Insights into Student Gains from Undergraduate Research Using Pre- and Post-Assessments

The Harvard community has made this article openly available. **Please share** how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1093/biosci/biw141</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:34389678</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
TITLE: Insights into Student Gains from Undergraduate Research Using Pre/post Assessments

AUTHORS: Andrew L. McDevitt, Manisha V. Patel, Brad Rose, and Aaron M. Ellison*

Andrew L. McDevitt is a graduate student at the School of Biological Sciences, Illinois State University, Normal, IL 61761. Andrew studies undergraduate research experiences as it relates to motivational theory, STEM retention and program assessment.

Brad Rose, Ph.D. is the president of Brad Rose Consulting, Inc., a program evaluation firm based in Wellesley, Massachusetts.

Aaron M. Ellison (aellison@fas.harvard.edu) is a senior research fellow in ecology, and Manisha V. Patel is a research assistant at the Harvard Forest, Harvard University, Petersham, MA 01366. Since 2004, Aaron has directed the Summer Undergraduate Research Program in Ecology (an NSF REU site) at the Harvard Forest. His research focuses on the disassembly and reassembly of ecological systems. Manisha is interested in ecosystem ecology, undergraduate research education, and outreach.
ABSTRACT:

Undergraduate research experiences (UREs) in STEM fields expose students to scientific research and are thought to increase student retention in STEM. We developed a pre/post survey and administered it to participants of the Harvard Forest Summer Research Program in Ecology (HF-SRPE) to evaluate effectiveness of these programmatic goals. Between 2005 and 2015, the survey was sent to all 263 HF-SRPE participants; 79% completed it. Results, controlled for prior experiences, revealed significant improvements across all learning goals. Prior laboratory research experience and perception of being a respected member of a research team were positively associated with gains in research skills and abilities to do and present research. Although the pre/post surveys did not indicate changes in students’ goals of pursuing STEM and/or environmental careers, the positive learning gains suggest that students with prior interests in STEM fields take advantage of UREs to solidify further their aspirations in STEM.

KEYWORDS:

Harvard Forest, retention, STEM, survey, Undergraduate Research Experience (URE)
Undergraduate research experiences (UREs) in STEM fields (e.g. Research Experience for Undergraduates [REU] Sites) provide students with hands-on experiences in scientific research. For more than a quarter-century, the National Science Foundation (NSF), Howard Hughes Medical Institute (HHMI), and the National Academy of Sciences (NAS) have promoted UREs as a way of increasing retention of students and encouraging their pursuit of STEM careers (Harsh et al. 2011, Lopatto 2004). These experiences also are thought to provide a wide range of transferable skills, with underrepresented groups showing the greatest increase in learning gains (Lopatto 2004, 2007). In the biological sciences, a wide range of UREs are available as classroom-based fieldwork (Maw et al. 2011, Scott et al. 2012), research apprenticeships (Sadler et al. 2010), and structured summer research programs (Lopatto 2004, 2007).

The NAS (NRC 2014) promoted summer UREs at biological field stations for a number of reasons. The summer often is the most intensive time for data collection, and many sites rely on undergraduates to collect large quantities of field data (Hodder 2009). Because faculty and other senior investigators in ecology (sensu lato) also are focused on research in the summer, UREs at field stations provide students with intensive mentor-mentee interactions, focused research experiences, and work in interdisciplinary research communities (Hodder 2009, Lopatto 2007).

Since its inception in 1985, when a single undergraduate worked on a study of old-growth forests, the Harvard Forest Summer Research Program in Ecology (HF-SRPE) has developed into a thriving and well-coordinated program that is central to the educational and research mission of this combined research department and biological field station. With core support since 1993 from a succession of NSF REU Site awards and NSF REU supplements, and
with additional funding from Harvard University, the HF-SRPE has grown to support 20-30 undergraduate students annually (Supplementary Online Material Figure S1). Participating students do research in ecology, soil science, paleoecology, wildlife biology, conservation biology, and atmospheric sciences while being mentored by principal investigators, senior scientists, post-doctoral fellows, and graduate students.

The HF-SRPE includes a range of projects both within and among years. Although individual students’ experiences are completed under the umbrella of the HF-SRPE, each one requires a select set of skills and knowledge base that is relevant to a student’s particular project. The hiring of summer research students, establishment of research goals, and project supervision all are overseen by an individual mentor or research group. At the same time, the HF-SRPE overall introduces students to a broad interdisciplinary research community and illustrates where their individual projects fit into a broader ecological context.

The HF-SRPE also provides across-the-board support to students and mentors that promote five programmatic goals: enhancing the ability of students to undertake high-quality interdisciplinary research; building teams of researchers in which students bring different strengths to the table and collaborating on cutting-edge projects while finding their own intellectual “voice”; encouraging students to link fundamental and applied issues in their research; and cultivating the next generation of ecological scientists and educators that reflects the diversity of backgrounds and experiences of students in the United States. Student research projects are structured both to work towards meeting these five student-centered goals, and to make substantial contributions to the broad range of ongoing and long-term scientific research at Harvard Forest.
Since 2005, NSF has emphasized the use of project evaluations to measure, both qualitatively and quantitatively, the success of REU programs (NSF 2005); participant tracking for STEM employment and matriculation has been required for UREs supported by the all NSF directorates since the implementation of the America COMPETES Act of 2010 (42 USC 6621: Coordination of Federal STEM Education). The initial objective of these project evaluations was to determine if student learning and other measurable outcomes were aligned with specific programmatic goals of individual UREs and of NSF. Prior work by Lopatto (2004) had examined the ability of summer UREs to attract and retain students—especially those from groups otherwise underrepresented in STEM—in STEM careers. However, virtually all of the UREs assessed by Lopatto (2004) using the Survey of Undergraduate Research Experiences (SURE) study were focused on biomedical research and funded by HHMI.

A comprehensive assessment tool for NSF-supported REU programs in biology—the Undergraduate Research Student Self-Assessment (URSSA) survey—was implemented in 2010 (Hunter et al. 2009). The standard implementation of URSSA provides data to NSF on how well REU programs meet national programmatic benchmarks, but it is limited to a single post-program assessment and cannot measure changes in student learning or other programmatic goals resulting from a student’s participation in a URE (Frechtling 2002, Hunter et al. 2009). Because students who participate in UREs have a range of different backgrounds and prior skills in scientific research, it is also important to determine how these factors can influence success of any URE.

Since 2005, the HF-SRPE has used a pre/post survey to measure changes in student learning, skills, and attainment of its programmatic goals. We also have used data from initial surveys to determine how students’ backgrounds and prior research experiences influence their
self-reported changes in meeting our programmatic goals and in their educational and career goals. With the pre/post data conditioned on their background information as revealed by initial surveys, we addressed three specific questions:

- To what level is HF-SRPE reaching its educational goals?
- Which prior experiences predict the greatest gains in students’ perceptions of their research ability?
- Is the HF-SRPE increasing student interest in STEM (including environmental) careers?

Methods

Questionnaire

In 2005, we developed a set of surveys (the “instrument”) to evaluate systematically the experiences and persistence in STEM/environmental education and careers of participants in the HF-SRPE (questions and de-identified/anonymized data available: Ellison 2016). We deployed this locally-designed instrument to assess critical changes in student’s attitudes toward science; students’ identification with the norms and professional practices of scientific research; specific skills associated with conducting and disseminating scientific research; and post-program career and educational plans. Questions were reviewed by program administrators for face validity, a subjective confirmation that the measurements are appropriate, and alignment with NSF-REU objectives. Annual pre- and post-program evaluations invited student participants to report critical changes in these domains and offered researchers indicators of the changes that HF-SRPE program designers sought to affect in program participants. The instrument was designed deliberately for rapid application, ease of program-participant use, economy of data analysis, and was administered with a minimum of obtrusiveness.
Data were collected from students three times during the summer program. First, students completed a short survey upon their arrival at HF-SRPE to determine how they were recruited; their expectations of the program; and their educational and occupational aspirations. Second, students were surveyed in mid-summer. The questions on the mid-summer survey probed whether the program was meeting their expectations; their satisfaction with their independent research, their mentors, and field trips; their interactions with scientists, staff, and other student participants; and changes that could improve their experiences. At the conclusion of the summer, students completed a third survey containing follow-ups to the questions in the first and second surveys. These three surveys were supplemented with individual, semi-structured interviews to examine students’ survey responses and to provide them with an opportunity to discuss in detail their experiences and specific aspects of the program. This design allowed the evaluator to explore new topics that arose during the interviews and to follow up on compelling responses (Neuman 2003). Interviews explored in more detail students' relationships with their mentors; how, if at all, their educational and occupational aspirations had changed; and their perceptions of science in general and the field of ecology in particular.

After reviewing the 2005 pilot study, we reduce the yearly assessment of participant experiences to a single pre-post survey according to NSF guidelines for REU Site evaluation (Frechtling 2002). This survey consisted of 22 multiple choice questions and 2 open response questions. The pre-program survey was sent to a total of 263 HF-SRPE participants with a 91.6% response rate. A similar post-program survey was sent to participants at the end of HF-SRPE with 79.5% of individuals responding to both surveys.

Data analyses
We used repeated measures analysis of variance (rm-ANOVA) to test for changes in the students’ perceived research skills and their confidence in them; student responses to nine prior experiences (Table 1) entered the rm-ANOVA as fixed factors. Multicollinearity (Graham 2003) among the nine prior experiences was assessed using multiple correspondence analysis (MCA) in the FactoMineR packages, and subsequent analyses were done using the car package, both in R version 3.2.3 (R Core Team 2015). Because responses were ordinal, quasi-Poisson linear models were used to model responses; significance of each term was assessed using Type III sum of squares. Post-hoc Tukey tests were done only on statistically significant ($\alpha = 0.05$) terms. See Gotelli and Ellison (2012) for additional details on ANOVA, Poisson error terms, and different types of sums-of-squares.

We used correspondence analysis, using the ca package in R, to examine if the HF-SRPE influenced long-term career goals. One-sided paired t-tests were used to evaluate the self-assessed likelihood that participants persisted in environmental or STEM research fields.

Anonymized raw data and associated R code are available from the Harvard Forest Data Archive, dataset number HF-279 (Ellison 2016)

Results

Student background

Students responding to the pre-program survey during 2006 – 2015 ($N = 241$) came into the program with varied backgrounds. Most reported prior experience in laboratory (75%) or field (71%) research, often (52%) on research teams outside of a class. The majority of these students (72%) had worked with a more experienced researcher, but fewer had presented their research to peers (48%) or (co)-authored a scientific paper (7%). Although only 24% of the
participants felt that they had contributed previously to the production of a scientific paper, 54% felt that they had been a respected member of their scientific research team. We report key findings in main text and Figures 1 – 4. Complete results for all questions are provided in the Supplementary Online Material, Figures S2 – S9.

Research skills

The students’ perception of their research skills was higher after they had completed the HF-SRPE (Table 1: Questions 3 and 4). Both prior experience in laboratory research ($F_{1,396} = 10.52$, $P = 0.001$ for Question 3; $F_{1,396} = 10.73$, $P < 0.001$ for Question 4) and prior respect as a member of a scientific research team ($F_{1,396} = 19.45$, $P < 0.001$; $F_{1,396} = 19.61$, $P < 0.001$ for Question 4) contributed significantly to these perceptual gains; students without prior lab experience in research showed greater percentage gains (Figures 1, 2).

Doing and presenting research

Students’ perception of their ability to participate in interdisciplinary research in teams (Question 5a), work with research mentors (Question 5b), and analyze, write-up, and present research data (Questions 5c-5e) all increased following participation in the HF-SRPE (Table 1). As with basic research skills, students without previous experience with laboratory research showed greater improvement in these areas (Figures 1, 2), except for ability to analyze data. For that skill, students with prior research experience had greater gains (Figure 1).

Future aspirations in science
Students showed little change in their conceptual domains of educational and career aspirations (Figure 3). The first axis of the correspondence analysis separated environmental from non-environmental professions and accounted for 39.8% of the variation in the data. The second axis (27.9% of the variation) separated responses along a post-graduate education vs. employment in fields outside of environmental science. There were no significant changes in expressed long-term educational or employment goals (Question 8) or interest in environmental or STEM fields (Questions 10a, 10b) among students participating in the HF-SRPE (Table 1). Long-term goals were generally uncertain-to-clear, whereas likelihood of pursuing a career in environmental or STEM fields was generally likely or quite likely.

Interesting interactions

For the two questions in which students experienced the largest gains—scientific research skills (Table 1: Questions 3, 4) and presenting scientific results (Question 5e)—we also ran rm-ANOVAs in which the students’ clarity of long-term goals prior to entering HF-SRPE entered the model a predictor variable. For students’ perceptions of their scientific research skills, there were significant differences between pre- and post-participation responses ($F_{1,407} = 41.19, P < 0.001$), the level of clarity in their long-term goals ($F_{2,407} = 8.00, P = 0.001$), and their interaction ($F_{2,407} = 4.83, P = 0.008$). Even though students entering the program with a lower clarity of their post-graduation goals also had a lower perception of their research skills, the interaction plot (Figure 4) illustrated that these students increased their perception of these skills to an equivalent level after the completion of HF-SRPE. Similarly, for students’ self-reported preparedness to present scientific results (Figure 4), there were significant differences between pre- and post-participation responses ($F_{1,403} = 25.67, P < 0.001$), and the level of clarity in their
long-term goals ($F_{2,403} = 4.01$, $P = 0.019$). However, there was no interaction between these two factors ($F_{2,403} = 1.96$, $P = 0.143$).

Discussion

Undergraduate research experiences (UREs) have been widely touted as providing valuable research experiences that provide valuable skills for future scientists (Linn et al. 2015, Russell et al. 2007). Not surprisingly, HF-SRPE participants experienced a significant increases in the various skills/self-assessments measured by our survey, but gains were greater for students without prior research experience (Figure 1). This result suggests that UREs interested in promoting these various learning gains should emphasize recruitment of students without prior research experiences so that students can begin to expand upon these skillsets through future experiences (see also Hunter et al. 2009, Lopatto 2004, Maw et al. 2011).

One limitation of all self-assessment surveys is that student reporting of their own perception of their learning gains could be inflating our impression of success. The internal validity of self-assessment surveys is a known concern (Linn et al. 2015) and supports the use of pre/post designs to evaluate educational impacts (Pascarella 2001). Indeed, our conclusions are supported by an ethnographic study of similar URE programs that found a strong correlation between student and faculty perceptions of learning gains, especially with regards to constructs such as scientific identify and professional development (Hunter et al. 2007). As long as we remember to treat these data as perceptions, not objective measurements, of cognitive or psychomotor domains (see also Turner et al. 2008), we can begin to assess where students are experiencing growth as a result of HF-SRPE.
Although our results suggest positive effects of the HF-SRPE on student learning and skills development, it was more difficult to tease out specific details about student experiences that contributed to these perceived differences. The instrument was designed to quickly gauge a broad range of skills and experiences that students from different disciplines might experience or have in common and therefore lacked the granularity to describe fully the unique research experience of each student. This is a challenge not only for HF-SRPE, but also for assessing student experiences at other UREs. There are numerous validated concept inventories (e.g., macroevolution [Nadelson and Southerland, 2010], natural selection [Anderson et al. 2002], carbon cycles [Hartley et al. 2011], scientific literacy [Nuhfer et al. 2016]) that evaluate the working knowledge of an individual and can help demonstrate the value of an intervention such as a URE or course. However, the programmatic or disciplinary specificity of such assessments makes it difficult to compare individual student experiences across programs, especially interdisciplinary ones like the HF-SRPE.

Compared to our assessment, the URSSA does a more robust job of measuring cognitive and affective domains such as thinking like a scientist, research skills, personal gains, and attitudes and behaviors (Weston and Laursen 2015). Because it is a post-program-only instrument, however, the URSSA cannot differentiate effects of a URE itself and any selection bias for type of programs (Linn et al. 2015). This one-time survey also fails to account for differences in scientific ability among individuals prior to the URE, limiting our ability to use it for comparing among programs. Although we advocate the continued use of URSSA, especially due to the nearly complete participation in it of all BIO-REU programs, we encourage other programs to consider adding a pre/post instrument so that individual program directors and funding agencies can learn more about factors underlying effects of UREs.
Importance of laboratory experiences

Students with or without prior laboratory experiences displayed increases in their strength and confidence in scientific skills, participation in interdisciplinary research, analysis of scientific data, and the writing of results (Figure 1). HF-SRPE’s nationwide recruitment and breadth of research projects for which students are specifically selected suggest that the prior laboratory experiences reported by our participants are representative of students in other UREs. In another study of comparable summer UREs at liberal arts colleges, Hunter et al. (2007) found that broader and more confident laboratory skills increased the student’s sense of independence and helped facilitate other gains beyond their current research projects. Further, they found that reinforcement of these skills also aided in shaping student’s self-efficacy and scientific identity.

In future studies, additional qualitative inquiries into prior laboratory experiences could help reveal which components of these prior experience is related consistently to higher perceptions of various skillsets (Table 1). For example, student understanding of the nature of science can be facilitated through the use of instructional scaffolding, a process through which progressive activities and experiences can guide a student towards more autonomous learning and stronger conceptual understanding, and can help them resolve their misconceptions toward authentic scientific research (Clough, 2006).

Respected member of a scientific team

In addition to scientific knowledge and skills, the affective domain also played a role in the expression of these learning goals and development of scientific identity. Both before and after participation in HF-SRPE, having felt respected as a member of a scientific research team
was a reliable predictor of higher self-assessment of research skills (Figure 2). As with learning gains, students who reported not having previously been a respected member of a research team displayed a greater degree of change. Respect in the context of UREs can aid in the development of student’s scientific competence and individual identity as researcher (Hunter et al. 2007). Facilitating a culture of respect in an inclusive, collaborative learning community reinforces students’ interest and empowers them as active learners (Walsh et al. 2014). Positive interactions with other members of a research community can help foster students’ understanding how they construct scientific knowledge and derive meaning from their experiences through “self-authorship” (Baxter-Magolda 1999a). This process of applying their contextual knowledge, a component within the constructive-developmental framework, is especially important for college students as they begin to identify and shape their career paths (Baxter-Magolda 1999b).

STEM retention

A common critique of UREs is that they tend to favor students who already have a high probability of persistence in STEM fields (Linn et al. 2015). Our competitive selection process, in which 600-900 applicants are competing for 25-30 positions, may reinforce similar biases. Our data showing that HF-SRPE has not changed participant’s short-term career paths (Table 1: Questions 8, 10a, 10b; Figure 3) lends support to this characterization of URE programs. Recent efforts to try to minimize this bias within HF-SRPE include increasing recruitment at community colleges, removing GPA requirements, and supporting more interdisciplinary projects. Sadler et al. (2010) argued that one of the greatest insights gained through research apprenticeship is a sophisticated understanding of the nature of science. For our participants, prior laboratory research experience resulted in a higher clarity of long-term goals of remaining
in STEM fields. This may suggest that students without previous laboratory experience had an
unclear image of research or at least the types of interdisciplinary research conducted at HF-
SRPE. We intentionally recruit students whom we think would benefit the most from a URE at a
major research institution (Supplementary Online Material Figure S1), and we will continue do
so, especially in light of the results presented here. Such students express in their application
 essays a strong interest in ecological research, or have demonstrated a potential as an
environmental researcher but have not yet had experience with independent research. The HF-
SRPE thus provides students with an opportunity to evaluate their true preparedness for
environmental or STEM research disciplines. The absence of a change in their expressed long-
term plants may result only from a lack of time to reflect on their summer experience. Long-term
evaluation of student career paths will help us differentiate among these alternative hypotheses.

The HF-SPRE provides students already interested in environmental and STEM research
with an opportunity to expand their skills and become part of the next generation of research
scientists. Program-level tracking of our participants provided annually since 2001 to agencies
supporting our URE show that a consistent 15% of each year’s participants have published their
summer work in peer-review journals, 10% (with rates rising up to 45% within the past 5 years)
have presented posters at regional or national conferences, and a consistent 10% of students have
developed their summer projects into senior theses. These data cannot be linked directly to
individual survey responses reported here, but they do lend support to the idea that research skills
gained both from prior experiences and HF-SRPE have led to the production of professional-
level research products. We note that the production of research products, often used to
demonstrate value of professional researchers to universities and funding agencies, may not
serve as informative indicators of undergraduate learning and growth (Hunter et al. 2007).
However, identity theory argues that a collaborative and respectful learning environment helps students apply skills learned through the creation of these research products, increases the salience of their scientific identity, and further strengthens their likelihood of pursuing and remaining in of STEM careers (Merolla and Serpe 2013).

Conclusion

Our data suggest that to maximize gains in learning of scientific skills, UREs should emphasize recruitment of students without certain prior experiences within both cognitive and affective domains. The intellectual, social, professional, and financial support of young students by UREs increases the access to these valuable learning opportunities so that more students have a stronger research foundation to build upon in the future. Long-term assessments will illuminate further whether the short-term gains of the HF-SRPE and other UREs have persistent effects (Linn et al. 2015). There is still much more to examine about the relationships between summer undergraduate research experiences and STEM retention; increased focus on recruitment methods and implementation of repeated measures designs would help align program-level evaluations with NSF objectives to provide meaningful research experiences for broader range of undergraduate students (NSF 2013). Additionally, use of more domain-specific measures would indicate changes in participants’ non-cognitive skills (e.g., teamwork, professionalism, work ethic) that are increasingly recognized by employers as critical traits for workplace and post-educational success. Augmenting the toolkit used for measuring participant outcomes will strengthen evidence based decisions make by URE administrators and provide researchers with more fine grained data about participant outcomes.
Acknowledgements

Funding for evaluation of the HF-SRPE has been provided by NSF REU Site (award nos. 0452254, 1003938, 1459519) and NASA Innovations in Climate Education (award no. NNX10AT52A). This research with human subjects was approved by the Harvard University IRB, protocol nos. F14015-102 [2007], F16874-102 [2009], 14-2580 [2014], 15-2719 [2015].

References

Table 1. Summary of student skills and aspirations. Directional paired *t*-tests were used to examine educational gains due to participation in HF-SRPE. Questions where post-surveys were not significantly greater than pre-surveys exhibited a decrease.

<table>
<thead>
<tr>
<th>Survey Question*</th>
<th>Pairs (n)</th>
<th>Pre (±SEM)</th>
<th>Post (±SEM)</th>
<th>t-Value</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3</td>
<td>209</td>
<td>2.23 (0.05)</td>
<td>2.87 (0.05)</td>
<td>-11.28</td>
<td><0.001</td>
</tr>
<tr>
<td>Q4</td>
<td>208</td>
<td>2.12 (0.03)</td>
<td>2.49 (0.04)</td>
<td>-9.42</td>
<td><0.001</td>
</tr>
<tr>
<td>Q5a</td>
<td>208</td>
<td>3.90 (0.06)</td>
<td>4.31 (0.05)</td>
<td>-6.50</td>
<td><0.001</td>
</tr>
<tr>
<td>Q5b</td>
<td>209</td>
<td>4.17 (0.05)</td>
<td>4.61 (0.04)</td>
<td>-7.56</td>
<td><0.001</td>
</tr>
<tr>
<td>Q5c</td>
<td>209</td>
<td>3.56 (0.06)</td>
<td>3.81 (0.06)</td>
<td>-3.70</td>
<td><0.001</td>
</tr>
<tr>
<td>Q5d</td>
<td>209</td>
<td>3.62 (0.06)</td>
<td>3.95 (0.06)</td>
<td>-5.19</td>
<td><0.001</td>
</tr>
<tr>
<td>Q5e</td>
<td>207</td>
<td>3.47 (0.06)</td>
<td>4.21 (0.05)</td>
<td>-11.44</td>
<td><0.001</td>
</tr>
<tr>
<td>Q8</td>
<td>205</td>
<td>1.99 (0.05)</td>
<td>2.04 (0.05)</td>
<td>-1.02</td>
<td>0.154</td>
</tr>
<tr>
<td>Q9</td>
<td>179</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Q10a</td>
<td>209</td>
<td>3.53 (0.05)</td>
<td>3.43 (0.06)</td>
<td>2.45</td>
<td>0.993</td>
</tr>
<tr>
<td>Q10b</td>
<td>188</td>
<td>3.14 (0.06)</td>
<td>2.93 (0.07)</td>
<td>3.28</td>
<td>0.999</td>
</tr>
</tbody>
</table>

*Complete question text from survey:

Q3: Would you say that your scientific research skills are: (1: Need development, 2: Adequate, 3: Strong, 4: Very strong)

Q4: Would you say that your confidence in your scientific research skills is: (1: Low, 2: Medium, 3: High)

Q5a-e: How prepared are you to: (1: Not at all prepared – 5: Very prepared)

 Q5a: Participate in interdisciplinary research with a team of researcher

 Q5b: Conduct research supervised by a research mentor
Q5c: Analyze scientific data
Q5d: Write-up scientific results
Q5e: Present scientific results

Q8: Would you say that your long term post-college goals, either for education or employment, are: (1:Uncertain, 2: Clear, 3:Very clear)

Q9: What are your plans immediately after graduating from college: (Grad school environmental; Grad school non-environmental; Job environmental; Job non-environmental; Not certain)

Q10a-b: The likelihood that you will pursue a career in: (1:Not at all likely – 4:Quite likely)

Q10a: Environmental Field
Q10b: STEM research Field
Figure Legends

Figure 1 Mean changes in learning gains based on the presence (closed symbols) or absence (open symbols) of prior laboratory experience. Error bars illustrate 95% confidence intervals.

Figure 2 Mean changes in learning gains based on the presence (closed symbols) or absence (open symbols) of previously having been respected as a member of a research team. Error bars illustrate 95% confidence intervals.

Figure 3 Correspondence analysis of data on students’ plans after graduation. Pre-test responses (treated as rows) are indicated by blue circles and post-test responses (treated as columns) are indicated by red triangles. The size of the symbols indicates the relative proportion of individuals responding to a given category. χ^2-distance approximations are only valid among their respective profiles.

Figure 4 Mean changes in learning gains based on the clarity of post-graduation plans prior to starting the HF-SRPE. Participants identified clarity as either low (triangles), medium (squares), or high (circles). Error bars illustrate 95% confidence intervals.
Supplementary Online Material for

Insights into Student Gains from Undergraduate Research Using Pre/post Assessments

by Andrew L. McDevitt, Manisha V. Patel, Brad Rose, and Aaron M. Ellison
Figure S1. HF-SRPE demographic information for program applicants and participants, 2005 - 2015. A. top row. Star plots illustrating the proportion of each group of applicants in terms of type of institution (Carnegie classification) (black: Primarily undergraduate institution [PUI], dark grey: comprehensive institution; light grey: Research-1 institution; lightest grey: other [community college or no institution]). middle row. Academic class (black: freshmen/women; dark grey: sophomores; light grey: juniors; lightest grey: seniors or graduates). bottom row. Self-reported ethnicity (black: African- or African-American; brown: Hispanic/Latin-American; red: Native American; green: Native Pacific Islander; yellow: Asian or Asian-American; light grey: White or Caucasian; blue: did not provide. In all star plots, sections are scaled to the square-root of the percentage of applicants. Note that some applicants reported more than one ethnicity, so totals in that row do not sum to 100%. B. Total number of applicants (black symbols and line), percentage of female applicants (magenta symbols and line), and percentage of applicants from groups traditionally underrepresented in science (brown symbols and line). C. Star plots illustrating the proportion of each group of participants in terms of type of institution, academic class, and ethnicity. Colors as in (A). D. Total number of participants, and percentage of female participants and those from groups traditionally underrepresented in science. Colors and lines as in (B).
Figure S2. Changes in perception of scientific research skills based on prior experiences. Each panel indicates presence (closed/solid) or absence (open/dashed) of each corresponding experience. Error bars represent the 95% confidence interval.
Figure S3. Changes in student’s confidence of their scientific research skills based on prior experiences. Each panel indicates presence (closed/solid) or absence (open/dashed) of each corresponding experience. Error bars represent the 95% confidence interval.
Figure S4. Changes in preparedness for interdisciplinary research based on prior experiences. Each panel indicates presence (closed/solid) or absence (open/dashed) of each corresponding experience. Error bars represent the 95% confidence interval.
Figure S5. Changes in preparedness for mentored research based on prior experiences. Each panel indicates presence (closed/solid) or absence (open/dashed) of each corresponding experience. Error bars represent the 95% confidence interval.
Figure S6. Changes in preparedness to analyze scientific data based on prior experiences. Each panel indicates presence (closed/solid) or absence (open/dashed) of each corresponding experience. Error bars represent the 95% confidence interval.
Figure S7. Changes in preparedness write-up scientific results based on prior experiences. Each panel indicates presence (closed/solid) or absence (open/dashed) of each corresponding experience. Error bars represent the 95% confidence interval.
Figure S8. Changes in preparedness to present scientific results based on prior experiences. Each panel indicates presence (closed/solid) or absence (open/dashed) of each corresponding experience. Error bars represent the 95% confidence interval.
Figure S9. Changes in learning gains based on the clarity of post-graduation plans prior to starting the HF-SRPE. Participants identified clarity as either low (open/dotted), medium (closed/dashed), or high (open/solid). Error bars represent the 95% confidence interval.