Measurement of underlying event characteristics using charged particles in pp collisions at $\sqrt{s}=900\text{ GeV}$ and 7 TeV with the ATLAS detector

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1103/PhysRevD.83.112001</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:34391751</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Measurement of underlying event characteristics using charged particles in \(pp \) collisions at \(\sqrt{s} = 900 \) GeV and 7 TeV with the ATLAS detector

G. Aad et al. *
(ATLAS Collaboration)
(Received 3 December 2010; published 31 May 2011)

Measurements of charged particle distributions, sensitive to the underlying event, have been performed with the ATLAS detector at the LHC. The measurements are based on data collected using a minimum-bias trigger to select proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The “underlying event” is defined as those aspects of a hadronic interaction attributed not to the hard scattering process, but rather to the accompanying interactions of the rest of the proton. Three regions are defined in azimuthal angle with respect to the highest transverse momentum charged particle in the event, such that the region transverse to the dominant momentum-flow is most sensitive to the underlying event. In each of these regions, distributions of the charged particle multiplicity, transverse momentum density, and average \(p_T \) are measured. The data show generally higher underlying event activity than that predicted by Monte Carlo models tuned to pre-LHC data.

DOI: 10.1103/PhysRevD.83.112001
PACS numbers: 12.38.-t, 13.75.-n

I. INTRODUCTION

To perform precise standard model measurements or search for new physics phenomena at hadron colliders, it is essential to have a good understanding not only of the short-distance “hard” scattering process, but also of the accompanying interactions of the rest of the proton—collectively termed the “underlying event” (UE). It is impossible to uniquely separate the UE from the hard scattering process on an event-by-event basis. However, observables can be measured which are sensitive to its properties.

The UE may involve contributions from both hard and soft physics, where “soft” refers to interactions with low \(p_T \) transfer between the scattering particles. Soft interactions cannot reliably be calculated with perturbative QCD methods and are generally described in the context of different phenomenological models, usually implemented in Monte Carlo (MC) event generators. These models contain many parameters whose values are not a priori known. Therefore, to obtain insight into the nature of soft QCD processes and to optimize the description of UE contributions for studies of hard-process physics such as hadronic jet observables, the model parameters must be fitted to experimental data.

Measurements of primary charged particle multiplicities have been performed in “minimum bias” (MB) events at the LHC [1–5]. Such inclusive studies provide important constraints on soft hadron-interaction models. However, observables constructed for the study of the UE measure the structure of hadronic events in a different way, focusing on the correlation of soft-process features to one another and to those of the hardest processes in the event. UE observables have been measured in \(pp \) collisions in dijet and Drell-Yan events at CDF in Run I [6] and Run II [7] at center-of-mass energies of \(\sqrt{s} = 1.8 \) TeV and 1.96 TeV, respectively, and in \(pp \) collisions at \(\sqrt{s} = 900 \) GeV in a detector-specific study by CMS [8].

This paper reports the measurement of UE observables, performed with the ATLAS detector [9] at the LHC using proton-proton collisions at center-of-mass energies of 900 GeV and 7 TeV. The UE observables are constructed from primary charged particles in the pseudorapidity range \(|\eta| < 2.5 \), whose transverse momentum component \(|p_T| > 100 \) MeV or \(|p_T| > 500 \) MeV. Primary charged particles are defined as those with a mean proper lifetime \(\tau \approx 0.3 \times 10^{-10} \) s, directly produced either in \(pp \) interactions or in the decay of particles with a shorter lifetime. At the detector level, charged particles are observed as tracks in the inner tracking system. The direction of the track with the largest \(p_T \) in the event—referred to as the “leading” track—is used to define regions of the \(\eta-\phi \) plane which have different sensitivities to the UE. The axis given by the leading track is well-defined for all events and is highly correlated with the axis of the hard scattering in high-\(p_T \) events. A single track is used as opposed to a jet or the decay products of a massive gauge boson, as it allows significant results to be derived with limited luminosity and avoids the systematic measurement complexities of alignment with more complex objects.

As illustrated in Fig. 1, the azimuthal angular difference between charged tracks and the leading track, \(\Delta \phi = |\phi - \phi_{\text{leading track}}| \), is used to define the following three azimuthal regions [6]:

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

1550-7998/2011/83(11)/112001(34)
112001-1
© 2011 CERN, for the ATLAS Collaboration
The transverse regions are most sensitive to the underlying event, since they are generally perpendicular to the axis of hardest scattering and hence have the lowest level of activity from this source. However, the hard scatter can of course also emit particles perpendicular to the event axis: the regional division is not, and cannot be, an exact filter. The observables examined in this analysis are described in Table I. The detector level corresponds to the tracks passing the selection criteria, and the particle level corresponds to true charged particles in the event. The particle level can be compared directly with the QCD Monte Carlo models at the generator level.

This paper is organized as follows: The ATLAS detector is described in Sec. II. In Sec. III, the QCD MC models used in this analysis are discussed. Sections IV, V, VI, and VII respectively describe the event selection, background contributions, correction of the data back to particle level, and estimation of the systematic uncertainties. The results are discussed in Sec. VIII and finally the conclusions are presented in Sec. IX.

II. THE ATLAS DETECTOR

The ATLAS detector [9] covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters and muon chambers. It has been designed to study a wide range of physics topics at LHC energies. For the measurements presented in this paper, the trigger system and the tracking devices were of particular importance.

The ATLAS inner detector has full coverage in \(\phi \) and covers the pseudorapidity range \(|\eta| < 2.5 \). It consists of a

![Diagram of regions in the azimuthal angle with respect to the leading track.](image)

FIG. 1 (color online). Definition of regions in the azimuthal angle with respect to the leading track.

(1) \(|\Delta \phi| < 60^\circ \), the “toward region”;
(2) \(60^\circ < |\Delta \phi| < 120^\circ \), the “transverse region”; and
(3) \(|\Delta \phi| > 120^\circ \), the “away region”.

The transverse regions are most sensitive to the underlying event, since they are generally perpendicular to the axis of

TABLE I. Definition of the measured observables at particle and detector level. The particles and tracks are required to have \(p_T > 0.1 \text{ GeV} \) or \(0.5 \text{ GeV} \) and \(|\eta| < 2.5 \). Tracks are selected if they pass the criteria described in Sec. IV. The mean charged particle momentum \(\langle p_T \rangle \) is constructed on an event-by-event basis and then averaged over the events.

<table>
<thead>
<tr>
<th>Observable</th>
<th>Particle level</th>
<th>Detector level</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_T^{\text{lead}})</td>
<td>Transverse momentum of the stable charged particle with maximum (p_T) in the event</td>
<td>Transverse momentum of the selected track with maximum (p_T) in the event</td>
</tr>
<tr>
<td>(</td>
<td>\eta</td>
<td>^{\text{lead}})</td>
</tr>
<tr>
<td>(\langle d^2N_{\text{ch}}/d\eta d\phi \rangle)</td>
<td>Mean number of stable charged particles per unit (\eta)-(\phi)</td>
<td>Mean number of selected tracks per unit (\eta)-(\phi)</td>
</tr>
<tr>
<td>(\langle d^2 \sum p_T/d\eta d\phi \rangle)</td>
<td>Mean scalar (p_T) sum of stable charged particles per unit (\eta)-(\phi)</td>
<td>Mean scalar (p_T) sum of selected tracks per unit (\eta)-(\phi)</td>
</tr>
<tr>
<td>Standard deviation of (d^2N_{\text{ch}}/d\eta d\phi)</td>
<td>Standard deviation of number of stable charged particles per unit (\eta)-(\phi)</td>
<td>Standard deviation of number of selected tracks per unit (\eta)-(\phi)</td>
</tr>
<tr>
<td>Standard deviation of (d^2 \sum p_T/d\eta d\phi)</td>
<td>Standard deviation of scalar (p_T) sum of stable charged particles per unit (\eta)-(\phi)</td>
<td>Standard deviation of scalar (p_T) sum of selected tracks per unit (\eta)-(\phi)</td>
</tr>
<tr>
<td>(\langle p_T \rangle)</td>
<td>Average (p_T) of stable charged particles (at least 1 charged particle is required)</td>
<td>Average (p_T) of selected tracks (at least 1 selected track is required)</td>
</tr>
<tr>
<td>Angular distribution of number density</td>
<td>Number density of stable charged particles in intervals of (\Delta</td>
<td>\phi</td>
</tr>
<tr>
<td>Angular distribution of (p_T) density</td>
<td>(p_T) density of stable charged particles in the intervals of (\Delta</td>
<td>\phi</td>
</tr>
</tbody>
</table>
MEASUREMENT OF UNDERLYING EVENT ...
For PYTHIA and PHOJET, nondiffractive, single-diffractive and double-diffractive events were generated separately, and were mixed according to the generator cross-sections to fully describe the inelastic scattering. HERWIG does not contain any diffractive processes.

IV. EVENT AND TRACK SELECTION

All data used in this paper were taken during the LHC running periods with stable beams and defined beam-spot values, between 6th and 15th December 2009 for the analysis at \(\sqrt{s} = 900 \text{ GeV} \), and from 30th March to 27th April 2010 for the 7 TeV analysis. The only operational requirement was that the MBTS trigger and all inner detector subsystems were at nominal conditions. During the December data-taking period, more than 96% of the pixel detector, more than 99% of the SCT and more than 98% of the TRT was operational. These efficiencies were higher in 2010.

To reduce the contribution from backgrounds and secondaries, as well as to minimize the systematic uncertainties, the following criteria were imposed:

1. The presence of a reconstructed primary vertex using at least two tracks, each with:
 - \(p_T > 100 \text{ MeV} \);
 - Offline reconstruction within the inner detector, \(|\eta| < 2.5\);
 - A transverse distance of closest approach with respect to the beam-spot (BS) position, \(|d_0^{BS}| \), of less than 4 mm;
 - Uncertainties on the transverse and longitudinal distances of closest approach of \(\sigma(d_0^{BS}) < 5 \text{ mm} \) and \(\sigma(z_0^{BS}) < 10 \text{ mm} \);
 - At least one pixel hit, at least four SCT hits and at least six silicon hits in total.

Beam-spot information was used both in the track pre-selection and to constrain the fit during iterative vertex reconstruction, and vertices incompatible with the beam-spot were removed. The vertices were ordered by the \(\sum p_T^2 \) over the tracks assigned to the vertex, which is strongly correlated with the total number of associated tracks, with the highest \(\sum p_T^2 \) vertex defined as the primary interaction vertex of the event.

Events that had a second primary vertex with more than three tracks in the same bunch crossing were rejected. If the second vertex had three or fewer tracks, all tracks from the event that passed the selection were kept. After this cut, the fraction of events with more than one interaction in the same bunch crossing (referred to as pileup) was found to be about 0.1%; the residual effect was thus neglected. At \(\sqrt{s} = 900 \text{ GeV} \), since the data were taken at the low luminosity period, the rate of pileup was even lower and was also neglected.

2. At least one track with:
 - \(p_T > 1 \text{ GeV} \),
 - A minimum of one pixel and six SCT hits [28];
 - A hit in the innermost pixel layer (the b-layer), if the corresponding pixel module was active;
 - Transverse and weighted-longitudinal impact parameters with respect to the event-by-event primary vertex were required to be \(|d_0| < 1.5 \text{ mm} \) and \(|z_0| \cdot \sin\theta < 1.5 \text{ mm} \) [29];
 - A \(\chi^2 \) probability of track fit \(>0.01 \) was required in order to remove mismeasured tracks [30].

Only events with leading track \(p_T > 1 \text{ GeV} \) were considered, in order to reject events where the leading track selection can potentially introduce large systematic effects. This also has the effect of further reducing the contribution from diffractive scattering processes.

Two separate analyses were performed, in which all the other tracks were required to have either \(p_T > 100 \text{ MeV} \) or \(p_T > 500 \text{ MeV} \). For \(p_T > 500 \text{ MeV} \) tracks, the silicon and impact-parameter requirements were the same as given earlier for tracks with \(p_T > 1 \text{ GeV} \). For tracks with the lower \(p_T \) threshold, all other selection criteria were the same except that only two, four or six SCT hits were required for tracks with \(p_T \sim 100, 200, 300 \text{ MeV} \), respectively. Tracks with \(p_T > 500 \text{ MeV} \) are less prone than lower-\(p_T \) tracks to inefficiencies and systematic uncertainties resulting from interactions with the material inside the tracking volume. Whenever possible, the tracks were extrapolated to include hits in the TRT. Typically, 88% of tracks inside the TRT acceptance (\(|\eta| < 2.0\) included a TRT extension, which significantly improves the momentum resolution.

After these selections, for the 500 MeV (100 MeV) analysis, 189 164 and 6 927 129 events remained at 900 GeV and 7 TeV, respectively, containing 1 478 900 (4 527 710) and 89 868 306 (209 118 594) selected tracks and corresponding to integrated luminosities of 7 \(\mu \text{b}^{-1} \) and 168 \(\mu \text{b}^{-1} \), respectively. For the MC models considered here, the contribution of diffractive events to the underlying event observables was less than 1%.

V. BACKGROUND CONTRIBUTIONS

A. Backgrounds

The amount of beam and non-beam (cosmic rays and detector noise) background remaining after the full event selection was estimated using the number of pixel hits which were not associated to a reconstructed track. This multiplicity included unassigned hits from low-\(p_T \) looping tracks, but was dominated at higher multiplicities by hits from charged particles produced in beam background interactions. The vertex requirement removed most of the beam background events, and the residual contribution from beam background events after this requirement was below 0.1%. As the level of background was found to be very low, no explicit background subtraction was performed.
B. Fraction of secondary tracks

The primary charged-particle multiplicities were measured from selected tracks after correcting for the fractions of secondary and poorly reconstructed tracks in the sample. The potential background from fake tracks was found via MC studies to be less than 0.01%. Nonprimary tracks predominantly arise from hadronic interactions, photon conversions to positron-electron pairs, and decays of long-lived particles. For \(p_T > 500 \text{ MeV} \) the contribution from photon conversions is small, and sideband regions of the transverse and longitudinal impact parameters from data were used to find a scaling factor of 1.3 for the track yield in MC to get a better agreement with the data. This is not the case at lower \(p_T \). A separate fit to the tails of the \(d_0 \) distribution for primaries, nonprimaries from electrons and other nonprimaries was carried out in eight bins of 50 MeV in the range 100 < \(p_T \) < 500 MeV. The scaled MC was then used to estimate the fraction of secondaries as a function of both \(p_T \) and \(\eta \) in the selected track sample, which is found to be at most 2% for events in both 900 GeV and 7 TeV collisions [4,5]. The systematic uncertainty on the secondaries is included in the uncertainties due to tracking.

VI. CORRECTION TO PARTICLE LEVEL

The data were corrected back to charged primary particle spectra satisfying the event-level requirement of at least one primary charged particle within \(p_T > 1 \text{ GeV} \) and \(|\eta| < 2.5 \). A two-step correction process was used, where first the event and track efficiency corrections were applied, and then an additional bin-by-bin unfolding was performed to account for possible bin migrations and any remaining detector effects.

A. Event-level correction

Trigger and vertexing efficiencies were measured [5] as a function of the number of tracks, \(N_{\text{BS}}^{\text{sel}} \), passing all the track selection requirements except for the primary vertex constraint. In this case, the transverse impact parameter with respect to the beam-spot [31] was required to be less than 1.8 mm. The event level corrections consisted of the following:

1. The efficiency of the MBTS scintillator trigger, \(\epsilon_{\text{trg}}(N_{\text{BS}}^{\text{sel}}) \), was determined from data using an orthogonal trigger. It consisted of a random trigger, requiring only that the event coincided with colliding bunches and had at least 4 pixel clusters and at least 4 SCT space points at L2. The trigger was found to be \(~97\%\) efficient for low-multiplicity events, and almost fully efficient otherwise. It showed no dependence on the \(p_T \) and pseudorapidity distributions of the selected tracks.

2. The vertex reconstruction efficiency, \(\epsilon_{\text{vtx}}(N_{\text{BS}}^{\text{sel}}, \langle \eta \rangle) \), was also measured in data, by taking the ratio of the number of triggered events with a reconstructed vertex to the total number of triggered events. For events containing fewer than three selected tracks, the efficiency was found to depend on the projected separation along the beam axis of the two extrapolated tracks, \(\Delta \eta^{\text{BS}} \). This efficiency amounted to approximately 90% for the lowest bin of \(N_{\text{BS}}^{\text{sel}} \), rapidly rising to 100%.

3. A correction factor, \(\epsilon_{\text{ld trk}}(\epsilon_{\text{trk}}) \), accounts for the probability that due to the tracking inefficiency none of the candidate leading tracks with \(p_T > 1 \text{ GeV} \) is reconstructed in an event, resulting in the event failing the selection criteria. A partial correction for this was provided by determining the probability that all possible reconstructed leading tracks would be missed for each event using the known tracking efficiencies, and then dividing the event weight by this probability. This process will in general yield an excessive correction, since the correct weight should be determined using the number and distributions of true charged particles with \(p_T > 1 \text{ GeV} \) and \(|\eta| < 2.5 \) rather than the distributions of reconstructed tracks. This leads to an overestimation of the probability for the event to be omitted. Nevertheless, this correction represents a good estimate of the efficiency, given the efficiency estimate of tracks in each event. The efficiency was found to be >98% in low-\(p_T \) bins and almost 100% in high-\(p_T \) bins. The uncertainty for this correction is included as part of the tracking efficiency systematic uncertainty. The correction was made with the expectation that the final unfolding in the form of bin-by-bin corrections will provide the small additional correction that is needed.

The total correction applied to account for events lost due to the trigger, vertex, and tracking requirements (in bins of number of tracks with \(p_T > 0.5 \text{ GeV} \)) is given by

\[
W_{\text{ev}} = \frac{1}{\epsilon_{\text{trg}}(N_{\text{BS}}^{\text{sel}})} \cdot \frac{1}{\epsilon_{\text{vtx}}(N_{\text{BS}}^{\text{sel}}, \langle \eta \rangle)} \cdot \frac{1}{\epsilon_{\text{ld trk}}(\epsilon_{\text{trk}})},
\]

where \(\epsilon_{\text{trg}}(N_{\text{BS}}^{\text{sel}}) \), \(\epsilon_{\text{vtx}}(N_{\text{BS}}^{\text{sel}}, \langle \eta \rangle) \) and \(\epsilon_{\text{ld trk}}(\epsilon_{\text{trk}}) \) are the trigger, vertex reconstruction and leading track reconstruction efficiencies discussed earlier.

B. Track-level correction

The track reconstruction efficiency in each bin of the \(p_T-\eta \) kinematic plane was determined from simulation and defined as

\[
\epsilon_{\text{bin}}(p_T, \eta) = \frac{N_{\text{rec}}^{\text{matched}}(p_T, \eta)}{N_{\text{gen}}^{\text{matched}}(p_T, \eta)},
\]

where \(N_{\text{rec}}^{\text{matched}}(p_T, \eta) \) is the number of reconstructed tracks in a given bin matched to a generated charged particle, and \(N_{\text{gen}}^{\text{matched}}(p_T, \eta) \) is the number of generated particles in that bin. The matching between a generated particle and a reconstructed track was done using a cone-matching
algorithm in the \(\eta \cdot \phi \) plane and associating the particle to
the track with the smallest \(R = \sqrt{\Delta \phi^2 + (\Delta \eta)^2} \) within a
cone of radius \(\Delta R < 0.15 \). To reduce fake matching, a common pixel hit between
the reconstructed, simulated track and the generated particle track in the \textsc{geant}4 simu-
alation was also required. The efficiencies were slightly
different between the data sets at the two different
center-of-mass energies because of small differences in
the configuration of the pixel and SCT detectors between
the 2009 and 2010 data-taking periods.

A weight,

\[
w_{\text{trk}} = \frac{1}{\epsilon_{\text{bin}}(p_T, \eta)} \cdot (1 - f_{\text{sec}}(p_T)) \cdot (1 - f_{\text{fake}}),
\]

was applied on a track-by-track basis to all track-level
histograms. Here, \(\epsilon_{\text{bin}}(p_T, \eta) \) is the track reconstruction
efficiency described earlier, \(f_{\text{sec}} \) is the fraction of secon-
daries, and \(f_{\text{fake}} \) is the fraction of fakes.

C. Final unfolding step

The efficiency corrections described so far do not account
for bin-by-bin migrations, nor for the possibility of not
reconstructing the leading particle in the event as the
leading track (reorientation of an event). To account for
these effects, an additional bin-by-bin unfolding was ap-
pied to all distributions after applying the event- and track-
level efficiency corrections described above.

In this correction step, the unfolding factors were eval-
uated separately in each bin for each observable listed in
Table I,

\[
U_{\text{bin}}^i = \frac{V_{\text{Gen}}^i}{V_{\text{Reco, eff corr}}^i},
\]

where \(V_{\text{Gen}}^i \) and \(V_{\text{Reco, eff corr}}^i \), respectively, represent the
generator level MC value of the observable and the recon-
structed MC value after applying the event- and track-level
efficiency corrections at each bin. The corrected value for
an observable is found by multiplying the measured value
by the corresponding unfolding factor. This unfolding
factor is within 5% (10%) of unity in the lowest- \(p_T \) bins
for \(p_T > 100 \text{ MeV} \) (500 MeV) analyses, respectively,
due to the migration and reorientation effects, and very
close to unity for higher- \(p_T \) bins.

VII. SYSTEMATIC UNCERTAINTIES

A study of the systematic uncertainties was performed,
and these were propagated to the final distributions and
added in quadrature to obtain a total systematic uncertainty.

Systematic uncertainties from tracking efficiency were
studied [4,5], and the largest were found to be due to the
following:

(1) The material in the inner detector: the effect of mate-
rial budget uncertainties in the inner detector was
determined to affect the efficiency by a relative
difference of 2% in the barrel region, rising to
over 7% for \(2.3 < |\eta| < 2.5 \), for tracks with \(p_T > 500 \text{ MeV} \).

(2) Consequence of \(\chi^2 \) probability cut: the maximum
difference between the fraction of events in data
and MC which passed this cut was found to be
10%. This value was taken as a conservative esti-
mate of the systematic uncertainty, applied to tracks
with \(p_T > 10 \text{ GeV} \) only.

The systematic uncertainty from pileup removal was esti-
uated to be negligible.

The most common UE observable is a “profile” plot of
the mean value of a charged particle \(p_T \) or multiplicity
observable as a function of the \(p_T \) of the leading object in
the event. Because of the steeply falling \(p_T \) spectrum in
minimum bias events, the number of events in the low- \(p_T \)
bins of these profiles is much higher than in the higher- \(p_T \)
bins, and so migration of the leading track from the
lower- \(p_T \) bins to higher ones is possible: this was ac-
counted for in the MC-based unfolding procedure.

However, an additional systematic uncertainty was in-
cluded because more \(p_T^{\text{lead}} \) migrations are expected in
data than in the MC detector modeling. This extra system-
atic contributes only to the region of the profiles with
\(p_T^{\text{lead}} > 10 \text{ GeV} \), since a small fraction of highly mismeas-
ured leading tracks from the lowest \(p_T^{\text{lead}} \) bin can still have
a significant effect upon the less-populated high- \(p_T^{\text{lead}} \) bins.

The most common UE observable is a “profile” plot of
the mean value of a charged particle \(p_T \) or multiplicity
observable as a function of the \(p_T \) of the leading object in
the event. Because of the steeply falling \(p_T \) spectrum in
minimum bias events, the number of events in the low- \(p_T \)
bins of these profiles is much higher than in the higher- \(p_T \)
bins, and so migration of the leading track from the
lower- \(p_T \) bins to higher ones is possible: this was ac-
counted for in the MC-based unfolding procedure.

However, an additional systematic uncertainty was in-
cluded because more \(p_T^{\text{lead}} \) migrations are expected in
data than in the MC detector modeling. This extra system-
atic contributes only to the region of the profiles with
\(p_T^{\text{lead}} > 10 \text{ GeV} \), since a small fraction of highly mismeas-
ured leading tracks from the lowest \(p_T^{\text{lead}} \) bin can still have
a significant effect upon the less-populated high- \(p_T^{\text{lead}} \) bins.

Since the greatest difference from the \(p_T^{\text{lead}} \)-profile values
in \(p_T^{\text{lead}} > 10 \text{ GeV} \) is seen in the first \(p_T^{\text{lead}} \) bin, a conserva-
tive systematic estimate was obtained by assuming all
migrations to come from the first bin.

The remaining contributions to the overall systematic
uncertainty result from the specific unfolding method used
in this analysis. The bin-by-bin unfolding corrections are in
general influenced by the number of charged particles and
their \(p_T \) distributions, so there is some dependence on
the event generator model. This introduces a second extra
source of systematic uncertainty. In order to estimate this
uncertainty it is necessary to compare different plausible
event generation models, which deviate significantly from
each other. Between the various models and tunes already
described, the maximal variation is seen between \textsc{pythia}
and \textsc{phojet}, and this difference is taken as a measure of the
uncertainty due to model dependence. Where the \textsc{phojet}
sample has sufficient statistics, it is seen that beyond the
statistical fluctuations the relative difference between the
required correction factors from \textsc{phojet} and \textsc{pythia} is at
most 4% in the lowest- \(p_T \) bins, and 2% everywhere else.

Since this uncertainty is independent of any efficiency
systematics, it has been summed in quadrature with the
efficiency systematic uncertainty and the statistical uncer-
taxity. In addition to the model-dependent uncertainty in
the bin-by-bin unfolding, there is also a statistical uncer-
taxity due to the finite size of the Monte Carlo sample.
The statistical fluctuation of the PYTHIA unfolding factor is found to be negligible for low-\(p_T\) bins, but rises to be a significant contribution in higher \(p_T\) bins.

The \(|\Delta \phi|\) between the leading track and the track with the second-highest \(p_T\) (the subleading track) is shown in Fig. 2. It is seen to be most likely that the subleading charged particle lies in either the true toward or the true away region, in which case there is relatively little effect on the observables—the transverse region is particularly unaffected by a \(\sim 180^\circ\) reorientation. However, if the reconstructed leading track lies in what should have been the transverse region, the effect will be to reduce the densities in the toward and away regions, and to increase the densities in the transverse region. The bin-by-bin unfolding derived from the MC corrects for this effect, provided that it occurs with the frequency of reorientation predicted by the MC simulation. Figure 2 is used to estimate the relative frequency with which an event is reoriented such that the true toward and away regions lie in the transverse region identified by the reconstruction. Comparing the \(|\Delta \phi|\) distribution in uncorrected data to the same distributions (uncorrected and reconstructed) predicted by PYTHIA and PHOJET, it is seen that both generator models predict fewer event reorientations of this type. The final correction to the data uses bin-by-bin unfolding factors that are derived from the PYTHIA sample, so the relative magnitude of the

![Graph of \(|\Delta \phi|\) distribution in PYTHIA, PHOJET, and uncorrected data for 900 GeV and 7 TeV.]

FIG. 2 (color online). Difference in \(\phi\) between the leading and the subleading track in PYTHIA, PHOJET and uncorrected data. The left plot is for 900 GeV and the right is for 7 TeV. The MC curves are shown after the full detector simulation.

TABLE II

Summary of systematic uncertainties, shown for the lowest-, intermediate- and highest-\(p_T\) bins. For the analysis with 7 TeV (900 GeV) center-of-mass energy data, the lowest-\(p_T\) bin refers to \(p_T^{\text{lead}} = 1.0\text{–}1.5\) GeV, the intermediate \(p_T\) bin refers to \(p_T^{\text{lead}} = 9\text{–}10\) GeV (4–5 GeV), and the highest \(p_T\) bin refers to \(p_T^{\text{lead}} = 18\text{–}20\) GeV (9–10 GeV). The uncertainties shown are from the transverse region charged \(p_T\) distribution, and all the other profiles are estimated to have comparable or less systematic uncertainty. Each uncertainty is given relative to the profile value at that stage in the correction sequence, and they are an average over all of the phase-space values. In the cases where the uncertainties are different for 900 GeV and 7 TeV analysis, the 900 GeV value is shown in parentheses.

<table>
<thead>
<tr>
<th>Leading charged particle bin</th>
<th>Lowest-(p_T)</th>
<th>Intermediate-(p_T)</th>
<th>Highest-(p_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic uncertainty on unfolding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYTHIA/PHOJET difference</td>
<td>4%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>PYTHIA unfolding stat. uncertainty</td>
<td><0.1%</td>
<td>1% (2%)</td>
<td>4% (5%)</td>
</tr>
<tr>
<td>Systematic uncertainties from efficiency corrections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track reconstruction</td>
<td>3%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Leading track requirement</td>
<td>1%</td>
<td><0.1%</td>
<td><0.1%</td>
</tr>
<tr>
<td>Trigger and vertex efficiency</td>
<td><0.1% (everywhere)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total from efficiency corrections</td>
<td>2.5%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Systematic uncertainty for bin migration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bin migration due to mismeasured (p_T)</td>
<td>2.5% (0%)</td>
<td>5% (0%)</td>
<td></td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>4.5%</td>
<td>4.5% (5%)</td>
<td>8% (6.5%)</td>
</tr>
</tbody>
</table>
It can be concluded that the charged particle density in the underlying event, for events with a leading charged particle in the plateau region (above approximately 3 or 5 GeV for the 900 GeV or 7 TeV data, respectively), is about a factor of 2 larger than the number of charged particles per unit rapidity seen in the inclusive minimum bias spectrum. This is presumably due to the selection effect for more momentum exchange in these events, and the expected absence of diffractive contributions to the events which populate the plateau region. Given that there is one hard scattering, it is more probable to have MPI, and hence the underlying event has more activity than minimum bias.

All the pre-LHC MC tunes considered show at least 10–15% lower activity than the data in the transverse region plateau. The PYTHIA DW tune is the closest model to data for the transverse region, and in fact agrees well with the data in the toward and away regions. The most significant difference between data and MC is seen for the PHOJET generator, particularly at 7 TeV. The strong deviation of HERWIG+JIMMY from the data at low-p_T^lead is expected, as the JIMMY model requires at least one hard scattering and therefore is not expected to be applicable in this region.

The underlying event activity is seen to increase by a factor of approximately two between the 900 GeV and 7 TeV data. This is roughly consistent with the rate of increase predicted by MC models tuned to Tevatron data. The toward and away regions are dominated by jetlike activity, yielding gradually rising number densities. In contrast, the number density in the transverse region appears to be independent of the energy scale defined by p_T^lead once it reaches the plateau. The 900 GeV and 7 TeV data show the same trend.

C. Charged particle scalar p_T sum

In Fig. 4 the charged particle scalar \(\sum p_T \) density, in the kinematic range \(p_T > 0.5 \text{ GeV and } |\eta| < 2.5 \), is shown as a function of \(p_T^\text{lead at } \sqrt{s} = 900 \text{ GeV and 7 TeV} \).

The summed charged particle \(p_T \) in the plateau characterizes the mean contribution of the underlying event to jet energies. The higher number density implies a higher \(p_T \) density as well. All the MC tunes considered show 10–15% lower \(\sum p_T \) than the data in the plateau part of the transverse region. The PYTHIA DW tune is again seen to be the closest to data in the transverse region, but it slightly overshoots the data in the toward and away regions. PHOJET is again the model furthest from the data, particularly at 7 TeV, and the strong deviation of HERWIG+JIMMY from the data at low-p_T^lead is again expected due to the range of validity of the model. The value of \(\sum p_T \) is seen to increase by slightly more than a factor of 2 between 900 GeV and 7 TeV data, which is roughly consistent with the increase predicted by the MC models.

In the toward and away regions, jetlike rising profiles are observed, in contrast to the plateau-like feature in the
FIG. 3 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the density of the charged particles \(d^2N_{ch}/d\eta dp_T\) with \(p_T > 0.5\) GeV and \(|\eta| < 2.5\), as a function of \(p_T^{lead}\). The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG + JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 4 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the scalar $\sum p_T$ density of the charged particles $\left(\sum p_T d\eta d\phi\right)$ with $p_T > 0.5$ GeV and $|\eta| < 2.5$, as a function of p_{lead}^T. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
transverse region. The toward region includes the leading charged particle and has a higher \(\sum p_T \) than the away region as there is higher probability of high-\(p_T \) particles being produced in association with the leading-\(p_T \) charged particle. In the toward region the highest fraction of energy has been allocated to a single charged particle. This implicitly reduces the number of additional charged particles in that region, since there is less remaining energy to be partitioned. As a result, the multiplicity of charged particles is slightly lower in the toward region by comparison to the away region for high-\(p_T^{\text{lead}} \). The increase of the \(p_T \) densities in the toward and away regions indicates the extent of the variation in the charged fraction of the total energy in each region.

Multiplying the \(\sum p_T \) density by the area associated with the toward region, the \(\sum p_T \) is nearly twice what it would be if the leading charged particle were the only charged particle in the region. For the away region, the initial linear rise corresponds to the region whose total \(p_T \) nearly balances that of the leading charged particle alone. The 900 GeV and 7 TeV data show the same trend.

D. Standard deviation of charged particle multiplicity and scalar \(\sum p_T \)

In Fig. 5, the standard deviations of the charged particle multiplicity and charged particle scalar \(\sum p_T \) densities, in the kinematic range \(p_T > 0.5 \text{ GeV} \) and \(|\eta| < 2.5 \), are shown against the leading charged particle \(p_T \) at \(\sqrt{s} = 900 \text{ GeV} \) and 7 TeV (for the transverse region only).

The mean and standard deviations of the \(p_T \) density in the transverse region characterize a range of additional energy that jets might acquire if the underlying event were uniformly distributed. As the error formula is neither trivial nor particularly standard, we reproduce it here: for each bin, the sample variance of the variance of the observable \(x \in \{N_{\text{ch}}, \sum p_T \} \) is \(\text{var}(\text{var}(x)) = m_x(x) - m_3(x)m_1(x) - m_2(x)^2 + 8m_2(x)m_1(x)^2 - 4m_1(x)^3 \), where \(m_y(x) = \langle x^y \rangle \) is the order \(N \) moment of the distribution. This is then translated into the standard error on the standard deviation of \(x \) via error propagation with a single derivative, giving symmetric errors of size \(\text{var}(\text{var}(x)) / (n - 2) / 2\sqrt{\text{var}(x)} \), where \(n \) is the number of entries in the bin. The 900 GeV and 7 TeV data show the same trend.

The confirmation that the magnitudes of the standard deviations of the distributions are comparable to the magnitudes of the mean values indicates that a subtraction of the underlying event from jets should be done on an event-by-event basis, rather than by the subtraction of an invariant average value. These distributions also provide an additional constraint on generator models and tunes: the discrepancy between models is much stronger at 7 TeV than at 900 GeV, with HERWIG+JIMMY giving the best description and PHOJET, in particular, severely undershooting the data at 7 TeV.

E. Charged particle mean \(p_T \)

In Fig. 6 the average charged particle \(\sum p_T \), in the kinematic range \(p_T > 0.5 \text{ GeV} \) and \(|\eta| < 2.5 \), is shown as a function of \(p_T^{\text{lead}} \) at \(\sqrt{s} = 900 \text{ GeV} \) and 7 TeV. These plots were constructed on an event-by-event basis by dividing the total charged particle \(p_T \) in each region by the number of charged particles in that region, requiring at least one charged particle in the considered region.

All the MC tunes, except PYTHIA tune DW, show somewhat lower mean \(p_T \) than the data in the plateau part of the transverse region and overestimate the data in the toward and away regions. The underlying event \(p_T \) is seen to increase by about 20\% going from \(\sqrt{s} = 900 \text{ GeV} \) to 7 TeV, again described by the MC models. There is relatively little discrimination between MC models for this observable; all predictions are within \(\sim 10\% \) of the data values. The toward and away regions are dominated by the jetlike rising profiles, in contrast to the plateau in the transverse region. The toward region has a higher mean \(p_T \) than the away region since there is higher probability of higher \(p_T \) particles being produced in association with the leading charged particle. The 900 GeV and 7 TeV data show the same trend.

F. Charged particle mean \(p_T \) and multiplicity correlations

The correlation between the mean \(p_T \) of charged particles and the charged particle multiplicity in each region is sensitive to the amount of hard (perturbative QCD) versus soft (nonperturbative QCD) processes contributing to the UE. This has previously been measured for inclusive minimum bias events by CDF [24] and ATLAS [5]. We present this quantity in Fig. 7 for each of the azimuthal regions in the kinematic range \(p_T > 0.5 \text{ GeV} \) and \(|\eta| < 2.5 \).

The profiles in the transverse and away regions are very similar, showing a monotonic increase of \(\langle p_T \rangle \) with \(N_{\text{ch}} \). The profile of the toward region is different, as it is essentially determined by the requirement of a track with \(p_T > 1 \text{ GeV} \). For \(N_{\text{ch}} = 1 \), it contains only the leading charged particle and, as \(N_{\text{ch}} \) is increased by inclusion of soft charged particles, the average is reduced. However, for \(N_{\text{ch}} > 5 \), jetlike structure begins to form, and a weak rise of the mean \(p_T \) is observed. The 900 GeV and 7 TeV data show the same trend. Comparing the 900 GeV and 7 TeV data, it is seen that the mean charged particle \(p_T \) vs \(N_{\text{ch}} \) profiles are largely independent of the energy scale of the collisions.

The MC models again show most differentiation for the 7 TeV data, and it is interesting to see that the HERWIG+JIMMY model describes the data well at this center-of-mass energy—better than either the DW or ATLAS MC09 PYTHIA tunes (which both substantially overshoot at 7 TeV) and comparably to the Perugia0 PYTHIA tune. PHOJET gives the best description at 7 TeV. However, both HERWIG+JIMMY and PHOJET undershoot...
the transverse region data at 900 GeV, so no robust conclusion can be drawn about the relative qualities of the models.

G. Angular distributions

The angular distributions with respect to the leading charged particle of the charged particle number and \(\sum p_T \) densities at \(\sqrt{s} = 900 \) GeV and 7 TeV, with charged particle \(p_T > 0.5 \) GeV, are plotted in Figs. 8 and 9. The leading charged particle taken to be at \(\Delta \phi = 0 \) has been excluded from the distributions. The data are shown for four different lower cut values in leading charged particle \(p_T \). These distributions are constructed by reflecting \(|\Delta \phi| \) about zero; i.e., the region \(-\pi \leq \Delta \phi < 0 \) is an exact mirror image of the measured \(|\Delta \phi| \) region shown in \(0 \leq \Delta \phi \leq \pi \).

These distributions show a significant difference in shape between data and MC predictions. With the increase of the leading charged particle \(p_T \), the development of jetlike structure can be observed, as well as the corresponding sharper rise in transverse regions compared to the MC. The saturation at higher \(p_T \) indicates the plateau region seen in Figs. 3 and 4. PYTHIA tunes essentially predict a stronger correlation than is seen in the data, and this discrepancy in the toward region associated particle density was also observed at CDF [32].
FIG. 6 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the mean p_T of the charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$, as a function of p_T^{lead}. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 7 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the mean p_T of the charged particles against the charged multiplicity, for charged particles with $p_T > 0.5$ GeV and $|\eta| < 2.5$. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 8 (color online). ATLAS data at 900 GeV (top plots) and at 7 TeV (bottom plots) corrected back to the particle level, showing the ϕ distribution of charged particle densities $d^2 N_{ch}/d\eta d\phi$ with respect to the leading charged particle (at $\phi = 0$), for $p_T > 0.5$ GeV and $|\eta| < 2.5$. The leading charged particle is excluded. The data are compared to MC predictions by the PYTHIA ATLAS MC09, DW and Perugia0 tunes, the HERWIG+JIMMY ATLAS MC09 tune, and PHOJET. The distributions obtained by restricting the minimum leading charged particle p_T to different values are shown separately. The plots have been symmetrized by reflecting them about $\Delta \phi = 0$. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty corresponding to each p_T lower cut value.
FIG. 9 (color online). ATLAS data at 900 GeV (top plots) and at 7 TeV (bottom plots) corrected back to the particle level, showing the φ distribution of charged particle p_T densities $d^2p_T/d\eta d\phi$ with respect to the leading charged particle (at $\Delta \phi = 0$), for $p_T > 0.5$ GeV and $|\eta| < 2.5$. The leading charged particle is excluded. The data are compared to MC predictions by the PYTHIA ATLAS MC09, DW and Perugia0 tunes, the HERWIG+JIMMY ATLAS MC09 tune, and PHOJET. The distributions obtained by restricting the minimum leading charged particle p_T to different values are shown separately. The plots have been symmetrized by reflecting them about $\Delta \phi = 0$. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty corresponding to each p_T lower cut value.
FIG. 10 (color online). ATLAS data at 900 GeV (left plots) and at 7 TeV (right plots) corrected back to particle level, showing the density of the charged particles \(d^2N_{\text{ch}}/d\eta d\phi \) with \(p_T > 0.1 \) GeV and \(|\eta| < 2.5 \), as a function of \(p_T^{\text{lead}} \). The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
FIG. 11 (color online). ATLAS data at 900 GeV (left) and at 7 TeV (right) corrected back to particle level, showing the scalar density of the charged particles $\langle d^2 \sum p_T / d\eta d\phi \rangle$ with $p_T > 0.1$ GeV and $|\eta| < 2.5$, as a function of p_T^{lead}. The data are compared with PYTHIA ATLAS MC09, DW and Perugia0 tunes, HERWIG$+$JIMMY ATLAS MC09 tune and PHOJET predictions. The top, middle and the bottom rows, respectively, show the transverse, toward and away regions defined by the leading charged particle. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.
Attabad, the available leading charged particle pseudorapidity for $p_T > 0.1 \text{ GeV}$ and $|\eta| < 2.5$, as a function of the leading charged particle $|\eta|$, for the transverse region plateau ($p_T^{\text{lead}} > 5 \text{ GeV}$), defined by the leading charged particle and compared with PYTHIA ATLAS MC09, DW, and Perugia0 tunes, and HERWIG+JIMMY ATLAS MC09 tune, and PHOJET predictions. The error bars show the statistical uncertainty while the shaded areas show the combined statistical and systematic uncertainty.

H. Charged particle multiplicity and scalar $\sum p_T$ for lower p_T cut

In Figs. 10 and 11, the charged particle multiplicity density and charged particle scalar $\sum p_T$ density are shown against the leading charged particle p_T at $\sqrt{s} = 900 \text{ GeV}$ and 7 TeV. This time a lower p_T cutoff of 0.1 GeV is applied for the charged particles in $|\eta| < 2.5$.

Compared to the previous plots with $p_T > 500 \text{ MeV}$ in Figs. 3 and 4, almost a twofold increase in multiplicity is observed, but the scalar $\sum p_T$ stays very similar. Again, the pre-LHC MC tunes show lower activity than the data in the plateau part of the transverse region, except for HERWIG+JIMMY, which predicts the charged particle multiplicity density better than other models but does not do better for the $\sum p_T$ density. As this distinction of MC models is not seen for the $p_T > 500 \text{ MeV}$ N_{ch} profile in Sec. VIII B, it can be seen that HERWIG+JIMMY produces more particles between 100 MeV and 500 MeV than the other MC models. A similar effect may be observed in the $\langle p_T \rangle$ vs N_{ch} observable of Sec. VIII F.

I. Charged particle multiplicity and scalar $\sum p_T$ of the leading charged particle

Figure 12 shows the charged particle multiplicity density and $\sum p_T$ density in the kinematic range $p_T > 0.1 \text{ GeV}$ and $|\eta| < 2.5$, for $p_T^{\text{lead}} > 5 \text{ GeV}$, against the leading charged particle pseudorapidity for $\sqrt{s} = 7 \text{ TeV}$. As this observable is composed only from events on the low-statistics transverse region plateau, the available statistics were not sufficient at $\sqrt{s} = 900 \text{ GeV}$ for a robust analysis. However, the same behavior is seen as for 7 TeV.

It has been proposed that the dependence of the event characteristics on the (pseudo)rapidity can be a useful test of the centrality of the events [33]. In Fig. 12, the multiplicity and $\sum p_T$ are seen to be independent of $|\eta|$ for the transverse region plateau, suggesting that the average impact parameters in pp collisions do not depend strongly on η of the leading particle for a given p_T.

IX. CONCLUSIONS

Measurements of underlying event structure with the ATLAS detector have been presented, using the data delivered by the LHC during 2009 and 2010 at center-of-mass energies of 900 GeV and 7 TeV. This is the first underlying event analysis at 7 TeV, and the first such analysis at 900 GeV to be corrected for detector-specific effects.

The data have been corrected with minimal model-dependence and are provided as inclusive distributions at the particle level. The selected phase-space and the precision of this analysis highlight significant differences between Monte Carlo models and the measured distributions. The same trend was observed for the ATLAS inclusive charged particle multiplicity measurement [4,5]. PHOJET, HERWIG+JIMMY and all pre-LHC MC tunes of PYTHIA predict less activity in the transverse region (i.e. in the underlying event) than is actually observed, for both center-of-mass energies and for charged particle minimum p_T requirements of both 100 MeV and 500 MeV.
The charged particle multiplicity in the plateau of the transverse region distribution was found to be about 2 times higher than that of minimum bias particle density in the overall event.

One of the goals of this analysis is to provide data that can be used to test and improve Monte Carlo models in preparation for other physics studies at the LHC. The underlying event observables presented here are particularly important for constraining the energy evolution of multiple partonic interaction models, since the plateau heights of the UE profiles are highly correlated to multiple parton interaction activity. As MC models of soft physics are least predictive when modeling diffractive processes, it is particularly useful that the UE profiles are largely insensitive to contributions from soft diffraction models: the PYTHIA soft diffraction model indicates that these are constrained to the lowest bins in p_T^{lead}. However, the sensitivity to more complete diffraction models with a hard component, such as implemented in PYTHIA 8 [34] or PHOJET, has not yet been fully ascertained.

The data at 7 TeV are particularly important for MC tuning, since measurements are needed with at least two energies to constrain the energy evolution of MPI activity. While measurements from CDF exist at 630 GeV, 1800 GeV and 1960 GeV, in addition to these ATLAS measurements at 900 GeV and 7 TeV, there is a tension between the CDF and ATLAS measurements: the ATLAS analyses indicate higher levels of activity, as evidenced by the failure of MC tunes to CDF data to match the ATLAS measurements at 900 GeV and 7 TeV, there is a tension between the CDF and ATLAS measurements: the ATLAS analyses indicate higher levels of activity, as evidenced by the failure of MC tunes to CDF data to match the ATLAS data [35]. Hence, ATLAS UE measurement at two energies provides the best tuning data for MC predictions of ATLAS UE at higher energies. While the PYTHIA DW tune fits the ATLAS UE profile data closer than any other current tune, it fails to describe other data—as highlighted in the shape of the distribution of $\langle p_T \rangle$ vs N_{ch} in Fig. 7. The increase of initial state radiation activity (and different shower models) in tune DW may be responsible for this behavior. There is therefore no current standard MC tune which adequately describes all the early ATLAS data. However, using diffraction-limited minimum bias distributions and the plateau regions of the underlying event distributions presented here, ATLAS has developed a new PYTHIA tune AMBT1 (ATLAS Minimum Bias Tune 1) and a new HERWIG+$+$JIMMY tune AUET1 (ATLAS Underlying Event Tune 1) which model the p_T and charged multiplicity spectra significantly better than the pre-LHC tunes of those generators [5,36].

ACKNOWLEDGMENTS

We wish to thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAEPES, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT), MPO and CCRC, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MINSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

REFERENCES

MEASUREMENT OF UNDERLYING EVENT...

[10] The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive \(z \)-axis, while the positive \(x \)-axis is defined as pointing from the collision point to the center of the LHC ring and the positive \(y \)-axis points upwards. The azimuthal angle \(\phi \) is measured around the beam axis, and the polar angle \(\theta \) is the angle measured with respect to the \(z \)-axis. The pseudorapidity is given by \(\eta = -\ln \tan(\theta/2) \). Transverse momentum is defined relative to the beam axis.

[14] The gluon density distribution is enhanced at low-\(x \), while the positive \(x \)-axis is defined as pointing from the collision point to the center of the LHC ring and the positive \(y \)-axis points upwards. The azimuthal angle \(\phi \) is measured around the beam axis, and the polar angle \(\theta \) is the angle measured with respect to the \(z \)-axis. The pseudorapidity is given by \(\eta = -\ln \tan(\theta/2) \). Transverse momentum is defined relative to the beam axis.

[28] This is a more stringent requirement than the requirement of seven silicon hits at the track reconstruction step.

[29] The factor of \(\sin \theta \) compensates for the \(\sin \theta \) in the denominator of the uncertainty of \(z_0 \) derived from the measured distance of closest approach.

[30] A long non-Gaussian tail in the track momentum resolution, combined with the steeply falling \(p_T \) spectrum, leads to an observed migration of very-low-momentum particles to very-high-reconstructed \(p_T \), which are referred to as mismeasured tracks.

[35] The CDF measurements are within \(|\eta| < 1 \), but ATLAS measurements restricted to that \(\eta \) range show the same discrepancy as seen for the \(|\eta| < 2.5 \) results presented here.

MEASUREMENT OF UNDERLYING EVENT ...
Jožef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia
Queen Mary University of London, Department of Physics, Mile End Road, London E1 4NS, United Kingdom
Royal Holloway, University of London, Department of Physics, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom
Kingston University London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, United Kingdom
Laboratoire de Physique Nucléaire et de Hautes Energies, Université Pierre et Marie Curie (Paris 6), Université Denis Diderot (Paris-7), CNRS/IN2P3, Tour 33, 4 place Jussieu, FR - 75252 Paris Cedex 05, France
Fysiska institutionen, Lunds universitet, Box 118, SE - 221 00 Lund, Sweden
Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands
Oklahoma State University, Department of Physics and Astronomy, 145 Physical Sciences Building, Stillwater, Oklahoma 74078-3072, USA
University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, United Kingdom
University of Manchester, School of Physics and Astronomy, Manchester M13 9PL, United Kingdom
University of Massachusetts, Department of Physics, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
McGill University, High Energy Physics Group, 3600 University Street, Montreal, Quebec H3A 2T8, Canada
University of Melbourne, School of Physics, AU - Parkville, Victoria 3010, Australia
The University of Michigan, Department of Physics, 2477 Randall Laboratory, 500 East University, Ann Arbor, Michigan 48109-1120, USA
Michigan State University, Department of Physics and Astronomy, High Energy Physics Group, East Lansing, Michigan 48824-2320, USA
Université Denis Diderot (Paris-7), CNRS/IN2P3, Tour 33, 4 place Jussieu, FR - 75252 Paris Cedex 05, France
Universitá di Milano, Dipartimento di Fisica, via Celoria 16, IT - 20133 Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, NC PHEP BSI, M. Bogdanovich street 153, Minsk 220040, Republic of Belarus
Massachusetts Institute of Technology, Department of Physics, Room 24-516, Cambridge, Massachusetts 02139, USA
University of Montreal, Group of Particle Physics, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences of Russia, Leninsky pr. 53, RU - 117 924 Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), B. Cheremushkinskaya ul. 25, RU 117 218 Moscow, Russia
Moscow Engineering and Physics Institute (MEPhI), Kashirskoe Shosse 31, RU - 115409 Moscow, Russia
Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (MSU SINP), I(2), Leninskie gory, GSP-1, Moscow 119991 Russian Federation, Russia
Ludwig-Maximilians-Universität München, Fakultät für Physik, Am Coulombwall 1, DE - 85748 Garching, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
Nagoya University, Graduate School of Science, Furo-Cho, Chikusa-ku, Nagoya, 464-8602, Japan
Universita` di Milano, Dipartimento di Fisica Nucleare e Teorica, Via Bassi 6, IT - 20133 Milano, Italy
Universita` di Pavia, Dipartimento di Fisica, Via Bassi 6, IT - 20133 Milano, Italy
Michigan State University, Department of Physics and Astronomy, High Energy Physics Group, East Lansing, Michigan 48824-2320, USA
INFN Sezione di Milano, Italy
B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Republic of Belarus
University of New Mexico, Department of Physics and Astronomy, MSC07 4220, Albuquerque, New Mexico 87131 USA
Radboud University Nijmegen/NIKHEF, Department of Experimental High Energy Physics, Heyendaalseweg 35, NL-6525 AJ, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands
Department of Physics, Northern Illinois University, LaTourette Hall, Normal Road, DeKalb, Illinois 60115, USA
Budker Institute of Nuclear Physics (BINP), RU - Novosibirsk 630 090, Russia
New York University, Department of Physics, 4 Washington Place, New York, New York 10003, USA
Ohio State University, 191 West Woodruff Ave, Columbus, Ohio 43210-1117, USA
Okayama University, Faculty of Science, Tsushimanaka 3-1-1, Okayama 700-8530, Japan
University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks, Room 100, Norman, Oklahoma 73019-0225, USA
Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, Oklahoma 74078-3072, USA
Palacký University, 17.listopadu 50a, 772 07 Olomouc, Czech Republic
University of Oregon, Center for High Energy Physics, Eugene, Oregon 97403-1274, USA
LAL, Université du Paris-Sud, IN2P3/CNRS, Orsay, France
Osaka University, Graduate School of Science, Machikaneyama-machi 1-1, Toyonaka, Osaka 560-0043, Japan
University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO - 0316 Oslo 3, Norway
Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
INFN Sezione di Pavia, Italy
Università di Pavia, Dipartimento di Fisica Nucleare e Teorica, Via Bassi 6, IT-27100 Pavia, Italy
University of Pennsylvania, Department of Physics, High Energy Physics Group, 209 South 33rd Street, Philadelphia, Pennsylvania 19104, USA
Petersburg Nuclear Physics Institute, RU - 188 300 Gatchina, Russia
G. AAD et al. PHYSICAL REVIEW D 83, 112001 (2011)

163 University of California, Irvine, Department of Physics and Astronomy, CA 92697-4575, USA
163 INFN Gruppo Collegato di Udine, Italy
164 ICTP, Strada Costiera 11, IT-34014, Trieste, Italy
164 University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE -751 20 Uppsala, Sweden
164 Instituto de Fisica Corpuscular (IFIC) Centro Mixto UVEG-CSIC, Apdo. 22085 ES-46071 Valencia, Dept. Fisica At. Mol. y Nuclear; Univ. de Valencia and Inst. de Microelectronica de Barcelona (IMB-CNM-CSIC) 08193 Bellaterra, Spain
165 University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, British Columbia V6T 1Z1, Canada
166 The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL - 76100 Rehovot, Israel
167 Bergische Universität, Fachbereich C, Physik, Postfach 100127, D-42097 Wuppertal, Germany
167 Yale University, Department of Physics, P.O. Box 208121, New Haven Connecticut 06520-8121, USA
167 Yerevan Physics Institute, Alikhanian Brothers Street 2, AM - 375036 Yerevan, Armenia
168 University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria British Columbia, V8W 3P6, Canada
169 The University of Tokyo, Graduate School of Science, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
170 The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
171 The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL - 76100 Rehovot, Israel
172 University of Wisconsin, Department of Physics, 1150 University Avenue, WI 53706 Madison, Wisconsin, USA
173 Julius-Maximilians-University of Würzburg, Physikalisches Institute, Am Hubland, 97074 Würzburg, Germany
174 Yale University, Department of Physics, P.O. Box 208121, New Haven Connecticut 06520-8121, USA
175 University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria British Columbia, V8W 3P6, Canada
176 Yerevan Physics Institute, Alikhanian Brothers Street 2, AM - 375036 Yerevan, Armenia

a Deceased.
b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Avenida Elias Garcia 14-1, PT - 1000-149 Lisboa, Portugal.
c Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal.
d Also at CPPM, Aix-Marseille Université, CNRS-IN2P3, Marseille, France.
e Also at TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada.
f Also at Faculty of Physics and Applied Computer Science of the AGH-University of Science and Technology (FPACS, AGH-UST), al. Mickiewicza 30, PL-30059 Cracow, Poland.
g Also at University of Coimbra, Coimbra, Portugal.
h Also at Università di Napoli Parthenope, Napoli, Italy.
i Also at Institute of Particle Physics (IPP), Canada.
j Also at Louisiana Tech University, 305 Wisteria Street, P.O. Box 3178, Ruston, LA 71272, United States of America.
k Also at Department of Physics, California State University Fresno, Fresno, California United States of America.
l Also at California Institute of Technology, Pasadena, California, United States of America.
m Also at University of Montreal, Group of Particle Physics, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7, Canada.

n Also at Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan.
o Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
p Also at Manhattan College, New York, United States of America.
q Also at School of Physics and Engineering, Sun Yat-sen University, Guanzhou, China.
r Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan.
s Also at Shandong University, High Energy Physics Group, Jinan, CN - Shandong 250100, China.
t Also at Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom.
u Also at Departamento de Fisica, Universidade de Minho, Braga, Portugal.
v Also at Department of Physics and Astronomy, 700 South Main Street, Columbia, SC 29208, United States of America.
w Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
x Also at Institute of Physics, Jagiellonian University, Cracow, Poland.
y Also at Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom.
z Also at CEA, DSM/IRFU, Centre d'Etudes de Saclay, FR - 91191 Gif-sur-Yvette, France.

Also at Laboratoire de Physique Nucléaire et de Hautes Energies, Université Pierre et Marie Curie (Paris 6), Université Denis Diderot (Paris-7), CNRS/IN2P3, Tour 33, 4 place Jussieu, FR - 75252 Paris Cedex 05, France.

Also at Nanjing University, Department of Physics, Nanjing, CN - Jiangsu 210093, China.