − 2}.

Now define

(9.9) Sλ := {λ′ ∈ Λ+,Q
G |λ′ ≤

M
λ}.

Note that by (9.8), for each i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > 2g − 2, which implies that
〈λ , α̌i〉 > 0 (because we are assuming that g ≥ 1). So by Lemma 8.1.2(a), Sλ is P -admissible

and satisfies the condition of Corollary 9.2.7. Hence, the substack Bun
(Sλ)
G ⊂ BunG is truncative.

Therefore, to prove Theorem 9.1.2 it remains to check (9.7).

9.3.3. Proof of equality (9.7). We need the following lemma.

Lemma 9.3.4. Let ν =
∑
i∈ΓG

ai · αi , ai ∈ Q. Assume that ai ≥ 0 for i 6∈ ΓM and 〈ν , α̌i〉 ≥ 0

for i ∈ ΓM . Then ai ≥ 0 for all i ∈ ΓG .

Proof. Set νM :=
∑
i∈ΓM

ai · αi . We have to show that νM ∈ Λpos,QM . The assumptions of the

lemma and the inequality 〈αj , α̌i〉 ≤ 0 for i 6= j imply that 〈νM , α̌i〉 ≥ 0 for i ∈ ΓM . Thus νM
belongs to the dominant cone of the root system of M and therefore to Λpos,QM . �

We are now ready to prove (9.7). It suffices to prove the following

Lemma 9.3.5. There is no λ′ ∈ Λ+,Q
G such that λ′ ≤

G
θ and λ′ ≤

M
λ.

Proof. Suppose that such λ′ exists. Then θ−λ has the form
∑
i∈ΓG

ci ·αi , where ci ≥ 0 for i 6∈ ΓM .

By (9.5) and (9.8), 〈θ−λ , α̌i〉 ≥ 0 for i ∈ ΓM . Hence, by Lemma 9.3.4, θ−λ ∈ Λpos,QG , contrary
to the assumption (9.6). �

Thus we have proved Theorem 9.1.2.
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9.4. A variant of the proof. In the above proof of Theorem 9.1.2 we used substacks of the

form Bun
(Sλ)
G , λ ∈ Λ+,Q

G , where Sλ is defined by (9.8) -(9.9). Instead of considering all substacks
of this form, one could consider only maximal ones among them; one can show that they form
a stratification of BunG all of whose strata are truncative. This somewhat “cleaner” picture is
explained in Appendix B.

10. The estimates

In this section we produce the numbers ci mentioned in Proposition 9.2.2 and prove Propo-
sition 9.2.2(a) for these numbers (and, in fact, for smaller ones).

10.1. The vanishing of H0 and H1.

10.1.1. For what follows, we fix a maximal torus T ⊂ B. This allows us to view the Levi
quotient M of a (standard) parabolic P as a subgroup M ⊂ P (the unique splitting that
contains T ).

Recall that for a parabolic P we denote by U(P ) its unipotent radical. We will use the
following notation for Lie algebras: g := Lie (G), p := Lie (P ), n(P ) := Lie (U(P )).

For an algebraic group H , a principal H-bundle FH and an H-representation V , we denote
by VFH the associated vector bundle.

10.1.2. The main result of this section is:

Proposition 10.1.3. There exists a collection of numbers

c′i,∈ Q, c′′i ∈ Q≥0, i ∈ ΓG

such that for any quadruple

(P,M, λ,FM ),

where P is a parabolic, M the corresponding Levi, λ ∈ Λ+,Q
G and FM ∈ Bun

(λ)
M , the following

statements hold:

(10.1) if ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > c′i then H
1(X, n(P )FM ) = 0;

(10.2) if ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > c′′i then H0(X, (g/p)FM ) = 0.

If char k = 0 then one can take c′i = 2g − 2, c′′i = 0.

Proposition 10.1.3 will be proved in Sect. 10.4. For a discussion of the case char k > 0, see
Sect. 10.5.

10.2. The numbers ci : proof of Proposition 9.2.2(a). In this subsection we will assume
Proposition 10.1.3.

Let c′i and c
′′
i be as in Proposition 10.1.3. Set

(10.3) ci := max(c′i, c
′′
i ).

Eventually we will show that Proposition 9.2.2 holds for the numbers ci defined by (10.3). For
Proposition 9.2.2(a) this follows from the next lemma (which is slightly sharper than Proposi-
tion 9.2.2(a) because the numbers ci are replaced by c′′i ≤ ci).
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Lemma 10.2.1. Let c′′i be as in Proposition 10.1.3. Let S ⊂ Λ+,Q
G be a P -admissible subset

such that

(10.4) ∀λ ∈ S, ∀i ∈ ΓG − ΓM 〈λ , α̌i〉 > c′′i .

Then the morphism Bun
(S)
P → Bun

(S)
G induced by pP : BunP → BunG is an isomorphism.

Remark 10.2.2. The lemma implies that if chark = 0 then the morphism Bun
(S)
P → Bun

(S)
G

is an isomorphism for any P -admissible S ⊂ Λ+,Q
G . Indeed, if chark = 0 one can take c′′i = 0

(see the last sentence of Proposition 10.1.3); on the other hand, for c′′i = 0 the inequality (10.4)
holds by the definition of P -admissibility, see Definition 8.2.2.

Proof of Lemma 10.2.1. By Proposition 8.3.3, it suffices to show that for any y ∈ BunP (k), the
tangent space at y to the fiber of pP : BunP → BunG over pP (y) is zero.

The tangent space in question identifies with H0(X, (g/p)FP ), where FP is the P -bundle
corresponding to y.

Note that the vector bundle (g/p)FM can be identified with the associated graded of (g/p)FP

with respect to a (canonically defined) filtration on the latter. Hence, (10.2) implies that
H0(X, (g/p)FP ) = 0. �

10.3. The notion of strangeness.

10.3.1. Let G̃ be a reductive group and V a finite-dimensional G̃-module on which Z0(G̃) acts
by a character µ̌.

Lemma 10.3.2.

(i) There exists a number c ∈ Q such that for every FG̃ ∈ Bunss
G̃

the degree of any line sub-bundle

of VFG̃
is ≤ 〈degG̃(FG̃), µ̌〉+ c.

(ii) If char k = 0 one can take c = 0.

Proof. Statement (i) follows from the fact that the intersection of Bunss
G̃

with every connected
component of BunG̃ is quasi-compact, and that under the action of BunZ0(G̃) on BunG̃, the

number of orbits of π0(BunZ0(G̃)) on π0(BunG̃) is finite.

Statement (ii) follows from the fact that if chark = 0 then for every FG̃ ∈ Bunss
G̃

the vector

bundle VFG̃
is semistable of slope 〈degG̃(FG̃), µ̌〉 (a proof of this fact can be found in [RR, Sect.

3]; for references to other proofs see the introduction to [RR]). �

10.3.3. We give the following definition:

Definition 10.3.4. The strangeness strngX(G̃, V ) is the smallest number c ∈ Q having the
property from Lemma 10.3.2(i).

One always has strngX(G̃, V ) ≥ 0 (because the trivial G̃-bundle is semi-stable). If chark = 0

then strngX(G̃, V ) = 0.

Remark 10.3.5. As before, let G̃ be a reductive group, V a finite-dimensional G̃-module on

which Z0(G̃) acts by a character µ̌, and F ∈ Bunss
G̃
. Then

H0(X,VFG̃
) = 0 if 〈degG̃(FG̃), µ̌〉 < − strngX(G̃, V ),

H1(X,VFG̃
) = 0 if 〈degG̃(FG̃), µ̌〉 > 2g − 2 + strngX(G̃, V ∗).

In particular, if char k = 0 then

(10.5) H0(X,VF) = 0 if 〈degG̃(FG̃), µ̌〉 < 0, H1(X,VF) = 0 if 〈degG̃(FG̃), µ̌〉 > 2g − 2.
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10.4. Proof of Proposition 10.1.3.

10.4.1. Let us introduce some notation. Let P ′ ⊂ G be a parabolic and M ′ ⊂ P ′ the corre-
sponding Levi (see our conventions in Sect. 10.1.1); in particular M ′ ⊃ T .

Given a root α̌ of G which is not a root of M ′, define an M ′-submodule VM ′,α̌ ⊂ g by

(10.6) VM ′,α̌ :=
⊕

β̌,β̌−α̌∈R(M ′)

gβ̌ ,

where R(M ′) is the root lattice of M ′.

The coefficient of α̌i in a root α̌ will be denoted by coeffi(α̌).

10.4.2. We are going to formulate a slightly more precise version of Proposition 10.1.3.

Let

i ∈ ΓG  c′i, c
′′
i ∈ Q

be numbers satisfying the following inequalities:

For every Levi subgroup M ′ ⊂ G, every i ∈ ΓG − ΓM ′ , and every root α̌ of G such that
coeffi(α̌) > 0, we have:

(10.7) coeffi(α̌) · c
′
i ≥ 2g − 2 + strngX(M ′, (VM ′,α̌)

∗).

(10.8) coeffi(α̌) · c
′′
i ≥ strngX(M ′, VM ′,−α̌).

10.4.3. Remark. In the characteristic 0 case we can take c′i = 2g− 2 and c′′i = 0: indeed, in this
case the numbers strngX from formulas (10.7)-(10.8) are zero.

10.4.4. Here is the promised version of Proposition 10.1.3.

Proposition 10.4.5. Let c′i, c
′′
i be numbers satisfying the conditions from Sect. 10.4.2. Let

P ⊂ G be a parabolic, M be the corresponding Levi, λ ∈ Λ+,Q
G ⊂ Λ+,Q

M and FM ∈ Bun
(λ)
M .

(a) If 〈λ , α̌i〉 > c′i for all i ∈ ΓG − ΓM then H1(X, n(P )FM ) = 0.

(b) If 〈λ , α̌i〉 > c′′i for all i ∈ ΓG − ΓM then H0(X, (g/p)FM ) = 0.

Proof. Let Pλ be the parabolic of M corresponding to the subset {i ∈ ΓM | 〈λ , α̌i〉 = 0} ⊂ ΓM .

Let Mλ be the corresponding Levi. The fact that FM ∈ Bun
(λ)
M means that FM admits a

reduction to Pλ such that the corresponding Mλ-bundle FMλ
is semi-stable of degree λ.

Let us prove statement (a). Note that the vector bundle n(P )FM has a canonical filtra-
tion with the associated graded identified with n(P )FMλ

. Hence, it suffices to show that

H1(X, n(P )FMλ
) = 0.

By Remark 10.3.5, it suffices to prove that

〈λ , α̌〉 > 2g − 2 + strngX(Mλ, (VMλ,α̌)
∗)

for any positive root α̌ of G which is not a root of M .

Let i ∈ ΓG − ΓM be such that coeffi(α̌) > 0. Since λ is dominant for G and 〈λ , α̌i〉 > c′i we
have 〈λ , α̌〉 ≥ coeffi(α̌) · 〈λ , α̌i〉 > coeffi(α̌) · c′i . Now use (10.7) for M ′ =Mλ (this is possible
because i 6∈ ΓM and therefore i 6∈ ΓMλ

).

The proof of statement (b) is similar. �
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Remark 10.4.6. If k has characteristic p > 0 then Proposition 10.4.5 would become really useful
if combined with good16 upper bounds for the strangeness of the relevant representations. It
would be interesting to obtain such bounds.

10.5. Remarks on the positive characteristic case.

10.5.1. Let V1 and V2 be finite-dimensional vector spaces over a field of any characteristic. Let
Gi denote the algebraic group GL(Vi). Then the (G1 ×G2)-modules Hom(V1, V2) and V1 ⊗ V2
have strangeness 0. This immediately follows from the definition of semi-stability.

Corollary 10.5.2. Suppose that Gad ≃ PGL(d1) × . . . × PGL(dn). Then all inequalities
(10.7)-(10.8) hold for c′i = 2g − 2, c′′i = 0 (without any assumption on char k).

10.5.3. Suppose that char k = 2. Let V be a 2-dimensional vector space over k. If g > 1 then
the representation of GL(V ) in the symmetric square Sym2(V ) has strangeness g− 1 > 0. This
follows from Sect. 10.5.1, combined with the exact sequence

0→ V (2) → Sym2(V )→ V ⊗ V

and the equality strngX(V (2)) = g − 1, which is proved, e.g., in [JRXY, Sect. 4.5].

10.5.4. The assertion in Sect. 10.5.3 implies that if g > 1 , char k = 2 and G = Sp(2n), n ≥ 2,
then some of the inequalities (10.7) do not hold for c′i = 2g − 2.

10.5.5. The situation for the numbers c′′i is as follows:

J. Heinloth [He] proved that if G is a classical group over a field of odd characteristic then
all inequalities (10.8) hold for c′′i = 0. He also showed that if char k = 2 this is still true if Gad
is a product of groups of type A and C.

On the other hand, according to [He, P], some of the inequalities (10.8) do not hold if
char k = 2 and Gad has one of the following types: G2, Bn (n ≥ 3), Dn (n ≥ 4).

11. Constructing the contraction

The goal of this section is to prove point (b) of Proposition 9.2.2 for the numbers ci defined
in formula (10.3) from Sect. 10.2.

11.1. Morphisms between BunP , BunP− , BunM , and BunG . In this subsection and the
next we recall some well known facts which will be used in the proof of Proposition 9.2.2(b).

11.1.1. From now on we fix a (standard) parabolic P . Let P− be the parabolic opposite to
P such that P− ⊃ T . Note that P− is not a standard parabolic! Namely, P− is the unique
parabolic such that P ∩ P− =M , when the latter is viewed a subgroup of P , see Sect. 10.1.1.

Lemma 11.1.2. The morphism BunM → BunP− ×
BunG

BunP is an open embedding.

Proof. An M -bundle on X is the same as a G-bundle FG equipped with an M -structure, i.e.,
a section of (G/M)FG .

The assertion follows from the fact that the morphism G/M → G/P− × G/P is an open
embedding. �

16A good upper bound should have the form c(p,G, α̌) ·(g−1). The number c(p,G, α̌) should be independent
of X and small enough to explain the phenomenon in Sect. 10.5.1 below.
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11.1.3. Define open substacks Ui ⊂ BunM as follows:

(11.1) U0 := {FM ∈ BunM |H
0(X, (g/p)FM ) = 0},

(11.2) U1 := {FM ∈ BunM |H
1(X, n(P )FM ) = 0}.

Proposition 11.1.4. We have:

(a) The morphism ιP : BunM → BunP induces a smooth surjective morphism

U1 → BunP ×
BunM

U1.

(b) The morphism pP− : BunP− → BunG is smooth when restricted to the open substack

BunP− ×
BunM

U1 ⊂ BunP− .

(c) The morphism qP− : BunP− → BunM is schematic, affine, and smooth over U0 ⊂ BunM .

(d) The morphism ιP− : BunM → BunP− defines a closed embedding

U0 → BunP− ×
BunM

U0.

Proof. Let FM ∈ U1(k), i.e., FM is an M -torsor on X such that H1(X, n(P )FM ) = 0. Using
an appropriate filtration on U(P ) one deduces from this that H1(X,U(P )FM ) = 0, i.e., every
U(P )FM -torsor on X is trivial. This implies the surjectivity part of statement (a).

To prove the smoothness part of (a), it suffices to check that the differential of the morphism
ιP : BunM → BunP at any point FM ∈ U1(k) ⊂ BunM (k) is surjective. Its cokernel equals
H1(X, n(P )FM ), which is zero by the definition of U1, see formula (11.2).

Note also that the smoothness part of (a) will follow from (b): to see this, decompose the
morphism ιP : BunM → BunP as

BunM → BunP− ×
BunG

BunP → BunP

and use Lemma 11.1.2.

To prove (b), we have to show that the differential of pP− : BunP− → BunG at any k-
point y of BunP− ×

BunM

U1 is surjective. Its cokernel equals H1(X, (g/p−)FP−
), where FP−

is the P−-bundle corresponding to y. Let FM be the corresponding M -bundle. We have
H1(X, n(P )FM ) = 0 by the definition of U1, see formula (11.2). Now, the associated graded of
(g/p−)F

P−
with respect to a (canonically defined) filtration identifies with (g/p−)FM , and the

assertion follows from the fact that the composition

n(P )→ g→ g/p−

is an isomorphism of M -modules.

To prove (c), consider the filtration

U(P−) = U1 ⊃ U2 ⊃ . . . ,

where Um is the subgroup generated by the root subgroups corresponding to the roots α̌ of G
such that ∑

i6∈ΓM

coeffi(α̌) ≤ −m.
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(Here coeffi(α̌) denotes the coefficient of α̌i in α̌.) Note that each quotient Um/Um+1 is a
vector group (i.e., a product of finitely many copies of Ga). To prove (c), it suffices to check
that for each m the morphism

(11.3) (BunP−/Um) ×
BunM

U0 → (BunP−/Um+1) ×
BunM

U0

is schematic, affine and smooth. In fact, it is a torsor over a certain vector bundle.

To see this, note that by (11.1), for each FM ∈ U0 we have

H0(X, (Um/Um+1)FM ) = 0,

so the stack of (Um/Um+1)FM -torsors on X is a scheme; namely, it is the vector space
H1(X, (Um/Um+1)FM ). As FM varies, these vector spaces form a vector bundle on U0. Let ξ
denote its pullback to (BunP−/Um) ×

BunM

U0, then the morphism (11.3) is a ξ-torsor.

Point (d) follows from point (c) since the map U0 → BunP− ×
BunM

U0 is a section of the map

BunP− ×
BunM

U0 → U0,

and the latter is schematic and separated.
�

11.2. The action of A1 on BunP− .

11.2.1. Let Z(M) denote the center of M . Choose a homomorphism µ : Gm → Z(M) such
that 〈µ , α̌i〉 > 0 for i 6∈ ΓM . Then the action of Gm on P− defined by

(11.4) ρt(x) := µ(t)−1 · x · µ(t), t ∈ Gm , x ∈ P
−

extends to an action of the multiplcative monoid A1 on P− such that the endomorphism
ρ0 ∈ End(P ) equals the composition P− ։M →֒ P−.

11.2.2. The above action of A1 on P− induces an A1-action on BunP− . Equip M and BunM
with the trivial A1-action. The projection P− → M is A1-equivariant, so the corresponding
morphism qP− : BunP− → BunM has a canonical A1-equivariant structure.

Remark 11.2.3. The above description of ρ0 implies that the morphism 0 : BunP− → BunP−

corresponding to 0 ∈ A1 equals the composition

(11.5) BunP−

qP−

−→ BunM
ιP−

−→ BunP− .

Remark 11.2.4. The action of Gm on BunP− is trivial: this follows from formula (11.4), which
says that the automorphisms ρt ∈ Aut(P−), t ∈ Gm, are inner. Moreover, formula (11.4)
provides a canonical trivialization of this action.

Remark 11.2.5. Despite the previous remark, it is not true that the action of Gm on each
fiber of the morphism BunP− → BunM is trivial. (Note that although Gm acts on BunP− by
automorphisms over BunM , the trivialization of the Gm-action on BunP− provided by (11.4)
is not over BunM .)

Remark 11.2.6. It is not hard to show that the trivialization of the Gm-action on BunP−

defined in Remark 11.2.4 yields an action of the monoidal stack17 A1/Gm on BunP− . The
proof is straightforward; it uses the formula

ρt(µ(s)) = µ(s), t ∈ A1, s ∈ Gm ,

17For any scheme S, the groupoid (A1/Gm)(S) is the groupoid of line bundles over S equipped with a section,
so (A1/Gm)(S) is a monoidal category with respect to ⊗. In this sense A1/Gm is a monoidal stack.
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which follows from (11.4).

11.3. Proof of Proposition 9.2.2(b).

11.3.1. Let the numbers ci, i ∈ ΓG, be as in formula (10.3) from Sect. 10.2. Let S ⊂ Λ+,Q
G be

a P -admissible subset, and assume that S satisfies (9.3), i.e.,

∀λ ∈ S, ∀i ∈ ΓG − ΓM we have 〈λ , α̌i〉 > ci .

We have to prove that the locally closed substack Bun
(S)
G ⊂ BunG is contractive in the sense of

Sect. 5.2.1.

11.3.2. Recall that ci := max(c′i, c
′′
i ), where c

′
i and c

′′
i are as in Proposition 10.1.3. So for all

λ ∈ S and i ∈ ΓG − ΓM we have

(11.6) 〈λ , α̌i〉 > c′i ,

(11.7) 〈λ , α̌i〉 > c′′i .

By (11.6) and the assumption on the numbers c′i (see Proposition 10.1.3), we have

(11.8) Bun
(S)
M ⊂ U1 := {FM ∈ BunM |H

1(X, (n(P ))F) = 0}.

Similarly, (11.7) implies that

(11.9) Bun
(S)
M ⊂ U0 := {FM ∈ BunM |H

0(X, (g/p)FM ) = 0}.

11.3.3. Let Bun
(S)

P− ⊂ BunP− denote the preimage of the open substack Bun
(S)
M ⊂ BunM . The

embeddings M →֒ P →֒ G and M →֒ P− →֒ G induce a commutative diagram

(11.10) Bun
(S)
M

ι
(S)
P

��

ι
(S)

P−

// Bun
(S)
P−

p
(S)

P−

��

Bun
(S)
P

p
(S)
P

// BunG

We summarize the properties of the maps in the above diagram in the following lemma:

Lemma 11.3.4.

(i) The morphism Bun
(S)
M → Bun

(S)
P ×

BunG

Bun
(S)

P− defined by diagram (11.10) is an open embed-

ding.

(ii) The morphism ι
(S)
P : Bun

(S)
M → Bun

(S)
P is surjective and smooth.

(iii) The morphism p
(S)
P− : Bun

(S)
P− → BunG is smooth.

(iv) The morphism p
(S)
P induces an isomorphism Bun

(S)
P → Bun

(S)
G .

(v) The morphism ι
(S)

P− : Bun
(S)
M → Bun

(S)

P− is a closed embedding.
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Proof. Statement (i) follows from Lemma 11.1.2.

By (11.8), statements (ii) and (iii) follow from Proposition 11.1.4 points (a) and (b), respec-
tively.

Statement (iv) holds by Proposition 9.2.2(a). By (11.9), statement (v) follows from Propo-
sition 11.1.4(d). �

Remark 11.3.5. One can show, using [Sch, Proposition 4.4.4], that the map in point (i) of
Lemma 11.3.4 is an isomorphism for any P -admissible set S (i.e., S does not even have to
satisfy (9.3).)

11.3.6. Our goal is to prove that the locally closed substack Bun
(S)
G ⊂ BunG is contractive.

By the definition of contractiveness (see Sect. 5.2.1), this follows from Lemma 11.3.4 and the
next statement:

Proposition 11.3.7. Let S be as in Proposition 9.2.2. Then the substack Im(ι
(S)
P− ) ⊂ Bun

(S)
P−

from Lemma 11.3.4(v) is contractive.

Proof. Equip BunP− with the A1-action from Sect. 11.2 corresponding to some µ : Gm → Z(M).

The open substack Bun
(S)
P− ⊂ BunP− is A1-stable, so we obtain an A1-action on Bun

(S)
P− .

We apply Lemma 5.4.3 to the canonical morphism q
(S)
P− : Bun

(S)
P− → Bun

(S)
M and the above

A1-action on Bun
(S)
P− . We only have to check that the conditions of the lemma hold.

By (11.9) and Proposition 11.1.4(c), the morphism q
(S)
P− : Bun

(S)
P− → Bun

(S)
M is schematic and

affine. Conditions (i)-(ii) from Lemma 5.4.3 hold by Remarks 11.2.3-11.2.4. �

12. Counterexamples

The goal of this section is to show that the property of being truncatable is a purely “stacky”
phenomenon, i.e., that it “typically” fails for non quasi-compact schemes.

12.1. Formulation of the theorem.

Theorem 12.1.1. Let Y be an irreducible smooth scheme of dimension n, such that for some
(or, equivalently, any) non-empty quasi-compact open U ⊂ Y the set

(12.1) {y ∈ Y − U | dimy(Y − U) = dimY − 1}

is not quasi-compact. Then D-mod(Y ) is not compactly generated.

The theorem will be proved in Sect. 12.2 below. Here are two examples of schemes Y
satisfying the condition of Theorem 12.1.1.

Example 12.1.2. Let I be an infinite set and let Y be the non-separated curve that one obtains
from A1× I by gluing together the open subschemes (A1−{0})×{i}, i ∈ I (in other words, Y
is the affine line with the point 0 repeated I times).

Example 12.1.3. Let X0 be a smooth surface and x0 ∈ X0 a point. Set U0 = X − {x0}. Let
X1 be the blow-up of X0 at x0. Let x1 ∈ X1 be a point on the exceptional divisor. We have
an open embedding

U0 = X − {x0} →֒ X1 − {x1} = U1

such that U1 − U0 is a divisor. We can now apply the same process for (X1, x1) instead of
(X0, x0). Thus we obtain a sequence of schemes

U0 →֒ U1 →֒ U2 →֒ ...
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Then Y :=
⋃
i

Ui satisfies the condition of Theorem 12.1.1. Note that Y is separated if X0 is.

12.2. Proof of Theorem 12.1.1. We will use facts from Sect. 2.2.10 about the relation be-
tween compactness and coherence (in the easier case of smooth schemes).

12.2.1. Let Y be a smooth scheme, Z ⊂ Y a non-empty divisor, and Y − Z = U
j
→֒ Y be the

complementary open embedding.

Lemma 12.2.2. Suppose that N ∈ D-mod(Y ) is coherent and j∗ ◦ j∗(N) = N. Then the
singular support SS(N) ⊂ T ∗(Y ) is not equal to T ∗(Y ).

Proof. We can assume that Y is affine and Z is smooth. Since j∗ is t-exact we can also assume
that N is in D-mod(N)♥. Suppose that SS(N) = T ∗(Y ). Then there exists an injective map
DY →֒ N, where DY is the D-module of differential operators on Y . We obtain an injective
map j∗ ◦ j∗(DY ) →֒ j∗ ◦ j∗(N) = N. But N is coherent while j∗ ◦ j∗(DY ) is not. �

12.2.3. Let Y be as in Theorem 12.1.1 and M ∈ D-mod(Y ) a compact object. Note that by
Remark 2.2.13, M is automatically coherent.

We claim:

Lemma 12.2.4. SS(M) 6= T ∗(Y ).

Proof. By Proposition 2.3.7, there exists a quasi-compact open U
j
→֒ Y such thatM = j!(j

∗(M))
or equivalently,

DVerdier
Y (M) = j∗ ◦ j

∗(DVerdier
Y (M)).

We can assume that U 6= ∅ (otherwise M = 0 and SS(M) = ∅). Then the set (12.1) is
non-empty, so after shrinking Y we can assume that the set Z := Y −U is a non-empty divisor.

Applying Lemma 12.2.2 to N = DVerdier
Y (M) we get SS(DVerdier

Y (M)) 6= T ∗(Y ). Finally,
SS(M) = SS(DVerdier

Y (M)). �

12.2.5. Recall that the full subcategory of compact objects in a DG category C is denoted by
Cc.

Lemma 12.2.6. Let A ⊂ D-mod(Y ) be the DG subcategory generated by D-mod(Y )c. If M ∈ A

is coherent then SS(M) 6= T ∗(Y ).

Proof. Let U
j
→֒ Y be a non-empty quasi-compact open subset.

Let C ⊂ D-mod(U) be the full DG subcategory of D-mod(U) generated by j∗(D-mod(Y )c).
Since j∗(D-mod(Y )c) ⊂ D-mod(U)c, we have

Cc = C ∩D-mod(U)c,

and by Corollary 1.4.6, the latter is Karoubi-generated by j∗(D-mod(Y )c).

This observation, combined with Lemma 12.2.4 and the fact that T ∗(U) is dense in T ∗(Y ),
implies that for any N ∈ Cc,

SS(N) 6= T ∗(U).

Now, j∗(M) ∈ C ∩ D-modcoh(U), and since U is quasi-compact, we have D-modcoh(U) =
D-mod(U)c. Hence, j∗(M) ∈ Cc, implying the assertion of the lemma.

�

Corollary 12.2.7. The DG category A from Lemma 12.2.6 does not contain DY .

Theorem 12.1.1 clearly follows from Corollary 12.2.7.
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Appendix A. Preordered sets as topological spaces

The material in this section is standard.

A.1. Definition of the topology. Given a preordered set X we equip it with the following
topology: a subset U ⊂ X is said to be open if for every x ∈ U one has {y ∈ X |y ≤ x} ⊂ U .

Lemma A.1.1.

(i) A subset F ⊂ X is closed if and only if for every x ∈ F one has {y ∈ X |y ≥ x} ⊂ F .
(ii) A subset Z ⊂ X is locally closed if and only if

(A.1) ∀x1, x2 ∈ Z {y ∈ X |x1 ≤ y ≤ x2} ⊂ Z.

(iii) For every subset Y ⊂ X the topology on Y corresponding to the induced preordering on
Y is induced by the topology on X.

Proof. We will only prove (ii). Condition (A.1) holds for locally closed subsets because it holds
for open and closed ones. Conversely, if Z satisfies (A.1) then Z has the following representation
as F ∩ U with F closed and U open:

F := Z̄ = {x ∈ X | ∃z ∈ Z : z ≤ x}, U := {x ∈ X | ∃z ∈ Z : z ≥ x}.

�

A.2. Continuous maps. The following is also easy to see:

Lemma A.2.1. Let X,X ′ be preordered sets equipped with the above topology. Then a map
f : X → X ′ is continuous if and only if it is monotone, i.e., x1 ≤ x2 ⇒ f(x1) ≤ f(x2). �

Appendix B. The Langlands retraction and coarsenings of the

Harder-Narsimhan-Shatz stratification

In Sect. B.1 we recall the definition of the Langlands retraction L : ΛQ
G → Λ+,Q

G .

Using this retraction, we define in Sect. B.2 a coarsening of the usual Harder-Narasimhan-

Shatz stratification of BunG depending on the choice of η ∈ Λ+,Q
G (the usual stratification itself

corresponds to η = 0).

In Sect. B.3 we show that if η is “deep inside” Λ+,Q
G then all the strata of the corresponding

stratification are contractive (and therefore truncative if char k = 0). Combined with Proposi-
tion 9.2.2 this immediately implies Theorem 9.1.2 (see Sect. B.3.5 below).

In Sect. B.4 we explain the relation between the two proofs of Theorem 9.1.2.

B.1. Recollections on the Langlands retraction. Equip ΛQ
G with the ≤

G
ordering. The

following notion goes back to [La, Sect. 4].

Definition B.1.1. The Langlands retraction L : ΛQ
G → Λ+,Q

G is defined as follows: for λ ∈ ΛQ
G ,

let L(λ) be the least element of the set {µ ∈ Λ+,Q
G | µ ≥

G
λ} in the sense of the ≤

G
ordering.

B.1.2. The existence of the least element is not obvious; it was proved by R.P. Langlands in
[La, Sect. 4]. The material from [La, Sect. 4] is known under the name of “Langlands’ geometric
lemmas”. We give a short review of it in [Dr]. In particular, we give there two proofs of the
existence of the least element: J. Carmona’s “metric” proof (see [Dr, Sections 2-3]) and another
one (see Sect. 4 of [Dr], including Example 4.3).
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B.1.3. It is clear that the map L : ΛQ
G → Λ+,Q

G is an order-preserving retraction. The following
description of the fibers of L is given in [La, Sect. 4]; see also [Dr, Cor. 5.3(iii)].

Lemma B.1.4. For any λ ∈ Λ+,Q
G one has

L−1(λ) = λ+
∑

i∈Iλ

Q≤0 · αi , where Iλ := {i ∈ ΓG | 〈λ, αi〉 = 0}.

B.2. The η-stratification.

B.2.1. The η-shifted Langlands retraction. Let η ∈ Λ+,Q
G . The map

(B.1) L+
η : Λ+,Q

G → (η + Λ+,Q
G ), L+

η (λ) := L(λ− η) + η

is an order-preserving retraction (this follows from a similar property of L). By definition,

(B.2) ∀λ′ ∈ Λ+,Q
G , ∀λ ∈ (η + Λ+,Q

G ) we have L+
η (λ

′) ≤
G
λ⇔ λ′ ≤

G
λ.

B.2.2. The η-stratification of BunG . In Sect. 7.4.8 we defined the Harder-Narasimhan map

HN : |BunG(k)| → Λ+,Q
G and formulated three properties of it, see Lemma 7.4.9 (i-iii). Since

the map L+
η : Λ+,Q

G → (η + Λ+,Q
G ) is order-preserving, the map

(B.3) HNη : |BunG(k)| → (η + Λ+,Q
G ), HNη := L+

η ◦HN

has the same three properties. So the fibers of the map (B.3) form a stratification of BunG with
quasi-compact strata. We call it the η-stratification of BunG ; the corresponding strata are

(B.4) Bun
(λ)η
G :=

⋃

λ′∈(L+
η )−1(λ)

Bun
(λ′)
G , λ ∈ (η + Λ+,Q

G ).

It is clear that the η-stratification is coarser than the Harder-Narsimhan-Shatz stratification
(the word ”coarser” is understood in the non-strict sense).

B.2.3. Open substacks associated to the η-stratification. Recall that for each λ ∈ Λ+,Q
G the open

substack Bun
(≤λ)
G ⊂ BunG is the union of the strata

Bun
(λ′)
G , λ′ ≤

G
λ.

If one considers similar unions of the strata of the η-stratification then one gets “essentially”

the same class of open substacks of BunG ; more precisely, we claim that for each λ ∈ (η+Λ+,Q
G )

one has ⋃

λ′∈(η+Λ+,Q
G ), λ′≤

G
λ

Bun
(λ′)η
G = Bun

(≤λ)
G .

This follows from (B.2) and (B.4).

B.2.4. Changing η. If η′ ∈ (η + Λ+,Q
G ) then L+

η′ ◦ L
+
η = L+

η′ , so the η′-stratification is coarser

than the η-stratification. If η′ and η have the same image in Λ+,Q
Gad

then L+
η′ = L+

η , so the

η′-stratification and the η-stratification are the same.
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B.2.5. (L+
η )
−1(λ) as a P -admissible set. Let λ ∈ (η + Λ+,Q

G ). Let P be the parabolic whose
Levi quotient, M , corresponds to the following subset of ΓG :

(B.5) ΓM = {i ∈ ΓG | 〈λ− η , α̌i〉 = 0}.

Equivalently,

(B.6) ΓG − ΓM = {i ∈ ΓG | 〈λ , α̌i〉 > 〈η , α̌i〉}.

By Lemma B.1.4, the subset Tλ := (L+
η )
−1(λ) ⊂ Λ+,Q

G has the following description in terms
of the ≤

M
ordering:

(B.7) Tλ = {λ′ ∈ Λ+,Q
G |λ′ ≤

M
λ}.

So by (B.6) and Lemma 8.1.2(a), the set Tλ is P -admissible in the sense of Definition 8.2.2.

Moreover, by (B.4) and (B.7), the stratum Bun
(λ)η
G is equal to the locally closed substack

Bun
(Tλ)
G defined in Sect. 8.3.1 by formula (8.6).

B.3. The case where η is “deep inside” Λ+,Q
G .

B.3.1. Contractiveness of the strata. Now suppose that

(B.8) 〈η , α̌i〉 ≥ ci for all i ∈ ΓG ,

where the numbers ci ∈ Q≥0 are as in Proposition 9.2.2.

Proposition B.3.2. Under these conditions, all strata of the η-stratification are contractive.

Proof. Let λ ∈ (η + Λ+,Q
G ). By Sect. B.2.5, Bun

(λ)η
G = Bun

(Tλ)
G , where Tλ ⊂ Λ+,Q

G is the P -
admissible set defined by (B.7). So by Proposition 9.2.2(b), it suffices to check that for all
λ′ ∈ Tλ and i ∈ ΓG − ΓM one has 〈λ′ , α̌i〉 > ci. If λ′ = λ this is clear from (B.6) and (B.8).
The general case follows by Lemma 8.1.2(a). �

B.3.3. The characteristic 0 case. Now assume that char k = 0. Then by Proposition 9.2.2, one
can take ci = max(0, 2g − 2), where g is the genus of X . In this situation condition (B.8) can
be rewritten as

(B.9) η ∈ (η0 + Λ+,Q
G ), where η0 := max(0, 2g − 2) · ρ

(as usual, ρ denotes the half-sum of positive coroots). E.g., one can take η = η0 .

In characteristic 0 we have the notion of trunactiveness and the fact that contractiveness
implies truncativeness, see Corollary 5.2.3. Thus we get part (i) of the following

Corollary B.3.4. Suppose that char k = 0 and

(B.10) 〈η , α̌i〉 ≥ max(0, 2g − 2) for all i ∈ ΓG .

Then:

(i) all strata of the η-stratification are truncative;

(ii) the open strata of the η-stratification are co-truncative;

Proof. We have already proved (i). The complement of an open stratum is a union of strata,
so statement (ii) follows from Proposition 3.7.2. �
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B.3.5. Proof of Theorem 9.1.2. We have to show that the substack Bun
(≤η)
G ⊂ BunG is co-

truncative if 〈η , α̌i〉 ≥ 2g − 2 for all i ∈ ΓG . If g = 0 then any open substack of BunG is
co-truncative by Sect. 3.2.4. So we can assume that (B.10) holds. Then the statement follows

from Corollary B.3.4(ii) because Bun
(≤η)
G is an open stratum of the η-stratification; namely, it

is the stratum correspondng to η ∈ (η + Λ+,Q
G ). �

B.4. Relation between the two proofs of Theorem 9.1.2. Suppose that char k = 0 and
g ≥ 1.

In the proof of Theorem 9.1.2 given in Sect. 9.3 we used substacks Bun
(Sλ)
G ⊂ BunG, λ ∈ Λ+,Q

G ,
where

(B.11) Sλ := {λ′ ∈ Λ+,Q
G |λ′ − λ ∈

∑

i∈I

Q≤0 · αi}, I := {i ∈ ΓG | 〈λ, αi〉 ≤ 2g − 2}.

These substacks are related to the strata of the η0-stratification, where η0 is as in (B.9). The

relation is as follows. The stratum of the η0-stratification corresponding to λ ∈ (η0 + Λ+,Q
G )

equals Bun
(Sλ)
G . On the other hand, for any λ ∈ Λ+,Q

G the stack Bun
(Sλ)
G is a locally closed

substack of the stratum of the η0-stratification corresponding to L+
η0(λ). (The proof of these

facts is left to the reader.)

Appendix C. A stacky contraction principle

The main goal of this appendix is to prove Theorem C.5.3 and Corollaries C.5.4-C.5.5.
Corollary C.5.5 is a “contraction principle”, which is slightly more general than Proposi-

tion 5.1.2. Theorem C.5.3 and Corollary C.5.4 are generalizations of the classical adjunction
from Proposition 5.3.2.

Convention: throughout this appendix algebras are always associative but not necessarily
unital; coalgebras are coassociative but not necessarily counital.

C.1. Idempotent algebras in monoidal categories. The notions of algebra and coalgebra
make sense in any monoidal category.

Definition C.1.1. An algebra A in a monoidal category is said to be idempotent if the multi-
plication morphism A⊗ A→ A is an isomorphism.

Remark C.1.2. The dual notion of idempotent coalgebra is, in fact, equivalent to that of
idempotent algebra: an isomorphism m : A ⊗ A → A is an algebra structure if and only if
m−1 : A→ A⊗A is a coalgebra structure.

In any monoidal category M the unit object 1M has a canonical structure of idempotent
algebra.

Here is another example. Any monoid M can be considered as a monoidal category (with
M as the set of objects and no morphisms other than the identities). In particular, this applies
to {0, 1} as a monoid with respect to multiplication. Clearly 0 is an idempotent algebra in the
monoidal category {0, 1}.

Remark C.1.3. The category of idempotent algebras in a monoidal category M is equivalent to
the category of monoidal functors F : {0, 1} →M; namely, the idempotent algebra correspond-
ing to F is F (0).

Let C be a category. By an idempotent functor C → C we mean an idempotent algebra in
the monoidal category of functors C → C. One can think of idempotent functors in terms of
the two mutually inverse constructions below.
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Construction 1. Suppose we have categories A and C, functors A
i
−→ C

π
−→ A, and an

isomorphism f : π ◦ i
∼
−→ IdA. Set 0 := i ◦ π. Then 0 : C → C is an idempotent functor: the

isomorphism 0 ◦ 0
∼
−→ 0 is the composition

0 ◦ 0 = (i ◦ π) ◦ (i ◦ π) = i ◦ (π ◦ i) ◦ π
∼
−→ i ◦ IdA ◦ π = i ◦ π = 0.

Construction 2. Let C be a category equipped with an idempotent functor 0 : C → C. Equiv-
alently, C carries an action of the monoid {0, 1} (see Remark C.1.3). Let C0 be the category
of {0, 1}-equivariant functors {0} → C. Then the {0, 1}-equivariant maps {0} →֒ {0, 1} → {0}

induce functors C0 π
←− C

i
←− C0 with π ◦ i = IdC0 . Equivalently, one can think of C0 as

the category of 0-modules18 c in C such that the morphism 0 · c → c is an isomorphism; then
i : C0 → C is the forgetful functor and π : C→ C0 is the “free module” functor.

It is easy to check that the above Constructions 1 and 2 are mutually inverse.19

Remark C.1.4. In the situation of Construction 1, the algebra 0 is unital (or equivalently, is a

monad) if and only if (π, i) is an adjoint pair of functors with f : π ◦ i
∼
−→ IdA being one of

the adjunctions (in this case the unit of 0 is the other adjunction). Similarly, 0 is a counital
coalgebra (or equivalently, a comonad) if and only if (i, π) is an adjoint pair.

C.2. The monodromic subcategory. Let Y be a QCA stack equipped with a Gm-action.
Then one has the quotient stack Y/Gm and the canonical morphism p : Y→ Y/Gm.

Definition C.2.1. The monodromic subcategory D-mod(Y)µ ⊂ D-mod(Y) is the subcategory
generated by the essential image of p! : D-mod(Y/Gm) → D-mod(Y) (or equivalently, by the
essential image of p∗).

(A more precise name for D-mod(Y)µ would be “unipotently monodromic subcategory.”)

Lemma C.2.2. If the Gm-action on Y is trivial then D-mod(Y)µ = D-mod(Y).

Proof. A trivialization of the Gm-action on Y identifies Y/Gm with Y × (pt /Gm) and the
morphism p : Y→ Y/Gm with the canonical morphism Y = Y× pt→ Y× (pt /Gm). �

C.3. Recollections on the renormalized direct image. Let π : Y1 → Y2 be a morphism
of QCA stacks. The renormalized direct image functor

πN : D-mod(Y1)→ D-mod(Y2)

is defined in [DrGa1, Sect. 9.3] to be the functor dual to π! : D-mod(Y2)→ D-mod(Y1) (dual in
the sense of Sects. 1.5.2 and 2.2.16 of this article). By definition, πN is continuous. One also has a
not necessarily continuous de Rham direct image functor πdR,∗ : D-mod(Y1)→ D-mod(Y2), see

[DrGa1, Sect. 7.4]. If πdR,∗ is continuous then one has a canonical isomorphism πN
∼
−→ πdR,∗ ,

see [DrGa1, Corollary 9.3.8]. For instance, this happens if the fibers of π are algebraic spaces,
see [DrGa1, Corollary 10.2.5].

C.4. Formulation of the theorem. Let Y be a QCA stack equipped with an action of the
multiplicative monoid A1. Let 0 ∈ Mor(Y,Y) denote the endomorphism of Y correspond-
ing to 0 ∈ A1. One has continuous functors 0!,0N : D-mod(Y) → D-mod(Y) (the func-
tor 0dR,∗ is continuous only if it equals 0N). By Remark C.1.3, 0 is an idempotent alge-
bra in the monoidal category Mor(Y,Y). So the functors 0N and 0! are idempotent algebras
in the monoidal category Functcont(D-mod(Y),D-mod(Y)) and also in the monoidal category

18This notion makes sense because 0 is an algebra in the monoidal category of functors C → C.
19This is a “baby case” of the theory of retracts and idempotents in ∞-categories from [Lu1, Sect. 4.4.5].
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Functcont(D-mod(Y)µ,D-mod(Y)µ) (here D-mod(Y)µ ⊂ D-mod(Y) is the monodromic subcate-
gory, see Sect. C.2). By Remark C.1.2, one can also consider 0N and 0! as idempotent coalgebras.

Theorem C.4.1. The algebra 0N ∈ Functcont(D-mod(Y)µ,D-mod(Y)µ) is unital. The coalgebra
0! ∈ Functcont(D-mod(Y)µ,D-mod(Y)µ) is counital.

A proof will be given in Sect. C.6-C.8. A slightly different proof will be sketched in Sect. C.9.

Corollary C.4.2. If the Gm-action on Y is trivial then the algebra

0N ∈ Functcont(D-mod(Y),D-mod(Y))

is unital and the coalgebra

0! ∈ Functcont(D-mod(Y),D-mod(Y))

is counital.

Proof. Use Theorem C.4.1 and Lemma C.2.2. �

C.5. Reformulation in terms of adjunctions. Let Y be as in Sect. C.4. In particular,
the submonoid {0, 1} ⊂ A1 acts on Y. Define Y0 to be the stack of {0, 1}-equivariant maps
{0} → Y. Equivalently, for any test scheme S, the groupoid Y0(S) is obtained from Y(S) using
Construction 2 from Sect. C.1. It is clear that the stack Y0 is QCA.

The {0, 1}-equivariant maps {0, 1} → {0} →֒ {0, 1} induce morphisms

(C.1) Y
i
←− Y0 π

←− Y, π ◦ i = IdY0 , i ◦ π = 0.

The A1-action on Y induces an A1-action on the diagram (C.1). The A1-action on Y0 is canon-
ically trivial (this follows from the identity λ · 0 = 0 in A1). So D-mod(Y0)µ = D-mod(Y0).

Example C.5.1. Let Y be the stack BunP− equipped with the A1-action from Sect 11.2. Then
Y0 = BunM and diagram (C.1) identifies with diagram (11.5).

Remark C.5.2. Since π ◦ i = IdY0 the morphism i is representable20 (i.e., its fibers are algebraic
spaces rather than stacks). So the renormalized direct image functor iN equals the “usual”
direct image idR,∗ .

By Remarks C.1.4 and C.5.2, one can reformulate Theorem C.4.1 and Corollary C.4.2 as
follows.

Theorem C.5.3. The functors

(C.2) πN : D-mod(Y)µ ⇄ D-mod(Y0) : idR,∗ , i! : D-mod(Y)µ ⇄ D-mod(Y0) : π!

form adjoint pairs with the adjunctions πN ◦ idR,∗
∼
−→ IdD-mod(Y0) and IdD-mod(Y0)

∼
−→ i! ◦ π!

coming from the isomorphism π ◦ i
∼
−→ IdY0 .

Corollary C.5.4. If the Gm-action on Y is trivial then the functors

(C.3) πN : D-mod(Y)⇄ D-mod(Y0) : idR,∗ , i! : D-mod(Y)⇄ D-mod(Y0) : π!

form adjoint pairs with the adjunctions πN ◦ idR,∗
∼
−→ IdD-mod(Y0) and IdD-mod(Y0)

∼
−→ i! ◦ π!

coming from the isomorphism π ◦ i
∼
−→ IdY0 .

20Example C.5.1 shows that i is not necessarily a monomorphism. Simpler example: let G be an affine
algebraic group equipped with an A1-action and set Y := pt /G, then Y0 = pt /G0, where G0

⊂ G is the
subgroup of A1-fixed points.
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Corollary C.5.5. Suppose that the Gm-action on Y is trivial and the morphism i : Y0 → Y

is a composition of an almost-isomorphism21 Y0 → Z and a locally closed embedding Z →֒ Y.
Then the substack Z ⊂ Y is truncative.

Remark C.5.6. The assumption of Corollary C.5.5 is equivalent to the following one: 0(Y) ⊂ Z

and 0|Z : Z→ Z is an almost-isomorphism.

Remark C.5.7. Corollary C.5.5 holds even if Y is locally QCA (but not necessarily quasi-
compact). To show this, we can assume that Y0 is quasi-compact (otherwise replace Y by
Y×Y0 S, where S is any quasi-compact scheme equipped with a smooth morphism to Y0). Then
Y0 is contained in a quasi-compact open substack U ⊂ Y. Since the Gm-action on Y is trivial
U is A1-stable. Applying Corollary C.5.5 to U we see that Y0 is truncative in U and therefore
in Y.

C.6. The key lemma. Similarly to the notion of monoidal groupoid, there is a notion of
monoidal stack. Of course, any algebraic group or the multiplicative monoid A1 are examples
of monoidal stacks. In the proof of Theorem C.4.1 we will use the monoidal stack A1/Gm. (If
you wish, S-points of A1/Gm can be interpreted as line bundles over S equipped with a section;
this is a monoidal category with respect to ⊗).

Let G be a monoidal QCA stack over k. Then D-mod(G) is a monoidal category with respect
to the convolution

(C.4) M ∗N := mN(M ⊠N), M,N ∈ D-mod(G),

where m : G×G→ G is the multiplication map.
For any g ∈ G(k) define g ∈ D-mod(G) to be the direct image of k ∈ D-mod(pt) under the

map g : pt→ G (this is a kind of “delta-function” at g). The assignment g 7→ g is a monoidal
functor G(k)→ D-mod(G). In particular, 1 ∈ D-mod(G) is the unit object.

If f : G1 → G2 is a morphism of monoidal stacks then fN : D-mod(G1) → D-mod(G2) is a
monoidal functor. If f is only a morphism of semigroups then fN is a semigroupal 22 functor,
so fN(1) ∈ D-mod(G2) is an idempotent algebra.

Applying this to 0 : pt→ A1/Gm we see that 0 ∈ D-mod(A1/Gm) is an idempotent algebra.

Lemma C.6.1. The algebra 0 ∈ D-mod(A1/Gm) is unital.

Proof. Consider the morphisms {0}/Gm
i
→֒ A1/Gm

π
−→ {0}/Gm induced by the morphisms

{0} →֒ A1 → {0}. Set C := D-mod({0}/Gm); this is a monoidal category because {0}/Gm is a
monoidal stack. We have a monoidal functor πdR,∗ : D-mod(A1/Gm) → C and a semigroupal
functor idR,∗ : C → D-mod(A1/Gm) with πdR,∗ ◦ idR,∗ = IdC . By definition, 0 = idR,∗(1C),
where 1C is the unit object of C.

Let us now construct the unit e : 1→ 0 of the algebra 0. By Sect. 3.3.9, (πdR,∗, idR,∗) is an
adjoint pair of functors (this is the “baby case” of Theorem C.5.3). So

Maps(1, 0) = Maps(1, idR,∗(1C)) = Maps(πdR,∗(1),1C) = Maps(1C,1C);

more precisely, the map πdR,∗ : Maps(1, 0)→Maps(1C,1C) is an isomorphism. Define e : 1→ 0

to be the morphism such that πdR,∗(e) equals id : 1C
∼
−→ 1C.

Let us show that e is indeed a unit. Let f : 0→ 0 denote the composition of the morphism
e∗ id0 : 0 = 1 ∗ 0→ 0 ∗ 0 with the multiplication map 0∗ 0→ 0. We have to prove that f = id0 .

21See Definition 7.4.2.
22There exists a precedent of the usage of “semigroupal” in the literature; this word means “monoidal, but

without asking that the unit map to the unit.”
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To do this, it suffices to show that πdR,∗(f) equals the identity. This is clear because πdR,∗ is

a monoidal functor and πdR,∗(e) equals id : 1C
∼
−→ 1C. �

C.7. Proof of a particular case of Theorem C.4.1. The following statement is a particular
case of Theorem C.4.1 and of Corollary C.4.2.

Lemma C.7.1. Let Y be a QCA stack equipped with an action of the monoidal stack
A1/Gm. Then the algebra 0N ∈ Functcont(D-mod(Y),D-mod(Y)) is unital and the coalgebra
0! ∈ Functcont(D-mod(Y),D-mod(Y)) is counital.

This lemma is an immediate consequence of Lemma C.6.1 and the following general consid-
erations.

Suppose that a monoidal QCA stack G acts on a QCA stack Y. Then the monoidal category
G(k) acts on D-mod(Y) on the left by g 7→ gN, g ∈ G(k). One also has the right action23 g 7→ g!.
Each of these two actions extend to an action of D-mod(G). Namely, the left action is defined
by

(C.5) M ∗N := aN(M ⊠N), M ∈ D-mod(G), N ∈ D-mod(Y),

where a : G × Y → Y is the action map. One can get the right action of D-mod(G) on
D-mod(Y) from the left one using the equivalence D-mod(Y)∨ ≃ D-mod(Y) that comes from
Verdier duality, see (2.2). One can also define the right action explicitly by

(C.6) N ∗M := (pY)N

(
p!G(M)

!
⊗ a!(N)

)
, M ∈ D-mod(G), N ∈ D-mod(Y),

where pG : G× Y→ G and pY : G× Y→ Y are the projections.
Now Lemma C.7.1 is clear. It immediately implies the following statement.

Corollary C.7.2. Let Y be a QCA stack equipped with an action of the monoidal stack A1/Gm.
Then the functors

(C.7) πN : D-mod(Y)⇄ D-mod(Y0) : idR,∗ , i! : D-mod(Y)⇄ D-mod(Y0) : π!

form adjoint pairs with the adjunctions πN ◦ idR,∗
∼
−→ IdD-mod(Y0) and IdD-mod(Y0)

∼
−→ i! ◦ π!

coming from the isomorphism π ◦ i
∼
−→ IdY0 .

C.8. Proof of Theorems C.4.1 and C.5.3. We will deduce them from Corollary C.7.2.
First, let us make some general remarks.

If Z is an algebraic stack equipped with a morphism ψ : Z → BGm then D-mod(Z) is

equipped with the following action of the tensor category (D-mod(BGm),
!
⊗):

M ⊗ F := ψ!(M)
!
⊗ F, M ∈ D-mod(BGm), F ∈ D-mod(Z).

If f : Z1 → Z2 is a morphism of QCA stacks over BGm then the functors fN and f ! are
compatible with the above action of D-mod(Gm).

Lemma C.8.1. Suppose we have a Cartesian diagram of QCA stacks

Z̃ −−−−→ pt

p

y
yϕ

Z
ψ

−−−−→ BGm

23Usually it does not commute with the left action. E.g., if g ∈ G is invertible then g! = (g−1)N does not
have to commute with g′

N
, g′ ∈ G.
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Then one has a canonical isomorphism

(C.8) Maps(p!(F1), p
!(F2)) = Maps(F1, A⊗ F2), F1,F2 ∈ D-mod(Z),

where A := ϕ∗(k)[−2] and A⊗ F2 := ψ!(A)
!
⊗ F2.

Proof. p!(F1) = p∗(F1)[2], so

Maps(p!(F1), p
!(F2)) = Maps(F1, p∗ ◦ p

!(F2)[−2]) = Maps(F1, A⊗ F2).

�

Now let us prove the assertion of Theorem C.5.3 concerning the pair (πN, idR,∗). The proof of
the other assertion of Theorem C.5.3 is similar, and Theorem C.4.1 follows from Theorem C.5.3.

We have to show that for any F̃1 ∈ D-mod(Y)µ and F̃2 ∈ D-mod(Y0) = D-mod(Y0)µ the
canonical map

(C.9) Maps(F̃1, idR,∗(F̃2))→Maps(πN(F̃1), πN ◦ idR,∗(F̃2)) = Maps(πN(F̃1), F̃2)

is an isomorphism. By the definition of the monodromic subcategory, we can assume that

F̃1 = p!(F1) for some F1 ∈ D-mod(Y/Gm). Since the action of Gm on Y0 is trivial, we can also

assume that F̃2 = (p0)!(F2) (here p0 : Y0 → Y0/Gm). Applying Lemma C.8.1 for Z = Y/Gm,

Z̃ = Y and for Z = Y0/Gm, Z̃ = Y0 we get

Maps(F̃1, idR,∗(F̃2)) = Maps(F1, A⊗ i
′
dR,∗(F2)), i′ : Y0/Gm → Y/Gm,

Maps(πN(F̃1), F̃2) = Maps(π′
N
(F1), A⊗ F2), π′ : Y/Gm → Y0/Gm.

The map (C.9) is a particular case of the canonical map

(C.10) Maps(F1,M⊗ i
′
dR,∗(F2))→Maps(π′

N
(F1),M ⊗ F2)

which is defined for any M ∈ D-mod(BGm). Applying Corollary C.7.2 to the action of A1/Gm
on Y/Gm we see that the map (C.10) is an isomorphism if M = ωBGm . This implies that
(C.10) is an isomorphism for any M ∈ D-modcoh(BGm) (because by connectedness of Gm,
D-modcoh(BGm) is the smallest non-cocomplete triangulated subcategory of D-mod(BGm)
containing ωBGm). In particular, (C.10) is an isomorphism for M = A, and we are done.

C.9. Sketch of another approach to Theorems C.4.1 and C.5.3. In Sect. C.8 we deduced
Theorems C.4.1 and C.5.3 from Corollary C.7.2, which relies on the study of D-mod(A1/Gm)
(see Lemma C.6.1). Here we sketch a slightly different approach, which is based on the study
of D-mod(A1)µ and does not rely on Corollary C.7.2.

Proposition C.9.1. The subcategories D-mod(Gm)µ ⊂ D-mod(Gm) and D-mod(A1)µ ⊂
D-mod(A1) are closed under convolution. Moreover, they are monoidal categories. The unit
object of D-mod(Gm)µ equals 1µ, where 1 is the unit object of D-mod(Gm) and

M 7→Mµ

is the “monodromization” functor D-mod(Gm) → D-mod(Gm)µ, i.e., the functor left adjoint
to the embedding D-mod(Gm)µ →֒ D-mod(Gm). The unit object of D-mod(A1)µ has a similar
description and can also be described as j∗(1µ), where j : Gm →֒ A1 is the embedding. �

The adjunction mentioned in the proposition defines a canonical morphism ε : 1µ → 1.
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Remark C.9.2. Let ΓdR(Gm,−) denote the de Rham cohomology functor D-mod(Gm)→ Vect.
The pair (1µ, ε) is uniquely characterized by the following properties: 1µ ∈ D-mod(Gm)µ and
the map ΓdR(Gm, 1µ)→ ΓdR(Gm, 1) = k induced by ε is an isomorphism. This implies that 1µ
is nothing but the “infinite Jordan block” I−∞,0 from [Be, Sect. 1.3]. In particular, the image
of 1µ under the Riemann-Hilbert correspondence is a sheaf (rather than a complex of sheaves).

Similarly to Lemma C.6.1, one has the following statement (which implies Lemma C.6.1).

Lemma C.9.3. The idempotent algebra 0 ∈ D-mod(A1)µ is unital in D-mod(A1)µ. �

One shows that if Y is a QCA stack equipped with a Gm-action then D-mod(Gm)µ acts on
D-mod(Y)µ as a monoidal category, i.e., 1µ acts as identity. Similarly, if Y is equipped with an

A1-action then one has the left and right monoidal action of D-mod(A1)µ on D-mod(Y)µ. Now
Theorem C.4.1 follows from Lemma C.9.3, and Theorem C.5.3 follows from C.4.1.
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