Scaling dimensions of monopole operators in the CPNb!1 theory in 2 + 1 dimensions

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1007/JHEP06(2015)037</td>
</tr>
<tr>
<td>Accessed</td>
<td>November 8, 2017 6:28:07 AM EST</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:34331446</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Erratum: Scaling dimensions of monopole operators in the \mathbb{CP}^{N_b-1} theory in $2 + 1$ dimensions

Ethan Dyer, a Mark Mezei, b Silviu S. Pufu c and Subir Sachdev d,e

a Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, U.S.A.
b Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, U.S.A.
c Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, U.S.A.
d Department of Physics, Harvard University, Cambridge, MA 02138, U.S.A.
e Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

E-mail: edyer@stanford.edu, mezei@princeton.edu, spufu@princeton.edu, sachdev@physics.harvard.edu

Erratum to: JHEP06(2015)037

ArXiv ePrint: 1504.00368

A missing factor of i was found in the computation of the mixed kernel $F^{q,B}_j(\omega)$. This results in minor changes in our formulas, but a major change in our conclusions. First, we correct the formulas, then we present the corrected conclusions.

Corrected formulas. The correct expression replacing (4.47) in the original article is

$$F^{q,B}_j(\omega) = \frac{16q\pi^2 i}{(2j + 1)\sqrt{j(j + 1)}} \sum_{j',j''=q}^\infty \frac{E_{qj'} + E_{qj''}}{2E_{qj'}E_{qj''}(\omega^2 + (E_{qj'} + E_{qj''})^2)} I_H(j,j',j'').$$

(1)

Because $F^{q,B}_j(\omega)$ is pure imaginary the matrix of coefficients $M^q_j(\omega)$ is not Hermitian, and (4.12) is modified to

$$M^q_j(\omega) = \begin{pmatrix} D^q_j(\omega) & F^{q,B}_j(\omega) & F^{q,\tau}_j(\omega) & F^{q,E}_j(\omega) \\ -F^{q,B*}_j(\omega) & K^{q,BB}_j(\omega) & K^{q,\tau B}_j(\omega) & K^{q,EB}_j(\omega) \\ -F^{q,\tau*}_j(\omega) & K^{q,\tau B*}_j(\omega) & K^{q,\tau E}_j(\omega) & K^{q,E*}_j(\omega) \\ -F^{q,E*}_j(\omega) & K^{q,EB*}_j(\omega) & K^{q,\tau E*}_j(\omega) & K^{q,EE}_j(\omega) \end{pmatrix}.$$

(2)
Consequently, the eigenvalues of the matrix are changed, (4.16) and (4.19) are changed to
This matrix has eigenvalues:
\[
\lambda_q^\pm = \frac{D_q^j(\omega) + K_j^{q,BB}(\omega) \pm \sqrt{(D_q^j(\omega) - K_j^{q,BB}(\omega))^2 - 4|F_j^{q,B}(\omega)|^2}}{2},
\]
\[
\lambda_q^E = \frac{j(j+1)+\omega^2}{j(j+1)}K_j^{q,\tau\tau},
\]
and
\[
\delta F_q = \frac{1}{2} \int \frac{d\omega}{2\pi} \log \frac{D_q^j(\omega)}{D_0^j(\omega)} + \sum_{j=1}^{\infty} (2j+1) \log \left(\frac{K_j^{q,\tau\tau}(\omega)}{D_q^j(\omega)} \right) \left(F_j^{q,B}(\omega) \right)^2
\]
respectively.

All formulas in the appendices are fixed by inserting an \(i \) in the appropriate places.
The only nontrivial replacement is in (C.49), which correctly reads
\[
L_q^j(\omega) = \frac{8\mu_q^2}{(j + \frac{1}{2})^2 + \omega^2} + \frac{12F_q^\infty}{\pi} \left(j + \frac{1}{2} \right)^2 - \omega^2
- \frac{(q^2 + 4\mu_q^2(q^2 - 1))(j + \frac{1}{2})^2 + 4(-q^2 + \mu_q^2(8q^2 - 5))\omega^2}{2 \left((j + \frac{1}{2})^2 + \omega^2 \right)^3}
+ 144B_q \frac{3(j + \frac{1}{2})^4 - 24(j + \frac{1}{2})^2\omega^2 + 8\omega^4}{(j + \frac{1}{2})^2 + \omega^2} + \frac{3F_q^\infty}{2\pi} \left(25 - 48\mu_q^2 \right)(j + \frac{1}{2})^4
+ 3(64\mu_q^2 - 55)(j + \frac{1}{2})^2\omega^2 + 20\omega^4
+ O \left(\frac{1}{(j + \frac{1}{2})^2 + \omega^2} \right)^3.
\]

This change has important consequences on our final results. All monopoles are stable, invalidating section 5.1. The large \(q \) analysis supports the stability of monopoles; (5.9), (5.10) and figure 4 are replaced by
\[
M_q^j(0) = \zeta \left(\frac{3}{2}, \frac{1}{2} + \chi_0 \right) \frac{1}{8\pi \sqrt{2q}} \begin{pmatrix}
\frac{1}{2} & i\sqrt{j(j+1)} \chi_0 & 0 & 0 \\
0 & 2j(j+1) \chi_1 & 0 & 0 \\
0 & 0 & 4j(j+1)(\chi_0^2 + \chi_1) & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},
\]
\[
\lambda_\pm^q \approx \frac{-0.055251 \pm 0.023717i}{\sqrt{q}}, \quad \lambda_E^q \approx \frac{0.063044}{\sqrt{q}}
\]
and figure 1.
Figure 1. The numerical results for the three eigenvalues, λ_E^q, λ_+^q, and λ_-^q are plotted against the analytic large q value in black.

Table 1. Results of the large N_b expansion of the monopole operator dimensions Δ_q obtained through calculating the ground state energy in the presence of $2q$ units of magnetic flux through S^2. In the last column of the table we listed our estimates for when the monopole operators are relevant.

<table>
<thead>
<tr>
<th>q</th>
<th>Δ_q</th>
<th>N_b for which $\Delta_q < 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$< \infty$</td>
</tr>
<tr>
<td>1/2</td>
<td>$0.1245922 N_b + 0.3815 + O(N_b^{-1})$</td>
<td>≤ 21</td>
</tr>
<tr>
<td>1</td>
<td>$0.3110952 N_b + 0.8745 + O(N_b^{-1})$</td>
<td>≤ 6</td>
</tr>
<tr>
<td>3/2</td>
<td>$0.5440693 N_b + 1.4646 + O(N_b^{-1})$</td>
<td>≤ 2</td>
</tr>
<tr>
<td>2</td>
<td>$0.8157878 N_b + 2.1388 + O(N_b^{-1})$</td>
<td>none</td>
</tr>
<tr>
<td>5/2</td>
<td>$1.1214167 N_b + 2.8879 + O(N_b^{-1})$</td>
<td>none</td>
</tr>
</tbody>
</table>

Results and conclusions. Because these corrections make all saddle points stable, we are able to compute the dimensions of monopole for many values of q. The results are listed in table 1. In particular our result for $\Delta_{1/2}$ is different, and compares favorably with the numbers obtained by quantum Monte Carlo simulations of refs. [1–3] even for small N_b, as shown in the replacement of figure 1 of the original article in figure 2. From comparing the scaling dimensions collected in table 1 to 3, we can also estimate the upper bound on N_b below which the monopole operators are expected to be relevant; these bounds are also presented in table 1. There is inherently some uncertainty in these estimates, as they come from extrapolating the large N_b expansion to small values of N_b. Nevertheless, our relevance bounds come close to what ref. [3] found from numerics, as can be seen from table I in [3].

Acknowledgments

We are grateful to Nathan Agmon, whose joint work with SSP found the factor of i discussed in this Erratum in the original version of this paper.
Figure 2. The scaling dimension of the $q = 1/2$ monopole operator, $\mathcal{F}_{1/2}$. The full line is the $N_b = \infty$ result (ref. [4]), and the dashed line is the leading $1/N_b$ correction computed in the present paper (see table 1). The quantum Monte Carlo results are for lattice antiferromagnets with global SU(N_b) symmetry on the square (refs. [1, 2]), honeycomb (ref. [3]), and rectangular (ref. [3]) lattices.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

