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Abstract: Ultra-high molecular weight polyethylene (UHMWPE) is the most common bearing
material in total joint arthroplasty due to its unique combination of superior mechanical properties
and wear resistance over other polymers. A great deal of research in recent decades has focused
on further improving its performances, in order to provide durable implants in young and active
patients. From “historical”, gamma-air sterilized polyethylenes, to the so-called first and second
generation of highly crosslinked materials, a variety of different formulations have progressively
appeared in the market. This paper reviews the structure–properties relationship of these materials,
with a particular emphasis on the in vitro and in vivo wear performances, through an analysis of the
existing literature.

Keywords: UHMWPE; Ultra-high molecular weight polyethylene; oxidation; degradation; gamma
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1. Introduction

Ultra-high molecular weight polyethylene (UHMWPE) has been used as a bearing material in
total joint arthroplasty for more than 50 years now. The idea to replace degraded cartilage with a
polymer liner dates back to the late 1950s. At that time, Sir John Charnley chose polytetrafluoroethylene
(PTFE), a low friction polymer, as the bearing material to replace the natural acetabulum, articulating
against a metallic femoral head, for hip replacement. Due to the unacceptably low wear resistance of
PTFE though, the first “low friction arthroplasties” dramatically failed after few years of implantation.
In 1962, UHMWPE, a similarly low-friction, but much more wear resistant polymer, replaced PTFE in
Charnley’s hip arthroplasty, with remarkably better performances. From then on, arthroplasty has
known considerable evolution, but UHMWPE remains the gold standard for artificial hips and now
other artificial joints, including the knee and shoulder [1].

Despite a relatively successful history, the steadily increasing number of yearly procedures [2,3]
and, above all, the dramatic increase of demand in younger, more active patients [4] have stimulated
a constant research for optimized material formulations and processing procedures, to ensure a high
level of performance and durability.

Each potential innovation has been accompanied by a great deal of pre-clinical trials, performed
by researchers all over the world, often with very different methods and sometimes with
contradictory results.
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Only some of these studies were aimed at establishing a correlation between the chemical and
morphological characteristics of the polymer and its mechanical properties and wear resistance.
In some cases, retrieval studies have correlated the material properties to the clinical outcome of
the implant.

The present work aims at exploring such a correlation through an analysis of the relevant literature
that has appeared in the last decades.

2. UHMWPE

UHMWPE is a particular type of polyethylene (PE), with an exceptionally high molecular mass.
The international Standards Organization (ISO 11542) (ISO, 2001) defines UHMWPE as having
a molecular weight of at least 1 million g/mol, while the American Society for Testing and Materials
(ASTM) specifies that UHMWPE has a molecular weight greater than 3.1 million g/mol [5]. Besides
the molecular mass, the microstructure of the polymer also plays an important role in determining its
physical, chemical and mechanical properties. UHMWPE, as most polyethylenes, is a semi-crystalline
polymer composed of at least two interpenetrating phases: a crystalline phase, in which the
macromolecules fold into ordered, crystalline lamellae and an amorphous, disordered phase, possibly
intercalated by a partially ordered, so called all-trans, interphase [6,7].

The UHMWPE used in orthopaedic applications typically has a molecular weight between
3.5–6 million [8] and semi-finished bars and rods have a degree of crystallinity ranging around
50–55%. Such a precise combination of chemical structure, molecular mass and microstructure is at
the basis of the peculiar balance of high mechanical properties and wear resistance that has made
UHMWPE the material of choice in arthroplasty. A high entanglement density is associated with
the ultra-high molecular weight; entanglements behave like physical crosslinks, which affect its
crystalline morphology when the polymer is melt-crystallized. Unlike its lower molecular weight
counterparts, UHMWPE crystallizes into a non-spherulitic structure comprising tortuous, defective
lamellae. The high entanglement density is responsible for the relatively low crystallinity, compared
to medium and low molecular weight, linear, high density polyethylene (HDPE) which can be melt
crystallized to a degree of crystallinity of 70–80%. It is generally believed that the higher toughness
and wear resistance of UHMWPE is associated with a large number of inter-lamellar tie molecules
connecting adjacent lamellae, compared to HDPE. Furthermore, inter-spherulitic boundaries of HDPE
are known to be weak since melt crystallization “sweeps” any impurities present in the melt to
spherulitic boundaries which are also thought to contain a larger concentration of chain ends than the
amorphous layers between lamellae. The suppression of spherulite formation in UHMWPE then must
also contribute to the overall toughness and high wear resistance of UHMWPE. UHMWPE resin has
an essentially zero melt flow index. As a result, upon melting of UHMWPE resin particles, that are
usually approximately 50–150 µm in diameter, do not flow and instead retain their shape. This makes
it extremely difficult to injection mold the powder to directly constitute implants and instead, the resin
is compression molded or ram extruded into bars at elevated pressure and temperature, and then
annealed to remove residual stresses. It is then machined into implants, packaged and sterilized prior
to implantation.

It is quite clear that any processing step must be carefully controlled, from consolidation of the
powder at elevated temperatures and pressures, to radiation sterilization, to addition of antioxidants or
anti-slip agents or to any other specific treatment that can potentially influence such a balance and thus
lead to changes in macroscopic mechanical and tribological properties As with any semicrystalline
polymer, the microstructure and nanoscale lamellar morphology of UHMWPE depends on its thermal
history during molding or ram extrusion. Unlike PEs with lower molecular weight, the consolidation
of UHMWPE resin particles is a slow process due to the large time scales associated with reptation
of chains of high molecular weight across resin boundaries to entangle with chains in adjacent
resin particles and co-crystallize to form a fused article, assisted by pressure and temperature.
Chain reptation, derived from the word “reptile”, is the thermal motion of entangled macromolecules
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in a tube, much like the slithering of snakes. In fact, it has been demonstrated that the extended-chain
morphology of the UHMWPE resin upon melting leads to “chain-explosion” which is the dominant
transport mechanism that leads to cocrystallization of chains across resin boundaries to fuse the resin,
compared to the much slower chain reptation process [9]. The difficulty in fusion of resin particles
makes the inter-powder boundaries weaker than the interior of resin particles, but overall provides
a tough, highly wear resistant material with a relatively successful history of implantation as joint
replacement devices.

3. “Historical” and Conventional Radiation Sterilized Polyethylenes

The term “historical” often identified polyethylenes that were sterilized by 25–40 kGy of gamma
radiation in air [10]. These types of polyethylene have a long clinical history, starting from the first
pioneering implants in the 1960s, up to the end of the 1990s, by which time most manufacturers
had switched to inert-sterilized, barrier packaging PE and/or to crossliked PE. However, examples
of gamma air sterilized polyethylenes can also sporadically be found in contemporary clinical
applications [10,11].

A body of literature, in particular across the late 1980s to the early 2000s, investigated the effects
of radiation sterilization in air on the chemical, physical, mechanical and tribological properties of
polyethylene [12–18]. Basically, high energy irradiation leads to the cleavage of chemical bonds of the
PE chains, creating free radicals. The free radicals are highly reactive species that tend to produce
a complex series of reactions, the extent of which is strongly dependent on the surrounding species
available for reaction [19]. In inert atmosphere, the predominating effect of irradiation is the formation
of crosslinks among the polymer chains. Conversely, in an air environment, the radicals can easily
react with oxygen, triggering a cyclic, auto-sustained process that results in the formation of oxidation
products on the backbone of the polymer and, more importantly, in predominating chain scissions,
with a consequent overall decrease in its molecular mass, and significant changes to its morphology
(Figure 1). In particular, it has been demonstrated that, immediately after irradiation in air, crosslinking
and an increase in crystallinity are the dominant processes. With time, chain scission induced by
oxidation prevails, resulting in a further increase in crystallinity [20–22], likely through the formation
of a new phase of thinner crystallites in the amorphous region [13].
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The extent and rate of radiation-induced oxidation depends on several factors, including the
total absorbed dose and dose rate, the temperature of the sterilization facility, the oxygen availability
and the sample thickness, which in turn governs the oxygen concentration distribution through the
thickness of the implant. In addition, the oxidative process initiated during sterilization can continue,
with variable yet low rates, during shelf storage and implantation (post-irradiation aging). Again,
the rate and extent of oxidative degradation depend on the shelf-aging time and temperature and
on the amount of available oxygen in the shelf and in vivo [19]. Further, it appears that mechanical
stresses developed during in vivo use can also facilitate the oxidative process [23,24]. In summary,
it follows that sterilization by high energy radiation in the presence of air can result in highly variable
oxidation levels in polyethylenes, influenced by multiple factors.

Overall, oxidative degradation has been demonstrated to lead to significant changes in the
mechanical properties of UHMWPE and, in particular, to embrittlement. Brittleness of polymers is well
known to be correlated to the tensile properties [25,26]. Accordingly, an increase in elastic modulus
and a decrease in the elongation to failure, ultimate stress and toughness has been demonstrated by
a number of studies [27–29] (Figure 2); moreover, a decrease in fatigue crack propagation resistance
has also been observed [20,30], while an often dramatic decrease in wear resistance (Figure 3) has been
demonstrated by multiple in vitro and retrieval studies [22,29,31–34].
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Figure 2. Small punch load displacement curves for gamma-air sterilized ultra-high molecular weight
polyethylene (UHMWPE) tibial inserts at surface and subsurface locations: (a) control, unaged;
(b) shelf-aged for 5 years; (c) shelf aged for 10 years. Adapted from [27], with permission.

Wear in this material has typically been measured as weight loss per million cycles after accounting
for absorption of bovine serum during articulation against a metal or ceramic counterface. A control
specimen is typically loaded and soaked in bovine serum but not articulated and fluid absorption is
measured periodically along with worn specimens. Wear rate has also been reported as wear factor,
which is the weight loss normalized by load and the total wear path traveled [35,36].
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It is worth mentioning though, that several in vitro studies reported markedly better wear
performances of gamma-air irradiated polyethylenes vs. unirradiated ones. For example, Essner
and coworkers [37], in a comprehensive study investigating the clinical relevance of hip simulator
experiments, demonstrated that the wear volume of non-sterilized and EtO sterilized cups was twice
that of gamma-irradiated in air cups. Similarly, Affatato et al. [38] showed that after 5M cycles
in a hip simulator, EtO-sterilized specimens wore 1.2 times faster than those gamma-irradiated
and the same result was confirmed even in a subsequent test in a regime of third-body wear [39].
McKellop et al. [40], in another hip simulator experiment, also found indistinguishable wear rates
for two cups, both gamma-irradiated in air, made of different resins (GUR 4150 and 1020, with and
without calcium stearate), and a 54% higher wear rate for a cup made with the same GUR 4150 resin,
sterilized with ethylene oxide.
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Figure 3. Retrieved polyethylene tibial insert showing severe wear damage, including severe
delamination and wear (10 years in vivo).

This likely occurs because, as highlighted above, gamma irradiation results in a combination
of crosslinking and chain scission, the latter prevailing only after an extended time of post
irradiation aging. Given the opposite effect of these two phenomena on the wear resistance of
UHMWPE [17,33,41,42], it becomes apparent that radiation sterilized samples will exhibit less wear
of unirradiated or EtO/gas plasma sterilized ones, at a short post irradiation time scale and storage
conditions that allow crosslinking to prevail to a larger extent than chain scission. On the contrary,
after suitable accelerated ageing or longer real time aging, in the shelf or in vivo, the wear and fatigue
performances of gamma irradiated samples deteriorate considerably as a consequence of oxidative
degradation and negate any short term benefits of crosslinking associated with sterilization methods
that use ionizing radiation [21,29,32,33,43].

This observation prompted researchers in the field to implement strategies to take advantage
of the benefit of the crosslinking induced by radiation treatments, yet minimizing the drawback of
long-term oxidation.

The first adopted measure was to sterilize UHMWPE with high energy radiation in a low-oxygen
environment (vacuum or inert gas, i.e., argon or nitrogen) [10,44–46]. This practice avoids contact
with oxygen during sterilization and, if the liner is wrapped in a suitable barrier packaging, during
the following shelf life as well [11,47]. Unfortunately, it does not prevent contact with the oxygen
solubilized into polyethylene before packaging in the low-oxygen environment, nor with that available
in vivo [43], so that some oxidation has also been observed in these polyethylenes, even if to much
lower levels than for those radiation sterilized in air [11,48,49].
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4. 1st Generation Highly Crosslinked Polyethylene

4.1. Improving the Wear Resistance

By the late 1990s, a large number of laboratory and clinical studies indicated that crosslinking
provides substantial improvement in the wear resistance of UHMWPE. The mechanisms by which
this improvement occurs were elucidated by various researchers [41,42,50–52]. Basically, wear of
UHMWPE is believed to take place via plastic deformation of the polymer, with molecular alignment
in the direction of motion that results in the formation of fine, drawn-out fibrils oriented parallel to
each other. As a result of this arrangement, the UHMWPE wear surface may strengthen along the
direction of sliding, while it weakens in the transverse direction. Wang et al. [50] concluded that,
under the conditions of multi-directional motion, which may apply to both the hip and the knee joint,
this orientation-softening phenomenon is predominantly responsible for the detachment of fibrous
wear debris from the worn surfaces that have been observed in many reports [53–55]. Therefore, it has
been postulated that, since crosslinking induces carbon-carbon bonds between adjacent chains, hereby
reducing the chain mobility and inhibiting such molecular orientation, it would have been efficient
in slowing down the formation of surface fibrils and rendering the polyethylene more resistant to
wear [41,51,56].

Although some controversies do exist in the literature, regarding the chemical mechanisms
of radiation crosslinking of UHMWPE [19,56–58], most authors agree that the crosslinking density
increases linearly up to radiation doses in the order of 100 kGy, above which it tends to a plateau
(Figure 4a) [42]. However, the decrease in the tensile and fracture toughness continues at a radiation
dose higher than 100 kGy [59,60]. Therefore, most of the “1st generation” highly crosslinked
polyethylenes appeared in experimental in vitro and clinical studies at the end of the 1990s and
in the early 2000s were irradiated to doses between 50 and 105 kGy [5].
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4.2. How to Prevent Oxidation

However, as mentioned in the previous paragraph, numerous studies had already demonstrated
an unacceptably low stability to oxidation of irradiated polyethylene. As a consequence, stabilization
strategies were developed in order to minimize post-irradiation oxidative ageing. Basically,
two different strategies were adopted: one involved post-irradiation melting of the polyethylene
(remelting) [41,56], while the other included a thermal treatment, as well, but at a temperature below
complete melting of the crystallites (annealing) [61,62]. In both cases, the rationale for the protocol was
to eliminate or reduce the residual radicals, trapped in the crystalline phase of the polymer, as to avoid
the oxidation cascade.
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4.3. Microstructure, Mechanical Properties and Wear

Irradiation of polyethylene results in a slight increase in crystallinity with increases in the radiation
dose, along with a marked decrease in elongation to failure and impact strength, a moderate decrease
in ultimate strength and a slight increase in yield strength [41,63]. Post-irradiation remelting causes
a significant decrease in crystallinity, accompanied by a reduction in yield and ultimate strengths [61,63]
This likely occurs because the kinetics of crystallization is affected by the formation of a network
structure due to the presence of crosslinks, which reduce the chain mobility and makes it more difficult
for PE macromolecules to reptate and enter into growing lamellae. As a consequence, recrystallization
of a radiation crosslinked UHMWPE always results in decreases in crystallinity [56,64]. Such a decrease
in crystallinity is also associated to a decrease in fatigue resistance (Table 1) [30,60,63,65–67]. On the
contrary, post-irradiation annealing does not cause a reduction in crystallinity, thus preserving superior
yield, ultimate and fatigue properties, with respect to remelting [61,65–67], at least in the short term.

Table 1. Physical properties and fatigue crack propagation data for a set of standard and
crosslinked/remelted UHMWPE (GUR 1050), at increasing gamma radiation doses. All crosslinked
samples were remelted at 170 ◦C for 4 h and subsequently annealed at 125 ◦C for 2 days. Adapted
from [60] with permission.

Control 50 kGy 100 kGy 200 kGy

Crystallinity (%) 50.1 ± 0.5 45.6 ± 0.7 46.3 ± 0.8 47.1 ± 0.4
Lamellar thickness (nm) 20.0 18.1 18.7 19.1
Elastic modulus (MPa) 495 ± 56 412 ± 50 386 ± 23 266 ± 30

Yield stress (MPa) 20.2 ± 1.0 19.9 ± 0.8 18.9 ± 0.7 20.2 ± 1.0
True stress at break (MPa) 315.5 ± 31.6 237.6 ± 12.3 185.7 ± 7.5 126.0 ± 14.0

Decrease in true stress at break (%) - 24 41 60
∆Kincep (MPa

√
m) 1.41 0.91 0.69 0.55

Decrease in ∆Kincep (%) - 35 51 61

Both highly crosslinked formulations demonstrated superior wear resistance during in vitro tests,
when compared to unirradiated or conventional gamma air/gamma inert sterilized polyethylenes.

For example, the wear rates measured using a bi-directional pin-on-disk (POD) on a set
of polyethylenes, e-beam irradiated at room temperature in air to doses ranging from 25 to
300 kGy and subsequently melted (150 ◦C for 2 h under vacuum), were found to decrease sharply
with increasing the radiation dose: from 9.6 ± 0.7 g/million cycles for the control, unirradiated
sample, to 1.6 ± 0.3 g/million cycles for the 100 kGy irradiated and remelted sample, approaching
an undetectable wear rate for radiation doses of the order of 300 kGy (Figure 4b) [42].

Similarly, acetabular cups machined from a polyethylene gamma-irradiated in air at doses ranging
from 33 to 1000 kGy, remelted and EtO sterilized, demonstrated an 87% wear reduction with increase
in the radiation dose from 33 to 95 kGy, when tested for 5 million cycles in a hip simulator; again,
the wear decreased to undetectable levels at a radiation dose higher than 200 kGy [41]. In the same
work, by observing the trade-off between the reduction in tensile properties and the increase in wear
resistance with increasing the radiation dose, the authors concluded that approximately 100 kGy
represents the most appropriate dose to reduce the wear below the threshold for clinically significant
effects, simultaneously preserving sufficient tensile properties.

Kurtz et al. [61] summarized the wear test results of seven independent hip simulator studies,
all using the same hip simulator design and comparable conditions, of a conventional, gamma inert
sterilized polyethylene (30 kGy gamma radiation, in nitrogen: N2-Vac™ Stryker Howmedica Osteonics,
Mahwah, NJ, USA) vs. a highly crosslinked and annealed UHMWPE (75 kGy gamma radiation,
annealing at 130 ◦C, 30 kGy gamma radiation in nitrogen for sterilization purpose, Crossfire™, Stryker
Howmedica Osteonics, Mahwah, NJ, USA). Counterfaces included CoCr, alumina, and Zirconia
ceramic femoral heads with sizes ranging between 28 and 36 mm. The linear wear rate was calculated
in the first 2 to 3 million cycles of the test to facilitate comparison between studies. Despite a relatively
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broad distribution in wear rates, which may be partly explained by variations in liner design, femoral
head material, and femoral head size, the survey demonstrated a 92% reduction in median wear
rate for the highly crosslinked and annealed UHMWPE, relative to the conventional, gamma inert
sterilized polyethylene.

4.4. Does the Counterface Matter with Crosslinked Polyethylene?

The influence of the type of counterface on the wear behavior of crosslinked polyethylene was
also investigated. Bistolfi and coworkers [64] showed that a moderate dose (50 kGy) of radiation
crosslinking increased the wear resistance of UHMWPE against a CoCr counterface in a POD apparatus
7-fold, but the coupling of remelted, crosslinked UHMWPE against a smoother alumina counterface
led to a 20-fold increase in wear resistance. Affatato et al. [68] tested e-beam highly crosslinked
and remelted hip liners (95 kGy at 40 ◦C, thermally treated at 150 ◦C for 6 h, Gas Plasma sterilized.
Longevity™, Zimmer Inc., Warsaw, IN, USA) in a hip simulator for 3 M cycles, against deliberately
scratched femoral heads (mean surface roughness, Ra: 0.12–0.14 µm). Even in such demanding
conditions, they reported a 40 times lower wear rate for the crosslinked material than for conventional,
gamma-nitrogen sterilized UHMWPE.

A previous study [36] also demonstrated that moderately crosslinked UHMWPE (40 kGy in
vacuum, no thermal treatment) exhibited a 30% reduction in wear rate compared to unirradiated
polyethylene, when articulating on smooth CoCr femoral heads. However, upon intentionally
scratched CoCr femoral heads the wear rate was found to be higher for the moderately crosslinked
polyethylene than for the non-crosslinked materials. Most importantly, the moderately crosslinked
polyethylene generated a higher percentage volume of smaller, more biologically active particles, thus
resulting in a similar index of functional biological activity. The authors concluded that this evidence
provides a clear message that is preferable to use crosslinked materials against damage-resistant
ceramic heads, to prevent the possibility of wear acceleration owing to third body damage to metallic
femoral heads. Another study by the same group [69] demonstrated a fivefold lower wear for 75
and 100 kGy gamma irradiated and remelted polyethylenes, compared to control unirradiated or
25 kGy irradiated in air, when tested for 5 M cycles in a hip simulator, against CoCr femoral heads.
The wear reduction was found to be significantly higher for the material irradiated to 100 kGy. In
this experiment, a large reduction in the functional biological activity of the wear particles generated
by the highly crosslinked material was also observed and it was attributed to the overall lower wear
volume found with this material. The same study also highlighted the influence of “bedding-in”,
due to creep deformation, on the greater wear volume observed in the first million cycles for all
polyethylene configurations.

4.5. Thermal Treatments and Oxidation Stability

Regarding the oxidation stability of the two formulations of 1st generation highly crosslinked
polyethylenes, McKellop and coworkers compared the oxidation stability and wear resistance of the
same set of samples mentioned above [41], with or without remelting, following accelerated ageing at
80 ◦C in air for 20 to 30 days. The remelted cups exhibited little or no oxidation after artificial aging
and no white bands, that are generally interpreted as a visual indication of oxidation [17], were present
on the cross sections of the remelted cups. In contrast, without remelting, there was considerable
oxidation of the crosslinked cups, with subsurface oxidation peaks. White bands were present on the
cross sections at the levels corresponding to maximum oxidation. Despite this oxidation, the wear
rates of the cups, with or without remelting, were comparable before and after aging. However, it was
observed that, being that the oxidized zones were located about 0.5 mm below the surface and given
the low wear rates of the crosslinked cups, the wear did not penetrate into the oxidized layers of the not
remelted cups, under the conditions of the experiment, but that, likely, this subsurface oxidation could
cause an increase in the wear rate after extended clinical use. This observation prompted the authors to
postulate that remelting is an essential step to optimize the long-term performance of crosslinked cups.
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Muratoglu and coworkers [70] tested the oxidative stability of two highly crosslinked
polyethylenes, one of which had been ebeam irradiated to 100 kGy, remelted (150 ◦C, 2 h) and
terminally gas plasma sterilized, while the other had been gamma irradiated to 75 kGy, annealed
below the melting temperature (120 ◦C) and gamma sterilized (25–35 kGy) in nitrogen. The POD
wear rates of the two unaged samples were comparable and much lower than those of conventional,
uncrosslinked samples. Residual free radicals were detected in the annealed samples by Electron Spin
Resonance (ESR), while they were not found in the remelted samples. Following accelerated ageing in
air at 80 ◦C for 3 weeks, the annealed samples developed significant oxidation and their wear rate was
found to increase by over an order of magnitude, while no oxidation or significant changes in the wear
rate were observed for the remelted formulation.

In another study [71], the same annealed formulation was compared to a warm irradiated (95 kGy
at 120 ◦C) and remelted PE. The two samples were real-time aged, in a pure, distilled water bath
at 40 ◦C for 128 weeks. Again, at increasing aging times, the annealed sample showed increasing
oxidation, with a maximum located at a subsurface level, while no oxidation was detected in the
remelted PE (Figure 5). Upon testing the hip simulator wear rate of the real-time aged, annealed
components, the authors also observed that it was higher than the literature reported values of other
contemporary highly crosslinked UHMWPEs.
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Figure 5. Oxidation profiles of conventional UHMWPE (gamma-inert sterilized, 25–40 kGy), irradiated
and once-annealed UHMWPE (CrossfireTM Stryker-Howmedica-Osteonics; Rutherford, NJ, USA), and
irradiated and melted UHMWPE (DurasulTM Zimmer, formerly Centerpulse; Austin, TX, USA) after
128 weeks of real-time aqueous aging at 40 ◦C. Reproduced with permission from [71].

Collier et al. in an extensive study that compared the physical and mechanical properties
of commercial, 1st generation crosslinked polyethylenes from six orthopaedic manufacturers [72],
also concluded that, again, crosslinked/annealed PE was prone to oxidation, following accelerated
aging, while all of the tested crosslinked/remelted materials showed oxidation resistance equal to
that of never-irradiated polyethylene before and after accelerated aging and thus have the potential to
remain relatively unaffected by oxidation throughout their duration in vivo.

Most of the aforementioned studies attributed the differences in the oxidative stability between
remelted and annealed crosslinked polyethylenes to that a thermal treatment above the melting
temperature (remelting), leads to a complete melting of the polymer crystallites, hereby allowing
termination of the radicals trapped in the crystalline phase and thus brings the amount of residual
radicals to undetectable levels [71,73]. Conversely, annealing just below the melting temperature
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leaves a measurable amount of free radicals in the polymer matrix, that can react with oxygen over
time, thus triggering the oxidation cascade [61].

4.6. Clinical Outcomes and Retrieval Studies

Several clinical studies have reported superior in vivo wear performance of highly crosslinked
PE, compared to conventional polyethylene in hip replacements [74–87], most of which were included
in an extensive, systematic review of the clinical outcomes of 1st generation crosslinked polyethylene
appearing at the beginning of the present decade [88]. Conversely, very few studies exist on the clinical
performances of highly crosslinked polyethylene in the knee [89–91], partly because of a more limited
introduction of this material in knee arthroplasty, due to recurrent concerns on its suitability, as a result
of the loss in mechanical properties with increasing doses of radiation [88] and partly because of the
lack of validated methods of determining the wear and damage rate of these components in vivo [56].

A number of retrieval studies have also reported on the chemical, physical and mechanical
properties of these highly crosslinked PE following in vivo aging. According to predictions of in vitro
studies, oxidation of the highly crosslinked/annealed formulation was reported by a number of
authors [92–95]. Highly variable oxidation levels were measured in all the retrieval groups included
in these studies, although none of the components had been explanted specifically for polyethylene
wear. All studies agreed that the highest oxidation is generally measured at the superior rim of the
component and not at the bearing surfaces and it was postulated that this occurs because of the
greater exposure of the rim area, compared to the bearing area, to molecular oxygen in the in vivo
environment [96].

On the other hand, failures of some specific designs of highly crosslinked/remelted have also been
described in the literature [97,98]. Rim fractures have been observed in some components and have
been attributed to the combination of reduced fatigue resistance induced by irradiation and remelting,
with malpositioning and with particularly demanding designs, in terms of stress concentration [97].

As already mentioned, crosslinked/remelted polyethylenes did not contain free radicals at the time
of implantation and were expected to be stable to oxidation. Unexpectedly, some recent literature studies
reported that measurable levels of oxidation were observed in some retrievals [99–104]. Two concurrent
causes have been tentatively identified to explain such a surprising phenomenon. One is that the
cyclic loading to which the components are exposed during in vivo service might have generated free
radicals, initiating mechano-oxidation [24,102]. The other involves the lipids absorbed in vivo from the
synovial fluid [105]. Oral et al. [106] demonstrated that, under accelerated aging conditions, squalene,
a precursor in cholesterol synthesis, has the potential to accelerate oxidation in radical-free, irradiated
and melted UHMWPE.

Although the clinical significance of such adverse behaviors of the 1st generation highly
crosslinked PE is still under debate, their occurrence stimulated the research of alternative polyethylene
formulations to overcome the observed drawbacks.

5. 2nd Generation Highly Crosslinked Polyethylene

5.1. The Need for a 2nd Generation Crosslinked Polyethylene

The rationale at the basis of a new generation of highly crosslinked polyethylene was to maintain
the superior wear resistance demonstrated by the 1st generation crosslinked PE, while also retaining
the mechanical properties and fatigue resistance of the uncrosslinked material and ensuring stable
properties, thus oxidative stability, over time.

5.2. Sequentially Irradiated and Annealed Highly Crosslinked Polyethylene

As discussed in the previous paragraph, annealing below the melting temperature preserves most
of the original UHMWPE microstructure. Highly crosslinked/annealed PE had been demonstrated to
retain mechanical properties and fatigue resistance similar to conventional, gamma-nitrogen sterilized



Materials 2017, 10, 791 11 of 22

(but unoxidized) material; however, the presence of free radicals in the latter leaves the polyethylene
exposed to oxidation [62]. Dumbleton and coworkers [107] proposed that it might have been possible
to create a highly crosslinked PE by using a sequential irradiation and annealing process. Since
a high (≥100 kGy) radiation dose creates many crosslinks that reduce the chain mobility, preventing
an efficient elimination of the free radicals by annealing, they postulated that by using a low radiation
dose (30 kGy), hereby spacing the crosslinks wider and providing higher chain mobility, annealing
would have been more efficient in eliminating free radicals. High crosslinking levels could still
be obtained by sequentially repeating the irradiation and annealing steps so that the polyethylene
cumulatively receives a high dose of radiation (approx. 90 kGy).

This 2nd generation crosslinked PE (X3™, Stryker Orthopaedics, Mahwah, NJ, USA) was terminally
sterilized with gas plasma, so as to avoid the introduction of more free radicals with sterilization.
Literature studies reported similar or only slightly reduced mechanical and fatigue properties compared
to conventional PE [62,67,107,108] and superior wear resistance in vitro [67,107–109] and in vivo [110,111].
However, incomplete melting following irradiation leaves a low but measurable amount of free radicals
in the material [107,109], that was demonstrated to oxidize in vivo [100,103,112–114]. Although most
studies agreed that the measured levels of oxidation were generally low, in particular much lower
than those reported for the 1st generation once-annealed highly crosslinked PE [100], and were not
associated with a decline in the clinical performance of the sequentially annealed PE [113], observations
of pitting and substantial material loss as well as subsurface white banding and cracking were also
reported in a knee retrievals study [114]. More investigations and longer follow-up are therefore
necessary to assess the overall in vivo performance of this type of 2nd generation highly crosslinked PE.

5.3. Antioxidants: The New frontier

An alternative approach to the 2nd generation highly crosslinked polyethylene involves the
addition of an anti-oxidant stabilizer, in order to efficiently inhibit the oxidative degradation, without
the need for a thermal treatment of the irradiated polyethylene, so as to preserve the original
morphology, mechanical properties and fatigue resistance [115]. Although this is a very common
approach to stabilize polyolefins against oxidation [116], the addiction of additives to biomedical
UHMWPE had created concerns related to their biocompatibility for a long time. The first scientific
papers and patents mentioning the possibility of using vitamin E (α-tocopherol) as a biocompatible
stabilizer for UHMWPE [18,117] and exploring the subject are dated back to the late 1990s and
onwards [118–120], but the first vitamin E-stabilized UHMWPE did not appear on the orthopedic
market before 2007 [121,122]. Since then, though, a number of studies have investigated the
performances of crosslinked UHMWPE incorporating vitamin E [115,121–123], at the moment by
far the most used, and other stabilizers [124–128].

Two methods are currently used to incorporate vitamin E into UHMWPE [5,115]. One involves
blending of vitamin E with UHMWPE powder before consolidation and radiation crosslinking [121].
The presence of vitamin E, a radical scavenger, in UHMWPE during irradiation protects the
polymer from oxidation [118,129–131] but reduces the efficiency of crosslinking [120,132]; therefore,
the balance between the vitamin E concentration and the radiation dose must be optimized to obtain
a simultaneously wear- and oxidation-resistant UHMWPE [133]. The alternative method is the
diffusion of vitamin E into UHMWPE after radiation crosslinking [122]. The crosslinking efficiency
of UHMWPE is not adversely affected by this method, but a homogenization step is required after
incorporation to obtain adequate antioxidant concentration throughout the implants [134].

5.4. Mechanical Properties, Oxidation Stability and Wear Performances

Several studies have investigated the mechanical properties of both formulations of vitamin E
stabilized PE. No significant differences in the static mechanical properties, nor in the fatigue crack
propagation resistance have been observed when comparing virgin UHMWPE with blends containing
up to 5000 ppm of vitamin E [118,135]. Conversely, it has been demonstrated that highly crosslinked



Materials 2017, 10, 791 12 of 22

vitamin E-stabilized UHMWPE exhibits improved material properties compared to 1st generation
highly crosslinked PE. For example, vitamin E-doped 100-kGy irradiated UHMWPE demonstrated
a 58% improvement in fatigue strength compared to irradiated and melted UHMWPE [136], attributed
to the avoidance of the loss of crystallinity during post-irradiation melting. Moreover, the ultimate
strength, yield strength, elongation at break, and fatigue resistance of crosslinked vitamin E-stabilized
UHMWPE were significantly higher than that of 100 kGy–irradiated and melted UHMWPE [137].

In addition, Vitamin E-stabilized PE has demonstrated superior oxidation stability under a variety
of accelerated aging conditions. For example, blends of UHMWPE with 500, 1000 and 5000 ppm of
vitamin E, gamma irradiated to doses up to 100 kGy were found to be more oxidatively stable than
virgin, unirradiated UHMWPE, following accelerated aging at 90 ◦C in air [129]. Oral et al. [136]
showed that vitamin E-doped, irradiated UHMWPEs developed significantly lower oxidation levels
compared to 100-kGy irradiated UHMWPE after 5 weeks of accelerated aging at 80 ◦C in air, while
Kurtz and coworkers [133] found that blending PE with doses of vitamin E as low as 125 ppm
was sufficient to avoid oxidation and maintain baseline mechanical and chemical properties, after
irradiation up to 75 kGy, through two weeks of accelerated aging, according to ASTM F 2003 (i.e., 70 ◦C
and 5 atm oxygen) (Figure 6).
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Figure 6. (a) Small punch curves of virgin UHMWPE irradiated at 75 kGy in air: control and aged 2/4
weeks (ASTM F2003-00); (b) Small punch curves of UHMWPE blended with increasing concentrations
(0–500 ppm) of vitamin E, irradiated at 75 kGy in air and aged 4 weeks; (c) Oxidation indexes of
UHMWPE blended with increasing concentrations of vitamin E (0–500 ppm), irradiated at 75 kGy in
air and aged 2/4 weeks. Adapted from [133], with permission.

The wear resistance of this 2nd generation highly crosslinked formulation has been extensively
tested in several in vitro experiments, under a variety of challenging conditions, and has been



Materials 2017, 10, 791 13 of 22

compared to conventional and 1st generation highly crosslinked formulations before and after both
accelerated and shelf-aging.

In a POD wear test, highly crosslinked Vitamin E-doped PE exhibited comparable wear rates to
1st generation highly crosslinked PE irradiated to the same dose [136], while it demonstrated a 4-fold
to 10-fold decrease, respectively, from that of conventional UHMWPE in a hip simulator experiment
with and without the addition of third-body particles [137].

Bellare et al. [138] compared the wear rates of vitamin E blended (1000 and 5000 ppm) vs.
virgin UHMWPE, gamma irradiated to 30 and 100 kGy, before and after shelf aging for two years.
The samples were also characterized for physical properties and crosslinking density: it was found that
the crosslinking density increases with the radiation dose, but decreases with the vitamin E content.
This was not surprising, as it is known that vitamin E, as a radical scavenger, can inhibit the crosslinking
reactions [19]. Accordingly, the wear rates of the vitamin E containing samples were comparatively
higher than that of virgin PE irradiated to the same dose, but lower than that of unirradiated PE.
Conversely, after two years of shelf aging, virgin, irradiated, UHMWPE showed high oxidation levels,
while vitamin E, as expected, proved to be very effective in retarding oxidation.

Similarly, while comparing the wear behavior of standard, unirradiated PE to that of two
formulations of crosslinked polyethylene, with and without vitamin E (1000 ppm), both irradiated
to 70 kGy, Affatato et al. [139] found that the vitamin E blended PE exhibited a much lower wear
than conventional ultra-high molecular weight polyethylene, but wore more than the traditional
crosslinked polyethylene. Again, this was correlated to the lower crosslinking density induced by the
same radiation dose in the presence of vitamin E.

These observations suggest that, if vitamin E is necessary to avoid oxidation, then the radiation
dose must be optimized in order to obtain enough crosslinking density to preserve the wear resistance
of unstabilized, crosslinked PE.

Given the concerns mentioned above on the use of 1st generation highly crosslinked PE in knee
arthroplasty, the vitamin E crosslinked formulations represented an attractive alternative, in particular
in this application. For this reason, many experimental studies investigated the performance of vitamin
E stabilized PE for use in the knee with promising results. For example, while comparing the wear
rate of two designs (cruciate-retaining and posterior-stabilized) of highly crosslinked UHMWPE
doped with vitamin E to that of γ-inert–sterilized direct compression-molded UHMWPE, Haider and
coworkers [140] found that the former exhibited up to 86% reduction in wear for both designs.

In another knee simulator experiment, UHMWPE blended with 1000 ppm of vitamin E and
radiation sterilized with 30 ± 2 kGy, was artificially aged according to ASTM F2003-2 and tested
for 5 million cycle without showing structural failures, as conventional PE did under similar
conditions [141]. Similarly, vitamin E-stabilized highly crosslinked components tested after accelerated
aging, in comparison to standard, unaged, UHMWPE, demonstrated a 57% reduction in wear [142].

Teramura and coworkers [143] evaluated the wear behavior of direct compression molded tibial
components, made of virgin and vitamin E blended (3000 ppm) UHMWPE. The components were
gamma sterilized in air (ca. 25 kGy) and aged at 80 ◦C in air for 23 days. It was demonstrated that
the wear behavior of the vitamin E-containing UHMWPE was not significantly affected by aging and
showed a 12-fold reduction, compared to that of the aged virgin UHMWPE. The wear debris particles
were also evaluated for shape and size and no significant differences were observed between the
two materials.

5.5. The Effects of Vitamin E on UHMWPE Wear Debris

Bladen et al. [144] demonstrated, as well, that particles generated by UHMWPE in a pin-on-plate
wear simulator with and without VE were not significantly different in size distribution. They also
investigated the biological activity of particles containing doses of vitamin E up to 30,000 ppm,
and found that the vitamin E-containing particles secreted much lower levels of osteolytic mediators,
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tumor necrosis factor-alpha and interleukin, than particles of virgin UHMWPE at comparable
volume doses.

To investigate the effects of particulate debris in vivo, Bichara et al. [145] compared the effect
of clinically-relevant sized particulate debris from a crosslinked vitamin E-doped (8000 ppm) vs.
a crosslinked/remelted UHMWPE bearing component in a murine calvarial bone model. A statistically
significant difference in the amount of fibrous tissue was observed between the two materials,
with virgin UHMWPE wear particles inducing the greatest amount of inflammatory tissue.

In addition, it has been shown that vitamin E may also exert some antibacterial activity [146–148].
This is likely due to differences in the surface hydrophilicity between virgin and vitamin E-stabilized
polyethylene that in turn results in slightly different protein adhesion and biofilm formation.

5.6. Clinical Outcomes and Retrieval Studies

Literature reports on the clinical outcome of vitamin E stabilized PE are still quite limited in
number, but their results are overall promising.

One recent study [149] comparing vitamin E-blended crosslinked polyethylene and conventional
gamma-inert sterilized at three years follow up, demonstrated that the femoral head penetration
was significantly lower for vitamin E-blended HXLPE and similar to that reported for 1st generation
HXLPE. Also, no specific complications related to the material were reported in the short-term.

Prospective studies at two to three years follow-up demonstrated no significant differences in
femoral head penetration rates between vitamin E doped and virgin highly crosslinked liners [150–152].

However, one study reporting head penetration into vitamin E doped highly crosslinked liners
at five years demonstrated less wear compared to that previously reported for 1st generation highly
crosslinked PE, at the same interval of five years. Further, the study demonstrated that, after settling of
the liners in the early period, no significant head penetration occurred from two- to five-year follow-up
and the authors remarked that, overall, the wear observed in the study was well below that at which
osteolysis becomes a serious concern [153].

Rowell et al. [154] analyzed 15 surgically retrieved vitamin E-stabilized crosslinked UHMWPE
liners to assess their oxidative stability, extent of lipid absorption in vivo, free radical content,
hydroperoxide index and extent of visible wear damage after in vivo service (0.1–36.6 months). Their
results evidenced promising results, in terms of oxidative resistance and absence of significant surface
damage, while also suggesting long-term stability through a reduction in free radical content over time
and lack of oxidation after ex vivo aging in air.

Similarly, Currier et al. [155] analyzed 25 antioxidant containing polyethylene tibial insert
retrievals, including one formulation with an antioxidant other than vitamin E, with in vivo time of
0–3 years. All of the antioxidant materials appeared to be effective at minimizing oxidation over the
in vivo period of the study. In addition, the authors speculated that the absence of subsurface peak
oxidation suggest that antioxidant PE could be successful in preventing oxidation-mediated fatigue.

6. Conclusions

UHMWPE remains the most commonly used bearing material in total joint arthroplasty due to its
long and relatively successful history. However, UHMWPE is a complex material and its mechanical
and tribological behavior is strongly dependent on the morphology and chemical alterations induced
by processing conditions, such as sterilization using ionizing radiation or crosslinking. The need for
increasing the life expectancy of the implants, in order to meet the demand in younger and active
patients, has led to a considerable evolution in the manufacturing of the UHMWPE orthopedic devices
over the last few decades. From gamma-air sterilized “historical” polyethylenes, to the first and second
generation of highly crosslinked materials, the wear resistance, mechanical properties and overall
performances of the UHMWPE biomaterials have greatly improved, as has been extensively reported
in the literature. Advances in the sterilization techniques have enabled a substantial reduction of
the oxidative degradation experienced by “historical” implants, greatly lowering the incidence of
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wear-induced osteolysis and early mechanical failures. First generation crosslinked PE has further
reduced wear, but at the expenses of fatigue resistance and/or oxidative stability, while 2nd generation
crosslinked PE has been introduced to overcome the latter drawback and, overall, it has shown
promising, yet early results, despite some issues regarding the oxidative stability of the sequentially
irradiated and annealed PE.

Nevertheless, the clinical outcome of some of the newest formulations is still largely unexplored.
It is therefore of paramount importance to ensure a close, continuous monitoring of the clinical
performances of the contemporary UHMWPE biomaterials.
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