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Fusobacterium nucleatum in Colorectal Carcinoma
Tissue According to Tumor Location

Kosuke Mima, MD, PhD1,15, Yin Cao, ScD2,3,4,15, Andrew T. Chan, MD, MPH2,3,5,15, Zhi Rong Qian, MD, PhD1,15,
Jonathan A. Nowak, MD, PhD6, Yohei Masugi, MD, PhD1, Yan Shi, MD, PhD1, Mingyang Song, MD, ScD2,3,4, Annacarolina da Silva, MD1,
Mancang Gu, PhD1, Wanwan Li, MD1, Tsuyoshi Hamada, MD, PhD1, Keisuke Kosumi, MD, PhD1, Akiko Hanyuda, MD, MPH1,
Li Liu, PhD1, Aleksandar D. Kostic, PhD7,8,9, Marios Giannakis, MD, PhD1,8,10, Susan Bullman, PhD1,8, Caitlin A. Brennan, PhD11,
Danny A. Milner, MD, MSc6,11, Hideo Baba, MD, PhD12, Levi A. Garraway, MD, PhD1,8,10, Jeffrey A. Meyerhardt, MD, MPH1,
Wendy S. Garrett, MD, PhD1,8,11, Curtis Huttenhower, PhD7,8,13, Matthew Meyerson, MD, PhD1,8, Edward L. Giovannucci, MD, ScD4,5,14,16,
Charles S. Fuchs, MD, MPH1,5,16, Reiko Nishihara, PhD1,4,7,14,16 and Shuji Ogino, MD, PhD, MS1,6,14,16

OBJECTIVES: Evidence suggests a possible role of Fusobacterium nucleatum in colorectal carcinogenesis, especially in right-
sided proximal colorectum. Considering a change in bowel contents and microbiome from proximal to distal colorectal segments,
we hypothesized that the proportion of colorectal carcinoma enriched with F. nucleatummight gradually increase along the bowel
subsites from rectum to cecum.
METHODS: A retrospective, cross-sectional analysis was conducted on 1,102 colon and rectal carcinomas in molecular
pathological epidemiology databases of the Nurses’ Health Study and the Health Professionals Follow-up Study. We measured the
amount of F. nucleatum DNA in colorectal tumor tissue using a quantitative PCR assay and equally dichotomized F. nucleatum-
positive cases (high vs. low). We used multivariable logistic regression analysis to examine the relationship of a bowel subsite
variable (rectum, rectosigmoid junction, sigmoid colon, descending colon, splenic flexure, transverse colon, hepatic flexure,
ascending colon, and cecum) with the amount of F. nucleatum.
RESULTS: The proportion of F. nucleatum-high colorectal cancers gradually increased from rectal cancers (2.5%; 4/157) to cecal
cancers (11%; 19/178), with a statistically significant linear trend along all subsites (Po0.0001) and little evidence of non-linearity. The
proportion of F. nucleatum-low cancers was higher in rectal, ascending colon, and cecal cancers than in cancers of middle segments.
CONCLUSIONS: The proportion of F. nucleatum-high colorectal cancers gradually increases from rectum to cecum. Our data
support the colorectal continuum model that reflects pathogenic influences of the gut microbiota on neoplastic and immune cells
and challenges the prevailing two-colon (proximal vs. distal) dichotomy paradigm.
Clinical and Translational Gastroenterology (2016) 7, e200; doi:10.1038/ctg.2016.53; published online 3 November 2016
Subject Category: Colon/Small Bowel

INTRODUCTION
An increasing body of evidence suggests possible roles of
microorganisms in colorectal carcinogenesis.1–6 Among
various microbial species, Fusobacterium nucleatum appears
to inhibit antitumor immune response and potentiate colonic
neoplasia development in animal models.7–10 In addition,

an enrichment of F. nucleatum can be observed in a subset
of human colorectal neoplasms, and a high amount of
F. nucleatum in carcinoma tissue has been associated
with proximal tumor location, high-level microsatellite
instability (MSI-high), and lower density of T cells in tumor
tissue.11–18
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As a long organ, the colorectum is typically divided into
proximal colon (cecum to transverse colon), distal colon
(splenic flexure to sigmoid colon), and rectum in clinical,
pathological, and epidemiological studies.19–21 However,
multiple studies have demonstrated that proportions of color-
ectal cancers with specific molecular features such as MSI-
high, CpG island methylator phenotype (CIMP)-high, and
BRAF and PIK3CA mutations gradually increase along the
bowel subsites from rectum to ascending colon.22–25 These
findings are consistent with the fact that microbiota, bacterial
metabolites, and other contents of the large intestine
continually (rather than abruptly) change from the proximal
to distal segments26–29 and support the colorectal continuum
model rather than the dichotomy or trichotomy model.19–21

Hence, we hypothesized that the proportion of colorectal
cancer enriched with F. nucleatum might gradually change
along the bowel subsites from cecum to rectum.
To test this hypothesis, we utilized a database of colorectal

carcinoma cases in two US nationwide prospective cohort
studies, the Nurses’ Health Study and the Health Profes-
sionals Follow-up Study and examined the amount of F.
nucleatum in colorectal cancer tissue according to the bowel
subsites.

METHODS

Study population. We utilized the database of colorectal
carcinoma cases in two US nationwide prospective cohort
studies, the Nurses’ Health Study (121,701 women enrolled
in 1976) and the Health Professionals Follow-up Study
(51,529 men enrolled in 1986)30,31 and conducted a retro-
spective, cross-sectional analysis to assess the association
of the amount of F. nucleatum in colorectal cancer tissue with
tumor location. Every 2 years, we sent participants follow-up
questionnaires to collect information on lifestyle factors and
asked whether they had received diagnoses of major
disease, including cancers. Study physicians reviewed
medical records for incident colorectal cancer cases and
recorded cancer stage (Tumor, Node, Metastasis) and tumor
location (cecum, ascending colon, hepatic flexure, transverse
colon, splenic flexure, descending colon, sigmoid colon,
rectosigmoid junction, and rectum).22

We collected formalin-fixed paraffin-embedded (FFPE)
tissue blocks from hospitals where participants with colorectal
carcinoma had undergone tumor resection. A single pathol-
ogist (S.O.), who was unaware of other data, conducted a
centralized review of hematoxylin and eosin–stained tissue
sections of all colorectal carcinoma cases and recorded
pathological features. Tumor differentiation was classified into
well to moderate or poor (450% vs. ≤50% glandular area).
Written informed consent was obtained from all study
participants. The institutional review boards at the Harvard
T.H. Chan School of Public Health and the Brigham and
Women’s Hospital (Boston, MA) approved the cohort studies.

Quantitative PCR for F. nucleatum. We dissected color-
ectal cancer tissues from whole-tissue sections of FFPE
tissue blocks, and DNA was extracted using the QIAamp
DNA FFPE Tissue Kit (Qiagen, Valencia, CA). After the

quantitative PCR assay for F. nucleatum was developed and
validated as previously described,16 we measured the
amount of tissue F. nucleatum DNA in 1,102 colorectal
carcinoma cases, while blinded to data on tumor location and
other clinical, pathological, and tumor molecular features.
Custom TaqMan primer/probe sets (Applied Biosystems, San
Diego, CA) for the nusG gene of F. nucleatum and for the
reference human gene SLCO2A1 were used as previously
described.16 Each reaction contained 80 ng of genomic DNA
and was assayed in 20 μl reactions containing 1× final
concentration TaqMan Environmental Master Mix 2.0
(Applied Biosystems) and each TaqMan Gene Expression
Assay (Applied Biosystems) in a 96-well optical PCR plate.
Amplification and detection of DNA was performed with the
StepOnePlus Real-Time PCR Systems (Applied Biosystems)
using the following reaction conditions: 10 min at 95 °C and
45 cycles of 15 s at 95 °C and 1 min at 60 °C.
Our validation study has previously shown that, in colorectal

carcinoma cases with detectable F. nucleatum DNA, the cycle
threshold (Ct) values in the quantitative PCR for F. nucleatum
and SLCO2A1 decreased linearly with the log-transformed
amount of input DNA from the same specimen (r240.99), and
that the interassay coefficient of variation of Ct values from the
same specimen in five different batches was ≤ 1% for all
targets.16 Each specimen was analyzed in duplicate for each
target in a single batch, and we used the mean of the two Ct
values for each target. Spearman’s rank-correlation coeffi-
cients between the two Ct values (in duplicated runs) in each
of cases with detectable target amplification in the quantitative
PCR assays for F. nucleatum and SLCO2A1 were 0.95 and
0.92, respectively.16 The amount of tissue F. nucleatumDNA in
each specimen was calculated as a relative unitless value
normalized with SLCO2A1 using the 2−ΔCt method (where
ΔCt= “the mean Ct value of F. nucleatum”− “the mean Ct
value of SLCO2A1”).16

Cases with detectable F. nucleatum DNA were categorized
as low or high based on the median cutpoint while cases
without detectable F. nucleatum DNA were categorized as
negative, to keep consistent classification system with our
previous study.32

Analyses of MSI, DNA methylation, and KRAS, BRAF,
and PIK3CA mutations. Using DNA extracted from FFPE
colorectal carcinoma tissue, MSI status was analyzed with
the use of 10 microsatellite markers (D2S123, D5S346,
D17S250, BAT25, BAT26, BAT40, D18S55, D18S56,
D18S67, and D18S487) as previously described.33 We
defined MSI-high as the presence of instability in ≥ 30% of
the markers, and MSI-low/microsatellite stable (MSS) as
instability in o30% of the markers. Methylation analyses of
long interspersed nucleotide element-1 (LINE-1)34 and eight
promoter CpG islands specific for CIMP (CACNA1G,
CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and
SOCS1) were performed as previously described.35,36 PCR
reaction and pyrosequencing were performed for KRAS
(codons 12, 13, 61, and 146),37,38 BRAF (codon 600),33

and PIK3CA (exons 9 and 20).39,40

Statistical analysis. All statistical analyses were conducted
using SAS (version 9.3, SAS Institute, Cary, NC) and all
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P values were two-sided. For our primary hypothesis testing,
we examined the relationship of the tumor location variable
(the nine subsites) with the amount of F. nucleatum DNA in
colorectal cancer tissue (as an outcome variable). There was
an initial flexibility of the outcome variable, which could be raw
continuous, log-transformed (continuous), ordinal three-tiered
(high vs. low vs. negative), binary (high vs. low/negative), or
binary (high/low vs. negative). Considering these five
possibilities, we used adjusted two-sided α level of 0.01
(=0.05/5). Neither the amount of F. nucleatum DNA nor its
log-transformed value fitted a normal distribution with the use
of the Kolmogorov–Smirnov test for normality (Po0.01).
Thus we used multivariable logistic regression analysis to
examine the relationship of the nine subsites (as a predictor
variable; tested for a linear trend with one degree of freedom)
with categorical outcome variables of F. nucleatum. For the
ordinal outcome variable, the proportionality of odds assump-
tion was not satisfied in ordinal logistic regression models
(P= 0.019). According to the distribution of colorectal cancer
cases by the subsites and the amount of F. nucleatum
(Figure 1), we used a binary outcome variable (F. nucleatum-
high vs. -low/negative) in the logistic regression model. For
the subsite variable, we assigned population average
distance from anal verge to each bowel subsite (either
the midpoint or junction/flexure), which was calculated based
on published data using computed tomographic
colonography,22,41 as follows: rectum (the midpoint), 9.8 cm;
rectosigmoid junction, 20 cm; sigmoid colon (the midpoint),
44 cm; descending colon (the midpoint), 85 cm; splenic
flexure, 102 cm; transverse colon (the midpoint), 131 cm;
hepatic flexure, 160 cm; ascending colon (the midpoint),
171 cm; and cecum (the midpoint), 186 cm. A significant
P value by the Wald’s test on the bowel subsite variable
indicated a linear relationship of the bowel subsite with tissue
F. nucleatum, but a curvilinear relationship might exist. Thus
we assessed the non-linearity by a likelihood ratio test
comparing the model with squared and/or cubic subsite
variables with the model without squared or cubic subsite
variable; a significant likelihood ratio test result would indicate
the presence of non-linearity (curvilinearity).
The multivariable logistic regression models were adjusted

for clinical features, including age (continuous), sex, year of
diagnosis (continuous), and family history of colorectal
carcinoma in any first-degree relative (present vs. absent).
Studies have shown an enrichment of F. nucleatum in
colorectal adenomas (before progression to carcino-
mas),9,13,15 suggesting that F. nucleatum may be involved in
early colorectal carcinogenesis. Hence, pathological and
tumor molecular features of colorectal carcinoma may be
present downstream in the causal sequence of events after
the Fusobacterium variable, and adjusting for the tumor
pathological and molecular features might cause biased
results. Thus we did not include the pathological and tumor
molecular variables in the multivariable logistic regression
models. For caseswith missing information on family history of
colorectal carcinoma in a first-degree relative (1.3%), we
included those cases in a majority category of a given
covariate to minimize the number of variables in multivariable
logistic regression models. We confirmed that excluding the
cases with missing information on family history of colorectal

carcinoma in a first-degree relative did not substantially alter
the results (data not shown).
To assess the associations between the amount of tissue

F. nucleatum and other categorical variables, chi-square test
was performed. To compare mean age and mean LINE-1
methylation levels, an analysis of variance was performed.
These comparisons represented secondary analyses, and we
used adjusted α level of 0.003 (=0.05/14) by simple
Bonferroni correction for multiple hypothesis testing.

RESULTS

F. nucleatum in colorectal carcinoma tissue. We mea-
sured the amount of tissue F. nucleatum DNA in 1,102
colorectal carcinoma cases within the two prospective cohort
studies using the quantitative PCR assay that was previously
validated.16 F. nucleatum DNA was detected (positive) in
colorectal carcinoma tissue in 138 (13%) of the 1,102 cases
and undetectable (negative) in the remaining 964 cases
(87%). We equally dichotomized the 138 cases with
detectable F. nucleatum DNA levels into two groups to keep
consistency with our previous study.32 Clinical, pathological,
and tumor molecular features according to the amount (high
vs. low. vs. negative) of tissue F. nucleatum are summarized
in Table 1. High-level F. nucleatum in colorectal cancer tissue
was associated with proximal tumor location, poor tumor
differentiation, MSI-high, MLH1 hypermethylation, CIMP-
high, and BRAF mutation (P≤ 0.0004 with the adjusted α
level of 0.003 for multiple hypothesis testing).

The relationship of the bowel subsites with the amount of
F. nucleatum in colorectal cancer tissue. The amount of
F. nucleatum in colorectal cancer tissue according to the
bowel subsites from rectum to cecum is shown in Figure 1.
The proportion of F. nucleatum-high cancers gradually

Figure 1 Proportions of Fusobacterium nucleatum-negative, F. nucleatum-low,
and F. nucleatum-high colorectal carcinoma cases along the bowel subsites. P-value
was calculated by the linear trend test across the bowel subsite variable (population
average distance from anal verge to each subsite (cm)) as a continuous variable in
the univariable logistic regression model to predict the amount of tissue F. nucleatum
(as a binary outcome variable (high vs. low/negative)).
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Table 1 Characteristics of colorectal cancer cases according to the amount of tissue Fusobacterium nucleatum

Characteristicsa All patients (n= 1,102) The amount of tissue Fusobacterium nucleatum P valueb

Negative (n= 964) Low (n= 69) High (n= 69)

Mean age± s.d. (years) 69.5± 8.9 69.4± 8.9 70.9± 9.0 69.2± 8.5 0.39

Sex 0.35
Men 466 (42%) 415 (43%) 27 (39%) 24 (35%)
Women 636 (58%) 549 (57%) 42 (61%) 45 (65%)

Year of diagnosis 0.026
Prior to 1995 352 (32%) 323 (34%) 12 (17%) 17 (25%)
1996–2000 301 (27%) 262 (27%) 19 (28%) 20 (29%)
2001–2008 449 (41%) 379 (39%) 38 (55%) 32 (46%)

Family history of colorectal carcinoma in a first-degree relative 0.26
Absent 877 (81%) 762 (80%) 60 (88%) 55 (81%)
Present 211 (19%) 190 (20%) 8 (12%) 13 (19%)

Tumor location 0.0004
Proximal colon 536 (49%) 452 (47%) 36 (53%) 48 (72%)
Distal colon 316 (29%) 292 (31%) 12 (18%) 12 (18%)
Rectum 241 (22%) 214 (22%) 20 (29%) 7 (10%)

Nine bowel subsites c o0.0001d

Cecum 178 147 (83%) 12 (6.7%) 19 (11%)
Ascending colon 253 212 (84%) 18 (7.1%) 23 (9.1%)
Hepatic flexure 32 28 (88%) 2 (6.3%) 2 (6.3%)
Transverse colon 73 65 (89%) 4 (5.5%) 4 (5.5%)
Splenic flexure 29 27 (93%) 1 (3.5%) 1 (3.5%)
Descending colon 53 48 (91%) 2 (3.8%) 3 (5.7%)
Sigmoid colon 234 217 (93%) 9 (3.8%) 8 (3.4%)
Rectosigmoid junction 84 77 (92%) 4 (4.8%) 3 (3.6%)
Rectum 157 137 (87%) 16 (10%) 4 (2.5%)

Disease stage 0.006
I 247 (25%) 230 (26%) 10 (16%) 7 (11%)
II 331 (33%) 279 (32%) 23 (37%) 29 (45%)
III 286 (29%) 246 (28%) 25 (40%) 15 (24%)
IV 135 (13%) 117 (14%) 5 (7.9%) 13 (20%)

Tumor differentiation o0.0001
Well to moderate 994 (90%) 887 (92%) 57 (84%) 50 (72%)
Poor 106 (9.6%) 76 (7.9%) 11 (16%) 19 (28%)

MSI status o0.0001
MSI-low/MSS 885 (84%) 805 (87%) 44 (67%) 36 (54%)
MSI-high 171 (16%) 118 (13%) 22 (33%) 31 (46%)

MLH1 hypermethylation o0.0001
Absent 869 (86%) 782 (89%) 50 (79%) 37 (58%)
Present 140 (14%) 100 (11%) 13 (21%) 27 (42%)

CIMP status o0.0001
Low/negative 823 (82%) 737 (84%) 50 (79%) 36 (56%)
High 186 (18%) 145 (16%) 13 (21%) 28 (44%)

BRAF mutation o0.0001
Wild type 892 (84%) 795 (85%) 52 (79%) 45 (66%)
Mutant 172 (16%) 135 (15%) 14 (21%) 23 (34%)

KRAS mutation 0.51
Wild type 569 (57%) 501 (57%) 30 (51%) 38 (61%)
Mutant 435 (43%) 382 (43%) 29 (49%) 24 (39%)

PIK3CA mutation 0.88
Wild type 841 (84%) 738 (84%) 49 (82%) 54 (83%)
Mutant 162 (16%) 140 (16%) 11 (18%) 11 (17%)

Mean LINE-1 methylation level, %± s.d. 63.5± 10.2 63.3± 10.2 65.0± 10.6 65.4± 8.9 0.14

CIMP, CpG island methylator phenotype; LINE-1, long interspersed nucleotide element-1; MSI, microsatellite instability; MSS, microsatellite stable.
aPercentage (%) indicates the proportion of cases with a specific clinical, pathological, or tumor molecular feature according to the amount of tissue Fusobacterium
nucleatum. There were cases which had missing values for any of the characteristics except for age, sex, and year of diagnosis.
bTo assess associations between the ordinal categories (negative, low, and high) of the amount of tissue F. nucleatum and categorical variables, the chi-square test
was performed. To comparemean age andmean LINE-1methylation levels, an analysis of variancewas performed.We adjusted two-sided α level to 0.003 (= 0.05/14)
by simple Bonferroni correction for multiple hypothesis testing.
cPercentage indicates the proportion of F. nucleatum-negative, F. nucleatum-low, or F. nucleatum-high cases among all tumors in a given bowel subsite.
dP value was calculated by the linear trend test across the bowel subsite variable (population average distance from anal verge to each subsite (cm)) as a continuous
variable in the univariable logistic regression model to predict the amount of tissue F. nucleatum (as a binary outcome variable (high vs. low/negative)).
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increased from rectal cancers (2.5%= 4/157) to cecal
cancers (11%= 19/178). In contrast, the proportion of
F. nucleatum-low cancers was higher in rectal cancers
(10%=16/157), ascending colon cancers (7.1%= 18/253),
and cecal cancers (6.7%=12/178) than in cancers of middle
segments.
We assessed the relationship of the bowel subsite (as a

predictor variable) with the amount of F. nucleatum in
colorectal cancer tissue (as a binary outcome variable (high
vs. low/negative)) by multivariable logistic regression analysis
that adjusted for potential confounders (Table 2). The bowel
subsite variable was significantly associated with high-level
F. nucleatum in colorectal cancer tissue (Ptrendo0.0001 for
trend across the bowel subsites from rectum to cecum, with
the adjusted α level of 0.01). We demonstrated little evidence
of non-linearity (P≥ 0.61) using likelihood ratio test, which
compared the model with squared and/or cubic subsite
variables to the model without squared or cubic subsite
variable.
To exclude a potential influence of preoperative chemother-

apy and/or radiation therapy for rectal cancers as a secondary
analysis, we excluded cancers in the rectum and rectosigmoid
and performed a linearity test. The bowel subsite variable
(from sigmoid colon to cecum) was significantly associated
with high-level tissue F. nucleatum (Ptrend=0.002 for trend
across the bowel subsites, with the adjusted α level of 0.01),
and therewas no evidence for non-linearity (P≥0.50; Table 2).

DISCUSSION

We found that the proportion of F. nucleatum-high colorectal
cancers increased linearly along the large intestine from
rectum to cecum. Although differences in clinical, pathological,
and epidemiological features between proximal and distal
colon cancers and between colon and rectal cancers have
been known for decades,19–21 emerging evidence indicates a
gradual change in the proportions of key molecular features of
colorectal cancer along the bowel subsites.22–25 Our data

challenge the common dichotomy model and support the
colorectal continuum model that recently emerged.42,43

Analyses of molecular pathology are increasing importance
in cancer research.44–51 Accumulating evidence suggests that
colorectal tumors arise with sets of genomic and epigenomic
alterations through interactions between neoplastic cells,
immune cells, and microbiota that vary along the proximal to
distal axis of colorectum.42 In the current study, high-level
tissue F. nucleatum DNA was associated with the molecular
features of colorectal cancer, including MSI-high, CIMP-high,
and BRAF mutation. Some studies reported that butyrate
might suppress colonic inflammation and tumor
development.52,53 In contrast, emerging evidence suggests
that butyrate may promote the growth of colonic tumors that
exhibit DNA mismatch repair deficiency.5,54 F. nucleatum is
known to be one of the microbes that produce butyrate.1,5

Thus F. nucleatum might promote the development and
progression of colorectal tumors through the production of
butyrate, although additional studies are needed to elucidate
the exact mechanisms underlying the association between
F. nucleatum and colorectal carcinogenesis.
Cecal carcinomas represent an interesting subgroup of

colorectal carcinomas characterized by high prevalence of
KRAS mutations.22,55 In addition, along with rectum, cecum
shows the highest incidence of carcinoma occurrence per
surface area of mucosa.56 Our current study has shown that
F. nucleatum-enriched carcinomas are most prevalent in
cecum compared with other subsites. Future studies should
investigate the role of microbiota in cecal carcinogenesis.
Epidemiological evidence indicates a recent increase in the

proportion of proximal colon cancers inWestern countries57,58

and the association between postcolonoscopy cancer and
proximal tumor location.59,60 Because any experimental
system cannot perfectly recapitulate the complex nature of
human tumor or microorganisms, analyses of human cancer
tissue in a large population are useful in elucidating the
relationship between microorganisms and cancer. However,
no previous study has examined the amount of specific
microbial species in human colorectal cancers according to

Table 2 Assessment of the linearity and non-linearity on the relationship of the bowel subsiteswith the amount of Fusobacterium nucleatum in colorectal cancer tissue
by multivariable logistic regression analyses

Bowel subsite variable (distance from anal
verge to each subsite (cm))

Squared subsite variable Cubic subsite variable Likelihood ratio test

P value (Wald’s test)a Included P value (Wald’s
test)

Included P value (Wald’s
test)

Degree of
freedom

P valueb

Model for the amount of tissue Fusobacterium nucleatum (as an outcome variable (high vs. low/negative))
All cases
o0.0001 No — No — — Referent
0.87 Yes 0.61 No — 1 0.61
0.65 Yes 0.74 Yes 0.67 2 0.80

Cases from sigmoid colon to cecum (excluding rectal and rectosigmoid cancers)
0.002 No — No — — Referent
0.82 Yes 0.51 No — 1 0.50
0.84 Yes 0.85 Yes 0.80 2 0.77

Multivariable logistic regressionmodel included age, sex, year of diagnosis, family history of colorectal cancer in parent or sibling, and the bowel subsite variablewith or
without the squared and cubic subsite variable, as indicated in the Table. We adjusted two-sided α level to 0.01 (= 0.05/5) for multiple hypothesis testing.
aP value was calculated by theWald’s test on the bowel subsite variable (population average distance from anal verge to each subsite (cm)) as a continuous variable in
the multivariable logistic regression model to predict the amount of tissue Fusobacterium nucleatum (as a binary outcome variable (high vs. low/negative)).
bA significant P value by the likelihood ratio test indicates a non-linear (curvilinear) relationship, and a combination of insignificant P values by the likelihood ratio test
and a significant P value by the Wald test on the bowel subsite variable in the model without the squared or cubic subsite variable indicates a linear relationship.
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detailed subsites (using an enough sample size), as we did in
this study. Our population-based human data would guide
future mechanistic investigations. Considering that diet, life-
style, pharmacological factors (including antibiotics), and
probiotics and prebiotics can influence the composition of
intestinal microbiota,61–63 future investigations may be war-
ranted to examine potential influences of those modifiable
factors on the intestinal microflora and tumorigenic processes.
Strengths of this study include the use of our molecular

pathological epidemiology64,65 database (of 1,102 colorectal
carcinoma cases in the two US nationwide, prospective cohort
studies), which integrates epidemiological exposures, clinical
characteristics, and tissue F. nucleatum in colorectal carci-
noma. The sample size and the comprehensiveness of the
colorectal cancer database enabled us to examine the
amounts of F. nucleatum in colorectal cancer tissue in each
of the bowel subsites and test the linearity of the relationship of
the bowel subsites with the amount of F. nucleatum, while
adjusting for clinical features. Importantly, our data set of
colorectal cancer cases represented a population-based
sample derived from a large number of hospitals in diverse
settings across the United States that increases the general-
izability of our findings.
We recognize limitations of our study. First, routine

histopathology processing might have influenced the perfor-
mance of the quantitative PCR assay to detect microorgan-
isms in FFPE tissue specimens. Although measurement
errors in FFPE tissue specimens would have likely driven
our results toward the null hypothesis, we cannot exclude
unmeasured confounding factors. However, our validation
study has demonstrated a high linearity (r240.99) and a high
reproducibility (interassay coefficient of variation ≤1%) of the
quantitative PCR assay for F. nucleatum with the use of FFPE
tissue specimens.16 In addition, our data on the relationships
of F. nucleatum with clinicopathological characteristics and
tumor molecular features, including MSI and CIMP status, are
consistent with the study using a quantitative PCR assay for
frozen tissue specimens.14 Second, rectal cancers are
commonly treated by preoperative chemotherapy and/or
radiation, which might have changed the gut and tumor
microbiota. Therefore, we excluded preoperatively treated
rectal cancers in which adequate pretreatment biopsy speci-
mens were unavailable. In addition, as a secondary analysis,
we excluded rectal and rectosigmoid cancers and observed
similar findings on the association of bowel subsites (from the
sigmoid colon to cecum) with the amount of tissue
F. nucleatum. In the current study, rectal cancers showed a
high proportion of F. nucleatum-low cases (10%) compared
with rectosigmoid (4.8%) and sigmoid colon cancers (3.8%).
These findings need to be validated by additional studies.
Third, we did not examine other microbes (including Escher-
ichia coli and Bacteroides fragilis66,67) in colorectal cancer
tissue or data on stool microbiota. Certainly, future compre-
hensive metagenomic analyses on tissue and stool microbiota
may provide further insights on roles of gut microorganisms in
the development and progression of colorectal tumors. Fourth,
as an observational study, we could not conclude on a
potential causal effect of F. nucleatum. Nonetheless, given
complex roles of interactions between microbial and host
factors in human carcinogenesis, we believe that our novel

data on F. nucleatum (which appears to have a role in carcino-
genesis in experimental studies8–10) in41,000 colorectal cancer
cases along the bowel subsites represent valuable information.
In conclusion, utilizing the database of the 1,102 colorectal

carcinoma cases in the US nationwide prospective cohort
studies, we have found that the proportion of colorectal cancer
enriched with F. nucleatum increases linearly along the bowel
subsites from rectum to cecum. Our human population-based
data suggest a continuum model of pathogenic influences of
F. nucleatum on colorectal carcinogenesis, which may be
targeted for colorectal cancer prevention and treatment in the
future.
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Study Highlights
WHAT IS CURRENT KNOWLEDGE
✓ Colorectal cancer is typically classified into rectal, distal

colon, and proximal colon cancers.

✓ Emerging evidence indicates a gradual change inmolecular
features of colorectal cancer along bowel subsites.

✓ Contents and microbiota of the large intestine may change
gradually from the proximal to distal segments.

✓ Fusobacterium nucleatum has been detected
predominantly in proximal colon cancer and may potentiate
colonic neoplasia development.

WHAT IS NEW HERE
✓ The proportion of colorectal cancers with a high amount of

F. nucleatum gradually increases from rectum to cecum.

✓ This trend along colorectal subsites is statistically
significantly linear.

✓ Our data support the colorectal continuum model reflecting
carcinogenic influences of F. nucleatum.
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