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Abstract 69	

 70	

Background: Randomized trials indicate maternal multiple micronutrient supplementation (MMS) 71	

decreases the risk of low birthweight and potentially improves other infant health outcomes. However, 72	

heterogeneity across studies suggests influence from effect modifiers.  73	

 74	

Methods: We performed a two-stage individual patient data (IPD) meta-analysis of 17 randomized 75	

controlled trials (including 112,953 pregnancies) conducted in 14 low- and middle-income countries 76	

(LMICs) to identify individual-level modifiers of the effect of MMS on stillbirth, birth outcomes, and 77	

infant mortality. Study-specific estimates were generated, and we pooled subgroup estimates using fixed 78	

effects models. 79	

 80	

Findings: MMS provided significantly greater reductions in neonatal mortality for female (RR: 0·85; 81	

95% CI: 0·75-0·96) as compared to male neonates (RR: 1·06; 95% CI: 0·95-1·17) (p-value for 82	

interaction: 0·007). MMS resulted in greater reductions in low birthweight (RR 0·81; 95% CI: 0·74-0·89; 83	

p-value for interaction: 0·049), small-for-gestational age births (RR 0·92; 95% CI: 0·87-0·97; p-value for 84	

interaction: 0·03), and six-month mortality (RR: 0·71; 95% CI: 0·60-0·86; p-value for interaction: 0·04) 85	

among anemic (hemoglobin <110g/L) as compared with non-anemic pregnant women. MMS also had a 86	

greater impact on preterm births among underweight pregnant women (body mass index <18·5kg/m2) 87	

(RR: 0·84; 95% CI: 0·78-0·91; p-value for interaction: 0·01). Initiation of MMS prior to 20 weeks 88	

gestation provided greater reductions in preterm birth (RR 0·89; 95% CI: 0·85-0·93; p-value for 89	

interaction: 0·03). In general, the survival and birth outcome effects of MMS were greater with high 90	

adherence (≥95%) to supplementation. MMS did not significantly increase the risk of neonatal, six 91	

month, or infant mortality, nor stillbirth, overall or in any of the 26 subgroups examined.  92	

 93	

Interpretation: Antenatal MMS improved survival for female infants and provided greater birth outcome 94	

benefits for infants born to undernourished and anemic pregnant women. Early initiation in pregnancy 95	

and high adherence to MMS also provided greater overall benefits. Mechanisms to explain differences in 96	

the effect of antenatal MMS on infant health by sex remains to be understood.  97	

 98	

Funding: None  99	
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Research in Context 100	

Evidence before this study: Micronutrient deficiencies are common among pregnant women in low- and 101	

middle-income countries (LMICs). However, debate persists regarding the current World Health 102	

Organization (WHO) recommendation to provide pregnant women with iron-folic acid (IFA) 103	

supplementation alone, rather than multiple micronutrient supplements (MMS) containing other essential 104	

micronutrients in addition to iron-folic acid during routine antenatal care. Over the past two decades, 105	

more than 20 randomized trials have examined the effect of MMS during pregnancy, compared to IFA-106	

alone, on maternal and child health outcomes. The 2017 Cochrane review and meta-analysis determined 107	

that provision of daily oral MMS reduced the risk of low birthweight (<2500g) and small-for-gestational-108	

age (SGA) births, but had no overall effect on perinatal and neonatal mortality as compared to IFA-alone.  109	

 110	

The recently-updated 2016 WHO antenatal care (ANC) recommendations acknowledged that 111	

policymakers in populations with a high prevalence of nutritional deficiencies may wish to provide MMS. 112	

However, WHO declined to make a global recommendation for does not universally recommend MMS, 113	

noting: ‘There is some evidence of additional benefit of MMN supplements containing 13–15 different 114	

micronutrients (including iron and folic acid) over iron and folic acid supplements alone, but there is also 115	

some evidence of risk, and some important gaps in the evidence.’  116	

 117	

Added value of this study: The primary objective of this study was to conduct a comprehensive two-118	

stage individual patient data meta-analysis to identify factors which may alter the impact of MMS on 119	

stillbirth, birth outcomes, and infant mortality using data from 17 randomized controlled trials conducted 120	

in LMICs. This study is the most detailed approach to analyzing the existing MMS trial data to date. 121	

Previous meta-analyses identified overall benefits of MMS in terms of birth size, but we contribute that 122	

specific subgroups experience mortality benefits - notably female infants. Women with indicators of 123	

malnutrition during pregnancy also had greater reductions in low birthweight, preterm, and small-for-124	

gestational-age births with MMS. We found no evidence that MMS significantly increased the risk of 125	

stillbirth or neonatal, six month, or infant mortality, neither overall or in any of the 26 examined 126	

subgroups.  127	

 128	

Implications of the available evidence:  This novel analysis identified subgroups of mothers and infants 129	

that may benefit the most from MMS. Additionally, we found no significant evidence of harm in any 130	

subgroup.  131	
  132	
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Introduction 133	

Micronutrient deficiencies are common among women in low- and middle-income countries (LMICs) 134	

primarily due to inadequate dietary intake and limited diversity of fruits, vegetables, animal protein, and 135	

fortified foods.1 The burden and severity of micronutrient deficiencies are exacerbated during pregnancy 136	

due to increased demands of both the mother and the growing fetus.2 It is well established that iron-137	

deficiency anemia in pregnancy can lead to decreased birthweight, and insufficient folate levels in the 138	

periconceptional period increases the risk of neural tube defects and other adverse outcomes.3-5 139	

Deficiencies in other micronutrients including vitamins A, B-complex, D, E, zinc, calcium, copper, 140	

magnesium, selenium and iodine are also prevalent in LMICs and may lead to poor pregnancy, fetal 141	

growth, and child health outcomes.3,6-8 As such, maternal multiple micronutrient supplementation (MMS) 142	

including iron-folic acid is a potential intervention to improve maternal and child health as compared to 143	

iron-folic acid supplementation (IFA) alone.  144	

 145	

The 2017 Cochrane systematic review and meta-analysis which examined the effect of maternal MMS in 146	

pregnancy on infant mortality identified nineteen randomized controlled trials and pooled data from 17 of 147	

these studies.6 Provision of MMS in combination with iron-folic acid during pregnancy reduced the risk 148	

of stillbirth (relative risk (RR): 0.92, 95% confidence interval (CI) 0.86 to 0.99), low birthweight 149	

(<2500g) (RR: 0·88, 95% CI 0·85 to 0·91) and small-for-gestational-age (SGA) births (RR: 0·92, 95% CI 150	

0·86 to 0·98), but had no significant effect on perinatal (RR: 1.01, 95% CI 0·91 to 1·13) and neonatal 151	

mortality (RR: 1.06, 95% CI 0·92 to 1·22) as compared to iron-folic acid supplementation alone.6 There 152	

was moderate heterogeneity, as measured by I2, of the effect of MMS on some birth outcomes across 153	

published trials but substantial heterogeneity for perinatal mortality. A previously published pooled 154	

analysis of 12 MMS trials also indicated the effect of MMS on birthweight may be greater in pregnant 155	

women with higher body mass index (BMI).9 156	

 157	
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In 2016 the World Health Organization (WHO) reviewed their antenatal care (ANC) recommendations 158	

and acknowledged that policymakers in populations with a high prevalence of nutritional deficiencies 159	

may wish to provide MMS containing iron and folic-acid. However, WHO declined to make a global 160	

recommendation for WHO did not universally recommend MMS, noting that there was evidence of 161	

benefit but also some evidence of harm associated with MMS.10 A contributing factor to the WHO 162	

statement regarding the possibility of harm was an exploratory subgroup meta-analysis of trials that used 163	

60mg iron and 400µg folic acid control groups which found MMS potentially increased risk of neonatal 164	

mortality (6 trials; RR 1.22; 95% CI: 0.95-1.57)10-16. Of note, in the WHO subgroup analysis, all but one 165	

trial used a higher dose iron in the control arm as compared to the MMS arm; higher dose iron may 166	

independently effect birth outcomes and infant mortality. The existing data also precluded definitive 167	

conclusions if any subgroups experience greater benefits or harm due to MMS. The primary objective of 168	

our study was to examine potential effect modifiers which might alter the impact of maternal MMS on 169	

stillbirth, birth outcomes, and infant mortality through an individual patient data (IPD) meta-analysis of 170	

randomized controlled trials conducted in LMICs. The study intended to identify subgroups of pregnant 171	

women and infants who may experience greater benefit or harm due to MMS and explore potential 172	

mechanisms that may have led to heterogeneity across randomized trials. 173	

 174	

Methods 175	

We conducted a two-stage individual patient data meta-analysis (IPD). First, we identified potential 176	

studies for inclusion through a review of recent meta-analyses.6,11,12 We updated this list of potential 177	

studies using the search strategy employed by the 2015 Cochrane review to identify randomized 178	

controlled trials published through July 20, 2015.6 We also reviewed the references of included trials and 179	

systematic reviews; there were no language restrictions.  180	

 181	

Eligible studies (i) were randomized controlled trials of multiple micronutrient supplements for pregnant 182	

women, containing at least three micronutrients, (ii) were conducted in LMICs as defined by the World 183	
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Bank, (iii) included a control group that had received iron and folic acid supplements as part of the trial or 184	

as standard of care, (iv) whose authors presented data on birth outcomes, stillbirth, or infant mortality, and 185	

(v) whose authors agreed to participate in this new IPD study. We excluded trials or trial arms that used 186	

lipid-based micronutrient supplements and micronutrient-fortified powders as these provided additional 187	

calories and nutrients which might have independent effects on outcomes of interest.  188	

 189	

All outcomes, subgroups, and statistical methods were defined a priori. Outcomes of interest included: 190	

stillbirth, early neonatal (<7 days age), neonatal (≤28 days age), 6-month (<180 days age), and infant 191	

(<365 days age) mortality. Birth outcomes included: birthweight, very low birthweight (<2000g), low 192	

birth weight (<2500g), early preterm (<34 weeks gestation), preterm (<37 weeks gestation), SGA (<10th 193	

percentile of weight-for-gestational-age and sex as defined by Oken13 and Intergrowth14 standards), and 194	

large-for-gestational age (LGA) birth (>90th percentile as defined by Oken13 and Intergrowth14 standards). 195	

Births <33 or >43 completed weeks gestation were excluded from Intergrowth14 analyses as SGA and 196	

LGA cut-offs are not defined for these gestational ages.  197	

 198	

We assessed the effect of MMS on all outcomes within the following subgroups selected based on 199	

biologic plausibility and inclusion in previous meta-analyses: gestational age at randomization (trimesters 200	

and <20 weeks vs. ≥20 weeks), parity (1 child vs. ≥2 children), maternal age (<18 years vs. ≥18 years and 201	

<20 years vs. ≥20 years), maternal underweight at randomization (body mass index (BMI) <18·5 kg/m2 202	

vs. ≥18·5 kg/m2), maternal anemia at randomization (<110 g/L vs. ≥110 g/L), maternal stature (<150 cm 203	

vs. ≥150 cm), maternal education (none vs. >1 year), infant sex (male vs. female), and adherence to 204	

multivitamin regimen (≥95% vs. <95%). We examined the effect of MMS on stillbirth and mortality 205	

outcomes by the presence of a skilled birth attendant (SBA) at delivery (yes vs. no).  206	

 207	

We contacted principal investigators of each study and invited them to participate in this study. Eight 208	

trials provided individual-level data to the Harvard T.H. Chan investigators (ERS and CRS) and nine 209	
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independently conducted the subgroup analyses in accordance with the study protocol and using the same 210	

statistical analysis code. We calculated non-parametric relative risk or mean difference estimates and 211	

corresponding 95% confidence intervals for individually randomized trials. We calculated estimates and 212	

95% confidence intervals for cluster randomized trials utilizing methods consistent with the primary 213	

published paper. 214	

 215	

We pooled study-specific relative risk and mean difference estimates using fixed effects models using 216	

STATA version 14 METAN command. We excluded trials which did not contribute at least one subject 217	

to all strata within a subgroup analysis. Heterogeneity within strata was quantified using the I2 test 218	

statistic and corresponding p value, while heterogeneity between subgroups was assessed with the χ2 test 219	

for heterogeneity. We qualitatively assessed study quality.15 As a sensitivity analysis for individual 220	

subgroup effects, we generated pooled subgroup estimates using random effects models; we also 221	

examined overall and subgroup effects separately for trials using the same dose of iron in the MMS and 222	

comparison arm and again for the trials using a lower dose iron in the MMS arm than the comparison arm 223	

In addition, we conducted an influence analysis for significant results whereby we present pooled 224	

estimates omitting each study, one at a time (results presented in Appendix E, pp218-220).16 To assess 225	

publication bias and small study effects we visually inspected funnel-plots (results presented in Appendix 226	

F, pp221-224). All individual trials were approved by their respective ethics committees. The pooling 227	

study protocol was approved by the Harvard T. H. Chan School of Public Health IRB (15-2969). There 228	

was no funding source for this study. 229	

 230	

Results 231	

We identified 19 randomized controlled trials which met our inclusion criteria, 17 of which participated in 232	

this meta-analysis.17-33 Two did not participate.34,35 A summary of trials included in the meta-analysis is 233	

presented in Table 1. The trials included 112,953 pregnant women and study-specific sample size ranged 234	

from 20022 to 44,56731, with two studies contributing more than two-thirds of total participants.26,31 Eight 235	
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trials used the United Nations multiple micronutrient preparation (UNIMMAP) (MMS formulations in 236	

AppendixA-pp1)20,21,23,26-30. All trials used MMS preparations that included at least 8 micronutrients in 237	

addition to iron-folic acid. The prevalence of effect modifiers and cumulative incidence of study 238	

outcomes by trial are presented in Appendix A (pp3-4). All trials were graded low or moderate risk of 239	

bias (AppendixA-pp2). Funnel plots did not provide clear evidence of publication bias or small study 240	

effects (Appendix F, pp221-224).  241	

 242	

In Figure 1 we present subgroup-specific pooled effect sized for the following outcomes: stillbirth, 243	

neonatal mortality, infant mortality outcomes, low birth weight, preterm, and SGA births by the Oken 244	

standard. Forest plots for all subgroup meta-analyses are presented in Appendix B (pp5-205). Table 2 245	

presents the effect of MMS on stillbirth, neonatal mortality, mortality to six months, and infant mortality 246	

stratified by potential effect modifiers. We did not identify any factors which significantly modified the 247	

effect of MMS on stillbirth among all trials. In meta-analyses including all live births, there was no 248	

overall effect of MMS on mortality at any time point; however, there were several subgroups for which 249	

MMS provided significant survival benefits. We found sex modified the effect of MMS on survival in the 250	

early neonatal, neonatal, and infant periods (p-values for heterogeneity: 0·047, 0·007, 0·04) (Table 2 and 251	

Appendix B pp23). MMS significantly reduced the risk of neonatal mortality by 15% among females 252	

(95% CI: 4-25%) with a similar magnitude of reduction for early neonatal, six months, and infant 253	

mortality. Significant mortality benefits of MMS for females were also found at all-time points in random 254	

effects sensitivity analyses (Appendix C pp206). MMS provided significantly greater six-month mortality 255	

reduction among anemic pregnant women (RR: 0·71; 95% CI: 0·60-0·86) as compared to non-anemic 256	

pregnant women (RR: 0·93; 95% CI: 0·78-1·11) (p-value for heterogeneity: 0·04). Maternal adherence to 257	

the intervention also modified the effect of MMS on infant mortality, with survival benefits for infants 258	

born to women reporting >95% adherence to the supplements (Table 2). There was no subgroup which 259	

experienced significantly increased risk of stillbirth or neonatal, six month, or infant mortality in both 260	

fixed and random effects meta-analyses (Table 2 and Appendix C pp206). 261	
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 262	

Among all live births, MMS significantly reduced the risk of very low birthweight (<2000 g), low 263	

birthweight (<2500 g), early preterm (<34 weeks), preterm (<37 weeks), and SGA (Oken or Intergrowth 264	

standards) (Table 3 and Appendix B pp80, pp122). We also found MMS significantly increased the risk 265	

of being born LGA by the Intergrowth standard (RR: 1·11; 95% CI: 1·04-1·19) (Appendix B pp150). 266	

There was no evidence that infant sex modified the effect of MMS on low birthweight, prematurity, or 267	

SGA births. MMS had a greater impact on reducing the risk of low birthweight (RR 0·81; 95% CI: 0·74-268	

0·89) and SGA by Oken standard (RR 0·92; 95% CI: 0·87-0·97) among anemic as compared to non-269	

anemic pregnant women (p values for heterogeneity: 0·049 and 0·03) (Table 3). Maternal BMI modified 270	

the effect of MMS on several birth outcomes. MMS reduced the risk of being born early preterm and 271	

preterm with greater magnitude among pregnant women with a BMI <18·5 kg/m2 compared to non-272	

underweight pregnant women (Table 3, Appendix B pp86). Maternal BMI also modified the risk of 273	

having an LGA birth based on the Oken standard (p value for heterogeneity = 0·045); with non-274	

underweight women (BMI ≥18·5 kg/m2) having a greater increase in risk of LGA (Table 4).  275	

 276	

Gestational age at MMS initiation modified the effect of supplementation. Women initiating MMS <20 277	

weeks gestation had greater reductions in the risk of preterm birth (RR 0·89; 95% CI: 0·85-0·93) (p value 278	

for heterogeneity 0·03) (Table 3). However, MMS provided greater reductions in the risk of SGA birth by 279	

Oken standard among women initiating supplementation after 20 weeks (RR 0·91; 95% CI: 0·86-0·96) (p 280	

value heterogeneity 0·004) (Table 3). MMS initiation before or after 20 weeks gestation conferred similar 281	

benefits in reducing the risk of low birthweight (Table 3). 282	

 283	

As a sensitivity analysis, we stratified studies by whether or not they used the same dose of iron in the 284	

MMS and IFA arms. We present overall (Supplemental Table 7, Appendix D pp208) and subgroup 285	

estimates (Supplemental Tables 8-16, Appendix D pp209-217) of the impact of MMS for trials using the 286	
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same dose of iron in the MMS and IFA-alone arms, and for trials using a lower dose iron in the MMS arm 287	

than the IFA-alone arm (all used <30mg iron for MMS and 60mg iron for IFA-alone). The results for 288	

trials using the same dose of iron in both arms revealed benefits of MMS and were consistent with the 289	

primary analysis. In contrast, some subgroups given MMS with low dose iron (<30mg) observed higher 290	

stillbirth and neonatal mortality than IFA-alone with 60mg iron. Specifically, MMS containing lower 291	

dose iron than the IFA comparison arm was found to increase: stillbirth among first pregnancies, early 292	

neonatal mortality among women who initiated supplementation before 20 weeks gestation, early 293	

neonatal and neonatal mortality among women with  <95% adherence, and early neonatal mortality for 294	

multigravidae. 295	

Discussion 296	

This comprehensive individual patient data meta-analysis found that MMS including iron-folic acid 297	

reduced the risk of low birthweight, preterm birth, and being born SGA across all included trials, and we 298	

identified several factors that modified the impact of MMS on infant survival and birth outcomes. The 299	

effect of MMS on mortality was modified by infant sex. Survival benefits were significantly greater for 300	

female than for male infants. However, sex did not modify the effect of MMS on low birthweight, 301	

preterm, or SGA births. MMS also resulted in greater reductions in the risk of six-month mortality, low 302	

birthweight, and SGA births among anemic as compared to non-anemic pregnant women. Similarly, 303	

MMS provided greater reductions in risk of being born preterm or early preterm among underweight as 304	

compared to non-underweight women. Starting MMS before 20 weeks gestation reduced the risk of 305	

preterm birth, but there were also beneficial effects of MMS on SGA and low birthweight births among 306	

women initiating MMS after 20 weeks. In general, the mortality and birth outcome effects of MMS were 307	

greater for women with ≥95% adherence to supplementation. We did not identify any subgroup for which 308	

MMS significantly elevated the risk of stillbirth or neonatal, six month, or infant mortality.   309	

   310	

The effect of MMS on mortality was modified by infant sex. MMS consistently reduced mortality by 311	

approximately 15% among females during the first year of life, but we did not observe significant benefits 312	
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among males. The biological mechanisms leading to these sex differences are not clear. Christian, West, 313	

and colleagues have previously proposed that sex differences in the mortality effect of MMS may be 314	

explained by differences in birth size by sex.31,36 Males have greater length, head circumference, and birth 315	

weight on average as compared to females, and increased birth size due to MMS may lead to greater birth 316	

complications among males.37 However, we found no sex differences in the effect of MMS on stillbirth 317	

which suggests that effect modification by sex may operate through other mechanisms or vary with the 318	

population context. The burden of infections and leading causes of mortality have been shown to vary by 319	

infant sex38,39; additional information on the causes and timing of deaths within trials may help clarify 320	

why MMS appears to be more beneficial for female infants. Nevertheless, we do not recommend 321	

programs considering implementation of MMS target only pregnant women carrying female fetuses as 322	

both male and female newborns experience birthweight benefits and small positive survival benefits are 323	

possible among males.  324	

 325	

MMS had greater impact on birth outcomes among women with poor nutritional status, as indicated by 326	

anemia or low BMI, at the start of supplementation as initially reported in the SUMMIT study.26 Anemic 327	

women experienced greater reductions in the risk of low birthweight, SGA birth, and mortality to six 328	

months than non-anemic pregnant women. The effect of MMS on preterm birth was also greater for 329	

pregnant women who had a BMI <18·5 kg/m2 at the start of supplementation. These findings indicate that 330	

iron-folic acid alone is likely an insufficient intervention for anemic pregnant women and justifies 331	

continued focus on anemia and low BMI as key effect modifiers for nutrition interventions in pregnancy. 332	

A recent MMS trial conducted in China among non- and mildly-anemic women (not included in our meta-333	

analysis) found no effect of MMS on perinatal mortality and a non-significant 10% reduction in low 334	

birthweight.34 These findings are consistent with our non-anemic subgroup results, which showed no effect 335	

of MMS on early neonatal, neonatal, or infant mortality and an 8% (95% CI: 2-15%) reduction in low 336	

birthweight. 337	

 338	
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Due to the clustering of protein-energy and micronutrient deficiencies, we cannot directly examine whether 339	

improvement in maternal hemoglobin status mediated a greater impact of MMS on low birthweight among 340	

anemic women. Anemia may be a proxy for deficiencies of micronutrients included in MMS, as well as 341	

numerous other factors including maternal infection.40,41 A previous meta-analysis found that multiple 342	

micronutrient supplements (which included iron) had a similar effect on hemoglobin and anemia compared 343	

with iron alone or iron with folic acid.42 Notably, some trials included in our meta-analysis and the anemia 344	

meta-analysis used higher dose iron in the control arm than the MMS arm, which may have attenuated the 345	

hemoglobin, mortality, and birth outcome effects of MMS, particularly among anemic pregnant 346	

women.20,21,27-29,32,33,35,42 Despite this, we still find a larger effect of MMS among anemic than for non-347	

anemic pregnant women. There are several hemoglobin independent pathways by which MMS might 348	

improve birth outcomes5, including reductions in maternal and fetal inflammation43, improvements in 349	

oxidative metabolism and placental function44,45, and altered maternal endocrine effects.46 Although the 350	

biological mechanisms through which MMS provides benefits are unclear, our meta-analysis indicates that 351	

the population-level benefits for birth outcomes are likely to be greater in settings with high rates of 352	

maternal nutritional deficiencies. It is also important to note that in the MINIMat trial women who received 353	

both early food supplementation and MMS had the lowest rate of infant mortality30; combined 354	

macronutrient and micronutrient interventions may produce even greater effects in settings with high rates 355	

of maternal malnutrition. 356	

 357	

We did not identify any subgroup which experienced significantly elevated risk of stillbirth or mortality at 358	

any time point in the primary analysis. MMS trial reports have raised concerns that increased birth size 359	

due to MMS may increase the risk of cephalopelvic disproportion and neonatal asphyxia, particularly 360	

among women of small stature.17,31 We found that MMS indeed increased the risk of LGA births (as 361	

defined by the Intergrowth standard14), which could hypothetically increase the risk of maternal-fetal 362	

disproportion and related birth complications. However, we found no indication that mothers whose 363	
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height was <150 cm had increased risk of stillbirth or mortality at any time point. As such, alternative 364	

interpretations or mechanisms to explain no overall effect of MMS on mortality should be explored.   365	

 366	

We also provide evidence that iron dosage influences the observed effect of MMS on stillbirth and 367	

mortality. Specifically, the sensitivity analyses revealed benefits and no significant harmful effects overall 368	

or in any subgroup among trials that used the same dose of iron in the MMS and IFA-alone arms. In 369	

contrast, the sensitivity analyses also suggested that MMS with low dose iron (<30mg) may result in a 370	

higher observed stillbirth and mortality in some subgroups when compared to IFA-alone with 60mg iron. 371	

The most recent Cochrane review found similar effect modification by iron dose on perinatal mortality.6 372	

Furthermore, the WHO ANC guidelines noted the potential for harmful effects of MMS on neonatal 373	

mortality among a subgroup analysis in which 5 out of 6 trials used low dose iron (<30mg) in the MMS 374	

arm and 60mg iron in the IFA-alone arm.10 Taken together, our analyses and others indicate that both iron 375	

and multiple micronutrients have beneficial effects and that multiple micronutrients together with IFA 376	

may provide even greater benefits than IFA alone. Accordingly, countries and programs considering 377	

implementation of MMS should use a formulation with an iron dose similar to what they currently utilize; 378	

for example, MMS that contains 60mg iron should be considered in settings where 60mg IFA is currently 379	

implemented.  380	

 381	

Notwithstanding the large sample size and consistency of our findings, there are several limitations to our 382	

meta-analysis. First, due to the number of subgroup analyses performed, there is an inflated risk of type 1 383	

errors inherent to the number of heterogeneity tests presented. However, our findings as a whole exceed 384	

those that would be expected by chance. We observed that 13 out of 70 tests for heterogeneity for 385	

mortality outcomes were significant (probability of occurring by chance alone <0.01%). There is also low 386	

probability that of finding 26 out of 146 subgroups experienced significant survival benefits (<0.01%) and 387	

that no subgroups out of 146 had increased mortality risk (2.5%) if we assume there was no true effect of 388	

MMS on mortality in any subgroup. Second, as previously discussed, some trials used a higher dose of 389	
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iron in the control arm as compared with the MMS arm, and our sensitivity analysis suggests that 390	

inclusion of these trials resulted in attenuation of the effect of MMS because control group subjects may 391	

have experienced benefits from additional iron.20,21,27-29,32,33 We did not present sensitivity analyses 392	

restricting to trials using identical iron doses in control and MMS arms since this would double the 393	

number of statistical tests resulting in even greater risk of type 1 errors. Third, the JiVitA-331 and 394	

SUMMIT26 trials are weighted heavily in many of the subgroup strata due to their large sample sizes and 395	

high event rates. Our sensitivity analyses show that sex differences in the effect of MMS on neonatal 396	

mortality are robust to excluding either of these studies (Appendix E, p218-220). However, the stronger 397	

benefit of MMS on 6 month mortality among infants born to anemic women is driven by the SUMMIT 398	

study, and the stronger benefit of MMS on preterm birth among infants born to underweight women and 399	

infant mortality among male infants, are driven by JiVitA-3 (Appendix E, pp218-220). Fourth, we were 400	

unable to examine HIV as a potential effect modifier since only two trials included both HIV-infected and 401	

HIV-uninfected women. Nevertheless, there was no indication that the effect of MMS varied by maternal 402	

HIV status in these studies.19,32 Lastly, although our analysis identified several maternal and child factors 403	

which alter the effect of MMS on mortality and birth outcomes, we can provide only limited insight into 404	

the biological mechanisms through which MMS may operate. As poor socioeconomic status, significant 405	

barriers to health services, and nutritional deficiencies often coexist, the effect modifiers we examined in 406	

this analysis (e.g. skilled birth attendants, maternal underweight, and maternal anemia) have overlap as 407	

indicators of underlying adversity. Even so, the factors identified in this paper indicate subgroups which 408	

may experience the greatest benefits from MMS, regardless of the mechanisms through which MMS 409	

operates.  410	

 411	

Our IPD meta-analysis that included data from more than 112,000 pregnancies in 14 LMICs determined 412	

that MMS reduced mortality among female infants, and although MMS increased birthweight and 413	

reduced preterm among all infants, the greatest effects were for those born to pregnant women with 414	

nutritional deficiency as indicated by anemia or low BMI. Based on the included data and methods of this 415	
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IPD meta-analysis, we also found none of the 26 subgroups, or the population overall, showed MMS 416	

significantly increased the risk of stillbirth or neonatal, six-month, or infant mortality. A systematic 417	

review which examined the long-term health effects found no significant evidence that MMS improved 418	

child growth, body composition, blood pressure, respiratory, or cognitive outcomes as compared to iron 419	

folic-acid alone.47 However, a recently published long-term follow-up study of SUMMIT found that 420	

MMS significantly improved procedural memory and produced better scores on 18 out of 21 cognitive 421	

tests administered to Indonesian children at 9-12 years of age.48 This new evidence suggests that WHO 422	

may wish to reevaluate the balance of benefits and harms of universal MMS in their ANC 423	

recommendations. Programs and LMICs considering implementation of MMS have the opportunity to 424	

simultaneously expand coverage of early ANC attendance and MMS including iron-folic acid, while also 425	

improving the quality of ANC counseling and services to produce population-level infant health benefits 426	

which may be greater than any of these strategies in isolation. Packaging MMS with effective ANC 427	

interventions for coordinated delivery is consistent with the Sustainable Development Goals (SDGs) 428	

which emphasize identification of synergies that have the potential for rapid impact.49 429	
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Table 1. Description of studies

Study Location Years of 
Study

Study 
Design*

N Study Population

Fawzi  1998 Dar es Salaam, Tanzania 1995-1997 RCT 1075 HIV-infected pregnant women 12-27 weeks gestation

Christian 2003 Sarlahi, Nepal 1998-2001 cRCT 4926 Pregnant women 

Ramakrishnan 2003 Cuernavaca, Mexico 1997-2000 RCT 873 Pregnant women <13 weeks gestation

Friis 2004 Harare, Zimbabwe 1996-1997 RCT 1669 Pregnant women 22-36 weeks gestation including 725 HIV-infected 
women

Kaestel 2005 Bissau, Guinea Bissau 2001-2002 RCT 2100 Pregnant women <37 weeks gestation

Osrin 2005 Dhanusha and Mahottari Districts, 
Nepal

2002-2004 RCT 1200 Singleton pregnant women between 12-20 weeks gestation 

Gupta 2007 East Delhi, India 2002-2003 RCT 200 Pregnant women with BMI <18.5 kg/m2, 24-32 weeks gestation

Zagre 2007 Maradi, Niger 2004-2006 cRCT 2902 Pregnant women <28 weeks gestation

Fawzi 2007 Dar es Salaam, Tanzania 2001-2004 RCT 8468 HIV-uninfected pregnant women of 12-27 weeks gestation

Shankar 2008 Lombok island, Indonesia 2001-2004 cRCT 31290 Pregnant women (34% first, 43% second, and 23% third trimester)

Zeng  2008 Shaanxi Province, China 2002-2006 cRCT 3811 Pregnant women (folic acid only arm excluded)

Roberfroid 2008 Hounde health district, Burkina Faso 2004-2006 RCT 1426 Pregnant women 

Bhutta 2009 Bilal colony, Karachi, Kot Diji, 
Sindh, Pakistan

2002-2004 cRCT 2378 Pregnant women <16 weeks gestation

Persson 2012 Matlab, Bangladesh 2001-2003 RCT 4436 Pregnant women between 6-8 weeks gestation

West 2014 Gaibandha and Rangpur, 
Bangladesh

2007-2012 cRCT 44567 Pregnant women (79% <13 weeks gestation)

Ashorn 2015 Mangochi District, Malawi 2011-2013 RCT 929 Pregnant women <20 weeks gestation                                                               
(excluding lipid-based nutrient supplement arm)

Adu-Afarwuah 2015 Somanya-Kpong, Ghana 2009-2011 RCT 703 Pregnant women <20 weeks gestation 
(excluding lipid-based nutrient supplement arm)

* Randomized Control Trial (RCT). Cluster Randomized Control Trial (cRCT).
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N1 Relative risk 
(95% CI)

p va lue
he t e roge ne it y N1 Relative risk 

(95% CI)
p va lue

he t e roge ne it y N1 Relative risk 
(95% CI)

p va lue
he t e roge ne it y N1 Relative risk 

(95% CI)
p va lue

he t e roge ne it y

Overall-Fixed Effects 0.92 (0.86-0.99) - 0.98 (0.90-1.05) - 0.93 (0.85-1.00) - 0.97 (0.88-1.06) -
Overall-Random Effects 0.97 (0.85-1.11) 0.99 (0.89-1.09) 0.93 (0.86-1.00) 0.97 (0.88-1.06)

Infant Sex
Male 0.92 (0.82-1.03) 1.06 (0.95-1.17) 0.98 (0.89-1.09) 1.05 (0.93-1.18)
Female 0.91 (0.80-1.03) 0.85 (0.75-0.96) 0.85 (0.75-0.95) 0.87 (0.77-0.99)

Gestational Age at Enrollment
<20 Weeks 0.97 (0.89-1.06) 0.99 (0.90-1.09) 0.96 (0.87-1.05) 0.98 (0.89-1.07)
≥	20 Weeks 0.81 (0.70-0.95) 0.94 (0.81-1.10) 0.82 (0.69-0.96) 0.89 (0.64-1.23)

Maternal adherence to regimen
< 95% Adherence 0.92 (0.83-1.01) 1.05 (0.94-1.17) 0.98 (0.88-1.09) 1.06 (0.94-1.20)
≥ 95% Adherence 0.92 (0.85-0.99) 0.88 (0.77-1.01) 0.85 (0.74-0.97) 0.85 (0.74-0.97)

Maternal Age
< 20 years 0.99 (0.85-1.16) 0.95 (0.83-1.10) 0.96 (0.84-1.09) 0.98 (0.86-1.13)
≥ 20 years 0.90 (0.83-0.97) 1.01 (0.92-1.12) 0.92 (0.84-1.02) 0.97 (0.87-1.09)

Parity
First birth 1.01 (0.90-1.14) 0.93 (0.83-1.04) 0.94 (0.84-1.04) 0.97 (0.85-1.10)
Second + birth 0.88 (0.80-0.96) 1.02 (0.91-1.14) 0.92 (0.82-1.02) 0.96 (0.85-1.08)

Maternal Underweight at enrollment
BMI <18.5 0.90 (0.78-1.04) 1.01 (0.86-1.20) 0.96 (0.83-1.12) 0.97 (0.84-1.13)
BMI ≥18.5 0.95 (0.87-1.04) 0.96 (0.88-1.06) 0.92 (0.84-1.01) 0.98 (0.88-1.09)

Maternal stature
Height <150 cm 0.96 (0.86-1.08) 0.97 (0.86-1.08) 0.92 (0.83-1.02) 0.98 (0.87-1.11)
Height ≥150 cm 0.90 (0.81-1.00) 0.96 (0.86-1.08) 0.91 (0.81-1.02) 0.93 (0.81-1.06)

Maternal hemoglobin at enrollment
Anemic <110 g/L 0.79 (0.66-0.94) 0.87 (0.73-1.03) 0.71 (0.60-0.86) 1.00 (0.73-1.30)
Non-anemic ≥110 g/L 0.94 (0.79-1.12) 0.94 (0.79-1.11) 0.93 (0.78-1.11) 1.01 (0.79-1.30)

Maternal education
None 0.95 (0.83-1.09) 1.13 (0.97-1.31) 0.99 (0.86-1.13) 1.02 (0.88-1.18)
≥1 year formal education 0.91 (0.84-1.00) 0.92 (0.83-1.01) 0.89 (0.81-0.98) 0.92 (0.82-1.02)

Skilled birth attendant
Yes 0.87 (0.78-0.97) 1.00 (0.91-1.11) 1.00 (0.90-1.11) 1.06 (0.95-1.20)
No 1.01 (0.88-1.15) 0.91 (0.80-1.03) 0.82 (0.74-0.92) 0.82 (0.71-0.95)1 N Number of studies included in subgroup analysis

0.02

10 0.23 7 0.01 6 0.006

12 0.02 8 0.22 7 0.24

12 0.26 9 0.76 8 0.87

10 0.54 8 0.04 7 0.95

10 0.98 7 0.84 6 0.58

11

0.87

12 0.007 9 0.06 8 0.04

9 0.05 6 0.11 5

9 0.51 8 0.68

0.61 8 0.60 7 0.95

10 0.09

13 0.16

11 0.96

14 0.38

15 0.06

14 0.62

16 0.26

12 0.53

Table 2. The effect of MMS on stillbirth, neonatal mortality, mortality to six months, and infant mortality stratified by potential effect modifiers.

10 0.60 7 0.10 7 0.57

Stillbirth Neonatal Mortality (<28 days) Mortality to Six Months Infant Mortality (<365 days)

16 12 9 8

8

10 0.05

16 0.88
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N1 Relative risk 
(95% CI)
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N1 Relative risk 

(95% CI)
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N1 Relative risk 

(95% CI)
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y

Overall-Fixed Effects 0.88 (0.85-0.90) - 0.92	(0.88-0.95) - 0.97	(0.96-0.99) - 1.05	(0.95-1.15) -
Overall-Random Effects 0.86 (0.81-0.92) 0.93	(0.87-0.98) 0.94	(0.90-0.98) 1.04	(0.92-1.18)

Infant Sex
Male 0.87	(0.83-0.91) 0.93	(0.88-0.97) 0.97	(0.95-1.00) 1.11	(0.98-1.25)
Female 0.89	(0.86-0.92) 0.91	(0.86-0.96) 0.98	(0.96-1.01) 0.98	(0.86-1.12)

Gestational Age at Enrollment
<20 Weeks 0.88	(0.86-0.91) 0.89	(0.85-0.93) 0.99	(0.97-1.01) 0.99	(0.86-1.13)
≥20 Weeks 0.84	(0.77-0.92) 1.00	(0.94-1.08) 0.91	(0.86-0.96) 1.18	(1.02-1.37)

Maternal adherence to regimen
< 95% Adherence 0.89	(0.85-0.92) 0.93	(0.88-0.97) 0.98	(0.96-1.01) 1.03	(0.90-1.18)
≥ 95% Adherence 0.87	(0.84-0.91) 0.90	(0.85-0.96) 0.97	(0.94-1.00) 1.05	(0.90-1.22)

Maternal Age
< 20 years 0.90	(0.86-0.93) 0.92	(0.87-0.98) 0.98	(0.95-1.00) 0.98	(0.79-1.22)
≥ 20 years 0.90	(0.88-0.92) 0.92	(0.88-0.96) 0.97	(0.94-0.99) 1.06	(0.96-1.18)

Parity
First birth 0.88	(0.85-0.92) 0.91	(0.86-0.96) 0.98	(0.95-1.00) 0.94	(0.78-1.12)
Second + birth 0.88	(0.85-0.92) 0.92	(0.88-0.97) 0.97	(0.95-1.00) 1.12	(1.00-1.25)

Maternal Underweight at enrollment
BMI <18.5 0.88	(0.84-0.91) 0.84	(0.78-0.91) 1.00	(0.96-1.03) 0.77	(0.57-1.05)
BMI ≥18.5 0.88	(0.85-0.92) 0.94	(0.90-0.98) 0.97	(0.95-0.99) 1.08	(0.97-1.21)

Maternal stature
Height <150 cm 0.90	(0.87-0.93) 0.91	(0.86-0.96) 0.99	(0.96-1.01) 0.93	(0.78-1.12)
Height ≥150 cm 0.86	(0.82-0.90) 0.92	(0.88-0.97) 0.97	(0.96-0.99) 1.09	(0.97-1.22)

Maternal hemoglobin at enrollment
Anemic <110 g/L 0.81	(0.74-0.89) 0.98	(0.91-1.05) 0.92	(0.87-0.97) 1.25	(1.06-1.49)
Non-anemic ≥110 g/L 0.91	(0.85-0.98) 0.88	(0.81-0.95) 0.99	(0.95-1.03) 0.99	(0.80-1.22)

Maternal education
None 0.88	(0.84-0.93) 0.92	(0.87-0.98) 1.00	(0.97-1.03) 1.07	(0.88-1.29)
≥1 year formal education 0.87	(0.84-0.91) 0.90	(0.87-0.95) 0.96	(0.94-0.98) 1.03	(0.92-1.16)

1 N Number of studies included in subgroup analysis

17 16 16 13

Low Birthweight (<2500g) Preterm (<37 weeks) SGA (Oken) LGA (Oken)

17 15 0.18

13 0.32 11 0.03 12

11 0.51

0.62 120.48 15 0.63

0.004 8 0.09

16 0.80 13

0.58

0.0450.01 16 8

16 0.16 15 16

16 0.88 14 0.63 15

0.03

16 0.75

0.049

14 0.64 15

11 0.43

9 0.09

8 0.88

9 0.75

0.17

0.94 10 0.09

0.27

0.049

13

Table 3. The effect of MMS on low birthweight (<2500 g), preterm birth (<37 weeks), small-for-gestational-age (SGA) (<10th 
percentile Oken), large-for-gestational-age (LGA) (>90th percentile Oken) - stratified by potential effect modifiers

12 0.05

10 0.62

15 0.85

12 0.61

14

15 0.82 16 0.70

10

0.20
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Figure Titles. 

 

Figure 1. Summary forest plots for the effect of MMS containing iron-folic acid compared to iron-folic acid alone on a) stillbirth, b) neonatal mortality, c) infant 
mortality, d) low birthweight, e) preterm birth, and f) SGA by the Oken standard - stratified by modifiers of interest.  
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