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Abstract

We consider sample covariance matrices of the form X∗X, where X is an M × N
matrix with independent random entries. We prove the isotropic local Marchenko-
Pastur law, i.e. we prove that the resolvent (X∗X − z)−1 converges to a multiple
of the identity in the sense of quadratic forms. More precisely, we establish sharp
high-probability bounds on the quantity 〈v , (X∗X − z)−1w〉 − 〈v ,w〉m(z), where m
is the Stieltjes transform of the Marchenko-Pastur law and v,w ∈ CN . We require
the logarithms of the dimensions M and N to be comparable. Our result holds down
to scales Im z > N−1+ε and throughout the entire spectrum away from 0. We also
prove analogous results for generalized Wigner matrices.
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1 Introduction

The empirical density of eigenvalues of large N ×N random matrices typically con-
verges to a deterministic limiting law. For Wigner matrices this law is the celebrated
Wigner semicircle law [22] and for sample covariance matrices it is the Marchenko-
Pastur law [20]. Under some additional moment conditions this convergence also holds
in very small spectral windows, all the way down to the scale of the eigenvalue spac-
ing. In this paper we normalize the matrix so that the support of its spectrum remains
bounded as N tends to infinity. In particular, the typical eigenvalue spacing is of order
1/N away from the spectral edges. The empirical eigenvalue density is conveniently,
and commonly, studied via its Stieltjes transform – the normalized trace of the resol-
vent, 1

N Tr(H−z)−1, where z = E+iη is the spectral parameter with positive imaginary
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Isotropic local laws for sample covariance and generalized Wigner matrices

part η. Understanding the eigenvalue density on small scales of order η around a fixed
value E ∈ R is roughly equivalent to understanding its Stieltjes transform with spectral
parameter z = E + iη. The smallest scale on which a deterministic limit is expected
to emerge is η � N−1; below this scale the empirical eigenvalue density remains a
fluctuating object even in the limit of large N , driven by the fluctuations of individual
eigenvalues. We remark that a local law on the optimal scale 1/N (up to logarithmic
corrections) was first obtained in [11].

In recent years there has been substantial progress in understanding the local ver-
sions of the semicircle and the Marchenko-Pastur laws (see [9, 5] for an overview and
detailed references). This research was originally motivated by the Wigner-Dyson-
Mehta universality conjecture for the local spectral statistics of random matrices. The
celebrated sine kernel universality and related results for other symmetry classes con-
cern higher-order correlation functions, and not just the eigenvalue density. Moreover,
they pertain to scales of order 1/N , smaller than the scales on which local laws hold.
Nevertheless, local laws (with precise error bounds) are essential ingredients for prov-
ing universality. In particular, one of their consequences, the precise localization of
the eigenvalues (called rigidity bounds), has played a fundamental role in the relax-
ation flow analysis of the Dyson Brownian Motion, which has led to the proof of the
Wigner-Dyson-Mehta universality conjecture for all symmetry classes [12, 13].

The basic approach behind the proofs of local laws is the analysis of a self-consistent
equation for the Stieltjes transform, a scalar equation which controls the trace of the
resolvent (and hence the empirical eigenvalue density). A vector self-consistent equa-
tion for the diagonal resolvent matrix entries, [(H − z)−1]ii, was introduced in [15].
Later, a matrix self-consistent equation was derived in [7]. Such self-consistent equa-
tions provide entrywise control of the resolvent and not only its trace. This latter fact
has proved a key ingredient in the Green function comparison method (introduced in
[15] and extended to the spectral edge in [16]), which allows the comparison of local
statistics via moment matching even below the scale of eigenvalue spacing.

In this paper we are concerned with isotropic local laws, in which the control of
the matrix entries [(H − z)−1]ij is generalized to a control of quantities of the form
〈v , (H − z)−1w〉, where v,w ∈ CN are deterministic vectors. This may be interpreted
as basis-independent control on the resolvent. The fact that the matrix entries are inde-
pendent distinguishes the standard basis of CN in the analysis of the resolvent. Unless
the entries of H are Gaussian, this independence of the matrix entries is destroyed after
a change of basis, and the isotropic law is a nontrivial generalization of the entrywise
law. The first isotropic local law was proved in [18], where it was established for Wigner
matrices.

The main motivation for isotropic local laws is the study of deformed matrix ensem-
bles. A simple example is the sum H + A of a Wigner matrix H and a deterministic
finite-rank matrix A. As it turns out, a powerful means to study the eigenvalues and
eigenvectors of such deformed matrices is to derive large deviation bounds and central
limit theorems for quantities of the form 〈v , (H − z)−1w〉, where v and w are eigenvec-
tors of A. Deformed matrix ensembles are known to exhibit rather intricate spectra,
depending on the spectrum of A. In particular, the spectrum of H + A may contain
outliers – lone eigenvalues separated from the bulk spectrum. The creation or annihila-
tion of an outlier occurs at a sharp transition when an eigenvalue of A crosses a critical
value. This transition is often referred to as the BBP transition and was first established
in [1] for unitary matrices and extended in [4, 3] to other symmetry classes. Similarly
to the above deformed Wigner matrices, one may introduce a class of deformed sample
covariance matrices, commonly referred to as spiked population models [17], which
describe populations with nontrivial correlations (or “spikes”).
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The isotropic local laws established in this paper serve as a key input in establishing
detailed results about the eigenvalues and eigenvectors of deformed matrix models.
These include:

(a) A complete picture of the distribution of outlier eigenvalues/eigenvectors, as well
as the non-outlier eigenvalues/eigenvectors near the spectral edge.

(b) An investigation of the BBP transition using that, thanks to the optimality of the
high-probability bounds in the local laws, the results of (a) extend even to the case
when some eigenvalues of A are very close to the critical value.

This programme for the eigenvalues of deformed Wigner matrices was carried out in
[18, 19]. In the upcoming paper [2], we shall carry out this programme for the eigen-
vectors of spiked population models.

In this paper we prove the isotropic Marchenko-Pastur law for sample covariance
matrices as well as the isotropic semicircle law for generalized Wigner matrices. Our
proofs are based on a novel method, which is considerably more robust than that of
[18]. Both proofs (the one from [18] and the one presented here) crucially rely on
the entrywise local law as input, but follow completely different approaches to obtain
the isotropic law from the entrywise one. The basic idea of the proof in [18] is to use
the Green function comparison method to compare the resolvent of a given Wigner
matrix to the resolvent of a Gaussian random matrix, for which the isotropic law is a
trivial corollary of the entrywise one (by basis transformation). Owing to various mo-
ment matching conditions imposed by the Green function comparison, the result of [18]
required the variances of all matrix entries to coincide and, for results in the bulk spec-
trum, the third moments to vanish. In contrast, our current approach does not rely on
Green function comparison. Instead, it consists of a precise analysis of the cancella-
tion of fluctuations in Green functions. We use a graphical expansion method inspired
by techniques recently developed in [6] to control fluctuations in Green functions of
random band matrices.

Our first main result is the isotropic local Marchenko-Pastur law for sample covari-
ance matrices H = X∗X, where X is an M × N matrix. We allow the dimensions of
X to differ wildly: we only assume that logN � logM . In particular, the aspect ratio
φ = M/N – a key parameter in the Marchenko-Pastur law – may scale as a power of N .
Our entrywise law (required as input for the proof of the isotropic law) is a generaliza-
tion of the one given in [21]. In addition to generalizing the proof of [21], we simplify
and streamline it, so as to obtain a short and self-contained proof.

Our second main result is the isotropic local semicircle law for generalized Wigner
matrices. This extends the isotropic law of [18] from Wigner matrices to generalized
Wigner matrices, in which the variances of the matrix entries need not coincide. It
also dispenses with the third moment assumption of [18] mentioned previously. In
fact, our proof applies to even more general matrix models, provided that an entry-
wise law has been established. As an application of the isotropic laws, we also prove a
basis-independent version of eigenvector delocalization for both sample covariance and
generalized Wigner matrices.

We conclude with an outline of the paper. In Section 2 we define our models and
state our results, first for sample covariance matrices (Section 2.1) and then for gen-
eralized Wigner matrices (Section 2.2). The rest of the paper is devoted to the proofs.
Since they are very similar for sample covariance matrices and generalized Wigner ma-
trices, we only give the details for sample covariance matrices. Thus, Sections 3–6
are devoted to the proof of the isotropic Marchenko-Pastur law for sample covariance
matrices; in Section 7, we describe how to modify the arguments to prove the isotropic
semicircle law for generalized Wigner matrices. Section 3 collects some basic identities
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and estimates that we shall use throughout the proofs. In Section 4 we prove the entry-
wise local Marchenko-Pastur law, generalizing the results of [21]. The main argument
and the bulk of the proof, i.e. the proof of the isotropic law, is given in Section 5. For
a sketch of the argument we refer to Section 5.3. Finally, in Section 6 we draw some
simple consequences from the isotropic law: optimal control outside of the spectrum
and isotropic delocalization bounds.

Conventions

We use C to denote a generic large positive constant, which may depend on some fixed
parameters and whose value may change from one expression to the next. Similarly, we
use c to denote a generic small positive constant. For two positive quantities AN and
BN depending on N we use the notation AN � BN to mean C−1AN 6 BN 6 CAN for
some positive constant C.

2 Results

2.1 Sample covariance matrix

Let X be an M ×N matrix whose entries Xiµ are independent complex-valued ran-
dom variables satisfying

EXiµ = 0 , E|Xiµ|2 =
1√
NM

. (2.1)

We shall study the N × N matrix X∗X; hence we regard N as the fundamental large
parameter, and write M ≡MN . Our results also apply to the matrix XX∗ provided one
replaces N ↔M . See Remark 2.11 below for more details.

We always assume that M and N satisfy the bounds

N1/C 6 M 6 NC (2.2)

for some positive constant C. We define the ratio

φ = φN :=
M

N
,

which may depend on N . Here, and throughout the following, in order to unclutter
notation we omit the argument N in quantities, such as X and φ, that depend on it.

We make the following technical assumption on the tails of the entries of X. We
assume that, for all p ∈ N, the random variables (NM)1/4Xiµ have a uniformly bounded
p-th moment: there is a constant Cp such that

E
∣∣(NM)1/4Xiµ

∣∣p 6 Cp . (2.3)

It is well known that the empirical distribution of the eigenvalues of theN×N matrix
X∗X has the same asymptotics as the Marchenko-Pastur law[20]

%φ(dx) :=

√
φ

2π

√
[(x− γ−)(γ+ − x)]+

x2
dx+ (1− φ)+ δ(dx) , (2.4)

where we defined

γ± :=
√
φ+

1√
φ
± 2 (2.5)

to be the edges of the limiting spectrum. Note that (2.4) is normalized so that its
integral is equal to one. The Stieltjes transform of the Marchenko-Pastur law (2.4) is

mφ(z) :=

∫
%φ(dx)

x− z
=

φ1/2 − φ−1/2 − z + i
√

(z − γ−)(γ+ − z)
2φ−1/2 z

, (2.6)
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where the square root is chosen so that mφ is holomorphic in the upper half-plane and
satisfies mφ(z) → 0 as z → ∞. The function mφ = mφ(z) is also characterized as the
unique solution of the equation

m+
1

z + zφ−1/2m− (φ1/2 − φ−1/2)
= 0 (2.7)

satisfying Imm(z) > 0 for Im z > 0. The formulas (2.4)–(2.7) were originally derived for
the case when φ = M/N is independent of N (or, more precisely, when φ has a limit in
(0,∞) as N → ∞). Our results allow φ to depend on N under the constraint (2.2), so
that mφ and %φ may also depend on N through φ.

Throughout the following we use a spectral parameter

z = E + iη ,

with η > 0, as the argument of Stieltjes transforms and resolvents. Define the resolvent

R(z) := (X∗X − z)−1 . (2.8)

For z ∈ C, define κ := κ(z) to be the distance of E = Re z to the spectral edges γ±, i.e.

κ := min
{
|γ+ − E| , |γ− − E|

}
. (2.9)

The following notion of a high-probability bound was introduced in [6], and has been
subsequently used in a number of works on random matrix theory. It provides a simple
way of systematizing and making precise statements of the form “ξ is bounded with
high probability by ζ up to small powers of N”.

Definition 2.1 (Stochastic domination). Let

ξ =
(
ξ(N)(u) : N ∈ N, u ∈ U (N)

)
, ζ =

(
ζ(N)(u) : N ∈ N, u ∈ U (N)

)
be two families of nonnegative random variables, where U (N) is a possibly N -dependent
parameter set. We say that ξ is stochastically dominated by ζ, uniformly in u, if for all
(small) ε > 0 and (large) D > 0 we have

sup
u∈U(N)

P
[
ξ(N)(u) > Nεζ(N)(u)

]
6 N−D

for large enough N > N0(ε,D). Throughout this paper the stochastic domination will
always be uniform in all parameters (such as matrix indices and the spectral parameter
z) that are not explicitly fixed. Note that N0(ε,D) may depend on the constants from
(2.2) and (2.3) as well as any constants fixed in the assumptions of our main results. If
ξ is stochastically dominated by ζ, uniformly in u, we use the notation ξ ≺ ζ. Moreover,
if for some complex family ξ we have |ξ| ≺ ζ we also write ξ = O≺(ζ).

Remark 2.2. Because of (2.2), all (or some) factors of N in Definition (2.1) could be
replaced with M without changing the definition of stochastic domination.

Sometimes we shall need the following notion of high probability.

Definition 2.3. An N -dependent event Ξ ≡ ΞN holds with high probability if 1−1(Ξ) ≺
0 (or, equivalently, if 1 ≺ 1(Ξ)).

We introduce the quantity

K ≡ KN := min{M,N} , (2.10)
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which is the number of nontrivial (i.e. nonzero) eigenvalues of X∗X; the remaining
N − K eigenvalues of X∗X are zero. (Note that the K nontrivial eigenvalues of X∗X
coincide with those of XX∗.) Fix a (small) ω ∈ (0, 1) and define the domain

S ≡ S(ω,K) :=
{
z = E + iη ∈ C : κ 6 ω−1 , K−1+ω 6 η 6 ω−1 , |z| > ω

}
. (2.11)

Throughout the following we regard ω as fixed once and for all, and do not track the
dependence of constants on ω.

Theorem 2.4 (Isotropic local Marchenko-Pastur law). Suppose that (2.1), (2.2), and
(2.3) hold. Then

∣∣〈v , R(z)w〉 −mφ(z)〈v ,w〉
∣∣ ≺ √

Immφ(z)

Nη
+

1

Nη
(2.12)

uniformly in z ∈ S and any deterministic unit vectors v,w ∈ CN . Moreover, we have∣∣∣∣ 1

N
TrR(z)−mφ(z)

∣∣∣∣ ≺ 1

Nη
(2.13)

uniformly in z ∈ S.

Beyond the support of the limiting spectrum, one has stronger control all the way
down to the real axis. For fixed (small) ω ∈ (0, 1) define the region

S̃ ≡ S̃(ω,K)

:=
{
z = E + iη ∈ C : E /∈ [γ−, γ+] , K−2/3+ω 6 κ 6 ω−1 , |z| > ω , 0 < η 6 ω−1

}
(2.14)

of spectral parameters separated from the asymptotic spectrum by K−2/3+ω, which may
have an arbitrarily small positive imaginary part η.

Theorem 2.5 (Isotropic local Marchenko-Pastur law outside the spectrum). Suppose
that (2.1), (2.2), and (2.3) hold. Then

∣∣〈v , R(z)w〉 −mφ(z)〈v ,w〉
∣∣ ≺ √

Immφ(z)

Nη
� 1

1 + φ−1
(κ+ η)−1/4K−1/2 (2.15)

uniformly in z ∈ S̃ and any deterministic unit vectors v,w ∈ CN .

Remark 2.6. All probabilistic estimates (2.12)–(2.15) of Theorems 2.4 and 2.5 may be
strengthened to hold simultaneously for all z ∈ S and for all z ∈ S̃, respectively. For
instance, (2.12) may be strengthened to

P

[⋂
z∈S

{∣∣〈v , R(z)w〉 −mφ(z)〈v ,w〉
∣∣ 6 Nε

(√
Immφ(z)

Nη
+

1

Nη

)}]
> 1−N−D ,

for all ε > 0, D > 0, and N > N0(ε,D).
In the case of Theorem 2.5 this generalization is an immediate consequence of its

proof, and in the case of Theorem 2.4 it follows from a simple lattice argument combined
with the Lipschitz continuity of R and mφ on S. See e.g. [10, Corollary 3.19] for the
details.

Remark 2.7. The right-hand side of (2.15) is stable under the limit η → 0, and may
therefore be extended to η = 0. Recalling the previous remark, we conclude that (2.15)
also holds for η = 0.
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The next results are on the nontrivial eigenvalues of X∗X as well as the correspond-
ing eigenvectors. As remarked above, the matrix X∗X has K nontrivial eigenvalues,
which we order according to λ1 > λ2 > · · · > λK . Let u(1), . . . ,u(K) ∈ CN be the
normalized eigenvectors of X∗X associated with the nontrivial eigenvalues λ1, . . . , λK .

Theorem 2.8 (Isotropic delocalization). Suppose that (2.1), (2.2), and (2.3) hold. Then
for any ε > 0 we have the bound

|〈u(α) ,v〉|2 ≺ N−1 (2.16)

uniformly for α 6 (1− ε)K and all normalized v ∈ CN . If in addition |φ− 1| > c for some
constant c > 0, then (2.16) holds uniformly for all α 6 K.

Remark 2.9. Isotropic delocalization bounds in particular imply that the entries u(α)
i

of the eigenvectors u(α) are strongly oscillating in the sense that
∑N
i=1|u

(α)
i | � N1/2 but∣∣∑N

i=1 u
(α)
i

∣∣ ≺ 1. To see this, choose v = ei in (2.16), which implies |u(α)
i | ≺ N−1/2, from

which the first estimate follows using
∑N
i=1|u

(α)
i |2 = 1. On the other hand, choosing

v = N−1/2(1, 1, . . . , 1) in (2.16) yields the second estimate. Note that, if u = (u1, . . . , uN )

is uniformly distributed on the unit sphere SN−1, the high-probability bounds
∑N
i=1|ui| �

N1/2 and |
∑N
i=1 ui| ≺ 1 are sharp (in terms of the power of N on the right-hand side).

The following result is on the rigidity of the nontrivial eigenvalues of X∗X, which
coincide with the nontrivial eigenvalues of XX∗. Let γ1 > γ2 > · · · > γK be the classical
eigenvalue locations according to %φ (see (2.4)), defined through∫ ∞

γα

%φ(dx) =
α

N
. (2.17)

Theorem 2.10 (Eigenvalue rigidity). Fix a (small) ω ∈ (0, 1) and suppose that (2.1),
(2.2), and (2.3) hold. Then ∣∣λα − γα∣∣ ≺ α−1/3K−2/3 (2.18)

uniformly for all α ∈ {1, . . . , [(1−ω)K]}. If in addition |φ−1| > c for some constant c > 0

then ∣∣λα − γα∣∣ ≺ (K + 1− α)−1/3K−2/3, (2.19)

uniformly for all α ∈ {[K/2], . . . ,K}.

Remark 2.11. We stated our results for the matrixX∗X, but they may be easily applied
to the matrix XX∗ as well. Indeed, Theorems 2.4, 2.5, 2.8, and 2.10 remain valid after
the following changes: X 7→ X∗, M 7→ N , N 7→ M , and φ 7→ φ−1. (In the case of
Theorem 2.10 these changes leave the statement unchanged.) Note that the empirical
distribution of the eigenvalues of XX∗ has the same asymptotics as %φ−1(dx), whose
Stieltjes transform is

mφ−1(z) =
1

φ

(
mφ(z) +

1− φ
z

)
. (2.20)

2.2 Generalized Wigner matrix

Let H = H∗ be an N × N Hermitian matrix whose entries Hij are independent
complex-valued random variables for i 6 j. We always assume that entries are centred,
i.e. EHij = 0. Moreover, we assume that the variances

Sij := E|Hij |2 (2.21)
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satisfy
C−1 6 NSij 6 C ,

∑
j

Sij = 1 , (2.22)

for some constant C > 0. We assume that all moments of the entries of
√
NH are finite

in the sense that for all p ∈ N there exists a constant Cp such that

E
∣∣√NHij

∣∣p 6 Cp (2.23)

for all N , i, and j.
Let

%(dx) :=
1

2π

√
(4− x2)+ dx

denote the semicircle law, and

m(z) :=

∫
%(dx)

x− z
=
−z +

√
z2 − 4

2
(2.24)

its Stieltjes transform; here we chose the square root so that m is holomorphic in the
upper half-plane and satisfies m(z) → 0 as z → ∞. Note that m = m(z) is also charac-
terized as the unique solution of

m+
1

z +m
= 0 (2.25)

that satisfies Imm > 0 for η > 0. Let

G(z) := (H − z)−1

be the resolvent of H.
Fix a (small) ω ∈ (0, 1) and define

SW ≡ SW (ω,N) :=
{
z = E + iη ∈ C : |E| 6 ω−1 , N−1+ω 6 η 6 ω−1

}
. (2.26)

The subscript W in SW stands for Wigner, and is added to distinguish this domain from
the one defined in (2.11).

Theorem 2.12 (Isotropic local semicircle law). Suppose that (2.22) and (2.23) hold.
Then ∣∣〈v , G(z)w〉 − 〈v ,w〉m(z)

∣∣ ≺ √
Imm(z)

Nη
+

1

Nη
(2.27)

uniformly in z ∈ SW and any deterministic unit vectors v,w ∈ CN .

Theorem 2.12 is the isotropic generalization of the following result, proved in [9]. A
similar result first appeared in [16].

Theorem 2.13 (Local semicircle law, [9, 16]). Suppose that (2.22) and (2.23) hold.
Then ∣∣Gij(z)− δijm(z)

∣∣ ≺ √
Imm(z)

Nη
+

1

Nη
(2.28)

uniformly in z ∈ SW and i, j = 1, . . . , N .

The proof of the isotropic law (2.27) uses the regular, entrywise, law from Theorem
2.13 as input, in which v and w are taken to be parallel to the coordinate axes. Assum-
ing the entrywise law (2.28) has been established, the proof of (2.27) is very robust, and
holds under more general assumptions than (2.22). For instance, we have the following
result.
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Theorem 2.14. Let S̃ ⊂ SW be an N -dependent spectral domain, m̃(z) a deterministic
function on S̃ satisfying c 6 |m̃(z)| 6 C for z ∈ S̃, and Ψ̃(z) a deterministic control
parameter satisfying cN−1 6 Ψ̃(z) 6 N−c for z ∈ S̃ and some constant c > 0. Suppose
that

|Gij(z)− δijm̃(z)| ≺ Ψ̃(z)

uniformly in z ∈ S̃. Suppose that the entries of H satisfy (2.23) and the variances (2.21)
of H satisfy Sij 6 CN−1 (which replaces the stronger assumption (2.22)). Then we
have ∣∣〈v , G(z)w〉 − 〈v ,w〉m̃(z)

∣∣ ≺ Ψ̃(z) (2.29)

uniformly in z ∈ S̃ and any deterministic unit vectors v,w ∈ CN .

The proof of Theorem 2.14 is the same as that of Theorem 2.12. Below we give the
proof for Theorem 2.12, which can be trivially adapted to yield Theorem 2.14.

Combining Theorem 2.14 with the isotropic local semicircle law from [9], we may
for instance obtain an isotropic local semicircle law for matrices where the lower bound
of (2.22) is relaxed, so that some matrix entries may vanish.

Beyond the support of the limiting spectrum [−2, 2], the statement of Theorem 2.12
may be improved to a bound that is stable all the way down to the real axis. For fixed
(small) ω ∈ (0, 1) define the region

S̃W ≡ S̃W (ω,N) :=
{
z = E + iη ∈ C : 2 +N−2/3+ω 6 |E| 6 ω−1 , 0 < η 6 ω−1

}
(2.30)

of spectral parameters separated from the asymptotic spectrum by N−2/3+ω, which may
have an arbitrarily small positive imaginary part η.

Theorem 2.15 (Isotropic local semicircle law outside the spectrum). Suppose that
(2.22) and (2.23) hold. Then

∣∣〈v , G(z)w〉 −m(z)〈v ,w〉
∣∣ ≺ √

Imm(z)

Nη
(2.31)

uniformly in z ∈ S̃W and any deterministic unit vectors v,w ∈ CN .

The statements in Theorems 2.12 and 2.15 can also be strengthened to simultane-
ously apply for all z ∈ SW and z ∈ S̃W , respectively; see Remark 2.6.

Let u(1), . . . ,u(N) denote the normalized eigenvectors ofH associated with the eigen-
values λ1, . . . , λN .

Theorem 2.16 (Isotropic delocalization). Suppose that (2.22) and (2.23) hold. Then

|〈u(α) ,v〉|2 ≺ N−1

uniformly for all α = 1, . . . , N and all deterministic unit vectors v ∈ CN .

Finally, in analogy to Theorem 2.10, we record the following rigidity result, which
is a trivial consequence of [9, Theorem 7.6] with X = CN−2/3 and Y = CN−1; see
also [16, Theorem 2.2]. Write λ1 > λ2 > · · · > λN for the eigenvalues of H, and let
γ1 > γ2 > · · · > γN be their classical locations according to %, defined through∫ ∞

γα

%(dx) =
α

N
. (2.32)

Then we have
|λα − γα| ≺

(
min{α,N + 1− α}

)−1/3
N−2/3 (2.33)

for all α = 1, . . . , N .
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3 Preliminaries

The rest of this paper is devoted to the proofs of our main results. They are similar
for sample covariance matrices and generalized Wigner matrices, and in Sections 3–6
we give the argument for sample covariance matrices (hence proving the results of Sec-
tion 2.1). How to modify these arguments to generalized Wigner matrices (and hence
prove the results of Section 2.2) is explained in Section 7. We choose to present our
method in the context of sample covariance matrices mainly for two reasons. First, we
take this opportunity to give a version of the entrywise local law (Section 4) – required
as input for the proof of the isotropic law – which is more general and has a simpler
proof than the local law previously established in [21]. Second, the proof of the isotropic
law in the case of sample covariance matrices is conceptually slightly clearer due to a
natural splitting of summation indices into two categories (which we distinguish by the
use of Latin and Greek letters); this splitting is an essential structure behind our proof
in Section 5, and is also used in the case of generalized Wigner matrices, in which case
it is however purely artificial.

We now move on to the proofs. In order to unclutter notation, we shall often omit
the argument z from quantities that depend on it. Thus, we for instance often write G
instead of G(z). We put the arguments z back when needed, typically if we are working
with several different spectral parameters z.

3.1 Basic tools

We begin by recording some basic large deviations estimates. We consider complex-
valued random variables ξ satisfying

Eξ = 0 , E|ξ|2 = 1 , (E|ξ|p)1/p 6 Cp (3.1)

for all p ∈ N and some constants Cp.

Lemma 3.1 (Large deviation bounds). Let
(
ξ

(N)
i

)
and

(
ζ

(N)
i

)
be independent families of

random variables and
(
a

(N)
ij

)
and

(
b
(N)
i

)
be deterministic; hereN ∈ N and i, j = 1, . . . , N .

Suppose that all entries ξ(N)
i and ζ(N)

i are independent and satisfy (3.1). Then we have
the bounds

∑
i

biξi ≺
(∑

i

|bi|2
)1/2

, (3.2)

∑
i,j

aijξiζj ≺
(∑
i,j

|aij |2
)1/2

, (3.3)

∑
i6=j

aijξiξj ≺
(∑
i 6=j

|aij |2
)1/2

. (3.4)

If the coefficients a(N)
ij and b

(N)
i depend on an additional parameter u, then all of these

estimates are uniform in u (see Definition 2.1), i.e. the threshold N0 = N0(ε,D) in the
definition of ≺ depends only on the family Cp from (3.1); in particular, N0 does not
depend on u.

Proof. These estimates are an immediate consequence of Lemmas B.2, B.3, and B.4 in
[7]. See also Theorem C.1 in [9].

The following lemma collects basic algebraic properties of stochastic domination ≺.
We shall use them tacitly throughout the following.

EJP 19 (2014), paper 33.
Page 10/53

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3054
http://ejp.ejpecp.org/


Isotropic local laws for sample covariance and generalized Wigner matrices

Lemma 3.2. 1. Suppose that ξ(u, v) ≺ ζ(u, v) uniformly in u ∈ U and v ∈ V . If
|V | 6 NC for some constant C then∑

v∈V
ξ(u, v) ≺

∑
v∈V

ζ(u, v)

uniformly in u.

2. Suppose that ξ1(u) ≺ ζ1(u) uniformly in u and ξ2(u) ≺ ζ2(u) uniformly in u. Then

ξ1(u)ξ2(u) ≺ ζ1(u)ζ2(u)

uniformly in u.

3. Suppose that Ψ(u) > N−C is deterministic and ξ(u) is a nonnegative random vari-
able satisfying Eξ(u)2 6 NC for all u. Then, provided that ξ(u) ≺ Ψ(u) uniformly
in u, we have

Eξ(u) ≺ Ψ(u)

uniformly in u.

Proof. The claims (i) and (ii) follow from a simple union bound. For (iii), pick ε > 0 and
assume to simplify notation that ξ and Ψ do not depend on u. Then

Eξ = Eξ1(ξ 6 NεΨ) + Eξ1(ξ > NεΨ)

6 NεΨ +
√
Eξ2

√
P(ξ > NεΨ) 6 NεΨ +NC/2−D/2 ,

for arbitrary D > 0. The claim (iii) therefore follows by choosing D > 3C.

Next, we give some basic facts about the Stieltjes transform mφ of the Marchenko-
Pastur law defined in (2.6). They have an especially simple form in the case φ > 1; the
complementary case φ < 1 can be easily handled using (2.20). Recall the definition (2.9)
of κ. We record the following elementary properties of mφ, which may be proved e.g.
by starting from the explicit form (2.6).

Lemma 3.3. For z ∈ S and φ > 1 we have

|mφ(z)| � 1 , |1−mφ(z)2| �
√
κ+ η , (3.5)

and

Immφ(z) �

{√
κ+ η if E ∈ [γ−, γ+]
η√
κ+η

if E /∈ [γ−, γ+] .
(3.6)

(All implicit constants depend on ω in the definition (2.11) of S.)

ě The basic object is theM×N matrixX. We use the indices i, j = 1, . . . ,M to denote
the rows of X and µ, ν = 1, . . . , N to denote its columns. Unrestricted summations
over Latin indices always run over the set {1, 2, . . . ,M} while Greek indices run over
{1, 2, . . . , N}.

In addition to the resolvent R from (2.8), we shall need another resolvent, G:

G(z) := (XX∗ − z)−1 , R(z) := (X∗X − z)−1 .

Although our main results only pertain to R, the resolvent G will play a crucial role
in the proofs, in which we consider both X∗X and XX∗ in tandem. In the following
formulas the spectral parameter z plays no explicit role, and we therefore omit it from
the notation, as explained at the beginning of this section.
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Remark 3.4. More abstractly, we may introduce two sets of indices, Ipopulation and
Isample, such that Ipopulation indexes the entries of G and Isample the entries of R. El-
ements of Ipopulation are always denoted by Latin letters and elements of Isample by
Greek letters. These two sets are to be viewed as distinct. For convenience of nota-
tion, we shall always use the customary representations Ipopulation := {1, . . . ,M} and
Isample := {1, . . . , N}, bearing in mind that neither should be viewed as a subset of the
other. This terminology originates from the statistical application of sample covariance
matrices. The idea is that we are observing the statistics of a population of size M by
making N independent measurements (“samples”) of the population. Each observation
is a column of X. Hence the population index i labels the rows of X and the sample
index µ the columns of X.

Definition 3.5 (Removing rows). For T ⊂ {1, . . . ,M} define

(X(T ))iµ := 1(i /∈ T )Xiµ .

Moreover, for i, j /∈ T we define the resolvents entries

G
(T )
ij (z) :=

(
X(T )(X(T ))∗ − z

)−1

ij
, R(T )

µν (z) :=
(
(X(T ))∗X(T ) − z

)−1

µν
.

When T = {a}, we abbreviate ({a}) by (a) in the above definitions; similarly, we write
(ab) instead of ({a, b}).

We shall use the following expansion formulas for G. They are elementary conse-
quences of Schur’s complement formula; see e.g. Lemma 4.2 of [15] and Lemma 6.10
of [8] for proofs of similar identities.

Lemma 3.6 (Resolvent identities for G). For i, j, k /∈ T and i, j 6= k we have

G
(T )
ij = G

(Tk)
ij +

G
(T )
ik G

(T )
kj

G
(T )
kk

,
1

G
(T )
ii

=
1

G
(Tk)
ii

−
G

(T )
ik G

(T )
ki

G
(T )
ii G

(Tk)
ii G

(T )
kk

. (3.7)

For i /∈ T we have
1

G
(T )
ii

= −z − z
∑
µ,ν

XiµR
(Ti)
µν X∗νi . (3.8)

Moreover, for i, j /∈ T and i 6= j we have

G
(T )
ij = zG

(T )
ii G

(iT )
jj

∑
µ,ν

XiµR
(Tij)
µν X∗νj . (3.9)

Definition 3.5 and Lemma 3.6 have the following analogues for removing columns
and identities for R.

Definition 3.7 (Removing columns). For T ⊂ {1, . . . , N} define

(X [T ])iµ := 1(µ /∈ T )Xiµ .

Moreover, for µ, ν /∈ T we define the resolvents entries

G
[T ]
ij (z) :=

(
X [T ](X [T ])∗ − z

)−1

ij
, R[T ]

µν (z) :=
(
(X [T ])∗X [T ] − z

)−1

µν
.

When T = {µ}, we abbreviate [{µ}] by [µ] in the above definitions; similarly, we write
[µν] instead of [{µ, ν}].

We use the following expansion formulas for R, which are analogoues to those of
Lemma 3.6.
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Lemma 3.8 (Resolvent identities for R). For µ, ν, ρ /∈ T and µ, ν 6= ρ we have

R[T ]
µν = R[Tρ]

µν +
R

[T ]
µρR

[T ]
ρν

R
[T ]
ρρ

,
1

R
[T ]
µµ

=
1

R
[Tρ]
µµ

− R
[T ]
µρR

[T ]
ρµ

R
[T ]
µµR

[Tρ]
µµ R

[T ]
ρρ

. (3.10)

For µ /∈ T we have
1

R
[T ]
µµ

= −z − z
∑
i,j

X∗µiG
[Tµ]
ij Xjµ . (3.11)

Moreover, for µ, ν /∈ T and µ 6= ν we have

R[T ]
µν = zR[T ]

µµR
[µT ]
νν

∑
i,j

X∗µiG
[Tµν]
ij Xjν . (3.12)

Here we draw attention to a fine notational distinction. Parentheses (·) in X(T )

indicate removal of rows (indexed by Latin letters), while square brackets [·] in X [T ] in-
dicate removal of columns (indexed by Greek letters). In particular, this notation makes
it unambiguous whether T is required to be a subset of {1, . . . ,M} or of {1, . . . , N}.

The following lemma is an immediate consequence of the fact that for φ > 1 the
spectrum of XX∗ is equal to the spectrum of X∗X plus M − N zero eigenvalues. (A
similar result holds for for φ 6 1, and if X is replaced with X [T ] or X(U).)

Lemma 3.9. Let T ⊂ {1, . . . , N} and U ⊂ {1, . . . ,M}. Then we have

TrR[T ] − TrG[T ] =
M − (N − |T |)

z

as well as

TrR(U) − TrG(U) =
(M − |U |)−N

z

In particular, we find

1

M
TrG =

1

φ

1

N
TrR+

1

φ

1− φ
z

, (3.13)

in agreement with (2.20) and the heuristics M−1 TrG ∼ mφ−1 and N−1 TrR ∼ mφ.

The following lemma is an easy consequence of the well-known interlacing property
of the eigenvalues of XX∗ and X(i)(X(i))∗, as well as the eigenvalues of X∗X and
(X [µ])∗X [µ].

Lemma 3.10 (Eigenvalue interlacing). For any T ⊂ {1, . . . , N} and U ⊂ {1, . . . ,M},
there exists a constant C, depending only on |T | and |U |, such that∣∣TrR[T ] − TrR

∣∣ 6 Cη−1 ,
∣∣TrR(U) − TrR

∣∣ 6 Cη−1 .

Finally, we record the fundamental identity

∑
j

∣∣G[T ]
ij

∣∣2 =
1

η
ImG

[T ]
ii , (3.14)

which follows easily by spectral decomposition of G[T ].
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3.2 Reduction to the case φ > 1

We shall prove Theorems 2.4 and 2.5 by restricting ourselves to the case φ > 1 but
considering bothX∗X and XX∗ simultaneously. In this short section we give the details
of this reduction. Define the control parameter

Ψ(z) ≡ Ψφ(z) :=

√
Immφ(z)

Nη
+

1

Nη
. (3.15)

We shall in fact prove the following. Recall the definitions (2.11) of S and (2.14) and
of S̃.

Theorem 3.11. Suppose that (2.1), (2.2), (2.3), and φ > 1 hold. Then∣∣〈v , G(z)w〉 −mφ−1(z)〈v ,w〉
∣∣ ≺ 1

φ
Ψ(z) (3.16)

uniformly in z ∈ S and any deterministic unit vectors v,w ∈ CM . Similarly,∣∣〈v , R(z)w〉 −mφ(z)〈v ,w〉
∣∣ ≺ Ψ(z) (3.17)

uniformly in z ∈ S and any deterministic unit vectors v,w ∈ CN . Moreover, we have∣∣∣∣ 1

N
TrR(z)−mφ(z)

∣∣∣∣ ≺ 1

Nη
,

∣∣∣∣ 1

M
TrG(z)−mφ−1(z)

∣∣∣∣ ≺ 1

Mη
(3.18)

uniformly in z ∈ S.

Theorem 3.12. Suppose that (2.1), (2.2), (2.3), and φ > 1 hold. Then

∣∣〈v , G(z)w〉 −mφ−1(z)〈v ,w〉
∣∣ ≺ 1

φ

√
Immφ(z)

Nη
(3.19)

uniformly in z ∈ S̃ and any deterministic unit vectors v,w ∈ CM . Similarly,

∣∣〈v , R(z)w〉 −mφ(z)〈v ,w〉
∣∣ ≺ √

Immφ(z)

Nη
(3.20)

uniformly in z ∈ S̃ and any deterministic unit vectors v,w ∈ CN .

Let φ > 1, i.e. N 6 M . Recall that u(1), . . . ,u(N) ∈ CN denote the normalized
eigenvectors of X∗X associated with the nontrivial eigenvalues λ1, . . . , λN , and let
ũ(1), . . . , ũ(N) ∈ CM denote the normalized eigenvectors of XX∗ associated with the
same eigenvalues λ1, . . . , λN .

Theorem 3.13. Suppose that (2.1), (2.2), (2.3), and φ > 1 hold. For any ε > 0 we have
the bounds

|〈u(α) ,v〉|2 ≺ N−1 , |〈ũ(α) ,w〉|2 ≺ M−1 (3.21)

uniformly for α 6 (1 − ε)N and all normalized v ∈ CN and w ∈ CM . If in addition
φ > 1 + c for some constant c > 0, then (3.21) holds uniformly for all α 6 N .

Theorems 2.4, 2.5, and 2.8 are easy consequences of Theorems 3.11, 3.12, and 3.13
respectively, combined with the observation that

Immφ−1(z) � 1

φ
Immφ(z) (3.22)
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for z ∈ S; in addition, the asymptotic equivalence in (2.15) follows from (3.6) and (3.22).
The estimate (3.22) itself can be proved by noting that (2.20) implies

Immφ−1(z) =
1

φ

(
Immφ(z) +

φ− 1

|z|2
η

)
.

Since |z|2 � φ for z ∈ S, (3.22) for φ > 1 follows from Lemma 3.3. Replacing φ with φ−1

in (3.22), we conclude that (3.22) holds for all φ.

What remains therefore is to prove Theorems 2.10, 3.11, 3.12, and 3.13. We shall
prove Theorem 2.10 in Section 4.3, Theorem 3.11 in Section 5, and Theorems 3.12 and
3.13 in Section 6.

4 The entrywise local Marchenko-Pastur law

In this section we prove a entrywise version of Theorem 3.11, in which the vectors
v and w from (3.17) and (3.16) are assumed to lie in the direction of a coordinate axis.
A similar result was previously proved in [21, Theorem 3.1]. Recall the definition of Ψ

from (3.15).

Theorem 4.1 (Entrywise local Marchenko-Pastur law). Suppose that (2.1), (2.2), (2.3),
and φ > 1 hold. Then ∣∣Rµν(z)− δµνmφ(z)

∣∣ ≺ Ψ(z) , (4.1)

uniformly in z ∈ S and µ, ν ∈ {1, . . . , N}. Similarly,

∣∣Gij(z)− δijmφ−1(z)
∣∣ ≺ 1

φ
Ψ(z) , (4.2)

uniformly in z ∈ S and i, j ∈ {1, . . . ,M}. Moreover, (3.18) holds uniformly in z ∈ S.

Theorem 4.1 differs from Theorem 3.1 in [21] in the following two ways.

1. The restriction 1 6 φ 6 C in [21] is relaxed to 1 6 φ 6 NC (and hence, as explained
in Section 3.2, to N−C 6 φ 6 NC).

2. The uniform subexponential decay assumption of [21] is relaxed to (2.3). On the
other hand, thanks to the stronger subexponential decay assumption the state-
ment of Theorem 3.1 of [21] is slightly stronger than Theorem 4.1: in Theo-
rem 3.1 of [21], the error bounds Nε in the definition of ≺ are replaced with
(logN)C log logN .

The difference (ii) given above is technical and amounts to using Lemma 3.1, which
is tailored for random variables satisfying (2.3), for the large deviation estimates. We
remark that all of the arguments of the current paper may be translated to the setup
of [21], explained in (ii) above, by modifying the definition of ≺. The essence of the
proofs remains unchanged; the only nontrivial difference is that in Section 5 we have
to control moments whose power depends weakly on N ; this entails keeping track of
some basic combinatorial bounds. We do not pursue this modification any further.

The difference (i) is more substantial, and requires to keep track of the φ-dependence
of all appropriately rescaled quantities throughout the proof. In addition, we take this
opportunity to simplify and streamline the argument from [21]. This provides a short
and self-contained proof of Theorem 4.1, up to a fluctuation averaging result, Lemma
4.9 below, which was proved in the current simple and general form in [9].
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4.1 A weak local Marchenko-Pastur law

We begin with the proof of (4.1) and (3.18). For the following it will be convenient
to use the rescaled spectral parameters

z̃ := φ−1/2z , ẑ := z − φ1/2 + φ−1/2 . (4.3)

Using z̃ and ẑ we may write the the defining equation (2.7) of mφ as

m(z) +
1

ẑ + z̃m(z)
= 0 . (4.4)

From the definition (2.11) of S, we find

|z̃| � 1 , |ẑ| 6 C (4.5)

for all z ∈ S. We remark that, as in [21], the Stieltjes transform mφ satisfies |mφ(z)| � 1

for z ∈ S; see (3.5).
We define the z-dependent random control parameters

Λ(z) := max
µ,ν
|Rµν(z)− δµνmφ(z)| , (4.6a)

Λo(z) := max
µ6=ν
|Rµν(z)| , (4.6b)

Θ(z) := |mR(z)−mφ(z)| , (4.6c)

where we defined the Stieltjes transform of the empirical density of X∗X,

mR(z) :=
1

N
TrR(z) .

The goal of this subsection is to prove the following weaker variant of Theorem 4.1.

Proposition 4.2. We have Λ ≺ (Nη)−1/4 uniformly in z ∈ S.

The rest of this subsection is devoted to the proof of Proposition 4.2. We begin by
introducing the basic z-dependent event

Ξ(z) :=
{

Λ(z) 6 (logN)−1
}
.

Lemma 4.3. For any ` ∈ N there exists a constant C ≡ C` such that for z ∈ S, all
T ⊂ {1, 2, . . . , N} satisfying |T | 6 `, and all µ, ν /∈ T we have

1(Ξ)
∣∣R[T ]

µν −Rµν
∣∣ 6 CΛ2

o (4.7)

and

1(Ξ)C−1 6 1(Ξ)|R[T ]
µµ | 6 C (4.8)

for large enough N depending on `.

Proof. The proof is a simple induction argument using (3.10) and the bound |mφ| > c

from (3.5). We omit the details.

As in the works [16, 21], the main idea of the proof is to derive a self-consistent equa-
tion for mR = 1

N

∑
µRµµ using the resolvent identity (3.11). To that end, we introduce

the conditional expectation

E[µ](·) := E( · |X [µ]) , (4.9)
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i.e. the partial expectation in the randomness of the µ-th column of X. We define

Zµ :=
(
1− E[µ]

)
z
∑
i,j

X∗µiG
[µ]
ij Xjµ = z

∑
i,j

X∗µiG
[µ]
ij Xjµ −

z̃

N
TrG[µ] , (4.10)

where in the last step we used (2.1) and (4.3). Using (3.11) with T = ∅, Lemma 3.9, and
(4.3), we find

1

Rµµ
= −z − z̃

N
TrG[µ] − Zµ = −ẑ − z̃

N
TrR[µ] − Zµ −

1√
φN

. (4.11)

The following lemma contains the key estimates needed to control the error terms Zµ
and Λo. The errors are controlled using of the (random) control parameter

ΨΘ :=

√
Immφ + Θ

Nη
, (4.12)

whose analogue in the context of Wigner matrices first appeared in [16].

Lemma 4.4. For z ∈ S we have

1(Ξ)
(
|Zµ|+ Λo

)
≺ ΨΘ (4.13)

as well as
1
(
η > (logN)−1

) (
|Zµ|+ Λo

)
≺ ΨΘ . (4.14)

Proof. The proof is very similar to that of Theorems 6.8 and 6.9 of [21]. We consequently
only give the details for the estimate of Λo; the estimate of Zµ is similar.

For µ 6= ν we use (3.12) with T = ∅ to expand Rµν . Conditioning on X [µν] and
invoking (3.3) yields

|Rµν | ≺
∣∣RµµR[µ]

νν

∣∣ |z̃|
N

√∑
i,j

∣∣G[µν]
ij

∣∣2 . (4.15)

On the event Ξ, we estimate the right-hand side using

1(Ξ)
|z̃|
N

√∑
i,j

∣∣G[µν]
ij

∣∣2 = 1(Ξ)
|z̃|
N

√
Im TrG[µν]

η

6 1(Ξ)
C

N

√
Im TrR[µν] − ((φ− 1)N + 2) Im z−1

η

6 C1(Ξ)

√
Immφ + Θ + Λ2

o

Nη
+

1

N

6 C1(Ξ)

√
Immφ + Θ + Λ2

o

Nη
, (4.16)

where the first step follows from (3.14), the second from Lemma 3.9, the third from
Im z−1 = −η|z|−2 > −Cη/φ and (4.7), and the fourth from the fact that Immφ > cη by
(3.6).

Recalling (3.5), we have therefore proved that

1(Ξ)Λo ≺ 1(Ξ)
(
ΨΘ + (Nη)−1/2Λo

)
. (4.17)

Since (Nη)−1/2 6 N−ω/2 on S, we find

1(Ξ)Λo ≺ 1(Ξ)ΨΘ ,
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which, together with the analogous bound for Zµ, concludes the proof of (4.13).

In order to prove the estimate Λo ≺ ΨΘ from (4.14) for η > (logN)−1, we proceed

similarly. From (4.15) and the trivial deterministic bound
∣∣RµµR[µ]

νν

∣∣ 6 η−2 6 (logN)2 we
get

|Rµν | ≺
1

N

√
Im TrG[µν]

η
=

1

N

√
Im TrR[µν] − ((φ− 1)N + 2) Im z−1

η

6 C

√
Immφ + Θ

Nη
+

1

(Nη)2
,

where the estimate is similar to (4.16), except that in the last step we use Lemma 3.10
to estimate TrRµν − TrR. Since η > (logN)−1, we easily find that |Rµν | ≺ ΨΘ. This
concludes the proof.

As in [21, Equation (6.13)], in order to analyse the stability of the equation (4.4) we
introduce the operation D on functions u : S→ C, defined through

D(u)(z) :=
1

u(z)
+ z̃u(z) + ẑ . (4.18)

Note that, by (4.4), the function mφ satisfies D(mφ) = 0.

Next, we derive a stability result for D−1. Roughly, we prove that if D(u) is small
then u is close to mφ. Note that this result is entirely deterministic. It relies on a
discrete continuity argument, whose essence is the existence of a sufficiently large gap
between the two solutions of D(·) = 0. Once this gap is established, then, together with
the fact that u is close to mφ for large η, we may conclude that u is close to mφ for
smaller η as well. We use a discrete version of a continuity argument (as opposed to
a continuous one used e.g. in [21]), which allows us to bypass several technical issues
when applying it to estimating the random quantity |mR −mφ|. For more details of this
application, see the explanation following (4.34).

For z ∈ S introduce the discrete set

L(z) := {z} ∪
{
w ∈ S : Rew = Re z , Imw ∈ [Im z, 1] ∩ (N−5N)

}
.

Thus, if Im z > 1 then L(z) = {z} and if Im z 6 1 then L(z) is a one-dimensional lattice
with spacing N−5 plus the point z. Clearly, we have the bound

|L(z)| 6 N5 . (4.19)

Lemma 4.5 (Stability of D−1). There exists a constant ε > 0 such that the following
holds. Suppose that δ : S → C satisfies N−2 6 δ(z) 6 ε for z ∈ S and that δ is Lipschitz
continuous with Lipschitz constant N . Suppose moreover that for each fixed E, the
function η 7→ δ(E+iη) is nonincreasing for η > 0. Suppose that u : S→ C is the Stieltjes
transform of a probability measure. Let z ∈ S, and suppose that for all w ∈ L(z) we
have ∣∣D(u)(w)

∣∣ 6 δ(w) .

Then we have

|u(z)−mφ(z)| 6 Cδ(z)√
κ+ η + δ(z)

.

for some constant C independent of z and N .
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Proof. Let u be as in Lemma 4.5, and abbreviate R := D(u). Hence, by assumption
on u, we have |R| 6 δ. We introduce u1 ≡ uR1 and u2 ≡ uR2 by setting u1 := u and
defining u2 as the other solution of the quadratic equation D(u) = R. Note that each ui
is continuous. Explicitly, for |R| 6 1/2 we get

u1,2 =
R− ẑ ± i

√
(z − λ−,R)(λ+,R − z)

2z̃
, λ±,R := φ1/2+φ−1/2+R±2

√
1 + φ−1/2R ,

(4.20)
where the square root in

√
1 + φ−1/2R is the principal branch. (Note that the sign

± in the expression for u1,2 bears no relation to the indices 1, 2, since we have not
even specified which complex square root we take.) In particular, for R = 0 we have
λ±,R=0 = γ±, defined in (2.6). Observe that for any complex square root

√
· and w, ζ ∈ C

we have |
√
w + ζ −

√
w| 6 (|w|+ |ζ|)−1/2|ζ| or |

√
w + ζ +

√
w| 6 (|w|+ |ζ|)−1/2|ζ|. We use

these formulas to compare (4.20) with a small R with (4.20) with R = 0. Thus we
conclude from (4.20) and (4.5) that for i = 1 or for i = 2 we have

|ui −mφ| 6
C0|R|√

κ+ η + |R|
(4.21)

for some constant C0 > 2. What remains is to show that (4.21) holds for i = 1. We shall
prove this using a continuity argument.

Note first that (4.20) and (4.5) yield

C−1
1

√
(κ+ η − |R|)+ 6 |u1 − u2| 6 C1

√
κ+ η + |R| (4.22)

for some constant C1 > 1.
Now consider z = i. Clearly, for R(i) = 0 we have u0

1(i) = mφ(i). Note that by the
lower bound of (4.22) the two roots uR1 (i) and uR2 (i) are distinct, and they are continuous
in R. Therefore there is an ε ∈ (0, 1/2] such that for |R(i)| 6 ε we have, after possibly
increasing C0, that

|u1 −mφ| 6 C0|R| (4.23)

at z = i. Next, we note that (4.21) and (4.22) imply, for any z with Im z > 1, that
|ui−mφ| 6 C0|R| for some i ∈ {1, 2}, and that |u1−u2| > (2C1)−1. Hence, requiring that
ε 6 (8C0C1)−1 we find from (4.23) with z = i and using the continuity of u1 that (4.23)
holds provided Im z > 1.

Next, for arbitrary z ∈ S with Im z < 1 we consider two cases, depending on whether

C0δ√
κ+ η + δ

6
1

4C1

√
(κ+ η − δ)+ (4.24)

holds or not. If (4.24) does not hold, then we have κ + η 6 4C0C1δ, so that (4.21),
|R| 6 δ, and the upper bound of (4.22) imply

|u1 −mφ| 6
C0|R|√
κ+ η + δ

+ C1

√
κ+ η + |R| 6 C

√
δ 6

Cδ√
κ+ η + δ

.

What remains is the case where (4.24) holds. We use a continuity argument along
the set L(z), which we parametrize as L(z) = {z0, . . . , zL}, where Im z0 = 1, zL = z, and
Im zl+1 < Im zl. Note that |zl+1 − zl| 6 N−5. By assumption, |R| 6 δ at each zl ∈ L(z),
so that (4.21) and (4.22) yield

∃ i = 1, 2 : |ui −mφ| 6
C0δ√

κ+ η + δ
, C−1

1

√
(κ+ η − δ)+ 6 |u1 − u2| (4.25)

at each zl ∈ L(z). (Here the quantities κ ≡ κ(zl), η ≡ η(zl), and δ ≡ δ(zl) are understood
as functions of the spectral parameters zl.) Moreover, since (4.24) holds at z = zL, by
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the monotonicity assumption on δ we find that (4.24) holds for all zl ∈ L(z). We now
prove that

|u1(zl)−mφ(zl)| 6
C0δ√

κ+ η + δ

∣∣∣∣
zl

(4.26)

for all l = 1, . . . , L by induction on l. For l = 0 the bound (4.26) is simply (4.23) proved
above. Suppose therefore that (4.26) holds for some l. Since u1 and mφ are Lipschitz
continuous with Lipschitz constant N , we get

|u1(zl+1)−mφ(zl+1)| 6 2NN−5 +
∣∣u1(zl)−mφ(zl)

∣∣ 6 2N−4 +
C0δ√

κ+ η + δ

∣∣∣∣
zl

6 2N−4 + CN2N−5 +
C0δ√

κ+ η + δ

∣∣∣∣
zl+1

6
2C0δ√
κ+ η + δ

∣∣∣∣
zl+1

, (4.27)

where in the second step we used the induction assumption, in the third step the Lips-
chitz continuity of δ and the bound η > N−1, and in the last step the bounds δ > N−2

and κ + η + δ 6 C. Next, recalling (4.24), it is easy to deduce (4.26) with l replaced by
l + 1, using the bounds (4.25) and (4.27). This concludes the proof.

We may now combine the probabilistic estimates from Lemma 4.4 with the stability
of D−1 from Lemma 4.5 to get the following result for η > 1, which will be used as the
starting estimate in the bootstrapping in η.

Lemma 4.6. We have Λ ≺ N−1/4 uniformly in z ∈ S satisfying Im z > 1.

Proof. Let z ∈ S with Im z > 1. From (4.11) and the estimate on Zµ from (4.14) we find

Rµµ =
1

−ẑ − z̃mR +O≺(ΨΘ +N−1)
=

1

−ẑ − z̃mR +O≺(N−1/2)
, (4.28)

where in the last step we used that ΨΘ = O(N−1/2) since η > 1 and Immφ + Θ = O(1),
as follows from (3.5) and the trivial bound |mR| 6 C. Taking the average over µ yields
1/mR = −ẑ − z̃mR + O≺(N−1/2), i.e. |D(mR)| ≺ N−1/2; see (4.18). Since L(z) = {z},
we therefore get from Lemma 4.5 that |mR − mφ| ≺ N−1/4. Returning to (4.28) and
recalling (4.4) and (3.5), we get |Rµµ −mφ| ≺ N−1/4. Together with the estimate on Λo
from (4.14), we therefore get Λ ≺ N−1/4 uniformly in z ∈ S satisfying Im z > 1.

Next, we plug the estimates from Lemma 4.4 into (4.11) in order to obtain estimates
on mR. The summation in mR = 1

N

∑
µRµµ will give rise to an error term of the form

[Z] :=
1

N

∑
µ

Zµ . (4.29)

For the proof of Proposition 4.2, it will be enough to estimate |[Z]| 6 maxµ|Zµ|, but for
the eventual proof of Theorem 4.1, we shall need to exploit cancellation in the averaging
in [Z]. Bearing this in mind, we state our estimates in terms of [Z] to avoid repeating
the following argument in Section 4.2.

Lemma 4.7. We have
1(Ξ)|Rµµ −mR| ≺ ΨΘ (4.30)

uniformly in µ and z ∈ S, as well as

1(Ξ)D(mR) = 1(Ξ)
(
−[Z] +O≺(Ψ2

Θ)
)

(4.31)

uniformly in z ∈ S.
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Proof. From (4.11), (4.7), and (4.13) we get

1(Ξ)
1

Rµµ
= 1(Ξ)

(
−ẑ − z̃mR − Zµ +O≺(Ψ2

Θ)
)
, (4.32)

where we absorbed the error term N−1 on the right-hand side of (4.11) into Ψ2
Θ using

(3.6). Thus, using (4.13) we get

1(Ξ)(Rµµ −Rνν) = 1(Ξ)RµµRννO≺(ΨΘ) = O≺(ΨΘ) .

Hence (4.30) follows. Next, expanding Rµµ = mR + (Rµµ −mR) yields

1

Rµµ
=

1

mR
− 1

m2
R

(Rµµ −mR) +
1

m2
R

(Rµµ −mR)2 1

Rµµ
.

After taking the average [·] = 1
N

∑
µ · the second term on the right-hand side vanishes.

Taking the average of (4.32) therefore yields, using (4.30) and (4.3),

1(Ξ)

(
1

mR
+O≺(Ψ2

Θ)

)
= 1(Ξ)

(
−ẑ − z̃mR − [Z] +O≺(Ψ2

Θ)
)
,

from which the claim follows.

From (4.31) and (4.13) we get

1(Ξ)|D(mR)| ≺ 1(Ξ)ΨΘ 6 C(Nη)−1/2 (4.33)

uniformly in S. In order to conclude the proof of Proposition 4.2, we use a continuity
argument. The main ingredients are (4.33), Lemma 4.5, Lemma 4.6. Choose ε < ω/4

and an arbitrary D > 0. It is convenient to introduce the random function

v(z) := max
w∈L(z)

Λ(w)(N Imw)1/4 .

Our goal is to prove that with high probability there is a gap in the range of v, i.e.

P
(
v(z) 6 Nε , v(z) > Nε/2

)
6 N−D+5 (4.34)

for all z ∈ S and large enough N > N0(ε,D). This equation says that with high proba-
bility the range of v has a gap: it cannot take values in the interval (Nε/2, Nε].

The basic idea behind the proof of (4.34) is to use the deterministic result from
Lemma 4.5 to propagate smallness of the random variable Λ(z) from large values of η
to smaller values of η. Since we are dealing with random variables, one has to keep
track of probabilities of exceptional events. To that end, we only work on a discrete
set of values of η, which allows us to control the exceptional probabilities by a simple
union bound. We remark that the first instance of such a stochastic continuity argument
combined with stability of a self-consistent equation was given in [11] in the context of
Wigner matrices. Over the years it has been improved through several papers in the
context of Wigner matrices [9, 15, 16] as well as in the context of sample covariance
matrices [13, 21].

Next, we prove (4.34). Since {v(z) 6 Nε} ⊂ Ξ(z) ∩ Ξ(w) for all z ∈ S and w ∈ L(z),
we find that (4.33) implies for all z ∈ S and w ∈ L(z) that

P
(
v(z) 6 Nε , |D(mR)(w)|(N Imw)1/2 > Nε/2

)
6 N−D

for large enough N > N0(ε,D) (independent of z and w). Using (4.19) and a union
bound, we therefore get

P
(
v(z) 6 Nε , max

w∈L(z)
|D(mR)(w)|(N Imw)1/2 > Nε/2

)
6 N−D+5 .
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Next, we use Lemma 4.5 with u = mR and δ = Nε/2(Nη)−1/2 to get

P
(
v(z) 6 Nε , max

w∈L(z)
Θ(w)(N Imw)1/4 > Nε/4

)
6 N−D+5 .

(Here we used the trivial observation that the conclusion of Lemma 4.5 is valid not only
at z but in the whole set L(z).) Using (4.13) and (4.30) we therefore get (4.34).

We conclude the proof of Proposition 4.2 by combining (4.34) and Lemma 4.6 with
a continuity argument, similar to the proof of [9, Proposition 5.3]. We choose a lattice
∆ ⊂ S such that |∆| 6 N10 and for each z ∈ S there exists a w ∈ ∆ satisfying |z − w| 6
N−4. Then (4.34) combined with a union bound yields

P
(
∃w ∈ ∆ : v(w) ∈ (Nε/2, Nε]

)
6 N−D+15 . (4.35)

From the definitions of Λ and S we find that v is Lipschitz continuous on S, with Lips-
chitz constant N2. Hence (4.35) and the definition of ∆ imply

P
(
∃z ∈ S : v(z) ∈ (2Nε/2, 2Nε/2]

)
6 N−D+15 . (4.36)

By Lemma 4.6, we have
P
(
v(z) > Nε/2

)
6 N−D+15 (4.37)

for some (in fact any) z ∈ S satisfying Im z > 1. It is not hard to infer from (4.36) and
(4.37) that

P
(

max
z∈S

v(z) > 2Nε/2
)

6 2N−D+15 . (4.38)

Since ε can be made arbitrarily small and D arbitrarily large, Proposition 4.2 follows
from (4.38).

4.2 Fluctuation averaging and conclusion of the proof of Theorem 4.1

In order to improve the negative power of (Nη) in Proposition 4.2, and hence prove
the optimal bound in Theorem 4.1, we shall use the following result iteratively. Recall
the definition of Θ from (4.6) and definition of [Z] from (4.29).

Lemma 4.8. Let τ ∈ (0, 1) and suppose that we have

Θ ≺ (Nη)−τ (4.39)

uniformly in z ∈ S. Then we have

|[Z]| ≺ Immφ + (Nη)−τ

Nη
(4.40)

uniformly in z ∈ S.

In order to prove Lemma 4.8, we invoke the following fluctuation averaging result.
We remark that the fluctuation averaging mechanism was first exploited in [14]. Here
we use the result from [9], where a general version with a streamlined proof was given.
Recall the definition of the partial expectation E[µ] from (4.9).

Lemma 4.9 (Fluctuation averaging [9]). Suppose that Φ and Φo are positive,N -dependent,
deterministic functions on S satisfying N−1/2 6 Φ,Φo 6 N−c for some constant c > 0.
Suppose moreover that Λ ≺ Φ and Λo ≺ Φo. Then

1

N

∑
µ

(
1− E[µ]

) 1

Rµµ
= O≺(Φ2

o) . (4.41)
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Proof. This result was given in a slightly different context in Theorem 4.7 in [9]. How-
ever, it is a triviality that the proof of Theorem 4.7 in [9] carries over word for word,
provided one replaces G(T )

ij there with R[T ]
µν ; see Remark B.3 in [9]. The proof relies only

on the identity (3.10), which is the analogue of Equation (4.6) in [9].

Remark 4.10. The conclusion of Lemma 4.9 remains true under somewhat more gen-
eral hypotheses, whereby Λ is not required to be small. Indeed, (4.41) holds provided
that Φo is as in Lemma 4.9 and that∣∣∣∣ 1

Rµµ

∣∣∣∣ ≺ 1 ,

∣∣∣∣(1− E[µ]
) 1

Rµµ

∣∣∣∣ ≺ Φo , Λo ≺ Φo .

The proof is the same as that of Theorem 4.7 in [9].

Proof of Lemma 4.8. We apply Lemma 4.9 to

− Zµ =
(
1− E[µ]

) 1

Rµµ
, (4.42)

where we used (3.11). From Proposition 4.2 we get 1 ≺ 1(Ξ), i.e. Ξ holds with high
probability. Therefore (4.13) yields Λo ≺ ΨΘ. Using this bound for Λo and Proposition
4.2 again to estimate Λ ≺ (Nη)−1/4, we therefore get

Λo ≺ Φo , Λ ≺ Φ , Φo :=

√
Immφ + (Nη)−τ

Nη
, Φ := (Nη)−1/4 .

Using (3.6), it is easy to check that these definitions of Φo and Φ satisfy the assumptions
of Lemma 4.9. Hence the claim follows from Lemma 4.9 and (4.42).

Now suppose that Θ ≺ (Nη)−τ . From Lemma 4.8, the fact that 1 − 1(Ξ) ≺ 0 from
Proposition 4.2, Lemma 4.39, and (4.31), we find

|D(mR)| ≺ Immφ + (Nη)−τ

Nη

uniformly in z ∈ S. Using (4.19) and a simple union bound, we may invoke Lemma 4.5
to get

Θ ≺ Immφ

Nη

1√
κ+ η

+

√
(Nη)−τ

Nη
6

C

Nη
+ (Nη)−1/2−τ/2 6 C(Nη)−1/2−τ/2 ,

where in the second step we used (3.6). Summarizing, we have proved the self-improving
estimate

Θ ≺ (Nη)−τ =⇒ Θ ≺ (Nη)−1/2−τ/2 . (4.43)

From Proposition 4.2 we know that Θ ≺ (Nη)−1/4. Thus, for any ε > 0, we iterate (4.43)
an order Cε times to get Θ ≺ (Nη)−1+ε. This concludes the proof of the first bound of
(3.18). The second bound of (3.18) follows from the first one and the identity (3.13).

Next, (4.1) follows from (3.18) and 1− 1(Ξ) ≺ 0, combined with (4.30) and (4.13).
What remains is the proof of (4.2). To that end, in analogy to the partial expectation

E[µ] defined above, we define E(i)(·) := E(·|X(i)). Introducing 1 = E(i) +
(
1− E(i)

)
into

the right-hand side of (3.8) yields

1

Gii
= −z − z

∑
µ,ν

XiµR
(i)
µνX

∗
νi = −z − z̃

N

∑
µ

R(i)
µµ − (1− Ei)z

∑
µ,ν

XiµR
(i)
µνX

∗
νi .

EJP 19 (2014), paper 33.
Page 23/53

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3054
http://ejp.ejpecp.org/


Isotropic local laws for sample covariance and generalized Wigner matrices

Using Lemma 3.10, we rewrite the sum in the second term according to N−1
∑
µR

(i)
µµ =

mR + O
(
(Nη)−1

)
. Moreover, the third term is estimated exactly as Zµ in Lemma 4.4,

using Lemma 3.1. Putting everything together yields

Gii =
1

−z − z̃mR +O≺(ΨΘ)
=

1

1/mφ−1 +O≺(Θ + ΨΘ)
,

as follows after some elementary algebra using (4.4). Moreover, using (3.5) it is not
hard to see that mφ−1 � φ−1/2 on the domain S. This yields Gii = mφ−1 + O(φ−1Ψ),
where we used Θ ≺ (Nη)−1 to estimate Θ + ΨΘ ≺ Ψ. This concludes the proof of (4.2)
for i = j.

In particular, |Gii| ≺ φ−1/2. The same argument applied to the matrix X(j) instead

of X yields |G(j)
ii | ≺ φ−1/2. Thus we get from (3.9) that for i 6= j we have

|Gij | ≺ φ−1

∣∣∣∣∑
µ,ν

XiµR
(ij)
µν X

∗
νj

∣∣∣∣ ≺ φ−1Ψ ,

where the last step follows using (3.3), exactly as in the proof of Lemma 4.4, and (4.1).
This concludes the proof of (4.2), and hence of Theorem 4.1.

4.3 Proof of Theorem 2.10

The proof of Theorem 2.10 is similar to that of Theorem 2.2 in [16] and Theorem
3.3 in [21]. We therefore only sketch the argument. First we observe that, since the
nontrivial eigenvalues λ1, . . . , λK of X∗X and XX∗ coincide and

N

∫ ∞
γ

%φ(dx) = M

∫ ∞
γ

%φ−1(dx)

for all γ > 0, it suffices to prove Theorem 2.10 for φ > 1, i.e. K = N .
Define the normalized counting functions

nφ(E1, E2) :=

∫ E2

E1

%φ(dx) , n(E1, E2) :=
1

N

∣∣{α : E1 6 λα 6 E2}
∣∣ .

The proof relies on the following key estimates.

Lemma 4.11. We have ∣∣n(E1, E2)− nφ(E1, E2)
∣∣ ≺ 1

N
(4.44)

uniformly for any E1 and E2 satisfying E1 + i ∈ S and E2 + i ∈ S. Moreover, we have

|λ1 − γ+| ≺ N−2/3 . (4.45)

Finally, if φ > 1 + c for some constant c > 0, then

|λN − γ−| ≺ N−2/3 . (4.46)

Starting from Lemma 4.11, the proof of Theorem 2.10 is elementary. (The details
are given e.g. on the last page of Section 5 in [16].)

Proof of Lemma 4.11. The estimate (4.44) is a standard consequence of (3.18), using
Helffer-Sjöstrand functional calculus; see e.g. [16, Section 5].

What remains is the proof of (4.45) and (4.46). Here the argument from [21, Section
8] applies with trivial modifications. The key inputs in our case are (4.44), Lemma 4.5,
(4.40), and Lemma 4.9 combined with Remark 4.10. We omit further details.
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5 The isotropic law: proof of Theorem 3.11

In this section we complete the proof of Theorem 3.11. Since (3.18) was proved in
Section 4, we only need to prove (3.16) and (3.17). For definiteness, we give the details
of the proof of (3.16); the proof of (3.17) is very similar, and the required modifications
are outlined at the end of Section 5.15 below.

5.1 Rescaling

It is convenient to introduce the rescaled quantities

G̃(z) := φ1/2G(z) , z̃ := φ−1/2z .

The reason for this scaling is that for z ∈ S the diagonal entries of G̃ and z̃ are of order
one (See (4.5) as well as (5.2) and (5.3) below). Note that all formulas from Lemma 3.6
hold after the replacement (z,G) 7→ (z̃, G̃).

We also introduce the rescaled quantity

m̃φ := φ1/2mφ−1 = φ−1/2

(
mφ +

1− φ
z

)
. (5.1)

The motivation behind this definition is that

|m̃φ| � 1 (5.2)

for z ∈ S, as can be easily seen using (3.5). (Recall that φ > 1 by assumption.) The
following result is an immediate corollary of Theorem 4.1. Recall the definition of Ψ

from (3.15).

Lemma 5.1. In S we have ∣∣G̃ij − δijm̃φ

∣∣ ≺ φ−1/2Ψ , (5.3)

|Rµν − δµνmφ| ≺ Ψ . (5.4)

Lemma 5.2. Fix ` ∈ N. Then we have, uniformly in S and for |T | 6 ` and i, j /∈ T ,∣∣G̃(T )
ij − δijm̃φ

∣∣ ≺ φ−1/2Ψ (5.5)

as well as ∣∣G̃(T )
ii

∣∣ ≺ 1 ,

∣∣∣∣ 1

G̃
(T )
ii

∣∣∣∣ ≺ 1 .

Proof. From (5.3) and (5.2) we easily find∣∣G̃ij − δijm̃φ

∣∣ ≺ φ−1/2Ψ ,
∣∣G̃ii∣∣ ≺ 1 ,

∣∣1/G̃ii∣∣ ≺ 1 .

The statement for general T satisfying |T | 6 ` then follows easily by induction on the
size of T , using the identity (3.7) and the fact that φ−1/2Ψ 6 1.

5.2 Reduction to off-diagonal entries

By linearity and polarization, in order to prove (3.16) it suffices to prove that∣∣〈v , Gv〉 − φ−1/2m̃φ

∣∣ ≺ φ−1Ψ

for deterministic unit vectors v. All of our estimates will be trivially uniform in the unit
vector v and z ∈ S, and we shall not mention this uniformity any more. Thus, for the
following we fix a deterministic unit vector v ∈ CM .
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We write
〈v , Gv〉 − φ−1/2m̃φ =

∑
a

|va|2(Gaa − φ−1/2m̃φ) + Z ,

where we defined
Z :=

∑
a 6=b

vaGabvb = φ−1/2
∑
a 6=b

vaG̃abvb . (5.6)

By (4.2) we have ∣∣∣∣∑
a

|va|2(Gaa − φ−1/2m̃φ)

∣∣∣∣ ≺ φ−1Ψ .

Hence it suffices to prove that
|Z| ≺ φ−1Ψ . (5.7)

The rest of this section is devoted to the proof of (5.7).

5.3 Sketch of the proof

The basic reason why (5.7) holds is that Gab can be expanded, to leading order,
as a sum of independent random variables using the identity (3.9). To simplify the
presentation in this sketch, we set M = N , so that φ = 1 and the rescalings from
Section 5.1 indicated by a tilde are trivial. Hence we drop all tildes. From (3.9) we get∑

a 6=b

vaGabvb = z
∑
a6=b

GaaG
(a)
bb

∑
µ,ν

vaXaµR
(ab)
µν X∗νbvb . (5.8)

If we could replace the diagonal entries by the deterministic value mφ, it would suffice

to estimate the sum
∑
a6=b

∑
µ,ν vaXaµR

(ab)
µν X∗νbvb. By the independence of the entries of

X we have, using (3.3),∣∣∣∣∑
a6=b

∑
µν

vaXaµR
(ab)
µ,ν X

∗
νbvb

∣∣∣∣ ≺ (
1

N2

∑
a 6=b

∑
µ,ν

|va|2|vb|2
∣∣R(ab)

µν

∣∣2)1/2

=

(
1

N2η

∑
a6=b

|va|2|vb|2 Im TrR(ab)

)1/2

≺ Ψ ,

where we used the analogue of (3.14) for R, (4.1), (3.10), and the normalization of v.
Hence, if we could ignore the error arising from the approximation Gaa ≈ mφ, the proof
of Theorem 3.11 would be very simple.

The error made in the approximation Gaa ≈ mφ is of order Ψ by (5.3), so that the
corresponding error term on the right-hand side of (5.8) may be bounded using (3.3) by

O≺(Ψ)
∑
a6=b

|va||vb|
∣∣∣∣∑
µν

XaµR
(ab)
µν X∗νb

∣∣∣∣ ≺ Ψ2
∑
a6=b

|va||vb| 6 Ψ2‖v‖21 .

However, the vector v is normalized not in `1 but in `2. In general, all that can be said
about its `1-norm is ‖v‖1 6M1/2‖v‖2 = M1/2. This estimate is sharp if v is delocalized,
i.e. if the entries of v have size of order M−1/2. The `1- and `2-norms of v are of the
same order precisely when only a finite number of entries of v are nonzero, in which
case Theorem 3.11 is anyway a trivial consequence of Theorem 4.1.

We conclude that the simple replacement ofGaa with its deterministic approximation
in (5.8) is not affordable. Not only the leading term but also every error term has to be
expanded in the entries of X. This expansion is most effectively controlled if performed
within a high-moment estimate. Thus, for large and even p we shall estimate

E

∣∣∣∣∑
a 6=b

vaGabvb

∣∣∣∣p = E
∑
a1 6=b1

. . .
∑
ap 6=bp

p∏
i=1

vaiGaibivbi . (5.9)
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(To simplify notation we drop the unimportant complex conjugations on p/2 factors.)
We shall show that the expectation forces many indices of the leading-order terms to
coincide, at least in pairs, so that eventually every va appears at least to the second
power, which consistently leads to estimates in terms of the `2-norm of v. Any index
that remains single gives rise to a small factor M−1/2 which counteracts the large factor
‖v‖1 6 M1/2. The trivial bound (arising from estimating each entry |va| by 1 and the
summation over a and b by M2) is affordable only at a very high order, when the number
of factors Ψ 6 N−ω/2 that have been generated is sufficient to compensate the loss from
the trivial bound. This idea will be used to stop the expansion after a sufficiently large,
but finite, number of steps.

Before explaining the general strategy, we sketch a second moment calculation.
First, we write

E

∣∣∣∣∑
a 6=b

vaGabvb

∣∣∣∣2 = E
∑
a6=b

∑
c 6=d

vaGabvb vcG
∗
cdvd . (5.10)

Using (3.7), we maximally expand all resolvent entries in the indices a, b, c, d. This
means that we use (3.7) repeatedly until each term in the expansion is independent of
all Latin indices that do not explicitly appear among its lower indices; here an entry is
independent of an index if that index is an upper index of the entry. This generates a se-
ries of maximally expanded terms, whereby a resolvent entry is by definition maximally
expanded if we cannot add to it upper indices from the set a, b, c, d by using the identity
(3.7). In other words, G(T )

ij is maximally expanded if and only if T = {a, b, c, d} \ {i, j}.
To illustrate this procedure, we assume temporarily that a, b, c, d are all distinct, and

write, using (3.7),

Gab = G
(c)
ab +

GacGcb
Gcc

= G
(cd)
ab +

GacGcb
Gcc

+
G

(c)
adG

(c)
db

G
(c)
dd

. (5.11)

Here the first term is maximally expanded, but the second and third are not; we there-
fore continue to expand them in a similar fashion by applying (3.7) to each resolvent
entry. In general, this procedure does not terminate, but it does generate finitely many
maximally expanded terms with no more than a fixed number, say `, of off-diagonal re-
solvent entries, in addition to finitely many terms that are not maximally expanded but
contain more than ` off-diagonal entries. By choosing ` large enough, these latter terms
may be estimated trivially. We therefore focus on the maximally expanded terms, and
we write

Gab = G
(cd)
ab +

G
(bd)
ac G

(ad)
cb

G
(abd)
cc

+
G

(bc)
ad G

(ac)
db

G
(abc)
dd

+ . . . .

We get a similar expression for G∗cd. We plug both of these expansions into (5.10) and
multiply out the product. The leading term is

E
∑
a6=b

∑
c6=d

vaG
(cd)
ab vb vcG

∗(ab)
cd vd .

We now expand both resolvent entries using (3.9), which gives

E
∑
a6=b

∑
c6=d

vaG
(cd)
ab vb vcG

∗(ab)
cd vd

=
∑
a 6=b

∑
c6=d

∑
µ,ν,α,β

vavbvcvdE
(
G(cd)
aa G

(acd)
bb XaµR

(abcd)
µν X∗νbG

∗(ab)
cc G

∗(abc)
dd XcαR

∗(abcd)
αβ X∗βd

)
The goal is to use the expectation to get a pairing (or a more general partition) of the
entries of X. In order to do that, we shall require all terms that are not entries of
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X to be independent of the randomness in the rows a, b, c, d of X. While the entries
of R satisfy this condition, the entries of G do not. We shall hence have to perform a
further expansion on them using the identities (3.7) and (3.9). In fact, these two types of
expansions will have to be performed in tandem, using a two-step recursive procedure.
The main reason behind this is that even if all entries of G are maximally expanded,
each application of (3.9) produces a diagonal entry that is not maximally expanded;
for such terms the expansion using (3.7) has to be repeated. For the purposes of this
sketch, however, we omit the details of the further expansion of the entries of G, and
replace them with their deterministic leading order, mφ (see (5.3)). This approximation
gives

E
∑
a6=b

∑
c6=d

vaG
(cd)
ab vb vcG

∗(ab)
cd vd

≈ |mφ|4
∑

a6=b,c 6=d

vavbvcvd
∑

µ,ν,α,β

E
(
XaµR

(abcd)
µν X∗νbXcαR

∗(abcd)
αβ X∗βd

)
. (5.12)

Since all entries of R are independent of all entries of X, we can compute the expecta-
tion with respect to the rows a, b, c, d. Note that the only possible pairing is a = d, µ = β,
b = c, and ν = α. This results in the expression

|mφ|4

N2

∑
a6=b

|va|2|vb|2E
∑
µν

∣∣R(abcd)
µν

∣∣2 ≈ 1

Nη

∑
a6=b

|va|2|vb|2
1

N
ETr ImR(abcd) ≈ Immφ

Nη
∼ Ψ2 ,

where we used that v is `2-normalized.

This calculation, while giving the right order, was in fact an oversimplification, since
the expansion (5.11) required that b 6= c and d 6= a. The correct argument requires first
a decomposition of the summation over a, b, c, d into a finite number of terms, indexed by
the partitions of four elements, according to the coincidences among these four indices.
Thus, we write

∑
a6=b,c 6=d

=

∗∑
a,b,c,d

+

∗∑
a=c,b,d

+

∗∑
a=d,b,c

+

∗∑
b=c,a,d

+

∗∑
b=d,a,c

+

∗∑
a=c,b=d

+

∗∑
a=d,b=c

, (5.13)

where a star over the summation indicates that all summation indices that are not
explicitly equal to each other have to be distinct. The above calculation leading to
(5.12) is valid for the first summation of (5.13), whose contribution (up to leading order)
is zero, since the only possible pairing contradicts the condition that the indices a, b, c, d
be all distinct. It is not too hard to see that, among the sums in (5.13), only the last one
gives a nonzero contribution (up to leading order), and it is, going back to (5.10), equal
to

E
∑
a 6=b

|va|2|vb|2|Gab|2 ≺ Ψ2 ;

here we used the bound (5.3). Notice that taking the expectation forced us to chose the
pairing a = d, b = c to get a non-zero term. This example provides a glimpse into the
mechanism that guarantees that the `2-norm of v appears.

Next, we consider a subleading term from the first summation in (5.13), which has
three off-diagonal entries:

∗∑
a,b,c,d

vavbvcvd
G

(bd)
ac G

(ad)
cb

G
(abd)
cc

G
∗(ab)
cd .
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We proceed as before, expanding all off-diagonal entries of G using (3.9). Up to leading
order, we get

∗∑
a,b,c,d

vavbvcvd
∑

µ,ν,α,β,γ,δ

E
[(
XaµR

(abcd)
µν X∗νc

)(
XcαR

(abcd)
αβ X∗βb

)(
XcγR

∗(abcd)
γδ X∗δd

)]
The expectation again renders this term zero if a, b, c, d are distinct.

Based on these preliminary heuristics, we outline the main steps in estimating a
high moment of Z.

Step 1. Partition the indices in (5.9) according to their coincidence structure: indices
in the same block of the partition are required to coincide and indices in different
blocks are required to be distinct. This leads to a reduced family, T , of distinct
indices.

Step 2. Make all entries of G maximally expanded by repeatedly applying the identity
(3.7). Roughly, this entails adding upper indices from the family T to each entry
of G using the identity (3.7). We stop the iteration if either (3.7) cannot be applied
to any entry of G or we have generated a sufficiently large number of off-diagonal
entries of G.

Step 3. Apply (3.9) to each maximally expanded off-diagonal entry of G. This yields
factors of the form

∑
µ,ν XaµR

(T )
µν X∗νb with a, b ∈ T and R(T ) is independent of all

entries of X by construction. In addition, this application of (3.9) produces new
diagonal entries of G that are not maximally expanded.

Step 4. Repeat Steps 2 and 3 recursively in tandem until we only have a sum of terms
whose factors consist of maximally expanded diagonal entries ofG, entries ofR(T ),
and entries of X from the rows indexed by T .

Step 5. Apply (3.8) to each maximally expanded diagonal entry of G. We end up with
factors consisting only of entries of R(T ) and entries of X from the rows indexed
by T .

Step 6. Using the fact that all entries of R are independent of all entries of X, take a
partial expectation over the rows of X indexed by the set T ; this only involves the
entries of X. Only those terms give a nonzero contribution whose Greek indices
have substantial coincidences.

Step 7. For entropy reasons, the leading-order term arises from the smallest number
of constraints among the summation vertices that still results in a nonzero contri-
bution. This corresponds to a pairing both among the Greek and the Latin indices.
This naturally leads to estimates in terms to the `2-norm of v.

Step 8. Observe that if a Latin index i remained single in the partitioning of Step 1 (so
that the corresponding weight factor will involve the `1-norm

∑
i|vi|) then, by a

simple parity argument, the number of appearances of the index i will remain odd
along the expansion of Steps 2–5. This forces us to take at least a third (but in
fact at least a fifth) moment of some entry Xiµ, which reduces the combinatorics
of the summations compared with the fully paired situation from Step 7. This
combinatorial gain offsets the factor M1/2 lost in taking the `1-norm of v.

Steps 1–6 require a careful expansion algorithm and a meticulous bookkeeping of
the resulting terms. We shall develop a graphical language that encodes the resulting
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monomials. Expansion steps will be recorded via operations on graphs such as merging
certain vertices or replacing some vertex or edge by a small subgraph. Several ingre-
dients of the graphical representation and the concept of graph operations are inspired
by tools from [6] developed for random band matrices. Once the appropriate graphical
language is in place and the expansion algorithm has been constructed, the observa-
tions in Steps 7 and 8 will yield the desired estimate by a power counting coupled with
a parity argument.

5.4 The p-th moment of Z and introduction of graphs

We shall estimate Z with high probability by estimating its p-th moment for a large
but fixed p. It is convenient to rename the summation variables in the definition of Z as
(a, b) = (b1, b2). Let p be an even integer and write

E|Z|p = φ−p/2E
∑

b11 6=b12

· · ·
∑

bp1 6=bp2

(
p/2∏
k=1

vbk1
G̃bk1bk2

vbk2

)(
p∏

k=p/2+1

vbk1
G̃∗bk1bk2

vbk2

)
,

(5.14)
where we recall the definition of Z from (5.6).

We begin by partitioning the summation according to the coincidences among the
indices b = (bkr : 1 6 k 6 p , r = 1, 2). Denote by P(b) the partition of {1, . . . , p} × {1, 2}
defined by the equivalence relation (k, r) ∼ (l, s) if and only if bkr = bls. We define Pp as
the set of partitions P of {1, . . . , p} × {1, 2} such that, for all k = 1, . . . , p, the elements
(k, 1) and (k, 2) are not in the same block of P . Hence we may rewrite (5.14) as

E|Z|p = φ−p/2E
∑
P∈Pp

∑
b

1(P(b) = P )

(
p/2∏
k=1

vbk1
G̃bk1bk2

vbk2

)(
p∏

k=p/2+1

vbk1
G̃∗bk1bk2

vbk2

)
.

(5.15)
We shall perform the summation by first fixing the partition P ∈ Pp and by deriving an
upper bound that is uniform in P ; at the very end we shall sum trivially over P ∈ Pp.

In order to handle expressions of the form (5.15), as well as more complicated ones
required in later stages of the proof, we shall need to develop a graphical notation. The
basic idea is to associate matrix indices with vertices and resolvent entries with edges.
The following definition introduces graphs suitable for our purposes.

Definition 5.3 (Graphs). By a graph we mean a finite, directed, edge-coloured, multi-
graph

Γ =
(
V (Γ), E(Γ), ξ(Γ)

)
≡ (V,E, ξ) .

Here V is a finite set of vertices, E a finite set of directed edges, and ξ is a “colouring of
E”, i.e. a mapping from E to some finite set of colours. The graph Γ may have multiple
edges and loops. More precisely, E is some finite set with maps α, β : E → V ; here
α(e) and β(e) represent the source and target vertices of the edge e ∈ E. We denote by
degΓ(i) the degree of the vertex i ∈ V (Γ).

We may now express the right-hand side of (5.15) using graphs. Fix the partition
P ∈ Pp. We associate a graph ∆ ≡ ∆(P ) with P as follows. The vertex set V (∆) is given
by the blocks of P , i.e. V (∆) = P . The set of colours, i.e. the range of ξ, is {G,G∗} (we
emphasize that these two colours are simply formal symbols whose name is supposed to
evoke their meaning). The set of edges E(∆) is parametrized as follows by the resolvent
entries on the right-hand side of (5.15). Each resolvent entry G#

bk1bk2
gives rise to an

edge e ∈ E(∆) with colour ξ(e) = G if # is nothing and ξ(e) = G∗ if # is ∗. The
source vertex α(e) of this edge is the unique block of P satisfying (k, 1) ∈ α(e), and its
target vertex β(e) the unique block of P satisfying (k, 2) ∈ β(e). Figure 1 illustrates
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the construction of ∆(P ), where the two different types of line correspond to the two
colours G,G∗. The graph ∆ has no loops.

a(C1) b(C1)

b(C2) a(C2)

C1

C2

Figure 1: The construction of ∆. Here we took p = 6. On the left we give a graphical
representation of the right-hand side of (5.15); the vertices (k, r) are labelled by k =

1, . . . , 6 and r = 1, 2; each edge is associated with an entry of G̃ (drawn with a solid
line) or G̃∗ (drawn with a dashed line); the partition P is drawn using grey regions
representing the blocks of P . On the right we draw ∆(P ), with |V (∆)| = |P | = 7

vertices. The partition depicted here corresponds to the index coincidences b11 = b21,
b12 = b22, b31 = b42, b32 = b41 = b52; apart from these constraints, all indices are distinct
in the summation over b in (5.15). The index associated with block i ∈ V (∆) is denoted
by ai, so that ai = bkr for any (k, r) in the block i of the partition P .

Using the graph ∆ ≡ ∆(P ) we may rewrite the right-hand side of (5.15). Each vertex
i ∈ V (∆), associated with a block of P , is assigned a summation index ai ∈ {1, 2, . . . ,M},
and we write a = (ai)i∈V (∆). The indicator function on the right-hand side of (5.15)
translates to the condition that ai 6= aj for i 6= j (where i, j ∈ V (∆)). We use the notation∑∗ to denote summation subject to this condition (distinct summation indices). Thus
we may rewrite (5.15) as

E|Z|p = φ−p/2
∑
P∈Pp

Y (∆(P )) , (5.16)

where we defined

Y (∆) :=

∗∑
a

wa(∆)EAa(∆) (5.17)

using the abbreviations

wa(∆) :=
∏

e∈E(∆)

vaα(e)
vaβ(e)

, Aa(∆) :=
∏

e:ξ(e)=G

G̃aα(e)aβ(e)

∏
e:ξ(e)=G∗

G̃∗aα(e)aβ(e)
.

(5.18)
The function wa(∆) has the interpretation of a deterministic (complex) weight for the
summation over a; it satisfies the basic estimate

|wa(∆)| 6
∏

i∈V (∆)

|vai |deg∆(i) . (5.19)

We record the following basic properties of ∆.

• |E(∆)| = p.

• ∆ has no loops, i.e. α(e) 6= β(e) for all e ∈ E(∆).

• 1 6 |V (∆)| 6 2p.

Our first goal is to use the expansion formulas (3.7)–(3.9) to express Aa(∆) as a sum
of monomials involving only entries of X and R, so that no entries of G remain. The
entries of R and X will be independent by construction, which will make the evaluation
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of the expectation possible. The result will be given in Proposition 5.10 below, which
expresses Y (∆) as a sum of terms associated with graphs, which are themselves con-
veniently indexed using a finite binary tree, denoted by T . To bookkeep this expansion,
we shall need a more general class of graphs than ∆.

5.5 Generalized colours and encoding

For the following we fix p ∈ 2N and a partition P ∈ Pp, and set ∆ = ∆(P ). We shall
develop an expansion scheme for monomials of type Aa(∆). A fundamental notion in
our expansion is that of maximally expanded entries of G̃, given in Definition 5.4 below.

We shall need to enlarge the set of colours of edges, so as to be able to encode
entries of not only G̃ and G̃∗, but also entries of R, R∗, X, and X∗; in addition, we
shall need to encode diagonal entries of G̃ and G̃∗ that are in the denominator, as in the
formulas (3.7), as well as to keep track of upper indices. We need all of these factors,
since our expansion relies on a repeated application of the identities (3.7), (3.8), and
(3.9).

In order to define the graphs precisely, we consider graphs Γ satisfying Definition
5.3 whose vertex set V (Γ) = Vb(Γ) ∪ Vw(Γ) is partitioned into black vertices Vb(Γ) and
white vertices Vw(Γ). Informally, black vertices are incident to edges encoding entries
of G̃ and G̃∗, and white vertices to edges encoding entries of R̃ and R̃∗. In other words,
black vertices are associated with Latin summation indices in the population space
{1, . . . ,M}; white vertices are associated with Greek summation indices in the sample
space {1, . . . , N}. See Remark 3.4. We shall only consider graphs Γ satisfying

Vb(Γ) = V (∆) , (5.20)

an assumption we make throughout the following. This means that only new Greek sum-
mation indices but no new Latin indices are generated, corresponding to the repeated
applications of (3.8) and (3.9). In particular, the vertex colouring for our graph is very
simple: the vertices of ∆ are black and all other vertices are white.

As our set of colours we choose{
ξ = (ξ1, ξ2, ξ3) : ξ1 ∈ {G,G∗, R,R∗, X,X∗} , ξ2 ∈ {+,−} , ξ3 ⊂ Vb(Γ)

}
. (5.21)

Note that these colours are to be interpreted merely as list of formal symbols; the
choice of their names is supposed to evoke their meaning. The component ξ1 deter-
mines whether the edge encodes an entry of G̃ (corresponding to ξ1 = G), of G̃∗ (corre-
sponding to ξ1 = G∗), of R (corresponding to ξ1 = R), of R∗ (corresponding to ξ1 = R∗),
of X (corresponding to ξ1 = X), or of X∗ (corresponding to ξ1 = X∗). The component
ξ2 determines whether the entry is in the numerator (corresponding to ξ2 = +) or in the
denominator (corresponding to ξ2 = −). Finally, the component ξ3 is used to keep track
of the upper indices of entries of G̃ and G̃∗, which we shall set to be aξ3 := {ai : i ∈ ξ3}.
The entries of R and R∗ also have upper indices, but they always carry the maximal set
ab of upper indices, i.e. they always appear in the form R(ab) and R∗(ab). Hence, upper
indices need not be tracked for the entries of R and R∗, and for them we set ξ3(e) = ∅.
Let Γ be a graph with colour set (5.21).

We now list some properties of all graphs we shall consider. To that end, we call
e ∈ E(Γ) a G-edge if ξ1(e) ∈ {G,G∗}, an R-edge if ξ1(e) ∈ {R,R∗}, and an X-edge if
ξ1(e) ∈ {X,X∗}.

1. If e is a G-edge then α(e), β(e) ∈ Vb(Γ).

2. If e is an R-edge then α(e), β(e) ∈ Vw(Γ).

3. If ξ1(e) = X then α(e) ∈ Vb(Γ) and β(e) ∈ Vw(Γ).
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4. If ξ1(e) = X∗ then α(e) ∈ Vw(Γ) and β(e) ∈ Vb(Γ).

5. If ξ2(e) = − then ξ1(e) ∈ {G,G∗} and α(e) = β(e).

6. If ξ3(e) 6= ∅ then ξ1(e) ∈ {G,G∗} and ξ3(e) ⊂ Vb(Γ) \ {α(e), β(e)}.

Properties (i)–(iv) are straightforward compatibility conditions which are obvious in
light of the type of matrix entry that the edge e encodes. Property (v) states that only
diagonal entries of G̃ and G̃∗ may be in the denominator. Property (vi) states that only
entries of G or G̃ may have a (nontrivial) upper index and the lower indices of an entry
of G̃ or G̃∗ may not coincide with its upper indices (by definition of minors).

In order to give a precise definition of the monomial encoded by a coloured edge,
and hence of a graph Γ, it is convenient to split the vertex indices as a = (ai)i∈V (Γ) =

(ab,aw), where

ab := (ai)i∈Vb(Γ) ∈ {1, . . . ,M}|Vb(Γ)| , aw := (ai)i∈Vw(Γ) ∈ {1, . . . , N}|Vw(Γ)| .

Under the former convention, indices assigned to black vertices (elements of {1, . . . , N})
were Latin letters, while indices assigned to white vertices (elements of {1, . . . ,M})
were Greek letters. In the above expression, all indices assigned to vertices of V (Γ)

(the indices of a) are also denoted by Latin letters i. This notation is independent of
the previous convention: we simply do not have a third alphabet available. We always
assume that the indices ab are distinct; we impose no constraints on the indices aw. For
the following definitions we fix a collection of vertex indices a. At the end of the proof,
we shall sum over ab under the constraint that the indices of ab be distinct.

For e ∈ E(Γ) with ξ1(e) ∈ {G,G∗} we define the resolvent entry encoded by e in Γ as

Aa(e,Γ) :=


G̃

(aξ3(e))
aα(e)aβ(e)

if ξ1(e) = G and ξ2(e) = +

G̃
∗(aξ3(e))
aα(e)aβ(e)

if ξ1(e) = G∗ and ξ2(e) = +

1/G̃
(aξ3(e))
aα(e)aβ(e)

if ξ1(e) = G and ξ2(e) = −
1/G̃

∗(aξ3(e))
aα(e)aβ(e)

if ξ1(e) = G∗ and ξ2(e) = − .

(5.22)

When drawing graphs, we represent a black vertex as a black dot and a white vertex
as a white dot. An edge with ξ1 = G is represented as a solid directed line joining
two black dots, and an edge with ξ1 = G∗ as a dashed directed line joining two black
dots. If ξ2 = − we indicate this by decorating the edge with a white diamond (not to
be confused with a white dot). Notice that such edges are always loops, according to
property (v). Sometimes we also indicate the component ξ3(e) in our graphs, simply by
writing it next to the edge e. See Figure 2 for our graphical conventions when depicting
edges with ξ1 ∈ {G,G∗}.

For the other edges, e ∈ E(Γ) with ξ1(e) ∈ {R,R∗, X,X∗}, we set

Aa(e,Γ) :=


R

(ab)
aα(e)aβ(e)

if ξ1(e) = R

R
∗(ab)
aα(e)aβ(e)

if ξ1(e) = R∗

Xaα(e)aβ(e)
if ξ1(e) = X

X∗aα(e)aβ(e)
if ξ1(e) = X∗ .

When drawing graphs, we represent an edge with ξ1 = R as a solid directed line joining
two white vertices, an edge with ξ1 = R∗ as a dashed directed line joining two white
vertices, an edge with ξ1 = X as a dotted directed line from a black to a white vertex,
and an edge with ξ1 = X∗ as a dotted directed line from a white to a black vertex. Note
that we use the same line style to draw X- and X∗-edges, since the orientation of the
edge together with the vertex colouring distinguishes them uniquely. See Figure 3 for
an illustration of these conventions, and Figure 6 for an illustration of (5.28).
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G̃aiaj

G̃aiai
1

G̃aiai

i j

i i

G̃∗aiaj
i j

G̃
(k)
aiaj

i j

(k)

Figure 2: The graphical conventions for off-diagonal and diagonal edges. Here we
draw the case ξ1 = G (solid lines encoding entries of G̃); if ξ1 = G∗ (encoding entries
of G̃∗) we use dashed lines, but the pictures are otherwise identical. The case ξ2 =

+ (encoding resolvent entries in the numerator) is drawn without any decorations; if
ξ2 = − (encoding resolvent entries in the denominator) we indicate this with with a
white diamond attached to the edge. Note that, since ξ2 = − only for diagonal entries
(encoded by loops), the orientation of the edge is immaterial and the arrow therefore
superfluous.

R
(ab)
aiaj R

∗(ab)
aiaj

Xaiaj X∗aiaj

i j

i j

i j

i j

Figure 3: The graphical conventions for entries of R(ab) (corresponding to ξ1 = R),
R∗(ab) (corresponding to ξ1 = R∗), X (corresponding to ξ1 = X), and X∗ (corresponding
to ξ1 = X∗).

Having defined Aa(e,Γ) for an arbitrary graph Γ with colour set (5.21) and e ∈ E(Γ),
we define the monomial encoded by Γ,

Aa(Γ) :=
∏

e∈E(Γ)

Aa(e,Γ) . (5.23)

Note that (5.23) extends (5.18). At this point we introduce a convention that will simplify
notation throughout the proof. We allow the monomial Aa(Γ) to be multiplied by a
deterministic function of z that is bounded, i.e. in general we replace (5.23) with

Aa(Γ) := u(Γ)
∏

e∈E(Γ)

Aa(e,Γ) , (5.24)

where u(Γ) is some deterministic function of z satisfying |u(Γ, z)| 6 CΓ for z ∈ S. This
will allow us to forget signs and various factors of z̃ and mφ that are generated along the
expansion. The functions u(Γ) could be easily tracked throughout the proof, but all that
we need to know about them is that they satisfy the conditions listed after (5.24). Not
tracking the precise form of these prefactors is sufficient for our purposes, since after
completing the graphical expansion we shall estimate each graph individually, without
making use of further cancellations among different graphs.

5.6 R-groups

We define an R-group to be an induced subgraph of Γ consisting of three edges,
e1, e2, e3, such that e1 and e3 are X-edges and e2 is an R-edge, and they form a chain
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in the sense that β(e1) = α(e2), β(e2) = α(e3), and both of these vertices have degree
two. We call e2 the centre of the R-group and define A(e2) := α(e1) and B(e2) := β(e3).
If A(e2) = B(e2) we call the R-group diagonal ; otherwise we call it off-diagonal. See
Figure 4 for an illustration. We require that our graphs Γ satisfy the following property.

α(e) e β(e)

A(e) B(e)A(e) = B(e)

α(e) e β(e)

Figure 4: A diagonal R-group (left) and an off-diagonal R-group (right). We label the
centre of the group by e.

(vii) Each X-edge and R-edge of Γ belongs to some R-group of Γ. In particular, all
white vertices have degree two, and an R-group is uniquely determined by its
centre.

The R-groups constitute graphical representations of the monomials on the right-hand
sides of (3.8) and (3.9). It is important to stress that there is no restriction on possible
coincidences among the white-vertex indices (ai)i∈Vw ; this means that even if two Greek
summation indices arising from two different applications (3.8) or (3.9) coincide, they
will nevertheless be encoded by distinct white vertices. This allows us to keep the
graphical structure involving R and X edges very simple.

Note that the initial graph ∆ = ∆(P ) trivially satisfies the properties (i)–(vii).

5.7 Maximally expanded edges and sketch of the expansion

The following definition introduces a notion that underlies our entire expansion.
Note that it only applies to G-edges.

Definition 5.4. TheG-edge e ∈ E(Γ) is maximally expanded if ξ3(e) = Vb(Γ)\{α(e), β(e)}.
If e is maximally expanded then we also call the entry encoded by it, Aa(e,Γ), maximally
expanded.

For instance, if e encodes an entry of the form G̃
(T )
aiaj then this entry is maximally

expanded if and only if T = ab \ {ai, aj}. The idea behind this definition is that a
maximally expanded entry has as many upper indices from the set ab as possible.

We conclude this section with an outline of the expansion algorithm that will ulti-
mately yield a family of graphs, whose contributions can be explicitly estimated and
whose encoded monomials sum up to the monomial encoded by ∆ = ∆(P ) from Sec-
tion 5.4. The goal of the expansion is to get rid of all G-edges, by replacing them
with R-groups. Of course, this replacement has to be done in such a manner that the
original monomial Aa(∆) can be expressed as a sum of the monomials encoded by the
new graphs. Having done the expansion, we shall be able to exploit the fact that the
R-entries and the X-entries are independent. This independence originates from the
upper indices i and j in the entries of R in (3.8) and (3.9). It allows us to take the
expectation in the X-variables. Combined with sufficient information about the graphs
generated by the expansion, this yields a reduction in the summation that is sufficient
to complete the proof.

The expansion relies of three main operations:

(a) make one of the G-entries maximally expanded by adding upper indices using the
identity (3.7);
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(b) expand all off-diagonal maximally expanded G-entries of in terms of X using the
identity (3.9);

(c) expand all diagonal maximally expanded G-entries in terms of X using (3.8).

We shall implement each ingredient by a graph surgery procedure. Operation (a) is the
subject of Section 5.8; it creates two new graphs, τ0(Γ) and τ1(Γ), from an initial graph
Γ. Operation (b) is the subject of Section 5.9; it creates one new graph, ρ(Γ), from an
initial graph Γ. As it turns out, Operations (a) and (b) have to be performed in tandem
using a coupled recursion, described by a tree T , which is the subject of Section 5.10.
Once this recursion has terminated, Operation (c) may be performed (see Section 5.11).

5.8 Operation (a): construction of the graphs τ0(Γ) and τ1(Γ)

In order to avoid trivial ambiguities, we choose and fix an arbitrary ordering of the
vertices V (∆) and of the family of resolvent entries (G̃

(T )
ab : a, b /∈ T ). Hence we may

speak of the first vertex of V (∆) and the first factor of a monomial in the entries G̃(T )
ab .

We now describe Operation (a) of the expansion. It relies on the identities

G̃
(T )
ab = G̃

(Tc)
ab +

G̃
(T )
ac G̃

(T )
cb

G̃
(T )
cc

,
1

G̃
(T )
aa

=
1

G̃
(Tc)
aa

− G̃
(T )
ac G̃

(T )
ca

G̃
(T )
aa G̃

(Tc)
aa G̃

(T )
cc

, (5.25)

which follow immediately from (3.7); here a, b, c ∈ ab\T and a, b 6= c. The same identities
hold for G̃∗. The basic idea is to take some graph Γ with at least one G-entry that is
not maximally expanded, to pick the first such G-entry, and to apply the first identity
of (5.25) if this entry is in the numerator and the second identity if this entry is in the
denominator. By Definition 5.4, if the G-entry is not maximally expanded, there is a
c ∈ ab such that (5.25) may be applied. The right-hand sides of (5.25) consist of two
terms: the first one has one additional upper index, and the second one at least one
additional off-diagonal G-entry. These two terms can be described by two new graphs,
derived from Γ, denoted by τ0(Γ) and τ1(Γ). The graph τ0(Γ) is almost identical to Γ,

except that the edge corresponding to the selected entry G̃
(T )
ab receives an additional

upper index c, so that the upper indices of the chosen entry are changed as T → (Tc).

The graph τ1(Γ) also differs from Γ only locally: the single edge of G̃(T )
ab is replaced by

two edges and loop with a diamond.

We now give the precise definition of Operation (a). Take a graph Γ that has a G-
edge that is not maximally expanded. We shall define two new graphs, τ0(Γ) and τ1(Γ)

as follows. Let e be the first1 G-edge of Γ that is not maximally expanded, and let i be
the first vertex of Vb(Γ) \

(
ξ3(e) ∪ {α(e), β(e)}

)
; note that by assumption on Γ and e this

set of vertices is not empty. We now apply (5.25) to the entry Aa(e,Γ). We set a = aα(e),
b = aβ(e), c = ai, and T = aξ3(e) in (5.25), and express Aa(e,Γ) as a sum of two terms
given by the right-hand sides of (5.25); we use the first identity of (5.25) if ξ2(e) = +

and the second if ξ2(e) = −. This results in a splitting of the whole monomial into a sum
of two monomials,

Aa(Γ) = A0,a(Γ) +A1,a(Γ) ,

in self-explanatory notation. By definition, τ0(Γ) is the graph that encodes A0,a(Γ) and
τ1(Γ) the graph that encodes A1,a(Γ). Hence, by definition, we have

Aa(Γ) = Aa(τ0(Γ)) +Aa(τ1(Γ)) . (5.26)

1Recall that we fixed an arbitrary ordering of the resolvent entries of G, which induces an ordering on the
edges of Γ via the map e 7→ Aa(e,Γ).
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Moreover, it follows immediately that the maps τ0 and τ1 do not change the vertices, so
that we have

Vb(τ0(Γ)) = Vb(τ1(Γ)) = Vb(Γ) , Vw(τ0(Γ)) = Vw(τ1(Γ)) = Vw(Γ) . (5.27)

The procedure Γ 7→ (τ0(Γ), τ1(Γ)) may also be explicitly described on the level graphs
alone, but we shall neither need nor do this. Instead, we give a graphical depiction of
this process in Figure 5.

i

α(e) β(e)

i i

α(e) β(e) α(e) β(e)

(i)

α(e)

i

α(e)

i

α(e)

i

(ik)

α(e)

i

α(e)

i

α(e)

i

(i)
(i)

(k)

(k) (k)

(k)

Figure 5: A graphical depiction of the splitting Γ 7→ (τ0(Γ), τ1(Γ)) arising from (5.25).
We only draw the edge e and the vertices α(e), β(e), and i. All other edges of Γ are left
unchanged by the operation, and are not drawn. The set ξ3 is indicated in parentheses
next to each edge, provided it is not empty. The first graph depicts the operation for the
case α(e) 6= β(e) (encoding an off-diagonal entry), the second for the case α(e) = β(e)

and ξ2(e) = + (encoding a diagonal entry in the numerator), and the third for the
case α(e) = β(e) and ξ2(e) = − (encoding a diagonal entry in the denominator). The
first graph on the right-hand side in each identity encodes τ0(Γ) and the second τ1(Γ).
Recall that the graphs do not track irrelevant signs according to the convention made
around (5.24).

The following result is trivial.

Lemma 5.5. If Γ satisfies the properties (i)–(vii) from Sections 5.5 and 5.6 then so do
τ0(Γ) and τ1(Γ).

5.9 Operation (b): construction of the graph ρ(Γ)

In this section we give the second operation, (b), outlined in Section 5.7. The idea is
that Operation (a) from Section 5.5 generates off-diagonal G-entries that are maximally
expanded. They in turn will have to be expanded further using (3.9), so as to extract
their explicit X-dependence. Roughly, the map ρ replaces each maximally expanded
off-diagonal G-edge by an off-diagonal R-group.
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It will be convenient to have a shorthand for a maximally expanded entry of G̃. To
that end, we define, for a, b ∈ ab, the maximally expanded entry

Ĝab := G̃
(ab\{a,b})
ab .

Using (3.9) we may write, for a 6= b,

Ĝab = z̃G̃(ab\{a,b})
aa Ĝbb

∑
µ,ν

XaµR
(ab)
µν X∗νb

Ĝ∗ab = z̃∗G̃∗(ab\{a,b})aa Ĝ∗bb
∑
µ,ν

XaµR
∗(ab)
µν X∗νb , (5.28)

where z̃∗ denotes the complex conjugate of z̃. Note that the first diagonal term on the
right-hand side is not maximally expanded (while the second one is).

The identity (5.28) may also be formulated in terms of graphs. We denote by ρ(Γ)

the graph encoding the monomial obtained from Aa(Γ) by applying the identity (5.28)
to each maximally expanded off-diagonal G-entry of Γ. This replacement can be done in
any order. By definition of ρ(Γ), we have∑

aw

Aab,aw(Γ) =
∑
aw

Aab,aw(ρ(Γ)) . (5.29)

Note that both sides depend on ab. Each application of (5.28) adds two white vertices,
so that in general Vw(ρ(Γ)) ⊃ Vw(Γ). In particular, in (5.29) we slightly abuse notation
by using the symbol aw for different families on the left- and right-hand sides. The point
is that we always perform an unrestricted summation of the Greek indices associated
with the white vertices of the graph. However, the black vertices are left unchanged,
so that we have

Vb(ρ(Γ)) = Vb(Γ) . (5.30)

Like τ0 and τ1, the map ρ may be explicitly defined on the level of graphs, which we
shall however not do in order to avoid unnecessary and heavy notation. See Figure 6
for an illustration of ρ.

(Vb \ {i, j})
(Vb \ {i, j}) (Vb \ {j})

j

k l

i ji

Figure 6: A graphical depiction of the map ρ resulting from applications of (5.28). For
simplicity, we draw a graph with a single edge. The indices a, b, µ, ν of (5.28) are as-
sociated with the vertices i, j, k, l, so that we have a = ai, b = aj , µ = ak, and ν = al.
In the picture we abbreviated Vb = Vb(Γ). Note that Vb(·) remains unchanged under ρ
while Vw(·) is increased by the addition of two new white vertices, k, l. The prefactor z̃
is omitted from the graphical representation.

The following result is an immediate corollary of the definition of ρ.

Lemma 5.6. If Γ satisfies the properties (i)–(vii) from Sections 5.5 and 5.6 then so does
ρ(Γ).
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5.10 Constructing the tree T : recursion using (a) and (b)

We now apply Operations (a) and (b) alternately and recursively to the graph ∆ =

∆(P ). We start by applying Operation (a) to the graph ∆; the two new graphs thus pro-
duced may have newly created maximally expanded off-diagonal G-entries. We then ap-
ply ρ to these edges. Along the procedure we get new R-groups and additional diagonal
entries, some which may not be maximally expanded. We then repeat the cycle: apply
Operation (a) and then Operation (b). For some graphs the procedure stops because
all G-edges have become maximally expanded. For some other graphs, the algorithm
would continue indefinitely, since Operation (b) keeps on producing diagonal G-entries
that are not maximally expanded. We shall however show that in such graphs the num-
ber of off-diagonal G-edges and R-groups increases as the algorithm is run. Since both
of these objects are small, after the accumulation of a sufficiently large number of them
we can stop the recursion and estimate such terms brutally. In summary, the end result
will be a family of graphs encoding monomials in the entries of R(ab), R∗(ab), X,X∗ as
well as diagonal entries of Ĝ, Ĝ∗. In addition, by a brutal truncation in this procedure,
the algorithm yields terms that do not satisfy this property, but contain a large enough
number of off-diagonal G-edges and R-groups to be negligible.

The algorithm generates a family of graphs Θσ which are indexed by finite binary
strings σ, or, equivalently, by vertices of a rooted binary tree T = (V (T ), E(T )). We
start the algorithm with Θ∅ := ∆, corresponding to the empty string or the root of the
tree. The tree is constructed recursively according to

Θ0 := ρ(τ0(∆)) , Θ1 := ρ(τ1(∆)) , Θ00 := ρ(τ0(Θ0)) ,

Θ10 := ρ(τ1(Θ0)) , Θ01 := ρ(τ0(Θ1)) ,

and so on, until a stopping rule is satisfied (see Definition 5.7 below). See Figure 7 for
an illustration of the resulting tree.

Θ∅

Θ1Θ0

Θ10Θ00

Θ000 Θ100 Θ010 Θ110

Θ01 Θ11

Θ001 Θ101

Figure 7: The tree T whose vertices are binary strings σ. The root is the empty string
∅. Each vertex of σ ∈ V (T ) encodes a graph Θσ. The graph associated with the two
children of a vertex σ are obtained from Θσ using the maps τ0, τ1, and ρ. More precisely,
an arrow towards the left corresponds to the map ρ◦τ0 and an arrow towards the right to
the map ρ◦ τ1. In this example, the graph Θ11 satisfies the stopping rule from Definition
5.7, and is therefore a leaf of T .

We use the notation iσ, for i = 0, 1, to denote the binary string σ to which i has been
appended on the left. The children in T of the vertex σ ∈ V (T ) are 0σ and 1σ. The
precise construction of Θσ and the binary tree T is as follows. Let ` > 0 be a cutoff
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to be chosen later (see (5.39) below); it will be used as a threshold for the stopping
rule which ensures that the tree T is finite. Let d(Γ) denote the number of off-diagonal
G-edges plus the number of off-diagonal R-groups of Γ, i.e.

d(Γ) :=
∑

e∈E(Γ)

(
1(ξ1(e) ∈ {G,G∗})1

(
α(e) 6= β(e)

)
+ 1
(
ξ1(e) ∈ {R,R∗}

)
1
(
A(e) 6= B(e)

))
.

(5.31)
The construction of the tree T relies on the following stopping rule.

Definition 5.7 (Stopping rule). We say that a graph Γ satisfies the stopping rule if
d(Γ) > ` or if all G-edges of Γ are maximally expanded.

The tree T , along with the graphs (Θσ)σ∈V (T ), is constructed recursively from the
trivial tree, consistsing of the single vertex ∅ with Θ∅ = ∆, as follows. Let σ be a leaf of
the tree such that Θσ does not satisfy the stopping rule. We add the children of σ, i.e.
0σ and 1σ, to the tree, and set

Θ0σ := ρ(τ0(Θσ)) , Θ1σ := ρ(τ1(Θσ)) .

We continue this recursion on each leaf until all leaves satisfy the stopping rule from
Definition 5.7. By Lemma 5.9 below, the resulting tree T is finite, i.e. the recursion
terminates after a finite number of steps.

Lemma 5.8. The graphs Θσ have the following two properties. First,

Vb(Θ0σ) = Vb(Θ1σ) = Vb(Θσ) . (5.32)

In particular, the set of black vertices remains unchanged throughout the recursion:
Vb(Θσ) = Vb(∆). Second,∑

aw

Aab,aw(Θ0σ) +
∑
aw

Aab,aw(Θ1σ) =
∑
aw

Aab,aw(Θσ) . (5.33)

Note that both sides depend on ab, and we slightly abuse notation as explained after
(5.29).

Moreover, each Θσ for σ ∈ V (T ) satisfies the properties (i)–(vii) from Sections 5.5
and 5.6.

Proof. The identity (5.32) follows immediately from (5.27) and (5.30). Similarly, (5.33)
follows from (5.26) and (5.29). The final statement follows immediately from Lemmas
5.5 and 5.6.

The interpretation of (5.33) is that the value of any graph Θσ is equal to the sum of
the values of its two children, Θ0σ and Θ1σ.

The following estimate ensures that the tree T is finite, i.e. that the expansion proce-
dure does not produce and infinite sequence of graphs whose value d(·) remains below
` indefinitely.

Lemma 5.9. The tree T has depth at most 2p(p+6`) and consequently at most 22p(p+6`)

vertices.

Proof. Observe that τ0 and ρ leave the function d defined in (5.31) invariant: d(τ0(Γ)) =

d(Γ), d(ρ(Γ)) = d(Γ). Moreover, τ1 increases d by at least one (for a diagonal entry
the increase is two): d(τ1(Γ)) > d(Γ) + 1. We conclude that, by the stopping rule from
Definition 5.7, any string σ of the tree contains at most ` ones, i.e. that τ1 has been
applied at most ` times.
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Next, let f = f(Γ) denote the number ofG-edges minus the number ofR-edges in the
graph Γ. It follows immediately that f is left invariant by τ0 and ρ, and is increased by at
most 4 by τ1: f(τ0(Γ)) = f(ρ(Γ)) = f(Γ) and f(τ1(Γ)) 6 f(Γ)+4. Since in the initial graph
there is no R-edge, so that f(∆) = |E(∆)|, we conclude that f(Θσ) 6 |E(∆)|+4` = p+4`

for all σ ∈ V (T ). By Definition 5.7, the number of R-edges is bounded by `. (Note that
only off-diagonal R-groups have been created along the procedure, so that the number
of R-edges is the same as the number of off-diagonal R groups. Diagonal R-groups will
appear in later in Section 5.12). Hence we conclude that the number of G-edges of any
Θσ is bounded by p+ 5`.

In order to estimate the number of zeros in the string σ, we note that, since each G-
entry can have at most |V (∆)| 6 2p upper indices, the total number of upper indices in
all the G-entries of Aa(Θσ) is bounded by 2p(p+ 5`). We conclude by noting that τ1 and
ρ do not decrease the total number of upper indices in the G-entries, while τ0 increases
this number by one. Hence the total number of zeros in any string σ is bounded by
2p(p + 5`). Thus, the total length of σ is bounded by 2p(p + 5`) + ` 6 2p(p + 6`). This
concludes the proof.

Next, we express Y (∆) from (5.17) in terms of the graphs we just introduced. By
Lemma 5.8 and the fact that Vb(∆) = V (∆), we have for all σ ∈ V (T ) that

Vb(Θσ) = V (∆). (5.34)

Let L(T ) ⊂ V (T ) denote the leaves of T . The identity (5.33) states that if σ ∈ V (T )

is not a leaf of T , we may replace the value of Θσ by the sum of the values of its two
children. Starting from the root ∅ and the graph Θ∅ = ∆, we may propagate this identity
recursively from the root down to the leaves. We conclude that

Aab(∆) =
∑

σ∈L(T )

∑
aw

Aab,aw(Θσ) . (5.35)

Recalling the definition (5.17) of Y (∆), we get the following result.

Proposition 5.10. The quantity Y (∆) defined in (5.17) may be written in terms of the
tree T as

Y (∆) =
∑

σ∈L(T )

∗∑
ab

wab(∆)
∑
aw

EAab,aw(Θσ) . (5.36)

For the following we partition L(T ) = L0(T ) ∪ L1(T ) into the trivial leaves L0(T )

and the nontrivial leaves L1(T ). By definition, the trivial leaves of T are those σ ∈ V (T )

satisfying d(Θσ) > `. We shall estimate the contribution of the trivial leaves brutally
in Section 5.11 below, using the fact that they contain a large enough number of small
factors.

By Definition 5.7, if σ ∈ L1(T ) is a nontrivial leaf then all G-edges of Θσ are diagonal
and maximally expanded. The estimate of the nontrivial leaves will be performed in
Sections 5.12–5.14.

5.11 The trivial leaves

In this section we estimate the contribution of Θσ for a trivial leaf σ ∈ L0(T ). Thus,
fix σ ∈ L0(T ). From (5.28) and Lemma 5.2 we get for a 6= b∑

µ,ν

XaµR
(ab)
µν X∗νb ≺ φ−1/2Ψ ,

∑
µ,ν

XaµR
∗(ab)
µν X∗νb ≺ φ−1/2Ψ . (5.37)

We therefore conclude that each off-diagonal R-group of Γ yields a contribution of size
O≺(φ−1/2Ψ) after summation over the indices associated with the vertices incident to
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its centre. Moreover, by definition of T , each R-group of Θσ is off-diagonal. In addition,
each off-diagonal G-edge yields a contribution of size φ−1/2Ψ by Lemma 5.2. Thus we
get, summing out all indices associated with white vertices (i.e. inner vertices of R-
groups), ∑

aw

Aab,aw(Θσ) ≺ (φ−1/2Ψ)d(Θσ) 6 (φ−1/2Ψ)` .

Hence the contribution of Θσ to the right-hand side of (5.36) may be bounded by

∗∑
ab

wab(∆)
∑
aw

EAab,aw(Θσ) ≺ M2p(φ−1/2Ψ)` ,

where we estimated the summation over ab by M2p using the trivial bound |wab(∆)| 6 1

(from (5.19) and ‖v‖2 = 1). In the last step we used Lemma 3.2 (i) and (iii). The
assumption EZ2 6 NC of Lemma 3.2 (iii) for the random variable Z =

∣∣∑
aw
Aab,aw(Θσ)

∣∣
follows from the following lemma combined with Hölder’s inequality, and from the fact
that the number of white vertices of Θσ is independent of N , so that the sum

∑
aw

contains O(NC) terms.

Lemma 5.11. For any p there exists a constant Cp such that for any graph Γ and any
e ∈ E(Γ) we have

E
∣∣Aa(e,Γ)

∣∣p 6 MCp .

Proof. The cases ξ1(e) ∈ {G,G∗, R,R∗} and ξ2(e) = + are dealt with the deterministic
estimates ∣∣G̃(T )

ij

∣∣ 6 Nφ1/2 6 M2 ,
∣∣R(T )

ij

∣∣ 6 N 6M ,

which follows from |G(T )
ij |, |R

(T )
ij | 6 η−1 6 N . The cases ξ1(e) ∈ {X,X∗} follow imme-

diately from (2.3). Finally, the cases ξ1(e) ∈ {G,G∗} and ξ2(e) = − follow easily from
(3.8).

Using Lemma 5.9, we therefore conclude that the contribution of all trivial leaves to
the right-hand side of (5.36) is bounded by

∑
σ∈L0(T )

∗∑
ab

wab(∆)
∑
aw

EAab,aw(Θσ) ≺ Cp,`M
2p(φ−1/2Ψ)` 6 Cp,ω(φ−1Ψ)p , (5.38)

where Cp,` = 22p(p+6`) estimates the number of vertices in T (see Lemma 5.9). The last
step holds provided we choose

` :=

(
8

ω
+ 2

)
p . (5.39)

Here we used the bound Ψ 6 CN−ω/2, which follows from the definitions (3.15), (2.11),
and (3.5).

5.12 The nontrivial leaves I: Operation (c)

From now on we focus on the nontrivial leaves, σ ∈ L1(T ). Our goal is to prove the
following estimate, which is analogous to (5.38). Its proof will be the content of this and
the two following subsections, and will be completed at the end of Section 5.14.

Proposition 5.12. We have the bound

∑
σ∈L1(T )

∗∑
ab

wab(∆)
∑
aw

EAab,aw(Θσ) ≺ Cp,ω(φ−1Ψ)p .
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By definition of L1(T ), all G-edges of Θσ are diagonal and maximally expanded for
any σ ∈ L1(T ). The first step behind the proof of Proposition 5.12 uses Operation (c)
from Section 5.5, i.e. expanding all diagonal G-entries of Aa(Θσ) using (3.8). Roughly,
this amounts to replacing diagonalG-edges by (a collection of) diagonalR-groups. More
precisely, for entries in the denominator we use the identity

1

Ĝaa
= −z̃ − z̃

∑
µ,ν

XaµR
(ab)
µν X∗νa . (5.40)

In order to handle entries in the numerator, we rewrite this identity in the form

1

Ĝaa
=

1

m̃φ
−

(
z̃
∑
µ,ν

XiµR
(ab)
µν X∗νa − z̃φ−1/2mφ

)
, (5.41)

where used the definition (5.1) of m̃φ and that mφ satisfies the identity (2.7). From

Lemma 5.2 and (5.2) we get 1/Ĝaa − 1/m̃φ ≺ φ−1/2Ψ. Thus we may expand the inverse
of (5.41) up to order `:

Ĝaa =

`−1∑
k=0

m̃k+1
φ

(
z̃
∑
µ,ν

XiµR
(ab)
µν X∗νa − z̃φ−1/2mφ

)k
+O≺

(
(φ−1/2Ψ)`

)
. (5.42)

This is our main expansion for the diagonal G-entries in the numerator. Both formulas
(5.40) and (5.42) have trivial analogues for the Hermitian conjugate Ĝ∗aa.

Recall that all G-entries of Aa(Θσ) are diagonal and maximally expanded. We apply
(5.40) or (5.42) to each G-entry of Aa(Θσ), and multiply everything out. The result may
be written in terms graphs as∑

aw

Aab,aw(Θσ) =
∑

Γ∈G(Θσ)

∑
aw

Aab,aw(Γ) +O≺
(
(φ−1/2Ψ)`

)
, (5.43)

where the error term O≺
(
(φ−1/2Ψ)`

)
contains all terms containing at least one error

term from the expansion (5.42). The sum on the right-hand side of (5.43) consists of
monomials in the entries of R(ab), R∗(ab), X, and X∗ (note that entries of Ĝ and Ĝ∗ no
longer appear), and can hence be encoded using a family graphs which we call G(Θσ).
By construction, the family G(Θσ) is finite. (In fact, it satisfies |G(Θσ)| 6 `6`, where we
used that the number of G-entries of Aa(Θσ) to which (5.40) or (5.42) are applied is
bounded by p+ 5` 6 6`; see the proof of Lemma 5.9.)

Exactly as in Section 5.11, we may brutally estimate the contribution of the rest
term on the right-hand side of (5.43) by

∗∑
ab

wab(∆)O≺
(
(φ−1/2Ψ)`

)
≺ Cp,ω(φ−1Ψ)p

with ` defined in (5.39); we omit the details.
Hence, in order to complete the proof of Proposition 5.12, it suffices to prove that

for all σ ∈ L1(T ) and all Γ ∈ G(Θσ) we have

∗∑
ab

wab(∆)
∑
aw

EAab,aw(Γ) ≺ Cp,ω(φ−1Ψ)p . (5.44)

As before, the map Θσ 7→ G(Θσ) may be explicitly given on the level of graphs, but
we refrain from doing so. Instead, we illustrate this process for some simple cases in
Figure 8.
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Figure 8: A graphical depiction of the identities (5.40) and (5.42) that generate G(Θσ)

from Θσ. A G-edge encoding an entry in the denominator is replaced by either nothing
(leaving just the vertex) or a diagonal R-group. A G-edge encoding an entry in the
numerator is replaced by either nothing or up to `− 1 diagonal R-groups.

5.13 The nontrivial leaves II: taking the expectation

Let us now consider a nontrivial leaf σ ∈ L1(T ). By definition of L1(T ), all G-
edges of Θσ are diagonal and maximally expanded. Therefore, any Γ ∈ G(Θσ) does
not contain any G-edges. This was the goal of the expansion generated by Operations
(a)–(c). Hence, each Γ ∈ G(Θσ) consists solely of R-groups.

Let σ ∈ L1(T ) and Γ ∈ G(Θσ). Fix the summation indices ab, and recall that ai 6= aj

for i, j ∈ Vb(Γ) and i 6= j. By definition of R(ab), the |Vb(Γ)|+ 1 families
(
R

(ab)
µν

)N
µ,ν=1

and

(Xaiµ)Nµ=1, i ∈ Vb(Γ), are independent. Therefore we may take the expectation of the
R-entries and the X-entries separately. The expectation of the X-entries may be kept
track of using partitions, very much like in Section 5.4, except in this case the partition
is on the white vertices. In fact, the combinatorics here are much simpler, since two
white vertices may only be in the same block of the partition if they are adjacent to a
common black vertex. Indeed, the (Latin) indices associated with two different black
vertices are different, so that the two entries of X encoded by two X-edges incident
to two different black vertices are independent, since Xaµ and Xbν are independent if
a 6= b for all µ and ν (even if µ = ν). The precise definition is the following.

We recall from Property (vii) in Section 5.6 that each white vertex j ∈ Vw(Γ) is
adjacent in Γ to a unique black vertex π(j) ≡ πΓ(j). For each i ∈ Vb(Γ) we introduce
a partition ζi of the subset of white vertices π−1({i}), and constrain the values of the
indices (aj : π(j) = i) to be compatible with ζi. On the level of graphs, such a partition
amounts to merging vertices in π−1({i}). Abbreviate ζ = (ζi)i∈Vb(Γ), and denote by Γζ
the graph obtained from Γ by merging, for each i ∈ Vb(Γ), the vertices adjacent to i

according to ζi. Note that, like Γ, each Γζ satisfies the properties (i)–(vi) from Section
5.5, but, unlike Γ, in general Γζ does not satisfy the property (vii) from Section 5.6. See
Figure 9 for an illustration of the mapping Γ 7→ Γζ .

Define the indicator function

χaw(Γ) :=
∏

i∈Vb(Γ)

1
(
aj 6= aj′ for j, j′ ∈ π−1

Γ ({i}) and j 6= j′
)
,

which constrains the summation indices associated with different white vertices adja-
cent to the same black vertex to have different values. By definition of Γζ , we therefore

EJP 19 (2014), paper 33.
Page 44/53

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3054
http://ejp.ejpecp.org/


Isotropic local laws for sample covariance and generalized Wigner matrices

Γ Γζ

Figure 9: The process Γ 7→ Γζ . Since this operation is local at each black vertex, we
only draw the neighbourhood of (more precisely the unit ball around) a selected black
vertex i ∈ Vb(Γ). The depicted black vertex is part of two diagonal R-blocks and four off-
diagonal R-blocks; the latter ones are not drawn completely. The blocks of the partition
ζi are drawn in grey. On the right we draw the corresponding neighbourhood of Γζ .

have ∑
aw

Aab,aw(Γ) =
∑
ζ

∑
aw

χaw(Γζ)Aab,aw(Γζ) ,

where the sum ranges over all families of partitions ζ = (ζi)i∈Vb(Γ). As before, the
summation of the white indices aw runs over different sets on the left- and the right-
hand sides, owing to the merging white vertices. Taking the expectation yields

∑
aw

EAab,aw(Γ) =
∑
ζ

∑
aw

χaw(Γζ)

(
E

∏
e∈ER(Γζ)

Aab,aw(e,Γζ)

)
Wab,aw(Γζ) , (5.45)

where we set

Wab,aw(Γζ) :=
∏

i∈Vb(Γζ)

(
E

∏
e∈Ei(Γζ)

Aab,aw(e,Γζ)

)

and abbreviated ER(·) for the set of R-edges and Ei(·) for the set of X-edges incident
to i. Here we used the independence described above.

Since EXaµ = 0, we immediately get that Wab,aw(Γζ) = 0 unless, for each i ∈ Vb(Γ),
each block of ζi has size at least two. By (2.3) we get in fact that∣∣Wab,aw(Γζ)

∣∣ 6 CΓ(NM)−|Vw(Γ)|/4
∏

i∈Vb(Γ)

1
(
each block of ζi has size at least two

)
.

(5.46)
The following result is the main power counting estimate for Wab,aw . It shows that each
black vertex of degree one in ∆ (corresponding to Latin indices that remained unpaired
in the partition (5.15)) results in an extra factor M−1/2. This will balance the passage
from `1- to `2-norm of v, as explained in Section 5.3.

Note that by definition of Γζ we have Vb(Γζ) = Vb(Γ) and degΓ(i) = degΓζ
(i) for all

i ∈ Vb(Γ). For the following we therefore drop the argument of Vb. Define the subset

V ∗b :=
{
i ∈ Vb : deg∆(i) = 1

}
.

For i ∈ Vb(Γ) let nζ(i) denote the number of vertices of Γζ adjacent to i (these are all
white since there are no G-edges in Γζ , which are the only edges that join two black
vertices).
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Lemma 5.13. We have the bound∣∣Wab,aw(Γζ)
∣∣ 6 CΓ φ

−p/2
∏
i∈Vb

N−nζ(i)
∏
i∈V ∗b

M−1/2 .

Proof. Recalling (5.46), we assume without loss of generality that, for each i ∈ Vb, eack
block of ζi has size at least two; in particular, we assume that for each i ∈ Vb we have
degΓ(i) > 2. From (5.46) we get∣∣Wab,aw(Γζ)

∣∣ 6 CΓ(NM)−|Vw(Γ)|/4

= CΓ

∏
i∈Vb\V ∗b

(NM)− degΓ(i)/4
∏
i∈V ∗b

(NM)− degΓ(i)/4

= CΓ

∏
i∈Vb\V ∗b

(
N− degΓ(i)/2φ− degΓ(i)/4

)
×
∏
i∈V ∗b

(
M−1/2N−(degΓ(i)−1)/2φ1/2−degΓ(i)/4

)
.

By definition, τ0 and ρ leave deg(i) invariant, and τ1 increases deg(i) by 0 or 4. In
particular, they all leave the parity of deg(i) invariant for i ∈ Vb. We conclude that
degΓ(i) is odd for each i ∈ V ∗b . Since each block of ζi has size at least two, we find that

nζ(i) 6

{
degΓ(i)

2 if degΓ(i) is even
degΓ(i)−1

2 if degΓ(i) is odd .

We therefore conclude that∣∣Wab,aw(Γζ)
∣∣ 6 CΓ

∏
i∈Vb\V ∗b

(
N−nζ(i)φ− degΓ(i)/4

) ∏
i∈V ∗b

(
M−1/2N−nζ(i)φ1/2−degΓ(i)/4

)
.

The proof is then completed by the following claim.
If degΓ(i) > 2 for all i ∈ V ∗b then∏

i∈Vb

φ− degΓ(i)/4
∏
i∈V ∗b

φ1/2 6 φ−p/2 . (5.47)

What remains is to prove (5.47). Since ∆ has p edges, we find∏
i∈Vb

φ− deg∆(i)/4 = φ−p/2 .

As observed above, τ0 and ρ leave deg(i) invariant, and τ1 increases deg(i) by 0 or 4. Let
i ∈ V ∗b . Since by assumption degΓ(i) > 2, we find that in fact degΓ(i) > 5. This yields∏

i∈Vb

φ− degΓ(i)/4 6
∏

i∈Vb\V ∗b

φ− degΓ(i)/4
∏
i∈V ∗b

φ−5/4

6
∏

i∈Vb\V ∗b

φ− deg∆(i)/4
∏
i∈V ∗b

φ− deg∆(i)/4φ−1 ,

from which (5.47) follows.

5.14 The nontrivial leaves III: summing over a and conclusion of the proof of
Proposition 5.12

As above, fix a tree vertex σ ∈ L1(T ), a graph Γ ∈ G(Θσ), and a partition ζ. In order
to conclude the proof, we use Lemma 5.13 on each Γζ to sum over aw in (5.45).
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Recall the quantity d from (5.31), defined as the number of off-diagonal G-edges plus
the number of off-diagonal R-groups. By definition of ∆, d(∆) = p. Moreover, τ0, τ1, and
ρ do not decrease d. Since by construction Γ has no G-entries, we conclude that Γ has
at least p off-diagonal R-groups. We may therefore choose a set Eo(Γ) ⊂ ER(Γ) of size
at least p, such that each e ∈ Eo(Γ) is the centre of an off-diagonal R-group (see Section
5.6). The set Eo is naturally mapped into ER(Γζ), and is denoted by Eo(Γζ). We denote
by α(e) and β(e) the end points of e in Γζ . By (5.4), we have∏

e∈ER(Γζ)

Aab,aw(e,Γζ) ≺
∏

e∈Eo(Γζ)

Ψ1(α(e)6=β(e)) .

As in Section 5.11, it is easy to take the expectation using Lemma 3.2 to get

E
∏

e∈ER(Γζ)

Aab,aw(e,Γζ) ≺
∏

e∈Eo(Γζ)

Ψ1(α(e)6=β(e)) .

We may now sum over aw on the right-hand side of (5.45): from Lemma 5.13 we get

∑
aw

χaw(Γζ)

(
E

∏
e∈ER(Γζ)

Aab,aw(e,Γζ)

)
Wab,aw(Γζ)

=
∑
aw

χaw(Γζ)

(
E

∏
e∈ER(Γζ)

Aab,aw(e,Γζ)

)
Wab,aw(Γζ)

×
∏

e∈Eo(Γζ)

(
1(α(e) = β(e)) + 1(α(e) 6= β(e))

)

≺ CΓ φ
−p/2

∏
i∈Vb

N−nζ(i)
∏
i∈V ∗b

M−1/2

p∑
k=0

Ψp−kN |Vw(Γζ)|−k

6 CΓφ
−p/2Ψp

∏
i∈V ∗b

M−1/2 .

In the second step we multiplied out the last p-fold product on the second line and
classified all terms according to number, k, of factors 1(α(e) = β(e)); we used that the
total number of free summation variables is |Vw(Γζ)| − k. In the third step we used that∑
i∈Vb nζ(i) = |Vw(Γζ)| and the bound Ψ > N−1.
Returning to (5.45), we find∑

aw

EAab,aw(Γ) ≺ CΓφ
−p/2Ψp

∏
i∈V ∗b

M−1/2 .

We may now sum over ab to prove (5.44). Using the bound (5.19), we therefore get

∗∑
ab

wab(∆)
∑
aw

EAab,aw(Γ) ≺ CΓφ
−p/2Ψp

∑
ab

∏
i∈V ∗b

M−1/2
∏

i∈V (∆)

|vai |deg∆(i)

≺ CΓφ
−p/2Ψp ,

where the last step follows from the fact that, by definition of ∆, deg∆(i) > 1 for all
i ∈ Vb, as well as the estimate

∑
a

|va|k 6

{
M1/2 if k = 1

1 if k > 2 .

Summing over σ ∈ L1(T ) concludes the proof of Proposition 5.12.
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5.15 Conclusion of the proof of Theorem 3.11

Combining (5.38) and Proposition 5.12, and recalling (5.36) and (5.16), yieds

E|Z|p ≺ Cp,ω(φ−1Ψ)p .

Now (5.7), and hence (3.16), follows by a simple application of Chebyshev’s inequality.
Let ε > 0 and D be given. Then

P(|Z| > Mεφ−1Ψ) 6 Cp,ωM
εM−εp 6 M−D

for p > ε−1D+ 2. This, together with Remark 2.2 which allows us to interchange M and
N in Definition 2.1, concludes the proof of (3.16).

Finally, we outline the proof of (3.17), which is very similar to that of (3.16). The
expansion of Sections 5.4–5.12 may be taken over by swapping the roles of R and G̃. In
other words, we use Lemma 3.8 instead of Lemma 3.6. The arguments from Sections
5.13 and 5.14 carry over with straightforward adjustments in the power counting of
Section 5.14. We leave the details to the interested reader. This concludes the proof of
Theorem 3.11.

6 Proof of Theorems 3.12 and 3.13

Proof of Theorem 3.13. Note that, by the definition (2.17) of γα, we have γα ∈ [γ−, γ+]

for all α = 1, . . . , N . Hence, given ε > 0 and c > 0 as in Theorem 3.13, for small enough
ω ∈ (0, 1) we have γα > 2ω provided that either α 6 (1−ε)N or φ > 1+c. Set η := N−1+ω.
We therefore conclude from Theorem 2.10 and the definition (2.11) of S that λα+iη ∈ S

with high probability (see Definition 2.3), provided that either α 6 (1− ε)N or φ > 1 + c.
Let α be such an index, and abbreviate Ξ := {λα + iη ∈ S}. Then we get from (3.17),
Remark 2.6, and (3.5) that 1(Ξ) Im〈v , R(λα + iη)v〉 ≺ 1. From

Im〈v , R(λα + iη)v〉 =

N∑
β=1

η|〈u(β) ,v〉|2

(λα − λβ)2 + η2
>
|〈u(α) ,v〉|2

η

we therefore get 1(Ξ)|〈u(α) ,v〉|2 ≺ N−1+ω. Since ω ∈ (0, 1) can be made arbitrarily
small and 1− 1(Ξ) ≺ 0, the first estimate of Theorem 3.13 follows.

In order to prove the second estimate of Theorem 3.13, we use the same η = N−1+ω

as above and write z = λα + iη. Taking the imaginary part inside the absolute value on
the left-hand side of (3.16), we get

1(Ξ) Im〈w , G(z)w〉 ≺ Immφ−1(z) +
1

φ
6

2

φ
,

where in the second step we used (3.22), (3.5), and z ∈ S with high probability; this
latter estimates follows from (2.5), the fact that γα > 2ω by assumption, and Theorem
2.10. Repeating the above argument, we therefore find 1(Ξ)|〈ũ(α) ,w〉|2 ≺ φ−1N−1+ω,
and the second claim of Theorem 3.13 follows.

Proof of Theorem 3.12. We only prove (3.19); the proof of (3.20) is the same, using
(3.17) instead of (3.16). Moreover, to simplify notation, we assume that E > γ+ +

N−2/3+ω; the case E 6 γ− −N−2/3+ω is handled in exactly the same way.
Note first that if η > κ then it is easy to see that (3.19) follows from (3.16), (3.6), and

the lower bound η > κ > N−2/3. For the following we therefore assume that η 6 κ. By
Lemma 3.3, for η 6 κ we have√

Immφ(z)

Nη
� N−1/2κ−1/4 .
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By polarization and linearity, it therefore suffices to prove that∣∣〈v , G(z)v〉 −mφ−1(z)
∣∣ ≺ φ−1N−1/2κ−1/4 . (6.1)

Define η0 := N−1/2κ1/4. By definition of the domain S̃, we have η0 6 κ. Using (3.16),
we find that (6.1) holds if η > η0. For the following we therefore take 0 < η 6 η0. We
proceed by comparison using the two spectral parameters

z := E + iη , z0 := E + iη0 .

Since (6.1) holds at z0 by (3.16), it is enough to prove the estimates∣∣mφ(z)−mφ(z0)
∣∣ 6 CN−1/2κ−1/4 (6.2)

and ∣∣〈v , G(z)v〉 − 〈v , G(z0)v〉
∣∣ ≺ φ−1N−1/2κ−1/4 . (6.3)

(The third required estimate, that of
∣∣ 1−φ
φz −

1−φ
φz0

∣∣, is trivial by |z|2 � φ for any z ∈ S̃.) We

start with (6.2). From the definition mφ(z) =
∫ %φ(dx)

x−z and the square root decay of the

density of %φ near γ+ from (2.4), it is not hard to derive the bound m′φ(z) 6 Cκ−1/2 for

z ∈ S̃. Therefore we get∣∣mφ(z)−mφ(z0)
∣∣ 6 Cκ−1/2η0 = CN−1/2κ−1/4 ,

which is (6.2).
What remains is to prove (6.3). By Theorem 2.10 we have E > λ1 + η0 with high

probability since η0 > N−2/3+ω/4. Therefore, since η 6 η0 6 E − λ1 6 E − λα for all
α > 1, we get

Im〈v , G(z)v〉 =
∑
α

|〈v ,u(α)〉|2η
(E − λα)2 + η2

6 2
∑
α

|〈v ,u(α)〉|2η0

(E − λα)2 + η2
0

= 2 Im〈v , G(z0)v〉 ≺ φ−1N−1/2κ−1/4 (6.4)

by (3.16) at z0 and the estimate

Im

(
1− φ
φz0

+
mφ(z0)

φ

)
6 Cφ−1N−1/2κ−1/4 ,

as follows from (3.6) and the estimate |z0|2 � φ.
Finally, we estimate the real part of the error in (6.3) using

∣∣Re〈v , G(z)v〉 − Re〈v , G(z0)v〉
∣∣ =

∑
α

(E − λα)(η2
0 − η2)|〈u(α) ,v〉|2(

(E − λα)2 + η2
)(

(E − λα)2 + η2
0

)
6

η0

E − λ1

∑
α

η0|〈u(α) ,v〉|2

(E − λα)2 + η2
0

6 Im〈v , G(z0)v〉 (6.5)

with high probability, where in the last step we used that η0 6 E − λ1 with high prob-
ability. Combining (6.4) and (6.5) completes the proof of (6.3), and hence of Theorem
3.12.

7 Proofs for generalized Wigner matrices

In this section we explain how to modify the arguments of Sections 3–6 to the case of
generalized Wigner matrices, and hence how to complete the proof of the results from
Section 2.2. Since we are dealing with generalized Wigner matrices, in this section we
consistently use the notations from Section 2.2 instead of Section 2.1.
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7.1 Tools for generalized Wigner matrices

We begin by recalling some basic facts about the Stieltjes transform m from (2.24).
In analogy to (2.9), for E ∈ R we define

κ ≡ κE :=
∣∣|E| − 2

∣∣ , (7.1)

the distance from E to the spectral edges ±2.

Lemma 7.1. For |z| 6 2ω−1 we have

|m(z)| � 1 , |1−m(z)2| �
√
κ+ η (7.2)

and

Imm(z) �

{√
κ+ η if |E| 6 2
η√
κ+η

if |E| > 2 .

(All implicit constants depend on ω.)

Proof. The proof is an elementary calculation; see Lemma 4.2 in [14].

The following definition is the analogue of Definitions 3.5 and 3.7. (Note that for
generalized Wigner matrices we always simultaneously remove a row and the corre-
sponding column.)

Definition 7.2 (Minors). For T ⊂ {1, . . . , N} we define H(T ) by

(H(T ))ij := 1(i /∈ T )1(j /∈ T )Hij .

Moreover, for i, j /∈ T we define the resolvent of the minor through

G
(T )
ij (z) := (H(T ) − z)−1

ij .

We also set
(T )∑
i

:=
∑
i:i/∈T

.

When T = {a}, we abbreviate ({a}) by (a) in the above definitions; similarly, we write
(ab) instead of ({a, b}).

We shall also need the following resolvent identities, proved in Lemma 4.2 of [15]
and Lemma 6.10 of [8].

Lemma 7.3 (Resolvent identities). For i, j 6= k and i, j, k /∈ T the identity (3.7) holds.
Moreover, for i 6= j and i, j /∈ T we have

G
(T )
ij = −G(T )

ii

(Ti)∑
k

HikG
(Ti)
kj = −G(T )

jj

(Tj)∑
k

G
(Tj)
ik Hkj . (7.3)

Finally, for i /∈ T we have Schur’s formula

1

G
(T )
ii

= Hii − z −
(Ti)∑
k,l

HikG
(Ti)
kl Hli . (7.4)

From (7.3) we find for i 6= j and i, j /∈ T that

G
(T )
ij = G

(T )
ii G

(Ti)
jj

(
−Hij +

(Tij)∑
k,l

HikG
(Tij)
kl Hlj

)
, (7.5)
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7.2 The isotropic law: proof of Theorem 2.12

As in (5.7), and using (2.28) instead of (4.2), it suffices to prove that

|Z| ≺

√
Imm(z)

Nη
+

1

Nη
,

where, as in Section 5, Z =
∑
a 6=b vaGabvb. (Note that here there is no factor φ and hence

no rescaled quantities bearing a tilde.) The estimate of E|Z|p follows the argument of
Section 5; in particular, it consists of the eight steps sketched at the end of Section 5.3,
which we follow closely. Throughout the argument we use the identities (7.4) and (7.5)
instead of (3.8) and (3.9). In them, the two differences as compared to the argument of
Section 5 are apparent.

1. The quadratic term in the expansion of 1/Gii and Gij contains an entry of G and
not of R. (The matrix R is not even defined for generalized Wigner matrices.)

2. Both (7.4) and (7.5) contain an additional term, an entry of H.

Of these differences, the first one is minor. In order to mimic the bookkepping of Section
5, we still speak of black and white vertices. The simplest definition of our colouring
is that the vertices of ∆ are black and any other vertices that were added to ∆ are
white; see the explanation below (5.20). The second difference leads to a slightly larger
class of graphs, but the new graphs will always be of subleading order. An alternative
viewpoint is that the additional entry of H on the right-hand side of (7.4) and (7.5)
should be regarded as a negligible error term. Almost all of the differences highlighted
below stem from this additional term.

We now sketch the argument for each of the eight steps, by highlighting the changes
as compared to Section 5.

Step 1. The reduced family of matrix indices is, as in Section 5, the set of indices ab
associated with the black vertices of ∆.

Step 2. We use (3.7) to make all entries of G maximally expanded of the black indices
ab = (ai)i∈Vb . The graphical representation is the same as in Section 5.

Step 3. We use (7.5) to expand each maximally expanded off-diagonal entry of Gaiaj .
As compared to the expansion based on (3.8) and (3.9) and used in Section 5, we
get an additional term, −Haiaj . See Figure 10 for a graphical representation of
this expansion. Note that (7.5) is always invoked with T = ab \ {ai, aj}. Hence, for
any graph Γ at any point of the argument, each white index is summed over the
set {1, . . . , N} \ ab.

Step 4. Repeating Steps 2 and 3 in tandem yields a sum of monomials which consist
only of maximally expanded diagonal entries of G with black indices, entries of
G(ab) with white indices, and entries of H.

Step 5. We apply (7.4) to each maximally expanded diagonal entry of G. The graphical
representation of this operation is similar to Figure 8, except that we also get a
diagonal entry of H, depicted as a dotted loop. Note that there are no R-entries,
but we still use the terminology of Section 5 and speak of R-groups; these refer
to the to the same structure as in Figure 4, except that the edge e connecting the
two white vertices encodes a G-edge and not an R-edge. We end up with entries
of G(ab) and entries of H. Note that, by construction, each entry of H carries at
least one black index, and that the G-edges are only incident to white vertices. In
particular, all entries of H are independent of all entries of G(ab).
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(Vb \ {i, j})

ji

(Vb \ {i, j}) (Vb \ {j})

k l

i jji
+

Figure 10: How Figure 6 is modified for generalized Wigner matrices. We use an ori-
ented dotted line from i to j to draw the entry −Haiaj .

Step 6. Using the independence of the entries of H and G(ab), we may take the par-
tial expectation in the rows (or, equivalently, columns) indexed by ab. Note that
now we have two classes of H-edges: white-black (incident to a black and a white
vertex) and black-black (incident to two black vertices). Since the white indices
are distinct from the black ones, the expectation factorizes over these two classes
of H-edges. Exactly as in Section 5, taking the expectation in the white-black
H-edges yields, for each i ∈ Vb, a partition of the white vertices adjacent to i,
whereby each block of the partition must contain at least two vertices. The ex-
pectation over the black-black H-edges imposes an additional constraint among
the loops incident to the white vertices, which are unimportant for the argument.
Finally, for i 6= j ∈ Vb, we have the constraint that the number of edges joining i

and j cannot be one.

Steps 7 and 8. The parity argument from the proof of Theorem 5.14 may be taken over
with minor modifications, which arise from the additional black-black H-edges
described in Step 6. Recall that the goal is to gain a factor N−1/2 from each black
vertex i ∈ Vb that has an odd degree. If i is incident to a black-white H-edge,
the counting from Section 5 applied unchanged and yields a power of N−1/2. If
i is not incident to a black-white H-edge, it must be incident to a black-black H-
edge (recall that all graphs must be connected). By the constraints arising from
the expectation in Step 6, i must then in fact be incident to at least two black-
black H-edges which connect i to the same black vertex j. This yields a factor
E|Haiaj |2 6 C/N , which is the desired small factor. (We may in general only
allocate N−1/2 from the factor N−1 to the vertex i, since j may also be a vertex
that has degree one in ∆, in which case we have to allocate the other factor in
N = N−1/2N−1/2 to j.)

This concludes sketch of how the argument of Section 5 is to be modified for the
proof of Theorem 2.12. We omit further details. Finally, Theorems 2.15 and 2.16 follow
from Theorem 2.12 by repeating the arguments of Section 6 almost to the letter.
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