Launching an Interactive Cancer Projects Map: A Collaborative Approach to Global Cancer Research and Program Development

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1200/JGO.2015.000034</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:34375115</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

Launching an Interactive Cancer Projects Map: A Collaborative Approach to Global Cancer Research and Program Development

Edward L. Trimble
Ali A. Chisti
Jane A. Craycroft
Kalina Duncan
Manaswi Gupta
Daniel Gutierrez
Ilyana Rosenberg
Nour Sharara
Sudha Sivaram
Hillary M. Topazian
Jing Jing Wang
Makeda J. Williams
Franklin W. Huang
Ami S. Bhatt

F.W.H. and A.S.B. contributed equally to this work.

Corresponding author:
Ami S. Bhatt, MD, PhD,
Departments of Medicine and Genetics,
Center for Innovation in Global Health, Stanford University, 269 Campus Dr, Stanford, CA 94305; e-mail: asbhatt@stanford.edu

Despite living in a connected world, many research projects are developed with a so-called “convenience bias,” resulting in partnerships based on existing professional networks and collaborations. In addition, community-based cancer control programs are often implemented independently to address specific urgent and existing needs. Consequently, these projects and programs do not benefit as much as they could from best practices and protocols developed through other long-term engagements. As the global burden of cancer increases, cancer researchers and program managers are likely to benefit from a more complete understanding of ongoing work in cancer control. The limited availability of tools for collaboration and sharing of best practices have resulted in a call to action for the scientific community to partner on the development of a platform that provides knowledge of existing resources and expertise.

Global Oncology (GO), a nonprofit organization, and the Center for Global Health (CGH) at the National Cancer Institute (NCI) have developed a Web-based tool that facilitates planning of research, training opportunities, and community-based programs in cancer control. This tool, called the Global Cancer Project Map (GCPM; http://gcpm.globalonc.org), is an interactive Web site that enables viewers to locate cancer projects and research programs as displayed on a world map (Figure 1). GCPM currently displays more than 800 projects of more than 620 investigators working at more than 160 institutions in 88 countries (Table 1). The inaugural version of the GCPM was officially launched on March 25, 2015, at the Symposium on Global Cancer Research, sponsored by NCI, the Consortium of Universities for Global Health (CUGH), and the Dana-Farber Cancer Institute.

The data initially used to populate the GCPM consisted of projects supported by NCI extramural international awards, including direct grants to foreign institutions. Data collection and upload have also begun on the international endeavors of NCI-designated cancer centers and other international partners, such as the American Society of Clinical Oncology and the Union for International Cancer Control. This resource establishes a broad base of global cancer-related projects that will continually expand as data are added to the site.

At present, users can access the Web site from anywhere in the world at no cost. Designed to be streamlined and user-friendly, the site is optimized for database performance, search speed, and the ability to visualize projects and potential collaborators. Projects can be searched by keyword, cancer type, project type (eg, basic research, training, cancer screening), and country. Additional descriptive statistics such as the Human Development Index or cancer incidence and prevalence figures can easily be overlaid on the map to identify disparities between relative research investment and cancer epidemiology. GCPM offers the potential to be used as a resource for current cancer-related project information, uniting and educating stakeholders at all levels in their cancer control efforts.

It is projected that the linkages facilitated by GCPM will catalyze a process of addressing cancer control in parts of the world where we see overwhelming inequities and disparities while minimizing duplication of efforts, which will lead to more efficient use of resources. Global oncology literature comprises only a small portion of published work and often faces a lengthy process to enter the public domain. GCPM makes information about these ongoing projects freely available to allow cancer researchers and program managers access to a platform where information on global cancer work can be exchanged and ideas can be developed. This economy of scale has
Figure 1 – Homepage for the Global Cancer Project Map.

Projects
875 projects, 88 countries, 30 cancer types

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>PRINCIPAL INVESTIGATOR/ PROGRAM DIRECTOR</th>
<th>LOCATIONS</th>
<th>CANCER TYPE</th>
<th>START DATE</th>
<th>END DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Mitogen-induced G-Protein-coupled Receptor</td>
<td>Kathleen Kelly</td>
<td>Plaza Collejo de Santa Cruz, 8, 47002 Valladolid, Valladolid, Spain - Campus Infanta Lourdes I, 46100 Albacete, Spain</td>
<td>Colorectum, Prostate, Thyroid</td>
<td>2010-03-28</td>
<td>2015-03-27</td>
</tr>
<tr>
<td>A Data Resource for Analyzing Blood and Marrow Transplants</td>
<td>Mary Philippines Honore</td>
<td>302, 1125 Chicago, IL 60616 USA, 8 Main St, Ledyard, CT 06339 USA, 1301 W 55th St, Chicago, IL 60612 USA</td>
<td>Non-Hodgkin lymphoma</td>
<td>2010-05-11</td>
<td>2015-06-30</td>
</tr>
<tr>
<td>A Glycopeptide From Intestinal Cytotoxins: A Novel Anticancer Lead</td>
<td>Joseph Burch</td>
<td>Queens University, 1-38 University Avenue, Kingston, ON K7L 2V8, Canada</td>
<td>Bladder</td>
<td>2010-03-28</td>
<td>2015-03-27</td>
</tr>
</tbody>
</table>
great utility in hastening progress in this rapidly developing field. Ongoing and planned enhancement of Web site content with additional projects from partnering governmental, nongovernmental, and academic sources will help facilitate partnerships and collaborations in areas that can improve research and control and contribute to the overall reduction of the global burden of cancer.

DOI: 10.1200/JGO.2015.000034
published online ahead of print at jgo.ascopubs.org on September 23, 2015
Edward L. Trimble, National Cancer Institute, Center for Global Health, Bethesda, MD; Ali A. Chisti, Global Oncology, Boston, MA, and University of Hawaii, Honolulu, HI; Jane A. Craycroft, Global Oncology, Boston, MA, and Dana-Farber Cancer Institute, Boston, MA; Kalina Duncan, National Cancer Institute, Center for Global Health, Bethesda, MD; Manaswi Gupta, Global Oncology, Boston, MA, and Broad Institute of MIT and Harvard, Cambridge, MA; Daniel Gutierrez, Global Oncology, Boston, MA; Ilyana Rosenberg, Global Oncology, Boston, MA; Nour Sharara, Global Oncology, Boston, MA; Sudha Sivaram, National Cancer Institute, Center for Global Health, Bethesda, MD; Hillary M. Topazian, National Cancer Institute, Center for Global Health, Bethesda, MD; Jing Jing Wang, Global Oncology, Boston, MA; Makeda J. Williams, National Cancer Institute, Center for Global Health, Bethesda, MD; Franklin W. Huang, Global Oncology, Boston, MA, and Dana-Farber Cancer Institute, Boston, MA; Ami S. Bhatt, Global Oncology, Boston, MA, and Stanford University, Stanford, CA.

Supported by the National Cancer Institute, which provided funding for work on the Global Cancer Project Map.